
CeFlow: A Robust and Efficient Counterfactual
Explanation Framework for Tabular Data using

Normalizing Flows

Tri Dung Duong1, Qian Li2, and Guandong Xu1⋆

1 Faculty of Engineering and Information Technology, University of Technology
Sydney, NSW, Australia

2 School of Electrical Engineering, Computing and Mathematical Sciences,
Curtin University, WA, Australia

Abstract. Counterfactual explanation is a form of interpretable ma-
chine learning that generates perturbations on a sample to achieve the
desired outcome. The generated samples can act as instructions to guide
end users on how to observe the desired results by altering samples.
Although state-of-the-art counterfactual explanation methods are pro-
posed to use variational autoencoder (VAE) to achieve promising im-
provements, they suffer from two major limitations: 1) the counterfac-
tuals generation is prohibitively slow, which prevents algorithms from
being deployed in interactive environments; 2) the counterfactual expla-
nation algorithms produce unstable results due to the randomness in
the sampling procedure of variational autoencoder. In this work, to ad-
dress the above limitations, we design a robust and efficient counterfac-
tual explanation framework, namely CeFlow, which utilizes normalizing
flows for the mixed-type of continuous and categorical features. Numer-
ical experiments demonstrate that our technique compares favorably to
state-of-the-art methods. We release our source code3 for reproducing
the results.

Keywords: Counterfactual explanation · Normalizing flow · Inter-
pretable machine learning.

1 Introduction

Machine learning (ML) has resulted in advancements in a variety of scientific
and technical fields, including computer vision, natural language processing, and
conversational assistants. Interpretable machine learning is a machine learning
sub-field that aims to provide a collection of tools, methodologies, and algorithms
capable of producing high-quality explanations for machine learning model judg-
ments. A great deal of methods in interpretable ML methods has been proposed
in recent years. Among these approaches, counterfactual explanation (CE) is the
⋆ Corresponding author: Guandong.Xu@uts.edu.au
3 https://github.com/tridungduong16/fairCE.git

2 Tri Dung Duong, Qian Li, and Guandong Xu

prominent example-based method involved in how to alter features to change
the model predictions and thus generates counterfactual samples for explain-
ing and interpreting models [20, 1, 8, 28, 31]. An example is that for a customer
A rejected by a loan application, counterfactual explanation algorithms aim to
generate counterfactual samples such as “your loan would have been approved if
your income was $51,000 more” which can act as a recommendation for a person
to achieve the desired outcome. Providing counterfactual samples for black-box
models has the capability to facilitate human-machine interaction, thus promot-
ing the application of ML models in several fields.

The recent studies in counterfactual explanation utilize variational autoen-
coder (VAE) as a generative model to generate counterfactual sample [23, 20].
Specifically, the authors first build an encoder and decoder model from the train-
ing data. Thereafter, the original input would go through the encoder model to
obtain the latent representation. They make the perturbation into this repre-
sentation and pass the perturbed vector to the encoder until getting the desired
output. However, these approaches present some limitations. First, the latent
representation which is sampled from the encoder model would be changed
corresponding to different sampling times, leading to unstable counterfactual
samples. Thus, the counterfactual explanation algorithm is not robust when de-
ployed in real applications. Second, the process of making perturbation into
latent representation is so prohibitively slow [20] since they need to add random
vectors to the latent vector repeatedly; accordingly, the running time of algo-
rithms grows significantly. Finally, the generated counterfactual samples are not
closely connected to the density region, making generated explanations infeasible
and non-actionable. To address all of these limitations, we propose a Flow-based
counterfactual explanation framework (CeFlow) that integrates normalizing flow
which is an invertible neural network as the generative model to generate coun-
terfactual samples. Our contributions can be summarized as follows:

– We introduce CeFlow, an efficient and robust counterfactual explanation
framework that leverages the power of normalizing flows in modeling data
distributions to generate counterfactual samples. The usage of flow-based
models enables to produce more robust counterfactual samples and reduce
the algorithm running time.

