
Efficient Behaviour based Information
Driven Human Tracking System for Long
Term Occlusion Recovery

by Zulkarnain Bin Zainudin

Thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Professor Sarath Kodagoda
and Emeritus Professor Gamini Dissanayake

University of Technology Sydney
The Faculty of Engineering and Information Technology

March 2024



CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Zulkarnain Bin Zainudin, declare that this thesis is submitted in fulfilment of the
requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and

Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In
addition, I certify that all information sources and literature used are indicated in the
thesis.

This document has not been submitted for qualifications at any other academic insti-
tution.

This research is supported by the Australian Government Research Training Program.

Signed:

Date: 04/03/2024

i

Production Note:
Signature removed prior to publication.



Acknowledgements

I would like to express my deepest appreciation and gratitude to all the people who
have helped and supported me during the past four years of my candidature.

First, I would like to express my sincere and heartfelt thanks to my two supervisors.
To Professor Sarath Kodagoda, thank you so much for all your precious guidance and
patience, setting aside many hours of your invaluable time, and allowing me to have
many meaningful and significant discussion sessions from the beginning till the end
of my research. To Emeritus Professor Gamini Dissanayake, my deepest appreciation
to you for the hours of collaboration and insightful ideas towards possible research
output. I would like to thank my colleague, Leo, for all your valuable contributions
and wise thoughts during the various discussions we held together.

To my many colleagues at UTS-CAS, my corner fellows, Jason, Stephen, Kasra,
Marc, Mitesh, and Mohamad, thank you. Research would have been much tougher
and more challenging without the constant discussions and sharing of light moments
when the going was tough.

To my beloved wife, Syahida Binti Mohtar, thank you for your undivided support
and the belief in me to complete this new milestone in my life. To my children, Intan
Humaira’, Muhammad Zaki, and Intan Ruqayyah, you are the jewels in my heart.

Finally, I would like to thank my late father, Zainudin, and my mother, Ramlah, for
their constant support. I hope that I have made you proud, and as a son, I am so
privileged to have parents like you. To my parents-in-law, Mohtar and Siti Fatimah,
thank you for their confidence in me, the support, and the motivation. To my late
brother, Iskandar Mirza, and sisters, Zarinah, Zanariah, and Zuraidah, I hope my
success will motivate you at least to follow in my footsteps, if not better.

ii



Contents

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Principal Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 People Detection 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 People Detection Techniques . . . . . . . . . . . . . . . . . 11
2.2.3 Torso Detection . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Training and Detection Processes . . . . . . . . . . . . . . . . . . . 13
2.4 People Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Features Selection . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Classifier Selection . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Scan matching by using Iterative Closest Point (ICP) . . . . . 25

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 People Detection . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



CONTENTS

3 People Tracking 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Importance of People Tracking . . . . . . . . . . . . . . . . 40
3.2.2 Methods of Data Association . . . . . . . . . . . . . . . . . 41
3.2.3 Probabilistic Data Association Filter (PDAF) . . . . . . . . . 43
3.2.4 Interacting Multiple Model Tracker . . . . . . . . . . . . . . 48
3.2.5 Model Probability Evaluator . . . . . . . . . . . . . . . . . . 51
3.2.6 Consistency Analysis of IMM Tracker . . . . . . . . . . . . . 52
3.2.7 Monte Carlo Simulation-Based Tests . . . . . . . . . . . . . 53
3.2.8 Types of IMM Tracker Testing . . . . . . . . . . . . . . . . . 54

3.3 Tracking using Interacting Multiple Model (IMM) Tracker . . . . . . 54
3.3.1 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Track Formation and Termination . . . . . . . . . . . . . . . 55

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Performance Analysis with Normalised Estimation Error Squared

(NEES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Normalised Estimation Error Squared (NEES) with Multiple

Tracking Occlusions . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Occlusion Handling with Probabilistic Data Association Filter
(PDAF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.2 Performance Analysis with Normalised Innovation Squared (NIS) 67
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Non-Parametric People Tracking 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Human Motion Prediction and Learning . . . . . . . . . . . . . . . . 72
4.4 Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iv



CONTENTS

4.5 Data Selection and Management . . . . . . . . . . . . . . . . . . . 76
4.5.1 Mutual Information . . . . . . . . . . . . . . . . . . . . . . 78
4.5.2 Mahalanobis Distance . . . . . . . . . . . . . . . . . . . . . 78

4.6 Gaussian Process - Particle Filter (GP-PF) . . . . . . . . . . . . . . 79
4.7 Gaussian Processes - Extended Kalman Filter (GP-EKF) . . . . . . . 80
4.8 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8.1 Circular Trajectories Tracking . . . . . . . . . . . . . . . . . 83
4.8.2 Multiple Trajectories Tracking . . . . . . . . . . . . . . . . . 93
4.8.3 Simultaneous Trajectories Tracking . . . . . . . . . . . . . . 106

4.9 Tracking the Freely Walking People Scenario . . . . . . . . . . . . . 114
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Conclusion 117

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.1 Tracking by Detection Technique . . . . . . . . . . . . . . . 117
5.1.2 Non-Parametric Estimation Method . . . . . . . . . . . . . . 118
5.1.3 Data Optimisation and Management . . . . . . . . . . . . . 119
5.1.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . 119

5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.1 Improvements to the Optimisation Method . . . . . . . . . . 120
5.2.2 Bidirectionally Optimised GP Learned Model . . . . . . . . . 120
5.2.3 Partially Area-Oriented, Optimised GP Learned Model . . . . 120
5.2.4 Fusion of Optimised GP Learned Model with Images . . . . . 121
5.2.5 Integration of Two-Dimensional and Three-Dimensional Data 121
5.2.6 Real-time Tracking and Detecting Algorithm . . . . . . . . . 121
5.2.7 Fusion of Multiple Sensors . . . . . . . . . . . . . . . . . . . 122

Bibliography 123

v



List of Tables

2.1 Comparison of classifiers . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Confusion Matrix for Straight and Side Facing . . . . . . . . . . . . 33
2.3 Confusion Matrix for Two People and Three People . . . . . . . . . 34

vi



List of Figures

2.1 Scanning Laser Range Finder . . . . . . . . . . . . . . . . . . . . . 11
2.2 Training and Detection Process Flow . . . . . . . . . . . . . . . . . 14
2.3 Segmentation of LRF data that represents people, walls, and furniture

by EKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Segmented data represents people, walls and furniture fitted with ellipses. 18
2.5 A Segmented LRF data for human pose that fitted with an ellipse . . 23
2.6 Scan Matching using Iterative Closest Point (ICP), adopted from article

written by Martínez et al [1] . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Robot used in the experiments . . . . . . . . . . . . . . . . . . . . . 30
2.8 Graphical Illustration of the experiment location . . . . . . . . . . . 31
2.9 Laser data taken at torso height as shown on red marking. . . . . . . 31
2.10 Occlusion of two people that is shown in successive time frames . . . 35
2.11 Detection of two people with occlusions that are shown in the grey circle 36
2.12 Detection of three people with occlusions that are shown in the grey

circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Tracking two people with occlusion . . . . . . . . . . . . . . . . . . 57
3.2 NEES and RMS errors for tracks 1 and 2 . . . . . . . . . . . . . . . 59
3.3 Pose of a human torso that was being observed from various angles in

a circular motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 NEES and RMS errors for tracks 1 and 2 . . . . . . . . . . . . . . . 62

vii



LIST OF FIGURES

3.5 Tracking of two people with multiple occlusions (red-dot is an IMM-
PDAF tracker, and magenta-line with blue-dot is a groundtruth) . . . 63

3.6 The tracking performance of three people . . . . . . . . . . . . . . . 63
3.7 People track results with a stationary observer (T1 and T2 denote the

tracks of two people) . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8 People track results with a moving observer (T1 and T2 denote the

tracks of two people) . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9 The log-likelihood ratio (LLR) of two people tracking . . . . . . . . . 67
3.10 Normalized Innovation Squared (NIS) of tracks 1,2 and 3 . . . . . . 68

4.1 The process flow on the selection of data points in Gaussian Processes. 77
4.2 Office environment in the Centre of Autonomous Systems . . . . . . 82
4.3 Circular Trajectories of a walking person . . . . . . . . . . . . . . . 82
4.4 Points in trajectory prior to and post-MI implementation . . . . . . . 84
4.5 GP regression with 150 data points . . . . . . . . . . . . . . . . . . 85
4.6 RMSE between predicted mean and the measurements . . . . . . . . 86
4.7 Implementation of Mahalanobis Distance . . . . . . . . . . . . . . . 87
4.8 GP Regression of final points after MD and MIA . . . . . . . . . . . 88
4.9 Final points and RMSE . . . . . . . . . . . . . . . . . . . . . . . . 89
4.10 Tracking performance of the Gaussian Process-Particle Filter (GP-PF) 91
4.11 Comparison of four types of trackers: EKF (red line), PF (magenta),

GP-EKF (blue line), and GP-PF (green line) . . . . . . . . . . . . . 92
4.12 Office environment in the Centre of Autonomous Systems . . . . . . 95
4.13 Multiple trajectories of a walking person . . . . . . . . . . . . . . . 96
4.14 The initial points of a subject are represented as dots as they walk . . 97
4.15 Final points after MIA and MD . . . . . . . . . . . . . . . . . . . . 98
4.16 Gaussian Process Regression before MIA and MD . . . . . . . . . . . 99
4.17 Gauss Process Regression after MIA and MD . . . . . . . . . . . . . 100
4.18 RMSE between predicted mean and the measurement . . . . . . . . 101
4.19 Tracking route 1 and route 2 with GP-PF . . . . . . . . . . . . . . . 102

viii



LIST OF FIGURES

4.20 Tracking route 3 and route 4 with GP-PF . . . . . . . . . . . . . . . 103
4.21 Occlusion: tracking with GP-PF (green line) and EKF (red line) . . . 104
4.22 Zoom in on the growing covariance ellipses of the occlusion period

with the EKF tracker . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.23 Two people were simultaneously tracked with partial occlusions by GP-

PF (green line) and EKF (red line) . . . . . . . . . . . . . . . . . . 107
4.24 Four people were simultaneously tracked with no occlusions by GP-PF

(green line) and EKF (red line) . . . . . . . . . . . . . . . . . . . . 108
4.25 Tracking people with four methods . . . . . . . . . . . . . . . . . . 110
4.26 RMS Error on 1 route . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.27 Four people were simultaneously tracked with partial occlusions by GP-

PF (green line) and EKF (red line) . . . . . . . . . . . . . . . . . . 112
4.28 Four people were simultaneously tracked with partial occlusions by EKF

(red line), PF (magenta line), GP-EKF (blue line) and GP-PF (green
line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.29 Tracking on three people . . . . . . . . . . . . . . . . . . . . . . . . 115
4.30 Three people in a freely walking scenario are identified by GP-EKF

(blue line) and GP-PF (green line) . . . . . . . . . . . . . . . . . . 116

ix



Nomenclature

Formatting Style

Formatting Description

[· · · ]T Vector or matrix transpose

| · | Absolute value

Subscript and Numbering

Subscript Description

Xi ith element in vector

X j jth element in vector

x



NOMENCLATURE

Symbol Usage

Symbol Description Units

αT Probability of false-track confirmation none

βT Probability of true-track confirmation none

PT Probability of a true person none

xi



Abbreviations

2D Two Dimensional

ARMSE Average Root Mean Square Error

EKF Extended Kalman Filter

EM Expectation-Maximization

GNN Generalized Nearest Neighbour Filter

GP Gaussian Process

GP-PF Gaussian Process - Particle Filter

GP-EKF Gaussian Process - Extended Kalman Filter

HMM Hidden Markov Model

HRI Human Robot Interaction

ICP Iterative Closest Point

IMM Interactive Multiple Model

IMMPDAF Interacting Multiple Model Probabilistic Data Association Filter

JPDAF Joint Probabilistic Data Association Filter

xii



ABBREVIATIONS

LiDAR Light Detection and Ranging

LLR Log-likelihood Ratio

LRF Laser Range Finder

MD Mahalanobis Distance

MI Mutual Information

MIA Mutual Information Approach

MMPDAF Multiple Model Probabilistic Data Association Filter

NEES Normalized Estimation Error Squared

NIS Normalized Innovation Squared

NNSF Nearest Neighbour Standard Filter

PDAF Probabilistic Data Association Filter

PF Particle Filter

RBF Radial Basis Function

RMS Root Mean Square

RMSE Root Mean Square Error

ROI Region of Interest

SNSF Strongest Neighbour Standard Filter

SVM Support Vector Machine

xiii



Abstract

Efficient Behaviour based Information Driven Human Tracking System

for Long Term Occlusion Recovery

Comprehending human motion patterns is pivotal for the development of tools de-

signed to detect and track individuals. This thesis has devised a methodology for

identifying people by analysing their torso height and employing classification algo-

rithms. The Support Vector Machine (SVM) was chosen as the binary classifier,

with four features assigned to it. Following an extensive experimental assessment of

various classification methods, the SVM emerged as the preferred classifier due to

its superior performance. The efficiency of the people tracking technique employing

the Interacting-Multiple-Model Probabilistic Data Association Filter (IMMPDAF) was

evaluated using both simulated and experimental data. The assessment relied on met-

rics such as Normalised Estimation Error Squared (NEES) and Normalised Innovation

Squared (NIS). While the IMMPDAF exhibited robustness and consistency, it faced

challenges with targets experiencing prolonged occlusion, thereby diminishing tempo-

ral prediction accuracy. Thus, researchers came up with Gaussian Processes (GP) to

make tracking more accurate during long occlusions.

Experiments showed that the Gaussian Process-Particle Filter (GP-PF) was better

at predicting the future in terms of time. Incrementally adding training data samples,

despite their accuracy, resulted in an observed increase in the computational load.

xiv



ABSTRACT

A sample data management system was established to retain valuable data while

discarding less informative data, utilizing techniques based on mutual information

(MI) and Mahalanobis distance (MD). This approach significantly reduced sampling

data while adhering to the average RMS error (ARMSE) limit.

The focus of this research was on observing people in indoor environments using a

2D laser range finder (LRF) or laser detection and ranging (LiDAR) as a sensor. The

initial objective was to identify a suitable detection classification method and integrate

it with the tracking technique. Subsequently, a specialised algorithm was developed to

enhance temporal tracking capabilities, particularly in situations involving occlusions

and partially absent observation data.

An effective technique for detecting and tracking people based on specified fea-

tures was formulated in this thesis, integrating a learning algorithm with a tracking

algorithm. The detection and tracking approaches employed parametric and non-

parametric regression models along with learning algorithms. Using laser measure-

ments to sort certain properties into groups using different types of classifiers made it

easier to compare learning algorithms, and the confusion matrix helped find the best

way to choose the suitable detection algorithm. The robustness and consistency of

track generation and termination, based on the log-likelihood ratio (LLR) in conjunc-

tion with the Interacting Multiple Model Data Association Filter (IMMPDAF), were

scrutinized. These investigations resulted in the development of Gaussian Process-

Bayes Filters, which showcased proficiency in long-term occlusion tracking. Addition-

ally, novel training data management approaches were established to minimize the

number of samples required for training without compromising the tracker’s effective-

ness.

xv



Chapter 1

Introduction

1.1 Problem Statement

The requirement for effective and precise monitoring systems in interior settings has
become critical in today’s world of rapid evolution. For several reasons, including
security, safety, and resource optimisation, strong technologies to detect and moni-
tor individuals are needed in indoor locations like malls, airports, offices, and public
buildings. When dealing with busy or complicated indoor environments, traditional
monitoring techniques sometimes fall short. Therefore, there is an urgent need for
cutting-edge technology that can detect and track people in interior settings.

