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ABSTRACT

I n the rapid development of artificial intelligence, remarkable advancements have
been achieved in diverse domains such as visual perception, visual-language under-
standing, virtual human generation, and robotics. These domains are intrinsically

multi-modal, encompassing data from varied sources including images, text, audio, video,
3D pose, and robotic sensors. This multi-modal nature presents unique challenges and
opportunities in AI research. One of the central challenges is effectively learning from
this multi-modal data to build robust and versatile AI systems. To address this challenge,
this thesis focuses on the crucial question: How can we accurately and efficiently extract
valuable cues from multi-modal data to train effective deep neural networks? By explor-
ing this question, the thesis aims to advance understanding and methodologies in the
field, particularly in the areas of classification and generation, leveraging the complex
and valuable multi-modal data.

This work bifurcates the scope of study into two primary areas: classification and gen-
eration. For classification tasks, we focus on visual modalities and improve the proposed
methods’ visual perception capabilities. The exploration can be separated into two folds.
First, the thesis investigates a specialized and challenging task in classification‚Äîfine-
grained recognition. We propose a moderate hard example mining strategy to mitigate
model overfitting and improve classification accuracy. This method prevents the net-
work from merely memorizing hard examples, instead requiring the learning through
moderated penalties. Then, beyond the specialized task, we go further with general
classification tasks and explore a broader scope in visual modality. In this part, a novel
method improving network generalizability and classification accuracy is presented. By
introducing an episodic linear probing mechanism, this approach regulates network
training, enhances representational discriminability, and bolsters neural network gener-
alization across various perception tasks, including fine-grained, long-tail, and generic
recognition.

In the domain of generative tasks, the thesis delves into text, pose, and affordance
generation, each necessitating a deep understanding of multi-modal data. For text
generation, an image-compounded captioning approach is introduced for video captioning,
which effectively mines semantic cues from complex video data by jointly considering
image and video properties. In pose generation, a semantic-energized method is proposed
for virtual human pose generation. This approach enables networks to extract meaningful
semantic cues from text and audio and generate accurate, expressive co-speech gestures
aligned with speech semantics. Lastly, the thesis explores affordance learning in robotic
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manipulation using 3D point clouds and robotic gripper data. To handle redundant
data samples and multi-modal inputs, a multimodality-aware autoencoder framework
is proposed. This framework facilitates efficient learning from sparse data samples,
achieving comparable performance with limited positive samples and training epochs
compared to previous works.

In conclusion, this thesis presents an exploration of various tasks in classification
and generation, emphasizing multi-modal data properties. Extensive experiments across
these tasks demonstrate the efficacy and efficiency of the proposed methods, consistently
outperforming previous approaches.

Dissertation directed by Professor Yi Yang,
Australian Artificial Intelligence Institute, University of Technology Sydney
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1
INTRODUCTION

In the field of artificial intelligence, the pursuit of harnessing and comprehending multi-

modal data stands as a crucial frontier. Humans perceive the world through multiple

senses, with each contributing uniquely to our comprehensive understanding and intelli-

gence. This ability to process and utilize multi-modal information has been fundamental

in developing human intelligence [51, 138], complex societal structures [14, 73], and

intricate organizations [73, 175]. Research highlights the significance of sensory input

in human development, shaping the ways and possibilities for achieving intelligence.

Treicher [99, 117, 118], a noted experimental psychologist, quantified human sensory

input, finding that 83% of external information is visual, followed by 11% auditory. He

further posited that humans remember 10% of what they read, 20% of what they hear,

and 50% of what they see and hear combined.

Drawing inspiration from human sensory processing, numerous works [18, 20] in AI

have explored the potential of using diverse modalities to construct AI systems. This

exploration is more than a scientific endeavor; it is a journey toward unlocking AI’s

full potential, enabling machines to perceive [145, 179], integrate [85], interpret [2],

and interact [84] with information from a data-rich world. This thesis aims to bridge

the gap between AI systems and human perception, pushing AI to achieve a level of

real-world data perception and understanding akin to human capabilities. As in prior

works, we comprehensively explore vision, audio, and touch modalities, which are also

the modalities machines can capture, process, and understand [18].

We start with vision, the most dominant human sensory. Our exploration spans from
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CHAPTER 1. INTRODUCTION

specialized to general perception tasks, extending from single image understanding to

complex video comprehension. This series of studies investigates how machines can

better perceive domain-specific content, understand general content across various

domains, and ultimately simulate human-like semantic responses to visual stimuli.

After delving into vision, we add another vital sensory element - audio. We investigate

machine understanding of audio information and behavior generation akin to human

responses. The journey then advances to include the sense of touch, combining vision and

tactile feedback to enable machines to comprehend real-world environments. We explore

affordance learning for robot grippers, guiding robots in interacting with physical objects,

akin to human vision and tactile abilities.

In detail, for visual sensory, we delve into visual classification, from specialized tasks

like fine-grained visual recognition to various general visual representation learning

tasks. These enable machines to perceive and understand visual data effectively. Moving

from single-frame perception to multi-frame perception, we investigate video representa-

tion and how machines can simulate human reactions to visual information. Specifically,

we explore video captioning, a task that involves describing observed video content,

further broadening our research scope. Additionally, we explore auditory sensory pro-

cessing, focusing on scenarios where responses are generated after listening. Co-speech

gesture generation is identified as an ideal task for simulating human postural reactions

during communication, enhancing our understanding of audio information processing

and human-like response generation. Finally, we incorporate the sense of touch, focusing

on affordance learning for robotic grippers, guiding robots to understand and manipulate

real-world objects.

This thesis represents a comprehensive and diverse investigation, proposing novel

methods that advance AI systems in perceiving and understanding multi-modalities.

We offer new insights to the AI community and reorganize our content to narrate this

research journey effectively. We categorize our research problems into two macroscopic AI

tasks: classification and generation, each evaluated in terms of accuracy and efficiency. All

these concretize our exploration as improving the accuracy and efficiency of classification

and generation tasks in AI.

1.1 Improving Accuracy in Classification Tasks

Visual content, being among the most informative modalities in AI systems, presents cru-

cial challenges and opportunities [81, 120, 143, 257]. The ability to perceive and interpret
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visual data empowers AI systems to directly and intuitively understand their environ-

ments [85, 131, 145, 179]. This thesis first focuses on the visual modality, arguably the

most informative yet complex, before addressing the intricacies of multiple modalities.

In the diverse field of computer vision, tasks such as classification [120, 151, 253, 265],

detection [143, 216], and segmentation [143, 156] continually elevate the requirements

for models’ visual perception abilities. Among these, classification stands as a foun-

dational task, crucial for enabling machines to categorize and make sense of the vast

array of visual information they encounter [81, 129, 253]. Moreover, the effectiveness

of classification tasks serves as a direct benchmark for evaluating models’ ability to

perceive visual data [145, 253]. Thus, as a foundational step in exploring multi-modal

data, this thesis initially investigates visual classification tasks.

For classification tasks, our work unfolds in two dimensions, progressing from special-

ized to general tasks. First, we focus on a specialized and challenging task, fine-grained

visual classification (FGVC), a longstanding challenge involves dealing with visually

similar classes that are difficult to generalize. FGVC is particularly crucial due to its

applications in biodiversity [217], retail [115, 133], and medical diagnostics [66, 71, 150],

where discerning subtly different categories is essential. FGVC’s primary challenge lies

in models’ tendencies towards overfitting [257, 265] and poor generalization [81, 257]

when handling closely related categories. To address this, the thesis introduces Moderate

Hard Example Modulation (MHEM). MHEM moderately modulates the penalties for

learning hard examples during training, mitigating overfitting and enhancing model

generalization. This approach represents a significant advancement in refining models’

ability to discern nuanced differences between similar categories, progressing visual

perception capabilities of AI systems.

Additionally, the thesis tackles broader challenges in visual recognition, with a focus

on network generalization and feature discrimination. To this end, Episodic Linear

Probing (ELP) is introduced. ELP bolsters the generalizability of visual representations

through a strategy of episodic re-initialization during training. This dynamic mechanism

continuously refines the network‚Äôs understanding of complex visual data, thereby

enhancing feature discrimination and overall network robustness. The methodological

rigor and efficacy of ELP present considerable improvements in various tasks visual

perception, including fine-grained, long-tailed, and generic visual classification.
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1.2 Enhancing Accuracy and Efficiency in Generation

Tasks

Diving deeper into the realm of more diverse modalities, this thesis broadens its in-

vestigative scope to include generative tasks that encompass text [2, 105], audio [178],

images [145, 253], videos [72, 181], 3D poses [4], and 3D point clouds [159, 180, 227], etc.

These tasks introduce a broader and more intricate domain of study. In particular, this

research delves into three distinct types of generation tasks, each leveraging multi-modal

inputs: text generation derived from video inputs, pose generation from text and audio

inputs, and affordance generation utilizing point cloud and robotic information inputs.

In text generation from video inputs, the focus is placed on video captioning. Con-

fronted with challenges such as content density and ambiguity, this thesis introduces

an Image-Compounded Learning method for video Captioner (IcoCap). IcoCap merges

image semantics with video content, thereby facilitating more accurate and contextually

relevant semantic extraction from videos. This method represents a significant advance-

ment in the field of video captioning, yielding a more proficient captioner capable of

producing higher accuracy captions.

Progressing to the generation of talking gestures, the thesis presents the innovative

Semantic Energized Generation (SEEG) method. This approach is pivotal in the domain

of virtual human generation, where co-speech gestures play a crucial role in conveying

semantics. SEEG is designed to extract semantic cues from speech and text, enabling the

generation of semantically-aware and vivid gestures. This method effectively improve

the realism and expressiveness of virtual human gestures, pushing the boundaries of

gesture generation.

Lastly, the thesis ventures into the real-world domain of robotics, targeting diverse

modalities pertinent to robotic systems. The focus here is on affordance learning for 3D ar-

ticulated objects in robotic applications. In this thesis, Multimodality-Aware Autoencoder-

based Affordance Learning (MAAL) framework is introduced, integrating multi-modal

data to enable efficient affordance learning. MAAL presents a novel approach in affor-

dance generation for robotic manipulation, offering a process that is both data-efficient

and robust.

Through these studies, this thesis presents a comprehensive research to addressing

challenges in multi-modal AI learning. Each method contributes uniquely to the field,

enhancing our understanding and capabilities in handling complex multi-modal data.

These advancements demonstrate significant improvements over existing methods and
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provide valuable insights for future exploration in artificial intelligence. This thesis not

only addresses specific challenges within the realms of classification and generation but

also contributes to the broader narrative of AI developments. By proposing novel and

effective methods, it enhances the accuracy and efficiency of AI systems in processing

multi-modal data.

In essence, this thesis marks a substantial contribution to the field of artificial

intelligence. It underscores a significant step forward in creating effective and efficient

AI systems capable of navigating the intricate landscape of multi-modal data. The

insights and methodologies developed throughout this research pave the way for AI

systems that are not only more effective in their current applications but also more

versatile and capable of adapting to new and evolving challenges in the future.

1.3 Thesis Organization

In Chapter 3, we embark on the exploration of Fine-grained Visual Classification with

the introduction of the Moderate Hard Example Modulation (MHEM) method. This

foundational technique addresses model overfitting by modulating hard examples within

training datasets, paving the way for improved generalization capabilities in specialized

classification tasks. The success of MHEM sets a precedent for addressing overfitting and

enhancing model performance, themes that are recurrent throughout the subsequent

chapters.

Transitioning from the specialized context of Chapter 3, Chapter 4 expands our

scope to general classification tasks with the introduction of Episodic Linear Probing

(ELP). Building on the groundwork laid by MHEM’s approach to model generalization,

ELP furthers this narrative by specifically targeting network generalization and feature

discrimination. This chapter not only demonstrates ELP’s efficacy in enhancing visual

recognition but also bridges the gap between overcoming overfitting in specialized tasks

and advancing towards broader generalization in visual tasks. The methodologies devel-

oped here are instrumental in preparing the network for more complex and multimodal

challenges ahead.

Chapter 5 takes the journey into the realm of multimodal learning, focusing on video

captioning through our novel Image-Compounded Learning for Video Captioning (IcoCap)

method. This chapter represents a pivotal shift from the visual classification tasks of the

previous chapters to the generation of textual descriptions from video inputs. IcoCap’s

approach to compounding image semantics with video content illustrates the natural
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progression from enhancing network generalization to applying these advancements

in understanding and generating complex multimodal data. The evolution from visual

recognition to video captioning underscores the thesis’s exploration of deepening levels

of content complexity and ambiguity.

In Chapter 6, we delve into the novel area of virtual human generation, specifically

focusing on co-speech gesture generation through the Semantic Energized Gesture

Generation (SEEG) method. This chapter builds on the multimodal advancements of

IcoCap by applying learned lessons to the generation of semantically and rhythmically

aligned gestures, highlighting a further application of our research in enhancing human-

computer interaction. The progression from static images to video and now to interactive

gestures exemplifies the thesis’s overarching narrative of tackling increasingly intricate

challenges through innovative methodologies.

Finally, Chapter 7 encapsulates the thesis’s culmination in applying our progressively

developed methods to real-world, multi-modal environments through the Multimodality-

Aware Autoencoder-based Affordance Learning (MAAL) for robotic grippers. This chap-

ter not only showcases the application of our research in a practical context but also

represents the zenith of our exploration into multi-modality and the learning of com-

plex affordances with minimal data. The narrative arc from addressing overfitting in

fine-grained classification to enabling sophisticated interaction in diverse real-world

environments through MAAL illustrates the thesis’s comprehensive exploration of ad-

vancing AI methodologies for improving model generalization, feature discrimination,

and multi-modal understanding. The final chapter summarizes the key findings of the

thesis and offers insights into potential future research directions in the field.
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2
LITERATURE SURVEY

This chapter presents an extensive literature review within the realm of multi-modal

learning in artificial intelligence. It delves into pivotal advancements and methodological

developments that have shaped modern AI research. Multi-modal learning, essential for

robust AI systems, encompasses domains from classification to generation. This review

contains diverse approaches, challenges, and innovations in this diverse areas.

2.1 Classification Tasks

2.1.1 Fine-grained Classification

With the success of deep learning, the mainstream methods of fine-grained recognition

shift from multi-stage frameworks based on hand-craft features [246, 265] to multi-stage

frameworks with CNN features [114, 236]. The second-order bilinear feature interactions

show significant improvements in representation learning [144]. Some methods based on

metric learning are also efficient in capturing subtle details in images. Inspired by some

weakly supervised learning methods [260, 262], Huang et al. [97] introduce additional

localization module to improve performances and interpret attention areas. Moreover,

ELP [135] provides a novel routine to improve the generalization in classification by

regularizing the classifier’s immediate suitability. Besides, Chen et al. [41] hierarchically

predict the categories within different levels in the networks. However, these ideas

introduce complex networks and high computational complexity.
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Recently, the most popular methods in FGVC are part-based methods. These methods

aim to find the discriminative part for classification. Among these, the attention strategy

provides an approximation to the human visual system [69, 224, 270] and plays an

important role in FGVC. Zheng et al. [270] propose to generate attention for multiple

parts by a channel grouping network. Yao et al. [58] propose a novel sparse attention

method to selective sample discriminative parts. The common attention may be misled by

some biases or background context. With intensive augmentation, some methods impose

the model to learn some robust and discriminative parts. Destruction and Construction

Learning (DCL) [44] proposes a pipeline to learn with destructed samples and learn to

re-construct the samples. The common samples apply the jigsaw [46, 203] operation for

destruction. Then, a region alignment network is designed to recover destructed data.

Besides the main classifier, the adversarial learning network is proposed to distinguish

swapped or normal images. Considering the different degrees of jigsaw operations expose

different properties of the data sample, to further investigate local contexts, Progressive

Multi-Granularity Training (PMG) [61] takes multiple inputs with different scales and

degrees of jigsaw operation. PMG designs the multi-stage training to learn multi-scale

and multi-degree jigsaw data and introduces an associative learning method to jointly

learn all information in various scales and stages. Look-into-Object (LIO) [277] explicitly

and intrinsically learn the object structure, which provides a novel solution to mine

structural features for recognition.

Another thought in FGVC is introducing external knowledge into training. Though

expensive costs may be required, this kind of method improves the performance sig-

nificantly. It has been shown that combing multiple knowledge sources often helps

discriminative feature learning [244]. Additionally, [10, 62] point out the severe overfit-

ting problem and propose methods to mitigate. Among these, the representative work

is Pair Confusion [62]. It utilizes a siamese neural network and reduces the distances

between the conditional probabilities of two networks.

Besides, the hard example contain valuable information. Mining the hard examples

in training has been researched in many works [67, 235, 261]. Shrivastava et al. [67]

propose the Online Hard Example Mining (OHEM) to boost performances of object

detection. Moreover, works [96, 235] provides various online methods to select hard

pairs or triplets for training. Rather than specifically select samples, choosing some

relatively hard examples in the mini-batch and enhance the learning is also effective.

Lin et al. [142] proposed Focal Loss to re-balance the loss weight of different samples

according to the sample probabilities. Focal Loss is also a helpful hard-mining loss. The
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hard examples with low confidence would be assigned higher weights. This loss works in

many domains like detection, segmentation, classification, etc.

2.1.2 General Visual Classification and Representation Learning

Various works have been proposed to learn visual representation based on deep learning.

In diverse recognition tasks in the wild, deep neural networks possess the powerful

ability to learn and represent images to high-dimensional features. With the high-quality

features, some simple classifiers [119, 233] are components to recognize the samples.

Further, the quality of features is influenced by many factors. We roughly divided the

factors into three aspects: data processing, network design, and training manner. Though

the exact effect of representation learning [257] remains to be investigated, numerous

researchers keep exploring and propose many valuable solutions.

For data processing, large-scale datasets provide considerable network samples

and are the most straightforward way to improve representation. Benefiting from the

powerful ability of networks, taking large-scale datasets as inputs lead the network

to learn various samples and memorize plenty of properties for discriminating. Some

diverse and hard examples may be difficult in a limited data scale [10, 147]. Under the

view of larger scales of collections, it is always possible for the network to mine particular

patterns. Besides directly collecting real data, pre-processing [47, 275] or generating

data [274] are also equivalent. Various augmentations [198, 210] enforce the networks

to solve problems with higher requirements and urge the network to be generalized to

different conditions. However, the most straightforward way is also the most expensive.

The storage, computing power, etc., should be concerned to handle the large datasets.

Meanwhile, with the expansion of the data scale [214, 237], the efficacy and value of

data should also be considered.

Moreover, well-designed network structures also dramatically boost representation

and become the hottest direction in recent years. Diverse methods constantly emerge

like skip-connection [88, 95], fusing channels [207], attention strategies [24, 158], archi-

tecture searching [27], transformers [212, 221], etc. With the same inputs, these methods

explore different directions to boost the network’s capacity. Meanwhile, almost all kinds

of visual tasks [120, 143] develop further with better networks.

Furthermore, besides data processing and network designs, the training manner is

also crucial for visual representation. It contains various aspects like the optimizer [89,

188], regularization [123, 142], learning manner [104, 199], etc. In this direction, reg-

ularization plays an important role. It can be reflected in the loss function [33, 142],
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training strategies [87], etc., and is general to various networks and datasets. A proper

regularization can leverage the network to learn better visual representation, for exam-

ple, avoiding overfitting [142], explicit attention to the target [33], better diversity [50],

etc. Vikash et al. [192] propose an interesting margin to describe the separability of

features. Rather than focusing on the accuracy of the classifier, the quality of features

can be reflected through immediate suitability. The more discriminative features are

considered more than memorable by the classifier.

2.2 Generation Tasks

2.2.1 Video Captioning

Video captioning [2, 40, 240] is a challenging and complex task that aims to generate a

natural language sentence to describe a given video sequence. Unlike image captioning,

where the objective is to generate descriptions for static images, video captioning methods

need to handle intricate video data that encapsulates diverse and dynamic semantics. The

temporal dimension of video data adds a level of complexity that requires sophisticated

approaches to capture and summarize the underlying content effectively.