– We construct a conditional normalizing flow model that can deal with tabular
data consisting of continuous and categorical features by utilizing variational
dequantization and Gaussian mixture models.

– The generated samples from CeFlow are close to and related to high-density
regions of other data points with the desired class. This makes counterfactual
samples likely reachable and therefore naturally follow the distribution of the
dataset.

2 Related works

An increasing number of methods have been proposed for the counterfactual ex-
planation. The existing methods can be categorized into gradient-based methods

CeFlow: Counterfactual explanation with NF 3

[28, 21], auto-encoder model [20], heuristic search methods [24, 25] and integer
linear optimization [15]. Regarding gradient-based methods, The authors in the
study construct the cross-entropy loss between the desired class and counterfac-
tual samples’ prediction with the purpose of changing the model output. The
created loss would then be minimized using gradient-descent optimization meth-
ods. In terms of auto-encoder model, generative models such as variational auto-
encoder (VAE) is used to generate new samples in another line of research. The
authors [23] first construct an encoder-decoder architecture. They then utilize
the encoder to generate the latent representation, make some changes to it, and
run it through the decoder until the prediction models achieve the goal class.
However, VAE models which maximize the lower bound of the log-likelihood
instead of measuring exact log-likelihood can produce unstable and unreliable
results. On the other hand, there is an increasing number of counterfactual ex-
planation methods based on heuristic search to select the best counterfactual
samples such as Nelder-Mead [9], growing spheres [19], FISTA [4, 27], or genetic
algorithms [3, 17]. Finally, the studies [26] propose to formulate the problem of
finding counterfactual samples as a mixed-integer linear optimization problem
and utilize some existing solvers [2, 1] to obtain the optimal solution.

3 Preliminaries

Throughout the paper, lower-cased letters x and x denote the deterministic
scalars and vectors, respectively. We consider a classifier H : X → Y that has
the input of feature space X and the output as Y = {1...C} with C classes.
Meanwhile, we denote a dataset D = {xn, yn}N

n=1 consisting of N instances
where xn ∈ X is a sample, yn ∈ Y is the predicted label of individuals xn

from the classifier H. Moreover, fθ is denoted for a normalizing flow model
parameterized by θ. Finally, we split the feature space into two disjoint feature
subspaces of categorical features and continuous features represented by X cat

and X con respectively such that X = Xcat ×Xcon and x = (xcat, xcon), and xcatj

and xconj is the corresponding j-th feature of xcat and xcon.

3.1 Counterfactual explanation

With the original sample xorg ∈ X and its predicted output yorg ∈ Y, the
counterfactual explanation aims to find the nearest counterfactual sample xcf
such that the outcome of classifier for xcf is changed to desired output class
ycf. We aim to identify the perturbation δ such that counterfactual instance
xcf = xorg + δ is the solution of the following optimization problem:

xcf = arg min
xcf∈X

d(xcf, xorg) subject to H(xcf) = ycf (1)

where d(xcf, xorg) is the function measuring the distance between xorg and xcf.
Eq (1) demonstrates the optimization objective that minimizes the similarity of
the counterfactual and original samples, as well as ensures to change the classifier

4 Tri Dung Duong, Qian Li, and Guandong Xu

to the desirable outputs. To make the counterfactual explanations plausible, they
should only suggest minimal changes in features of the original sample. [21].