The successful development of a solution to this problem will result in an intelligent
system capable of accurately detecting and tracking people in indoor environments.
The system should offer real-time processing, adaptability to different settings, pri-
vacy preservation, and robustness against occlusions. By achieving these outcomes,
the solution will enhance security measures, improve public safety, optimise resource
management, and contribute to the overall efficiency of indoor spaces. The main goal
of this thesis is to develop algorithms to detect and track people in natural indoor
environments. In particular, the focus is on analysing the signals of stationary and
moving objects from sensors observing complex environments.

1



CHAPTER 1. INTRODUCTION

1.2 Motivation

The ability to detect and track human motion is a useful tool for advanced robotic
applications that rely on objects and visual sensors. Understanding human nature in
motion and their interactions always forms a core of interest in intelligent systems
such as automated surveillance systems, human-robot interactions and pedestrian
detection in autonomous motor vehicles. Detection and tracking of human motion
with occlusions or without observation information over a significantly long period of
time is of immense interest in human-robotic interaction due to its implications for
human safety. In an environment where robots and humans are in motion, robots must
be able to identify and track human positions and travel on command while avoiding
obstacles. However, when the observations are temporally occluded with any object,
the tracking system of the robot fails to properly identify and track the targets. This
is due to the nature of the parametric model of the tracker, where the track cannot
be re-associated with the target for further tracking. Due to this limitation, a non-
parametric model could be an appropriate answer to learn prediction and observation
models for dynamical systems. One of the techniques that can be used for modelling
is the Gaussian Process regression model. It provides uncertainty estimates for their
predictions, which can be incorporated into trackers.

Object detection and tracking can be a time-consuming process due to the accu-
mulative amount of data that is necessary to provide training data for the learning
algorithm to learn those patterns. The increasing amount of accumulative data then
leads to the process of learning the patterns becoming computationally expensive.
Thus, the reduction of training data will alleviate the time-consuming computational
process of learning predictions and observations. However, the information data needs
to be appropriately managed while disregarding the non-informative data.

In this research, the scope of the study is detecting and tracking people in indoor
environments where a static observation device known as a laser range finder (LRF) is
positioned at torso height in a common area at the Centre of Autonomous Systems,

2



CHAPTER 1. INTRODUCTION

University of Technology Sydney. Some of the areas are divided into cubicles, as
they were being used as workstations for the researchers in the centre. In this area,
there are many possibilities of obstacles and objects that might temporarily block the
observation of the laser range finder towards detecting and tracking people on the
walking paths between the cubicles. Thus, the temporal disappearance of observation
data will lead to the tracker’s failure to track moving people. In order to overcome
this problem, a solution like a non-parametric model where uncertainty estimates for
their predictions can be incorporated into trackers needs to be implemented.

1.3 Principal Contributions

This work addresses the problem of learning and utilising motion patterns in peo-
ple detection and tracking in human-populated environments. The thesis explores
approaches for exemplifying and learning human motion patterns. The principle con-
tributions of this thesis arise from the development of a new methodology on temporal
tracking that leads to the selection of informative data for a non-parametric estimation
model of Gaussian Process-Particle Filter (GP-PF) to represent human motion pat-
terns, which is suitable for online learning and can be deployed on a mobile robot that
is fitted with sensors. The resulting non-parametric estimation model is implemented
in people tracking to improve performance and accuracy.

The main contributions are:

• A novel approach for the establishment of selected features and parameters in a
learning algorithm to represent people at the detection level is developed from
sample-based representation. Among those features, segmented data fitted with
ellipses has significantly contributed to eliminating unwanted segmented data
that does not represent the torso cross section. The approach contains analyses
on the selection of the most suitable learning algorithm, where eventually Support
Vector Machine (SVM) is chosen.

• The application of SVM in conjunction with Extended Kalman Filter (EKF)

3



CHAPTER 1. INTRODUCTION

based people tracking is presented, where significant improvements are achieved.
Among those are improved detection accuracy to lower the prediction task and
increase the robustness of people tracking. This approach, which is associated
with the Interacting Multiple Model (IMM) based Probabilistic Data Association
Filter (PDAF), has been analysed using Normalized Estimation Error Squared
(NEES) and Normalized Innovation Squared (NIS).

• Enhanced people tracking using Gaussian Processes-Particle Filter (GP-PF) which
effectively learns human motion patterns, is presented to improve tracking per-
formance, especially with long-term occlusions. It is shown that GP with a
particle filter’s ability to approximate multivariate posterior distributions is able
to predict tracking even with long-term occlusions.

• Real-world data from experiments is presented to validate the approach and
the applications of Gaussian Processes Particle Filter using Laser Range Finder
(LRF) in an office-like environment.

• A novel approach to selecting and keeping the most informative data while
discarding the least informative data was implemented with the implementation
of the Information (MI) based technique along with the Mahalanobis Distance
(MD). It significantly optimises the amount of training data that is necessary for
Gaussian Processes to enhance their tracking performance.

1.4 Publications

Following is a list of publications from the work presented in this thesis:

• "Gaussian Processes-BayesFilters with Non-Parametric Data Optimization for
Efficient 2D LiDAR Based People Tracking" Zainudin, Z. and Kodagoda, S.,
International Journal of Robotics and Control Systems, Vol. 3, No. 2, 2023.

• "Monte Carlo Simulations on 2D LRF Based People Tracking using Interactive
Multiple Model Probabilistic Data Association Filter Tracker" Zainudin, Z. and

4



CHAPTER 1. INTRODUCTION

Kodagoda, S., International Journal of Robotics and Control Systems, Vol. 3,
No. 1, 2023.

• "Non-Parametric Data Optimization for 2D Laser Based People Tracking" Zain-
udin, Z., Mat Ibrahim, M. and Kodagoda, S., Proceedings of the 2017 12th

IEEE Conference on Industrial Electronics and Applications (ICIEA 2017), Siem
Reap, Cambodia, Jun. 2017.

• "Mutual Information Based Data Selection in Gaussian Processes for 2D Laser
Range Finder Based People Tracking" Zainudin, Z., Kodagoda, S. and Dis-
sanayake, G., Proceedings of the 2013 IEEE/ASME International Conference

on Advanced Intelligent Mechatronics (AIM 2013), Wollongong, Australia, Jul.
2013.

• "Mutual Information Based Data Selection in Gaussian Processes for People
Tracking," Zainudin, Z., Kodagoda, S. and Van Nguyen, L., Proceedings of

the Australasian Conference on Robotics and Automation 2012 (ACRA 2012),
Auckland, New Zealand, Dec. 2012.

• "Torso Detection and Tracking using a 2D Laser Range Finder," Zainudin, Z.,
Kodagoda, S. and Dissanayake, G., Proceedings of the Australasian Confer-

ence on Robotics and Automation 2010 (ACRA 2010), Brisbane, Australia, Dec.
2010.

1.5 Thesis Overview

The remainder of this document is organised as follows:

Chapter 2 discusses an algorithm for people detection based on a two-dimensional
laser range finder with the implementation of Support Vector Machines (SVM) as
binary learning classifiers to classify a person or others.

Chapter 3 addresses the integration of people detection and tracking and the intro-
duction of the Interacting Multiple Model Probabilistic Data Association filter (IMM-

5



CHAPTER 1. INTRODUCTION

PDAF) for people tracking with the tracking-by-detection technique. The performance
of the tracker has been analysed using Normalized Estimation Error Squared (NEES)
and Normalized Innovation Squared (NIS).

Chapter 4 presents a model to describe human motion patterns to enhance tracking
performance with an application of Gaussian Processes. Theoretical justification and
improvements to existing techniques are analysed in detail.

Chapter 5 concludes the work in this thesis with a summary of the outcomes pre-
sented and an outlook for future related research.
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Chapter 2

People Detection

Detecting people in populated environments is an important tool in various machine
vision applications, including robotics, health care, automotive, security, and defence.
In this work, an algorithm for people detection has been introduced based on obser-
vations from a two dimensional (2D) laser range finder (LRF) or light detection and
ranging (LiDAR). The LRF that was used for this experiment was mounted on a mo-
bile robotic platform to scan the torso section of a person. Support Vector Machines
(SVM) had been selected as binary learning classifiers to classify people and others
based on analyses.

2.1 Introduction

This chapter explores the concept of people detection techniques and algorithms.
Human Robot Interaction (HRI) has rapidly become an emerging area of research in
recent years. Robots are gradually emerging as helpers, carers, security officers, and
entertainers in today’s life. Therefore, towards the realisation of these dreams, people
detection and tracking can play a vital role in these situations.

It is impossible to overestimate the significance of people detection and tracking.
Understanding people’s movement patterns is essential for security officers in busy
indoor areas like shopping centres, airports, and office buildings. Advanced detection
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techniques can be used to spot prospective dangers, keep an eye on suspicious activity,
and act quickly in an emergency. Additionally, these devices significantly contribute
to increased public safety by facilitating effective crowd control and quick emergency
evacuation processes.

These technologies play a critical role in resource utilisation optimisation in addition
to security. Tracking customer movements, for instance, in retail settings offers price-
less information about consumer behaviour. This information can be used to create
store layouts that improve customer satisfaction, increase sales, and simplify inven-
tory control. Similar to how in home environments, tracking employee movements
can result in the development of smarter workspaces where resources like lighting and
climate control are optimised depending on occupancy patterns, helping with energy-
saving efforts.

2.2 Related Works

In general, the people detection problem is handled by utilising classification algo-
rithms. Thus, the selection of a classifier is an important stage in the detection
process. Commonly used classifiers in people detection based on LIDAR or LRF are
Support Vector Machines and AdaBoost. Arras et al. [2] used the AdaBoost al-
gorithm with 14 features that were based on the characteristics of a laser segment.
Further, Spinello et al. [3] applied Support Vector Machines classifier to 2D laser data
and vision data. In this thesis, it compares the performance of different numbers of
classifiers for a given set of features in order to choose the best classifier.

2.2.1 Sensors

Many researchers have been involved in developing algorithms utilising diverse sensor
modalities with various levels of success. Sensors are key to various purposes of
detection and tracking objects. Cameras and light detection and ranging (LIDAR)
[4; 5] are commonly exploited sensors in those applications due to their portability
features.
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Camera-based sensors offer several advantages in their ability to detect and track ob-
jects since they can provide rich and detailed data, capturing not only spatial informa-
tion but also colour, texture, and patterns, which makes them suitable for applications
where visual information is crucial, such as computer vision and image recognition.
Some advanced camera systems, such as those using stereo vision or depth-sensing
technologies, can provide depth perception, which is crucial for applications like 3D
mapping and robotics where understanding the distance to objects is essential [6].
However, they have a limited range of depths.

Camera-based sensors rely heavily on lighting conditions, and their performance can
be affected by changes in ambient light. Low-light or high-glare environments can
lead to degraded image quality and effectiveness. The effective range of camera-
based sensors is limited by the lens and sensor specifications. In certain applications,
such as medium-long-range monitoring and surveillance in poorly lit expansive indoor
or outdoor areas, alternative sensor technologies like LiDAR may be more suitable.
Camera-based sensors also raise privacy concerns, especially in public spaces where
the constant monitoring and recording of visual data can infringe on individuals’ privacy
rights, leading to ethical and legal considerations [7].

Stereo cameras with depth perception, such as the Intel RealSense SR305, D415,
and L515, use different algorithms to calculate depth. The SR305 employs coded
light, wherein a predetermined pattern is projected onto the scene. By analysing
the deformation of this pattern, the device calculates depth information. The D415
employs stereo vision technology, which involves capturing the scene using two imagers
and calculating the difference between the two images to determine depth. The L515
sensor utilises time-of-flight technology to estimate depth by precisely calculating the
delay between light emission and light reception. However, they have high depth errors
at distances greater than 9 meters [8].

Thus, since LiDAR sensors can precisely measure distances by calculating the time it
takes for laser pulses to travel to an object and return, which enables accurate ranging
and distance measurements, they can be used as an observation device in this work.
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LiDAR sensors operate independently of ambient light conditions. They can function
effectively in various lighting conditions, including complete darkness. LiDAR sensors
also have a wide field of view, usually more than 180° which allows them to cover
large areas in a single scan.

Selecting appropriate sensors is a fundamental prerequisite for achieving desired
outcomes, as making a poor choice can lead to suboptimal system performance and
increased expenses. The sensors must possess the capability to detect and identify
all targets within a specified range with a satisfactory level of precision while also
maintaining operational functionality for an extended period of time. For example,
sensors that can detect objects within a range of less than 5 metres are quite affordable,
whereas sensors with a larger detection range of up to 30 metres are more costly.
Therefore, the selection of suitable sensors for particular applications is crucial for
achieving the best possible performance and cost-effectiveness.

In recent studies, various types of LIDARs or LRFs were used in high performance
applications such as 3D or multichannel LIDAR by many researchers[9–13]. However,
these kinds of LIDARs are quite expensive since they are mainly used for autonomous
vehicle applications [11]. Thus, 2D LIDAR or LRF is less expensive than 3D LIDAR
and is preferred for use in domestic applications [4; 14–17].

There are several techniques that have been proposed for detecting people with
laser range finders, such as motion-based, feature-based and heuristic approaches, as
given in [2; 18–21]. In general, motion-based detection can have limitations due to
some stationary people in the vicinity, for which temporal-difference features for multi-
frames are not available [22]. Feature-based people detection in the literature uses
single-layered or triple-layered approaches, which may detect legs, upper body, and
head [2; 20; 21; 23] using laser range finders (LRFs). Leg detection is an appealing
approach; however, it may lead to complex algorithms due to leg movements and the
attire. Meanwhile, the triple layer approach has a higher computational cost for data
synchronisation for three LRF devices. It is the belief that a single LRF could still
be exploited as a cost effective solution to detect and track people. In this work, it
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was proposed to detect and track people at their torso height. Torso height generally

has a cross section of an ellipse and a reasonably consistent shape formation. It

also does not have complex dynamic movements such as legs and can be classified

into standard torso categories [24] which means a template matching (as in computer

vision) approach can be used.

Therefore, it was proposed in this research to use a laser range finder with an

effective range of up to 30 meters which would be sufficient to scan a specific area

of interest. As shown in Figure 2.1, the Hokuyo UTM-30LX Scanning Laser Range

Finder has a range measurement distance of 30 metres and an angle field of view of

270 ◦.

(a) Hokuyo UTM-
30LX

Scanning direction

Detectable area 270°
1,080 steps
Step angle 0.25゜

UTM-UTM-
30LX30LX

Non-scanning area 90°

(b) Hokuyo Detection Area

Figure 2.1: Scanning Laser Range Finder

2.2.2 People Detection Techniques

People detection techniques using laser range finders (LRFs) can be divided into three

main categories of observation: single-layered, double-layered, and triple-layered 2D

range and bearing data.
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Single-Layered 2D Range Data

People detection using leg motions with single-layered 2D range data with boosted
features is erroneous and prone to error due to the complexity of the formation of
instantaneous patterns on the legs of people. In early work, people detection is typically
determined by subtracting two subsequent scans, and this technique can only identify
moving people [25–27].

Later, Topp et al. [28] improvised the method that had been introduced by Schulz
et al. [27] in order to detect stationary people. However, it had problems with the
detection of multiple people in a cluttered environment. Arras et al. [2] introduced
14 features with the AdaBoost algorithm, which creates an accurate strong classifier
with a combination of a set of weak classifiers.

Double-Layered 2D Range Data

Carballo et al. [23] introduced double-layered 2D Range data, which simultaneously
implemented two laser range finder (LRF) at the legs and torso of the human body.
This approach was adapted from Hashimoto’s work [29] where sensors were set up
in two parallel planes at different heights from the ground depending on the selected
features. The sensors were set up at leg height and torso altitude. The fusion of sen-
sors needs to deal with data duplication since each sensor has 270◦angle of view. In
the double layer fusion step, raw data from each layer is processed to extract features
of people, and subsequently, people can be detected and tracked. However, synchro-
nisation of data between each layer and fusion between sensors on data duplication
have contributed to misclassification between legs and measurement noise, and at the
torso part, measurement may contain data of people’s hands, which causes occlusion
[30].