In detail, the common approach in video captioning is the encoder-decoder framework,

which employs a CNN to encode visual information and an RNN or LSTM to generate

captions sequentially. Donahue et al. [59] proposed the Sequence-to-Sequence Video-to-

Text model, which combined a 2D CNN with an LSTM to generate captions. Chen et

al. [36] introduced the TDConvED network‚Äîa convolutional sequence-to-sequence

learning framework, specifically tailored to enhance video captioning. Most recent

works [39, 126, 141, 267] also follow this framework and present various solutions

to further boost the performances. Moreover, Chen et al. [45] propose to select frames in

video for video captioning. Pan et al. [168] introduce a visual semantic embedding model

to specifically consider the relationship between the semantics of the entire sentence and

video content unexploited.

Video captioning [2, 105] is a challenging task that aims to produce a sentence to

describe a video sequence. Rather than image captioning, methods in video captioning

need to handle complicated video data with diverse semantics. Different from dense

captioning [100, 195, 276], the typical methods [39, 126, 141, 197, 219, 267] for video

captioning should summarize the diverse and ambiguous contents of the video into one

sentence.
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Moreover, another line of evolution is the video representation method. Works in video

captioning apply features from some pre-trained models to represent videos. Models like

bottom-up [11] in image representations, 3D CNNs [53, 238] in video representation, or

generic large-scale pre-training models [141, 183, 194] are applied in video captioning to

represent video data. Then, various methods [1, 19, 146, 167] are designed to investigate

the semantic cues from well-trained representations and solve video captioning. Yang

et al. [241] conducted a comparative analysis between CLIP features and ImageNet

pre-trained features for video captioning. Additionally, they introduced an auxiliary task

designed to discern the correspondence between video content and associated concepts.

Some recent works [219, 267, 268] introduce complicated structures to mine detailed

information from video features and achieve significant improvements. Besides, some

works [141, 267] further propose end-to-end frameworks for representing videos from

scratch and exploring the detailed instances and events in the video frames.

2.2.2 Co-speech Gesture Generation

Speech-driven gesture generation is an emerging issue that aims to generate vivid

gestures based on the given speech data. Generally, methods for this problem take the

speech data [249, 250] (audio, text, etc.) as input and produce corresponding gestures

to simulate the real speaker. This requires various knowledge understanding [244]

like human ethology [26, 154, 177, 229], linguistics [116, 174, 186], robotics [60, 165],

graphics [7, 90, 249], vision [121, 182, 249], etc. Proposed methods should understand

multi-modal and diverse information (speech rhythm from audio, text semantics, personal

style from speakers’ identities, semantic conveyed from motions, etc.), then generate

reasonable and expressive gestures.

To overcome the above challenges, various works are proposed to explore. To un-

derstand the audio data and bridge the audio inputs to the gestures, Taras et al. [121]

investigate the network structure to map speech acoustic and semantic features into the

feature space of 3D gestures. Moreover, benefiting from an efficient modeling method

MoGlow which is controllable for 3D motion synthesis, Alexanderson et al. [7] propose

the style-controllable gesture generation model based on the MoGlow. The proposed

method can generate diverse and plausible gestures just like the actual human. Ahuja et

al. [3] propose Mix-StAGE, which disentangle the style feature with gesture features and

encodes the gestures features to the style space. Mix-StAGE overcomes the challenge of

style preservation and generates diverse styles of gestures for different people. As the

multi-modalities involved in speech-driven gestures, Yoon et al. [249] explore the embed-
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ding and representation of multiple modalities for gesture generation. They consider the

trimodal context and construct holistic modeling for all the data.

In addition, the metrics for evaluating the generated gestures are also important

and challenging. As the uncertainty of human behavior, evaluating the realistic level of

generated gestures compared with the actual human maybe still an open question. Some

works [3, 7, 75] rely on user studies to measure the quality of generated gestures. Rather

than the subjective evaluation from an actual human, some works [3, 75, 182, 249]

calculate the distances between generated gesture and the ground truth.

2.2.3 Affordance Generation

In the field of robotics, 3D object affordance is an important area of many practical

applications. Before manipulating objects in reality, the robots need to understand

what and where can be acted at first, which can be contributed to the exploration of

affordance [74]. Recently, many works have emerged to explore this problem. [112] and

[185] leverage the CNN network to produce the affordance area of the affordance map,

which is used for indicating the grasping operations of robots. Jiang et al. [103] propose

to constrain the consistency between hand contact points and object contact regions.

The contact points of the robot hand are required to be close to the shape of the object’s

surface. Then, Mo et al. [159] provide a large-scale dataset and benchmark. The authors

also predict affordance maps to indicate the actionability of robots at every point of

objects. 3DAffordanceNet [54] explore another interesting problem and introduces a

dataset for the functional understanding for 3D objects. Moreover, AdaAfford [227] goes

further with the affordance predictions, considers the information hidden in the 3D

shapes, and mines important kinematic and dynamic factors in 3D interactions. Through

better modeling of the kinematic uncertainties, AdaAfford improves the performance of

manipulating objects within fewer action steps. The significant advancements in [159]

and [227] should be admired, but these works also contain defeats. All previous works

utilize multiple decoders or critics to predict the probability of actionability (separately

training three networks in [159] and four networks in [227]). The method design is

complex and requires many data samples for training. In this work, we propose an

AE-based pipeline to solve the problem efficiently.
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2.3 Multi-modal Learning

2.3.1 Video-language Representation Learning

Representation of video [17, 82, 128, 141, 225, 278] is a long-standing problem in the

representation learning [83, 230, 242, 243]. Numerous works have emerged, proposing

diverse architectures and approaches that focus on exploiting the unique characteristics

of video data to achieve effective and robust representations. In representation, the

intuitive idea behind video representation is to extend the principles of image-based

CNNs, which have demonstrated remarkable success in tasks such as object recognition

and image classification.

One notable approach to incorporate temporal information into the original CNN

framework is by introducing 3D kernels [30, 157]. These kernels extend the receptive

field in the time dimension, thereby enabling the network to capture the relationships

between sequential frames. This extension results in 3D Convolutional Neural Networks

(3D CNNs) [30], which are specifically designed to process video data by jointly learning

spatial and temporal features and have demonstrated considerable improvements in

video representation tasks compared to their 2D counterparts. However, one drawback of

3D CNNs is the increased computational complexity and memory requirements, which

can pose challenges in terms of scalability and efficiency. I3D [238] inflated the filters and

pooling layers of 2D CNNs into 3D, enabling the network to learn richer spatio-temporal

features. The I3D model achieved significant improvements in action recognition tasks

and demonstrated the potential of incorporating pre-trained 2D CNN knowledge into

video representation learning. More variations [53] of 3D CNNs further provide many

video-based designs to boost the performances of representations in various tasks.

Moreover, recent works [12, 183, 278, 279] pay more attention to the large-scale

pre-training. Motivated by the success of Bert [110] in NLP, many works [205, 279] pro-

pose to leverage the similar pre-training strategies to videos. Significant improvements

occur in video tasks after applying the large-scale pre-training [17, 148] and various

transformer-based networks [8, 12, 141]. Besides, tasks like mask-modeling [110], con-

trastive learning [43, 223], etc., further empower the representation ability of networks.

CLIP [183], as a typical pre-training model, has also been proven that possesses re-

markable ability in correlating language semantics and has already been widely used in

various domains [149, 209]. These video-based designs have contributed to the evolution

of video representation learning, enabling more effective and discriminative representa-

tions for various tasks. Despite the progress made thus far, video representation remains
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an active area of research, with ongoing efforts to develop more efficient and accurate

models capable of handling the ever-increasing complexity and scale of video data.

2.3.2 Multi-modal Fusion and Learning

Many tasks (e.g., VQA [16, 129], gesture generation [130, 249], video representation [128])

involve multi-modal inputs and require the network to handle the multi-modal prob-

lems [122, 220]. These problems usually entail the understanding of various knowl-

edge [244] and require the proper handling of diverse inputs. Generally, the network

needs to handle data samples with various modalities, which may possess different

distributions and semantics. Methods usually need to fuse data or features for further

learning. Formally, there are three kinds of strategies [111, 122] to fuse multi-modal data:

early fusion, late fusion, and inter-media fusion. Early fusion means fusing data samples

before specific learning. Methods [6, 78, 122] with early fusion usually combine raw data

without considering the connection between data samples or fuse embedded features in

low dimensional space. This strategy may be useful if the multi-modal data are condi-

tionally independent [166, 176, 191]. However, the performances for highly correlated

data samples or features would be lower [153]. Moreover, late fusion [106, 111, 200, 231]

indicates the independent learning data sample before the last module, which is used for

decision-making (e.g., classifier, retrieval projector). This leads the network can under-

stand each modality better and avoid accumulating uncorrelated errors [184]. However,

the advantages of late fusion in multi-modal tasks are insignificant [78, 184, 202] com-

pared with early fusion. Finally, intermediate fusion [25, 122] is the most commonly

used strategy in recent multi-modal learning. It flexibly fuses different data samples at

different levels and designs explicit modules to model different modalities adaptively.

Many works [57, 108, 248] with intermediate fusion achieve better performances in

various multi-modal tasks.
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TOWARD BETTER ACCURACY FOR FINE-GRAINED

VISUAL CLASSIFICATION

3.1 Introduction

Fine-grained visual classification (FGVC) is one of the long-standing recognition problems

in computer vision [140, 196, 258]. Differ from the typical large-scale visual classification

(LSVC) task like [120], classes in FGVC are visually similar to each other. FGVC may

require to differentiate a Laysan Albatross (a large seabird) from a Sooty Albatross (a

species of bird in the Albatross family). This task imposes difficulties even for a human.

To solve the challenging task, various methods [44, 58, 61, 144, 271] are proposed and

these methods target at learning more discriminative features. These research works

achieve remarkable improvements on FGVC.

However, Anderson et al. [10] have pointed out that current methods and even the

ensembles of some state-of-the-art methods still misclassify some ‘hard examples’ in

the testing set. These examples are extremely hard to be recognized given the intrinsic

intra-class similarities among fine-grained categories. According to the i.i.d. assumption,

when splitting the data into training and testing sets, there are also a few extremely

hard examples in the training set, e.g., Black Tern and Caspian Tern. The existing

methods [44, 61, 70] can accurately classify these hard examples even though they are

almost visually identical for non-expert human observers. Taking a simple ResNet50

This chapter is based on joint work [134] with Linchao Zhu, Xiaohan Wang, and Yi Yang, presented
primarily as it appears in the TNNLS 2022.
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Elegant Tern
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Figure 3.1: Feature visualization of Foresters Tern and Elegant Tern (hard classes in
FGVC [10]). The features are extracted from a ResNet50 network trained with 20 epochs.
In the training set, all examples including hard ones are correctly classified. However,
the network fails to classify a few hard examples in the test set.

baseline as an example, the average softmax probability of training samples rises to 0.95

rapidly, and the training accuracy comes to 100% within 20 epochs. This demonstrates

that the network can quickly classify the hard examples because deep convolution neural

networks are remarkably powerful to well fit the training data [257]. However, in the

test set, the network shows its inability to classify some hard examples (Fig. 3.1). The

performance gap between the training set and the test set reveals that the network can

not be generalized to recognize ‘hard examples’ in the test set, even if it easily solves

some extreme cases in the training set.

The key challenge of this phenomenon is that network memorizes and overfits the

hard examples in the training set, but it does not learn to generalize well to new hard

examples in the test set. The learned representation is not discriminative even though

the optimization process in the training set is empirically easy. However, it remains to

be an open research problem to understand why the feature is not discriminative and

discover the root cause of the generalization gap [257].

Motivated by the observations of inferior generalization on hard examples [10], in

this chapter, we attempt to reduce the generalization gap in FGVC and aim to improve
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the generalization through a proper modulation of hard examples. We empirically find

that it is not effective to amplify the importance of hard examples during the training of

FGVC models. We note that emphasizing the importance of hard examples induces even

severe overfitting. Therefore, a better modulation for hard examples in FGVC should be

concerned.

To this end, we propose a Moderate Hard Example Modulation (MHEM) strategy

to moderately penalize the hard examples by considering their loss scales. First, we

propose three conditions for MHEM, i.e., the hard mining condition, the moderate

condition and the moderately sensitive condition. Second, we formulate a modulating

function to generate proper weights for the training samples. The modulating function

consists of a few hyper-parameters. We present their mathematical relations to satisfy

the aforementioned conditions. Notably, we find that the typical Focal Loss [125, 254]

does not satisfy the MHEM conditions. We further discuss the differences between Focal

Loss and our modulating function in Section 3.2.4. Third, we construct a Moderate

Modulation Baseline (M2B) to facilitate the network for a better generalization on

hard examples. Without bells and whistles, this strong baseline shows that applying

proper modulation weights to hard examples brings significant improvements to FGVC.

Without introducing any extra computational overhead, the performances of a naive

ResNet50 backbone can be competitive to some state-of-the-art methods. It demonstrates

that our simple baseline is efficient and effective to overcome the overfitting problem

and promote the network’s generalization. Quantitatively, we evaluate our moderate

modulation baseline as a new loss on the existing FGVC methods. We achieve consistent

improvements across the typical FGVC benchmarks, validating that M2B can serve as a

strong baseline for the future FGVC research works.

The main contributions of this chapter are summarized below:

1. We propose Moderate Hard Example Modulation (MHEM) to enable the generaliza-

tion of hard examples in FGVC. We introduce three conditions for a moderate modulation,

allowing the network to properly learn from hard examples and alleviate the overfitting

problem.

2. We formulate a modulating function and present the mathematical relations of

its hyper-parameters. We quantitatively validate its flexibility for fine-grained visual

recognition.

3. We instantiate a strong moderate modulation baseline (M2B) that satisfies the

MHEM condition. M2B does not introduce any computational overhead and achieves

significant improvements. Notably, a naive backbone network with M2B achieves 2.7%,
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1.5% and 2.6% improvements in three datasets respectively, which can outperform or

be competitive to some state-of-the-art methods. When applying M2B on the existing

state-of-the-art methods, we also obtain notable improvements, validating its broad

applicability on the FGVC task.

3.2 Method

In this section, we first discuss three conditions of Moderate Hard Example Modulation

(MHEM) (Section 3.2.1). These conditions serve as the foundation of MHEM and allow

us to design specific modulation functions. Then, we simplify the form of modulating

function and present the mathematical relations of its hyper-parameters (Section 3.2.2).

We further discuss a special case of MHEM and demonstrate its flexibility. Finally,

we propose a strong moderate modulation baseline for fine-grained visual recognition

(Section 3.2.3).

3.2.1 Moderate Hard Example Modulation (MHEM)

Motivated by the observations of inferior generalization on hard examples [10], we

propose a Moderate Hard Example Modulation (MHEM) to modulate the losses according

to the confidences of the training samples. Generally, the overall loss function L in

MHEM can be formulated as:

(3.1) L (p)= f (p)Lc(p)

where p ∈ [0,1] is the probability of the sample, Lc(·) indicates the regular cross-entropy

loss. f (·) is a modulating function. In practice, f (p)≥ 0.

In MHEM, we re-weight each sample with a modulating function f (·). The modulating

function takes the classifier prediction p as the input and outputs a weighting scalar

f (p) for every prediction. A proper weight is applied to each sample, which would enable

a better modulation of hard examples.

To examine the properties of f (·), we define ph as the probability of the hard example

and pe as the probability of the easy example. We introduce a relative coefficient φ and a

sensitive coefficient ρ. We let φ= f (ph)
f (pe) and ρ = f ′(ph)

f ′(pe) , where f ′(·) indicates the derivative

of f (·). The relative coefficient φ measures the ratio between the weight of hard examples

and the weight of easy examples. A larger φ indicates that the network is inclined to
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solve hard examples than the easy examples. The sensitive coefficient ρ measures the

ratio between the weight variation of hard examples and the weight variation of easy

examples. With a small positive value ∆, from a hard example with ph +∆ to another

harder example with ph, the variance of weights for harder examples can be formulated

as f ′(ph)= ( f (ph+∆)− f (ph))/∆. Similarly, the variance of the weights for easy examples

is f ′(pe)= ( f (pe +∆)− f (pe))/∆. The larger ρ indicates that the weights of hard examples

increase more rapidly than the weights of easy examples. When ρ is large, the network

will be more sensitive to the hard examples, where a slightly lower confidence may induce

a significant amplification of its weight.

Our empirical study found that severe overfitting occurs when introducing high

weights for hard examples. Inspired by this, we consider that the hard samples should

be emphatically trained but not be penalized too much. In MHEM, we propose that the

modulating function f (·) should retain three conditions: (1) Hard mining condition, (2)

Moderate condition, and (3) Moderately sensitive condition.

(1) Hard mining condition: ∀pe > ph,φ > 1. Due to the defeats in recognizing

hard examples, the learning of hard samples should be emphasized. One of the efficient

ways [34, 125, 162, 254] for hard mining is leveraging large punishments for hard

examples. Compared to f (pe), a larger value of f (ph) imposes a larger punishment for

hard examples. This enforces the network to classify the hard samples better. Given the

hard mining condition, we conclude that f (p) is a monotonically non-increasing function

when p ∈ [0,1].

(2) Moderate condition: ∀pe > ph,∃ϵ,φ< ϵ. ϵ is a moderate factor which indicates

the upper bound of the relative coefficient φ. In MHEM, the relative coefficient should

not be too large. The moderate factor ϵ is introduced to establish the upper bound for the

punishments of hard examples. It is responsible to ensure the suitability of hard example

modulation. In order to satisfy the hard mining condition, we obtain ϵ> 1. Meanwhile,

the value of ϵ should not be too large. If ϵ=∞ and φ→∞, the network will only learn the

hard examples and ignore the easy examples, which may cause skewed memorization

of hard examples. Moreover, the value of the moderate factor ϵ varies across datasets,

which depends on the distribution of hard and easy examples and the inter-class and

intra-class similarities.

(3) Moderately sensitive condition: ∀pe > ph,∃ξ,ρ < ξ. ξ is the sensitive factor

which limits the variances of the weights. In MHEM, other than the numerical limitation

of f (·), the variance limitation should also be concerned. If the variance of weights

for hard examples are far larger than that of easy examples, a slight change in the
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confidences of hard examples may lead significant changes of gradients and the network

will become over-sensitive to hard examples. This also should be prevented in MHEM.

Since the modulating function is monotonous, we assume that ξ> ρ > 0. Meanwhile, ξ

should not be too large. If ξ =∞ and ρ →∞, the modulating function introduces too

sensitive punishments for hard examples. Similar to the moderate factor ϵ, the value of ξ

also depends on the datasets.

To simplify the conditions, we set a general modulate factor τ= min(ϵ,ξ) where min(·)
is a function returning the minimum number between ϵ and ξ. Then, we rewrite the

condition (2) and condition (3) as ∀pe < ph,∃τ,φ< τ,ρ < τ. Thus, the key to MHEM is

constructing a proper modulating function f (·) satisfied φ ∈ (1,τ) and ρ ∈ (0,τ).

3.2.2 Formulation of MHEM

To formulate MHEM and construct a practical baseline method, we first assume the

modulating function f (·) as a polynomial function:

(3.2) f (p)= Sgn((ap+b)ϑ)+d

where a, b, d and ϑ are the hyper-parameters. d is a global bias term preventing f (p)

from being too small. Sgn(·) is a sign function and we obtain:

(3.3) Sgn((ap+b)ϑ)=


0 (ap+b)ϑ < 0

(ap+b)ϑ 0≤ (ap+b)ϑ ≤ 1

1 (ap+b)ϑ > 1

When 0≤ (ap+b)ϑ ≤ 1 and d = 1, we can further simplify the function and we rewrite

the function as:

(3.4) f (p)= (αp+β)ϑ+1

α and β denote the adaptive slope and the bias term, respectively. α and β should be

adjusted by the general moderate factor τ. ϑ is usually a positive number.

Considering the hard mining condition (1), f (·) is monotonically non-increasing.