3.2 Normalizing flow

Normalizing flows (NF) [5] is the active research direction in generative models
that aims at modeling the probability distribution of a given dataset. The study
[6] first proposes a normalizing flow, which is an unsupervised density estimation
model described as an invertible mapping fθ : X → Z from the data space X to
the latent space Z. Function fθ can be designed as a neural network parametrized
by θ with architecture that has to ensure invertibility and efficient computation
of log-determinants. The data distribution is modeled as a transformation f−1

θ :
Z → X applied to a random variable from the latent distribution z ∼ pZ , for
which Gaussian distribution is chosen. The change of variables formula gives the
density of the converted random variable x = f−1

θ (z) as follows:

pX (x) = pZ(fθ(x)) ·
∣∣∣det

(
∂fθ

∂x

)∣∣∣
∝ log (pZ(fθ(x))) + log

(∣∣∣det
(

∂fθ

∂x

)∣∣∣) (2)

With N training data points D = {xn}N
n=1, the model with respects to param-

eters θ can be trained by maximizing the likelihood in Equation (3):

θ = arg max
θ

(
N∏

n=1

(
log(pZ(fθ(xn))) + log

(∣∣∣∣det
(

∂fθ(xn)
∂xn

)∣∣∣∣))
)

(3)

4 Methodology

In this section, we illustrate our approach (CeFlow) which leverages the power
of normalizing flow in generating counterfactuals. First, we define the general
architecture of our framework in section 4.1. Thereafter, section 4.2 and 4.3
illustrate how to train and build the architecture of the invertible function f
for tabular data, while section 4.4 describes how to produce the counterfactual
samples by adding the perturbed vector into the latent representation.

4.1 General architecture of CeFlow

Figure 1 generally illustrates our framework. Let xorg be an original instance,
and fθ denote a pre-trained, invertible and differentiable normalizing flow model
on the training data. In general, we first construct an invertible and differentiable
function fθ that converts the original instance xorg to the latent representation
zorg = f(xorg). After that, we would find the scaled vector δz as the perturbation
and add to the latent representation zorg to get the perturbed representation
zcf which goes through the inverse function f−1

θ to produce the counterfactual

CeFlow: Counterfactual explanation with NF 5

Fig. 1: Counterfactual explanation with normalizing flows (CeFlow).

instance xcf. With the counterfactual instance xcf = f−1
θ (zorg + δz), we can

re-write the objective function Eq. (1) into the following form:{
δz = arg minδz∈Z d(xorg, δz)
H(xcf) = ycf

(4)

One of the biggest problems of deploying normalizing flow is how to han-
dle mixed-type data which contains both continuous and categorical features.
Categorical features are in discrete forms, which is challenging to model by the
continuous distribution only [10]. Another challenge is to construct the objective
function to learn the conditional distribution on the predicted labels [30, 14]. In
the next section, we will discuss how to construct the conditional normalizing
flow fθ for tabular data.

4.2 Normalizing flows for categorical features

This section would discuss how to handle the categorical features. Let {zcatm}M
m=1

be the continuous representation of M categorical features {xcatm}M
m=1 for each

xcatm ∈ {0, 1, ..., K − 1} with K > 1. Follow by several studies in the literature
[10, 12], we utilize variational dequantization to model the categorical features.
The key idea of variational dequantization is to add noise u to the discrete val-
ues xcat to convert the discrete distribution pX cat into a continuous distribution
pϕcat . With zcat = xcat + uk, ϕcat and θcat be models’ parameters, we have
following objective functions:

log pX cat (xcat) ≥
∫

u

log pϕcat (zcat)
qθcat (u|xcat)du

≈ 1
K

K∑
k=1

log
M∏

m=1

pϕcat (xcatm + uk)
qθcat (uk|xcat)

(5)

Followed the study [12], we choose Gaussian dequantization which is more
powerful than the uniform dequantization as qθcat(uk|xcat) = sig

(
N
(
µθcat , Σθcat

))
with mean µθcat , covariance Σθcat and sigmoid function sig(·).