Triple-Layered 2D Range Data

In 2009, Mozos et al. [21; 30] introduced a triple-layered laser range finder that
simultaneously detected the heads, upper bodies, and legs of people with one classifier
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for each layer. With multiple layers, in comparison to a single layer, the detection rate
is almost double the detection capabilities in a very cluttered environment. In this
technique, the sensors are placed 160 cm above the floor for head detection, 140 cm
above the floor for torso or chest detection, and 30 cm above the floor to detect legs.
Even though multi-layer detection rates are higher than single-layer detection rates,
this technique is highly dependent on the correct alignment of multiple LRFs, which
could cause system failure if the misalignment is significantly large [30].

2.2.3 Torso Detection

The geometrical shape of human legs, hands, torso, and head are anatomical structures
of the human body that can be seen by naked eyes and sensors. There are many
approaches to the physical detection of humans using laser range finders, such as leg
detection [31] [2], chest or upper body detection [32] and head detection [21].

Arras et al. [2] introduced detection on the legs of people with the stationary laser
range finder mounted 30 cm above the floor in a corridor and an office environment.
Zivkovic et al. [31] implemented legs detection using a laser range finder that was
mounted 50 cm above the floor for corridors and cluttered offices. Carballo et al.
[32] proposed detection on upper bodies and legs using a laser range finder that was
mounted at 110 cm and 40 cm, respectively, from the ground.

In all sensor placement and height, the torso or upper body height is suitable for
human detection since it has a reasonably consistent shape. In this research, torso
detection has been chosen due to this reason.

2.3 Training and Detection Processes

In the data training process, there are three stages: feature extraction from segmented
laser data, binary data labelling with people and others, and training with SVM data
classifiers.

In the detection of people, there are three stages: feature extraction from segmented
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laser data, applying SVM for data classification, and people detection. The processes
are shown in Figure 2.2.

Detection Process

Laser Data 2 (x,y)

Features Extraction

Apply SVM for classification

People Detected

Training Process

Laser Data 1 (x,y)

Features Extraction

Training with SVM classifiers

Training Data Set Complete

Figure 2.2: Training and Detection Process Flow

2.4 People Detection

Sequential processing steps of laser range/ bearing data are done based on detection
range discontinuities in the laser scan.

2.4.1 Features Selection

The first processing step of laser range/bearing data based people detection is data
segmentation. This is based on detecting range discontinuities in the laser scan. The
laser range finder provides range and bearing, {ri,θi} to objects in its field of view,
where suffix i refers to a specific range/bearing data with i = 1, ...,n. By using a
model based technique, which is realised using the Extended Kalman Filter (EKF)
[33; 34], it is possible to partition the data into segments S = {s1,s2, ...,sM} as shown
in Figure 2.3. M is the number of segmentations that are calculated by EKF. In
Figure 2.3, symbol ′o′ refers to discontinuity points, which define the start and end
points of segments.
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Once the data segmentation is performed, the next step is to extract meaning-
ful features to be used in people detection as well as classification. The ellipsoidal
torso shape, as observed by LRF (Laser Range Finder) or LiDAR (Light Detection
and Ranging), can be analyzed to identify and select four primary features. When
considering the ellipsoidal torso shape, the selected four primary features are based
on cross-sectional length, major and minor axes length, surface curvature information,
and intensity of data points.

Cross-sectional length is essential to differentiate the detection objects as people
or others, such as chairs, walls, tables, and so on. Major and minor axes lengths
represent the longest and shortest dimensions, respectively. These lengths provide
essential information about the size and orientation of the torso. Surface curvature
information gives insights into the shape and contours of the torso, which is valuable for
understanding the overall geometry and structure of the object. Intensity data points
are provided by the distance between the target and the observation point, where
the longer distance will yield fewer data points. Compared to Arras et al. (2007),
who used the AdaBoost algorithm to detect people on the legs using 14 features, our
approach uses the Support Vector Machine technique to detect people on the torso
using only 4 selected features. This results in reduced computing time and effort. The
details of four features are listed below.

Feature 1: The cross-sectional length of the adult torso is one of the features that
can represent characteristics of an adult human being. Length of a segment, ls which
is given by

ls =
√

(xn − x1)2 +(yn − y1)2. (2.1)

Feature 2: The ratio of the major to minor axes of the ellipse can represent the
ellipsoidal like shape of the human torso. The laser range finder is mounted in such
a way that it scans the torso of an average person. The cross-section of the torso
of a human can generally be approximated by an ellipse. Therefore, an ellipse fitting
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algorithm [35] is implemented on segmented laser range data. The Cartesian coor-
dinates of each element in an ith segmented laser data, si = {xi1,xi2, ...,xin} can be
transformed into a matrix, D = [xi1,xi2, ...,xin]

T . Then the solution for fitting ellipses
is a general conic equation:

F(a,x) = a.x = ax2 +bxy+ cy2 +dx+ cy+ f = 0 (2.2)

Sa = λCa (2.3)

aT Ca = 1 (2.4)

where, a = [a b c d e f ]T , x = [x2 xy y2 x y 1]T , S = DiDT
i ,

and C is 

0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

Here, the maximum and minimum values of λ , λmax and λmin define the length of
the major and minor axes, respectively. The ellipses fitted for the segmented data in
Figure 2.3 are shown in Figure 2.4. The features that are considered include the
length of major and minor axes and the ratio of major and minor axes.
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Figure 2.3: Segmentation of LRF data that represents people, walls, and furniture by EKF.
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Feature 3: The curvature of the torso of an adult human can be represented in
terms of mean curvature. Mean curvature characteristic of a segment, Si that is taken
from the measurement. Given three sequential Cartesian coordinates, x1, xp and xn,
let A denote the area of the triangle enclosed by x1xpxn and d1, dp and dn denote
the distance of three legs of the triangle. Then, an approximation of the discrete
curvature of the boundary at xp is given by [2],

xp =
4A

d1dpdn
(2.5)

Feature 4: The number of points in the segmentation depends on the distance
between the target (human) and the laser source. Therefore, the fourth feature is the
ratio of the distance between the laser source and the centre of segmentation over a
number of points, lc which is given by,

lc =

√
x2

C + y2
C

n
(2.6)

where xC, yC and n are the centre points of x and y, and the number of points,
respectively.

2.4.2 Classifier Selection

Once the features have been extracted, a classification routine is implemented. In
order to compare the performance of different classifiers, Weka [36], a popular open
source machine learning software was used. The data for these comparative analyses
was captured using a Hokuyo laser range finder while people were freely wandering
in an office like environment, as shown in Figure 2.8. The laser range finder was
mounted to scan the torso of a person. Cross-validation is used as a resampling
procedure to evaluate classifiers performance. The dataset is partitioned into two
subsets as training and testing data, as 50% of the scans were used for training and
the other 50% were used for testing. This process is repeated multiple times, and the
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performance metrics are averaged over the runs.

The evaluation results of different classifiers based on a confusion matrix generated
from true detections. A confusion matrix is a table that is often used to evaluate
the performance of a classification algorithm. It compares the predicted classifications
of a model against the true classifications. It typically consists of four values: true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). The
term true detections indicates that the classifiers correctly identified and classified the
presence of people in the environment. True detections contribute to the true positive
(TP) count in the confusion matrix.

Various classification algorithms or models have been employed for the tasks of peo-
ple detection, such as Support Vector Machine, AdaBoost, Simple Logistic, Bayesian
Networks, and others. The results of detection were compared in a scenario where
there is only one person moving around the environment and more than one person,
such as two or three people moving in the vicinity of LRF. This condition can be rel-
evant in evaluating the classifiers’ performance, especially in terms of their ability to
correctly detect and classify instances in a less crowded or dynamic setting. The out-
comes obtained from the various classifiers are being compared. It includes accuracy,
precision, and recall derived from the confusion matrix. These metrics provide a quan-
titative measure of how each classifier performs in terms of true positive detections
and avoiding false positives and false negatives.

Table 2.1 shows the results of different classifiers, which were extracted from the
true detection of confusion matrix with few people wandering in the environment as
shown in Figures 2.11 and 2.12. As expected, when there was only one person in the
vicinity of the laser range finder, all classifiers were performing well. However, with
more people, the classifiers tend to have poorer performances.

This could be mainly due to the differences in sizes, costumes, and artefacts due to
occlusion. Out of the given classifiers, it could be seen that the Radial Basis Function
Support Vector Machines (RBFSVM) performed better, and since it can also handle
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Table 2.1: Comparison of classifiers

No. of Person Classifier Training Data Accuracy (%) Testing Data Accuracy (%)

One

RBFSVM 98.60 96.86

AdaBoostM1 96.58 92.59

Simple Logistic 97.98 90.94

MultiBoostAB 94.12 62.60

BayesNet 98.60 95.68

Complement Bayes Net 94.12 63.23

Naive Bayes 98.51 98.06

Naive Bayes Simple 98.51 98.06

Naive Bayes Updateable 98.51 98.06

More than one

RBFSVM 96.71 95.22

AdaBoostM1 96.82 64.30

Simple Logistic 96.93 61.37

MultiBoostAB 93.65 69.54

BayesNet 97.46 64.84

Complement Bayes Net 87.93 57.13

Naive Bayes 96.51 75.63

Naive Bayes Simple 96.40 70.70

Naive Bayes Updateable 96.50 68.60

Note: The percentage value displays the accuracy of the features that are truely classified as a person and others.
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non-linear classification problems, it was chosen as the classifier to be used in this
study.

The LRF data consists of various furniture, structures, people and their poses. As
given in Section 2.4, the LRF data was first segmented and filtered, and ellipses were
fitted for feature extraction. Ellipses fitted on the torso of a person with different
poses are shown in Figure 2.5a and Figure 2.5b. Although there are slight changes
due to the position of hands (this could also happen due to different types of clothing),
the ellipses were fitted reasonably well.

The features described in Section 2.4.1 were estimated and used in Weka [36] with
several numbers of classifiers as shown in Table 2.1. The data was analyzed by
categorizing the scenarios into three cases based on the number of people present in
the environment (and hence possible occlusions).

In general, it could be seen that the classifier performance degraded with the in-
creased number of people due to the rise in occlusions. Although in simple scenarios,
classifiers such as BayesNet perform well, they are susceptible to errors with increased
complexity. On the other hand, classifiers such as radial basis function support vec-
tor machines (RBFSVM) leads to better classification accuracy in both simple and
complex scenarios, as referred to Table 2.1.

2.4.3 Support Vector Machine

People’s detection problems can generally be resolved by using a supervised learning
classification algorithm. The selection of a suitable classifier technique is a major
challenge for the detection process. In this thesis, Support Vector Machines (SVM) is
chosen as supervised learning classifiers for people detection based on 2D laser range
finder [37].

Support Vector Machines (SVM) is a supervised learning technique based on sta-
tistical learning theory for classification and regression problems. SVM performs clas-
sification by estimating hyperplanes in multidimensional spaces to separate data into
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Figure 2.5: A Segmented LRF data for human pose that fitted with an ellipse
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different classes [38]. As a supervised learning technique, SVM requires correctly la-
beled data to learn the pattern for further generalization. The main idea of SVM is
to find the optimum hyperplane in a high-dimensional space to divide into different
classes. For a case of linearly separable classification and only two classes, SVM es-
timates the separating hyperplane with the largest margin between two samples or
classes.

In most practical situations, labeled data are not linearly separable and provide no
separating hyperplane. In order to handle non-linear classification problems, use the
function (kernel) to map nonlinearly separable data to a different Euclidean space
for the data to be linearly separable [39; 40]. In this research application, binary
classification for people and others was chosen and implemented since classification
involves only two classes.

Given a training data set T = {(Fi, li)|ii ∈ (−1,1)}, where i = 1,2, ...,n and SVM
requires the following optimization [41]

1
2
(wT w)+G

n

∑
i=1

ξi (2.7)

subject to li(wT φ(Fi)+b)≥ 1−ξ where ξi ≥ 0. F and l are the features and the label
of the data set. Training vectors Fi are mapped into a higher dimensional space by
function φ . G is the penalty parameter of the error term. For the radial basis function
SVM, the kernel function is

K(Fi,F j) = exp(−γ||Fi −F j||2),γ > 0 , (2.8)

where γ is the kernel parameter.
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2.4.4 Scan matching by using Iterative Closest Point (ICP)

Some of the scans are taken from a moving observer fitted with a laser range finder
(LRF), and therefore, an implementation of scan matching such as Iterative Closest
Point (ICP) [1] is used in order to have common global coordinates for consecutive
scans. A range scan at discrete time k can be defined as a set of points {qk} which
represent the range and bearing in polar coordinates {dk,αk}.

The scans are indexed by j = 1,2,3, ...,N, Φ denotes the field of view, N is given
by Φ/ρ for partial field of view scan since maximum scan angle is (Φ = 270o). Let
XYk be a coordinate system referred to the laser scan at discrete time k. Assuming
that the X axis is aligned with the laser beam at αk(0) = 0o as seen in Figure 2.6.

αk( j) = ρ j (2.9)

and the cartesian coordinates of the jth point qk( j) are;

xk( j) = dk( j)cos(αk( j)) (2.10a)

yk( j) = dk( j)sin(αk( j)) (2.10b)

When the observer is in motion, two consecutive scans at discrete instants k and
k+ 1 will be recorded from different poses of the observer. Thus, {qk} and {qk+1}

will refer to the laser frames at those instants, denoted as XYk and XYk+1, respectively.
Both frames are defined by the global coordinate system.

{qk+1} must be projected onto XYk frame to find correspondence of two frames,
which result in {q̂k} according to a tentative transformation Tk as shown in Figure 2.6.
Tk is a combination of the relative displacements (∆x,∆y) and the rotation increment
∆φ between XYk and XYk+1.

Cartesian coordinates for {q̂k} as shown in Figure 2.6 are defined as:
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(b) Projection of {qk+1( j)} onto XYk frame.

Figure 2.6: Scan Matching using Iterative Closest Point (ICP), adopted from article
written by Martínez et al [1]
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x̂k( j)

ŷk( j)

=

cos(∆φ) −sin(∆φ)

sin(∆φ) cos(∆φ)

xk+1( j)

yk+1( j)

+
∆x

∆y

 (2.11)

In the same manner, the projected polar coordinates for {q̂k} can be described as:

α̂k( j) = ∆φ + tan−1
(

yk+1( j)+∆y
xk+1( j)+∆x

)
(2.12a)

d̂k( j) =
√
(xk+1( j)+∆x)2 +(yk+1( j)+∆y)2 (2.12b)

Scan matching is a suitable approximation problem since exact correspondence of
points from different scans is difficult due to random noise, spurious ranges, and
occluded areas. A general matching index ITk for a given transformation Tk can be
formulated as:

ITk =
∑

N
j=0[pTk( j)eTk( j)]

nTkPTk

(2.13)

where a match error function eTk can be defined as:

eTk( j) = eTk [q̂k( j),qk(J( j))], (2.14)

a boolean function for outlier detection pTk can be defined as:

pTk( j) =

0 i f |eTk( j)| ≥ E

1 otherwise,
(2.15)

the number nTk of valid correspondence is given by:

nTk =
N

∑
j=0

pTk( j) (2.16)
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the ratio that shows the degree of overlap of any possible transformation is:

PTk =
nTk

N +1
. (2.17)

In the Iterative Closest Point (ICP) Algorithm, it has four-step iterations. Tk is
necessarily to be initialized with the odometric motion estimation T o

k prior to the first
step, which calculates the cartesian coordinates of q̂k and qk+1 onto XYk according
to Eq. 2.11.