Thus, we obtain α ≤ 0. For α = 0, f (p) becomes a constant value and the overall loss

function degrades to the cross-entropy loss. We set α< 0 and we assume β> 0 because

(ap+b)ϑ ≥ 0.
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According to the moderate condition (2), the relation between the general moderate

factor and the modulating function can be formulated as:

(3.5)
(αph +β)ϑ+1
(αpe +β)ϑ+1

< τ

We can also easily obtain:

(3.6)
(αph +β)ϑ+1
(αpe +β)ϑ+1

< (αph +β)ϑ

(αpe +β)ϑ

To achieve a stricter condition, we rewrite Equation 3.5 with the upper bound:

(3.7)
(αph +β)ϑ

(αpe +β)ϑ
< τ

According to the moderately sensitive condition (3), we obtain a similar condition:

(3.8)
(αph +β)ϑ−1

(αpe +β)ϑ−1 < τ

As f (ph) > f (pe),
αph+β

αpe+β
> 1, therefore, both condition (2) and condition (3) can be

satisfied under Equation 3.7. Besides, though formulating with the same equation, the

moderate condition and moderately sensitive condition represent different kinds of

regularization for the samples. The moderate condition requires that the moderating

function’s values (absolute value) should not be too large, and the moderately sensitive

condition requires that the changing weights (derivatives) should not be too large.

Considering pe > ph, pe ∈ [0,1] and ph ∈ [0,1], the limitation of (αph+β)ϑ

(αpe+β)ϑ can be

deduced:

(3.9)
(αph +β)ϑ

(αpe +β)ϑ
≤ βϑ

(α+β)ϑ

To make the moderate condition be always established, we let the maximum φ still

lower than τ.

(3.10)
βϑ

(α+β)ϑ
< τ

Since the hyper-parameter ϑ is usually a positive number, the relation of α, β and τ

is deduced as:
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(3.11) α> (τ−
1
ϑ −1)β

In MHEM, the general moderate factor τ reflects the degree of punishing the hard

samples. τ should be properly set and the value should not too large. Meanwhile, τ

depends on the datasets and the learning schedule, which is usually difficult to estimate.

We discuss more details about the general moderate factor in the experiments. According

to Equation 3.11 and the condition of τ> 1, the necessary but not sufficient condition of

α and β is α>−β.

3.2.3 Moderate Modulation Baseline (M2B)

We present a moderate modulation baseline following the above relation of α > −β.

We empirically select the best function for the typical FGVC datasets, i.e., CUB-200-

2011 [217], Stanford Cars [115] and FGVC-Aircraft [151]). We set β as 1. The best

performance is achieved when α is set to −0.4, −0.8, and −0.7 on CUB-200-2011, Stanford

Cars and FGVC-Aircraft, respectively.

The modulating function on CUB-200-2011 is defined as:

(3.12) fCUB(p)= (−0.4p+1.0)2 +1

The modulating function on Stanford Cars is defined as:

(3.13) fCAR(p)= (−0.8p+1.0)2 +1

The modulating function on FGVC-Aircraft is defined as:

(3.14) fAIR(p)= (−0.7p+1.0)2 +1

Though we only make minor modification for the loss function, significant improve-

ments are achieved on all datasets. Our experimental evaluation proves that if the loss

function satisfies the MHEM conditions, the networks trained with the loss function will

achieve a better generalization ability.

Moreover, M2B is valuable for future research works on FGVC. It offers a simple way

to search a good modulating function. We believe the practical value of M2B would further

promote future research works about generalization and hard example modulation.
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3.2.4 Discussion on Focal Loss

Focal Loss is one of the modulating functions but it does not satisfy MHEM conditions. As

a useful hard mining loss, Focal Loss is widely applied in many works [34, 125, 162, 254].

Focal Loss re-weights the cross-entropy loss function with the modulating function of

(1− p)ϑ. If ignoring the global bias term, our modulating function becomes the form of

Focal Loss when α=−1 and β= 1.

Focal Loss does not satisfy the MHEM condition (2) and condition (3). Supposing the

modulating function as f (p)= (1− p)ϑ, the sensitive coefficient ρ is

(3.15) ρ = (1− ph)ϑ−1

(1− pe)ϑ−1 ,

(3.16) lim
pe→1,
ph→0

(1− ph)ϑ−1

(1− pe)ϑ−1 =∞

Equation 3.16 may indicate that Focal Loss is more suitable for some datasets that

are difficult to be fitted. In these datasets, more punishments to hard examples help the

model to learn discriminative features. However, FGVC datasets contain a high inter-

class similarity. On FGVC datasets, Focal Loss may impose too sensitive weights for hard

examples. More punishments to hard examples may lead to severe overfitting [10, 44].

Our MHEM is more flexible than Focal Loss. MHEM introduces the adaptive slope

(α) and the bias term (β). The hyper-parameter α and β are adjusted by the general

moderate factor τ. However, Focal Loss can not be adaptively adjusted corresponding to

different data distributions. Though ϑ can be changed, we find the variations of ϑ do not

affect the performance much. This is because changing ϑ only does not enable Focal Loss

with the moderate modulation property.

Empirically, we find Focal Loss does not bring improvements on FGVC datasets. In

contrast, our simple moderate modulation baseline boosts the performances across all

datasets.

3.3 Experiments

In this section, we experimentally evaluate the efficiency of MHEM and show the

significant improvements from MHEM. First, the datasets and implementation details

are introduced in Section 3.3.1 and 3.3.1. In Section 3.3.2, we compare our method with

Focal Loss and discuss the validity of MHEM conditions. We compare our strong moderate
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modulation baseline (M2B) with state-of-the-art methods in Section 3.3.3. We also

implement M2B upon several state-of-the-art methods and validate its applicability. We

provide sufficient ablation of M2B in Section 3.3.4. We provide the numerical comparisons

of hard examples in Section 3.3.5. Finally, we offer the visualization of the features and

hard examples in Section 3.3.6.

3.3.1 Experimental Setup

Datasets We evaluate MHEM based on three standard FGVC benchmarks, which are

CUB-200-2011 (CUB) [217], Stanford Cars (CAR) [115] and FGVC-Aircraft (AIR) [151].

CUB-200-2011 (CUB) is the most widely-used dataset in FGVC. It contains 11,788

image samples and 200 categories. All images are various kinds of birds that are hard

to be recognized even by a human being. It uses 5,994 samples for training and 5,794

samples for testing in experimental settings. Besides, AIR is constructed with various

aircraft. This dataset includes 100 different categories of aircraft and has 10,000 images

in total. Finally, as a fine-grained dataset for cars, CAR consists of 196 different kinds

of cars within 16,185 images totally. There are 8,144 training images and 8,041 testing

images.

Additionally, all datasets contain some meta information like location, attributes,

brands, etc. We only use category labels and do not introduce any additional information.

Implementation Details

We do not introduce any overhead in both training and testing. Unlike the part-

based methods [264, 277, 280], our moderate modulation baseline does not introduce

additional learnable parameters. [58, 61] incorporate comprehensive data augmentation

operations. In contrast, we only apply the typical data augmentation operations in

FGVC, i.e., random rotation and randomly horizontal flip. We do not utilize additional

data augmentations. Without extra learnable parameters and data augmentation, our

method serves as a strong baseline for FGVC. It can be readily incorporated into the

state-of-the-art methods and further improves the FGVC performance.

We train the proposed method M2B on the ResNet50 [88] backbone. The backbones

are pre-trained on ImageNet [120]. The training scheme for M2B is identical to the

baseline in [44]. In detail, we set the batch size as 16, and the initialized learning rate of

the models is 0.0008. Meanwhile, the learning rate of the classifier layer is 0.008. The

learning rate is decayed every 60 epoch. Overall, the models are trained 180 epoch. The

optimizer is the Stochastic gradient descent (SGD) with a momentum value of 0.9 and
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Table 3.1: Comparison of different values of ϑ. The Focal Loss does not show improve-
ments over the baseline method. The baseline is trained with a standard cross-entropy
loss.

Method
Dataset

CUB CAR AIR
ϑ= 1 85.0 91.2 90.2
ϑ= 2 85.8 91.0 90.2
ϑ= 3 84.9 91.1 90.1
ϑ= 4 84.6 91.1 89.9
ϑ= 5 84.6 91.0 90.1

Baseline, ϑ= 0 85.5 92.7 90.3

with a weight decay of 0.0001. In comparisons of recent methods [44, 61] with M2B, we

follow the same implementations of those works, respectively.

3.3.2 The Effectiveness of MHEM conditions

Performances of Focal Loss: We evaluate the performance of Focal Loss on FGVC. We

demonstrate that Focal Loss does not introduce any improvements on the FGVC task.

Based on the Focal Loss formulation of FL(p) = −(1− p)ϑlog(p), we evaluate the

classification performance by adjusting the value of ϑ. We experiment with five difference

values of ϑ, i.e., ϑ = 1,2,3,4,5. We compare the performances with a baseline that is

trained with a standard cross-entropy loss. All results are provided in Table 3.1. The

results reveal that merely adjusting ϑ does not improve the performances significantly.

The MHEM conditions are not satisfied by changing ϑ.

Specifically, Focal Loss introduces larger punishments for the hard examples. In the

special intra-class and inter-class variances in FGVC, the large punishments for hard

examples lead the network to memorize those samples and overfit rapidly. This makes

the Focal Loss achieves lower results in experiments. The variations of ϑ only influence

the values of modulating function and do not change the relatively larger punishments

for hard examples in Focal Loss.

In Table 3.1, we observe that adjusting ϑ of Focal Loss does not improve the standard

cross-entropy loss. On CAR and AIR, the performances of Focal Loss are worse than

the performances of the cross-entropy loss. For example, Focal Loss achieves the best

performance on AIR [151] when ϑ= 1 or ϑ= 2, but the performance is still worse than the

performance of the cross-entropy loss. On CAR, Focal Loss degenerates the performance

by 1.5% compared to the cross-entropy loss, leading to severe overfitting. On CUB, ϑ= 2

outperforms the baseline with only a small margin of 0.3%, while other values of ϑ
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Table 3.2: Comparison for different conditions in hard and easy samples. Only results
with lower weights for hard examples show improvements.

fc(·) Hard ↑ Hard − Hard ↓
Easy ↑ 85.7 85.0 88.2
Easy − 84.8 85.0 88.2
Easy ↓ 84.8 84.9 88.1

degenerate the performance. It it because that the adjustment of ϑ does not help Focal

Loss to satisfy condition (3) of MHEM, as discussed in Section 3.2.4. Though ϑ adjusts

the loss weight, it does not properly modulate hard examples for FGVC.

Additionally, to align the settings of MHEM, we perform all the experiments with

the bias term in Table I. We also experiment with Focal Loss without the bias term, and

there are no improvements. In CUB dataset, Focal Loss without bias term achieves 85.6

in the accuracy value when ϑ = 2. The bias term does not significantly influence the

performances.

The Effectiveness of Moderate Modulation: Since the Focal Loss [142] does

not improve the results in FGVC, we validate if moderate modulation helps a better

generalization. We showcase that considerable improvements can be obtained through

piecewise combinations of modulating functions.

For the convenience of constructing modulating function, we choose Focal Loss with

ϑ= 1 as the baseline. We denote the modulating term of Focal Loss as fFL(p)= (1− p).

The piece-wise combination of modulating functions fc(·) is defined as:

(3.17) fc(p)=
 f1(p) p ∈ (0,µ]

f2(p) p ∈ (µ,1]

where f1 and f2 indicate the modulating functions for hard examples and easy examples,

respectively. We define a threshold µ to differentiate hard examples and easy examples.

We denote the range of hard examples as (0,µ] and the range of easy examples as (µ,1].

We define the function of f H↑E↑
c (p) by introducing f1(p)> fFL(p) and f2(p)> fFL(p).

The function of f H↑E−
c (·) indicates that f1(p) > fFL(p) and f2(p) = fFL(p). In this way,

we can obtain nine modulating functions, i.e., f H↑E↑
c (p), f H↑E−

c (p), f H↑E↓
c (p), f H−E↑

c (p),

f H−E−
c (p), f H−E↓

c (p), f H↓E↑
c (p), f H↓E−

c (p), f H↓E↓
c (p). Specifically, we design f H↑E↑

c (p) =
1−p/2, f H↑E↓

c (p)= (1.21−p)2, f H↓E↑
c (p)= (0.95−0.5p)2 and f H−E−

c (p)= fFL(p). (1.21−p)2

as f1, f2, and f2 of f H↑E−
c , f H−E↓

c and f H↓E↓
c , respectively. 1− p as f2, f1, f1, and f2 of

f H↑E−
c , f H−E↑

c , f H−E↓
c and f H↓E−

c , respectively. (0.95−0.5p)2 as f2, f1, and f1 of f H−E↑
c ,
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Figure 3.2: Curves of modulating functions of (0.95−9.5p)2 and 1− p. (0.95−9.5p)2

presents lower punishments for hard examples and is used to formulate f1, as a part of
the piece-wise functions: f H↓E↑

c , f H↓E−
c , and f H↓E↓

c .

f H↓E−
c , and f H↓E↓

c , respectively. We compare these modulating functions based on the

classification performances on CUB [217].

In the aforementioned modulating functions, it can be validated that f H↓E↑
c (p),

f H↓E−
c (p), and f H↓E↓

c (p) satisfies the MHEM conditions. As in Table 3.2, only the three

functions show significant improvements over other modulating functions. These results

reveal that significant improvements are induced by reducing the weights for hard

examples. Other changes do not satisfy the MHEM conditions and do not lead to any

improvements.

To better clarify the difference between proper and improper modulating functions,

we provide an example for the curve of MHEM and the Focal loss, as shown in Fig. 3.2. In

this figure, two modulation functions are presented: f1(p)= (0.95−9.5p)2 and f2(p)= 1−p.

These two functions correspond to the modulating function in Table II. f1 is a part of the

piece-wise functions: f H↓E↑
c , f H↓E−

c , and f H↓E↓
c , respectively. f1 shows lower modulating

values for hard examples with lower p. It provides slightly lower punishments for

the hard examples, and all three piece-wise functions adapted f1 for hard examples

achieve higher performances in Table II. Meanwhile, f2 is a part of piece-wise functions:

f H↓E−
c , f H−E−

c , and f H↑E−
c . f1 satisfies MHEM conditions, but f2 does not. In comparison,

only f H↓E−
c with lower punishments for hard examples obtain improvements. All the

results prove that the moderate hard examples mining in our method leads to better

performances.

Finally, the following conclusions can be deduced based on the results in Table 3.2

and Figure 3.2. 1) Moderate modulation is effective. Modulating functions following the

MHEM conditions achieve the best performance compared to their counterparts. These

29

3.3. EXPERIMENTS



CHAPTER 3. TOWARD BETTER ACCURACY FOR FINE-GRAINED VISUAL
CLASSIFICATION

Table 3.3: Comparison of performances in three standard FGVC datasets. MA-CNN, PC,
and Partial Assign use VGG19, DenseNet161, and ResNet101 as backbone networks
respectively. Other methods are reported based on the results of ResNet50.

Methods
Overhead Dataset

No Additional
Augmentations

No Additional
Parameters CUB CAR AIR

MA-CNN [270] ✔ ✘ 86.5 92.8 89.9
PC [62] ✔ ✘ 86.2 92.9 89.2

DFL-CNN [226] ✔ ✘ 88.1 94.6 92.4
NTS-Net [245] ✔ ✘ 87.5 93.9 91.4

TASN [272] ✔ ✘ 87.9 93.8 -
ACNet [102] ✔ ✘ 88.1 94.6 92.4

Partial Assign [97] ✔ ✘ 87.7 - -
BCN[94] ✔ ✘ 87.7 94.3 93.2

MC-Loss [33] ✔ ✔ 87.3 93.7 92.6
S3N [58] ✘ ✘ 88.5 94.7 92.8
LIO [277] ✔ ✘ 88.0 94.5 92.7
DCL[44] ✘ ✔ 87.8 94.5 93.0

M2B ✔ ✔ 88.2 94.2 92.9

modulating functions outperforms the typical cross-entropy loss by 2.6% in terms of

recognition accuracy. 2) The performance degradation of Focal Loss is because of the

unsuitable hard example mining. In f H↓E−
c , only modifying the modulating function

in hard examples induces a significant improvement of 3.2%. 3) The weighting of easy

examples are not crucial for FGVC. Three variants of the modulating function, i.e.,

f H↓E↑
c (p), f H↓E−

c (p), and f H↓E↓
c (p), show negligible differences.

Table 3.4: Comparison of the original methods, methods augmented with Focal Loss, and
methods enhanced with M2B. With the assistance of M2B, all methods demonstrate im-
provements in generalizing hard examples and achieve better performance. The numbers
highlighted in blue indicate the performance gains relative to their corresponding base-
lines, whereas the numbers highlighted in red signify declines in performance compared
to the baselines.

Method CUB CAR AIR
ResNet50 Baseline [88] 85.5 92.7 90.3
ResNet50 + Focal Loss 85.8 (+0.3) 91.0 (-1.7) 90.2 (-0.1)

ResNet50 + M2B 88.2 (+2.7) 94.2 (+1.5) 92.9 (+2.6)

DCL[44] 87.8 94.5 93.0
DCL + Focal Loss 87.7 (-0.1) 94.3 (-0.2) 92.9 (-0.1)

DCL + M2B 88.5 (+0.7) 94.7 (+0.2) 93.3 (+0.3)

Single PMG[61] 88.9 95.0 92.8
Single PMG + Focal Loss 89.0 (+0.1) 95.0 (+0.0) 93.0 (+0.2)

Single PMG + M2B 89.2 (+0.3) 95.3 (+0.3) 93.8 (+1.0)

Combine PMG[61] 89.6 95.1 93.4
Combine PMG + Focal Loss 89.5 (-0.1) 95.1 (+0.0) 93.0 (-0.4)

Combine PMG + M2B 89.8 (+0.2) 95.4 (+0.3) 93.9 (+0.5)
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3.3.3 Comparisons between M2B and the state-of-the-art

methods

We compare our moderate modulation baseline (M2B) with the state-of-the-art methods.

The results are shown in Table 3.3. Notably, M2B does not introduce any overhead in both

training and testing. Without bells and whistles, M2B shows competitive performance

to the state-of-the-art or even outperforms some recent approaches. The performances

of M2B are competitive with LIO [277] and ACNet [102] among all three datasets. AC-

Net [102] introduces the tree attention and other networks, while M2B still outperforms

the ACNet on CUB [217] and AIR [151]. DCL [44] introduces additional data augmenta-

tion in training. Our M2B uses the standard data augmentation and outperforms DCL

with a clear gap of 0.4% in CUB dataset. MC-Loss [33] does not add any overhead to

the baseline method, but its performances across all datasets are much lower than M2B.

Compared with MC-Loss, M2B offers the improvements of 0.9% on CUB and 0.5% in

CAR. The improvements are significant for fine-grained visual recognition tasks. These

results clearly proves the importance of moderate hard example modulation.

Apply moderate modulation loss on state-of-the-art methods. We further

combine various methods with M2B to show the effectiveness of MHEM. M2B can be

easily applied to various methods and only the loss function needs to be replaced. The

experimental results are shown as in Table 3.4.

M2B not only improves the performance of the ResNet50 baseline method [88] trained

with cross-entropy loss, but also improves the performances of DCL [44] and PMG [61] on

all three datasets. PMG and DCL have achieved considerable improvements compared

to the ResNet50 baseline, benefitting from well-designed extra networks or additional

augmentations. We can obtain further gain with M2B. For DCL, 0.7%, 0.2%, and 0.3%

improvements are achieved on CUB, CAR, and AIR, respectively, by adapting M2B.

For PMG, M2B achieves 1.0% gain on AIR, which is significant for the FGVC task. To

better compare the performance of PMG, we conduct evaluations on Single PMG and

Combine PMG. Single PMG only uses one stage in PMG. Combine PMG considers all

PMG branches. M2B improves the performance of both Single PMG and Combine PMG.

The improvements reveal that MHEM is general to various pipeline and useful to boost

performances. We also test Focal Loss [142] with various methods. As shown in Table 3.4,

Focal Loss does not improve the performances of DCL and PMG. The results validate

that Focal Loss does not handle hard samples properly. Our M2B provides an efficient

baseline to help various methods to overcome the problem of overfitting. M2B prevents
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Table 3.5: Comparison of the parameter ϑ in different conditions. ϑ related to the strength
of modulation. The suitable value of ϑ can help the M2B achieve better performances.