6 Tri Dung Duong, Qian Li, and Guandong Xu

4.3 Conditional Flow Gaussian Mixture Model for tabular data

The categorical features xcat going through the the variational dequantization
would convert into continuous representation zcat. We then perform merge op-
eration on continuous representation zcat and continuous feature xcon to obtain
values (zcat, xcon) 7→ xfull. Thereafter, we apply flow Gaussian mixture model
[14] which is a probabilistic generative model for training the invertible func-
tion fθ. For each predicted class label y ∈ {1...C}, the latent space distribution
pZ conditioned on a label k is the Gaussian distribution N

(
zfull | µk, Σk

)
with

mean µk and covariance Σk:

pZ(zfull | y = k) = N
(
zfull | µk, Σk

)
(6)

As a result, we can have the marginal distribution of zfull:

pZ(zfull) = 1
C

C∑
k=1

N
(
zfull | µk, Σk

)
(7)

The density of the transformed random variable xfull = f−1
θ (zfull) is given by:

pX (xfull) = log
(
pZ(fθ(xfull))

)
+ log

(∣∣∣det
(

∂fθ

∂xfull

)∣∣∣) (8)

Eq. (7) and Eq. (8) together lead to the likelihood for data as follows:

pX (xfull | y = k) = log
(
N
(
fθ(xfull) | µk, Σk

))
+ log

(∣∣∣det
(

∂fθ

∂xfull

)∣∣∣) (9)

We can train the model by maximizing the joint likelihood of the categorical
and continuous features on N training data points D = {(xcon

n , xcat
n)}N

n=1 by
combining Eq. (5) and Eq. (9):

θ∗, ϕ∗
cat, θ∗

cat = arg max
θ,ϕcat,θcat

N∏
n=1

 ∏
xcon

n ∈X con

pX (xcon
n)

∏
xcat

n ∈X cat

pX
(
xcat

n

)
= arg max

θ,ϕcat,θcat

N∏
n=1

(
log
(
N
(
fθ(xfull

n) | µk, Σk

))
+ log

(∣∣∣det
(

∂fθ

∂xfull
n

)∣∣∣))
(10)

4.4 Counterfactual generation step

In order to find counterfactual samples, the recent approaches [21, 28] normally
define the loss function and deploy some optimization algorithm such as gradient
descent or heuristic search to find the perturbation. These approaches however
demonstrates the prohibitively slow running time, which prevents from deploy-
ing in interactive environment[11]. Therefore, inspired by the study [13], we add

CeFlow: Counterfactual explanation with NF 7

the scaled vector as the perturbation from the original instance xorg to counter-
factual one xcf. By Bayes’ rule, we notice that under a uniform prior distribution
over labels p(y = k) = 1

C for C classes, the log posterior probability becomes:

log pX (y = k|x) = log pX (x|y = k)∑C
k=1 pX (x|y = k)

∝ ||fθ(x) − µk||2 (11)

We observed from Eq. (11) that latent vector z = fθ(x) will be predicted from
the class y with the closest model mean µk. For each predicted class k ∈ {1...C},
we denote Gk = {xm, ym}M

m=1 as a set of M instances with the same predicted
class as ym = k. We define the mean latent vector µk corresponding to each
class k such that:

µk = 1
M

∑
xm∈Gk

fθ(xm) (12)

Therefore, the scaled vector that moves the latent vector zorg to the decision
boundary from the original class yorg to counterfactual class ycf is defined as:

∆yorg→ycf =
∣∣µyorg − µycf

∣∣ (13)

The scaled vector ∆yorg→ycf is added to the original latent representation
zcf = fθ(xorg) to obtained the perturbed vector. The perturbed vector then
goes through inverted function f−1

θ to re-produce the counterfactual sample:

xcf = f−1
θ (fθ(xorg) + α∆yorg→ycf) (14)

We note that the hyperparameter α needs to be optimized by searching in a
range of values. The full algorithm is illustrated in Algorithm 1.