The second step is computing the squared distances for every possible combination
of q̂k and qk points:

e(i, j) = (xk(i)− x̂k( j))2 +(yk(i)− ŷk( j))2 (2.18)

The third step is calculating the correspondence index function J( j) based on min-
imum squared distances:

J( j) = m, if e(m, j) = minN
i=0[e(i, j)] (2.19)

Therefore, the match error function of Eq. 2.14 is given by:

eTk( j) = (xk(J( j))− x̂k( j))2 +(yk(J( j))− ŷk( j))2 (2.20)

and outlier detection is carried out with Eq. 2.15.

In the final step, motion parameters are updated by minimizing Eq. 2.13 with the
error definition of Eq. 2.20. This optimization can be solved as follows:
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dITk

d∆φ
= 0 ⇒ ∆φ

new = tan−1

(
SxkSyk+1 +nTkSykxk+1 −nTkSxkyk+1 −Sxk+1Syk

nTkSxkxk+1 +nTkSykyk+1 −SxkSxk+1 −SykSyk+1

)
(2.21a)

dITk

d∆x
= 0 ⇒ ∆xnew =

(
Sxk − cos(∆φ new)Sxk+1 + sin(∆φ new)Syk+1

nTk

)
(2.21b)

dITk

d∆y
= 0 ⇒ ∆ynew =

(
Syk − sin(∆φ new)Sxk+1 − cos(∆φ new)Syk+1

nTk

)
(2.21c)

where the S terms stand for the following sums:

Sxk =
N

∑
j=0

[pTK( j)xk(J( j))] Sxk+1 =
N

∑
j=0

[pTK( j)xk+1( j)]

(2.22a)

Syk =
N

∑
j=0

[pTK( j)yk(J( j))] Syk+1 =
N

∑
j=0

[pTK( j)yk+1( j)]

(2.22b)

Sxkxk+1 =
N

∑
j=0

[pTK( j)xk(J( j))xk+1( j)] Sxkyk+1 =
N

∑
j=0

[pTK( j)xk(J( j))yk+1( j)]

(2.22c)

Sykxk+1 =
N

∑
j=0

[pTK( j)yk(J( j))xk+1( j)] Sykyk+1 =
N

∑
j=0

[pTK( j)yk(J( j))yk+1( j)]

(2.22d)

ICP guarantees convergence to a local minimum, which is not necessarily the globally
optimal solution that is close to the odometric estimation, where the most expensive
computation is to find the closest points at each iteration [42; 43].
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2.5 Experimental Results

The robot used in the experiments is a Segway equipped with sensors and computers,
which is shown in Figure 2.7. It has an onboard computer, an AMD Athlon II X2
255/ Dual Core/ 3.1 GHz with 4GB of DDR3 running on the Linux Ubuntu 9.10
operating system. The robot system uses a HOKUYO UTM-30LX laser range finder
that has 30 meters of detection range, 0.25o angular resolution, an angular field view
of 270o and a 25 millisecond sampling period. The Segway robot is used to monitor
the environment while people are in motion. The experiments were carried out in a
common area of the laboratory, as shown in Figure 2.8.

Figure 2.7: Robot used in the experiments

2.5.1 People Detection

Experiments were conducted to assess the performance of the people detection algo-
rithm in a 5×7 square meters room fitted with office-related furniture such as tables
and chairs. The distances between the laser range finder (LRF) and targets were from
0.5 to 4 meters. In order to have a better understanding of the errors and their causes,
data was collected in specific scenarios, such as people facing the sensor with hands
up or down and people facing sideways with hands up or down. In all cases, the laser
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Figure 2.8: Graphical Illustration of the experiment location

Figure 2.9: Laser data taken at torso height as shown on red marking.

31



CHAPTER 2. PEOPLE DETECTION

range finder data were taken at the torso height of the human, as shown in Figure
2.9. Table 2.2 summarizes the accuracies, precisions, and recalls on the straight and
side facing faces of the people. Detection accuracy with the side facing is slightly
similar to that with the straight facing of people because of its shape similarity. Pre-
cision and recall of both types facing are generally higher than 80% where precision
represents the number of selected labels that are relevant and recall represents the
number of relevance labels that are selected. In Table 2.3, it is the summarization
of the accuracies, precisions, and recalls of two and three people in vicinity. It shows
that precision and recall on the predicted label on the hands up and down pose are
higher than 86%.

On the other hand, not surprisingly, people in the hands up pose have higher accuracy
than those in the hands down pose (normal pose). It could also be noted that the false
positives are always smaller than the false negatives. Therefore, the algorithm provides
more candidates, which can be further filtered to improve the detection accuracy. Total
computing time is not more than 0.09s in all scenarios.

Although, in general the ellipse fitting algorithm worked well, it had some problems
with segmented data relevant to occluded scenarios. It can be identified by observing
the change in shape from one person overlapping to the other. This is explained in
Figure 2.10. In the figure, ellipse fitting was done reasonably well from (a) to (d).
The problem started at (e), where one ellipse had undergone a significant change to
its size and shape. In (f), one ellipse completely disappeared due to an occlusion and
started to re-appear in (d).
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Table 2.2: Confusion Matrix for Straight and Side Facing

STRAIGHT FACING

HANDS UP POSE NORMAL POSE

True Label

Predicted Label Person Others Person Others

Person 86.41 % 0.77 % 83.33 % 3.00 %

Others 13.59 % 99.23 % 16.67 % 97.00 %

Total Accuracy of True Detection 96.54 % 94.77 %

Precision (Person) 93.00 % 84.34 %

Recall (Person) 90.29 % 83.33 %

Computing Time 0.03 s 0.06 s

SIDE FACING

HANDS UP POSE NORMAL POSE

True Label

Predicted Label Person Others Person Others

Person 91.97 % 2.14 % 86.75 % 3.56 %

Others 8.03 % 97.86 % 13.25 % 96.44 %

Total Accuracy of True Detection 97.22 % 92.84 %

Precision (Person) 84.00 % 93.51 %

Recall (Person) 91.97 % 86.75 %

Computing Time 0.06 s 0.02 s

Note: Percentage indicates on true and false detection.
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Table 2.3: Confusion Matrix for Two People and Three People

TWO PEOPLE

HANDS UP POSE NORMAL POSE

True Label

Predicted Label Person Others Person Others

Person 95.86 % 0.00 % 90.71 % 8.33 %

Others 4.14 % 100.00 % 9.29 % 91.67 %

Total Accuracy of True Detection 97.25 % 91.12 %

Precision (Person) 100.00 % 93.38 %

Recall (Person) 95.86 % 90.71 %

Computing Time 0.01 s 0.01 s

THREE PEOPLE

HANDS UP POSE NORMAL POSE

True Label

Predicted Label Person Others Person Others

Person 90.35 % 4.93 % 86.19 % 2.63 %

Others 9.65 % 95.07 % 13.81 % 97.37 %

Total Accuracy of True Detection 93.18 % 94.20 %

Precision (Person) 92.41 % 92.84 %

Recall (Person) 90.35 % 86.19 %

Computing Time 0.09 s 0.08 s

Note: Percentage indicates on true and false detection.
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Figure 2.10: Occlusion of two people that is shown in successive time frames
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Clearly, this phenomenon can be further understood by referring to Figure 2.11 and
Figure 2.12. The occlusion occurs in the grey circle area where the shape of the torso
on detected people is not representing the appropriate shape of people. Therefore,
this process causes a detector to have difficulties handling the targets.

2.6 Conclusion

In this chapter, a number of features were implemented on segmented data using
Kalman Filter and a number of techniques for learning algorithms proposed in the
literature that were suitable for detecting people were examined. The techniques were
evaluated against several key criteria in the context of the research problems addressed.
The number of selected learning algorithms is evaluated by various numbers of people
in the office environment. From the evaluation, the Support Vector Machine (SVM)
classifier has shown promising results with a high percentage of positive detection in
comparison with other learning algorithms.

Various scenarios on people looking at the sensor and people looking sideways with
hands up and down with occluded scenarios have been chosen, and surprisingly, the
detection rate produces a higher precision and recall percentage even with two and
three people in the vicinity. The following chapter discusses the use of the IMMPDAF
tracker for people tracking, and the performance of the tracker was analysed using
simulation and experimental findings.
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Chapter 3

People Tracking

Efficient people tracking is one of the important tasks in dealing with Human-Robot-
Interaction (HRI) in real-world scenarios. In various applications, people detection and
tracking are integrated into a module using the so-called tracking-by-detection tech-
nique. In this research work, the Interacting-Multiple-Model Probabilistic Data Associ-
ation Filter (IMMPDAF) for people tracking with the tracking-by-detection technique
was introduced. The performances of the tracker using Normalized Estimation Error
Squared (NEES) and Normalized Innovation Squared (NIS) were then analysed.

3.1 Introduction

This chapter explains the concept and implementation of people tracking techniques
and algorithms. A variety of sensors and algorithms are used in people tracking, par-
ticularly in dynamic scenarios, to effectively identify and forecast people’s movements.
Numerous uses, including control of crowds, autonomous vehicles, smart buildings,
and surveillance, depend on this mechanism. Precision tracking and environmental
sensing have advanced significantly with the use of LRF technology for people track-
ing. As technology develops, overcoming present obstacles and guaranteeing ethical
application will open the door for creative applications in a variety of industries that
will further improve safety, effectiveness, and user experiences.
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3.2 Related Works

Tracking people is an important aspect of security, surveillance and human robot
interaction. There has been much research and interest in populated environments
using various sensors such as cameras and laser range finders (LRFs) [5] with various
detection and tracking techniques.

In laser-based tracking, it is faster to process data and less sensitive to lighting
conditions. It can provide good accuracy in sparsely populated environment. How-
ever, the tracking accuracy gradually decreases when there are many interactions and
occlusions of multiple people [44]. To overcome this drawback, multiple people track-
ing has been implemented using Bayesian filters with data association, such as the
probabilistic data association filter (PDAF), joint probabilistic data association filter
(JPDAF) and multiple hypothesis tracker (MHT) for effective tracking [45].

However, a multiple-model-based approach in which different models run in parallel
and describe different aspects of human models, such as the Interactive Multiple Model
(IMM) estimator, is an effective methodology to deal with manoeuvring people.

Therefore, it is important to measure the performance of the state estimator for
target tracking. There are several techniques to validate and tune different sensors
and process models. Among these techniques, Normalized Estimation Error Squared
(NEES) and Normalized Innovation Squared (NIS) are useful to measure the consis-
tency of the filter [46]. NEES requires the ground truth of the tracking data and
predicted data, which should be applied using Monte Carlo runs. NIS is the difference
between the actual and predicted observation. These will help to detect and improve
noise characteristics.

3.2.1 Importance of People Tracking

The ability to avoid colliding with people is highly important in robotic environments.
The detection of a person or more makes the robot aware of a potential collision
in its vicinity and predicts the course of the people in the environment. Apart from
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predicting the target, the robot will also be able to change its trajectory. In this task,
the most important aspect is how to deal with the prediction and motion model of
the people and the data association of multiple targets.

3.2.2 Methods of Data Association

Most people’s tracking algorithms for dealing with multiple-targets are associated
with methods of data association. Data association algorithms can be classified into
3 groups:

1. Target-oriented approach, which assumes each measurement originated from a
known target.

2. Track-oriented approach, which hypothesises that each track is either unde-
tected, terminated, associated with a measurement, or linked to the start of
manoeuvre.

3. Measurement-oriented approach, which generates a number of candidate hypotheses
based on the measurement received and evaluates these hypotheses as more
measurement data are received.

In association, algorithms specifically used for track formation are classified into non-
Bayesian and Bayesian association techniques. Non-Bayesian association techniques
can be listed below.

• Nearest Neighbour Standard Filter (NNSF). The classification and pattern recog-
nition algorithm NNSF is straightforward and easy to understand. It adds a fresh
data point to the training dataset’s nearest neighbour’s class. A distance metric,
such as Euclidean distance, is used to identify who is the "nearest" neighbour.
Although NNSF is computationally effective, it is sensitive to data noise and
outliers.

• Strongest Neighbour Standard Filter (SNSF). The Nearest Neighbour Standard
Filter (SNSF) is an extension of that filter. SNSF takes into account numerous
nearest neighbours as opposed to only one nearest neighbour. Based on a voting
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system, the class with the most support from the closest neighbours is chosen
to be assigned to the new data point. By lessening the effect of outliers or noisy
data, this method can increase the classification’s robustness.

• Generalized Nearest Neighbour Filter (GNN). The nearest neighbour algorithms
have been improved upon by the GNN. For various features in the dataset,
it enables the evaluation of several distance metrics or even various weighting
schemes. The generalised framework offered by GNN enables users to alter the
association criteria in accordance with the particulars of the data being examined.
GNN may be tailored to fit a variety of applications with varying data properties,
thanks to its versatility.

These non-Bayesian association approaches are useful in situations where the under-
lying assumptions of Bayesian methods might not hold true or when simplicity and
computing effectiveness are essential. It is crucial to remember that these methods
do have some drawbacks, particularly when dealing with noisy or high-dimensional
data. As a result, to address particular problems with non-Bayesian association meth-
ods, researchers and practitioners frequently investigate hybrid approaches or more
sophisticated methodologies.

For examples of Bayesian association techniques, they can be listed as follows.

• Probabilistic Data Association Filter (PDAF). A Bayesian filtering technique for
multi-target tracking is called the Probabilistic Data Association Filter (PDAF).
It deals with the issue of data association, which entails connecting sensor read-
ings with pre-existing target tracks. As new measurements are received, the
PDAF maintains a probability distribution over potential data associations and
recursively updates this distributions. It is helpful in situations where the number
of targets is unknown beforehand and may change over time.

• Multiple Model Probabilistic Data Association Filter (MMPDAF). The numerous
Model Probabilistic Data Association Filter (MMPDAF) expands on the funda-
mental PDAF concept by using numerous dynamic models to reflect the potential
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manoeuvres of the tracked targets. Each model represents a particular type of
motion behaviour, such as constant acceleration or velocity. In cases where the
target’s motion characteristics change over time, MMPDAF can manage the
scenario by retaining numerous hypotheses regarding the target’s motion. With
this method, the filter is more capable of adjusting to changing target dynamics.

• Interacting Multiple Model Probabilistic Data Association Filter (IMMPDAF).
The Interacting Multiple Model Probabilistic Data Association Filter (IMM-
PDAF) further enhances the MMPDAF method by allowing interactions between
many target models. In this method, information from one model can affect the
forecasts and likelihoods of data associations from other models. IMMPDAF
is especially helpful in cases where targets exhibit complicated manoeuvres or
behaviours because it can more precisely capture complex target behaviours by
including interactions.

These Bayesian association approaches are essential for target tracking, particularly
when uncertainty, variable target dynamics, and ambiguity in the data association are
common. These techniques address the problems of multi-target tracking in appli-
cations including radar systems, autonomous cars, and surveillance technologies by
utilising probabilistic frameworks. Therefore, in this thesis, IMM-PDAF was chosen to
address agile and obstructed target tracking.

3.2.3 Probabilistic Data Association Filter (PDAF)

Bar-Shalom and Tse [46] proposed that the algorithm assigned a probability, called
the association probability, to every hypothesis associating a validated measurement
to a target. Validated measurements refer to measurements that are within the vali-
dation gate of a target in real time. A validation gate centered around the predicted
measurement of the target set up to select the set of validated measurements is

[z(k)− ẑ(k|k−1)]T S−1(k)[z(k)− z(k|k−1)]≤ γ (3.1)
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where S(k) is the covariance of the innovation and γ determines the size of the gate.
The set of validated measurements at time k is

Z(k) = zi(k), i = 1, · · · ,mk (3.2)

where zi(k) is the ith measurement in the validation region at time k.