ϑ 0.5 1.0 2.0 5.0
Accuracy (%) 87.2 87.5 88.2 86.7

the methods from overfitting and allows them to achieve a better generalization. We

believe MHEM and M2B can promote the research in further analyzing hard examples

on FGVC datasets.

Figure 3.3: Ablation study for different α and β in three datasets. Results corresponding
to α>−β are better than those dissatisfied.

3.3.4 Ablation Study for M2B

Ablation of α and β: We first compare different combinations of α and β in the

second-order polynomial form in three datasets. All the results are displayed in Fig. 3.3.

Since different datasets contain different properties like distributions of hard examples,

numbers of classes, etc., the changing of factors leads to fluctuations in the performances

of MHEM. In Figure 2, the method shows better performances in all datasets if satisfying

the MHEM conditions, which reveals that MHEM is general to various datasets and

provides universal improvements to various benchmarks in FGVC.

Specifically, as shown in Fig. 3.3, the combinations of α and β influence the perfor-

mances. Only if the combinations follow the MHEM, significant improvements will be

obtained. Among various combination, we achieve the best performance of 88.2% when

α=−0.4 and β= 0.9 in CUB [217]. In CAR [115], the best result occurs when α=−0.8

and β= 1.0. For AIR [151], the combination of α=−0.8 and β= 1.0 is best. We choose

the best parameters for the implementation.

Based on the moderate condition described in Section 3.2.1, we derive the relation

α>−β. In Fig. 3.3, we obtain performance improvements from all combinations following

the relation. Due to the fluctuation of training, some results dissatisfied MHEM may
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also achieve slight improvements. However, all combinations of α and β that achieve

significant improvements satisfy the condition of α > −β. These results indicate the

effectiveness of the moderate condition. The experimental results validate that MHEM

is feasible in training a good model. All results with a proper combination of α and β

show improvements. The condition of MHEM limits the range of hyper-parameters and

provides an easier way to construct effective modulating functions.

Meanwhile, the highest performances occur in different combinations of α and β in

different datasets. Considering the simplification of M2B, a more complicated modulating

function with better performances may exist. This indicates that more MHEM conditions

remain to be further explored. Our work aims to present the efficiency of MHEM and

points out a simple solution to hard example modulation. We believe that a deeper

investigation can be performed based on MHEM.

Comparisons of ϑ: We investigate the performance of M2B when ϑ is changed. We

compare the performance of different ϑ on CUB. The results are shown in Table 3.5.

When ϑ= 0, no modulation is applied during training and the method degrades to the

typical cross-entropy loss. When ϑ> 0, the modulating function works during training

and better results are obtained. However, the larger value of ϑ induces the lower value

of f (·). This leads f (p)→ 1 and degrades the MHEM to the standard cross-entropy. Thus,

the value of ϑ should also be noticed in method designs. Compared with the results, the

best performance of 88.2% appears when ϑ= 2. We apply this setting in our M2B.

Besides, the larger ϑ leads to smaller values of modulating function. This would

reduce the influences of MHEM and produces lower results. Meanwhile, though slight

lower performances occur in the large ϑ, the result also outperforms the baseline method

with a large gap of 1.2% in the accuracy. These results also reveal the robustness of

MHEM.

Discussion about τ: Based on M2B, the value of τ can be estimated. However,

various points can influence it (e.g., probability of hard examples, distribution of datasets,

training strategy of networks, etc.). These points are hard to be quantified since most of

them are uncertain during training. Thus, it may be challenging to deduce the values of τ

directly. In our work, we estimate the range of τ by experiments rather than inferring the

exact values. For convenience, we suppose the probability of a hard example is ph = 0.1

and the probability of an easy example is pe = 0.9. By simple calculation, we obtain the

values of τ on CUB, CAR, and AIR:
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Figure 3.4: Comparison of the numbers of hard number and accuracy. We use the first
30 epochs here and suppose that the confidences of hard examples are lower than 0.5.
The vertical axis indicates the epoch number. The horizontal axis indicates the values of
numbers of hard examples and accuracy.

(3.18)

τCUB > 1.640

τCAR > 1.764

τAIR > 1.712

Thus, the comparison of the lower bound of the general moderate factor τ in different

datasets is CAR > AIR > CUB. This may indicate that the CAR has a larger range for

adapting hard example modulation. In other words, it contains more tolerance to various

effects of hard example modulation. Interestingly, the rank of accuracy is also: CAR >
AIR > CUB. CAR is easier than the others and shows lower requirements for moderate

modulation.

3.3.5 Numerical Comparison of Hard Examples

In this section, we provide more evidence to show that the MHEM and M2B improve

the learning of hard examples. We assume that the confidences of hard examples are

lower than 0.5. We intuitively show the advantages of our method in handling hard

examples by comparing the numbers of hard examples during training. We conduct all
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Figure 3.6: Comparison of the numbers of the hard examples in the last 50 epochs. The
horizontal and vertical axis stand for the epoch numbers and numbers of hard examples,
respectively.

comparisons on the CUB dataset. Compared to the baseline, more hard examples remain

for M2B as shown in Fig. 3.5 and Fig. 3.6. The MHEM conducts moderate hard example

modulation and encourages the models to maintain more hard examples in training.

The hard examples can be rapidly memorized during training and may not be thor-

oughly learned by the network. These samples may contain particular properties not

generalized by the current network. The hard examples may include valuable informa-

tion to help the networks be more generalized. In our work, MHEM reserves more hard

examples for training. This makes the network more generalized and achieves better
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Figure 3.7: The features from the last epoch in training are visualized. We sample 10
classes randomly from CUB [217] and process the corresponding features with PCA [68].
Three different sets of classes are visualized. Figures in each column contains the same
classes.

results in experiments. In detail, at the beginning of the training procedure, more hard

examples are reserved in MHEM. We compare the difference of the numbers of hard

examples in the first 50 epochs. The results are shown in Fig. 3.5. The baseline method

fits the hard examples rapidly. The differences increases in the first ten epochs. Our

method retains more hard examples for the network. Fig. 3.6 represents the comparison

of the number of hard examples between our method and the baseline in the last 50

epochs. When the training comes to the last 50 epochs, the number of hard examples in

our M2B is still larger than the baseline.

We compare with the accuracy and the number of hard examples between our M2B

and the baseline in Fig. 3.4. M2B reserves more hard examples for training and achieves

better accuracy. In the first 30 epochs, the performance gap appears and our method

outperforms the baseline method. With further training, M2B achieves significantly

better performance than the baseline method. This comparison reveals two points. 1)

M2B prevents the network from overfitting the hard examples. More hard examples are

reserved in training. 2) By avoiding overfitting the hard examples, the network achieves

better performances. The moderate modulation is helpful. Preventing memorizing the

hard examples enables the model to be more generalized.
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3.3.6 Visual Analysis

Feature Visualization: We represent the feature visualization results in the test set in

Fig. 3.7. In each figure, we random sample 10 classes from the 200 classes in CUB [217]

and apply PCA [68] to reduce the dimension of features. We select three different sets of

classes for visualization. Each column visualizes features from the same set of classes.

The first row presents feature visualizations from the baseline method. The second row

represents features from our M2B.

The baseline method and our method are trained in the same epochs. The features

with M2B become more discriminative. Compared with the baseline and our method, the

feature distributions of our method are more concentrated. This shows our method learns

discriminative features of unseen samples from the test set. Specifically, MHEM leads the

network to avoid overfitting all the examples, keep learning the hard examples and pur-

sue more generalized representation in training. Without MHEM, the baseline method

rapidly overfits all training examples and stucks in indiscriminate representation.

Meanwhile, the features of the baseline are mostly located in the range of [−10,10].

In comparison, our features are located in the range of [−4,5]. The distances reveal that

the intra-class variances are lower in M2B. The network with MHEM generates more

discriminative features and shows compact class distributions.

Example Visualization: We showcase some samples in this section. All examples

(Fig. 3.8) are from the class of ‘Tern’, which is hard to be solved as pointed in [10]. The

samples from the training set are on the left side. The samples from the test set are

on the right side. All training samples are correctly recognized within 20 epochs. All

test samples are misclassified by the baseline method and correctly recognized by our

method. In this comparison, our M2B helps the network to become more generalized.

As shown in Fig. 3.8, the images in the training set are hard to be categorized even

for a human. However, the network easily recognizes all the training cases and shows

high confidence. This indicates that the common training with cross-entropy leads the

network to overfit. In contrast, our moderate modulation takes advantage of learning

generalized information in the class. Our M2B correctly classifies all test examples in

Fig. 3.8. The presented cases show that MHEM assists the network to better handle the

hard examples in training and learn more general features from the data.
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Figure 3.8: Examples correctly classified by M2B and misclassified by the baseline are
presented. Class ‘Tern’ is a hard category as in [10]. Though training examples in the left
side are hardly recognized even by human, the network easily overfit and misclassifies
the test samples in the right side. With MHEM, the network learns to generalize and
rectify examples in test.

3.4 Conclusion and Discussion

In this chapter, we aim to improve the ability of networks to be generalized through the

proper hard example mining. We propose Moderate Hard Example Modulation (MHEM)

to handle the samples in training better. To operate the MHEM, we discuss three

conditions and further deduce the relation of parameters. Via the deduced relationship,

a powerful and efficient baseline method named Moderate Modulation Baseline method

(M2B) is presented. Following the MHEM, M2B leads the network to learn samples better

rather than memorizing them. In experiments, our method boosts the performances in all

standard datasets. The single backbone with M2B outperforms many current methods,

and the current state-of-the-art with M2B achieves further improvements. Our method

is a component to be a solid baseline in FGVC.

For generalizability, MHEM formulates a simple and general solution for moderate
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hard example mining in FGVC. MHEM provides a polynomial constraint between the

moderate punishments and the probabilities. Then, the moderate factor controls the

relation and ensures that the punishments are leveraged appropriately. This straight-

forward polynomial relation makes our MHEM general in various FGVC benchmarks.

Meanwhile, the simple relation also implies the extensibility of MHEM. Future works

can explore more adaptive or model-specific moderate punishments than MHEM. More

flexible or dynamic constraints can be designed. We hope our MHEM can inspire deeper

explorations and diverse extensions for the proper hard example mining. This may push

the community to produce more thought collision for the relationships between data

samples and adequate punishments.
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4
TOWARD BETTER ACCURACY FOR GENERAL VISUAL

CLASSIFICATION TASKS

4.1 Introduction

Deep neural networks have achieved impressive improvements in visual recognition. The

neural networks trained on large-scale visual recognition datasets, e.g., ImageNet [120],

OpenImages [113], demonstrate remarkable generalization capabilities. The learned

visual representations are compact and enjoy strong discriminability. Many works have

been conducted to theoretically explain the rationale behind deep networks’ generaliza-

tion [257], but this problem is still largely unsolved and remains to be investigated.

There are a few analytical tools to probe deep neural networks’ learning and general-

ization capabilities. Early works utilize visualization tools to understand the optimized

parameters or employ dimensionality reduction techniques to visualize the quality of

learned representations [193, 211, 256]. Though helpful, such visualization techniques

only provide qualitative inspections on deep networks [31]. Some works develop geo-

metric probes to analyze the geometric properties of object manifold and connect object

category manifolds’ linear separability with the underlying geometric properties [204].

These methods reveal the structure of memorization from different layers in deep net-

works but only probe layer capacity at the inference time, as shown in Fig. 4.1 (a).

Another simple strategy is to perform linear probing. One can use linear probes to

This chapter is based on joint work [135] with Linchao Zhu, Xiaohan Wang, and Yi Yang, presented
primarily as it appears in the CVPR 2022 proceedings.
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(a) The typical linear probe test the feature separability at the test time.

(b) Our episodic linear probing classifier provides measurements at the training time.

1) The training stage

2) The test stage

Figure 4.1: The typical linear probe in testing (a) and our ELP in training (b). Our
ELP is episodically re-initialized to maintain simplicity. It effectively measures the
discrimination of visual representations in an online manner.

evaluate the feature’s quality quantitatively. Since the discrimination capability of linear

classifiers is low, linear classifiers heavily rely on the quality of the input representation

to obtain good classification accuracy [13]. Alain et al. [5] use linear probes to examine

the dynamics of intermediate layers. The linear probe is a linear classifier taking layer

activations as inputs and measuring the discriminability of the networks. This linear

probe does not affect the training procedure of the model. Recently, linear probes [13] have

been used to evaluate feature generalization in self-supervised visual representation

learning. After representation pre-training on pretext tasks [13], the learned feature

extractor is kept fixed. The linear probe classifier is trained on top of the pre-trained

feature representations. Though conceptually straightforward, linear probes are effective

and have been widely used in measuring the discriminability of visual representations.

Noticeably, the linear probing classifier is only used in testing. A natural question arises:

can we utilize linear probes during training and bring the signal from the linear probes

to regularize the model training?

In this chapter, we introduce a simple strategy to regularize the network to be

immediately plausible for an episodic linear probing classifier. Our simple framework

(Fig. 4.1 (b)) consists of a main classifier, an episodic linear probing classifier, and a
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regularization term. The regularization term considers the relation between the main

classifier and the episodic linear probing classifier, which effectively penalizes examples

that are not immediately plausible for episodic linear probes.

First, we propose an episodic linear probing (ELP) classifier to estimate the dis-

crimination of visual representation in an online way. Similar to the existing linear

probes [5], ELP is applied on top of the last layer of a deep network. ELP classifier is

trained to classify the detached features into the same label space as a regular classifier.

Different from [5], ELP is applied during model training. It is episodically re-initialized

at each epoch. This maintains its simplicity, avoids classifier overfitting, and prevents the

classifier from memorizing features. ELP implicitly reflects the feature discriminability

and separability [190, 192]. If the ELP classifier can quickly classify the feature points,

it indicates that the given features are easily separable and would potentially be more

generalizable.

Second, we introduce a penalization for less suitable examples for an episodic linear

probe. Intuitively, given a training example, if the episodic linear probe and the main

classifier contradict each other, e.g., the episodic linear probe receives a low prediction

score while the main classifier produces a high prediction score, it indicates that the main

network exhibits overfitting on the given instance and a larger penalty should be enforced

for proper regularization. Thus we design an ELP-suitable Regularization term (ELP-SR)

to mitigate the intrinsic model bias and improve the linear separability of the learned

features. ELP-SR sets a re-scaling factor to each instance and adaptively modulates

the cross-entropy loss to avoid overfitting. The re-scaling factor considers the deviation

between an example’s predictive score from the main classifier and ELP classifier, which,

to a certain extent, assesses the example’s suitability for linear classification.

Without bells and whistles, our method achieves significant improvements for visual

recognition tasks in the wild, providing consistent gains for fine-grained, long-tailed, and

generic visual recognition. The fine-grained visual recognition datasets often contain high

inter-class similarities. The long-tailed visual recognition datasets exhibit long-tailed

data distribution, which is realistic in real-world recognition problems. We extensively

evaluate the generalization performance on six standard datasets. The results indicate

that our strategy empowers various deep networks with better discrimination and

mitigates the model bias.
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4.2 Method

In this work, we introduce an auxiliary episodic linear probing classifier to provide

additional regularization for better representation learning. As illustrated in Fig. 4.2,

our framework consists of three components, i.e., a deep neural network, a main linear

classifier, and an episodic linear probing classifier. We illustrate our episodic linear

probing classifier in Section 4.2.1. The details of the ELP-suitable regularization are

introduced in Section 4.2.2. In Section 4.2.3, we describe the training and inference

strategies of the model.

4.2.1 Episodic Linear Probing Classifier

4.2.1.1 Review of The Typical Linear Probes

Training the Feature Extractor. Given a training sample x, a neural network (F)

extracts its feature h. A linear classifier (Cls) projects the feature to a probability

distribution p. The cross-entropy (CE) loss calculates the cross-entropy between p and

the ground-truth distribution y. Formally, we denote the typical training procedure

below:

h= F(x),(4.1)

p = Cls(h),(4.2)

ℓce(p, y)=−
C∑

j=1
y j log(p j),(4.3)

where C is the number of categories. y j = 1 if j is the ground-truth label. Otherwise,

y j = 0. p j is the prediction score of class j. The feature extractor and the classifier are

jointly optimized end-to-end using back-propagation.

Test-time Linear Probing. Linear probing is usually built to assess the quality of deep

representations after the neural network is sufficiently trained [5]. That amounts to

training an auxiliary linear classifier on top of the pre-trained features. The parame-

ters of the linear probe are randomly initialized, while the original classifier layer is

neglected. The pre-trained backbone is frozen and not trained during linear probing.

Since the complexity of the auxiliary classifier is not sufficient to provide additional

discrimination, the classification performance heavily depends on the quality of the

feature representations. Thus, predictive scores of the auxiliary linear classifier can

probe the discrimination of the input features. During implementation, a linear probe
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Figure 4.2: The training flow of our framework. Black lines indicate that the gradient
can be back-propagated, while the blue dotted lines indicate that the gradient back-
propagation is stopped.

can be extended to a Multi-Layer Perceptron (MLP) probe where the linear layer is

replaced with a MLP [91].

The existing probes are mainly used during inference time, either providing quanti-

tative evaluation on pre-trained features or interpreting intermediate layers [56]. This

drives us to incorporate a linear probe during training and borrow the simple nature of

the linear probe for network regularization.

4.2.1.2 Episodic Linear Probing Classifier

Motivated by the efficacy of test-time linear probe in assessing representation quality,

we aim to design a linear probing classifier in training to measure the discrimination of

a neural network and further leverage the probing signal to empower representation

learning. We introduce an episodic linear probing (ELP) classifier and discuss its weight

update scheme in training.

Detached Linear Probing Classifier in Training. When incorporating a linear

probing classifier in training, we need to maintain its independence from the main

classifier. While keeping the main classifier and the backbone network unchanged, we

build a new episodic linear probing classifier on top of the feature extractor. We stop the

linear probe classifier’s gradient to back-propagate to the backbone network. This helps

the linear probe not be biased by the main classifier and produce a neutral evaluation of

the discrimination of the feature representations.

Formally, the episodic linear probing classifier is trained to classify the features into
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C categories using the same labels assigned to the main classifier,

p = Clsmain(h),(4.4)

q = Clselp(stop-grad(h)),(4.5)

ℓmain(x, y)= ℓce(p, y),(4.6)

ℓelp(x, y)= ℓce(q, y).(4.7)

Clsmain is the main classifier, and it produces a probability prediction of p. Clselp is the

linear probe classifier, and it generates a probability prediction of q. Clselp is trained in

an online manner, but its optimization is detached from the main branch. “stop-grad‘”

indicates that feature h is detached to train Clselp. The gradients from the ELP classifier

are unavailable to the backbone and main classifier, and vice versa. The main difference

between the detached linear classifier and the test-time linear probe is that the features

of the detached linear classifier are adaptively changed by the network, while the features

of the test-time linear classifier are always fixed.

Episodic weight re-initialization overcomes overfitting. Training the detached

linear classifier with the same number of epochs as the main classifier would lead to

the detached linear classifier overfitting the features. This overfitting should be avoided

because the simple linear probe is supposed to reflect the discrimination of the features.

If the ELP classifier memorizes all samples, it would not be competent to evaluate the

features effectively. To prevent the ELP classifier from overfitting the training data,

we re-initialize its parameters episodically every I epochs where I indicates episodic

re-initialization interval. Specifically, given a linear classifier parameterized with W
and b, where W is the projection matrix, and b is the bias, both W and b are randomly

re-initialized at the interval of I epochs.

The episodic linear probe enables us to measure and understand the feature dis-

criminability throughout the training process. A larger value of I enforces the ELP

classifier to be better trained, but it makes the ELP classifier more likely to be overfitted.

In contrast, the ELP classifier is under-fitted, if I is too small. An under-fitted ELP

classifier may not well describe the generalization capabilities of the features. In practice,

we set I as a hyper-parameter. Empirically, I = 2 achieves consistent good probing

performances across datasets.

4.2.2 The ELP-Suitable Regularization

ELP-Suitable Regularization through loss modulation. ELP assesses the features’

separability in an online way. The standalone ELP is detached from the backbone and
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does not influence the main network. In this chapter, we aim to utilize the prediction

from the auxiliary ELP classifier to effectively improve the discriminability of the main

branch. However, the design of this regularization is not straightforward. Considering

the episodic nature of the ELP classifier, ELP’s prediction is periodic and not as confident

as the main classifier. If the regularization is not well constructed, the performance of

the main branch would be severely impaired.