Algorithm 1 Counterfactual explanation flow (CeFlow)
Input: An original sample xorg with its prediction yorg, desired class ycf, a provided

machine learning classifier H and encoder model Qϕ.
1: Train the invertible function fθ by maximizing the log-likelihood:

θ∗, ϕ∗
cat, θ∗

cat = arg max
θ,ϕcat,θcat

N∏
n=1

 ∏
xcon

n ∈X con

pX (xcon
n)

∏
xcat

n ∈X cat

pX
(
xcat

n

)
= arg max

θ,ϕcat,θcat

N∏
n=1

(
log
(
N
(
fθ(xfull

n) | µk, Σk

))
+ log

(∣∣∣det
(

∂fθ

∂xfull
n

)∣∣∣))
2: Compute mean latent vector µk for each class k by µk = 1

M

∑
xm∈Gk

f(xm).
3: Compute the scaled vector ∆yorg→ycf =

∣∣µyorg − µycf

∣∣.
4: Find the optimal hyperparameter α by searching a range of values.
5: Compute xcf = f−1

θ (fθ(xorg) + α∆yorg→ycf).
Output: xcf.

8 Tri Dung Duong, Qian Li, and Guandong Xu

5 Experiments

We run experiments on three datasets to show that our method outperforms
state-of-the-art approaches. The specification of hardware for the experiment
is Python 3.8.5 with 64-bit Red Hat, Intel(R) Xeon(R) Gold 6238R CPU @
2.20GHz. We implement our algorithm by using Pytorch library and adopt the
RealNVP architecture [6]. During training progress, Gaussian mixture param-
eters are fixed: the means are initialized randomly from the standard normal
distribution and the covariances are set to I. More details of implementation
settings can be found in our code repository4.

We evaluate our approach via three datasets: Law [29], Compas [16] and Adult
[7]. Law5[29] dataset provides information of students with their features: their
entrance exam scores (LSAT), grade-point average (GPA) and first-year average
grade (FYA). Compas6[16] dataset contains information about 6,167 prisoners
who have features including gender, race and other attributes related to prior
conviction and age. Adult7[7] dataset is a real-world dataset consisting of both
continuous and categorical features of a group of consumers who apply for a loan
at a financial institution.

We compare our proposed method (CeFlow) with several state-to-the-art
methods including Actionable Recourse (AR) [26], Growing Sphere (GS) [18],
FACE [24], CERTIFAI [25], DiCE [21] and C-CHVAE [23]. Particularly, we im-
plement the CERTIFAI with library PyGAD8 and utilize the available source
code9 for implementation of DiCE, while other approaches are implemented with
Carla library [22]. Finally, we report the results of our proposed model on a vari-
ety of metrics including success rate (success), l1-norm (l1), categorical proximity
[21], continuous proximity [21] and mean log-density [1]. Note that for l1-norm,
we report mean and variance of l1-norm corresponding to l1-mean and l1-variance.
Lower l1-variance aims to illustrate the algorithm’s robustness.

AR C-CHVAE CERTIFAI DiCE FACE GS CeFlow
Method

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
es

ul
t

Categorical proximity

Dataset
Adult
Compas

AR C-CHVAE CERTIFAI DiCE FACE GS CeFlow
Method

−0.08

−0.06

−0.04

−0.02

R
es

ul
t

Continuous proximity

Dataset
Law
Compas
Adult

Fig. 2: Baseline results in terms of Categorical proximity and Continuous
proximity. Higher continuous and categorical proximity are better.

4 https://anonymous.4open.science/r/fairCE-538B
5 http://www.seaphe.org/databases.php
6 https://www.propublica.org
7 https://archive.ics.uci.edu/ml/datasets/adult
8 https://github.com/ahmedfgad/GeneticAlgorithmPython
9 https://github.com/divyat09/cf-feasibility

CeFlow: Counterfactual explanation with NF 9

Table 1: Performance of all methods on the classifier. We compute p-value by
conducting a paired t-test between our approach (CeFlow) and baselines with
100 repeated experiments for each metric.