The standard PDAF equations are described as the followings:

State Prediction. The state prediction step estimates the next state of the system
based on the previous state estimate. In this equation, x̂(k|k − 1) represents the
predicted state at time k, given the state estimate x̂(k−1|k−1) at the previous time
step. F is the state transition matrix.

x̂(k|k−1) = Fx̂(k−1|k−1) (3.3)

Measurement Prediction. The measurement prediction step estimates the expected
measurement at the current time step based on the predicted state x̂(k|k− 1) and
ẑ(k|k−1) representing the predicted measurement at time k, and H is the measure-
ment matrix mapping the state space to the measurement space.

ẑ(k|k−1) = Hx̂(k|k−1) (3.4)

Innovation of ith measurement. The innovation represents the difference between
the actual measurement zi(k) and the predicted measurement ẑ(k|k−1) . It is denoted
as vi(k).

vi(k) = zi(k)− ẑ(k|k−1) (3.5)

Covariance Prediction. This equation predicts the error covariance of the predicted
state at time k. P(k−1|k−1) represents the predicted covariance at time k, F is the

44



CHAPTER 3. PEOPLE TRACKING

state transition matrix, Q is the process noise covariance and G is the process noise
gain matrix.

P(k|k−1) = FP(k−1|k−1)FT +GQGT (3.6)

Innovation Covariance. The innovation covariance S(k) quantifies the uncertainty
in the innovation (the difference between the actual measurement and the predicted
measurement) at time k. H is the measurement matrix, and R is the measurement
noise covariance.

S(k) = HP(k|k−1)HT +R (3.7)

Kalman Gain. The Kalman Gain K(k) determines the amount of weight given to
the current measurement for updating the state estimate. It is calculated using the
predicted covariance P(k|k − 1), innovation covariance S(k), and the measurement
matrix H.

K(k) = P(k|k−1)HT S(k)−1 (3.8)

Updated covariance if target originated measurements were known. P◦(k|k) repre-
sents the updated state covariance if the measurements were known to originate from
the target. It is calculated using the Kalman Gain K(k)and innovation covariance
S(k).

P◦(k|k) = P(k|k−1)−K(k)S(k)K(k)T (3.9)

Overall covariance update. This equation represents the overall update of the
state covariance matrix P(k|k) at time k. It takes into account the predicted covari-
ance P(k|k− 1), Kalman gain K(k), innovation covariance S(k) and the association
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probabilities βi(k) for different measurements.

ν(k) =
mk

∑
i=0

βi(k)νi(k) (3.10)

P(k|k)=P◦(k|k)+K(k)[β◦(k)S(k)+
mk

∑
i=0

[βi(k)νi(k)νi(k)T ]−ν(k)ν(k)T ]KT (k) (3.11)

where mk is the number of validated returns at kth instant.

The updated state estimate. x̂(k|k) represents the updated state estimate at
time k. It is obtained by combining the predicted state x̂(k|k−1)and the innovation
weighted by the Kalman gain.

x̂(k|k) = x̂(k|k−1)+K(k)ν(k) (3.12)

The PDAF association probabilities . βi(k) represents the association probabilities
for different hypotheses associating a validated measurement to a target. pi(k) repre-
sents the likelihood of the ith measurement given the target. These probabilities are
used to weigh the contribution of each measurement to the overall covariance update,
as shown in equation (3.11).

βi(k) =
pi(k)

∑
mk
i=0 pi(k)

(3.13)

where measurement likelihood.

pi(k) =


λ (1−PdPg), if i = 0

Pd

(2π)M/2|S(k)|1/2 exp[−1
2

ri(k)2], if [Ω(k)] = 1; i ̸= 0

0, otherwise
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pi(k) represents the likelihood of the ith measurement given the target at time k.
When i = 0, indicating the null hypothesis with no valid measurement associated with
the target, pi(k) is calculated based on clutter parameters λ , probability of detection
Pd, and probability of gating Pg. For non-null hypotheses [Ω(k)] = 1, meaning the
measurement belongs to the validation gate of the target, pi(k) is calculated using
the measurement residual ri(k) and innovation covariance S(k);

where

λ =
mk

V (k)
,

V (k) =
πM/2

Γ(M/2+1)
γM|S(k)|1/2,

λ represents the clutter density, calculated based on the number of validated returns
(mk) and the clutter volume (V (k)). V (k) is determined by the dimensionality of the
state vector M and the innovation covariance Sk. It is used in the calculation of λ , Γ

denotes the Gamma function, and γ is a constant parameter; and

Ω(k) =

1, if the return belongs to the validation gate of the target

0, otherwise.

Ω(k) is an indicator function that evaluates whether a return belongs to the validation
gate of the target which is denoted as 1 or otherwise, which is denoted as 0.

PDAF may perform poorly when tracking crossing targets or when the targets are
close to each other. It also needs to provide separate track initiation and deletion
algorithms. It is mainly good for non-manoeuvring targets in cluttered environment.
A combination of IMM and PDAF, called IMMPDAF [47] can be used to overcome
those issues. It can be used for track initiation, track maintenance on manoeuvring
targets, and track termination [48].

In this particular task, it can be accomplished with a constant velocity model and
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a constant turn rate model, which can be assigned to several models such as turning
left and turning right of the targets [49].

3.2.4 Interacting Multiple Model Tracker

The idea of all multiple model approaches is to overcome bad prediction by tracking
manoeuvring targets with abrupt deviations from a straight-line motion. This process
is hard to represent with a single manoeuvre model; thus, the representation of vari-
ous potential target manoeuvre states, run in parallel and continuously evaluated by
using previous states of filters’ residuals, can be carried out in multiple models. The
Interacting Multiple Models algorithm is widely accepted as one of multiple models
approaches [48].

Bayes’s rule and the residuals are applied to specify the relative probabilities of the
validity of the models. Typically, a probability-weighted composite of the individual
filters is the output; otherwise, it may prove to be more accurate to output estimates
from the filter with the highest probabilities. For the multiple model approach, the
ith dynamics model and measurement equations are

xi(k+1) = Fi(k)xi(k)+ vi(k) (3.14)

zi(k+1) = Hi(k+1)xi(k+1)+wi(k+1) (3.15)

where x is the state of the target, defined as x(k) =
[
x ẋ y ẏ ω

]T
with x and y

denotes the Cartesian coordinates of target; ω is a turn rate; F(k) is the state transi-
tion model with a constant speed and a turn rate model; v(k) is a zero-mean Gaussian
white noise (process noise) with appropriate covariance Q; Hk+1 is the measurement
model; x(k+1) is measured coordinates at scan k+1; and w(k+1) is random noise
on measurements at scan k+1.

The IMM algorithm can be divided into four parts:
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• An input mixer (Interaction).

• A filter for each model (Updates).

• A model probability evaluator.

• An output mixer.

Input Mixer (Interaction)

The input state estimate mixer merges the previous cycles of mode-conditioned state
estimates and covariance, using mixing probabilities, to initialise the current cycle of
each mode-conditioned filter. The filtering process starts with a priori state estimates
x◦j(k−1|k−1), state error covariance Pj(k−1|k−1), and the associated probabilities
µ j(k− 1) for each model. The initial state estimate and covariance for model j at
time k is computed as follows:

x̂◦j(k−1|k−1) =
N

∑
i=1

x̂i(k−1|k−1)µi| j(k−1|k−1) (3.16)

P◦
j (k−1|k−1) =

N

∑
i=1

µi| j(k−1|k−1){(Pi(k−1|k−1)+

[x̂i(k−1|k−1)− x̂0
j(k−1|k−1)][x̂i(k−1|k−1)− x̂0

j(k−1|k−1)]T} (3.17)

where

µi| j(k−1|k−1) =
1
c j

pi jµ j(k−1)

c̄ j =
N

∑
i=1

pi jµ j(k−1)
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and pi j is assumed transition probability for switching from model i to j, and c̄ j is a
normalization constant.

Filtering Updates

The updates for each subfilter or model are performed using the Kalman filter or
Extended Kalman filter equations. Different models are used, and usually there is a
second-order model with a few third order models. The second-order model is dom-
inant when the target is in a non-manoeuvring state. This model is more straight-
forward and computationally efficient because it often represents constant velocity
motion. It works well for following gradually moving targets without significant accel-
eration or manoeuvres.

The third-order model for the manoeuvring state has different process noise levels,
which allow it to capture and account for varying uncertainties in position, velocity, and
acceleration dynamics. When the target is thought to be in a state of manoeuvring,
the third-order model is used. When targets are being manoeuvred, they experience
acceleration or changes in velocity, which necessitate a more complicated model to
appropriately represent their behaviour. Third-order models take these manoeuvres
into account, enabling the system to quickly adjust to variations in target motion.
The set of Kalman filtering equations that provide the model updates is shown as
below. For more details of the process, refer to [50].

50



CHAPTER 3. PEOPLE TRACKING

x j(k|k−1) = Fj(k−1)x0
j(k−1|k−1)+G(k−1)U(k−1)

Pj(k|k−1) = Fj(k−1)P0
j (k−1|k−1)(Fj(k−1))T +Q j(k)

S j(k) = H j(k)Pj(k|k−1)(H j(k))T +R(k)

K j(k) = Pj(k|k−1)(H j(k))T (S j(k))−1

z̃ j(k) = z j(k)−H j(k)x j(k|k−1)

x j(k|k) = x j(k|k−1)+K j(k)[z̃ j(k)]

Pj(k|k) = [I −K j(k)H j(k)]Pj(k|k−1)

3.2.5 Model Probability Evaluator

The likelihood of Λ j(k) is computed with the filter residual z̃ j(k), the covariance of
the filter residuals S j(k) and the assumption of a Gaussian distribution [51]. The
likelihood of Λ j(k) is given by

Λ j(k) =
1√

2π|S(k)|
e−0.5(z̃ j(k)T (S j(k))−1z̃ j(k))

The model probabilities update is

µ j(k) =
1
c

Λ j(k)c̄ j (3.19)

c =
r

∑
j=1

Λ j(k)c̄ j (3.20)

Output Mixer

The output mixer combines all the state estimates and covariances from the individual
filter output as follows:
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x̂(k|k) =
N

∑
j=1

x̂ j(k|k)µ j(k) (3.21)

P(k|k) =
N

∑
j=1

µ j(k){Pj(k|k)+ [x̂ j(k|k)− x̂(k|k)][x̂ j(k|k)− x̂(k|k)]T} (3.22)

Various dynamic motion models that describe aspects of target motion build the
IMM filter. For a particular target manoeuvre, the filter will automatically choose the
mix of models.

3.2.6 Consistency Analysis of IMM Tracker

The finite-sample consistency property states that estimation errors based on a fi-
nite number of measurements should be consistent with their theoretical statistical
properties, as in the following [52]:

1. mean zero.

2. covariance matrix as calculated by the IMM tracker.

The consistency criteria of an IMM tracker are that:

1. state errors should be acceptable as a zero mean, and their magnitude should
be comparable to the state covariance measured by the tracker.

2. innovations should also have the same property.

3. innovations should be acceptable as independent and identically distributed ran-
dom variables.

where the innovation is the difference between the observed value of a variable at k

and the optimal forecast of that value based on information available prior to k.

The first criteria can be tested only in simulations. By using notation
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x̃(k|k) = x(k)− x̂(k|k) (3.23)

to define the normalised estimation error squared (NEES) [53]

ε(k) = x̃(k|k)T P(k|k)−1x̃(k|k) (3.24)

The test can simultaneously verify both properties (1) mean zero and (2) covariance
matrix.

3.2.7 Monte Carlo Simulation-Based Tests

The test is based on the results of Monte Carlo simulations that provide N independent
samples ε i(k),i= 1, ...,N, of the random variable ε(k). For the sample average of ε(k),
the N-run average NEES [53] is

ε̃(k) =
1
N

N

∑
i=1

ε
i(k). (3.25)

Then Nε̃(k) will have a chi-square density with Nnx degrees of freedom, where nx

is the dimension of the measurement. A hypothesis that the state estimation errors
are consistent with the filter-calculated covariances, which is also called the chi-square
test, is accepted if ε̃(k) ∈ [r1,r2] where the acceptance interval is determined such
that P{ε̃(k) ∈ [r1,r2]|H0} = 1−α . The interval of r1 and r2 is the 95% probability
concentration region for ε̃(k).

The correspondence of the innovations with their filter-calculate covariances is tested
in a similar manner. Under the hypothesis that the filter is consistent, the normalised
innovation squared (NIS) can be shown as the following equation. It has a chi square
distribution with nz degrees of freedom, where nz is the dimension of the measure-
ment. The following equation, cited from [53], calculates the average NIS from N

independent samples ε i
v(k).
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ε̃v(k) =
1
N

N

∑
i=1

ε
i
v(k). (3.26)

3.2.8 Types of IMM Tracker Testing

Consistency tests for off-line multiple-run (Monte Carlo simulation) tests of NEES
and NIS demonstrate the following types of tests. Figure 3.2 shows the test statistic
obtained from N = 50 Monte Carlo runs with the two-sided probability regions. It
shows the state’s N-run average NEES. Note that in this case, the two-sided 95%
region is [0.05,7.38]. Since the lower limit is practically zero, only the upper limit is
of interest, and it is taken for the 5% tail rather than the 2.5% tail, which is 7.38.

3.3 Tracking using Interacting Multiple Model (IMM) Tracker

Once people were detected based on the laser data, it was temporally tracked based on
an Interactive Multiple Model (IMM) tracker [47; 48]. Constant velocity and constant
turn rate models have been used to model human motion.

3.3.1 Dynamic Model

The tracking represents the target (i.e., people detected) as a curve of torso denoted
by the midpoint (x,y) and orientation φ . For the constant velocity and constant turn
rate model that is applicable to human motion, the coordinate system is shown [54]
as

Xk+1 =



1 sinω(k)∆T
ω(k) 0 −1−cosω(k)∆T

ω(k) 0

0 cosω(k)∆T 0 −sinω(k)∆T 0

0 1−cosω(k)∆T
ω(k) 1 sinω(k)∆T

ω(k) 0

0 sinω(k)∆T 0 cosω(k)∆T 0

0 0 0 0 1


Xk +



∆T 2

2 0 0

∆T 0 0

0 ∆T 2

2 0

0 ∆T 0

0 0 ∆T


vk (3.27)
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where ∆T is the sampling time and ω is the turn rate of the target can be assigned a
few values to define several models, including ω = 0 for the constant velocity model
(straight path trajectory). The target state vector is defined as s = [x,vx,y,vy,φ ]

T ,

where position vector x = [x,y]T , velocity vector v = [vx,vy]
T and the orientation of

target φ . The system noise vector is given by vk.Â

The measurement model of a person is then:

Zk+1 =

1 0 0 0 0

0 0 1 0 0

Xk+1 +

vx(k+1)

vy(k+1)

 (3.28)

where Xk = [x vx y vy ω]T .

3.3.2 Track Formation and Termination

Due to the large scatter present in the environment due to various furniture, glass
walls and various metal parts, there were obvious false detections. The tracking
problem was complex and nontrivial to handle due to the disappearance, reappearing
and manoeuvring of the target in the clutter. This problem was handled by an IMM
Probabilistic Data Association Filter (PDAF) tracker with track confirmation and
deletion. Using the Markov relationship, the probability of existence of a true person
PT (k+1|k) before receiving data in scan k+1 is given by,

PT (k+1|k) = P22PT (k|k)+P12(k|k) (3.29)

where P22 is the transition probability from an unobservable to an observable state, and
P12 is the transition probability from an unobservable to an observable state. Then,
the probability update of person existence [48] is

PT (k+1|k+1) =
1−δk+1

1−δk+1PT (k+1)
PT (k+1|k) (3.30)
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where

δk+1 =


PDPG, Nk+1 = 0

PDPG

1−V
Nk+1

∑
i=1

1
PG(2π)M/2

√
S|k+1|

e−d2
i /2

 , otherwise

and V =VGk+1/(Nk+1−PDPGPT (k+1|k)), PD is the probability of detection, PG is the
gate probability, VG is the gate volume, Nk+1 is the number of measurements inside
the validation gate, S is the innovation covariance, and d2

i is the normalised innovation
squared of the ith measurement.