In this chapter, we introduce a simple formulation that modulates the cross-entropy

loss with an adaptive factor φ,

(4.8) LELP−SR =
B∑

i=1
stop-grad(φi)∗ℓce(pi, yi),

where pi is the prediction probability from the main classifier, B is the batch size. The

scalar factor φi is assigned to each instance to modulate its cross-entropy loss adaptively.

φ measures the main network’s suitability for an ELP classifier. If an instance is not

suitable for the ELP classifier, e.g., the instance may be not discriminative, or an out-of-

distribution data point, φ imposes a relatively large value so that the network would pay

more attention to this instance. Our ELP-Suitable Regularization (ELP-SR) effectively

mitigates the intrinsic model bias and regularizes the network towards better linear

separability.

We detach the gradients from φ so that the factor only influences the magnitude of the

loss gradients, but the gradient orientation is not altered. This makes the optimization

progress relatively easy and stable. The strategy works surprisingly well in practice.

The instantiation of the ELP-SR factor. As aforementioned, φ aims to measure the

main network’s suitability for an ELP classifier. Given an instance x with the label

c, we instantiate the ELP-SR factor by considering the prediction score of the main

classifier (pc) and the prediction of the ELP classifier (qc). We utilize two elements when

we construct the regularization factor φ.

First, the distance metric (D) between the prediction of the ELP classifier and the

prediction of the main classifier should be concerned. The distance should reflect the main

classifier’s confidence gap compared to the ELP classifier. If the distance is minimized, the

main classifier is pushed to act like a less-trained linear classifier. Relatively, The features

would be remarkably discriminative if a less-trained classifier is already sufficient for

recognizing. Therefore, this metric encourages the main classifier to become simpler,

promoting the features to be more discriminative. We instantiate D by simply computing

the ℓ1 distance between pc and qc, i.e., D = |pc − qc|.
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Second, we incorporate a normalization metric (R) to reveal the discriminability of

both the ELP classifier and the main classifier. The distance metric (D) measures the

relative confidence gap, but we should also consider the absolute values of the confidence

scores. If the distance between pc and qc is small, but both absolute scores are low, the

network has not been well optimized to classify the instance. Thus, we should normalize

the distance with a normalization metric. For simplicity, we set R as the average of pc

and qc, i.e., R = (pc + qc)/2.

We formulate the ELP-SR factor φ as,

(4.9) φ= (
D
R

)γ = (
2|pc − qc|

pc + qc )γ,

where γ smoothly adjusts the rate between D and R. We empirically study other ELP-SR

factor variants in the experiment section.

4.2.3 Training and inference

In the training phase, we calculate the softmax cross-entropy loss for both the main

classifier and the ELP classifier. Our ELP-SR loss is summed with these losses. The

overall training objective is below,

L =
B∑

i=1
ℓmain(pi, yi)+ℓelp(qi, yi)+φi ∗ℓce(pi, yi)(4.10)

In the test phase, we remove the auxiliary ELP classifier and only keep the main

classifier. The final prediction is obtained only from the main classifier. Our framework

does not introduce any additional overhead during testing.

4.3 Experiments

In the challenges of diverse objects of images in the wild, our method shows significant

superiority for generalization. We evaluate three classification tasks, i.e., fine-grained

visual recognition, long-tailed recognition, and generic object recognition. First, since the

classes in fine-grained recognition are similar, and samples are difficult to be recognized

even by humans, the fine-grained recognition task brings extra challenges to learning

discriminative features. Second, long-tailed recogni tion involves the extremely imbal-

anced distributions of data samples. This requests the method to possess generalization

ability and recognize the tailed classes with limited samples. The evaluations of these

tasks reveal the advantages of our method in improving visual representations.
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We further evaluate our method on ImageNet-1K to study the generalization ability

of ELP-SR. Besides the classification accuracy metric, we also report the results of a k-

nearest-neighbor (KNN) classifier on the test set. This further manifests the effectiveness

of our method in improving the discriminability of feature representations. Moreover,

we provide ablation studies to compare different γ, I , and formulations of the ELP-SR

factor. To further demonstrate the ability of the ELP classifier, we present a comparison

of the linear classifier’s accuracy. The results reflect that the network with ELP-SR

produces more discriminative and generalized features.

To be noticed, for all the tasks, we did NOT introduce any additional annotations nor

incorporate extra parameters at the inference time. During testing, only the backbone

networks are used to produce predictions.

4.3.1 Experimental Setup

Classes in fine-grained recognition are similar. They are difficult to distinguish, even for

a human. Meanwhile, samples in every class are diverse [10]. Objects may be shown in

various angles, illuminations, occlusions, backgrounds, etc. These induce fine-grained

categories to show large intra-class variances, but small inter-class variances [10]. Sam-

ples in fine-grained classification are hard to be generalized and discriminated, which

brings difficulties for learning discriminative features by networks.

Dataset and Implementation Details. To show the efficacy, we compare the per-

formances on three standard benchmarks: CUB-200-2011 (CUB) [217], Stanford Cars

(CAR) [115], and FGVC-Aircarft (AIR) [151].

Following the same training procedure in [44], we adapt ResNet-50 [88] pre-trained

by ImageNet [120] as the backbone model. As the regular augmentations [44, 61, 277]

in this task, resizing, random crops, rotations, and horizontal flips are applied. After

operating these standard transformations, the final inputs become 448×448 resolutions.

Similar to the ResNet50 baseline [44, 277], we train our method for 240 epochs and

optimize the loss function by SGD. In our method, we report the results of γ= 3 for all

three datasets with D = pc−qc and R = (pc+qc)/2. For CUB, CAR, and AIR, we set I = 2,

2, and 1, respectively. These are the best settings for parameters and will be discussed in

the ablation section 4.3.4.

Experimental Results. As in Table 4.1, our method achieves significant improvements

based on the ResNet50 baseline. Without bells and whistles, our results are competitive

or even outperform many recent methods with complicated network designs [102], addi-

tional augmentations [44, 61], or multi-scale features [61, 277]. Merely utilizing naive
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Method
Dataset

CUB CAR AIR
B-CNN [144] 84.1 91.3 84.1
HIHCA [28] 85.3 91.7 88.3
RA-CNN [69] 85.3 92.5 88.2
OPAM [172] 85.8 92.2 -
Kernel-Pooling [49] 84.7 91.1 85.7
MA-CNN [270] 86.5 92.8 89.9
MAMC [206] 86.5 93.0 -
HBP [251] 87.1 93.7 90.3
DFL-CNN [226] 87.4 93.1 91.7
NTS-Net [245] 87.5 93.9 91.4
DCL [44] 87.8 94.5 93.0
PMG [61] 88.9 95.0 92.8
ACNet [102] 88.1 94.6 92.5
LIO [277] 88.0 94.5 92.7
ResNet50 Baseline 85.5 92.7 90.3
ResNet50 Baseline + ELP-SR 88.8 94.2 92.7

Table 4.1: Comparison of three benchmarks of fine-grained classification. Without addi-
tional augmentations or network designs, our method achieves significant improvements.

backbone with ELP-SR in training, the simple backbone networks boost 3.3%, 1.5%,

and 2.4% respectively in three datasets which are significant improvements in this task.

Boosts in this task reveal that our method effectively improves the networks’ ability to

discriminate and generalize samples. To further manifest the superiority of our method,

more discussions will be presented in 4.3.4.

4.3.2 Long-tailed Visual Recognition

In long-tail recognition, the data distributions of different classes show extreme imbal-

ance. As the long-tailed distribution, a handful of ‘head’ classes contain considerable

samples, but a large number of ‘tail’ classes only include limited samples. The networks

are biased toward ‘head’ classes, and the samples in ‘tail’ classes are hard to be gen-

eralized. In this section, we also evaluate the performances of our method under the

challenging long-tailed distribution.

Dataset and Implementation Details. The experiments are operated based on long-

tailed CIFAR-10 and CIFAR-100 datasets [119]. We first produce several versions of

long-tailed datasets following [29] under different imbalance ratios, which denotes the

ratio between the largest and smallest numbers of samples in classes. We report the
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Method CIFAR-10 CIFAR-100
Imbalance ratio 100 50 10 100 50 10

Focal Loss [142] 70.4 76.7 86.7 38.3 43.9 55.7
CB Focal [48] 74.6 79.3 87.1 39.6 45.2 58.0
Meta-weight [199] 75.2 80.0 87.8 42.0 46.7 58.4
CDB-CE [201] - - - 42.5 46.7 58.7
Mixup [263] 73.1 77.8 88.3 39.6 45.0 58.2
ERM [29] 70.4 74.8 86.4 38.3 43.9 55.7
ERM [29] + ELP-SR 77.4 81.2 87.9 39.1 44.7 57.9
ERM [29] + ELP-SR (τ= 1) 77.5 81.5 88.4 42.4 48.3 58.9
ERM [29] + ELP-SR (τ∗) 78.0 81.5 88.7 42.4 48.3 59.1

LDAM [29] 77.0 81.0 88.2 42.0 46.6 58.7
LDAM [29] + ELP-SR 78.2 82.3 88.1 43.9 48.2 59.1

Table 4.2: Comparison of top-1 validation accuracy of different methods on imbalanced
CIFAR-10 and CIFAR-100 datasets. All results are implemented based on ResNet-32.
τ= 1 indicates applying τ-normalization [107] with τ= 1. τ∗ stands for results with the
best settings of τ.

results in three kinds of imbalance ratios which are 100, 50, and 10, respectively. To

perform fair comparisons, we evaluate our method based on the ResNet-32 baseline

from [29].

Experimental Results. As shown in Table 4.2, ELP-SR dramatically improves the

performances of the baseline method in all the settings and datasets. The improvements

in CIFAR-10 of imbalance ratio 100 and 50 are even larger than LDAM [29]. Moreover,

after adapting the normalization from [107], the results of our method show more

competitiveness in this task. All results in different settings outperform LDAM.

Besides, we further investigate our method based on the LDAM [29]. By minimizing

the margin-based boundary considering the generalization [29], LDAM is well-designed

for long-tailed recognition and boosts the performances dramatically. Meanwhile, our

method can achieve higher performances on the foundation of LDAM. Though without

specific consideration for the long-tailed distribution, ELP-SR offers general improve-

ments to this task. These results demonstrate that our method helps the network

generalize and produce discriminative features against the challenging distributions.

4.3.3 Generic Visual Recognition on ImageNet

To reveal the generalization of ELP-SR, we further investigate our method in generic

object recognition on the standard benchmark for visual representation.

Dataset and Implementation Details. We evaluate ELP-SR on ImageNet-1K [120],
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Backbone
Top-1 Accuracy Top-5 Accuracy

Baseline ELP-SR Baseline ELP-SR
ResNet50 76.13 76.82 92.86 93.32
ResNet101 77.37 77.86 93.54 94.06
ResNet152 78.31 78.77 94.04 94.42
BN-Inception 73.52† 74.05 91.56† 91.74
Inception-V3 77.45 78.12 93.56 94.04
Inception-ResNet-V2 79.63† 80.22 94.79† 95.24
SE-ResNet50 77.05 77.45 93.48 93.88
SE-ResNet101 77.62 77.94 93.93 94.38
SE-ResNet152 78.43 78.61 94.27 94.53

Table 4.3: Comparison of single-crop accuracy (%) on the ImageNet-1K validation set.
Different backbones with our method show significant improvements. To perform a fair
comparison, † indicates the results implemented and re-trained by ours.

containing 1.28 million images with 1000 categories. To show the effectiveness and

generalization, we apply ELP-SR on different backbone networks, which are ResNet-

50 [88], ResNet-101 [88], ResNet-152 [88], BN-Inception [101], Inception-V3 [208], and

Inception-ResNet-V2 [207]. According to the standard implementations of these works,

we adapt SGD with momentum 0.9 as the optimizer. All the networks are trained with

the augmentations of random crops and horizontal flips. For ResNet-50, ResNet-101,

ResNet-152, and BN-inception, we first resize the images to 256×256 resolutions and

then randomly crop them to 224×224. For Inception-V3 and Inception-ResNet-V2, we

resize to 320×320 and randomly crop to 299×299 as the corresponding implementations

in their works [207, 208]. As in Table 4.3, we report top-1 and top-5 accuracy respectively

and compare all the backbones with ELP-SR.

Experimental Results. As in Table 4.3, with ELP-SR, all backbone networks achieve

performance gains. The results reveal that our method is valuable to various back-

bone models and generally ameliorates the representations of networks. Almost all the

backbones obtain about a 0.5% percent increase in top-1 accuracy.

Furthermore, to verify the general improvements introduced by our method, we

explore the performances of our method with SE-block [95]. As shown in Table 4.3,

though SE-block already promotes the performances, our method leads to further boosts

on the fundamental of SE-block [95].

k-nearest neighbors accuracy. To reveal the effectiveness of our method, we provide

an additional evaluation with the KNN classifier [233]. For feature vector h, we select

the top k nearest neighbors by the weights exp(h ·h′/t) corresponding to the labels, where

h′ indicates features from the training set and t is a temperature term. We apply t = 0.1
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Method 20 200
ResNet50 75.04 73.21
ResNet50 + ELP-SR 75.48 73.88

Table 4.4: KNN accuracy on ImageNet-1K. Results of accuracy with 20 and 200 nearest
neighbors are presented.

in our experiments.

As shown in Table 4.4, the results with 20 and 200 nearest neighbors are displayed.

With the KNN classifier, our method outperforms the backbone network. This reflects

that the features after training with ELP-SR become more discriminative.

In all, the general improvements in all the backbones, methods, and tasks reflect that

ELP-SR is not sensitive to particular networks, designs, or visual challenges. It provides

a valuable regularization for visual representation learning.

4.3.4 Ablation Studies

4.3.4.1 Ablation on Hyper-parameters

Episodic interval I . The number of periodical intervals prevents the ELP from over-

fitting the features. We experiment with the different values of I in the CUB dataset.

As shown in Table 4.5, the performances are influenced by I . The larger I induces the

degradation of performances. With plenty of training iterations, the ELP classifier tends

to be overfitting and cannot measure generalization effectively.

Besides, we also operate comparisons on the ImageNet dataset. The model achieves

76.13, 76.82, and 76.30 when I equals to 1, 2, and 3, respectively. The proper value

of I can better empower the advantages of ELP. Minor I may not be sufficient for

the construction of ELP. The more significant I may induce degradation of the ability

of the ELP classifier to indicate features’ discrimination. Thus, we apply I = 2 in our

experiments as this condition generally shows improvements in several datasets.

γ in the SR Factor. The parameter γ is responsible for adjusting the intensity of regu-

larization. Since D
R is always lower than 1, the larger γ leverages smaller regularization

for the inputs. As shown in Table 4.5, we compare multiple conditions of γ in fine-grained

classification. The variances of γ slightly influence the performances. A proper γ leads

to better performances but is not deterministic for fine-grained classification. More-

over, we evaluate different γ values under the condition of I = 2 on ImangeNet-1K.

The recognition accuracies are 76.23, 76.82, and 76.30 when γ is set to 1, 2, and 3,

respectively.
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The Variations of SR Factor. We further investigate our ELP-SR in different forms, as

shown in Table 4.6. First, for regularization, the confidences of the ELP classifier reflect

the discriminability of features. Since the main classifier tends to be overfitting, pc is

relatively higher and close to 1. Thus, a similar effect may occur for 1−qc and pc−qc. As

shown in Table 4.6, both formulations enable regularizing the networks to perform better

while the model with pc − qc achieves a higher result. This is because pc − qc provides

a more precise measurement of the deviation between the main classifier and the ELP

classifier.

Second, to formulate the normalization term, we require both confidences of the

ELP classifier and the main classifier to become higher. The higher confidence of the

main classifier indicates that the sample can be correctly recognized. This is a primary

requirement for better representation of the feature. If the features are hard to recognize

even for the main classifier, this may indicate that the visual representation quality

is relatively low. It is a primary criterion that the network should provide at least

recognizable features. As shown in Table 4.6, higher performances are shown if applying

the normalization terms. Both pc + qc and pc ∗ qc are valid to normalize our ELP-SR.

Third, only the regularization of higher qc can also boost the performances. Without

the normalization term, the impact of ELP-SR also guides the networks to be more

generalized. However, lacking normalization, the improvements are relatively lower.

Besides, simple normalization is also valuable. Since 2
pc+qc and 2

pc∗qc also expect higher

confidences of ELP, a similar influence may occur through leveraging the normalization

term only. These results demonstrate that regularization and normalization are valuable

in ELP-SR. Simultaneously, the combinations of both sides introduce a further increase

in performances.

Finally, we also operate ablations for the distillation of the probability of two clas-

sifiers. Remarkable decreases are shown in Table 4.6 of both conditions for L1 and L2

regressions. The network should not be optimized to solve features’ discriminability

directly. Distilling can lead the main classifier to perform similarly to the ELP classifier

but does not encourage the network to be more generalized. If the main classifier is

optimal according to the ELP classifier, the network can ‘pretend’ to achieve discrimi-

native features. However, in testing, this ‘cheating’ is useless. Additionally, we replace

the ELP classifier with a memory bank and update the memory by a momentum-based

moving average. When the momentum is 0.9 and 0.1, the results are 86.1%and 86.5%,

respectively. The results show that the moving average operation helps fine-grained

recognition, but it provides a weaker regularization than the episodically initialized ELP
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Parameter I = 1 I = 2 I = 3 I = 4 I = 5
γ= 1 88.0 88.2 88.2 88.0 87.8
γ= 2 88.0 88.5 88.2 88.0 87.8
γ= 3 87.6 88.8 88.0 88.0 87.6
γ= 4 87.5 88.0 87.8 87.8 87.5

Table 4.5: Results for different values of I and γ on CUB. I prevents the ELP from
overfitting, and γ adjusts the intensity of regularization.

Formulation D R Top-1 Accuracy

D
R

pc − qc pc + qc 76.82
pc − qc pc ∗ qc 76.75
1− qc pc + qc 76.78
1− qc pc ∗ qc 76.70

D
pc − qc - 76.71
1− qc - 76.60

1
R

- pc + qc 76.25
- pc ∗ qc 76.23

Distillation
L1 76.12
L2 76.18

Table 4.6: Comparison for variations of SR Factor on ImageNet-1K. Various conditions
are presented, including different formulations of D and R, with or without D and R,
and direct distillation of the main and ELP classifier.

classifier.

4.3.4.2 Visualization

To demonstrate the efficacy of our ELP, we present a visualization for the testing accuracy

of our ELP based on CUB. In detail, we train the baseline method, take the features from

the backbone to train ELP, but do not leverage ELP-SR for network training. Meanwhile,

we take our method training with ELP-SR as the comparison. This is similar to applying

linear probing for every epoch. Since ELP is re-initialized every two epochs for CUB,

to better reveal the capacity of ELP under different conditions, we plot the accuracy

every two epochs. As shown in Fig. 4.3, unseen features in the testing set are remarkably

more recognizable. This indicates that the network with ELP-SR is more generalized

and produces more discriminative features. Even for the simple classifier, the unseen

samples represented by the network are easier to be classified.
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Figure 4.3: Curves of testing accuracy only with ELP classifier on CUB. Compared with
our method, We utilize the baseline method that extracts the features from the backbone,
trains ELP with features individually but does not leverage ELP-SR for the backbone
training. Features trained with ELP-SR are more discriminative than the baseline and
easier to be classified by simple ELP.

4.4 Conclusion

In this paper, we propose episodic linear probing (ELP) to estimate the generalization and

discriminability of features online. By ELP, we propose an ELP-suitable Regularization

term (ELP-SR) to regularize the models. Our insights are two-fold. 1). Since the main

classifier may be overfitting and its confidence may not indicate the discrimination of

features, the ELP classifier provides additional regularization for more discriminative

features. 2). Immediate suitability is effective in measuring the discrimination of features.

