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ABSTRACT

Federated learning (FL) is a new machine learning paradigm to collaboratively learn
an intelligent model across many clients without uploading local data to the server.
Non-IID data across clients is a significant challenge for the FL system because

its inherited distributed machine learning framework is designed for the scenario of IID
data across clients. Clustered FL is a type of FL method to solve non-IID challenges using
a client clustering method in the FL context. However, even adopts a client clustering FL
method still facing minor problems such as unstable against client-wise outliers and the
drop of model performance with model poisoning attack.

To face the aforementioned challenges, the main research objective of the thesis is to
study that how to make FL effectively, seamlessly solved non-IID data across clients in
horizontal clients partition settings.

The main research objective has been studied from four coherently linked perspec-
tives: (i) how to make FL to address the non-IID distribution of data across different
clients in a effective and scalable manner so that they can be applied to real world cases
which consists of thousands of client and varies type of devices, (ii) how to make cluster
FL methods more robust to client-wise outliers, (iii) how to make better balance between
the performance of global models and the extent of personalisation of local models, (iv)
how to make FL training more robust to model poisoning attack by density methods.

This thesis proposes a novel FL framework with robust clustering algorithm and
secure the models to tackle client-wise outliers as well as model poisoning in the FL
system. Specifically, we will develop a robust federated aggregation operator using a
bootstrap median-of-means mechanism that can produce a higher breakdown point
to tolerate a larger proportion of outliers. All work experiments on three benchmark
datasets have demonstrated the effectiveness of the proposed method that outperforms
other baseline methods in terms of evaluation criteria.

In short, we develop a original, effective clustered FL baseline algorithm which can
improve FL performance in horizontal clients partition settings. We compared proposed
work against several state-of-the-art FL algorithms using both synthetic and real-world
data.
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1
INTRODUCTION

1.1 Motivation

1.1.1 Background

F rom the day of existence of computers, people have been dreaming about artificial

intelligence (AI) - machines that can think, behave, recognize or act that only

humans can do. The question that whether humans able to make or create

computers into such intelligent machines has been controversial and many influential

people have been raised views or provide answers to this question. Getting a solution to

this question is very optimistic in this era because of the advance in machine learning,

specifically Deep Learning, which is the study of computer algorithms that can learn

automatically through experience and by the use of data. Breakthrough in computer

technology [116] such as microprocessors enables humans to build powerful computers.

Moreover, machine learning models powered by big data are also becoming ever more

present in our everyday lives, with voice assistants using speech recognition on mobile

phones and autoresponders and online customer support in the business, and self-driving

cars employing computer vision to guide us to anywhere we want.

Computers today are Turing-complete, in other words, even human mind can be

replicate by any computable algorithm, some work of Alan Turing did prove that any

problem can be computed by Universal Turing Machine [102], thus, assuming that the

human mind can be described by some algorithm, Turing Machine is powerful enough

1



CHAPTER 1. INTRODUCTION

to represent it. The difficult part of building artificial intelligence has become how to

build a an algorithm that can produce desired behavior that human consider intelligent.

Motivation for learning a pattern or a skill is to improve the success of humna in the real

world. From this logic, even the whole learning problem seems too difficult to be solved

at once. The way of human solves hard problem is to start from the basic. The goal for

machine learning is to build a machine that can learn a pattern or a skill to a successful

extent automatically by learning from experience(or data).

As an example, let’s consider one of the most basic supervised learning problems,

recognizing handwritten digits from images. Traditional machine learning requires first

captured a training set, i.e. lots of data kept in this dataset, and the bigger the data, the

better the machine can improve itself and can achieve better learning performance. A

very well-known model of using data to achieve decision making of human-level success

is in 2016, an AI program called AlphaGo became the champion winner of the game of

Go. The unprecedented success has many contributing factors, though on one important

reason is: that AlphaGo [96] used 30 million moves from 160,000 actual games as

training data to achieve the excellent results.

With AlphaGo’s and other deep learning (DL)-based research have seen great achieve-

ments, we have truly witnessed the huge potential in artificial intelligence, and have

began to expect more mature, sophisticated AI technology, or even self-aware robots

in many applications. Although being too ambitions to think of, people naturally hope

that the emerging AI research can stay getting more fruits like AlphaGo and industry

can harness data-enabled technologies to drive business growth. However, the current

trend of machine learning popularity is a bit disappointing, with the exception of a few

fields, the increasing volume of data being generated is making it difficult for traditional

systems to keep up with. New big data solutions are needed to store, manage, and

analyze all this data. [86, 118], rendering the realization of techniques such as collecting,

compiling and making data available to scientists more challenging.

1.1.2 Federated Learning

In order to leverage proprietary data or data sets that under stricter data regulation,

and break through the barriers between data sources, there is a need to introduce

new machine learning technology. However, not all suitable cases have considerable

properly labeled and complete data available in a centralized location (e.g., doctors’

diagnoses from medical image analysis). Curating such large, high-quality datasets

can be time-consuming and tedious and often requires domain experts. Efforts from

2



1.1. MOTIVATION

individual organizations result in data silos, with each containing high-quality but small

datasets. For these type of domains, very few organizations manage to gather high-

quality, complete, fully labeled, and sufficiently large datasets, which are required for

these DL applications to be effective. Traditionally, data were gathered in a centralized

location to build ML models. However, due to concerns related to data ownership and

confidentiality, user privacy, and new laws over data management and data usage, such

as the General Data Protection Regulation, private, secure, efficient, and fair distributed

model training is required.

Hence, the question on how we want to build machine learning models learning from

data that scatter across organizations, geographic locations, and potentially in massive

number of users, in a secure, efficient and fair learning settings. Later, A new machine

learning technology has been reported in 2016, with the first publications on federated

averaging in telecommunication settings, which is known as Federated Learning (FL).

The idea of FL is: instead of training on centralized data, separate models can be trained

locally where the data reside in a distributed manner. Then, the respective local model

updates can be communicated to obtain a global model, in which the communication

process is carefully designed such that the data of an individual organization or device

remain private.

In short, the goal of FL is to build single, global prediction model using data stored in

different site and the key of this procedure under the constraint which the training data

do not leave their premises. First, this work formally defines FL as a learning procedure

mathematically. In particular, the goal is typically to minimize the following objective

function:

(1.1) minimize
w

= F(w) ,where F(w)=
m∑

k=1
pkFk(w)

Above equation lists a number of model-based parameters. The meaning of the parame-

ters are:

− m is the total number of users

− pk specifys the impact of each user, normally set to pk = 1
n or pk = nk

n , where

n =∑
k nk

− Fk often define as empirical risk of the local data

3



CHAPTER 1. INTRODUCTION

− nk is the number of sample of local data

The remainder of the thesis will all reference this function as it is the vanilla algorithm.

However, the other framework may alter this function to their application of interest.

Even though, computing, storage simple queries across distributed nodes, or user

devices is not a new one. Many different techniques have been studied and applications

are well established in past decades. However, there are various improvement over dis-

tributed computing of FL. First, FL trains a local model by directly using the computing

power on remote devices. Second, in some settings and systems, those remote devices

communicate with each other as to collaboratively train a global model while traditional

distributed computing often work independently. Three, FL typically involves massive

number of devices and the assumption made on the properties of local datasets are not

complicated than traditional distributed computing.

Reference Focus Point
[46] Run all models and find the minimal value before assign cluster id
[90] Hierarchy framework
[17] Objective function different
[40] Static clustering and Euclidean distance
[81] Hypo cluster
[91] Byzantine settings

Table 1.1: Close Existing Research

FL concept was first introduced by researchers at Google to update language models,

in Google’s keyboard system for word auto-completion [53]. FL builds a joint model

using the data located at different sites, where each party contributes some data to

train the model. The devices can be owned by different individuals or organizations, and

can be of different types (e.g., smartphones, sensors, vehicles, etc.). The data is never

centralized or shared with any third party; instead, the training takes place locally on the

devices and the model is aggregated across the devices. Global model is then encrypted

and shared among the participants so that no participant can reverse-engineer others’

data. This resulting joint model performance is an approximation of the ideal model

trained with centralized data. In practice, this added security and privacy results in

certain accuracy loss, but it is often worth for specific application domains provided the

fact data is hard to collect together for those application domains. In addition to the

privacy and security benefits, collaborative training in FL can yield better models than

those trained by individual organizations or devices. This aspect is also very import for

4
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applications of IOT domain, health care. Please note, FL is a machine learning technology

for decentralised data sets, this principle applicable to both traditional machine learning

based models as well as DL based models. Many FL proposed method can work well with

normal models, such linear models, trees and logistic regression, as well as DL models,

such as CNN and RNN.

No doubt FL has promising potential, however, a number of work and related re-

searcher maintain that a serious challenge assoicate with FL: the non-IID. or hetero-

geneity to improve the statistical and computational effectiveness of FL. Such challenges

arise in Federated Learning, due to the highly decentralized system architecture. In FL,

since the data source and computing nodes are end users’ personal devices, the issue

of data heterogeneity, also known as non-i.i.d. data, naturally arises. Exploiting data

heterogeneity is particularly crucial in applications such as recommendation systems

and personalized advertisement placement, and it benefits both the users’ and the en-

terprises. For example, mobile phone users who read news articles may be interested

in different categories of news like politics, sports or fashion; advertisement platforms

might need to send different categories of ads to different groups of customers. FL has

been employed in a variety of applications, ranging from medical to IoT, finance, trans-

portation, defense, and mobile apps. Its applicability makes FL highly reliable, with

several highly successful experiments having been conducted already.

1.1.3 Research Problems

client with non-IID data Despite the recent successes of Federated Learning in

the past years, there are still many challenging problems to be solved. For instance,

security of training process, data heterogeneity, Federated Learning incentive. The

thesis is aiming to solve one of these problems, namely data heterogeneity. One major

challenge is how to make Federated Learning to address the non-IID distribution of data

across different clients in a effective and scalable manner so that they can be applied to

large-scale network which consists of thousands of client and varies type of devices.

An important characteristics of multi-center FL is to group population into clusters,

find their cluster identities then conduct normal local gradient descent over local data

sets. However, often some data sets in FL setting are drift far away from majority of the

population. This thesis claims that a bottle neck is the assumption upon which vanilla

federated learning in non-IID data, that is one global model can not fit all clients [85].

5



CHAPTER 1. INTRODUCTION

To address this major problem, Chapter 3 proposed a clustered Federated Learning

framework, however, other research problems also emerge from the proposed framework.

Another challenge is how to enhance the clustering algorithm that our framework

applied to be more robust to different types of client-wise outliers, i.e. client that behave

differently from the majority of population. Chapter 4 focus on this specific problem by

proposed a robust version of bootstrap of median-of-means clustering algorithm.

Therefore, a possible way to address the non-IID challenge and data heterogeneity is

to divide the participants into many groups based on their learned gradients, this also

known as clustering approach given a subset of the client population. We build FeSEM

algorithm for this purpose. Several similar work have been published around or after

the date of our FeSEM paper published in this sub area of Federated Learning. Their

themes presented in Table 1.1 are summarized as follows. Their respective focuses will

be explained in details in 2. The major theme of this thesis is to describe a different

FL framework that have been developed to overcome the data heterogeneity challenges.

As the best of our knowledge, our FeSEM algorithm is the only one that keeps multiple

global models on the central server. To prove the usefulness of this algorithm, empirical

results on three standard benchmark data sets will be extensively described. Finally,

approaches that can possibly lead building of more personalization model by using

regularisation and more robust and secure model aggregation by the use a K-means

clustering variant will be discussed. In short, our goal is to find a solution that not

only inherits the communication efficiency of the federated SGD but also retains the

capability of handling non-IID data on heterogeneous datasets.

Robust clustering for multi-center On top of clients with non-IID data, there is a

need to our proposed clustered Federated Learning for better clients clustering perfor-

mance by the use of a Bootstrap of Median of Means clustering algorithm to overcome

the assumption that all clients required to online. Chapter 4 focus on how to make

multi-center FL more robust and practical for real world case and boost performance of

the global model.

Consider a scenario where each client tries to train a model on customers’ sentiments

on food in a country. In a international information system. different countries collects

their own client’s data. Obviously, customers’ reviews on food are likely to be related

to their cultures, life-styles, and environments. Unlikely there exists a global model

universally fitting all countries. Instead, pairwise collaborations among countries that

share similarity in culture, life-styles, environments and other factors may be the key
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to achieve reasonable inference performance in personalized federated learning with

non-IID data. Also we would like to enhance our clustering algorithm to be more robust

for possible client-wise outliers. Above problem is the focus of Chapter 4

Model Poisoning Attacks On top of clients with non-IID data, Model poisoning is

another challenge in realistic FL case. Poisoning attacks in machine learning are a

relatively new research area, and there are many current challenges associate with

model poisoning. One challenge is to develop better methods for detecting and defending

against poisoning attacks. Additionally, researchers are working to develop new and more

robust machine learning models that are secure to poisoning attacks. In a distributed

system of FL, some malicious agents may upload fake or dirty gradients to the server

in the aggregation step, and then the aggregated model to distribute is poisoned. It is

naive to adopt anomaly detection techniques to find these malicious agents or outliers.

Local outlier factor (LOF) [16] is an efficient method based on the density of data points.

Chapter 5 foucs how to make better balance between the performance of global models

and the extent of personalisation of local models.

We formulate the problem of multi-center FL tried to solve as the joint clustering of

users with penalized outliers, and then optimizing of the global model for users in each

cluster, this is the main idea of 4. In particular, (i) each user’s local model is assigned

to its closest global model in terms of shared layers only, and (ii) each global model

leads to the smallest loss over all the users in the associated cluster while the outliers

will be penalized on updating global models. The optimization algorithm, which we

use to solve the aforementioned problem, can be described as an EM algorithm. The

proposed multi-center FL with bi-level personalized components not only inherits the

communication efficiency of the federated SGD but also retains the capability of handling

non-IID data on both individual and group levels. The import edge of this idea is to build

good quality global models as well as local models.

An outlier detection method in machine learning is a technique used to identify

unusual data points that do not conform to the general data distribution. These data

points are typically considered to be noise or errors in the data set. Outlier detection

methods can be used to pre-process data sets to remove outliers, or to identify unusual

data points for further analysis.

There are a variety of outlier detection methods, each with its own advantages and

disadvantages. Some common methods include:
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• Density-based methods: These methods identify outliers based on the local density

of data points. Data points that are isolated from the rest of the data are considered

to be outliers.

• Distance-based methods: These methods identify outliers based on their distance

from the rest of the data. Data points that are far from the center of the data

distribution are considered to be outliers.

• Statistical methods: These methods identify outliers based on their deviation from

the mean or median of the data. Data points that are significantly different from

the rest of the data are considered to be outliers.

• Machine learning methods: These methods use a variety of techniques, such as

support vector machines, to identify outliers.