The log-likelihood ratio (LLR) [48] is defined as:

LLRk+1 = ln
(

PT

1−PT

)
. (3.31)

Once the LLR is obtained, confirmation and termination of track thresholds are
determined as



LLRk+1 ≥ ln
(

1−βT

αT

)
, declare track confirmation

ln
(

βT

1−αT

)
< LLRk+1 < ln

(
1−βT

αT

)
, continue test

LLRk+1 ≤ ln
(

βT

1−αT

)
, delete track

where αT and βT are the probability of false-track confirmation and the probability of
true-track termination, respectively.

3.4 Simulation Results

A simulation study has been performed to analyse the robustness and consistency
of the IMMPDAF tracker in tracking moving people. The sensor used is capable of
detecting objects up to 30 meters range. The observation is assumed to be static.

56



CHAPTER 3. PEOPLE TRACKING

There are three motion models considered for tracking people, where each model
depicts a distinct motion behaviour with a particular emphasis on turning motions.
Model 1 refers to constant velocity with ω = 0; Model 2 refers to left turns with
ω = 1.4 rad/s; and Model 3 refers to left turns with ω = −1.4 rad/s. The mode
transition-probability matrix used [48] for the simulation T is

0.95 0.025 0.025

0.025 0.95 0.025

0.025 0.025 0.95

 .
The algorithm performance of the IMMPDAF tracker is evaluated by Monte Carlo
experiments for 50 runs with random error and variance Q = diag(10,10). A simulation
of two people with a manoeuvring movement in the opposite direction and having an
occlusion on the first track is shown in Figure 3.1. The person is assumed to have
been detected correctly.
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Figure 3.1: Tracking two people with occlusion
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3.4.1 Performance Analysis with Normalised Estimation Error Squared (NEES)

The results of Normalized Estimation Error Squared (NEES) and RMS error on both
the x and y axes are presented. The following equations are used to calculate both
NEES and RMS error on both x and y axes:

NEES = x̃(k|k)T S(k|k)−1x̃(k|k) (3.32)

where x̃(k|k) = x(k)− x̂(k|k), x(k) is the true position and x̂(k|k) is the predicted
position by the tracker in the k-th time.

RMS Error =

√√√√√ n

∑
k=1

(
x(k)− x̂(k)

)2

n
. (3.33)

According to [52], the lower and upper limits of the two-sided 95% region are [0.05,
7.38]. The upper limit is of interest since the lower limit is practically near zero. In
track 1, as shown in Figure 3.2a, the value of NEES is higher when the occlusion
occurs. On the other hand, in track 2, as shown in Figure 3.2b, the value of NEES
is between 0 and 1, which shows the IMM state estimation is consistent.

For RMS errors for 50 Monte Carlo runs in the x and y axes for tracks 1 and 2,
respectively, which are presented from Figure 3.2c to Figure 3.2f, they are consis-
tently small, except for sudden changes when the occlusion occurs. This shows that
the tracking performance is undeviating for IMMPDAF except for the period of the
occlusion.Â

The simulation of a person who moves in a circular motion was carried out. Figure
3.3a shows the pose of the human torso from various angles in a circular motion. The
person is assumed to move at a constant velocity with a constant turn rate. The value
of NEES for 50 Monte Carlo runs is within the lower and upper limits of the two-sided
95% region as referred to Figure 3.3b.
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(a) NEES for track 1

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

Time Frame

N
EE

S

(b) NEES for track 2
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(c) Xrms error for track 1
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(d) Yrms error for track 1
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(e) Xrms error for track 2

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time Frame

R
M

S 
Er

ro
r (

m
)

(f) Yrms error for track 2

Figure 3.2: NEES and RMS errors for tracks 1 and 2
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(a) Red-line is an IMMPDAF tracker and blue-line is a groundtruth
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(b) NEES of a person

Figure 3.3: Pose of a human torso that was being observed from various angles in a
circular motion
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3.4.2 Normalised Estimation Error Squared (NEES) with Multiple Tracking

Occlusions

The simulation of two people walking in zig-zag (track 1) and curve (track 2) motions
with magenta-line stated as the groundtruth is shown in Figure 3.5. Two people
with labels as track 1 and track 2 are assumed to walk at a speed of 1.4 ms−1 with
3 modes: a value of ω = 0 for a straight path, ω = 2.6 rad/s for the right turns,
and ω =−2.6 rad/s for the left turns. The detection and tracking in this simulation
include multiple occlusions when the two people cross each other with a sharp turn
on the zig-zag route. From the observation, the IMMPDAF tracker has difficulties
tracking the sharp turns and occlusions when referring to a visual comparison between
the trackings and the groundtruths on the plot shown in Figure 3.5.

By referring to Figure 3.4a and Figure 3.4b, the values of NEES for 50 Monte
Carlo runs are outside of the lower and upper limit of the two-sided of 95% region
on various time frames, as it can be seen in track 1 from time frame 70 to 80 and in
track 2 from time frame 1 to 9, 25 to 34, 41 to 53 and 72 to 82.

Referring to those time frames, it can be seen that the RMS error for 50 Monte
Carlo runs in the x and y axes for track 1 and track 2, respectively, as shown from
Figure 3.4c to Figure 3.4f are significantly large, especially on the X axes, where
it exceeds the value of 1 on various time frames. Those values on NEES and RMS
errors show that the tracking performance is inconsistent, which leads to inaccurate
tracking ability. Thus, the result on tracking performance in this simulation emphasises
that the state estimation errors of the IMMPDAF tracker are inconsistent with the
filter-calculated covariances.

3.5 Experimental Results

The experiments on tracking three people that were tracked in a common area of
the faculty were carried out. Fig. 3.6 shows the tracking performances. The segway
robot was used in a stationary position to monitor the environment. To evaluate the
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(b) NEES for track 2
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(c) Xrms error for track 1
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(d) Yrms error for track 1
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(e) Xrms error for track 2
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(f) Yrms error for track 2

Figure 3.4: NEES and RMS errors for tracks 1 and 2
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Figure 3.5: Tracking of two people with multiple occlusions (red-dot is an IMMPDAF
tracker, and magenta-line with blue-dot is a groundtruth)

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

X(m)

Y(
m

)

track 1

track
 
2

track 3

Figure 3.6: The tracking performance of three people
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performance of this tracker, the results of Normalized Innovation Squared (NIS) [52]
are presented subsequently.

The equation of NIS is

NIS = x̃(k|k)T S(k|k)−1x̃(k|k) (3.34)

where x̃(k|k) = x(k)− x̂(k|k), x(k) is the position from the sensor measurements and
x̂(k|k) is the predicted position by the tracker in the k-th time.

However, sensor fusion, which is the process of merging data or information from
several sensors to create a more precise and thorough picture of an environment or a
system, can considerably help in overcoming difficulties caused by occlusion in various
ways.

The idea of placing multiple sensors in various locations can cover various areas
of the environment. Other sensors may still have a clear line of sight to the objects
of interest if one sensor’s view is obscured by occlusion. Having multiple sensors
ensures that the system can still rely on data from other sensors even if one sensor is
temporarily blinded.

Data fusion from various sensors (such as cameras, LiDAR, radar, or ultrasonic
sensors) can provide more accurate and dependable object tracking and localization.
By integrating information from sensors with distinct sensing principles (such as vision-
based and depth-based sensors), the system can estimate the positions and movements
of objects even when they are partially or completely obscured from one sensor’s view.

Sensors can provide temporal data, capturing how objects move and change over
time. By integrating temporal data from multiple sensors, the system can predict the
probable locations of occluded objects based on their previous movements, enabling
more accurate predictions.
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3.5.1 Occlusion Handling with Probabilistic Data Association Filter (PDAF)

Section 3.3.2 discusses the integration of the people detection part into the IMM-
based temporal tracking algorithm. Figure 3.7 shows the tracking of two people (T1
and T2) using a stationary observer. The motions of T1 and T2 caused an occlusion,
where T1 disappeared from observations. However, the predictions of the IMM tracker
allowed for the re-association of the track with T1 for further tracking.
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Figure 3.7: People track results with a stationary observer (T1 and T2 denote the
tracks of two people)

Figure 3.8 shows the results of tracking two people with a dynamic observer.
The motions of T1 and T2 again cause the occlusion where T2 disappears from the

65



CHAPTER 3. PEOPLE TRACKING

observation, and the scenario is quite similar to that of the stationary observer. If T2
has the possibility of being terminated and disappears for a long time, it will reappear
as a new target.
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Figure 3.8: People track results with a moving observer (T1 and T2 denote the tracks
of two people)

The process of determining the tracks is based on the log-likelihood ratio (LLR),
which is shown in Figure 3.9. A new track is confirmed if the LLR is higher than an
upper threshold, and a track is deleted if it falls below a lower threshold (as defined
in Section 3.3.2).

The tracks that have been occluded for a long time have the possibility of being
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Figure 3.9: The log-likelihood ratio (LLR) of two people tracking

deleted and re-appearing as new tracks. It is reasonable as long as the application
does not require the identification and tracking of a particular individual.

3.5.2 Performance Analysis with Normalised Innovation Squared (NIS)

In this experiment, there are two occlusions where the tracks are lost for a short period:
track 1 at a time frame of 100 to 115 and track 2 at a time frame of 120 to 140 as
shown in Fig. 3.10a and Fig. 3.10b. In Fig. 3.10c, there is no occlusion, and thus the
value of NIS is within the upper and lower limits.
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Figure 3.10: Normalized Innovation Squared (NIS) of tracks 1,2 and 3
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For overall performance, NIS values for three tracks fall within the 95% probability
region. Therefore, the tracker’s consistency is proven. However, when two occlusions
occur, the track is lost for a short period. Therefore, for this reason, it can be
confirmed that the current tracker has difficulties handling any target with a long
period of occlusion.

3.6 Conclusion

This chapter presents a review of the tracking techniques and methods of data associ-
ation and addresses the performance of the tracker with simulated and real data. The
review discussed and listed various types of data association techniques and trackers.
The consistency of the tracker was also discussed and analysed using Monte Carlo
simulation based tests. From the simulations and tests, even though most of the
NEES and NIS of the tracks fall within the 95 % probability region, the tracker still
has difficulties handling targets when there are occlusions where the NEES and NIS
are out of the lower and upper limits of the two-sided 95% region.

The next chapter discusses the implementation of Gaussian Processes with the
tracker to improve temporal prediction of the target and effectively maintain the op-
timum amount of training data.
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Chapter 4

Non-Parametric People Tracking

In general, a model can be developed to describe human motion patterns that has the
capability to enhance tracking performance even with long-term occlusions. One way
to effectively learn these patterns is to apply Gaussian Processes (GP). However, with
the increase in the amount of training data over time, the GP becomes computation-
ally expensive. In this work, a Mutual Information (MI) based technique along with
the Mahalanobis Distance (MD) measure to keep the most informative data while
discarding the least informative data has been proposed. The algorithm is tested with
data collected in an office environment with a Segway robot equipped with a laser
range finder. It leads to more than 90% data reduction while keeping the limit of
average RMS errors. A GP based Particle filter tracker for long-term people tracking
with occlusions was implemented. The comparison results with the Extended Kalman
Filter based tracker show the superiority of the proposed approach.

4.1 Introduction

An element on state estimation of a dynamical system mainly in human motion is
a niche problem in various applications in security systems and robotics. The most
successful and widely used techniques for these purposes are Bayesian filters such as
particle filters or Kalman filters. Bayes filters repeatedly estimate posterior probability
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distributions over the state of a system, where the main components are the prediction
and observation models. It probabilistically defines the temporal progression of the
process and the measurements captured by the sensors. Nonetheless, one can estimate
the parameters and noise components of these models from manual approximation
or training data, as they represent the ongoing processes in a parametric manner
[55]. Despite the effectiveness of such parametric models, it is hard to find accurate
parametric models since their predictive capabilities may be limited to certain aspects
of the process. For instance, it is difficult to translate a model of human motion
for people tracking [56], object tracking using visual sensory data [57], deep learning
human tracking recognition [58] and human legs motion tracking using a Kalman filter-
based tracker [59]. These systems are based on parameters with complex relationships
among various features. Some conditions that are associated with the tracked object
make it difficult to interact with each anterior progression, such as the position and
speed of two feet [60; 61].

Due to the limitations of parametric models, non-parametric models such as Gaus-
sian process regression models [62] can be substituted to learn prediction and obser-
vation models for dynamical systems. GPs models have been successfully tested to
solve the problem of learning predictive state models [63; 64]. GP regression models
provide uncertainty estimates for their predictions, which can be incorporated into
particle filters as observation models [63] or for improved sampling distribution [65].

4.2 Particle Filter

There are a number of ways of estimating the target’s position, as reported in the lit-
erature. One of the most successful and promising approaches is using particle filters,
which have solved several hard perceptual problems in robot visions. Particle filters
are approximate techniques for calculating posterior in partially observable controllable
Markov chains with discrete time. They are usually highly geometric and generalize
classical robotics notions such as kinematics and dynamics by adding non-deterministic
noise. If states, controls and measurements are discrete, the Markov chain is equiva-

71



CHAPTER 4. NON-PARAMETRIC PEOPLE TRACKING

lent to hidden Markov models (HMM) [66; 67] and can be implemented exactly. The
posterior requires space exponential in the number of state features, though more effi-
cient approximations exist that can exploit conditional independence that might exist
in the model of the Markov chain [68]. Robotic applications typically utilize particle
filters in continuous state spaces. For a continuous state space, closed form solutions
for calculating are only known for highly specialized cases. A common approximation
in non-linear non-Gaussian systems is to linearize the actuation and measurement mod-
els. If the linearization is obtained via a first-order Taylor series expansion, the result
is known as the extended Kalman filter or EKF [33; 69–71]. Unscented filters often
obtain a linear model through non-random sampling [72]. However, cases where the
Gaussian-linear assumption is a suitable approximation confine all these techniques.
Particle filters address the more general case of nearly unconstrained Markov chains.
Particle filters are attractive because they can be applied to nearly any probabilistic
detection and tracking model that can be formulated as a Markov chain. Addition-
ally, particle filters at any moment do not require a fixed computation time and their
accuracy generally increases with the available computational resources.

In the context of these works, particle filters estimate the posterior over unobservant
state variables from sensor measurements. For instance, measurements are taken from
a laser range finder (LRF) or laser detection and ranging (LiDAR) where the state refers
to the position of the human torso relative to its environment along with the number
and location of objects in the region of interest.

4.3 Human Motion Prediction and Learning

People tracking is one of the most important aspects for mobile robots to be effi-
ciently deployed in populated environments. Most techniques used for people tracking
are based on weak assumptions about human motion such as the constant velocity
motion model or the Brownian model which predicts future states simply based on
the history of past states. In other words, human motion is driven by the physical and
social constraints of the environment. However, even over a short period, human mo-
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tion follows more complex and non-linear patterns when influenced by various factors,
such as the intentional objective, other people and objects along the path in the envi-
ronment, and following social rules. By considering these requirements, it is proposed
to explore more sophisticated motion models for people tracking since humans may
frequently undergo lengthy occlusion events.