An intuitive hypothesis is that if the features are highly discriminative, they should be

recognizable by an easily learned linear classifier. Our ELP is episodically re-initialized,

effectively mitigating overfitting and regularizing the network towards better linear

separability.
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IMPROVING LEARNING EFFICIENCY FOR VIDEO

CAPTIONING

5.1 Introduction

Video captioning is a challenging task that requires the model to learn semantics and

express through natural language. The main challenge in this task is understanding

the diverse visual contents in the videos. Recently, many solutions have been proposed

to solve this problem, e.g., leveraging better video representations [149, 167], complex

network designs [266, 267], and end-to-end learning [141, 194]. These works facilitate a

better understanding of video semantics and generate coherent descriptions of the visual

contents.

Despite significant improvements, understanding video semantics remains a chal-

lenging task. A major obstacle to achieving this understanding is the semantic ambiguity

in videos, caused by their visual redundancy. The contents of videos are diverse and

difficult to precisely trim with specific descriptions. As illustrated in Fig. 5.1 (a), some

contents, such as irrelevant and minor events, are not described by the ground truth,

and without particular descriptions, they are implicit for the network to understand.

In addition, contents such as transitions are related to the events described by the

ground truth but do not contain valuable semantics for network learning. These contents

present a challenge for neural networks. The video captioner is always hard to generalize

This chapter is based on joint work [136] with Linchao Zhu, Xiaohan Wang, and Yi Yang, presented
primarily as it appears in the TMM 2023.
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Ground truth:
Misguided Predictions: 

Ours: 

A person is riding a ski lift and speaking to us.
A man is walking in a town. 
A man is looking at a building. 
A man is walking in the mountain and talking about it. 

Ground truth:

Fully described by the ground truth

A person is riding down 
a hill on a snowboard.

Irrelevant event TargetTransition Transition

Described by the ground truthUndescribed Undescribed

(a) Video captioning (b) Image captioning

Figure 5.1: Video semantics are ambiguous. Some frames contain irrelevant events
or serve as transitions. They do not provide valuable contents corresponding to the
ground truth in video captioning. Meanwhile, image contents are concise and explicit.
The ground truth in image captioning easily summarizes all image semantics.

redundant contents or misguided by ambiguous semantics. Meanwhile, the mismatch

between descriptions and visual contents further increase the difficulties in learning

video semantics. All this defeats induce the captioner may be misguided by trivial and

irrelevant semantics.

Comparably, image contents are more concise, and the semantics are salient, as

shown in Fig. 5.1 (b). There are no irrelevant events or transitions apart from the

valuable contents in the images. Meanwhile, the image descriptions are precise. The

ground truth description can summarize most contents. This makes the image samples

easier to be captioned. Empirically, results from image captioning datasets [127] are

often better than video captioning in various metrics.

The primary distinction between images and videos for captioners lies in content

density. The redundancy and ambiguity in video data cause the network to struggle in

generalizing complex video semantics. While previous works have focused on proposing

better captioner designs, improved architectures to increase network capacity, which

aids in learning semantics and handling redundancy. However, an another line for im-

proving video captioning has been overlooked: modifying content density to enhance the

learning process of video captioners. In this work, we propose a novel learning method

called Image-Compounded learning for video Captioners (IcoCap). IcoCap compounds

concise and easily-learned image semantics into video samples, diversifying the visual

contents and compelling the network to learn against redundant contents. Besides, the

compounded image semantics are more easily learned compared to video semantics,

which are similar to a strong competitor [189, 232] for learning video semantics. To

address video captioning, the captioner must investigate valuable video cues in contrast

to easily-learned image contents. This further enhances the captioner’s ability to learn
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video semantics. Additionally, IcoCap alleviates the challenges of learning from mis-

matched descriptions by encouraging the network to flexibly learn descriptions based on

visual semantics, rather than relying on rigidly pre-assigned captions.

Specifically, IcoCap comprises two modules: the Image-Video Compounding Strat-

egy (ICS) and Visual-Semantic Guided Captioning (VGC). In detail, ICS is designed to

compound image content into video content. This approach further diversifies the video

samples, guiding the video captioner to learn against redundancy. Simultaneously, the in-

troduction of easily-learned image content compels the network to extract valuable video

cues while filtering out irrelevant elements. Additionally, IcoCap addresses the issue

of ambiguous video semantics by VGC, which facilitates flexible learning of semantics

based on visual content. In VGC, the ground truth is selected from relevant descriptions

rather than strictly corresponding to the original video ground truth. A visual-semantic

consistency factor is introduced to adjust the captioning process, promoting the network

to focus on the salient visual content rather than concentrating on minor and detailed

contents.

The main contributions can be summarized below:

1. We propose an Image-Compounded learning for video Captioners (IcoCap). IcoCap

introduces image samples and compounds the images into video contents. IcoCap impels

the network to mine valuable video cues against the semantic ambiguity in videos.

2. We propose an Image-video Compounding Strategy (ICS) and Visual-semantic

Guided Captioning (VGC). ICS provides a series of operations to compound images and

videos, which promotes the network’s ability to learn video semantics against ambiguity.

VGC helps the network to flexibly learn complex video contents from ICS, rather than

rigidly following the ground truth.

3. Without complicated designs or networks, our method performs favorably or out-

performs the state-of-the-art methods on various datasets, including MSR-VTT, MSVD,

and VATEX.

5.2 Image-compounded video Captioner

We propose an Image-compounded video Captioner (IcoCap) to introduce image samples

to improve video captioning. IcoCap contains two parts: Image-video Compounding

Strategy (ICS) and Visual-semantic Guided Captioning (VGC). ICS uses image samples

to augment video samples for video captioning. It contains a series of augmentation

strategies to compound image contents into video contents, as shown in Fig. 5.2. Moreover,
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VGC provides a flexible learning manner for the complex and diverse semantics from

ICS.

5.2.1 Image-video Compounding Strategy

The visual contents of the video data are diverse but ambiguous. It is hard to annotate

all instances and events in the frames specifically. However, semantics in image data are

explicit and clear. Existing works [127, 194, 205] perform joint training to learn image

and video samples. They treat the images and videos individually, which are separately

provided for the network as different training samples.

However, our work aims to utilize image samples to augment video samples and

compound them as one training sample. Both videos and images can occur in the same

training samples. This leads to the redundancy of visual content changes according

to the introduction of image samples. As shown in Fig. 5.2, we proposed Image-video

Compounding Strategy (ICS) to produce training samples. Specifically, for a given video V
with N frames, we pre-process and represent the video as frame features v following [149,

183, 209]. In IcoCap, we randomly sample M images from [143] to construct an auxiliary

image set. In every training step, we select an image sample I and extract the image

feature, denoted as x. x ∈R1×D . We also additionally pre-process another video V ′. We

denote the frame feature from V ′ as v′. Then, ICS takes v, v′, and x as inputs and

produces compounded samples h, where h ∈Rn×D .

ICS consists of three steps: Intra-Video Sampling (VS), Inter-Feature Mixup (FM),

and Inter-Frame Swap (FS), represented as functions fVS, fFM, and fFS. For the current
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Image-Compounding 
Strategy (ICS)

CLIP visual model
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𝐼

𝑣, 𝑣′

𝑥
ℎ Visual-semantic Guided 

Captioning (VGC)

𝜙(ℎ, 𝑔ℎ)

ℓ(ℎ, 𝐶ℎ) ℒ(ℎ ,𝑔ℎ, 𝐶ℎ)Select 𝐶ℎ

𝑉

Transition
Compounded 

by FM

Irrelevance
Introduce 

by FS

Irrelevance
Introduce 

by FS

Target
Resampled 

by VS

Target
Compounded 

by FM

Target
Resampled 

by VS

Target
Compounded 

by FM

Described by 𝐶𝑣 Described by 𝐶𝑣′ Described by 𝐶𝑥 Described by 𝐶𝑣

Figure 5.2: Overview of Image-video Compounding Strategy (ICS). ICS introduces image
samples to help the network learn ambiguous video semantics. All features are extracted
by a frozen CLIP visual model. V and V ′ are different video samples. I is the additional
image sample. v, v′ and x are features for video and image samples, respectively. Cv, Cv′ ,
Cx are the descriptions for V , V ′ and I, respectively.
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video sample, we construct a set of frame features as V = {v1,v2, ...,vN}, where vi indicates

a frame feature (vi ∈R1×D). We also create an auxiliary set A = {v′1,v′2, ...,v′N , x1, x2, ..., xN},

where xi is a duplicate of the same image sample x, and v′i ∈R1×D .

1. Intra-Video Sampling (VS): In VS strategy,

(5.1) h = fVS(V )

The frame feature h is randomly sampled from V and h ∈Rn×D . To be noticed, previous

works [39, 141, 267] usually apply uniform sampling during producing video features.

Uniform sampling, with a fixed sampling interval, is insufficient in fully utilizing the

information present in a video due to the redundancy of video contents. Some frames

may never be sampled and used for training. Comparatively, random sampling in VS can

take advantage of all frames in training and also produce more challenging and diverse

samples for captioner training.

2. Inter-Feature Mixup (FM): To implement FM strategy, an auxiliary feature h′ is

randomly sampled from A , and h′ ∈Rn×D . Then, FM strategy can be formulated as:

(5.2) hi = fFM(hi,h′
i, J)=

αhi + (1−α)h′
i if i ∈ J

hi if i ∉ J

where i is the index number and i ∈ [1,n]. J is the set of index numbers and J = { j1, ..., jk}.

k is a random number and k ∈ (1,n). Moreover, α represents the mixup ratio. α ∈ (0,1).

3. Inter-Frame Swap (FS): In FS strategy, we replace the training feature with the

auxiliary features, by given the random index Q, in which Q is also a set of index number.

Q = {q1, ..., qt} and t ∈ (1,n). The operation can be written as:

(5.3) hi = fFS(hi,h′
i,Q)=

h′
i if i ∈Q

hi if i ∉Q

where i is the index number and i ∈ [1,n]. In FS, each frame feature has a 50% probability

of being mixed up and a 50% probability of being replaced by external features.

ICS blends the semantics of images and videos, generating an image-compounded

video sample for captioner learning. Samples compounded with various video samples

exhibit greater diversity than the original samples. This diversity sets a higher require-

ment for the network to handle redundancy, which in turn enhances the generalization

ability of the captioner. Furthermore, some samples are constructed by compounding

both video and image samples. By incorporating easily-learned image semantics, the

video captioner is required to extract valuable video cues while disregarding easy but
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irrelevant cues from images. This process further improves the captioner’s ability to

avoid being misled by irrelevant semantics.

In addition, the network architecture used in our work is a simple transformer model

comprising a four-layer transformer and a fully connected layer, following the approach

described in [127]. The transformer network in our work is responsible for mining

valuable contents from h and understanding complex semantics. The fully connected

layer produces predictions of words at every time step.

5.2.2 Visual-semantic Guided Captioning

Features from ICS are diverse and complex, which are hard to be solved by the original

captioning loss. In our work, we propose Visual-semantic Guided Captioning (VGC)

to encourage the network to express semantics flexibly according to the given visual

semantics.

There are two kinds of visual-semantic guidance in VGC, which are visual-semantic

based description selection and the visual-semantic consistent factor.

First, the ground truth for descriptions is flexibly selected from relative descriptions

guided by the visual semantics of h. The training feature h may contain contents from V ,

V ′, or I, in which all the features have corresponding ground truth and are available to

be expressed. For v, v′ and x, the corresponding captions are Cv, Cv′ , and Cx. We utilize

a pre-trained language model [183] to extract the features of the descriptions and denote

them as gv, gv′ , and gx. All the language features are in the size of R1×D . Then, the

ground truth of the current sample can be determined by the cosine similarity between

visual features (h) and language features (gv, gv′ and gx). We denote the language

feature with the largest similarity as gh and select the corresponding caption Ch as

the ground truth. The ground truth is the corresponding caption with the maximum

similarity. Besides, to calculate similarity, g is copied n times to fit the dimension of h.

To be noticed, rather than describe all possible ground truth as in [194], the network

should learn to produce Ch only, which reflects most of the visual contents in h and is the

most suitable for current visual semantics. This training goal requires the network to

exclude expressive but minor semantics and focus on the exploration of valuable visual

semantics.

Second, we further leverage the guidance of visual semantic by designing a visual-

semantic consistent factor φ. It regularizes the learning procedure and reduces the

punishments if the ground truth description possess lower consistency with current

visual contents. Specifically, the factor encourages the predictions to be close to the
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salient semantics in visual contents, which can be formulated as follow:

(5.4) φ(h, gh)=−log(min(S/τ,1))

where τ is a temperature coefficient and S indicates the cosine similarity between h and

gh. Regardless of whether the predictions are close to Ch, if the language features of the

predictions show higher similarity to most of the visual contents in h, the factor φ will

be relatively lower.

Finally, the overall loss function can be formulated as follows:

(5.5) L (h, gh,Ch)=φ(h, gh) ·ℓ(h,Ch)

where ℓ is cross-entropy loss function which is widely used as captioning loss in [2, 149].

Instead of forcing the network to generate fixed, rigid descriptions, VGC encourages

the network to learn flexibly based on the visual semantics present in the video content.

This is achieved by adaptively assigning the ground truth for ambiguous video semantics

originating from ICS. Simultaneously, VGC introduces a flexible factor to modulate the

captioning learning process, guiding the network to generate improved descriptions that

better align with the diverse visual semantics. This approach not only helps the network

to better adapt to varying content densities but also ensures that the generated captions

are more representative of the actual video content. All modules in IcoCap contribute to

enhancing the captioner’s ability to learn effectively while dealing with redundant video

contents and ambiguous video semantics.

5.3 Experiments

In this section, we discuss the details of our method and evaluate the captioning perfor-

mances in various datasets.

5.3.1 Experimental Setup

Datasets: We evaluate our method using three established video captioning benchmarks:

MSRVTT [239], MSVD [35], and VATEX [222]. In all datasets, we employ English

annotations as the ground truth for experimentation.

MSR-VTT [239] is a prevalent benchmark for video captioning that consists of 10,000

videos, each with 20 annotations. To facilitate evaluation and comparison, we adopt the

standard setting used in [239], wherein the dataset is partitioned into three subsets: a
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training set with 6,513 samples, a validation set with 497 samples, and a test set with

2,990 samples.

MSVD [35] is another established benchmark in video captioning, which comprises

1,970 YouTube videos, each with approximately 40 annotations. The dataset is par-

titioned into three subsets: a training set consisting of 1,200 videos, a validation set

consisting of 100 videos, and a test set consisting of 670 videos.

In addition, VATEX [222] is another widely used dataset for video captioning, sourced

from the Kinetics-600 dataset [109]. VATEX contains annotations in both English and

Chinese, with 10 descriptions in each language. The dataset comprises 25,991 video clips

for training, and 3,000 and 6,000 video clips for validation and testing, respectively.

Implementation Details: We extract features from all video frames and image

samples using the CLIP visual model [183], which we utilize solely for representation and

do not involve in network training. The CLIP model is a powerful representation method

that has been widely applied in video captioning [149]. Unlike recent works [38, 141, 267]

that utilize video-based backbones such as Vivit, C3D, and I3D, our work employs

an image-based method through the CLIP model. Video-based backbones take into

account the relationships between frames in chronological order, while external images

lack such relationships and may confuse video-based models. In contrast, image-based

methods do not consider sequential properties, providing more flexibility for image-

video compounding. Therefore, we choose the CLIP model to represent visual content.

Additionally, the pre-trained language model used in VGC is based on the CLIP language

model.

We capture all the video frames and extract the features by CLIP visual model [183].

The image samples are also processed similarly. We only use CLIP model to represent

video and image data, which does not participate in the network training. Besides,

CLIP model is a powerful representation method and has already been widely applied

in video captioning [149]. Unlike recent works [38, 141, 267] that utilize video-based

backbones [12, 53, 238], our work employs an image-based method through the CLIP

model. Video-based backbones take into account the relationships between frames in

chronological order, while external images lack such relationships and may confuse video-

based models. In contrast, image-based methods do not consider sequential properties,

providing more flexibility for image-video compounding. Therefore, we choose the CLIP

model to represent visual content. Additionally, the pre-trained language model used in

VGC is also based on the CLIP language model.

The dimension of input features D is 512. As our captioning model, we employ a
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Table 5.1: Comparison with state-of-the-art methods on the test split of MSRVTT. †
indicates the results from the official implementation of [141] taking 32 frames as inputs.
ViT-B/32 and ViT-B/16 stand for CLIP ViT-B/32 and CLIP ViT-B/16 models, respectively.
CLIP baseline only uses the video features extracted by CLIP model and does not apply
our method. Joint baseline indicates both video and image samples are jointly trained
with CLIP baseline.

Method Feature
MSR-VTT

BLEU-4 METEOR ROUGE-L CIDEr
GRU-EVE [1] InceptionResNetV2 + C3D 38.3 28.4 60.7 48.1
STG-KD [167] ResNet101 + I3D 40.5 28.3 60.9 47.1
POS-CG [218] InceptionResNetV2 42.0 28.2 61.6 48.7
POS-VCT [93] InceptionResNetV2 + C3D 42.3 29.7 62.8 49.1
ORG-TRL [267] InceptionResNetV2 + C3D 43.6 28.8 62.1 50.9
SAAT [273] InceptionResNetV2 + C3D 39.9 27.7 61.2 51.0
OpenBook [266] InceptionResNetV2 + C3D 33.9 23.7 50.2 52.9
Revnet [124] Inception-V4 42.4 28.1 62.3 53.2
HMN [247] InceptionResNetV2 + C3D 43.5 29.0 62.7 51.5
SWINBERT† [141] VidSwin 41.9 29.8 62.1 53.7
CLIP4Clip [149] ViT-B/32 46.1 30.7 63.7 57.7
CLIP Baseline ViT-B/32 43.1 29.3 61.9 54.8
Joint Baseline ViT-B/32 43.5 29.4 62.4 55.2
Ours ViT-B/32 46.1 30.3 64.3 59.1
Ours ViT-B/16 47.0 31.1 64.9 60.2

simple transformer network [212], and all training settings follow [127]. For the external

image subset, we randomly select samples from MSCOCO [143], with a default length

of 10,000. In addition, we set the hyper-parameters n = 32 and τ= 0.5. Image samples,

original video samples, and additional video samples have a 24.71%, 51.79%, and 23.5%

probability of being the ground truth, respectively. All input samples are potentially

salient content and can be learned for captioning. During evaluation, we uniformly

sample frames from videos in accordance with [127, 149]. Further experiments and

ablations will be presented in the next section. To ensure a fair comparison, we evaluate

our method and report results for other methods based on the official test split of the

corresponding datasets.

5.3.2 Performance Comparison

As shown in Table 5.1, we evaluate our method on the MSR-VTT dataset using var-

ious captioning metrics. Our method outperforms the current state-of-the-art SWIN-

BERT [141] without bells and whistles. Using only the CLIP ViT-B/32 model, our method
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improves by 5.1, 1.3, 2.8, and 5.4 in BLEU-4 [169], METEOR [55], ROUGE-L [139], and

CIDEr [213], respectively, which is significant in MSR-VTT. Notably, our method does

not employ multi-modal features [218, 273] or features from detectors [167, 267]. We

also do not apply complex network design [38, 247], costly end-to-end training [141], or

assemble operations [149].

Furthermore, we present the results of CLIP baseline (which only uses CLIP features

without ICS and VGC) and joint training baselines (where CLIP baseline is jointly

trained with image features without ICS and VGC) implemented with CLIP ViT-B/32

model. CLIP is a powerful representation method, and even the CLIP baseline, which

utilizes only CLIP features and our network, achieves relatively higher performance

than recent methods [38, 141, 267]. Additionally, introducing image samples and joint

training with MSR-VTT data slightly improves the performance of the CLIP baseline.

However, due to the domain gap between video and images, joint training video samples

with image samples yields only marginal improvement. In comparison, our method with

image samples yields a significant improvement in video captioning, with the value of

the CIDEr metric increasing by 4.3.

In addition, due to the effectiveness of ICS and VGC, our method outperforms the

CLIP4Clip [149] method, which is also based on the CLIP ViT-B/32 model and utilizes

CLIP features. With the same features as inputs, our method achieves significantly

better performance than CLIP4Clip, with gaps of 1.1, 1.2, and 3.5 in BLEU, METEOR,

and CIDEr, respectively.