Some examples of outliers detection in the theme of Federated Learning are those

systematic mislabelling data or Byzantine failures [10, 11]. However, even a small pro-

portion of outliers can render clustering unreliable, cluster centers and model parameter

estimators can be severely biased, and thus reduce the performance of that model trained

by the data from that cluster in multi-center framework. This motivates the need for a

robust EM algorithm against outliers in distributed setting which aimed to be robust

to local models send by outlier/adversarial remote devices. Robust statistical learning

and its sub-field robust machine learning have been investigated throughout many

years, such as classical MOM, Trimmed-Mean of K-medians, and some others via kernel

methods. Those methods are not directly applicable to our distributed settings here as

our loss functions are more specific to clustering. In this work, we propose a extended

multi-center Federated Learning framework, secure against corrupted or adversary

outliers among normal nodes. In particular, we adopt a bootstrap sampling method and

a robust approach based on a median-of-means estimator. The reason for our proposed

idea is the use of these techniques and approaches inspired by the recent development of

robust machine learning and the use of median-of-means from robust statistics. More-

over, the EM algorithm with such initialization strategy and replaced enough blocks and

iterative estimate the mean of random variables by median-of-means effectively avoid

the disappearance of clusters in some blocks. Close work has been done in clustering

applications also shows acceptable results.
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1.2 Structure of the Thesis

This thesis we cover a very specific subset of this current research problems related to

Federated Learning. This report we first introduces the motivation of multi-center feder-

ated learning framework which trains multiple global model in multiple communication

rounds. We concede that this framework has a few pitfalls and limitations, however, note

that framework is fully extensible. So we then study a few techniques and regularization

based off this framework. We also organize this report to follow this order. I will also

analyze the importance of robustness and security in modem massively distributed

system, in our case, applied to Federated Learning. Therefore, we will introduce two

extensions to our novel solution -

Chapter 2 conducts a general review on federated learning in the context of state-

of-art methods that focus on the non-i.i.d. data. First, we will briefly introduces other

branches of distributed machine learning techniques which should give audience a better

picture of the development of FL. In addition, we will highlight some of state-of-art

clustered FL studies, what these clustering methods are and compare them with ours

in the context of theory, non-i.i.d. setting or applications domains. Then, we introduces

techniques for a more robust, central clustering algorithm that replaced mean-based

EM, as well as introduces bootstrap sampling and median-of-means estimator, which are

techniques used to get a more robust model aggregation for each communication round.

The dataset as well as the experiment is hosted in a public repository for promote of

reproducible research.

Chapter 3 introduces a clustered federated learning framework - multi center feder-

ated learning. First, we introduces a novel distance function - federated loss and report

a few important baselines we will use to show the usefulness, then we mathematically

prove the problem. The training algorithm is described in detail. We also introduce how

we solve the first research problem, non-IID or data heterogeneity, effectively by the use

of our framework. Then this work conducts extensive experiments on three benchmark

dataset and describe convergence, model accuracy results after applying multi center

federated learning framework.

Chapter 4 introduces how to make Federated Learning more robust and secure by

the use of a K-means clustering variant. First, this thesis introduces a new emerged

clustering technique called K-bMOM. Then I’ll discuss how K-bmom works and how

it enhance the breakdown point of data points. The objective function of this variant

stay the same with original framework, in addition, the training algorithm of initial

9



CHAPTER 1. INTRODUCTION

stage and update stage is described in detail. We aslo introduce how we solve the second

research problem by the use of MOM to mitigate the decrease of performance caused

by outliers. This work conduct a portion of data pollution attack over three dataset,

FEMNIST, CELEBA and Synthetic, to report the result of our proposed FL framework

after applying K-bmom technique, as well as compare them with the result before

applying K-bmom technique. Those datasets have about 9000 users will participate FL

training and the result will be analyzed. The dataset as well as the experiment is hosted

in a public repository for promote of reproducible research.

Chapter 5 explains the importance of defence against model poisoning attacks in

FL settings. This chapter we introduce our solution to the third research problem, i.e.

model poisoning attacks while keeping satisfying performance. To tackle this problem

that data of each client is usually not independent nor identically distributed (non-IID),

personalized FL (PFL) or clustered FL which can be seen as a cluster-wise PFL is to learn

multiple models across clients or clusters. To detect anomalous clients (outliers), the

Local outlier factor (LOF) is a popular method based on the density of data points. Thus,

a nested bi-level optimization objective is constructed, and an algorithm of personalized

FL with robust clustering is proposed to detect outliers and keep the state-of-the-art

performance.

Finally, Chapter 6 summarized the all three published work and achievements and

concludes the thesis with some discussion on future direction.

1.3 Claims of the Thesis

The important original contributions of this thesis are:

• Proposes a simple yet novel multi-center aggregation approach (Section 3) to

address the non-IID challenge of Federated Learning.

• Design an objective function, namely multi-center federated loss (Section 3.3.2) for

collaboratively training in Federated Learning.

• Proposed a named Federated Stochastic Expectation Maximization (FeSEM) (Sec-

tion 3.3.3) to solve the optimization of the aforementioned objective function.

• Present the algorithm as an easy-to-implement and strong baseline for FL.
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• Empirical comparison with other FL learning approaches and discuss the impact

on benchmark datasets. (Section 3.5)

• Code is freely available, open sourced, audience can use it for reproduce the de-

scribed experiments

• Extensions of the base multi-center learning framework

− Designs updated objective function in FedPRC (Section 5.3) for multi-center

personalized aggregation model

− Adds a regularization to balance bteween priority of Federated Loss or simil-

iarity among local models

− Introduces a more robust version of clustering algorithm to extend previous

multi-center Federated Learning approach

− Robust Adaption of original framework by replacing bootstrap sampling, a

median-of-means estimator

− Proves aforementioned sampling technique and estimator enable faster con-

vergence and robust to outliers and malicious users

− Replaced FeSEM algorithm and extended the framework to address model

poisoning issue

− Present the algorithm as an easy-to-implement variant to FedSGD and Fe-

dAVG while maitaining strong performance

• We propose a novel PFL with robust clustering (FedPRC) algorithm to solve the

complex optimization problem, and the algorithm can resist Byzantine workers.

• We formulate the PFL problem with robust clustering into a nested bi-level opti-

mization framework. .

• both original framework and extensions effectiveness is evaluated on benchmark

datasets. (Section 4 and Section 5)
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2.1 Federated Learning Preliminaries

This section will first describe some general concepts of FL, then compared FL with

other ML-based deployment architectures then will discuss other existing studies

of FL prior to our work, i.e. studies that focus on the non-IID challenges of FL,

then followed by a short introduction to non-parametric Bayesian modelling and further

reading. However, this thesis has no intention to become a comprehensive taxonomies

covering various challenging aspects, contributions, and trends in the literature of FL.

Furthermore, the focus of this section to discuss core challenges and open research

directions towards robust clustered FL algorithm with non-IID data, I’ll review and

compare in-depth 9 of related work in this topic.

To understand how FL develop to its current state, we need to review the basic idea

of optimization in machine learning. The reason for doing such is that our proposed

approach and FL have some close connections to other domains of supervised machine

learning, such as multi-task learning, meta-learning, transfer-learning, Bayesian, en-

semble learning.

All these learning applications have the same underlying optimization theory, the

stochastic gradient optimization (or the variants). However, SG optimization may need

a minor modification to better suit a particular learning context. Relational diagram

fig 2.1 shows Federated Learning and its structure to others. This introductory section

briefly outlines the theoretical framework that gives rise to empirical risk minimization
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problems from our approaches and clarifies non-convex functions that we are trying to

optimize in the remainder of this thesis.

The optimization methods and its variants have several essential features for machine

learning, such as their fast convergence rates and ability to exploit parallelism. However,

a recent study shows that in DNNs methods that incorporate derivative information

lead to some issues because most DNNs have some properties which make SG not the

optimal methods for optimization. These properties are all represented in our system,

namely highly nonlinear and non-convex. Admittedly, SG and its variants are still able to

converge in the context of large-scale machine learning. Alternative classes of approaches

should be investigated. We denote model parameters as w
Prediction and Loss functions:

(2.1) H := h(·;w) : w ∈Rd

An empirical risk minization problems means we wish to minminize the expected

risk:

R(w)=
∫
Rdx×Rdy

ℓ(h(x;w), y)dP(x, y)= E[ℓ(h(x;w), y)].

The empirical risk we wish to minimize is:

Rn(w)= 1
n

n∑
i=1

ℓ(h(xi;w), yi)

Optimization methods for machine learning fall into two broad categories. We refer

to them as stochastic and batch. The prototypical stochastic optimization method is the

stochastic gradient method (SG) [], which, in the context of minimizing Rn and with

w1 ∈Rd given, is defined by.

wk+1 ← wk −αk∇ f ik (wk)

Here, for all k ∈ N := {1,2, ...} , the index ik (corresponding to the seed ζ[ik] , i.e., the

sample pair (xik , yik )) is chosen randomly from 1, . . . , n and αk is a positive stepsize.

Each iteration of this method is thus very cheap, involving only the computation of the

gradient ∇ f ik (wk) corresponding to one sample.

The distributed machine learning community appears to be very successful in the past

decade [21, 22, 34, 61]. Numerous studies are relevant to linear and convex models via

parallelization and distribution, where distributed gradient computation is the natural

first step. Sequentially, in the context of deep learning region, suggestions for scaling
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Figure 2.1: Downpour-SGD Algorithm [34]

up deep learning include the use of a farm of GPUs to train a collection of many small

models and subsequently averaging their predictions [27]. This approach can be treated

as the foundation of FL notion. Only FL are more widely applicable to the problem either

convex or sparse.

2.2 Federated Learning Challenges

Federated learning (FL) enables data scientists and ML engineers to utilise rich user-

generated data from mobile devices without sacrificing user privacy. This new technology

has quickly attracted numerous research interest since 2016, and a recent survey shows

a total of 7546 papers are published in the duration of 2016 to 2020 [93]. In addition,

many studies investigate FL from several aspects, e.g., system perspective, personalised

models, scalability, communication efficiency, and privacy. Most related work addresses a

particular concern such as security or privacy. It has been applied to various industry

applications, such as banking, smart healthcare, and mobile internet applications. Many

survey of the applications for Federated Learning have done [1, 93].

ML community in general is received much attention as we are becoming more fasci-

nated by AI decision making. A number of centralised server deployed DL applications

are ranging from as simple as Netflix is following in Google and Facebook footsteps to
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Figure 2.2: Horizontal Federated Learning, Vertical Federated Learning, Federated
Transfer Learning [42]

improve its services, to as sophisticated as self-driving cars [66], smart healthcare [88],

customer service and employee retention [6], advertising [64], and many more coming

to realise soon. The key factor behind the success of DL-based applications is a huge

volume of data generated by end-users on mobile devices, flexible software and hardware

architecture and comprehensive accessibility. In typical cases, the paradigm of DL is to

continuously stream generated data into the cloud, where it is analysed, more features

are extracted, and we can train better models on high-performance servers. Often those

server are deployed in the cloud. As soon as user interactions occured with available ML

services in the cloud, more training data are gathered, and more intelligent ML-based

applications are therefore produced. However, the privacy of available data used for

training and for the astounding success of DL is becoming a rising concern for the users.

FL can be categorised into vertical FL and horizontal FL. Moreover, FL has many

distinct challenges compared to traditional centralised server-client networks. According

to (Li, 2020) [69], four major challenges of FL are categorised. No consensus exist be-

tween what is the most important challenge for FL, but it’s commonly believed these four

challenges is crucial to FL. We are going to discuss four major FL challenges here briefly.
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Expensive Communication. Communication is a significant challenge in federated

networks [65]. It has commonly occurred that wireless and end-use devices operate on

lower bandwidth than interlink between data centers and can be expensive and unstable.

This has led to significant recent interest in solutions to communication cost reduction of

federated learning. Two possible methods which address communication efficiency are:

(i) reducing the total number of communication rounds, or (ii) reducing the size of the

message sent between devices and the central server.

Systems Heterogeneity. The variance of devices in federated networks can be huge,

as well as the geographic location of the device, the computing capacity, the storage,

and the network bandwidth used (3G, 4G, 5G, 6G, optics) of each user may differ to a

large degree. In addition, each device that decides to contribute to the federated network,

sometimes their update may be polluted or received not in the current round due to

power issues, or network connectivity. Each device may also be unreliable and not to

mention in the real world applied learning in a system that consists of tens of millions

devices that makes a significant challenges to FL system.

non-IID Data. In machine learning, the non-IID data problem is a challenge that can

arise when training a model on data that is not independent and identically distributed.

This can happen when the data is collected from different sources, or when it is parti-

tioned in a non-random way. The assumption of IID, which stands for independent and

identical distribution, is a must for centralised machine learning. In contrast, this basic

assumption across client nodes does not hold for federated learning setups. The insight

to FL is such: under these setups, the performances of the training process may vary

significantly according to the degree of unbalanced local data samples, the particular

probability distribution of the training examples (i.e., features and labels) which stored

at the local nodes. This topic is particularly relevant to this thesis.

Privacy Concerns. Existing privacy preserving techniques can still put user data in

risk. A number of studies have focusd on the privacy concerns of Federated Learning in

the past. For example, Google proposed [15] an secure aggregation method. Ref [39, 105]

proposed algorithms for secure multi-party decision tree for vertically partitioned data.

Vaidya and Clifton proposed secure association mining rules [103], secure k-means

[104]. Though recent methods and models aim to address privacy concerns of FL, which

some tools used including secure multiparty computation or differential privacy, these

17



CHAPTER 2. RELATED WORK

approaches often provide privacy at the cost of reduced model performance or system

efficiency. This topic is not particularly relevant to this thesis and audience who like

further information can see Ref [14, 55].

Apart from aforementioned four things, the motivation of FL is also relevant to a

number of broader research areas. Edge computing, meta-learning and neural archi-

tecture search to name a few,. It’s exacting to see so FL full of potential. The focus of

this is thesis is only non-IID data due to time constraint. If time allow, final section

outline several directions of future work that are relevant to a wide range of research

communities and practitioners.

2.3 Federated Learning with Non-IID Data

This section discuss FL unique characteristics and challenges, and reviews some effective

approaches of FL with non-IID data. This section provides their propose definitions,

categorizations, experimental results and some comparison among them as non-IID Data

is the most relevant challenge to this thesis.

It is noted in some research work based on assumption that the data in the k-th

device in distributed environment are i.i.d. sampled from the distribution D. Then the

overall distribution is a mixture of all local data distributions: D = ∑N
k=1 pkD. Under

such assumption, FedAvg is almost euqal to local SGD [73], and the latter assumes the

data are IID (independent, identically distributed) generated by an unknown function

and then sliced among the N devices, that is D =D , for all k ∈ [N].

Traditionally, the data distribution over different devices in decentralised setting is

IID, which is a natural assumption of real-world applications. However, early research

work (McMahan, 2017) proposed [83] only one global model as a single-center to aggre-

gate the information of all users. The stochastic gradient descent (SGD) for single-center

aggregation is designed for IID data, and therefore, conflicts with the non-IID setting in

FL. Federated clustering approaches can be divided into two types: model clustering and

data clustering.

Title Main Con-

tribution

Trained AggregationDataset

model
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Agnostic federated

learning

domain ag-

nostic

L-REG

CNN

LSTM

FedAvg Adult,

Fasion

MNIST,

PTB

An efficient frame-

work for clustered

cluster id

and model

L-REG

CNN

IFCA Synethic,

Rotated

MNIST

and CI-

FAR,

FEM-

NIST

federated learning

Client adaptation im-

proves federated

adaptation

through

condi-

tional

gated

CNN CGAU Freesound,

CIFAR-

10

learning with simu-

lated non-iid clients

Clustered federated

learning:

Iterative

bi-

partitioning

CNN FedAvg MNIST,

CIFAR-

10

Model-agnostic dis-

tributed

multi-task optimiza-

tion under

privacy constraints

Federated learning

with hierarchical

FL + HC CNN FedAvg FEMNIST

clustering of local up-

dates to improve

training on non-IID

data
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Federated learn-

ing with matched

averaging

construct

global

model from

matching

hidden

elements

CNN MLP

LSTM

Matched

Averag-

ing

CIFAR-

10, Shake-

spear

Adaptive Person-

alized Federated

Learning

generalization

bound

CNN APFL MNIST,

CIFAR-

10, FEM-

NIST,

Synthetic

of mixture

of local

and global

models

Fedgroup: Ternary co-

sine similarity-based

novel data-

driven

MLP

MCLR

LSTM

FedGroup FEMNIST,

MNIST,

Synethic,

Sent140

clustered federated

learning framework

toward

measure

named

EDC

high accuracy in het-

erogeneous data

Heterogeneous Feder-

ated Learning

explicit

feature in-

formation

alignment

CNN Aligned

Model

Averg-

ing

FEMNIST,

CIFAR

On the byzantine ro-

bustness of clustered

federated learning

CFL to

byzantine

settings

CNN FedAvg MNIST

Fashion

CIFAR10

On the convergence of

fedavg on non-iid data

Convergence

analysis of

FedAVG

CNN FedAvg MNIST
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Personalized feder-

ated learning with

moreau envelopes

Moreau

envelopes

regulariza-

tion

CNN pFedMe MNIST

Synthetic

Personalized fed-

erated learning:

a meta-learning

approach

multi-task,

learned an

initial

CNN Per-

FedAvg

MNIST

CIFAR-

10

Robust and

communication-

efficient federated

learning from non-iid

data

A com-

pression,

commu-

nication

efficient

FL frame-

work

CNN

LSTM

L-REG

CIFAR-

10 KSW

MNIST

robust federated

learning in a hetero-

geneous environment

robust

hetero-

geneous

Federated

optimiza-

tion

REG FedAvg Synthetic

Tackling the objec-

tive inconsistency

problem in hetero-

geneous federated

optimization

solution to

slowdown

due to

objective

inconsis-

tency

CNN Normalized

Averag-

ing

CIFAR-

10 Syn-

thetic

Above Table 2.1 describes a general overview of some recent developed methods to

the non-IID problem in FL.