Dataset Method Performance p-value

success l1-mean l1-var log-density success l1 log-density

Law

AR 98.00 3.518 2.0e-03 -0.730 0.041 0.020 0.022
GS 100.00 3.600 2.6e-03 -0.716 0.025 0.048 0.016

FACE 100.00 3.435 2.0e-03 -0.701 0.029 0.010 0.017
CERTIFAI 100.00 3.541 2.0e-03 -0.689 0.029 0.017 0.036

DiCE 94.00 3.111 2.0e-03 -0.721 0.018 0.035 0.048
C-CHVAE 100.00 3.461 1.0e-03 -0.730 0.040 0.037 0.016

CeFlow 100.00 3.228 1.0e-05 -0.679 - - -

Compas

AR 97.50 1.799 2.4e-03 -14.92 0.038 0.034 0.046
GS 100.00 1.914 3.2e-03 -14.87 0.019 0.043 0.040

FACE 98.50 1.800 4.8e-03 -15.59 0.036 0.024 0.035
CERTIFAI 100.00 1.811 2.4e-03 -15.65 0.040 0.048 0.038

DiCE 95.50 1.853 2.9e-03 -14.68 0.030 0.029 0.018
C-CHVAE 100.00 1.878 1.1e-03 -13.97 0.026 0.015 0.027

CeFlow 100.00 1.787 1.8e-05 -13.62 - - -

Adult

AR 100.00 3.101 7.8e-03 -25.68 0.044 0.037 0.018
GS 100.00 3.021 2.4e-03 -26.55 0.026 0.049 0.028

FACE 100.00 2.991 6.6e-03 -23.57 0.027 0.015 0.028
CERTIFAI 93.00 3.001 4.1e-03 -25.55 0.028 0.022 0.016

DiCE 96.00 2.999 9.1e-03 -24.33 0.046 0.045 0.045
C-CHVAE 100.00 3.001 8.7e-03 -24.45 0.026 0.043 0.019

CeFlow 100.00 2.964 1.5e-05 -23.46 - - -

Table 2: We report running time of different methods on three datasets.
Dataset AR GS FACE CERTIFAI DiCE C-CHVAE CeFlow

Law 3.030 ± 0.105 7.126 ± 0.153 6.213 ± 0.007 6.522 ± 0.088 8.022 ± 0.014 9.022 ± 0.066 0.850 ± 0.055
Compas 5.125 ± 0.097 8.048 ± 0.176 7.688 ± 0.131 13.426 ± 0.158 7.810 ± 0.076 6.879 ± 0.044 0.809 ± 0.162
Adult 7.046 ± 0.151 6.472 ± 0.021 13.851 ± 0.001 7.943 ± 0.046 11.821 ± 0.162 12.132 ± 0.024 0.837 ± 0.026

The performance of different approaches regarding three metrics: l1, success
metrics and log-density are illustrated in Table 1. Regarding success rate, all
three methods achieve competitive results, except the AR, DiCE and CERTI-
FAI performance in all datasets with around 90% of samples belonging to the
target class. These results indicate that by integrating normalizing flows into
counterfactuals generation, our proposed method can achieve the target of coun-
terfactual explanation task for changing the models’ decision. Apart from that,
for l1-mean, CeFlow is ranked second with 3.228 for Law, and is ranked first for
Compas and Adult (1.787 and 2.964). Moreover, our proposed method generally
achieves the best performance regarding l1-variance on three datasets. CeFlow
also demonstrates the lowest log-density metric in comparison with other ap-
proaches achieving at -0.679, -13.62 and -23.46 corresponding to Law, Compas
and Adult dataset. This illustrates that the generated samples are more closely
followed the distribution of data than other approaches. We furthermore per-
form a statistical significance test to gain more insights into the effectiveness
of our proposed method in producing counterfactual samples compared with
other approaches. Particularly, we conduct the paired t-test between our ap-
proach (CeFlow) and other methods on each dataset and each metric with the
obtained results on 100 randomly repeated experiments and report the result of
p-value in Table 1. We discover that our model is statistically significant with
p < 0.05, proving CeFlow’s effectiveness in counterfactual samples generation

10 Tri Dung Duong, Qian Li, and Guandong Xu

tasks. Meanwhile, Table 2 shows the running time of different approaches. Our
approach achieves outstanding performance with the running time demonstrat-
ing around 90% reduction compared with other approaches. Finally, as expected,
by using normalizing flows, CeFlow produces more robust counterfactual sam-
ples with the lowest l1-variance and demonstrates an effective running time in
comparison with other approaches.