As presented in Table 5.2, we conducted experiments on the MSVD dataset, which

further demonstrates the effectiveness of our method. In comparison with the improve-

ments observed between our method and the joint training baseline on MSR-VTT, our

method’s superiority is further highlighted. Specifically, our method yields a significant

increase of 7.1 in the CIDEr metric, which is a dramatic improvement compared to the

joint training baseline.

Moreover, we present further results on the VATEX dataset [222], which includes

more complex and diverse descriptions compared to MSR-VTT and MSVD. In addition

to exploring video content, VATEX sets a higher requirement for language diversity

in predictions. To achieve better performance in evaluation, the predictions should be

more vivid and diverse, which is relatively challenging for the simple captioning network

utilized in our method. As demonstrated in Table 5.3, we achieve comparable performance

to state-of-the-art methods in VATEX. Despite not aiming to generate vivid descriptions

with high linguistic complexity, IcoCap still outperforms many recent methods with more
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Table 5.2: Comparison with state-of-the-art methods on the test split of MSVD. † indicates
the results from the official implementation of [141] taking 32 frames as inputs.

Method Feature
MSVD

BLEU-4 METEOR ROUGE-L CIDEr
GRU-EVE [38] InceptionResNetV2 + C3D 47.9 35.0 71.5 78.1
POS-CG [48] InceptionResNetV2 52.5 34.1 71.3 88.7
POS-VCT [49] InceptionResNetV2 + C3D 52.8 36.1 71.8 87.8
SAAT [50] InceptionResNetV2 + C3D 46.5 33.5 69.4 81.0
STG-KD [2] ResNet101 + I3D 52.2 36.9 73.9 93.0
ORG-TRL [4] InceptionResNetV2 + C3D 54.3 36.4 73.9 95.2
HMN [52] InceptionResNetV2 + C3D 59.2 37.7 75.1 104.0
SWINBERT† [5] VidSwin 55.7 39.6 75.7 109.4
CLIP Baseline ViT-B/32 55.5 38.0 74.4 95.5
Joint Baseline ViT-B/32 57.2 37.5 74.6 96.7
Ours ViT-B/32 56.3 38.9 75.0 103.8
Ours ViT-B/16 59.1 39.5 76.5 110.3

complex designs.

Additionally, the input features in our work can be summarized as image-based

representations, which extract features from each frame individually. In this section, we

also evaluate video-based representations, which represent multiple sequential frames

as a single feature.

In detail, we first apply the ICS strategies directly to the original video frames and

then extract the features using the VideoSwin Transformer following [12, 141]. Since the

VGC requires calculating similarity between visual and language features, we only adapt

ICS with the VideoSwin Transformer and use our captioning model for comparison. As

in our work, the parameters of the VideoSwin Transformer are also fixed during training.

However, after applying the video-based representations, the results on MSR-VTT are

only 38.5, 27.3, 59.0, and 45.3 for BLEU-4, METEOR, ROUGE-L, and CIDEr, respec-

tively. The performance of the ICS strategies with the VideoSwin Transformer decreases

by 8.5 in the CIDEr metric compared with the reported value from SWINBERT [141].

More significantly, the gap between applying ICS with the VideoSwin Transformer and

our method is 14.9. The significant drop in the captioning performance indicates that

introducing augmentation strategies into video-based representation is not feasible.

Methods such as the VideoSwin Transformer need to model temporal information specifi-

cally. Complex augmentations can break the connections and relationships between the

original frames, causing representation methods to become confused and fail to produce

valuable features for video captioning.
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Table 5.3: Comparison with state-of-the-art methods on the test split of VATEX. †
indicates the results from the official implementation of [141] taking 32 frames as inputs.

Method Feature
VATEX

BLEU-4 METEOR ROUGE-L CIDEr
VATEX [222] bi-LSTM + I3D 28.4 21.7 47.0 45.1
ORG-TRL [267] InceptionResNetV2 + C3D 32.1 22.2 48.9 49.7
Support-set [171] ResNet152 32.8 24.4 49.1 51.2
OpenBook [266] InceptionResNetV2 + C3D 33.9 23.7 50.2 57.5
SWINBERT† [141] VidSwin 37.8 26.1 53.0 71.6
CLIP Baseline ViT-B/32 35.9 24.0 52.1 57.3
Joint Baseline ViT-B/32 35.5 24.4 51.6 60.1
Ours ViT-B/32 36.9 24.6 52.5 63.4
Ours ViT-B/16 37.4 25.7 53.1 67.8

We also evaluate feature-level augmentations based on the VideoSwin Transformer [12,

141]. First, we extract frame features using a frozen VideoSwin Transformer and then

augment these features using the same strategies as in ICS. However, the resulting

CIDEr metric is only 20.5. Augmenting feature-level representations in video-based

methods leads to a decline in performance. This is because features from video-based

methods naturally contain sequential relationships and contexts. Although we can obtain

features for specific frames and apply augmentations, it may be difficult for the caption-

ing model to understand the augmented features with broken and confusing inter-frame

relationships after compounding. By comparison, our image-based representations do

not face this issue. Every frame is represented individually, making them flexible to

various augmentations and achieving better performance.

5.3.3 Ablation Studies

In this section, we conduct a comprehensive ablation study for several details in our

method. All experiments are operated based on CLIP ViT-B/32 and MVSD test split.

Comparison of Data Combinations: Our work utilizes video data v′ from the

current training dataset and external image samples x to augment training features. In

Table 5.4, we compare the different combinations of data samples. Both combinations,

v with v′ or x, are useful for improving video captioning. Additional samples expand

the training data and lead to better results. However, improvements from introducing

image samples are more significant, with an increase of 2.9 in the CIDEr metric. Image

samples possess concise contents and precise descriptions, which are easily learnable for

the network. Introducing image samples formulates the more challenging samples. This
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Table 5.4: Comparison for combinations of data samples and strategies in ICS. VS, FM,
and FS are short for intra-video sampling, inter-feature mixup and inter-frame swap,
respectively. All strategies and additional data are useful and the combinations lead to
higher performances.

ICS Strategy Data Sample BLEU-4 METEOR ROUGE-L CIDEr
VS + FM + FS v, v′ 56.5 37.8 73.9 97.5
VS + FM + FS v, x 57.5 37.8 74.1 100.4
VS v, v′, x 53.3 37.5 74.1 97.6
FM v, v′, x 53.5 37.8 74.5 97.9
FS v, v′, x 59.1 38.7 75.5 101.2
VS + FM v, v′, x 59.0 38.6 74.7 99.1
VS + FS v, v′, x 59.4 38.2 75.3 102.3
FM + FS v, v′, x 60.5 38.9 75.0 103.2

Table 5.5: Ablation for different parts in our method. Ours with all descriptions indicates
taking all relative descriptions Cv, Cv′ , and Cx as the ground truth for h at the same
time. In comparison, all modules in our work are helpful in improving the performance
of video captioning.

Method BLEU-4 METEOR ROUGE-L CIDEr
Ours w/o VGC 60.4 38.7 75.1 100.8
Ours w/ all descriptions 60.1 38.4 75.3 100.0
VGC w/o φ 59.5 38.2 75.3 102.1
Ours w/o ICS 59.2 37.8 74.5 95.9
CLIP Baseline 55.5 38.0 74.4 95.5
Joint Baseline 57.2 37.5 74.6 96.7
Ours 56.3 38.9 75.0 103.8

forces the network to mine video semantics against the easy image semantics

Comparison of different strategies in ICS: We conducted an ablation study on

the strategies in ICS, and the results are presented in Table 5.4. All strategies effectively

diversify the training samples and improve performance. Inter-frame swap was found to

be the most helpful strategy as it directly replaces the visual contents with additional

data, offering maximum influence on the semantics of the training samples compared to

other strategies. Additionally, image samples are easier to learn than video samples, and

inter-frame swap introduces expressive image samples into video samples, requiring the

network to ignore irrelevant semantics and refocus on the video contents. In our work, we

utilized all three ICS strategies, and the combination of these strategies with additional

data samples resulted in significant improvement in video captioning performance. With

CLIP ViT-B/32 features, we achieved a CIDEr score of 103.8, which is an 8.3 improvement

over the baseline.

69



CHAPTER 5. IMPROVING LEARNING EFFICIENCY FOR VIDEO CAPTIONING

Figure 5.3: Comparison of the values of CIDEr metrics for different sizes of the external
image set (M) and different numbers of frames in the video samples (n).

Efficacy of ICS and VGC: To evaluate the efficacy of VGC, we separately evaluate

our captioning loss ℓ(h,Ch) and the factor φ. Firstly, we use all descriptions as the ground

truth and experiment with the loss function L (h, gh,Cv,Cv′ ,Cx) = φ(h, gh) · (ℓ(h,Cv)+
ℓ(h,Cv′)+ℓ(h,Cx)). As shown in Table 5.5, the result with all the descriptions (corre-

sponding to VGC w/ all descriptions) is relatively lower. Giving all possible descriptions to

the network at the same time may confuse the network and result in worse performance

of 100.8 in CIDEr. Meanwhile, the factor φ is also useful in improving performance.

Without the modulation of factor φ, the performance decreases by 1.7 in CIDEr.

Additionally, ICS serves to diversify and expand the training samples. When ICS

is applied to the CLIP baseline, the network can also be significantly improved, as

evidenced by a CIDEr score of 102.1. However, this improvement is not as significant

as the results obtained using our method, which combines both ICS and VGC (103.8 in

CIDEr). These comparisons suggest that both ICS and VGC are effective in helping the

network learn useful visual content.

Moreover, Results in Table V also reveal the efficacy of VS in ICS. When employing

the ICS strategy exclusively with VS, our method surpasses the baseline by 1.1% in

the CIDEr metric. Conversely, when utilizing the complete ICS strategy excluding VS,

there is a performance decline of 0.6% in the CIDEr metric. These comparative analyses

underscore the efficacy of VS within the ICS strategy.

Ablation on frame number: The number of frames, denoted as n, plays a crucial

role in determining the diversity of the training samples. As illustrated in Fig. 5.3, larger

n values generally lead to better performances. However, this also increases the amount

of noise introduced into the model. Interestingly, we observed that when n was set to

64, the results were slightly lower than those obtained with n = 32. We hypothesize that
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Table 5.6: Ablation of τ. τ changes the influences of VGC and we set τ= 0.5 as default.

Parameter τ BLEU-4 METEOR ROUGE-L CIDEr
τ= 0.1 55.0 37.8 74.5 100.0
τ= 0.3 57.2 38.3 75.3 102.8
τ= 0.5 56.3 38.9 75.0 103.8
τ= 0.7 55.8 38.0 75.0 103.0
τ= 0.9 56.6 38.3 75.3 102.4

Table 5.7: Ablation of the mixup ratio α. The ratio influences samples after augmenta-
tions, which should be set appropriately.

Parameter α BLEU-4 METEOR ROUGE-L CIDEr
α= 0.01 55.4 38.2 75.0 102.2
α= 0.05 56.3 38.9 75.0 103.8
α= 0.5 58.2 37.7 74.1 98.3
Random α 58.5 37.4 74.0 97.8

this is because larger n values result in more diverse and complex samples from the ICS

strategy, making the training samples more difficult for the model to learn. Thus, the

size of the training samples should not be too large. In our work, we set n = 32 to strike

a balance between diversity and complexity.

In addition, we conducted an ablation study on the number of auxiliary image sets.

The features x extracted from the image set provide additional visual content and

semantics, which effectively enhance the video samples. As shown in Fig. 5.3, increasing

the amount of image data results in better performance for our method. However, the

improvements become marginal after introducing more than 10,000 image samples.

Therefore, the default value of M in our method is set to 10,000.

5.3.4 Ablation on τ

Factor τ influences the modulation degree of VGC in IcoCap and should be properly set.

As shown in Table 5.6, the results for τ= 0.5 achieve the highest performances. Both

larger and smaller values of τ lead to a decrease in performance. Moreover, a smaller

value of τ causes S/τ in VGC to be closer to 1, resulting in lower punishments. This

reduces the modulation from the consistent factor φ and the efficacy of our VGC. In

experiments, a smaller value of τ also performs worse. These results further prove the

efficacy of our method.
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Table 5.8: Ablation for swapped frame ratio s in FS on MSR-VTT.

s 75% 50% 25% 10% 0%
CIDEr 58.1 59.1 58.5 57.7 57.4

5.3.5 Ablation on Mixup Ratio α

We conducted extensive experiments to analyze the impact of different mixup ratios α.

As demonstrated in Table 5.7, the value of this ratio needs to be carefully determined.

When setting α= 0.05, the performance surpasses other values, yielding the best results.

Furthermore, we observed that using a random value for α leads to the creation of more

challenging compounded samples. It is important to note that more difficult samples do

not always guarantee improved performance and may potentially confuse the networks

during the learning process. The results obtained with a random ratio are lower than

those achieved with α= 0.05, exhibiting a decrease of 5.0 in CIDEr.

5.3.6 Ablation on Swap Ratio in FS

In assessing the impact of content sampling in IcoCap, we introduce a swap ratio, denoted

as s, to represent the proportion of content replaced by FS. The ablation study concerning

the swap ratio s is shown in Tab. 5.8, showcasing the CIDEr results on MSR-VTT.

When s = 0, it implies that no frames have been swapped within the visual content.

On the other hand, s = 50% means that each frame has a 50% chance of being replaced

by randomly selected visual content. The results illustrate that an optimal value for

s diversifies inputs and enhances video learning. A lower value of s provides more

straightforward input samples, reducing the need for generalization. In contrast, a very

high value of s introduces more unrelated visual content, making it challenging for the

network to process. In our research, we opted for s = 50%, as it demonstrated the best

results in our ablations.

Ablation on other baseline: We have extended our method to another baseline,

VALOR [37], a large-scale pre-training model tailored for visual language tasks. Specifi-

cally, in line with the other baselines, we employed both the visual and text branches

from VALOR and proceeded to fine-tune video captioning on the MSR-VTT dataset,

following the settings for VALOR-B model. Through our implementation, we achieve

a CIDEr metric of 61.05. Then, by integrating IcoCap with VALOR on the MSR-VTT

dataset, we observed a further enhancement in performance, which are 61.53 in the

CIDEr metric. With the large-scale pre-training, VALOR already exhibits remarkable
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Figure 5.4: Examples for input videos and images, compounded video samples, corre-
sponding captions, and ground truth selected by VGC in IcoCap.

Table 5.9: Performance of image captioning. The experiments are based on the test set of
[143]. Only Image Set indicates only training with image set and without video set. The
frame number is set as n = 1.

Data BLEU-4 METEOR ROUGE-L CIDEr
Only Image Set 31.9 25.3 54.1 99.3
MSR-VTT + Image Set 28.0 23.5 50.5 89.1
MSVD + Image Set 32.4 25.8 54.4 101.1
VATEX + Image Set 23.3 21.4 46.4 73.9

improvements. Meanwhile, our methodology improves the captioning capability even

further. The improvements underscore the generalization of our IcoCap.

5.3.7 Performance in Image Captioning

Since IcoCap introduces additional image data, we also report its performance in image

captioning. To ensure a fair comparison, we train IcoCap with all the available training

data and evaluate it on the test set of the MSCOCO dataset [143].

As shown in Table 5.9, training with samples compounded with image samples also

empowers the model’s ability in image captioning. All models trained with IcoCap can

solve image captioning. However, due to the differences in video sets, the performances

on the image set vary. Among the different video sets, training with MSVD [35] leads to

the highest results across various metrics. On the other hand, due to the domain gap

between image and video data, the performances of models trained with MSR-VTT [239]

and VATEX [222] are lower. The larger scale and complexity of MSR-VTT and VATEX
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A group of young men are playing basketball outside in a driveway. 

0

0.2

0.4

0.6
CLIP Baseline Ours

Figure 5.5: Comparison of attention weights in the captioner. The video captioner is a
standard transformer model. We provide a comparison of the attention weights of the
last attention layer for the video frames. keyframes, transitions, and irrelevant frames
are marked with red, gray, and green borders, according to the caption below. IcoCap
produces larger attention weights for the keyframes and lower weights for transitions
and irrelevant frames.

may make it challenging for the network to learn complex video cues, thereby limiting

the model’s ability to improve semantic understanding.

5.3.8 Qualitative Analysis

Visualization for compounded samples: We provide detailed examples illustrating

the application of ICS, exemplified in Fig. 5.4. This figure comprehensively presents

illustrative instances, encompassing both input videos and images, the compounded

samples by ICS, corresponding captions aligned with each input, and the definitive

ground truth selected by VGC. These exemplars effectively spotlight two attributes of

our approach: 1. The compounded samples showcase amplified diversity and reduced

redundancy in comparison to the original inputs. These characteristics impose more

demanding prerequisites on the captioner’s learning process, thereby propelling the

network to delve deeper into the realm of intricate visual content. 2. In IcoCap, the ground

truth captions can be flexibly adapted based on the visual context. This phenomenon

underscores the efficacy of our VGC in flexibly learning intricate visual contents.

Visualization for attention weights: In Fig. 5.5, we present a comprehensive

visualization of the video frames, along with their corresponding attention weights after

normalization. This illustration provides valuable insights into the attention mechanisms

employed by our proposed method. Moreover, we offer a comparison of the attention

weights for the video frames, specifically focusing on the last attention layer. Based

on the caption provided below the figure, we have marked the keyframes, transitions,

and irrelevant frames with red, gray, and green borders, respectively. Upon closer ex-
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amination, it can be observed that IcoCap effectively assigns larger attention weights

to keyframes, which are crucial for understanding the content, while assigning lower

weights to transition frames and irrelevant frames. This demonstrates the ability of

our method to effectively capture and emphasize the most relevant aspects of the video

content, ultimately leading to better captioning performance.

Visualization of captioning results: Results for the baselines, SWINBERT, and

our method are shown in Fig. 5.6. Due to the complexity of visual content in videos,

models may be biased and produce sentences that do not holistically describe the overall

content. Some results, marked in blue, only express a part of the content in the videos,

which may relate to detailed and minor events in the video data but fail to describe the

major and valuable events. Additionally, some inaccurate descriptions are generated

due to ambiguous semantics, marked in orange, that try to describe and summarize the

content but are misled by the complex content and do not correctly reflect the semantics

in video frames. The diverse semantics in video samples may confuse the network,

making it difficult for the network to understand video content and exclude irrelevant

content. In comparison, our method effectively improves the performance of handling

complex visual content. The captioning results from our method can more precisely

describe the video semantics.

We present a comparison of the generated results in MSVD and VATEX datasets, as

shown in Fig. 5.7. VATEX dataset is more linguistically complex, with more diverse and

complex descriptions than MSVD. Although our IcoCap does not specifically address this

issue, it still achieves comparable results to state-of-the-art methods.

Moreover, benefiting from the compounded samples in our work, the network per-

forms better with some complex video contents. For videos with multiple scenarios and

characters (e.g., first row in Fig. 5.7 and first row in Fig. 5.8), our method is not misled

by the complicated semantics and provides accurate descriptions.

Visualization of features: We employed t-SNE to visualize the features generated

by ICS, as depicted in Fig. 5.9. On the left, we present the baseline features, which are

from the original CLIP features. Conversely, the right showcases the features within Ico-

Cap, formulated by the ICS. Given the inherent redundancy in the original video frames,

the baseline features tend to be more compact, which are easier for network learning.

Such compactness might lead a captioner towards overfitting and pose challenges in

learning with intricate semantics. In contrast, the features presented in IcoCap are

more diversified and intricate. Their distribution also poses a higher level of complexity

compared to the baseline. This demands a more rigorous learning paradigm from the
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CLIP Baseline:
Joint Baseline: 
SWINBERT: 
Ours:

A women on the stage. 
A man is interviewing an actor.
A group of kids on stage. 
A young girl is singing on the stage. 

CLIP Baseline:
Joint Baseline:
SWINBERT:  
Ours:

A baby on a vehicle. 
A women and baby talking about a vehicle.
A women is talking about a baby trolley. 
A women is giving a demo for baby trolley. 

CLIP Baseline:
Joint Baseline: 
SWINBERT: 
Ours:

A group of people in a boat. 
A man is standing in the water. 
A man is walking on a boat. 
A man pull a small boat in the water. 

CLIP Baseline:
Joint Baseline: 
SWINBERT:
Ours:

A baby in a pink dress. 
A young baby is running and playing with doll. 
A young girl is playing with doll. 
A little girl in a pink dress and playing with toys. 