We review model clustering type. Clustered Federated Learning (CFL) [90] and

Robust FL in heterogeneous network [47], which claims a novel framework involves

three-steps module process, both are model clustering methods for FL. CFL is a method

that extends existing FedAvg with iterative clustering. Key idea of CFL is cluster the

weight of each client model by the use of gradient ∇θr i(θ∗) cosine similarity. Simply speak-
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Figure 2.3: Non-IID data learning in Decentralized ML [56]

ing, different clusters’ gradient direction should have significant divergences. Moreover,

to compute the cos similarity, it use the local empirical risk value calculated between two

models, and then carries on FedAvg training and clustering again in each divided cluster

unit. These steps are repeated until all models no longer meet the clustering conditions.

This method can be viewed as a modification version of FedAvg, which requires more

computational and communication resources to the centralised server and verification is

stronger than FedAvg. Moreover, the greater the degree of data heterogeneity is, the more

generated clusters. This brings one unique benefits compared to model-based clustering

method, no need to specify the number of clusters in advance. Therefore, this method is

not suitable for the case of limited resources and complex data distribution. Analogous to

CFL, the second method, Robust FL in heterogeneous network, also clusters models in

FL based on the empirical risk function value, but the difference is that these clustering

models are not based on FedAvg and only need to complete local independent training.

Moreover, this method incorporate three different modular steps, each of those clients

has not been fully theoretically work well as a system and thus not suitable to sensitive

applications.

Next, we review next two recent effective clustering FL based solutions, three ap-

proaches of personalized model [81], which present a systematic learning-theoretic

study of personalization, and IFCA. (Ghosh, 2020) [46] propose a similar algorithm

named IFCA, for which a convergence bound is established under the assumption of good

initialization and all clients having the same amount of data. Moreover, IFCA holds a

number of K global parameters in the central server. To begin with, workers send their

loss to centralised server, center machine estimates the cluster identities of each worker

machine by running k-means on the collection of workers local models. Then With the

cluster identity estimations, the center machine runs any federated learning algorithm
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such as FedAVG or Second order optimization. These steps repeated until convergence

condition is met. Both IFCA and our approach use EM-based algorithm to serve the

central clustering procedure, they also discussed that convergence analyses in the finite

sample setting, both EM and alternating minimization are known to be hard. Analogous

to IFCA, the method of three approaches of personalized model each client is greedily

assigned to the cluster whose model yields the lowest loss on its local data. There are

two more components in the method, fine-tuned, Dapper and Mapper.

Figure 2.4: Overview of IFCA architecture [46]

Recently, (Marfoq, 2021) [82] propose a multi-task learning framework. Analogously,

this framework common to soft clustered FL that allows individual stored data to follow

a mixture of distributions. This framework has recently emerged as an efficient way

to learn mixture of models in the federated setting and exhibits tolerance for more

implicit relations across learned models. In summary, the key of their method is the

EM algorithm is used and the mixing coefficients are calculated based on the training

losses, while it is similar to FeSEM, they named this algorithm FedEM. However, FedEM

requires a parameters local update from each worker in each round in each cluster, which

entails significantly more for computing and storage requirements than conventional

FedAvg. However, our FeSEM each round only collect model updates from a small

set of workers. For generic data distributions and loss functions. Typical algorithms

include FedAMP [58], which adds an attention-inducing function to the local objective,

and pFedMe [38], which formulates the regularization as Moreau envelopes. A highly

influential work of multi-task learning in FL is [97]. The main contribution based on

general MTL (multitask learning) but they also discuss distributed MTL, though do

not adequately address the systems challenges associated with Federated Learning.

However, there is no discussion the relation with Federated Learning with non iid

data [119]. Their contributions is about naturally fitting separate yet related models

simultaneously. Moreover, a novel method called MOCHA is proposed, which aims handle

systems challenges that arise in federated learning, including high communication cost,
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Figure 2.5: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints [90]

stragglers, and fault tolerance in this paper. They identify two types of MTL framework

and only choose one of them which is structure of the related task is unknown before

training, but leave the other one which structure of task is unknown. Their justification

is not good enough by say in reality relationship of task is not always known.

2.4 Clustering Methods for Federated Learning

This section discuss the benefits of using clustering method, K-means in particular, in

mutli-center federated learning framework. We review and discuss current research

interest of K-means in the setting of centralized or decentralized architecture.

Before we go into details of our multi-center FL method, let’s to first introduce the

general concept of clustering. Clustering is a method in order to divide a set of data

into subsets, called clusters, in a way that data assigned to the same cluster are similar

in some sense. How to handle data without label and under minimal assumptions

makes clustering a challenging task. Yet, it is a main task of exploratory data mining,

and a common technique for statistical data analysis, used in many fields, including

pattern recognition, image analysis, DNA microarray analysis, information retrieval, bio-

informatics and machine learning. Moreover, clustering can save massive amount of time

in prepossessing for supervised applications. Multiple intrepretations across disciplines

of defining a cluster, have led to an abundance of application-specific algorithms, such as

distance-based, hierarchical, squared error-Based and so on [110].

Among the algorithms which takes data in a vector format, K-means and Gaussian
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mixture model (GMM) based clustering are two popular schemes. The K-means algorithm

relies on a measure of the variance, minimizing a criterion known as the inertia or within-

cluster sum-of-squares to partition data into clusters. This algorithm requires the number

of clusters to be specified. The k-means algorithm divides a set of N samples X into

K disjoint cluster C, each described by the mean µ j of the samples in the cluster. The

means are commonly called the cluster "centroids"; note that they are not, in general,

points from X , although they live in the same space. K-means algorithm aims to choose

centroids that minimize the inertia, which can be viewed as total Eulcidean distance to

the centroids in the data samples. In addition, soft K-means is well suited for overlapping

clusters by allowing each datum to belong to multiple clusters. GMM-based clustering

considers data drawn from a probability density function (pdf), where each pdf is also

a function to be estimated given the samples and assignments of the samples to their

corresponding pdf. This GMM-based clustering then can be viewed as finding a estimate

of maximum likelihood (ML) for the GMM parameters. Typically, the estimated can be

obtained by the use of expectation-maximization algorithms. Kernel methods have been

developed for the non-linearly separable situation for clustering. If interested, further

reading of EM, K-means, GMM are included.

In Chapter 3, a novel method is proposed defining the problem of learning of multiple

optimal models from distributed manner across network via clustering framework,

therefore, our goal is to identify these clusters which leads to the use of stochastic of EM

algoirthms, which is a extension to EM. The reason of selecting EM is that it has been a

well established technique for mixture model based clustering. We will look into more

details of EM in Chapter 3

Challenges arise when training federated models from data that is not identically dis-

tributed across devices, namely,statistical heterogeneity. HADDADPOUR and MAHDAVI

[51] conducted theoretical convergence analysis for FL with heterogeneous data. Hsu et

al. [57] measured the effects of non-IID data for federated visual classification. Yang

et al. [111] proposed a heterogeneity-aware platform design for FL. Liang et al. [74]

discussed the local representations that enable data to be processed on new devices

in different ways according to their source modalities instead of using a single global

model. A number of author modeled data heterogeneity and statistical heterogeneity

via methods such as multi-task learning [3, 30, 97] or meta-learning [24, 41, 60, 63],

variants of personalised federated learning [38, 38, 58]. Meta-learning approaches [92]

show a similarity with our approaches, but the final outcome is somewhat different, i.e.,

our approaches are finding a optimal balance between single global model with high
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accuracy over all clients and finding personalised model for every device, which the

number of shared models from latter method is massively larger than the respective

ones from our approaches.

Li et al. [71] proposed FedDANE by adapting the DANE [94] to a federated setting.

In particular, FedDANE is a federated Newton-type optimization method. Li et al. [70]

proposed FedProx for the generalization and re-parameterization of FedAvg [83]. It adds

a proximal term to the objective function of each device’s supervised learning task, and

the proximal term is to measure the parameter-based distance between the server and

the local model.

Arivazhagan et al. [4] added a personalized layer for each local model, i.e., FedPer, to

tackle heterogeneous data. Similarly to us, Sattler et al. [90], Mansour et al. [81], Briggs

et al. [17] and Yurochkin et al. [117] overcome challenge of heterogeneous data in FL via

clustering methods, but at a different level to us.

2.5 Robust Methods for Federated Learning

In this section, we adopted most similar theoretical background of robust estimation

where study of a mixture of K cluster from distrubtion of non-IID sample when a fraction

of data is adversarially corrupted. Large body of work in clustering has been studied

[8, 31, 45].

This proposed method is designed to be an enhanced version of FeSEM [108], which

is aiming to modify the server clustering process. The basic of FL is that many nodes in a

network collaboratively train a classifier on their own local dataset. The dataset kept on

a local device is only a shard of a much larger dataset. Specifically, the problem of FL can

be usually denote as minimizing this formula 1.1 is the local objective function which

describes how good are the trained classifier, and the local objective function is different

for different classifiers (e.g., logistic regression, neural network). In particular, a master

node needs to keep a global model whose parameters w normally is the weighted average

of model parameters wi of all worker nodes. During typical FedAvG learning process,

three steps will be performed at each iteration:

• step i: a master node sends the global model parameter to all worker nodes

• step ii: the worker nodes evaluate the gradient of ∇F(w) with respect to the global

model parameter using local objective function and own training data then sends
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Figure 2.6: A multi-task learning approach included for Federated Learning [97]

back the update

• step iii: a master node aggregates all local updates to obtain a new global model

using a certain aggregation rule. In the case of Federated Averaging, the rule is

the weighted average. Formally noted as : w =
K∑

k=1

nk
n wk, where nk is the number of

samples kept in kth node and n is the total number of samples on all nodes.

In addition, the idea of FeSEM is to train multiple global models wl instead of one.

The principle is to estimate a worker node cluster identity via finding a center with

minimal distance. Here the distance-based clustering method is used, and the metric

is often squared Euclidean distance. Throughout the learning process of FeSEM, the

worker nodes will have a cluster identity and run local updates within the same cluster.

Then each cluster obtains a new global model using a weighted average that is identical

to Federated Averaging. FeSEM can be viewed as one of the important techniques to

learn an unknown mixture from samples. Though, one drawback of existing EM is

poorly performed with dimensions. Given that the local model size can have millions

of parameters in practice, the need to have the robustness of high dimensional SEM

is naturally obvious. This work focus on the property of robustness to a small number

of outliers and improved convergence. In the future, our goal is create secure and
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resilient FeSEM algorithm which against malicious clients or adversarial threatss such

as Byzantine nodes. Next, this thesis will introduce another type of robust clustering.

FL is designed for specific scenarios that can be further expanded to a standard

framework to preserve data privacy in large-scale machine learning systems or mobile

edge networks [75] [78] [77]. For example, [114] expanded FL by introducing a compre-

hensive, secure FL framework that includes horizontal FL, vertical FL, and federated

transfer learning. [62] discussed the advances and open problems in FL. [19] proposed

LEAF, a benchmark for federated settings with multiple datasets. [79] proposed an object

detection-based dataset for FL.

Traditionally, the data distribution over different workers in decentralised setting is

non-IID, which is a natural assumption of real-world applications. However, early FL

approaches [83] use only one global model as a single-center to aggregate the information

of all users. The stochastic gradient descent (SGD) for single-center aggregation is

designed for IID data, and therefore, conflicts with the non-IID setting in FL. Some

research work is done which are popular approaches to this problem, clustering, multi-

task learning, local adaption, ensemble learning. Federated clustering approaches can

be divided into two types: model clustering and data clustering.

CFL [90] and Robust FL in heterogeneous network [47], which claims a novel frame-

work involves three-steps module process, both are identified as FL model clustering

methods. CFL is a method that extends existing FedAvg with iterative clustering. Analo-

gous to CFL, Robust FL in heterogeneous network, also identified as FL clusters models,

which performs clustering on local empirical risk minimizers, but the difference is that

these clustering models are not based on FedAvg and only need to complete local inde-

pendent training. Moreover, this method incorporate three different modular steps, each

of those has not been fully theoretically work well as a system and thus not suitable

to sensitive applications. Research [46] proposes a similar algorithm named IFCA, for

which a convergence bound is established under the assumption of good initialization

and all clients having the same amount of data. The work [80] proposes a unified bi-

level optimization framework for CFL and prove the convergence. Typical algorithms

include FedAMP [58], which adds an attention-inducing function to the local objective,

and pFedMe [38], which formulates the regularization as Moreau envelopes. A highly

influential work of multi-task learning in FL is [97]. Multi-task learning has recently

emerged as an alternative approach to learn personalized models in the federated setting

and allows for more nuanced relations among clients’ models. A number of other robust

study in the field distributed or Federated Learning [67, 115], but they do not have a
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clustering structure of the nodes. Some other techniques including prototype [99] and

graph [23] also be applied into FL to improve its privacy or performance.

In addition, the idea of Clustered FL is to train multiple global statistical models wk

instead of one. The principle is to estimate a worker node cluster identity via finding

a center with minimal distance. Here the distance-based clustering method is used,

and the metric is often squared Euclidean distance. Throughout the learning process,

the worker nodes will have a cluster identity and run local updates within the same

cluster. Then each cluster obtains a new global model using a weighted average that is

identical to Federated Averaging. FeSEM [108] can be viewed as one of the important

techniques to learn an unknown mixture from samples. Though, one drawback of exist-

ing EM is poorly performed with dimensions. Given that the local model size can have

millions of parameters in practice, the need to have the robustness of high dimensional

SEM is naturally obvious. This work focus on the property of robustness to a small

number of outliers and improved convergence. In the future, we will robustify the SEM

against resistance to malicious data or model attacks such as adversarial federated nodes.

PFL PFL is the most popular technique to address non-IID challenge in FL, as vanilla

FL [83] delivers only one globally shared model which cannot fit all clients’ data. Based

on granularity, PFL can be categorized into cluster-wise PFL and client-wise PFL. For the

cluster-wise PFL, also called clustered FL, clients are grouped in to several clusters, and

then identical number of models are trained based on these clusters. There are mainly

two variants in cluster-wise PFL methods, representation of a client and the clustering

method. The work [108] use model parameters to represent clients and K-means to do

clustering. CFL [90] use hierarchy clustering to divide clients into two clusters based on

the cosine similarity of gradients iteratively. The loss of models is also used to cluster

clients by HypCluster [81] and IFCA [46]. The unified formulation and convergence of

cluster-wise PFL is studied by [80].