Bruce et al. [56] have proposed better human motion models for people tracking,
where the robots initially learn goal locations in the environment from people tra-
jectories. Human motion is predicted along the paths computed by a planner from
the actual location of the person to the estimated goal location. Liao et al. [73]
extract a Voronoi graph from a map of the environment and constraint the state of
the people to lie on the edges of the graph. The motion of people is then predicted
along those edges, following the topological shape of the environment. Bennewitz et
al. [74] learn typical motion patterns that people follow in an environment where this
approach accumulates trajectories of people and combines them to motion patterns
using Expectation-Maximization (EM) clustering. Each motion pattern is used to de-
rive a Hidden Markov Model (HMM) for the mobile robot to predict the motion of
people.

Models for pedestrian dynamics have also been developed and applied in communi-
ties, such as in quantitative sociology or spatial cognition. These models are used for
crowd simulation, evacuation dynamics or building design. The first model which is
typically deterministic and force-based employs fluid dynamic and gas kinetic models
in which people are considered particles with their motion being described by a fluid-
dynamic equation. The second model is based on a ruled-based dynamical model
which is usually described by a set of rules specifying the probability of moving to
neighboring cells and discrete cellular automata, which discretizes space into cells
that can be occupied only by one person. However, motion models based on their
discrete nature cannot be readily applied within a probabilistic tracker that requires
proper propagation error in the prediction state.

Helbing et al. [75] proposed the concept of social forces or social fields, where the
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forces model different aspects of motion behaviours, such as the motivation of people
to reach a goal, the repulsive effect of walls and other people as well as physical
constraints.

In this work, a people tracker with gaussian process regression with GP prediction
and observation models can be combined with particle filters which have been intro-
duced by Ko et al. [63] was integrated. The resulting GP-Particle Filter (GP-PF)
inherits features of GP regression. The underlying models and all their parameters
can be learned from training data using non-parametric regression. Incorporating such
models into the GP regression typically allows the filter to learn the parameters from
significantly less training data. When the process of tracking enters areas in which
not enough training data is available, the filter naturally increases its uncertainty esti-
mation. However, GP becomes inefficient when large training data sets are available.
Due to this reason, it was proposed to keep the most informative data while discard-
ing the least informative data by using the Mutual Information (MI) based technique
along with the Mahalanobis Distance (MD).

4.4 Gaussian Process

A Gaussian Process is a powerful non-parametric technique for learning regression
functions from sample data, which contains a collection of random variables with any
subset of them having a joint Gaussian distribution [62; 76] and represents posterior
distributions over functions based on training data. First, assume a set of training
data, D = ⟨X ,y⟩, where X = [x1,x2, ...,xn] is a matrix containing d-dimensional input
examples and y = [y1,y2, ...,yn] is a matrix containing scalar output. Gaussian Process
assumes that the data is derived from a noisy process whose regression output is
modeled using a noisy version of the function,

y = f (x)+ ε, (4.1)

where ε is zero mean additive Gaussian noise with a variance of σ2
n . With training
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data D = ⟨X ,y⟩ and a test input, x∗ , a GP defines a Gaussian predictive distribution
over the output y∗ with mean

GPµ(x∗,D) = kT
∗ [K +σ

2
n I]−1y (4.2)

and variance

GPΣ(x∗,D) = k(x∗,x∗)−kT
∗ [K +σ

2
n I]−1k∗. (4.3)

k∗ is a vector defined by kernel values between the test input x∗ and the training
inputs x. K is the n×n kernel matrices of training input values k[m] = k(x∗,xm) and
K[m,n] = k(xm,xn). The variance GPΣ, which is the prediction uncertainty, depends
on the process noise and the correlation between the test input and the training data.
The widely used kernel function, squared exponential is selected for this process, which
is given by,

k(x,x′) = σ
2
f e−

1
2 (x−x′)W (x−x′)T (4.4)

where σ2
f is the signal variance. The diagonal matrices W contain the length scales

for each input dimension.

The GP parameters describing the kernel function and the process noise, respec-
tively are called hyperparameters of the Gaussian Process. These hyperparameters are
learned by maximizing the log likelihood of the training data using numerical opti-
mization techniques such as conjugate gradient decent [62]. Consider a d-dimensional
trajectory V that has |V | number of points. If observation is made on a set of points,
A ⊂V , based on the GP model, it can predict the value at any point y ∈V\A. Let ZA

denote a set of values at the finite set A, and zy denote a value at y. In probabilistic
terms, the conditional distribution is derived at the predicted point of y where ZA is
given as follows:
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µy|A = µy +ΣyAΣ
−1
AA(ZA −µA) (4.5)

σ
2
y|A = k(y,y)−ΣyAΣ

−1
AAΣAy (4.6)

where ΣyA is a covariance vector with one entry for each x ∈ A with value k(y,x) ;
µy|A and σ2

y|A are conditional mean and variance at y; µA is a mean vector of ZA ; and
Σ
−1
AA is a covariance matrix of ZA with every entry calculated by k(x,x).

4.5 Data Selection and Management

In regular practice, it is necessary to incorporate all the samples into the training phase
of the GP. However, it becomes inefficient whenever the GP needs to be trained to
accommodate new observations. In the people tracking scenario, the motion models
are learned, and they need to be adapted in time to accommodate variations. Thus,
when the new observations are available, the GP needs to be learned with an increasing
number of samples. Intuitively, the new observations need to be included, if only they
are informative. This problem is proposed to be resolved using a Mutual Information
(MI) based strategy and Mahalanobis Distance (MD) based criteria. The MI picks the
most informative measurements that are given by the whole scan and uses them to
represent the GP surface. Whenever new data is available, MD is calculated between
the new measurement and the GP. If it is within the 95 % of the confidence interval,
the new measurement is discarded as the GP is already capable of representing the
data. However, if the MD is greater than 95 % of the confidence interval, the data is
not representative of the GP and hence, it needs to be included in order to represent
the new GP. This process will govern data management and adapt to new scenarios.
The process flow for data selection in Gaussian Processes variables is shown in Figure
4.1.
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Figure 4.1: The process flow on the selection of data points in Gaussian Processes.
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4.5.1 Mutual Information

In the previous discussion, the most informative data points were selected based on the
Mutual Information algorithm [77]. In order to find k best points in the whole trajectory
V , it starts with an empty set of locations A = φ and greedily adds placements in
sequence until |A|= k based on the angle or magnitude of displacement of each point.
The algorithm chooses the next point that produces the maximum increase in mutual
information. More specifically, the MI between the subset A and the rest of the
trajectory V\A can be formulated by:

F(A) = I(A;V\A)

Once y ∈V\A is chosen and added to A, the variation of MI can be calculated by:

F(A∪y)−F(A) = =H(A∪y)−H(A∪y|Ā)− [H(A)−H(A|Ā∪y)] =H(y|A)−H(y|Ā)

(4.7)

4.5.2 Mahalanobis Distance

The MD is used to decide the importance of new data to be incorporated in the
GP learned model. As per the previous discussion, this will allow the GP to represent
dynamically changing environments and hence improve its adaptability. Assume a new
measurement value of mean µxm and variance σxm Â at a location xi, where x = ⟨x,y⟩,
was received. The GP can now predict the mean µxp and variance σxp at that location
as well. Thus, the MD can be calculated as

d(x) =

√
(µxm −µxp)

2

σ2
xm

+σ2
xp

. (4.8)

The measurement used in this application is one dimensional and therefore, chi-
square tables the threshold for d(x) to be within a 95 % confidence interval, which
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can be chosen as 3.84 [78].

4.6 Gaussian Process - Particle Filter (GP-PF)

A particle filter (PF) is a very flexible Sequential Monte Carlo (SMC) approach that
allows the implementation of a recursive Bayesian filter through Monte Carlo simu-
lations [79–82]. It can be applied to a wide range of dynamic state-space models:
linear and non-linear, Gaussian and non-Gaussian, stationary and dynamic, discrete
and continuous. Particle filters require learning prediction and observation models,
which can be achieved by directly applying Gaussian process regression. In this work,
it is restricted to training prediction models as at a later stage, the observer is dynamic,
making it difficult to learn observation models. The prediction model maps the state
and control, (xk,uk) to the state transition, ∆xk = xk+1−xk. The next state is found
by simply adding the state transitions to the previous state. Therefore, appropriate
forms of prediction and observation training data sets are given by,

Dp = ⟨(X ,U),X ′⟩ (4.9)

where X is a matrix containing the locations and X ′ = [∆x1,∆x2, ...,∆xk] is a matrix
containing transitions made from those states when applying the controls stored in U .

p(xk|xk−1,uk−1)≈ N(GPµ([xk−1,uk−1],Dp),GPΣ([xk−1,uk−1],Dp)) (4.10)

Â where p(xk|xk−1,uk−1) represents the probability of the variable xk given the val-
ues of xk−1 and uk−1. N(GPµ([xk−1,uk−1],Dp),GPΣ([xk−1,uk−1],Dp)) represents a
normal distribution N characterized by its mean GPµ([xk−1,uk−1],Dp) and variance
GPΣ([xk−1,uk−1],Dp). Thus, GPµ([xk−1,uk−1],Dp) represents the mean of the Gaus-
sian Process, which is evaluated at the point [xk−1,uk−1] using the data Dp. Similarly,
GPΣ([xk−1,uk−1],Dp) represents the covariance of the Gaussian Process at the same
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point. The basic task of a particle filter is to represent posteriors over the state xk by
setting Xk of weighted samples:

Xk = {⟨xm
k ,w

(m)
k ⟩|m = 1, ...,M}. (4.11)

Here each xm
k is a sample and each w(m)

k is a non-negative numerical factor called
importance weight. Thus, GPµ([xk−1,uk−1],Dp) is the short form of the Gaussian
represented by (GPµ([xk−1,uk−1],Dp),GPΣ([xk−1,uk−1],Dp)).

Note that the covariance of this prediction is typically different for each sample,
taking the local density of training data into account. The complete step can be
found in [63].

4.7 Gaussian Processes - Extended Kalman Filter (GP-EKF)

An incorporation of GP models into the EKF requires a linearization of the GP function,
which follows the interpretation that was specified by A. Girard et al [83] besides
utilising GP mean and covariance. The derivative of the GP mean function for each
output dimension can be described as:

d(GPµ)(x∗,D)

d(x∗)
=

d(k∗)
T

d(x∗)
[K +δ

2
n I]y. (4.12)

Note that k∗ is the vector of kernel values between query input x∗ and the training
inputs X .

The partial derivatives of the kernel vector function are

d(k∗)

d(x∗)
=


d(k(x∗,x1))

d(x∗[1]) · · · d(k(x∗,x1))
d(x∗[d])... . . . ...

d(k(x∗,xn))
d(x∗[1]) · · · d(k(x∗,xn))

d(x∗[d])

 . (4.13)
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where d is the dimensionality of input space and n is the number of training points.
The partial derivatives are depend on the type of kernel function. For the squared
exponential kernel, the expression will be as:

d(k(x∗,x))
d(x∗[i])

=−Wiiσ
2
f (x∗[i]− x[i])exp−

1
2 (x∗−x)W (x∗−x)T

. (4.14)

Stacking l Jacobian vectors together can determine the full l × d Jacobian of a
prediction or observation model, which is one for each of the output dimensions. A
comprehensive explanation can be found in [63].

4.8 Experimental Analysis

The experiments were carried out in a common area of the university, as shown in
Figure 4.2 and Figure 4.12. In these experiments, a subject is a person who is walking
around a cubicle multiple times and walking multiple times in four trajectories while
the robot is stationarily observing the subject. A trace of trajectories containing 20
paths in circular motion is shown in Figure 4.3. Meanwhile, a trace of 4 trajectories
contains 10 paths in one direction, as shown in Figure 4.13.

The method of detecting people applied prior to tracking is based on laser data
taken at the torso height of a human, followed by an extraction of significant features
and a classification process as shown in chapter 2. Once a person was detected
based on laser data, it was then used in GP modelling. The main idea was to keep the
average root mean square error (ARMSE) of prediction below 5 cm, as the environment
contains corridors of width ranging from 130 to 150cm. Finally, the GP-PF was used
for tracking people.

In this experiment, the training data had been processed in three stages. Firstly,
applying Mutual Information Approach (MIA) on the first set of data in the trajectory
to determine the least number of points that could be used to represent the GP with
the given ARMSE. Secondly, the MD was applied to each new measurement to ensure
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Figure 4.2: Office environment in the Centre of Autonomous Systems
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Figure 4.3: Circular Trajectories of a walking person
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its contribution to new knowledge. Thirdly, the MIA was applied again to remove any
redundant data points as a result of adding new data.

4.8.1 Circular Trajectories Tracking

A single trajectory contains 150 points, as shown in Figure 4.4a is the first loop of
the observation data. From this observation, the learned GP means and covariances
prior to implementation of MIA and MD are shown in Figure 4.5a and Figure 4.5b,
respectively. The GP predictions exhibit high uncertainty towards the corners of the
plots where no measurements are available. The data was then processed using MIA
data selection to achieve the set of points that represented the same RMS error. The
resulting points are shown in Figure 4.4b which leads to a 60% reduction of data
points. Figure 4.6a shows the RMSE calculated at measured points using optimized
GP, which is less than 0.045 meter.

When a new trajectory is available for the training data, the predicted and measured
values of the mean and covariance of each point in the x and y axes are compared
using MD. Those points that have MDs less than 3.84 (threshold) are discarded. For
example, most of the new measurements shown in Figure 4.7a provide less MDs than
the threshold obeying the learned model and hence measurements that are less than
the threshold are discarded. However, more variations of data, as can be seen in Figure
4.7b, give rise to higher MDs than the threshold. Those points are incorporated into
the training samples for retraining purposes.

After the second set of observations, once the data to be added to the model has
been decided based on the MD process, MIA is used for selecting the most informative
data points, as shown in Figure 4.9a. Figure 4.8a and Figure 4.8b show the final
mean and final covariance, and after retraining, the data still has less than 0.04 meters,
as referred to Figure 4.4b.

For testing the overall accuracy, referring to Figure 4.4a as the initial training data
and Figure 4.9a as the final training data, the RMSE of the mean value is as shown
in Figure 4.9b, at each point of the 150 training data. As can be seen, the RMSE
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Figure 4.4: Points in trajectory prior to and post-MI implementation

84



CHAPTER 4. NON-PARAMETRIC PEOPLE TRACKING

0 2 4 6 8 10
0

2

4

6

8

10  

x (m)

 

y 
(m

)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a) Mean values

0 2 4 6 8 10
0

2

4

6

8

10  

x (m)

 

y 
(m

)

5

10

15

x 10−3

(b) Covariance values

Figure 4.5: GP regression with 150 data points
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Figure 4.6: RMSE between predicted mean and the measurements
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Figure 4.7: Implementation of Mahalanobis Distance
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Figure 4.8: GP Regression of final points after MD and MIA
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Figure 4.9: Final points and RMSE
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at each point is less than 0.02 meters, which is reasonably good as the environment
contains corridors of width ranging from 1.3 to 1.5 meters. The number of training
data is reduced to 37 from the total of 300 points, which is more than 85% data
reduction.

The GP learned model is then used for predicting the PF based tracker and evaluating
its long term tracking ability. Figure 4.10 shows the comparison results of model based
EKF and the proposed GP-PF trackers with an occlusion. As it can be seen, the EKF
has poor tracking performance, while the GP-PF still manages to perform well. It is
to be noted that the EKF tracker has lost track, but with growing covariance, it could
finally converge to the track again.This is possible as the experiment only involves
one track (data association is assumed) and the fact that it goes around the loops.
The comparison of four types of trackers: EKF, PF, GP-EKF and GP-PF is shown in
Figure 4.11. Figure 4.11 clearly demonstrates that GP-EKF and GP-PF outperform
the other trackers.
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Figure 4.10: Tracking performance of the Gaussian Process-Particle Filter (GP-PF)
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4.8.2 Multiple Trajectories Tracking

Figure 4.14 contains 3868 points collected on 10 trajectories of four routes. The
learned GP means and covariances are shown in Figure 4.16a and Figure 4.16b,
respectively. The GP predictions are highly uncertain towards the corners of the plot
and the values of means and covariance are uniformly distributed in the areas where no
observations were made. The data was then processed using MI-based data selection
to achieve the set of points that represented the same RMSE. When a new trajectory
was available for the training data, the predicted and measured values of the mean
and covariance of each point in the x and y axes were compared using MD. Those
points that had MDs less than 3.84 (threshold) were discarded. Once the data that
were to be added to the model had been decided based on MD; MI was then applied
for selecting the most informative data points as shown in Figure 4.15.