Figure 2 illustrates the categorical and continuous proximity. In terms of
categorical proximity, our approach achieves the second-best performance with
lowest variation in comparison with other approaches. The heuristic search based
algorithm such as FACE and GS demonstrate the best performance in terms of
this metric. Meanwhile, DiCE produces the best performance for continuous
proximity, whereas CeFlow is ranked second. In general, our approach (CeFlow)
achieves competitive performance in terms of proximity metric and demonstrates
the least variation in comparison with others. On the other hand, Figure 3 shows
the variation of our method’s performance with the different values of α. We
observed that the optimal values are achieved at 0.8, 0.9 and 0.3 for Law, Compas
and Adult dataset, respectively.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

−0.65

−0.60

−0.55

−0.50

Mean log-density

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

−0.10

−0.08

−0.06

−0.04

−0.02

Continuous proximity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

−13.4

−13.3

−13.2

−13.1

−13.0

−12.9

−12.8
Mean log-density

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

Continuous proximity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

4.0

4.5

5.0

5.5

6.0

Categorical proximity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

−22.9

−22.8

−22.7

−22.6

−22.5

Mean log-density

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

−0.08

−0.06

−0.04

−0.02

Continuous proximity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

3

4

5

6

Categorical proximity

Law

Compas

Adult

Fig. 3: Our performance under different values of hyperparameter α. Note that
there are no categorical features in Law dataset.

6 Conclusion

In this paper, we introduced a robust and efficient counterfactual explanation
framework called CeFlow that utilizes the capacity of normalizing flows in gen-
erating counterfactual samples. We observed that our approach produces more
stable counterfactual samples and reduces counterfactual generation time sig-
nificantly. The better performance witnessed is likely because that normalizing
flows can get the exact representation of the input instance and also produce
the counterfactual samples by using the inverse function. Numerous extensions

CeFlow: Counterfactual explanation with NF 11

to the current work can be investigated upon successful expansion of normaliz-
ing flow models in interpretable machine learning in general and counterfactual
explanation in specific. One potential direction is to design a normalizing flow
architecture to achieve counterfactual fairness in machine learning models.

Acknowledgement

This work is supported by the Australian Research Council (ARC) under Grant
No. DP220103717, LE220100078, LP170100891, DP200101374.

References

1. Artelt, A., Hammer, B.: Convex density constraints for computing plausible coun-
terfactual explanations. arXiv preprint arXiv:2002.04862 (2020)

2. Bliek1ú, C., Bonami, P., Lodi, A.: Solving mixed-integer quadratic programming
problems with ibm-cplex: a progress report. In: Proceedings of the twenty-sixth
RAMP symposium. pp. 16–17 (2014)

3. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual ex-
planations. arXiv preprint arXiv:2004.11165 (2020)

4. Dhurandhar, A., Pedapati, T., Balakrishnan, A., Chen, P.Y., Shanmugam, K.,
Puri, R.: Model agnostic contrastive explanations for structured data. arXiv
preprint arXiv:1906.00117 (2019)

5. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516 (2014)

6. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. arXiv
preprint arXiv:1605.08803 (2016)

7. Dua, D., Graff, C.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

8. Grath, R.M., Costabello, L., Van, C.L., Sweeney, P., Kamiab, F., Shen, Z., Lecue,
F.: Interpretable Credit Application Predictions With Counterfactual Explana-
tions. arXiv:1811.05245 [cs] (Nov 2018), arXiv: 1811.05245

9. Grath, R.M., Costabello, L., Van, C.L., Sweeney, P., Kamiab, F., Shen, Z., Lecue,
F.: Interpretable credit application predictions with counterfactual explanations.
arXiv preprint arXiv:1811.05245 (2018)