For the client-wise PFL, each client has its personalized model, either in model

structure or model parameters, even in the loss function. A simple but effective method is

to fine-tune the trained global model [26, 41]. Ditto [68] proposed a bi-level optimization

framework using a penalty term to constrain the distance between the local model and

global model. FedRep [29] divides the network into the backbone and the head, and learns

shared parameters for the backbone and unique parameters for the head. FedProto [98]

adopts prototypes instead of gradients to communicate and is more privacy-protective
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and communication-effective. Researches by [24, 95] aim to train a global hyper-network

or meta-learner instead of a global model before sending it to clients for local optimization.

Meta learning and multi-task learning are also applied into PFL including [41, 97].

Model Poisoning Attacks and detection The way malicious agent generates an

arbitrary update vector by merely shuffle data labels sounds very similar to the standard

dirty-label poisoning in [25]. However, in Federated Learning setting, the possibility

of a an adversary controlling a small number of malicious agents, perform a model

poisoning attack to manipulate the learning process so that the jointly trained global

model which turn into misclassifiation over some data is much higher. FL is apparently

vulnerable to model poisoning attacks due to its decentralized nature. A line of work has

been done already [7] [10] [32]. In contrast to previous work, this work focus to detect

these malicious agents during central clustering phase by applying density method then

reduce the impact of those agents’ updates to the aggregation of the cluster center.

Anomaly detection can be described the problem of finding patterns in data that

do not confirm to expected behavior. Of these, anomalies and outliers are two terms

used most commonly in the context of anomaly detection. Clustering can be used as a

technique for training of the normality model, where similar data points are grouped

together into clusters using a distance function, for example [84]. While LOF [16] is

a widely-used density-based anomaly detection method. However, in the case of our

method, we already know malicious agents are the anomalies that we tried to identify.

The outcome after preclude those identified outliers would be benign agents, then only

the benign agents weight matrix feed into our clustering algorithm. The identifying

outliers stage has no inherit relation to next clustering phase.

In this section, we will introduce our adversarial settings. There are two common

threats models in Federated Learning; the first case is data is mislabeled or maliciously

injected some wrong data, which is called noise labelling and has been addressed by some

work including [107]; the other threat is the attackers aim to manipulate the learning

process such that the learned model has a higher testing error rate. Normally, attackers

can only inject data into training datasets with the aim to make data poisoning attacks

when they have full control of those worker nodes, while the learning process is often

deemed as protected. This work will focus on model poisoning attacks and is based on

the assumption that attackers have knowledge about the aggregation rule. The most

basic aggregation rule uses mean estimator and weighted mean in Federated Learning.

Several model poisoning attack and their variants emerged in recent literature [7]. In
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this work, we do not claim bootstrap sampling nor robust clustering is a comprehensive

defense measure against heavy model poisoning attacks. Hence, we select the idea of

Krum [10] which is simply boosting each iteration of the learned model in some worker

nodes to manipulate the learning process such that the learned model achieved label

misclassifications. The way of explicit boosting works is to mimic the benign worker

nodes during the learning process; the node tries to perform the same number of epochs

on the local dataset via the same training objectives to obtain an initial gradient update.

Since the malicious node wants to ensure the outcome deviates from the true label, it

will have to overcome the scaling effect of gradient updates collected from other nodes.

In other words, the final gradient updates the malicious nodes send back are then scaled

a factor λ by which the malicious nodes boost the initial update. This attack has proved

to negate the combined effect of normal worker nodes.

Other Robust Clustering The robust clustering algorithm is a principal approach

to enhance the robustness against the presence of outliers [44]. A significant number

of work has been reported in this context, such as [36], [87]. Typical robust clustering

methods include mixture modeling [112], trimming approach [43]. A number of works in

robust clustering have been studied by [112] [43] [33] [2] [113] [50] from recent literature.

Our proposed solution is based on FeSEM, which proposed a clustered federated learning

method to cluster worker nodes using stochastic expectation-maximization methods

(SEM). Recent works of using bootstrap of classical MOM with K-means are emerg-

ing [18]. The median-of-means (MOM) estimator of the mean in dimension one consists

in taking the median of some arithmetic means derived from a collection of samples,

as in our case, derived from a collection of local model parameters. The bootstrap of

median-of-means is thus a collection block bB
1 , which are generated through a random

process, that sample drawn from a collection without replacements (disjoint blocks) and

according to the uniform distribution on the remaining data at each step. It is apparently

that bootstrap MOM is a randomized estimator. Though, for any static sample data size

n, one can decide what is the right block size nB and the number of blocks B to define a

bootstrap MOM estimator. To the classical MOM, in contrast, where the product of the

block size with the number of blocks should be equal to the data size defined previously.

The objective of clustering is to group similar objects together, and dissimilar objects

into different clusters. And robust clustering is to enhance the robustness of clustering

results against outliers [44]. Many works have been done in this area including [36], [87].

Vanilla robust clustering methods include mixture modeling [112], trimming approach
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[43]. Recently a number of works in robust clustering have been studied by [112] [43]

[33] [2] [113] [50]. The work [18] researches K-means with bootstrap of median-of-means

(MOM). The MOM estimator can mitigate the influence of outliers, which estimator of

mean is not good at addressing outliers. The bootstrap of MOM (bMOM) enhance the

robustness against outliers thus can achieve better breakdown point, which is a measure

to quantify the toleration of outliers.

Chinese Restaurant Process Next we will further examine Bayesian methods,

Chinese Restaurant Process in particular. Non-parametric Bayesian clustering methods

such as the infinite Gaussian mixture model [89] or Dirichlet process [100] are a class

of algorithms that can be used to cluster data points without making any assumptions

about the underlying distribution of the data. These tools are particularly well-suited

to our theme, which is clustering clients in Federated Learning, as Federated Learning

data cannot be easily summarized by parametric model, or the number of clusters

from data is unknown before hand. However, they may then lead two limitations. The

first cause from the requirement to generate each observation from a well-defined

distribution. For example, in latent Dirichlet allocation [12, 13, 48], each word of a text

document is sampled from a multi-nominal distribution of a corresponding topic. If we

want to incorporate features such as the editor or publisher, then the model has to be

changed. The second one comes from the assumption of that population are exchangeable.

Exchangeability refers the no changes to the random variable when indices changed.

A small number of studies which focused on Bayesian of FL are proposed. Yurochkin

propose a Bayesian non-parametric methodology based on the India Buffet Process. We

will introduce an akin to India Buffet Process - Chinese Restaurant Process(CRP). CRP

is a process that puts a distribution over partitions formed over devices. Image a Chinese

restaurant with an infinite number of tables, each of which can seat an infinite number

of customers sits at a new table with probability proportional to alpha. Notice we can

view these sitting table decisions as either an observation joins a existing component c

or generates a new component for this observation. The labelling of table is independent

to the order of observations. No doubt this non-parametric process resembles some

properties of Dirichlet process.

The Chinese restaurant process can be defined for the following procedure. Assume

an infinite large restaurant is serving customers. The table is a partition of customers.

The first customer walks in the restaurant and sits at the first table. The second customer

enters and decides either to sit with the first customer, or by himself at a new table. In
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general, the nth customer sits down at a table with a probability that is proportional

to the number of people already sitting at that table, the other option is to select a new

table to sit with a probability proportional to the hyper-parameter α. What this mean

is that the more customer sitting at a table, the more likely the next customer sitting

at that table. Because of exchangeability of this procedure, the order where customers

sit down is not determined by the table indices and we can draw each customer’s table

assignment zn by pretending they are the last person to sit down. Let K be the number

of tables and let nk be the number of people sitting at each table. For the nth customer,

we define Bernoulli distribution over table assignments conditioned on z−n, that means

all other table assignments except the nth:

(2.2) p(zn = k|z−n,α)∝

{
nk, i f k ≤K
α, i f k =K +1

When all N customers have been seated, their table assignments provide a random

partition. Though the process is described sequentially, the CRP is exchangeable. The

probability of a particular partition of N customers is invariant to the order in which

they sat down.

Neuron Matching This subsection to discussed an idea which originally proposed

by Mikhail Yurochkin [117]. This technique is suitable for our algorithm FeSEM and

may be adopted as an extension. In FL, each device-i has a private dataset Di = {Xi,Yi},

where Xi and Yi denote the input features and corresponding gold labels respectively.

Each dataset Di will be used to train a local supervised learning model Mi : Xi →Yi. M

denotes a deep neural model parameterized by weights W. It is built to solve a specific

task, and all devices share the same model architecture.

We now present one key building block of neuron matching in the context of multi-

center of FL. The underlying concept comes from a Beta Bernoulli Process [49, 101],

which has been studied extensively. Our model assumes the following generative process.

First, draw a collection of elements (channels in the case of CNN neural network) from

a Beta process prior with has a base measure D and mass parameter γ0. Moreover,

their empirical evaluation choose to be a Gamma process. Each element θn is a vector of

formed from the feature extractor weight-bias pairs with the corresponding weights of

the softmax regression.

Next, from the set {Di}, for each node of this set, we perform local training process,

which is a data generative process can be equivalently described as a set of sequence of
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Figure 2.7: Case study of impact of Neuron matching

Bernoulli trails. In each of these trials, they take value of 1 for including a global atom

and 0 for otherwise. The can be formulated as following: That is from a form of pairs,

which represent the set of elements used by node i. Finally, assume the observed local

atoms are samples drawn from the a distribution as following. Under this model, quantity

of interest is the collection of random variables that match observed atoms at any given

nodes. It denote the random variable as {B j}J
j=1, where a value of B j

i,l = 1 implies that

T jl = θi and 0 as otherwise, (there is a one-to-one correspondance between observed

atoms and global atoms). The {B j} is to be inferred by cast the posterior distribution

into a linear sum assignment. Then they adopt a Hungarian algorithm to solve this sub

problem. The illustration of PFNM is shown as in Figure 2.8.

Figure 2.8: Neuron Matching Steps
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The PFNM algorithm proposed by Yurochkin et al. [117] only focus on model ag-

gregating and final result is a single model which is not as effective to capturing the

differences of data distributions among devices as multi-center approach. Our work also

takes non-parametric Bayesian approach which allow us to model growing number of

data distributions and estimate associated parameters of theirs.
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3
MULTI-CENTER FEDERATED LEARNING

The widespread of mobile phones and Internet-of-Things has witnessed a huge

volume of data generated by end-users on mobile devices. Generally, a service

provider on the server side collect users’ data and train a global machine learning

model such as deep neural networks. Such a centralized machine learning approach

causes severe practical issues, e.g., communication costs, consumption of device batteries,

and the risk of violating the privacy and of user data.

Federated learning (FL) [83] is a decentralized machine learning framework that

learns models collaboratively using the training data distributed on remote devices

to boost communication efficiency. Basically, it learns a shared pre-trained model by

aggregating the locally-computed updates, and each update is derived from learning

the data in the corresponding local device. Therefore, a straightforward aggregation

algorithm is responsible for averaging the many local models’ parameters, weighted by

the size of the training data on each device. Compared with conventional distributed

machine learning, FL is robust against unbalanced and non-IID data distributions, which

is the defining characteristic of modern AI products for mobile devices.

The vanilla FL addresses a practical setting of distributed learning, where 1) the

central server is not allowed to access any user data which protects users’ privacy, and

2) the data distribution over different users is non-IID, which is a natural assumption

of real-world applications. However, early FL approaches [83, 114] use only one global

model as a single-center to aggregate the information of all users. The stochastic gradient

descent (SGD) for single-center aggregation is designed for IID data, and therefore,
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conflicts with the non-IID setting in FL.

Recently, the non-IID or heterogeneity challenge of FL has been studied to improve

the robustness of global models against outlier/adversarial users and devices [47, 70, 71].

Moreover, Sattler et al. proposed an idea of clustered FL (FedCluster) that addresses

the non-IID issue by dividing the users into multiple clusters. However, the hierarchical

clustering in FedCluster is achieved by multiple rounds of bipartite separation, each re-

quiring the federated SGD algorithm to run until convergence. Hence, its computational

and communication efficiency will become bottlenecks when applied to a large-scale FL

system. More recently, Mansour et al. [81] and Ghosh et al. [46] proposed to cluster

the local models according to the loss of hypothesis. In particular, each user will try

all K global models representing K clusters, and then select the best global model as

the cluster ID by considering the lowest loss of running the global model on local data.

However, this posts high communication and computation overheads because the selected

nodes will spend more resources for receiving and running multiple global models.

In this thesis, we propose a novel multi-center FL framework that updates multiple

global models by aggregating information from multiple user groups. In particular, the

datasets of the users in the same group are likely to be generated or derived from the

same or similar distribution. We formulate the problem of the multi-center FL as the

joint clustering of users, and then optimizing of the global model for users in each cluster.

In particular, (1) each user’s local model is assigned to its closest global model, and (2) the

global model in each cluster leads to the smallest loss over all the associated users. The

proposed multi-center FL not only inherits the communication efficiency of the federated

SGD but also retains the capability of handling non-IID data on heterogeneous datasets.

Lastly, we propose a new optimization method in line with EM algorithm to train our

model.

We summarise our main contributions as:

• We propose a novel multi-center aggregation approach (Section 3.3.1) to address

the non-IID challenge of FL.

• We design an objective function, namely multi-center federated loss (Section 3.3.2),

for user clustering in FL.

• We propose Federated Stochastic Expectation Maximization (FeSEM) (Section 3.3.3)

to solve the optimization of the proposed objective function.

• We present the algorithm as an easy-to-implement and strong baseline for FL. Its

effectiveness is evaluated on benchmark datasets. (Section 3.5)
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3.1 Related work

Decision making is the process of making choices by identifying a decision, gathering

information, and assessing alternative resolutions. In most of the scenarios, each individ-

ual person usually makes a personal choice given the collected information. To model the

personalized decision-making process, a general solution is to collect the user’s personal

characteristics, e.g. demographics, behavior history [51], and social networks, as part

of the input to be considered by a centralized intelligent model. This solution usually

train a large-scale machine learning or recommendation models at cloud server using

the collected personal data from users, thus it will cause privacy concerns. In recent, a

new service architecture has been proposed to provide service based on a standalone

on-device intelligent in each smart device. In particular, a unique intelligent model

customized for each user will be deployed to the user’ smart device, so as to provide

service independently while not relying on the decision from the cloud server. The user’s

personal data will be stored locally to train the intelligent model, thus no personal data

will be uploaded to the server.

To solve the problem caused by non-IID data in a federated setting proposed clustered

FL (FedCluster) by integrating FL and bi-partitioning-based clustering into an overall

framework, and proposed a hypothesis-based federated clustering that assigns the cluster

by considering the loss of running the global model on local data. Ghosh proposed a

robust FL comprising three steps: 1) learning a local model on each device, 2) clustering

model parameters to multiple groups, each being a homogeneous dataset, and 3) running

a robust distributed optimization in each cluster. propose a general form to model

the clustered FL problem into a bi-level optimization framework, and then conduct

theoretical analysis on the convergence.

3.2 Background

3.2.1 Problem Setting

In FL, each device-i has a private dataset Di = {Xi,Yi}, where Xi and Yi denote the

input features and corresponding gold labels respectively. Each dataset Di will be used

to train a local supervised learning model Mi : Xi →Yi. M denotes a deep neural model

parameterized by weights W . It is built to solve a specific task, and all devices share the

same model architecture.
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For the i-th device, given a private training set Di, the training procedure of Mi is

represented in brief as

(3.1) min
Wi

Ls(Mi,Di,Wi),

where Ls(·) is a general definition of the loss function for any supervised learning

task, and its arguments are model structure, training data and learnable parameters

respectively, and W ′ denotes the parameters after training. In general, the data from one

device is insufficient to train a data-driven neural network with satisfactory performance.

