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ABSTRACT

an intelligent model across many clients without uploading local data to the server.

Non-IID data across clients is a significant challenge for the FL system because
its inherited distributed machine learning framework is designed for the scenario of IID
data across clients. Clustered FL is a type of FL method to solve non-IID challenges using
a client clustering method in the FL context. However, even adopts a client clustering FL
method still facing minor problems such as unstable against client-wise outliers and the
drop of model performance with model poisoning attack.

To face the aforementioned challenges, the main research objective of the thesis is to
study that how to make FL effectively, seamlessly solved non-IID data across clients in
horizontal clients partition settings.

The main research objective has been studied from four coherently linked perspec-
tives: (i) how to make FL to address the non-IID distribution of data across different
clients in a effective and scalable manner so that they can be applied to real world cases
which consists of thousands of client and varies type of devices, (ii) how to make cluster
FL methods more robust to client-wise outliers, (iii) how to make better balance between
the performance of global models and the extent of personalisation of local models, (iv)
how to make FL training more robust to model poisoning attack by density methods.

This thesis proposes a novel FL framework with robust clustering algorithm and
secure the models to tackle client-wise outliers as well as model poisoning in the FL
system. Specifically, we will develop a robust federated aggregation operator using a
bootstrap median-of-means mechanism that can produce a higher breakdown point
to tolerate a larger proportion of outliers. All work experiments on three benchmark
datasets have demonstrated the effectiveness of the proposed method that outperforms
other baseline methods in terms of evaluation criteria.

In short, we develop a original, effective clustered FL baseline algorithm which can
improve FL performance in horizontal clients partition settings. We compared proposed
work against several state-of-the-art FL algorithms using both synthetic and real-world
data.

F ederated learning (FL) is a new machine learning paradigm to collaboratively learn
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