10. Ho, J., Chen, X., Srinivas, A., Duan, Y., Abbeel, P.: Flow++: Improving flow-
based generative models with variational dequantization and architecture design.
In: International Conference on Machine Learning. pp. 2722–2730. PMLR (2019)

11. Höltgen, B., Schut, L., Brauner, J.M., Gal, Y.: Deduce: Generating counterfactual
explanations at scale. In: eXplainable AI approaches for debugging and diagnosis.
(2021)

12. Hoogeboom, E., Cohen, T.S., Tomczak, J.M.: Learning discrete distributions by
dequantization. arXiv preprint arXiv:2001.11235 (2020)

13. Hvilshøj, F., Iosifidis, A., Assent, I.: Ecinn: efficient counterfactuals from invertible
neural networks. arXiv preprint arXiv:2103.13701 (2021)

14. Izmailov, P., Kirichenko, P., Finzi, M., Wilson, A.G.: Semi-supervised learning
with normalizing flows. In: International Conference on Machine Learning. pp.
4615–4630. PMLR (2020)

12 Tri Dung Duong, Qian Li, and Guandong Xu

15. Kanamori, K., Takagi, T., Kobayashi, K., Arimura, H.: Dace: Distribution-aware
counterfactual explanation by mixed-integer linear optimization. In: Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-
20, Christian Bessiere (Ed.). International Joint Conferences on Artificial Intelli-
gence Organization. pp. 2855–2862 (2020)

16. Larson, J., Mattu, S., Kirchner, L., Angwin, J.: How we analyzed the compas
recidivism algorithm. ProPublica (5 2016) 9(1) (2016)

17. Lash, M.T., Lin, Q., Street, N., Robinson, J.G., Ohlmann, J.: Generalized inverse
classification. In: Proceedings of the 2017 SIAM International Conference on Data
Mining. pp. 162–170. SIAM (2017)

18. Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: Inverse classi-
fication for comparison-based interpretability in machine learning. arXiv preprint
arXiv:1712.08443 (2017)

19. Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: Comparison-
based inverse classification for interpretability in machine learning. In: Interna-
tional Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems. pp. 100–111. Springer (2018)

20. Mahajan, D., Tan, C., Sharma, A.: Preserving causal constraints in counterfac-
tual explanations for machine learning classifiers. arXiv preprint arXiv:1912.03277
(2019)

21. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency. pp. 607–617 (2020)

22. Pawelczyk, M., Bielawski, S., Heuvel, J.v.d., Richter, T., Kasneci, G.: Carla: a
python library to benchmark algorithmic recourse and counterfactual explanation
algorithms. arXiv preprint arXiv:2108.00783 (2021)

23. Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfac-
tual explanations for tabular data. In: Proceedings of The Web Conference 2020.
pp. 3126–3132 (2020)

24. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: Face: feasible
and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society. pp. 344–350 (2020)

25. Sharma, S., Henderson, J., Ghosh, J.: Certifai: A common framework to provide
explanations and analyse the fairness and robustness of black-box models. In: Pro-
ceedings of the AAAI/ACM Conference on AI, Ethics, and Society. pp. 166–172
(2020)

26. Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification. In:
Proceedings of the Conference on Fairness, Accountability, and Transparency. pp.
10–19 (2019)

27. Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by
prototypes. arXiv preprint arXiv:1907.02584 (2019)

28. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. Harv. JL & Tech. 31,
841 (2017)

29. Wightman, L.F.: Lsac national longitudinal bar passage study. lsac research report
series. (1998)

30. Winkler, C., Worrall, D., Hoogeboom, E., Welling, M.: Learning likelihoods with
conditional normalizing flows. arXiv preprint arXiv:1912.00042 (2019)

31. Xu, G., Duong, T.D., Li, Q., Liu, S., Wang, X.: Causality learning: A new perspec-
tive for interpretable machine learning. arXiv preprint arXiv:2006.16789 (2020)