An FL framework optimizes the local models in a distributed manner and minimizes the

loss of the local data on each device.

Hence, the optimization in vanilla FL over all the local models can be written as

(3.2) min
{Wi}m

i=1

m∑
i=1

|D i|∑
j |D j|

Ls(Mi,Di,Wi),

where m denotes the number of devices.

On the server side, the vanilla FL aggregates all local models into a global one

Mglobal which is parameterized by W̃ g. In particular, it adopts a weighted average of

the local model parameters [Wi]m
i=1, i.e.,

(3.3) W̃ g =
m∑

i=1

|Di|∑
j |D j|

Wi,

which is the nearest center for all {Wi}m
i=1 in terms of a weighted L2 distance:

(3.4) W̃ g ∈ argmin
W̃

m∑
i=1

|D i|∑
j |D j|

∥W̃ −Wi∥2
2.

More generally, we can replace the L2 distance in Eq. (3.4) by other distance metric

Dist(·, ·) and minimize the difference between the global model and all the local models,

i.e.,

(3.5) min
W̃

1
m

m∑
i=1

Dist(Wi,W̃).

The above aims to find a consistent solution across global model and local models.

Note that a direct macro average is used here regardless of the weight of each device,

which treats every device equally. The weights used in Eq. (3.2) can easily be incorporated

for a micro average.

The divergence Dist(·, ·) between the global model and local models plays an essential

role in the FL objective. The simple L2 distance for Dist(·, ·) does not take into account the
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fact that two models can be identical under the arbitrary permutation of neurons in each

layer. Hence, the lack of neuron matching may cause misalignment in that two neurons

with similar functions and different indexes cannot be aligned across models [117].

However, the index-based neuron matching in FL [94] is the most widely used method

and works well in various real applications. One potential reason for this is that the

index-based neuron matching can also slowly align the function of neurons by repeatedly

initializing all local models with the same global model. To simplify the description, we

will discuss our method for index-based neuron matching, and then discuss a possible

extension by adding function-based neuron matching [106] (Section3.4.1).
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Figure 3.1: Comparison between single-center aggregation in vanilla FL (left) and multi-center aggre-
gation in the proposed one (right). Each Wi represents the local model’s parameters collected from the
i-th device, which is denoted as a node in the space. W̃ represents the aggregation result of multiple local
models.

3.2.2 Motivation

Federated learning (FL) usually aggregates all local models to a single global model.

However, this single-center aggregation is fragile under heterogeneity. In contrast, we

consider FL with multiple centers to better capture the heterogeneity by assigning nodes

to different centers so only similar local models are aggregated. Consider two extreme

cases for the number of centers, K : (1) when K = 1, it reduces to the FedAvg with a

single global model, which cannot capture the heterogeneity and the global model might
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perform poorly on specific nodes; (2) When K = m, the heterogeneity problem can be

avoided by assigning each node to one global model. But the data on each device used to

update each global model can be insufficient and thus we lose the main advantage of FL.

Our goal is to find a sweet point between these two cases to balance the advantages of

federated averaging and the degradation caused by underlying heterogeneity.

Learning one unique model for each node has been discussed in some recent FL

studies for better personalized models. They focus on making a trade-off between shared

knowledge and professionalisation. The personalising strategy either applies fine-tuning

of the global model [119] for each node, or only updates a subset of personalised layers

for each node [4, 74], or deploys a regularisation term in the objective [35, 38, 52]. In

contrast, Multi-center FL in this thesis mainly focuses to address the heterogeneity

challenge by assigning nodes to different global models during aggregation. But it can

be easily incorporated in these peronalization strategies. In the following, we will start

from the problem setting for the the vanilla FL, and then elucidate our motivation of

improving FL’s tolerance to heterogeneity by multi-center design.

3.3 Methodology

3.3.1 Multi-Center Model Aggregation

To overcome the challenges arising from the heterogeneity in FL, we propose a novel

model aggregation method with multiple centers, each associating with a global model

W̃ (k) updated by aggregating a cluster of user’s models with nearly IID data. In particular,

all the local models will be grouped to K clusters, denoted as C1, · · · ,CK , each covering a

subset of local models with parameters {Wj}
mk
j=1.

An intuitive comparison between the vanilla FL and our multi-center FL is illustrated

in Fig. 3.1. As shown in the left figure, there is only one center model in vanilla FL.

In contrast, the multi-center FL shown in the right has two centers, W (1) and W (2),

and each center represents a cluster of devices with similar data distributions and

models. Obviously, the right one has a smaller intra-cluster distance than the left one. As

discussed in the following Section 3.3, intra-cluster distance directly reflects the possible

loss of the FL. Hence, a much smaller intra-cluster distance indicates our proposed

approach potentially reduces the loss of FL.
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Figure 3.2: A high-level view of Federated Learning

3.3.2 Problem Formulation

Solving a joint optimization on a distributed network. The multi-center FL

problem can be formulated as

min
{Wi},{r

(k)
i },{W̃ (k)}

m∑
i=1

|D i|∑
j |D j|

Ls(Mi,Di,Wi)+

λ

m

K∑
k=1

m∑
i=1

r(k)
i Dist(Wi,W̃ (k)),(3.6)

where λ controls the trade-off between supervised loss and distance. We solve it by

applying an alternative optimization between server and user: (1) on each node-i, we

optimize the above objective w.r.t. Wi while fixing all the other variables; and (2) on the

server, we optimize {r(k)
i }, {W̃ (k)} for i ∈ [m] and k ∈ [K] while fixing all local models {Wi}.

Multi-center assignment at the server end. The second term in Eq. (3.6) aims to

minimize the distance between each local model and its nearest global model. Under the

non-IID assumption, the data located at different devices can be grouped into multiple

clusters where the on-device data in the same cluster are likely to be generated from one
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distribution. As illustrated on the right of Fig. 3.1, we optimizes the assignments and

global models by minimizing the intra-cluster distance, i.e,

min
{r(k)

i },{W̃ (k)}

1
m

K∑
k=1

m∑
i=1

r(k)
i Dist(Wi,W̃ (k)),(3.7)

where cluster assignment r(k)
i , as defined in Eq. (3.9), indicates whether device-i belongs

to cluster-k, and W̃ (k) is the parameters of the aggregated model for cluster-k.

Distance-constrained loss for local model optimization. Because the distance

between the local model and the global model are essential to our new loss, we don’t

expect the local model will be changed too much during the local updating stage. The

new loss consists of a supervised learning loss and a regularization term to constrain the

local model to ensure it is not too far from the global model. This kind of regularization

term is also known as the proximal term in [70] that can effectively limit the impact of

the variable local updates in FL. We minimize the loss below for each local model Wi as

follows:

(3.8) min
Wi

|D i|∑
j |D j|

·Ls(Mi,Di,Wi)+ λ

m

K∑
k=1

r(k)
i Dist(Wi,W̃ (k))

3.3.3 Optimization Algorithm

In general, Expectation-Maximization (EM) [9] can be used to solve the distance-based

objective function of clustering, e.g., K-Means. However, in contrast to the general ob-

jective of clustering, our proposed objective, as described in Eq. 3.7, has a dynamically

changing Wi during optimization. Therefore, we adapt the Stochastic Expectation Maxi-

mization (SEM) [20] optimization framework by adding one step, i.e., updating Wi. In the

modified SEM optimization framework, named federated SEM (FeSEM), we sequentially

conduct: 1) E-step – updating cluster assignment r(k)
i with fixed Wi, 2) M-step – updating

cluster centers W̃ (k), and 3) updating local models by providing new initialization W̃ (k).

Firstly, for the E-Step, we calculate the distance between the cluster center and

nodes – each node is the model’s parameters Wi, then update the cluster assignment r(k)
i

by

(3.9) r(k)
i =

{
1, i f k = argmin j Dist(Wi,W̃ ( j))

0, otherwise.
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Algorithm 1: FeSEM – Federated Stochastic EM

Initialize K , {Wi}m
i=1, {W̃ (k)}K

k=1
while stop condition is not satisfied do

E-Step:
Calculate distance dik ←Dist(Wi,W̃ (k)) ∀i,k
Update r(k)

i using dik (Eq. 3.9)
M-Step:
Group devices into Ck using r(k)

k
Update W̃ (k) using r(k)

i and Wi (Eq. 3.10)
for each cluster k = 1, . . .K do

for i ∈ Ck do
Send W̃ (k) to device i
Wi ←Local_update(i,W̃ (k))

end
end

end

Secondly, for the M-Step, we update the cluster center W̃ (k) according to the Wi and

r(k)
i , i.e.,

(3.10) W̃ (k) = 1∑m
i=1 r(k)

i

m∑
i=1

r(k)
i Wi.

Thirdly, to update the local models, the global model’s parameters W̃ (k) are sent to

each device in cluster k to update its local model, and then we can fine-tune the local

model’s parameters Wi using a supervised learning algorithm on its own private training

data while considering the new loss as described in Eq. 3.8.

The local training procedure is a supervised learning task by adding a distance-based

regularization term. The local model is initialized by the global model W̃ (k) which belong

to the cluster associated with the node.

Lastly, we repeat the three stochastic updating steps above until convergence. The se-

quential executions of the three updates comprise the iterations in FeSEM’s optimization

procedure. In particular, we sequentially update three variables r(k)
i , W̃ (k), and Wi while

fixing the other factors. These three variables are jointly used to calculate the objective

of our proposed multi-center FL in Eq. 3.7.

We implement FeSEM in Algorithm 1 which is an iterative procedure. As elaborated

in Section 3.3.2, each iteration comprises of three steps to update the cluster assignment,

the cluster center, and the local models, respectively. In the third step to update the local

model, we need to fine-tune the local model by implementing Algorithm 2.
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Algorithm 2: Local_update
Input: i – device index

W̃ (k) – the model parameters from server
Output: Wi – updated local model
Initialization: Wi ← W̃ (k)

for N local training steps do
Update Wi with training data Di (Eq. 3.8)

end
Return Wi to server

Datasets FEMNIST FedCelebA

Metrics(%)
Micro- Micro- Macro- Macro- Micro- Micro- Macro- Macro-

Acc F1 Acc F1 Acc F1 Acc F1

NoFed 79.0±2.0 67.6±0.6 81.3±1.9 51.0±1.2 83.8±1.4 66.0±0.4 83.9±1.6 67.2±0.6
FedSGD 70.1±2.2 61.2±3.4 71.5±1.8 46.7±1.2 75.7±2.3 60.7±2.4 75.6±2.0 55.6±2.6
FedAvg 84.9±2.0 67.9±0.4 84.9±1.6 45.4±1.9 86.9±0.5 78.0±1.0 86.1±0.4 54.2±0.6
FedDist 79.3±0.8 67.5±0.5 79.8±1.1 50.5±0.5 71.8±0.9 61.0±0.8 71.6±1.0 61.1±0.7
FedDWS 80.4±0.8 67.2±1.6 80.6±1.2 51.7±1.1 73.4±1.7 59.3±0.9 73.4±1.9 50.3±0.5
Robust(TKM) 78.4±1.0 53.1±0.5 77.6±0.7 53.6±0.7 90.1±1.3 68.0±0.7 90.1±1.3 68.3±1.1
FedCluster 84.1±1.1 64.3±1.3 84.2±1.0 64.4±1.6 86.7±0.7 67.8±0.9 87.0±0.9 67.8±1.3
HypoCluster(3) 82.5±1.7 61.3±0.6 82.2±1.3 61.6±0.9 76.1±1.5 53.5±1.0 72.7±1.8 53.8±1.9
FedDane 40.0±2.9 31.8±3.1 41.7±2.4 31.7±1.6 76.6±1.1 61.8±2.0 75.9±1.0 62.1±2.2
FedProx 72.6±1.8 62.8±1.6 74.3±2.1 50.6±1.2 83.8±2.0 60.9±1.2 84.9±1.8 65.7±1.2
FeSEM(2) 84.8±1.1 65.5±0.4 84.8±1.6 52.0±0.5 89.1±1.3 64.6±1.0 89.0 ±1.3 56.0±1.3
FeSEM(3) 87.0±1.2 68.5±2.0 86.9±1.2 41.7±1.5 88.1±1.9 64.3±0.8 87.5±2.0 55.9±0.8
FeSEM(4) 90.3±1.5 70.6±0.9 91.0±1.8 53.4±0.6 93.6±2.7 74.8±1.5 94.1±2.2 69.5±1.1
FeSEM-MA(3) 90.4±1.5 71.4±0.5 87.0±2.0 64.3±0.5 84.5±0.8 64.1±0.7 85.1±1.0 63.0±1.3

Table 3.1: Comparison of our proposed FeSEM(K) algorithm with the baselines on
FEMNIST and FedCelebA datasets. Note the number in parenthesis following “FeSEM”
denotes the number of clusters, K .

3.4 Some Possible Extensions

To further handle heterogeneous data in FL scenario, our multi-center FL approach can

be easily extended with other packages. We discuss two beneficial techniques here.

3.4.1 Model Aggregation with Neuron Matching

The vanilla FL algorithm, FedAvg [83], uses model aggregation with index-based neuron

matching which may cause the incorrect alignmentment. Neurons with similar functions

are usually take different indexes in two models. Recently, a function-based neuron
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DATASET FEMNIST FedCelebA
# of data points 805,263 200,288
# of device 3,550 9,343
# of Classes 62 2
Model architecture CNN CNN

Table 3.2: Statistics of datasets.

matching [106] in FL is proposed to align two models by matching the neurons with

similar functions. In general, the index-based neuron matching can gradually align

the neuron’s functionality across nodes by repeatedly forcing each local model to be

initialized using the same global model. However, the function-based neuron matching

can speed up the convergence of neuron matching and preserve the unique functional

neuron of the minority groups.

In this work, we integrate layer-wise matching and then averaging(MA) [106] into

ours to increase the capacity to handle heterogeneous challenges. The distance between

the local model and the global model is the neuron matching score that is calculated by

estimating the maximal posterior probability of the j-th client neuron l generated from

a Gaussian with mean Wi, and ϵ and f (·) are guided by the Indian Buffet Process prior

[117].

3.4.2 Selection of K

The selection of K , the number of centers, is essential for a multi-center FL. In general,

the K is defined based on the prior experience or knowledge of data. If there is no prior

knowledge, the most straightforward solution is to run the algorithm using different K
and then select the K with the best performance in terms of accuracy or intra-cluster

distance. Selecting the best K in a large-scale FL system is time consuming, hence we

simplify the process by running the algorithm on a small number of sampled nodes with

several communication rounds. For example, we can randomly select 100 nodes and test

K in FL with three communication rounds only, and then apply the K to the large-scale

FL.

3.5 Experiments

As a proof-of-concept scenario to demonstrate the effectiveness of the proposed method,

we experimentally evaluate and analyze FeSEM on two datasets.
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3.6 Training Setups

Datasets. We employed two publicly-available federated benchmarks datasets intro-

duced in LEAF [19]. LEAF is a benchmarking framework for learning in federated

settings. The datasets used are Federeated Extended MNIST (FEMNIST)1 [28] and

Federated CelebA (FedCelebA)2 [76]. We follow the setting of the benchmark data in

LEAF. In FEMNIST, images is split according to the writers. For FedCelebA, images are

extracted for each person and developed an on-device classifier to recognize whether the

person smiles or not. A statistical description of the datasets is described in Table 3.2.

Local model. We use a CNN with the same architecture from [76]. Two data partition

strategies are used: (a) an ideal IID data distribution using randomly shuffled data, (b)

a non-IID partition by use a pk ∼ DirJ(0.5). Part of the code is adopted from [106]. For

FEMINST data, the local learning rate is 0.003 and epoch is 5. and for FedCelebA, 0.03

and 10 respectively.