The algorithm starts with an empty set of points and greedily adds placements
in sequence until a designated number of points are found based on the angle or
magnitude of displacement of each point, in order to find the best points in the whole
selective data set. The MI algorithm chooses the succeeding point that produces the
maximum increase in mutual information. The mean and covariance after retraining
are shown in Figure 4.17a and Figure 4.17b. As shown in Figure 4.18, most of
the data had an RMSE of less than 0.02 meters and an ARMSE of 0.0038 meters.
Referring to Figure 4.14 and Figure 4.15, the number of training data was reduced
to 610 points from the total of 3868 points, which was reduced to 15.77% or more
than 80% of the data reduction.

Figure 4.19a to Figure 4.20b refer to people tracking on routes 1 to 4, respectively.
It can be seen that the GP-PF efficiently tracks people with reduced data from the
GP learned model. The GP learned model is then used for predicting the PF based
tracker for evaluating its long term tracking ability. The comparison results of model
based EKF and the proposed GP-PF with an occlusion are as shown in Figure 4.21.
As it can be seen, the EKF tracker has poor tracking performance, while the GP-PF
tracker still manages to perform well. It is to be noted that the EKF tracker has lost
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track; however, it manages to continue predicting the track with growing covariance.
Covariance ellipses grow as the prediction continues, as shown in Figure 4.22.
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Figure 4.12: Office environment in the Centre of Autonomous Systems
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Figure 4.13: Multiple trajectories of a walking person
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Figure 4.14: The initial points of a subject are represented as dots as they walk
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Figure 4.15: Final points after MIA and MD
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Figure 4.16: Gaussian Process Regression before MIA and MD
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Figure 4.17: Gauss Process Regression after MIA and MD
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Figure 4.18: RMSE between predicted mean and the measurement
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Figure 4.19: Tracking route 1 and route 2 with GP-PF
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Figure 4.20: Tracking route 3 and route 4 with GP-PF
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Figure 4.21: Occlusion: tracking with GP-PF (green line) and EKF (red line)
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Figure 4.22: Zoom in on the growing covariance ellipses of the occlusion period with the EKF tracker
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4.8.3 Simultaneous Trajectories Tracking

For 2 and 4 people who are simultaneously tracked in the vicinity, various scenes of
people trajectories are shown in Figure 4.23, Figure 4.24 and Figure 4.27. In those
figures, the green line represents trajectories tracked by GP-PF and the red line repre-
sents trajectories tracked by EKF. The black dotted point represents the observation
point. In Figure 4.23, two people are tracked with the same trajectories in the starting
phase and in the latter phase, they walk in the opposite direction. Both trajectories
have their observations partially disrupted due to the object momentarily blocking the
vision of LRF. It has been clearly visualised in Figure 4.23 for both trajectories; tra-
jectories that are tracked by GP-PF show better prediction performance compared to
the trajectories tracked by EKF. The trajectories tracked by EKF deviated significantly
from the reference track. Thus, the GP-PF tracker shows superior tracking perfor-
mance over the EKF tracker. Figure 4.24 shows the tracking of four people in their
tracks without any occlusion. It shows that the trajectories tracked by the GP-PF
and EKF trackers obviously lie within the observation points. However, on the sharp
manoeuvring curve, it shows that the GP-PF tracker has better tracking ability than
the EKF tracker. In Figure 4.25a, the comparison is made on four tracking methods:
EKF, PF, GP-EKF and GP-PF. Green, blue, red, and magenta lines represent the
GP-PF, GP-EKF, EKF, and PF trackers, respectively. The black dots represent the
routes’ reference points or ground truth. When it comes to maneouvring conditions,
EKF performs the worst among the four tracking methods. GP-PF clearly outperforms
EKF in terms of maneuvring conditions.
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Figure 4.23: Two people were simultaneously tracked with partial occlusions by GP-PF (green line) and EKF (red line)
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Figure 4.24: Four people were simultaneously tracked with no occlusions by GP-PF (green line) and EKF (red line)
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A study was conducted to compare the RMSE on 50 Monte Carlo runs, as depicted in
Figure 4.25b, and evaluate each tracker’s performance on a single route, as illustrated
in Figure 4.26a. GP-PF and GP-EKF have convincingly demonstrated that they have
greater tracking performance than EKF and PF because of their lower RMSE.

The comparison on only GP-PF and GP-EKF trackers in Figure 4.26b shows that
GP-PF performs marginally better than GP-EKF because GP-PF has a lower RMSE
than GP-EKF.

In Figure 4.27, four people are tracked in their designated direction and two of
them have their trajectories partially disrupted due to objects momentarily blocking
the vision of LRF. It is clearly seen that partial disrupted moments have been better
predicted using the GP-PF tracker. The prediction that was done by the EKF tracker
obviously deviated from the original track.

In Figure 4.28, the comparison of the performance of four tracking methods has
been shown. It is visually proven that GP-PF which is shown in the green line, has
better performance than the others.
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(a) Four people were simultaneously tracked with no occlusions by EKF (red line),
PF (magenta line), GP-EKF (blue line) and GP-PF (green line)
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Figure 4.25: Tracking people with four methods
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Figure 4.26: RMS Error on 1 route
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Figure 4.27: Four people were simultaneously tracked with partial occlusions by GP-PF (green line) and EKF (red line)
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Figure 4.28: Four people were simultaneously tracked with partial occlusions by EKF (red line), PF (magenta line), GP-EKF (blue line)
and GP-PF (green line)
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4.9 Tracking the Freely Walking People Scenario

Figures 4.29a and 4.29b demonstrate the tracking of three people in a freely walking
situation using GP-EKF and GP-PF. It is obvious that both trackers have shown
remarkable tracking abilities. Figure 4.30 provides a visual representation of the
accuracy on both trackers. Both the GP-EKF and GP-PF trackers perform equally
well.

4.10 Conclusion

This chapter presents the results on the tracking performances of Gaussian Processes-
BayesFilters such as GP-Extended Kalman Filter and GP-Particle Filter in comparison
with conventional trackers such as Extended Kalman Filter and Particle Filter. The
Gaussian Process and its implementation have been discussed and the experimental
results have been analyzed and visualized to verify the validity of these trackers. It
can be concluded that GP-EKF and GP-PF managed to handle the long term better
than EKF and PF. Further, it shows that the GP-EKF and GP-PF were effective in
learning people’s navigation patterns and using them efficiently in occlusion handling.

This approach reduced data points by more than 90 percent while keeping the
ARMSE within acceptable limits. This is a promising data optimization that will
reduce computational time when dealing with periodic accumulative data set. The
learned GP which was incorporated with Bayesian Filters was then used to track people
along the various paths in the vicinity. When compared to PF and EKF trackers, both
GP-PF and GP-EKF have achieved higher tracking performance when dealing with
occlusions.

Comparing both Gaussian Process-BayesFilters, GP-PF has slightly performed bet-
ter than GP-EKF. Furthermore, the performance of Gaussian Process-BayesFilters is
not affected by the walking speed of people since state transitions are based on dis-
placements in x and y coordinates. However, the Gaussian Process model needs to be
trained for specific environments and different scenarios.
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(a) Three people in a freely walking scenario are tracked by the GP-EKF tracker
(blue line)
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(b) Three people in a freely walking scenario are tracked by the GP-PF tracker
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Figure 4.29: Tracking on three people
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Figure 4.30: Three people in a freely walking scenario are identified by GP-EKF (blue line) and GP-PF (green line)
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Chapter 5

Conclusion

The objective of this thesis is to provide solutions on the performance of laser tracker
towards people tracking technique when observations are partially absent and blocked
by obstacles. This chapter summarises the contributions of this thesis. Section 5.1
highlights the major theoretical practical solutions it has offered. Future research
directions are addressed in Section 5.2.

5.1 Summary of Contributions

The major contributions arise from the issue of temporally failed people tracking by
various tracking techniques: analysis of an underlying problem on tracking techniques
attributed to tracking failure, experimental analysis on the non-parametric estimation
method using the Gaussian Process Tracker, and data optimisation methods. The
main contributions are summarised in the following subsections.

5.1.1 Tracking by Detection Technique

A single-layer 2D laser range finder was chosen as an observation device, and it was
set up at torso height in order to have faster computing time and to avoid synchro-
nisation issues in a multiple-layered 2D laser range finder. Torso height between 110
cm and 140 cm was chosen as the place of detection due to the cross section of the

117



CHAPTER 5. CONCLUSION

torso, which could be generally approximated as an ellipse. By comparison, support
vector machines performed better than other classifiers, and they were chosen to train
extracted features for training data. In the classification process, due to non-linear
classification problems, binary classification for people and others was implemented.
For the observation data that is taken from moving observers (LRF), scan matching
such as iterative closest point (ICP) was implemented in order to have global coordi-
nation for consecutive scans. The detection of people and predicting their course were
carried out using the Interacting Multiple Model Probabilistic Data Association Filter
(IMMPDAF) tracker. The IMMPDAF tracker was used to overcome the poor perfor-
mance of tracking on crossing targets and track maintenance on manoeuvring targets.
Tracker was analysed for consistency by off-line multiple-run (Monte Carlo simulation)
tests of the normalised estimation error squared (NEES) and the normalised innova-
tion squared (NIS). In the simulation and experimental tests, the results show that
the IMMPDAF tracker has difficulties handling any target with a long period of occlu-
sion. Thus, it is important to introduce estimation that is able to improve temporal
prediction of the target.

5.1.2 Non-Parametric Estimation Method

State estimation of a dynamical system mainly in human motion is one of the problems
in various applications of robotics and security systems. Most state estimation models
are parametric representations of the ongoing processes with parameters and noise
components. However, it is hard to establish accurate parametric models since predic-
tive state estimation has limited capabilities. Thus, non-parametric methods such as
the Gaussian process regression model are an option to provide uncertainty estimates
for their predictions. These non-parametric prediction and observation models can be
combined with particle filters as the Gaussian Process-Particle Filter (GP-PF), where
the underlying models and all the parameters can be learned from training data using
non-parametric regression.
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5.1.3 Data Optimisation and Management

It is regularly needed to incorporate all the samples into the training phase of the
GP. This process becomes inefficient whenever the GP needs to be trained to accom-
modate new observations with an increasing number of samples since it will extend
the duration of the training phase and increase the need for larger computer mem-
ory, which will eventually lengthen the computing time. Thus, a mutual information
(MI)-based strategy and Mahalanobis distance (MD)-based criteria are proposed to
optimise the number of samples that are necessary for the training phase of the GP.
The MI sequentially picks the most informative measurements to represent the GP
surface. Whenever a new observation is available, the MD is calculated between the
new measurement and the GP. If MD is within 95% of the confidence interval, the
new measurement is not counted as the GP is already capable of representing the
data. Otherwise, if the MD is higher than 95% of the confidence interval, the data is
not representative of the GP, and it needs to be counted. This process will optimise
the data and adapt it to new scenarios.

5.1.4 Experimental Validation

Experimental results are used to validate the proposed approach for circular trajectory
tracking and multiple trajectory tracking with occlusions. The GP-learned model
incorporated with Partical Filter (PF) and Extended Kalman Filter (EKF) is initially
demonstrated with circular trajectories with occlusions. Later, multiple trajectories of
tracking with occlusions are carried out under various conditions. Experiments have
demonstrated that Gaussian Process-Bayes filters with optimised training data are
feasible even under multiple target interactions and occlusions.

5.2 Future Research

Research in several directions to extend the work presented in this thesis is discussed
below.
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5.2.1 Improvements to the Optimisation Method

Area of GP Learned Model may be made further computationally efficient by investi-
gating better representations, such as discretized into small cells with dimensions of 5
cm × 5 cm, to reduce the number of observation points that are necessarily counted
for the GP surface. Within the pixel, the number of observation points can be reduced
to a single point if they share the same information prior to the Mutual Information
(MI) based strategy and Mahalanobis Distance (MD) based criteria data manage-
ment process. The technique to determine information similarity with the number of
observation points within the pixel shall be decided in succeeding research.

5.2.2 Bidirectionally Optimised GP Learned Model

In the present work, the scope of the GP learned model was established only for
human motion in one direction. In order to handle the opposite-direction traffic, it
is needed to form a separate set of Optimised GP-Learned Models. that represent
human motion in the return direction. Eventually, two sets of Optimized GP Learned
Model are setup to provide GP regression that can be directly applied to the problem
of learning prediction and observation models required by particle filters. As a future
direction of work, it is interesting to explore how this problem could be formulated to
handle multi-directional traffic with varying speeds.

5.2.3 Partially Area-Oriented, Optimised GP Learned Model

In order to develop human motion patterns for prediction and learning, it takes some
computational time to generate the GP surface, even with the latest available com-
puting processors. In mathematical computing, there are quite a number of matrices
and their size expands with the number of samples. Since it has to accommodate
new observations and if the area to be covered expands, the GP needs to be learned
with a large and increasing number of samples which leads to a longer computational
period. The investigation of managing computational and information resources when
expanding into very large areas is an interesting future research topic.
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5.2.4 Fusion of Optimised GP Learned Model with Images

Further development on improving the accuracy of tracking ability, fusion of the Op-
timised GP Learned Model with images related to the possible motion, trajectory and
direction of a person (single tracking) or people (multiple tracking) can be studied.
Location-oriented images that contain information related to trajectory are useful to
increase the probability of possible motion. As images of a person holding something
related to the direction that he or she is heading, these images can be attributed
to location such as a pantry room if the person holds a mug or a printing room if
the person carries paper. Incorporating multi-modal sensory information to further
enhance the tracking capability and performance is another interesting area of further
research.

5.2.5 Integration of Two-Dimensional and Three-Dimensional Data

Neither camera calibration information nor 3D data are used in the suggested detection
and tracking techniques. However, 3D data may be useful to enhance tracking and
detection capabilities. Researchers are aware of how difficult it may be to detect and
track people when they are occluded. Relying on 2D visual patterns is insufficient
for managing occlusion problems. Our ability to learn templates for the visible parts
that capture appearance and 3D information is enhanced by the utilisation of human
3D geometry. Accordingly, 3D information can be used to distinguish between people
who are occluded by other people or objects in indoor and outdoor environments.

5.2.6 Real-time Tracking and Detecting Algorithm

It is preferred to use fast detection and tracking algorithms to meet the requirements
of real-time applications. However, more time is required to execute additional com-
putations in complicated models when some efficient but computationally expensive
components are added to the detection and tracking methods. New approaches are
needed to meet the real-time criterion since online features extraction and learning are
the main computational limits of existing algorithms.
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5.2.7 Fusion of Multiple Sensors

Sensor fusion methods improve the accuracy, dependability, and resilience of systems
that track people. This makes them useful for surveillance, security, navigation, and
human-computer interaction to solve problems caused by occlusion. The monitored
area can be covered by integrating a camera, LiDAR, motion detector, and other sensor
data. The system can identify and monitor individuals in real-time via sensor fusion,
improving accurate detection and reducing false alarms. This enhances the overall
efficiency of detection and tracking. Utilising sensor fusion techniques with data from
several sensors enhances the accuracy, reliability, and durability of people-monitoring
systems. They are extremely advantageous in numerous practical situations, such as
surveillance, security, navigation, and human-computer interface, among other fields.
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