Baselines. In the scenario of solving statistical heterogeneity, we choose FL methods

as follows:

1. NonFed: We will conduct the supervised learning task at each device without the FL

framework.

2. FedSGD: uses SGD to optimise the global model.

3. FedAvg: is an SGD-based FL with weighted averaging. [83] .

4. FedCluster: is to enclose FedAvg into a hierarchical clustering framework [90].

5. HypoCluster(K): is a hypothesis-based clustered-FL algorithm with different K [81].

6. Robust our implementations based on the proposed method in [47], see this baseline

settings in Appendix.

7. FedDANE: this is an FL framework with a Newton-type optimization method. [71].

8. FedProx: this is our our own implementations following [70]. We set scaler of proximal

term to 0.1.

9. FedDist: we adapt a distance based-objective function in Reptile meta-learning [85] to a

federated setting.

1http://www.nist.gov/itl/products-and-services/emnist-dataset
2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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10. FedDWS: a variation of FedDist by changing the aggregation to weighted averaging where

the weight depends on the data size of each device.

11. FeSEM(K): our multi-center FL implemented on federated SEM with K clusters.

12. FeSEM-MA(K): FeSEM integrates the matched averaging [106].

Training settings. We used 80% of each device’s data for training and 20% for testing.

For the initialization of the cluster centers in FeSEM, we conducted pure clustering 20

times with randomized initialization, and then the “best” initialization, which has the

minimal intra-cluster distance, was selected as the initial centers for FeSEM. For the

local update procedure of FeSEM, we set N to 1, meaning we only updated Wi once in

each local update.

Evaluation metrics. Given numerous devices, we evaluated the overall performance

of the FL methods. We used classification accuracy and F1 score as the metrics for the

two benchmarks. In addition, due to the multiple devices involved, we explored two

ways to calculate the metrics, i.e., micro and macro. The only difference is that when

computing an overall metric, “micro” calculates a weighted average of the metrics from

devices where the weight is proportional to the data amount, while “macro” directly

calculates an average over the metrics from devices.

3.6.1 Experimental Study

Comparison study. As shown in Table 3.1, we compared our proposed FeSEM with

the baselines and found that FeSEM achieves the best performance in most cases. But,

it is observed that the proposed model achieves an inferior performance for Micro F1

score on the FedCelebA dataset. A possible reason for this is that our objective function

defined in Eq. 3.7 does not take into account the device weights. Hence, our model is

able to deliver a significant improvement in terms of “macro” metrics. Furthermore, as

show in the last three columns in Table ??, we found that FeSEM with a larger number

of clusters empirically achieves a better performance, which verifies the correctness of

the non-IID assumption of the data distribution.

Convergence analysis. To verify the convergence of the proposed approach, we

conducted a convergence analysis by running FeSEM with different cluster numbers K
(from 2 to 4) in 100 iterations. As shown in Fig. 3.3, FeSEM can efficiently converge on

both datasets and it can achieve the best performance with the cluster number K = 4.
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Figure 3.3: Convergence analysis for the proposed FeSEM with different cluster number (in
parenthesis) in terms of micro-accuracy.

Clustering analysis. To check the effectiveness of our proposed optimization method

and whether the devices grouped into one cluster have similar model, we conducted a

clustering analysis via an illustration. We used two-dimensional figures to display the

clustering results of the local models derived from FeSEM(4) on the FEMNIST dataset.

In particular, we randomly chose 400 devices from the dataset and plotted each device’s

local model as one point in the 2D space after PCA dimension reduction. As shown in

Fig. 3.4, the dataset suitable for four clusters that are distinguishable to each other.

Case study on clustering. To intuitively judge whether nodes grouped into the same

cluster have a similar data distribution, we conducted case studies on a case of two

clusters that are extracted from a trained FeSEM(2) model. For FMNIST, as shown

on the top of Fig. 3.5, cluster on the right consists writers who are likely to recognize

hand-writings with a smaller font, and on the left consists writers who are likely to

recognize hand-writing with a bolder and darker font. For FedCelebA, see full face images

in Appendix section 2, the face recognition task in cluster1 is likely to handle the smiling
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Figure 3.4: Clustering analysis for different local models (using PCA) derived from FeSEM(4)
using FEMNIST and Celeba data.

Figure 3.5: Figure shows the clustering effect of FeSEM on dataset FEMNIST by writers, on the
left are three writers handwritten digits which are smaller and lighter than on the right ones

faces with a relatively simple background, also exhibits to be young people. While cluster

on the right is likely to handle the faces with more diverse background and also seems to

be more older people.

3.7 Conclusion and Remarks

In section 1 of this chapter, address the robustness of the FeSEM. We proposed a practical

and robust version of the FeSEM algorithm to offset the adversarial worker nodes using

K-bmom estimator. This algorithm has better properties and converges faster than the

original FeSEM. In experiments, we show that on three datasets, the proposed algorithm

has similar performance to other baselines while showing much superior clustering

performance than FeSEM in all three datasets. We also discussed possible extensions of

FedRobust for better distance computation if the local model is a neural network.

In section 2 of this chapter, we proposed a novel FL algorithm to tackle the non-

IID challenge of FL. This proposed method can efficiently capture the multiple hidden
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distributions of numerous devices or users. An optimization approach, federated SEM, is

also proposed to solve the multi-center FL problem effectively. The experimental results

show the effectiveness of our algorithm, and several analyses are further provided for an

deeper insight into the proposed approach.
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4
ROBUST CLUSTERING FOR MUTLI-CENTER FEDERATED

LEARNING

4.1 Introduction

Federated Learning (FL) is a new machine learning paradigm to enable many

clients collaboratively learn intelligent models. The vanilla FL, namely FedAvg

[83], was proposed to learn a server-side intelligent model using many distributed

clients without direct access to their local dataset. This distributed machine learning

framework with data locality can greatly mitigate the risk of privacy [62] in contrast to

a traditional learning system with centralized data storage. Due to the heterogeneous

nature of such a distributed system, a major challenge for FL is to tackle non-IID data

across clients. For example, a smartphone typing tool, GBoard in an Android smartphone,

needs to auto-fill the incomplete words by considering the typing context and user’s

language preference. The user’s historical data are usually non-IID across clients, thus

the learning system needs to tackle this non-IID challenge in the FL’s distributed settings.

To solve the non-IID challenge in FL, one solution is to enhance the robustness of a

single model at the server to tackle various distributions across clients. However, this

kind of solution can only tackle the scenario with slight differences of data distributions

across clients. A recent solution for tackling non-IID issues is personalized FL that aims

to optimize each client-wise local model while using the global model as a regularize

to exchange shared information and constraint the divergence across client-wise local
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models. The personalized FL suffers the increased complexity of optimization problems

that usually treat client-wise model learning as a joint optimization problem across

clients. Moreover, it is impractical to find a proper trade-off between shared knowledge

and personalization.

Clustered FL is a trade-off solution between single model FL and personalized FL. It

aims to learn multiple global models on the server while each global model is a cluster-

wise personalized model for the clients with similar data distribution. In particular, the

clustering method is a tool to assign clients to different clusters. Therefore, clustered FL

can gain better personalization capability than single model FL, and also can learn a

model with better generalization than client-wise personalized FL methods. However,

clustering among clients is very sensitive to outliers or adversarial attacks. In general,

an Outlier is a data point that primarily differs from other observations. Some examples

of outliers in the case of Federated Learning are those systematic mislabelling of data

or Byzantine failures [10]. In practice, even a small proportion of outliers can render

clustering unreliable, while cluster centres and model parameter estimators can be

severely biased. Therefore, tackling client-wise outliers will be a new challenge for

clustered FL systems.

To tackle the aforementioned challenge, this thesis proposes a novel robust clustered

Federated Learning framework to tackle the client-wise outliers which could be a mi-

nority of users with abnormal behaviour patterns or could be from malicious clients

equipped with Byzantine attack tools, i.e., arbitrarily corrupt the information using some

adversarial attache mechanism. In particular, we enhance the federated aggregation

mechanism by adopting a bootstrap sampling method and a robust approach based on a

median-of-means estimator. We formulate the problem into a bi-level optimization frame-

work for a general form and then use a stochastic EM method to solve the optimization

problem in an alternative updating strategy.

The motivation for using bootstrap median-of-mean to implement robust clustered FL

is quite straightforward. The clients clustering in the FL system is usually based on the

client’s local models that usually to be a high dimensional vector derived from deep neural

networks, such as CNN, RNN and Transformers. The high dimensional data exaggerates

the outlier problem in clustering, and also most distance-based regularization-based

robust clustering is impractical in this scenario. Specifically, most clustering methods

use a mean-based estimator to compute the centre of a cluster. However, computing

barycenter or mean can be very sensitive to the presence of outliers. In contrast to the

mean-based estimator with penalty term, a median point-based estimator will be a better
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option to implement the robustness of the clustering algorithm.

The part of this thesis’s contributions are summarized as below.

• We propose a simple yet effective approach, namely FedRoc, to implement robust

clustered FL.

• We adopt bootstrap sampling during initialization together with a median-of-means

estimator to solve the outlier problem in clustered FL contexts.

• We formulate the problem into a bi-level optimization problem.

• Compared with other FL methods on a few datasets, it shows that FedRoC is

computationally competitive and more robust than any other baseline algorithms.

The remainders of this thesis is organized as below. Related work of this section has

been introduced at Chapter 2 already, and then introduce the method at Section 4.2. The

experiment results has been analyzed in Section 4.3. We make conclusion and discuss

future work at Section 4.4.

4.2 Methodology

4.2.1 Problem Definition

The basic of FL is that many clients in a network collaboratively train a global model. The

dataset kept on a local device is only a shard of a much larger dataset. To formuate the

FL system, it is composed of m smart devices that has a private dataset Di = {<Xi,Yi >}

for each, where Xi and Yi denote input samples and corresponding labels respectively,

and i ∈ {1, ...,m} is the index of a client. Each dataset Di on the device will be used to

train a local supervised learning model Mi : Xi →Yi. M usually denotes a deep neural

model parameterized by weights ω. It is built to solve a specific task, and all devices

share the same model architecture. Generally, the problem of FL can be usually denote

as minimizing this formula below,

(4.1) min
w∈Rd

m∑
i=1

ni

n
L (Mi,Di,ωi)

where ni is the number of samples kept in i-th node and n is the total number of

samples on all nodes, L (Mi,Di,ωi) is the local objective function which describes how

good are the trained classifier, and the local objective function is different for different
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classifiers (e.g., logistic regression, neural network). For the i-th device, given a private

training set Di, the training procedure of Mi is briefly notes as

(4.2) ω∗
i = argmin

ωi
L (Mi,Di,ωi),

where L (·) is a general definition of loss function for any supervised learning task, and

its arguments include model structure Mi, training data D i and learnable parameters

ωi whose vector space is d dimensional.

In particular, a master node needs to keep a global model whose parameters w
normally is the weighted average of model parameters ωi of all worker nodes. During

the FL learning process, three steps will be performed at each iteration:

• step I: a master node sends the global model parameter to all.

• step II: worker nodes compute update with respect to the global model parameter

using local objective function and training data kept on devices then sends back

the update.

• step III: a master node aggregates all updates to obtain a new global model using

a certain aggregation rule. In the case of Federated Averaging, the rule is the

weighted average. Formally noted as: w =
m∑

i=1

ni
n ωi.

To tackle the non-IID challenge in FL, clustered FL is an important variant which

can achieve good performance on this. And its formulation can be written as a bi-level

objective as below,

minimize
C

1
m

K∑
k=1

m∑
i=1

r i,kL (M ,D i, ck)(4.3a)

subject to r i,k,C = argmin
r i,k,C

K∑
k=1

m∑
i=1

r i,kd(g i,Gk)(4.3b)

where all clients share the same model structure M , K is the number of clusters, r i,k is

the indication assignment matrix of the clustering problem to determine that i-th device

belongs to cluster k, C = {c1, . . . , cK } represents centroids of K clusters, g i and Gk are the

measure of client i and cluster k, respectively, which can be model parameters or loss,

d is the distance function. To simply the formulation, weight of each client is set to be

1/m. The upper Equation 5.7a is the objective of FL, and the lower Equation 5.7b is the

clustering objective, while a bi-level optimization structure is adopted to connect the FL

with clustering.
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4.2.2 Robust clustered FL with bMOM

While K-means is widely used for clustering, its robustness is limited. It shows a poor

convergence rate or is not able to correctly group data when there are outliers and

adversarial contamination. Several other robust versions of EM or K-means already

existing, such as K-PDTM, trimmed-K-means, K-medians have also been proposed.

Compared to the above robust variants of K-means, K-bMOM may be increased the

computation complexity at each step of the learning process due to bootstrapping. Yet,

K-bMOM holds a number of beneficial effects, such as better break down points. Also,

K-bMOM in theory has a higher convergence rate when there is a certain level of outliers

in the sample compared to the K-means method.

The breakdown point is a classical measure in the robust statistics literature to

measure, which represents the maximum proportion of outliers that leaves the estimator

bounded. In bMOM, it implies if the block size nB is rightly chosen, then the probability

that the bMOM remains stable under adversarial contamination tends to be one when

the number of blocks tends to infinity [18]. This shows that when the number of blocks is

big enough, then the bMOM can have a better breakdown point than empirical means.

Overall, to address the outliers and non-IID in FL and make the performance of FL

more robust, bMOM estimator is imported to combined with clustered FL. And the loss

function of the clustering task can be defined as:

(4.4) R =med{
K∑

k=1

m∑
i=1

r i,k∥ωi − c(b)
k ∥2

2 : b ∈ {1, ...,B},nB > K},

where B blocks are bootstrapped from m devices’ data with block size nB > K , med is to

find the median of B minimum losses, and c(b)
k is the center of cluster k based on b-th

block of data.

Combined bMOM with the clustered FL problem, using model parameters to measure

the client or cluster, and Euclidean distance to measure the distance of clients and

clusters, and k-means as the clustering method, we can formulate the loss as a bi-level

optimization problem.

minimize
C(bmed )

1
m

K∑
k=1

m∑
i=1

r i,kλiL (Mk,Di, c(bmed)
k )(4.5)

subject to r i,k,C(bmed) = argmin
r i,k,c

(bmed )
1 ,...,c

(bmed )
K

R(4.6)

where C(bmed) = {c(bmed)
1 , . . . , c(bmed)

K } represents centroids of the block bmed, which has the

median loss in B blocks, and λi is the weight of i-th device.
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Given the above formulation and analysis, we believe bMOM is robust against this

setting due to the statistical nature of the classical median of means. As with every

iteration in the learning process, we sample a list of blocks from the worker nodes. When

the number of malicious worker nodes is sufficiently small than the number of blocks,

this randomness will nullify the effect caused by malicious worker nodes. As we take

the median of a list of empirical risk computed on each cluster, the block that malicious

worker node is naturally either larger or small than the median empirical risk of normal

block and will be discarded. In the experiment section, this feature of K-bMOM is proved

empirically.

4.2.3 Algorithm

To address the bi-level optimization problem above, we proposed an Robust Clustered FL

algorithm called FedRoC. FedRoC starts with K initial model parameters. To initialize

FedRoC, firstly we do Bootstrap(B,nB) to sample nB > K devices with replacement ran-

domly and uniformly for B times to get B blocks 1, . . . ,B. Then k-means++ initialization

[5] is proceeded for each block, and the empirical risks of B blocks are calculated. At last

block with median risk and its centroids are got.

For the iterative round, four steps will be performed. At first we still need to do

Bootstrap(B,nB), and then we perform the EM algorithm and calculate the empirical

risk for each block. The next step is to select the block which has the median clustering

loss, and its centroids. And the last step is to perform local update of FL for each cluster

in the selected block, and get the updated centroids. Then we iterate these four steps

until convergence.

The pseudo code of FedRoC is shown in Algorithm 3.

4.3 Experiment

4.3.1 Training Setups

As a proof-of-concept scenario to demonstrate the effectiveness of the proposed method,

we experimentally evaluate and analyze the proposed FeRobust on federated benchmarks

dataset(Caldas et al. 2018).

Dataset We employed three publicly-available federated benchmarks datasets intro-

duced in LEAF [19], which is a benchmarking framework for learning in federated
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Algorithm 3: FedRoC
Input: {D1,D2, . . . ,Dm},K
Output: r i,k,C(bmed)

Initialize:
Bootstrap(B,nB)
for blocks b from 1 to B: do

K-means++ initialization
Calculate the empirical risk

end
Select the block bmed get initialized centroids {c(bmed),0

1 , . . . , c(bmed),0
K }.

Iterate:
while stop condition is not satisfied do

Bootstrap(B,nB)
for blocks b from 1 to B: do

E-Step:
Assign each device in b to its closest centroid using updated centroids
M-Step:
Recompute the centroids
Calculate the empirical risk

end
Select the block bmed and get centroids {c(bmed),t

1 , . . . , c(bmed),t
K }

Federated Learning-Step:
for each cluster k = 1, . . .K in bmed do

Assign c(bmed)
k to every device in Cluster k. for i ∈ Ck do

for E local epochs do
c(bmed),t+1

k ← c(bmed),t
k −η∇L (c(bmed),t

k ,Mk,D i)
end

end
end

end

settings. The datasets used are Federeated Extended MNIST (FEMNIST)1 [28] and Fed-

erated CelebA (FedCelebA)2 [76], and finally Synthetic dataset which inspired by [72].

We follow the data processing instructions from its official repository. In FEMNIST, the

handwritten images are splited according to the writers. For FedCelebA, the face images

are extracted for each person and developed an on-device classifier to recognize whether

the person smiles or not. For Synthetic, the dataset is generated with 1000 nodes and

five classes. A statistical description of the datasets is described in Table 4.1.

1http://www.nist.gov/itl/products-and-services/emnist-dataset
2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 4.1: Statistics of datasets. “# of inst. per dev.” represents the average number of
instances per device.

DATASET SYNTHETIC FEMNIST FEDCELEBA
# Data points 107553 805,263 200,288
Model LOG-REG CNN CNN
Classes 5 62 2
# of device 1000 3,550 9,343
LR 0.01 0.003 0.1
Epochs 10 5 10

Local Model We use a CNN with the same architecture from [76] for two image

classification datasets and multi-class logistic regression for a Synthetic dataset. Two

data partition strategies are used: (a) an ideal IID data distribution using randomly

shuffled data, (b) a non-IID partition by use a pk ∼ DirJ(0.5). Part of the code is adopted

from [106]. For FEMINST data, the local model’s learning rate is 0.003, and the local

epoch is 5. For FedCelebA, the learning rate is 0.1, and the local epochs are 10.

Baselines

1. NonFed: We will conduct the supervised learning task at each device without the

FL framework.

2. FeSEM: A clustered FL method that clusters clients by considering the distance be-

tween their model parameters. It uses stochasti EM as the optimization algorithm.

[108]

3. FedAvg: The vanilla FL method [83] proposed by Google in 2017. It is an SGD-

based FL with weighted averaging.

4. FedCluster: A clustered FL method that is to enclose FedAvg into a hierarchical

clustering framework [90].

5. HypCluster(K): A clustered FL method that measure distance using the perfor-

mance of each client’s model, namely hypothesis-based clustered FL [81].

6. FedRoC Our proposed algorithm that is robust clustered FL algorithm using

bootstrap median-of-mean to tackle outliers in clustering.
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Training settings. We used 80% of each device’s data for training and 20% for testing.

For the initialization of the cluster centers in FeSEM, we conducted pure clustering 20

times with randomized initialization, and then the “best” initialization, which has the

minimal intra-cluster distance, was selected as the initial centers for FeSEM. For the

local update procedure of FeSEM, we set N to 1, meaning we only updated ωi once in

each local update.

Evaluation metrics. Given each global model of a cluster perform differently across

numerous devices of a cluster, we evaluated the overall performance of the FL methods.

We used classification accuracy and F1 score as the metrics for the two benchmarks. In

addition, due to the multiple devices involved, we explored two ways to calculate the

metrics, i.e., micro and macro. The only difference is that when computing an overall

metric, “micro” calculates a weighted average of the metrics from devices where the

weight is proportional to the data amount, while “macro” directly calculates an average

over the metrics from devices.

Local Personalisation When multiple global models have been trained using multi-

ple client groups, we can discuss the local personalization in three categories. 1) For the

non-outlier clients who participated in the training, they don’t need to conduct local per-

sonalization and use the global model directly. 2) For the outlier clients who participated

in the training, they can conduct local updates. 3) For the unseen clients in the training

stage, they need to download all global models to get the best performed one. Then, they

can conduct the local update for a few steps and calculate the distance between the local

model and the global model. If the distance is bigger than a threshold, then use the local

model; otherwise, use the global model.

Figure 4.1: Convergence Analysis from Benchmarks with Model Poisoning Attack
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4.3.2 Experiment Analysis

Convergence To verify the convergence of the proposed approach, we conducted a

convergence analysis by running FedRoC with different cluster numbers K (from 2 to 5)

in 100 iterations by the same set of other hyperparameters. As shown in Fig. 4.1, robust

clustered Federated Learning can efficiently converge on all datasets, and results show

that the best performance can be achieved with the cluster number K = 5. In this figure,

we show the testing accuracy against the number of iterations on three datasets. The

Red line shows the FeRobust with no model poisoning attack. The green line shows the

FedRoC with 10% of workers are Byzantine nodes, and the Blue line shows the FeRobust

with 25% of workers are Byzantine node. The figure display that the testing accuracy

of FedRoC dropped by varied of 3.0-11.2 in Synthethic, Femnist and Celeba, while the

testing accuracy on Celeba decreases the most.

Table 4.2: FeSEM v.s. FedRoC

Dataset Approach No Attak m = 0.1 m= 0.25

Synthetic
FeSEM 2.8 ± 1.6 3.6 ± 2.2 3.9 ± 2.0
FedRoC 1.5 ± 0.6 1.8 ± 0.8 1.0 ± 0.8

FEMNIST
FeSEM 3.0 ± 0.2 4.1±2.4 4.9 ± 2.0
FedRoC 1.2 ± 0.2 1.1 ± 0.6 1.1 ± 0.8

Celeba
FeSEM 2.4 ± 0.2 3.2 ± 2.0 3.5 ± 2.1
FedRoC 0.7 ± 0.5 0.7 ± 0.7 0.9 ± 0.7

Comparison Study We report the experiment of classification on three datasets

and start training a global model with/without Byzantine nodes. There are m=0.05 of

total clients as Byzantine nodes. Unsurprisingly, the average convergence rate without

Byzantine nodes is faster than FedRoC, even without Byzantine nodes. However, figure

on the right, we report the case training a global model with Byzantine nodes. Each

Byzantine node estimates an update on their auxiliary datasets and before sending it to

the server, scaled by a large factor (set to the number of total workers that have sampled

to train at the current round), note that in FeSEM and Fedavg, each worker, including

Byzantine worker is selected uniformly at the beginning of each round. The figure

displays that those aggregation rules operated by other baseline methods do not tolerate

any Byzantine nodes presence, while FedRoC only suffers an insignificant performance

drop when there are 25% of Byzantine nodes. It also displays that with higher m
Byzantine nodes, the further decrease of other algorithms but FedRoC stands the same

performance. It is worth mentioning that according to the result of 4.3, FedRoC does
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not achieve the state-of-the-art performance among other clustered federated learning

methods. However, the better “mean operator” enables FedRoC to be an effective and

resilient method against model poisoning attacks. Our empirical result is aligned with

the property of FedRoC, and the average similarity measure of each cluster with its most

similar cluster in 4.2 supports this hypothesis.

Table 4.3: Comparison of our proposed FedRoC(K) algorithm with the baselines on
FEMNIST and FedCelebA datasets. Note the number in parenthesis denotes the number
of clusters, K .

Datasets FEMNIST FedCelebA
Metrics(%) Micro- Micro- Macro- Macro- Micro- Micro- Macro- Macro-

Acc F1 Acc F1 Acc F1 Acc F1

NoFed 79.0 67.6 81.3 51.0 83.8 66.0 83.9 67.2
FeSEM 90.3 70.6 91.0 53.4 93 74.8 94.1 69.4
FedAvg 84.9 67.9 84.9 45.4 86.1 78.0 86.1 54.2
FedCluster 84.1 64.3 84.2 64.4 86.7 67.8 87.0 67.8
HypCluster 77.7 60.9 74.2 62.4 77.6 55.4 80.4 55.2
FedRoC(5) 88.6 69.3 86.3 62.2 87.2 72.7 90.1 68.3

Clustering case study As a case study, a figure displays that plots all nodes and their

assignment in training. The highlight of this table is that, as expected, every iteration of

the block, which is the median block among others, shows different risks to those blocks

has Byzantine nodes. Those blocks show very different statistical properties, and their

gradient updates will not take into the global model. It also shows a successful dense

against model poisoning attacks.

4.4 Conclusion and Remarks

In this chapter, we propose a enhanced of existing multi-center FL approach to offset

the adversarial worker nodes using the K-bMOM estimator. This algorithm has better

breakdown point to address outliers and converges fast. In experiments based on three

datasets, the proposed algorithm has similar performance to other baselines while

showing much superior clustering performance than baseline methods in all three

datasets. We also discussed possible extensions of FedRoC for better distance computation

if the local model is a neural network.
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PERSONALIZED FEDERATED LEARNING WITH LOF

AGAINST MODEL POISONING

5.1 Introduction

Federated Learning (FL) [83] first proposed in 2017 is widely-used to protect

clients’ data privacy in distributed applications recently, such as Google’s Gboard

on Android [83], Apple’s Siri [37], Computer Visions [54, 59, 79], Smart Cities

[120] and Healthcare [77, 88, 109]. The classical FL method, called FedAvg [83], is to

train a global model across all clients using gradients to communicate efficiently and

privately. Vanilla FL is apparently vulnerable to model poisoning attacks due to its

decentralized nature. Thus, it is challenging to develop a Federated Learning application

that has a good personalized decision-making ability while being robust against model

poisoning attacks.

The non-IID challenge is also proposed that can lower the training performance in

both accuracy and efficiency. It indicates that the data distribution of each client can

be different due to unique attributes or behaviour, thus a globally shared model may

not generalize well and fairly in all clients. Personalized FL (PFL) is the most popular

method to address this challenge. Based on granularity, PFL can be categorized into

cluster-wise PFL and client-wise PFL. PFL methods, such as Ditto [68] and WeCFL [80],

train multiple models client-wisely or cluster-wisely to adapt to each client or cluster

better, while knowledge is still shared to improve the performance.
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Model poisoning is another challenge in realistic FL. In a distributed system of

FL, some malicious agents may upload fake or dirty gradients to the server in the

aggregation step, and then the aggregated model to distribute is poisoned. It is naive

to adopt anomaly detection techniques to find these malicious agents or outliers. Local

outlier factor (LOF) [16] is an efficient method based on the density of data points.

To tackle these two challenges above at the same time, it is difficult to embed the

anomaly detection technique into the PFL. We constructed a nested bi-level optimization

problem to combine client-wise PFL, cluster-wise PFL, and anomaly detection together.

An algorithm of personalized FL with robust clustering (FedPRC) is proposed to detect

outliers and keep the state-of-the-art performance. Our contributions are summarized as

below.

• We formulate the PFL problem with robust clustering into a nested bi-level opti-

mization framework.

• We propose a novel PFL with robust clustering (FedPRC) algorithm to solve the

complex optimization problem, and the algorithm can resist Byzantine workers.

• The experimental analysis demonstrates the effectiveness and superior perfor-

mance in comparison with baselines in multiple benchmark datasets.

The remaining sections of the thesis are organized as follows. We will formulate the

problem of PFL with robust clustering in Section 3.3. Then the FedPRC algorithm is

proposed in Section 5.4. Experimental settings and empirical study are discussed in

Section 5.5.1 and 5.5.2, respectively.

5.2 Motivation

5.2.1 Model poisoning and anomaly detection

The way malicious agent generates an arbitrary update vector by merely shuffle data

labels sounds very similar to the standard dirty-label poisoning in [25]. However, in

Federated Learning setting, the possibility of a an adversary controlling a small number

of malicious agents, perform a model poisoning attack to manipulate the learning process

so that the jointly trained global model which turn into misclassifiation over some

data is much higher. FL is apparently vulnerable to model poisoning attacks due to its

decentralized nature. A line of work has been done already [7] [10] [32]. In contrast to
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previous work, this work focus to detect these malicious agents during central clustering

phase by applying density method then reduce the impact of those agents’ updates to the

aggregation of the cluster center.

Anomaly detection can be described the problem of finding patterns in data that

do not confirm to expected behavior. Of these, anomalies and outliers are two terms

used most commonly in the context of anomaly detection. Clustering can be used as a

technique for training of the normality model, where similar data points are grouped

together into clusters using a distance function, for example [84]. While LOF [16] is

a widely-used density-based anomaly detection method. However, in the case of our

method, we already know malicious agents are the anomalies that we tried to identify.

The outcome after preclude those identified outliers would be benigh agents, then only

the benign agents weight matrix feed into our clustering algorithm. The identifying

outliers stage has no inherit relation to next clustering phase.

5.2.2 Problem

Federated learning (FL) usually aggregates all local models to a single global model.

However, this single-center aggregation is fragile under heterogeneity. In contrast, we

consider FL with multiple centers to better capture the heterogeneity by assigning nodes

to different centers so only similar local models are aggregated. Consider two extreme

cases for the number of centers, K : (i) when K = 1, it reduces to the FedAvg with a

single global model, which cannot capture the heterogeneity and the global model might

perform poorly on specific nodes; (ii) When K = m, the heterogeneity problem can be

avoided by assigning each node to one global model. But the data on each device used to

update each global model can be insufficient and thus we lose the main advantage of FL.

Our goal is to find a sweet point between these two cases to balance the advantages of

federated averaging and the degradation caused by underlying heterogeneity.

Learning one unique model for each node has been discussed in some recent FL

studies for better individual level personalized models. They focus on making a trade-off

between shared knowledge and professionalisation. The personalising strategy either

applies fine-tuning of the global model [119] for each node, or only updates a subset of

personalized layers for each node [4, 74], or deploys a regularisation term in the objective

[35, 38, 52]. These personalization is tightly integrated with the model aggregation

procedure. In contrast, we propose a light-weight personalization solution by simply

conduct a limite4d number of local updating.

67



CHAPTER 5. PERSONALIZED FEDERATED LEARNING WITH LOF AGAINST
MODEL POISONING

5.3 Methodology

Before the methodology, the notations are list below, which can be separated into three

parts, FL, clustering and LOF.

Table 5.1: Table of Notations

Components Notation Definition

FL

m Number of clients in FL system
D i, |D i| The dataset and its size on Client i
Mi Model function or structure of Client i
ωi Model parameters of Client i
Li Loss function of Client i
λi The importance weight of Client i, usually measured by its dataset

size
E Number of local update steps

Clustering

K Number of clusters
r i,k ∈Rm∗K The assignment matrix, r i,k = 1 if i ∈ k else r i,k = 0
i ∈ k Client i belongs to Cluster k
g i General form to represent Client i depending on hi, l i, D i or some-

thing else, e.g. model parameters or loss
Gk General form to represent the centroid of Cluster k, and usually a

linear combination of g i with i ∈ k
d(g i,Gk) The distance function of general representations between Client i

and the center of Cluster k, e.g. Euclidean distance.

LOF
n Number of neighbours
ci Indicator. 1 if Client i belongs to inliers else 0.

5.3.1 PFL

For the classical FL problem, the objective can be formulated as below,

(5.1) minimize
ω

m∑
i=1

λiL (M ,D i,ω)

And the framework is shown in Figure 5.1. The algorithm FedAvg [83] is also implied in

this figure, which can be summarized as four steps, model initialization or distribution

from server to clients, local update on clients, gradients upload from clients to the server

and model aggregation on the sever.

For the client-wise PFL problem, its objective can be formulated as below,

(5.2) minimize
{ωi}

m∑
i=1

λiLi(Mi,D i,ωi)
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Figure 5.1: Framework of classical FL

which means an arbitrary client i may have its importance λi, unique dataset D i, model

structure Mi, model parameters ωi, and loss function Li.

5.3.2 LOF

To understand the LOF [16], a density-based anomaly detection method, there are five

key definitions step by step. Firstly n-d of an object o is defined as the distance d(o, p)

between o and p ∈ D which satisfies:

• There are at least n objects o′ ∈ D|{o}, which holds d(o, o′)≤ d(o, p), and

• There are at most n−1 objects o′ ∈ D|{o}, which holds d(o, o′)< d(o, p).

Then the n-d neighborhood of an object o can be defined as:

(5.3) Nn-d(o)(o)= {q ∈ D|{o} | d(o, q)≤ n-d(o)}

Thirdly, the reachability distance of an object p w.r.t. object o is defined as:

(5.4) reach-dn(o, p)= max{n-d(o),d(o, p)}

As shown in Figure 5.2, the reachability distance of o, p1 and o, p2 equals n-d(o) and

d(o, p2), respectively.
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Figure 5.2: Reachability distance of o, p1 and o, p2, respectively, for n = 5

Then the local reachability density (lrd) of object o is defined as:

(5.5) lrdn(o)= |Nn(o)|∑
p∈Nn(o) reach-dn(o, p)

Finally the LOF of object o is defined as:

(5.6) LOFn(o)=
∑

p∈Nn(o)
lrdn(p)
lrdn(o)

|Nn(o)|

To judge whether an object belongs to outliers, usually yes if its LOF > 1, which means it

has lower density than neighbours, thus an outlier. With proper n chosen, the breakdown

point for LOF can be at least 0.5, which means unless the malicious clients being the

majority and behaviour similarly, LOF will always works.

5.3.3 Proposed method

For our proposed method of personalized FL with robust clustering structure to attack the

model poisoning, its framework is illustrated in Figure 5.3. And its optimization objective

can be formulated into the below equation which is like a nested bi-level optimization

problem.
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Figure 5.3: Framework of proposed method

minimize
{ωi}

1
m

K∑
k=1

m∑
i=1

λir i,kciL (M ,D i,ωi)(5.7a)

subject to {r i,k}= argmin
{r i,k}

K∑
k=1

m∑
i=1

λir i,kcid(g i,Gk)(5.7b)

{ci}= ILOFn(g i)>1(5.7c)

5.4 Algorithm

To solve the complex Objective 5.7 above, which has three variables, Ω as the ultimate

variable, and R and C as the hidden variables, we need to carefully design an algorithm to

solve them step by step. Thus Algorithm 4 named Personalized FL with robust clustering

(FedPRC) is proposed as below.

For the initialization, K-means++ [5] is used to set up a more robust initial for the

clustering. For the iteration process, it can be merged by two modules, robust clustering

and FL. The Robust clustering module is composed of three steps, the Expectation step (E

step), the LOF step, and the Maximization step (M step). And the FL module is composed

of three steps either, the Distribution step, Local update step and the Aggregation step.
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Algorithm 4: Personalized FL with robust clustering (FedPRC)
Input: {D1,D2, . . . ,Dm},K ,n
Output: {r i,k}, {ci}, {ωi}
Initialize:
K-means++ initialization
Iterate:
while stop condition is not satisfied do

E-Step:
Assign each device in b to its closest centroid using updated centroids
LOF-Step:
Use LOFn to label outliers
M/Aggregation-Step:
Recompute the centroids with inliers.
Local update-Step:
for each cluster k = 1, . . .K do

Assign centroids to every device in Cluster k.
for i ∈ Ck do

for E local epochs do
ωt+1

i ←ωt
i −η∇L (M ,D i,ωt

i)
end

end
end

end
End:
Fine tuning-Step
Fine tuning ωi for E′ epochs.

Due to the M step in robust clustering being the same as the Aggregation step in FL, these

two modules can be merged together to form the iteration process. Until convergence

or stop condition is satisfied, the output is K models for K clusters. To achieve better

performance for each client, a simple but effective personalization technique called fine-

tuning is imported as the optimum of one cluster is not the optimum of its clients. Finally,

we can get m personalized models with robustness against model poisoning for every

client.

5.5 Experiments

As a proof-of-concept scenario to demonstrate the effectiveness of the proposed method,

we experimentally evaluate and analyze the proposed FedPRC based on the LEAF

framework, a FL benchmark [19].
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DATASET FEMNIST CelebA
# of Data 805,263 200,288
Classes 62 2
# of device 3,550 9,343
Model CNN CNN
LR 0.003 0.1
Local Epochs 5 10

Table 5.2: Statistics of datasets. “#” represents the number of instances.

5.5.1 Experimental settings

Datasets. We employed two publicly-available federated benchmarks datasets intro-

duced in LEAF [19]. LEAF is a benchmarking framework for learning in federated

settings. The datasets used are Federeated Extended MNIST (FEMNIST)1 [28] and Fed-

erated CelebA (FedCelebA)2 [76]. We follow the setting of the benchmark data in LEAF.

In FEMNIST, the handwritten images is split according to the writers. For FedCelebA,

the face images are extracted for each person and developed an on-device classifier to

recognize whether the person smiles or not. A statistical description of the datasets is

described in Table 5.2.

Local model We use a CNN with the same architecture from [76]. Two data partition

strategies are used: (a) an ideal IID data distribution using randomly shuffled data, (b)

a non-IID partition by use a pk ∼ DirJ(0.5). Part of the code is adopted from [106]. For

FEMINST data, the local model’s learning rate is 0.003 and epoch is 5. For FedCelebA,

the learning rate is 0.1 and the epochs is 10.

outliers In this work, we evaluate the proposed method using the outliers generated

from a poisoning attack tool. The idea of model poisoning adopts from Krum [10] which

is simply boosting each iteration of the learned model in some worker node. Malicious

clients assign wrong labels to each samples in local dataset. In other words, explicit

boosting works is to mimic the benign worker clients during the learning process; the

client tries to perform the same number of epochs on the local dataset via the same

training objectives to obtain an initial gradient update. Since the malicious client wants

to ensure the outcome deviates from the true label, it will have to overcome the scaling

1http://www.nist.gov/itl/products-and-services/emnist-dataset
2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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effect of gradient updates collected from other nodes. In other words, the final gradient

updates the malicious nodes send back are then scaled a factor Λ by which the malicious

nodes boost the initial update. The Λ here is a hyper-parameter which is a multiplier for

malicious clients which used to force the trained global model to close its direction. Here

we use the number of clients of a subset each iteration then times two as Λ.

Baselines In the scenario of solving statistical heterogeneity, we choose FL methods

as follows:

1. NonFed: We will conduct the supervised learning task at each device without the

FL framework.

2. FedSGD: uses SGD to optimise the global model.

3. FedAvg: is an SGD-based FL with weighted averaging. [83] .

4. FedCluster: is to enclose FedAvg into a hierarchical clustering framework [90].

5. HypoCluster(K): is a hypothesis-based clustered-FL algorithm with different K
[81].

6. Robust design a framework run in a modular manner, namely, a robust clustering

model, and a communication efficient, distributed, robust optimization over each

cluster separately [47].

7. FedDANE: is an FL framework with a Newton-type optimization method. [71].

8. FedProx: adds a proximal term onto an objective function of the learning task on

the device [70].

9. FedDist: we adapt a distance based-objective function in Reptile meta-learning

[85] to a federated setting.

10. FedDWS: a variation of FedDist by changing the aggregation to weighted averaging

where the weight depends on the data size of each device.

11. FedPRC(K): our proposed algorithm FedPRC with different numbers of clusters

K .
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Training settings We used 80% of each device’s data for training and 20% for testing.

For the initialization of the cluster centers in FedPRC, we conducted pure clustering 10

times with randomized initialization over the gradients matrix where is computed by

each client conduct 1 epoch local training, and then the “best” initialization, which has

the minimal intra-cluster distance, was selected as the initial centers for FedPRC. For

the local update procedure of FedPRC, we set N to 1, meaning we only updated Wi once

in each local update.

Evaluation metrics. Given numerous devices, we evaluated the overall performance

of the FL methods. We used classification accuracy and F1 score as the metrics for the

two benchmarks. In addition, due to the multiple devices involved, we explored two

ways to calculate the metrics, i.e., micro and macro. The only difference is that when

computing an overall metric, “micro” calculates a weighted average of the metrics from

devices where the weight is proportional to the data amount, while “macro” directly

calculates an average over the metrics from devices.

5.5.2 Experimental study

Comparison study As report in Table 5.3, we compared our proposed FedPRC with

the baselines and found that our proposed FL framework achieves the best performance

in most cases. We can see our proposed FedPRC outperforms all baselins in all metrics,

which shows the effectiveness and significance of FedPRC. Furthermore, as report in

the last three columns in Table 5.3, we found that FedPRC with a larger number of

clusters empirically achieves a better performance, which verifies the correctness of the

non-IID assumption of the data distribution. Due to the experiment on both dataset is

very consuming, we use grid search technique for the number of clusters and only run

full experiment with those values, i.e. two-four.

Convergence analysis To verify the convergence of the proposed approach, we con-

ducted a convergence analysis by running FedPRC with different cluster numbers K
(from 2 to 4) in 100 iterations. As shown in Fig. 5.4, FedPRC can efficiently converge on

both datasets and it can achieve the best performance with the cluster number K = 4.

The last step is fine-tuning.
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Datasets FEMNIST CelebA

Metrics(%)
Micro- Micro- Macro- Macro- Micro- Micro- Macro- Macro-

Acc F1 Acc F1 Acc F1 Acc F1

NoFed 79.4 67.6 81.3 51.0 83.8 66.0 83.9 67.2
FedSGD 70.1 61.2 71.5 46.7 75.7 60.7 75.6 55.6
FedAvg 84.9 67.9 84.9 45.4 86.1 78.0 86.1 54.2
FedDist 79.3 67.5 79.8 50.5 71.8 61.0 71.6 61.1
FedDWS 80.4 67.2 80.6 51.7 73.4 59.3 73.4 50.3
Robust(TKM) 78.4 53.1 77.6 53.6 90.1 68.0 90.1 68.3
FedCluster 84.1 64.3 84.2 64.4 86.7 67.8 87.0 67.8
HypoCluster(3) 82.5 61.3 82.2 61.6 76.1 53.5 72.7 53.8
FedDane 40.0 31.8 41.7 31.7 76.6 61.8 75.9 62.1
FedProx 51.8 34.2 52.3 34.4 83.4 60.9 84.3 65.2
FedPRC(2) 91.3 64.9 91.7 64.1 93.8 77.2 94.1 71.5
FedPRC(3) 91.1 63.1 91.0 62.6 93.6 77.8 93.3 70.6
FedPRC(4) 92.7 66.4 92.4 65.7 94.4 80.4 94.6 72.7

Table 5.3: Comparison of our proposed FedPRC(K) algorithm with the baselines on
FEMNIST and FedCelebA datasets. Note the number in parenthesis following “FedPRC”
denotes the number of clusters, K .

5.6 Conclusion and Remarks

This chapter proposed a personalized FL method with robust clustered structure to

tackle model poisoning attack in FL while still keep the state-of-the-art performance. It

is novel to combine client-wise, cluster-wise PFL and robust clustering together to tackle

the non-IID and model poisoning challenges in FL.
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Figure 5.4: Convergence analysis for the proposed FedPRC with different cluster number (in
parenthesis) in terms of micro-accuracy.
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CONCLUSION

I surely hope this work will help to make the clustering approaches, also know as

multi-center framework over the whole Federated Learning network specifically,

as well as the personlization models, secure models that against model poisoning

attack in Federated learning more attractive for future research. The achieved results

show that whole population could be partitioned into different clusters or groups in which

the users have similar preferences. Therefore, learning an intelligent model customised

for each group with non-IID data can be considered as competitive edge over vanilla FL.

The main conclusion of this work are:

• propose a novel multi-center aggregation approach to address the non-IID challenge

of personalized decision-making system.

• design an objective function, namely multi-center federated loss, for user clustering

in FL.

• propose Federated Stochastic Expectation Maximization (FeSEM) to solve the

optimization of the proposed objective function.

• present the algorithm as an easy-to-implement and strong baseline for FL. Its

effectiveness is evaluated on benchmark datasets.

• introduce a robust version of K-means to extend previous multi-center Federated

Learning approach.

79



CHAPTER 6. CONCLUSION

• adopt bootstrap sampling during initialization together with a median-of-means

estimator, which we prove theoretically enable faster convergence and robust to

outliers and malicious node.

• present an algorithm as an easy-to-implement and strong baseline for FL, and

present two different expansions for improved robust properties which target

outliers/malicious nodes, namely FeROC and FedPRC. we compared and analyzed

proposed approaches on a few datasets, the result shows its computationally

competitive than FeSEM and more robust than any other clustering algorithms.

• we create a open-source repository for multi-center federated learning to prompt

reproducible research.

6.1 GreenSAP in Federated Learning

Since the day of Federated Learning invented, much effort have been put into natural

language modelling related research. Google’s first commercial usage that success employ

Federated Machine Learning is Gboard which is a mobile keyboard prediction program.

In addition, While Google has launched several applications on langauge modeling

tasks, FL solutions are also used in many Apple products such as Siri and Doc.ai.

FL is a technology not only required investigation from machine learning area, but

also techniques from distributed optimization, statistics, cybersecurity, communication,

systems, cryptography and many more other disciplines. We believe that a number of

NLP tasks can be study in the FL context.

For our future reference and audience who shared similar background, we suggest

two possible idea can applied sarcasm detection model in Federated Learning setting.

First, during Federated Learning training phase, all device,regardless their language

and their graphic zones, will include in the population and treated indistinctly. The

outcome of learning process is a global sarcasm language model where the model just

setup a foundation (also known as pre-trained) for the deployed one. Then when client

request to deployed model first time, the server will start a fine-tuning procedure accord-

ing to user’s features, then the final model in use on client device will be most mobile

context-aware one. Secondly, we borrow the idea of meta-learning, which is similar to

multi-task learning. Since it also learns how to perform a tasks by using the experience

from other tasks. In Federated Learning setting, each new user can be viewed as a new

task and the algorithm will uses the learning of a client to personalized the global model

80



6.1. GREENSAP IN FEDERATED LEARNING

which lead to a more comprehensive sarcasm language model.

In short, many NLP tasks can be studied or included in Federated Learning setting,

we hope to extend our sentiment analysis model and build a practical sentiment analysis

application in Federated Learning setting.

There is of course still much space for future improvements even in such a small

research topic. The Federated Learning technology aims to overcome data regulation

challenges that impede machine learning from getting widely implemented. To help with

Federated Learning to reach its expected potential, the following systematic issues need

to be addressed, optimize local computing resource usage, asynchronous update and

distributed optimization. Among these, future research that would help might be:

• Explore different loss function in detail in the context of Federated Learning

• Identify a few possible application scenario for Federated Learning

• Explore different representation as clustering features for similarity measure

• Communication efficiency and asynchronous architecture
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