CLIP Baseline:
Joint Baseline: 
SWINBERT:
Ours:

A man is cut an egg on the table. 
A man is playing with an egg. 
A man is showing how to make a trick trick. 
A man is playing with a yellow ball. 

Figure 5.6: Comparison of generated captions on MSR-VTT dataset. To better illustrate
the difference, we mark some results in blue, which only describe the detailed and minor
semantics of the overall video. Some incorrect descriptions for the visual contents are
marked in orange. Our method shows better performances against the diverse contents
and ambiguous semantics in videos.
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CLIP Baseline:
Joint Baseline: 
SWINBERT: 
Ours:

A women and a man is working. 
A woman and a man in a room.
A woman is showing how a man is working on a machine. 
A man is demonstrate how to use a machine. 

CLIP Baseline:
Joint Baseline:
SWINBERT:  
Ours:

A boy is in a gym. 
Two man are playing a game in a gym.
A man is doing a leg exercise on a mat in a gym.
Two man are doing exercise in a gym. 

CLIP Baseline:
Joint Baseline:
SWINBERT:  

Ours:

A person is walking down the street. 
A man is talking in the street.
A news reporter is talking about a news segment 
about a news segment.
A man is talking about a news segment 
about a news segment. 

Figure 5.7: Comparison of generated captions on VATEX dataset.

captioner, urging it to achieve enhanced generalization for intricate visual semantics.

5.4 Conclusion

In this chapter, we propose the Image-compounded video Captioner (IcoCap), a method

that introduces image samples into the training procedure of video captioning to address

the issue of ambiguous semantics in video data. Due to the complexity and diversity of

video contents, it is difficult for the network to learn valuable video semantics. In contrast,

image samples possess concise visual contents and clear semantics, making them easier

to learn. The video samples compounded with image samples possess more difficult

semantics. The network should learn to mine valuable video cues to solve the complex

semantics. Specifically, In IcoCap, we propose Image-Compounding Strategy (ICS), which

compounds video samples with images. ICS leads the network to handle complicated

77



CLIP Baseline:
Joint Baseline:
SWINBERT: 
Ours:

A women and a man is working. 
A woman and a man in a room.
A woman is showing how a man is working on a machine. 
A man is demonstrate how to use a machine. 

CLIP Baseline:
Joint Baseline:
SWINBERT: 
Ours:

A boy is in a gym. 
Two man are playing a game in a gym.
A man is doing a leg exercise on a mat in a gym.
Two man are doing exercise in a gym. 

CLIP Baseline:
Joint Baseline: 
SWINBERT: 
Ours:

A group of people in the room. 
A woman is talking to a man. 
A man is pushing a bag. 
A man is pushing a man. 

CLIP Baseline:
Joint Baseline: 
SWINBERT:
Ours:

A man and a woman. 
A man and a woman are walking.
A man is beating a woman. 
A woman is in the street. 

CLIP Baseline:
Joint Baseline:

A person is walking down the street. 
A man is talking in the street.

CLIP Baseline:
Joint Baseline: 
SWINBERT:
Ours:

Two man are standing. 
Two man are talking.
A man is throwing a woman s front of a man. 
Two man are standing in the room. 

Baseline Ours

Figure 5.9: Visualization for features in baseline and IcoCap.

visual contents better and mine the valuable contents for captioning further. Besides,

IcoCap also includes Visual-semantic Guided Captioning (VGC), which leads the network

to learn the diverse video semantics flexibly. Experiments in various datasets prove the

efficacy of our method. With a simple transformer network, we achieve comparable and

even better performances in video captioning than the state-of-the-art methods.
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TOWARD BETTER ACCURACY FOR SEMANTIC-AWARE

POSE GENERATION

6.1 Introduction

Recently, in synthesizing digital humans, vivid gestures can primarily improve reality,

naturalness, and efficient information expression. Especially, talking gestures provide

nonverbal cues of semantic expression and emphasize highlights and attitudes woven

into our daily communication. Along with digital manipulation techniques, the speech-

driven gesture is an emerging application, e.g., digital human animation, visual dubbing

in movies, online service, and education. The goal is to simulate artificial embodied agents

to perform harmonious gestures aligned with the speech contents [75, 137, 182, 249].

Automated speech-driven gesture generation studies the generation of natural gesture

sequences by exploring the relationships between speech and body language. It provides

a new opportunity for realistic human-human interaction in virtual platforms.

Toward vivid speech-driven gestures, an intuitive expectation is to produce gestures

corresponding to the speech contents. Humans naturally respond to their speeches and

produce gestures to deliver specific semantics as in human ethology. As shown in Fig. 6.1,

most co-speech gestures are compounded by beat and semantic gestures [32, 76]. Beat

gestures are irrelevant to lexical semantics. It is independent to the content of the speech

and prefers to respond to the rhythms of sounds. For example, the fast-talker tends to

This chapter is based on joint work [130] with Qianyu Feng, Linchao Zhu, Li Hu, Pan Pan, and Yi
Yang, presented primarily as it appears in the CVPR 2022 proceedings.
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move more frequently in speak gestures. Semantic gestures are apt to express certain

speech content with body language, including iconic gestures, metaphoric gestures, and

deictic gestures [32]. For example, speakers may raise their hands to emphasize their

attitudes, corresponding to “clearly”, “definitely”, etc. Generating semantic gestures

would lead to a vivid and reasonable content-based gesture rather than simply following

the beat. However, the prior works of co-speech gestures synthesis [121, 182, 249, 250]

do not explicitly produce semantic gestures and fail to model the lexical-semantic rel-

evance between speech and gestures. For instance, when merely learning with the

semantic-irrelevant cues, i.e., the rhythms of audio and speakers’ identities, we achieve

a comparable score with state-of-the-art methods [249]. This indicates that the current

methods are hard to learn semantics explicitly and produce semantic-aware gestures.

It is challenging to generate semantic gestures for the following two reasons. First,

semantic cues for generating semantic gestures are hard to be mined. The styles and

the movements of semantic gestures vary widely among speakers according to differ-

ent contents. Meanwhile, beat gestures are inclined to intuitive and straightforward

responses to the cues from sound, which commonly occur and are easier for the networks

to mine. This difference induces semantic cues that are hard to be mined. The network

may be relatively inclined to beat gestures and be slacked to investigate semantic cues.

Second, semantic gestures and their corresponding texts are not well aligned temporally.

As shown in Fig. 6.2, some gestures may be performed before or after the semantics

they conveyed. This leads the network to unfavorably learn semantic gestures since it

is hard to receive an explicit hint of semantic correlation via the given data. These two

challenges hinder the generation and expression of semantics in gestures.

This chapter introduces a novel method to achieve semantic-aware co-speech gesture

generation named SEmantic Energized Generation (SEEG). SEEG efficiently mines

semantic and beat cues respectively and conducts semantic-aware gesture generation.

Specifically, SEEG contains two components, i.e., DEcoupled Mining module (DEM)

and a Semantic Energized Module (SEM). DEcoupled Mining module decouples

speech input cues into semantic-relevant cues (closely coupled to speech contents) and

semantic-irrelevant cues (only beat information). Then, two separate encoders in DEM

process Semantic-relevant cues and semantic-irrelevant cues to understand information

for semantic and beat gestures. After input decomposition, one encoder focuses on the

representation for beat gestures, while the other encoder exploits the diverse semantic

We collectively refer to the three kinds of gestures as semantic gestures to distinguish them from the
beat gesture.
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(a) Diverse and expressive semantic gestures

(b) Intuitive and semantic-irrelevant beat gestures

To launch• • • • • • • a big • • • • • • • • • investigation 

Know • • that • • we • • • • • can • • • • • make • • • • • a decision 

Figure 6.1: Co-speech gestures comprise semantically irrelevant beats and a variety of
semantic gestures. SEEG explores both types of gestures and generates more accurate
semantic gestures.

information for semantic gestures. This process eases the learning of semantic and beat

gestures with huge disparities. The networks enable explicitly mine differential informa-

tion for the beat and semantic gestures. If we expect the networks to learn semantics,

DEM avoids forcing the networks to learn semantics from beat gestures that do not

contain semantic denotations. Semantic Energized Module aims to avoid generation

degrading to beat gestures. SEM energizes semantic learning by constraining two kinds

of similarities: representational similarity and semantic similarity. Representational

similarity requires the generation to be similar to the ground truth in appearances.

More critically, DEM pursues semantic similarity and encourages the results to present

similar semantics compared with the ground truth. In DEM, we additionally introduce

a semantic prompt gallery and a semantic prompter network. The prompter is trained

by the gallery and fix it in gesture generation. The prompter network is responsible for

representing gestures in a semantic view. By producing similar representations under

the view of the prompter, the generated gestures are regularized to align semantics

conveyed from the ground truth. Rather than directly connecting speech contents to

gestures that may be misaligned, SEM energizes semantic learning by restraining both

representational similarity and semantic similarity.

Our main contributions can be summarized as follows:

1. We propose a new SEmantic Energized Generation (SEEG) framework for co-
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I  do not actually choose those  individual samples to make you crywhat on my bookselves • • • • • • • • •  what do my bookshelves say

Figure 6.2: Examples of misalignment between semantics and gestures. Speakers may
perform semantic gestures before (left) or after (right) the target contents. This leads to
the semantic gestures being hard to match in temporary corresponding to the text or
audio. We highlight the significant gestures with the orange shading.

speech gesture generation. SEEG is a semantic-aware gesture generation method that is

adept at generating gestures with better semantic expressiveness.

2. We propose DEcoupled Mining (DEM) and Semantic Energized Module (SEM).

DEM decouples semantic-irrelevant cues in inputs and eases the learning of disparate

semantic and beat gestures. DEM encourages the network to learn semantics and

produce semantic gestures.

3. In generating semantic gestures, the efficiency and advantages of our method are

revealed by three subjective metrics on different datasets and objective human evalua-

tions. We also find that the beat gestures may dominate the co-speech gesture generation.

Visualizations show that SEEG achieves significant expressiveness in semantics.

6.2 SEmantic Energized Generation

We propose SEmantic Energized Generation (SEEG) to empower the learning of se-

mantics in co-speech gesture generation. As shown in Fig. 6.3, SEEG contains two

parts: DEcoupled Mining module (DEM) and Semantic Energized Module (SEM). DEM

decouples semantics from inputs and contains two encoders for different inputs corre-

spondingly. The two decoders are responsible for explicitly mining information for beat

and semantic gestures. Moreover, SEM involves a semantic prompter and a gesture de-

coder. The decoder provides the final outputs for gesture generation. Then, the prompter

network leverages an aligning loss for gestures which relieves the misalignment for

semantics.
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Figure 6.3: An overview of our semantic-aware gesture generation. It contains two
parts: DEcoupled Mining Module (DEM) and Semantic Energized Module (SEM). Two
encoder networks (Es, Eb) and a decoder network (D) are designed to learn beat and
semantic information and produce gestures comprehensively. Another prompter network
(P) encourages the networks to learn and generate semantic gestures.

6.2.1 Preliminary

According to the speech data, co-speech gesture generation aims to generate vivid ges-

tures as real speakers. Some works [137, 164, 182] synthesize body gestures, hand

gestures, lips, or face key points by taking audio, text, and speaker identities as pre-

processed inputs. In this work, we focus on generating upper body gestures by sequen-

tially outputting the key points following [249, 250].

Taking the audio and text as inputs, methods are required to produce vivid speech

gestures like real speakers. Generally, methods in this topic also introduce person ID and

encode the ID into features. Additionally, the text is pre-processed and represented by

pre-trained word vectors [22, 110, 173]. Thus, there are three parts of inputs: audio data

xa, text data xw, and ID xi. Then, the final output is the sequential gestural data denoted

as ŷ. It contains the locations of key points for gestures in every time step. Besides, the

ground truth gestures y are also extracted from videos and pre-processed [249, 250]. All

xa, xw, y, and ŷ correspond to the time step t.

Moreover, we focus on energizing the gestures with better semantic expressiveness

in this work. Instead of generating gestures resembling the ground truth, we emphasize

producing semantic gestures conveying similar semantics as the ground truth.

6.2.2 DEcoupled Mining module

In speech gestures [15, 32, 76, 98], beat gestures are intuitive and relatively simple.

Semitic gestures are diverse and demand semantic understanding. These induce that

the beat cues are easier to be investigated, and the semantic gestures may be ignored

in the generation. Then, the method may be trapped in the beat gestures. In our work,
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we first propose the DEcoupled Mining module (DEM) to learn information for semantic

gestures and beat gestures separately and explicitly.

In the speech data, text corresponds to the speech content and is related to the

semantics. Meanwhile, audio data reflects the pronunciations, emotions, accents, beats,

volume, etc. Some factors in audio merely support semantic expression and do not convey

particular semantics. Specifically, the beat and volume of the audio correspond to the

rhythm and speed of the speech. They are semantic-irrelevant, and the listener cannot

realize the semantics only by the beat and volume. Thus, we decouple these factors to

the semantic-irrelevant information, which leads to the beat gestures.

Specifically, as shown in Fig. 6.3, we decouple the input that consists of audio am-

plitudes and audio onsets, which stand for volume and beat, respectively. For volume

information, the audio data with large amplitude values possess large volumes. We

defined the volume function as:

(6.1) A (xa, t)=
1 xa(t)≥ 1

T
∑T

t xa(t)

0 xa(t)< 1
T

∑T
t xa(t)

where xa is the amplitude of the audio data, t is the time step, and T is the overall length.

We set A (xa, t) = 1 if the amplitude is larger than the average and vice versa. This is

because the audio data contains noise and background sound. The amplitude larger than

the average indicates that the speaker starts to speak apparently.

Moreover, it is difficult to capture the changing of intonation or speed of the speaker

only using volume signals. We introduce the onset strength envelope [64, 65, 155] to

represent the beat information. Onset [64, 65] refers to the start points of the sound. The

strength envelope [21] can indicate the probabilities of the onset detected in the audio

signal. This can represent the beat of the speech audio. We follow [21, 155] to extract the

onset strength envelope and denote it as O (xa) in our work.

In DEM, two encoders Es and Eb are proposed to mine the information for semantic

and beat, respectively. In detail, for beat gestures, Eb utilizes A (xa, t) and O (xa) as

inputs. For semantic gestures, Es is designed to learn from xw and xa. Besides, as the

standard settings in [3, 249], we also add person ID xi as inputs for encoders.

The procedure of DEM can be formulated as:

(6.2)
zs = Es(xw, xa, xi),

zb = Eb(O (xa),A (xa), xi)

where zs and zb are the features for semantic and beat, respectively. Moreover, both

encoders possess similar network structures. They all contain three fully-connected layers
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to handle the inputs. Then, two additional fully-connected layers and concatenation

operations are utilized to merge three kinds of inputs. Next, a four-layer GRU network is

designed to learn the sequential features produced from the above fully-connected layers.

More details for the networks are displayed in the supplementary.

6.2.3 Semantic Energized Module

After mining information for semantic and beat gestures in DEM, we designed a Semantic

Energized Module (SEM) to further energize semantic learning against the problem of

misalignment. First, we introduce a semantic prompt gallery from the TED dataset [250].

Then, we propose a semantic prompter to learn the gallery individually. The prompter

can formulate semantic representation for gestures. Through the prompter, we further

leverage supervisions to predictions. This encourages the network to pursue similar

representations of semantics by prompter that avoids the network learning misaligned

semantics directly.

Semantic Prompt Gallery: The semantic prompt gallery is a small text-gesture

collection. It contains five general classes from [15, 32, 52, 76, 98]. We take three notice-

able semantics (Listing, emphasize, deictics) conveyed from gestures and two classes

(negative, positive) to reflect the speakers’ feelings and attitudes. The gallery is denoted

as G = {CListing,CEmphasize,CDeictics,CNegative,CPositive}, where C∗ is a text-gesture set,

and C∗ = {[v1,v2, . . . ,vM]; [g1, g2, . . . , gN ]}. vi and g i denote a word and a gesture sequence,

respectively. Moreover, we apply M words from [15, 32, 52, 76, 98] to construct the text

set for each class as v. Besides, [98] presents a versatile collection and collecting method

for semantically-congruent gestures. Following [98], we collect N gesture sequences from

the TED dataset [250] for every class to formulate g. More details will be presented in

supplementary.

Semantic Prompter: We propose a semantic prompter to learn the above gallery

independently. As shown in Fig. 6.4, the semantic prompter P adopts gesture data as

inputs and learns to classify gestures into five general semantic labels in the gallery.

P consists of two fully connected layers and a four-layer GRU network, in which the

fully-connected layers are utilized to process inputs and outputs. The GRU aims to model

the sequential inter-connection of gestures. In all, the prompter can reflect the semantics

of gestures and represent the gestures in the semantic view.

Semantic Energized Learning: As shown in Fig. 6.3, a gesture decoder D is

proposed to aggregate both features from Es and Eb and produce gestures as the final

outputs, which can be described as ŷ= D(zs, zb), where ŷ denotes the final predictions.
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Figure 6.4: Construction and training of the semantic prompter. The semantic prompter
is learned from the semantic prompt gallery. FC, Concat, and GRU denotes the fully-
connected layer, concatenate operation, and GRU network, respectively. t∗ indicates the
time step of gesture data. The semantic prompter learns from the semantic prompts and
bridges general correspondences between gestures and semantics.

D aims to decode gestures considering both information of beat and semantic. It is

constructed by a single fully-connected network. Then, to energize semantic learning,

SEM leverages two kinds of supervision for prediction ŷ: representational similarity and

semantic similarity.

For representational similarity, we constrain P to be similar to the ground truth

directly. The regression loss Lreg and adversarial loss Ladv are applied. Lreg [249]

contains a smooth L1 loss to reduce the distances between y and ŷ. Meanwhile, the

Kullback-Leibler (KL) divergence is included in Lreg to constrain the person ID. Besides,

the same discriminator as [249] is added to perform adversarial learning for generated

gestures. This also targets the representational similarity of predictions and the ground

truth [249].

More important, for semantic similarity, we further propose the semantic aligned loss

Lalign. Considering the semantic misalignment, indicating or annotating semantics to

particular words may not be proper. In our work, we propose to align semantics conveyed

from the gestures. In other words, we encourage the generated results to perform similar

semantic representations as ground truth gestures. To this end, we apply the prompter P
to represent gestures of predictions and the ground truth and propose a semantic aligned

loss Lalign to regularize:

(6.3) Lalign( ŷ, y)= |P( ŷ)−P(y)|

where |∗ | is the smooth L1 normalization. As P is fixed in training, to solve the above

loss function, the output gestures ŷ should reveal similar semantic representations with

the ground truth y under the view of P. Lalign does not regulate the predictions to be

identical with the ground truth or particular gestures, and it requires similar semantics.
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In all, the final loss function L can be formulated as:

(6.4) L =Lreg +Ladv +Lalign

6.3 Experiments

In this section, we discuss the details of SEEG and evaluate SEEG with various metrics

in different datasets.

6.3.1 Experimental Setup

Implementation Details: Our network designs follow the structures of the generator

in [249] and only change some fully-connected layers to fit the inputs. To perform a

fair comparison, all the other settings, like the optimizer, learning rate, etc., are the

same with [249]. Besides, for training the prompter network, we utilize random clipping,

random resizing, and cutmix [255] to augment the gestures in the gallery. We train the

prompter network with 100 epochs with the SDG optimizer and learning rate 0.001.

In addition, we collect the semantic gallery with M = 25 and N = 5. To be noticed,

there are two significant differences between our semantic gallery and word-pose dic-

tionary in previous work [137]. 1). Only general classes for semantics are defined. No

specific words map particular gestures. This property avoids the misalignment between

words and gestures in the gallery. 2). The gallery is only applied to train P. It is not prac-

tical and not necessary to collect a comprehensive dictionary for training. The prompter

network is not responsible for recognizing all possible semantics in gestures. It only

needs to reflect some generally possible semantics in the gallery.

Datasets: We test our method based on the TED dataset [250], the current largest

and standard dataset for speech-driven gestures [249, 250]. As in [249], it is constructed

based on TED videos and contains the 3D pose data extracted from the videos. The

dataset also includes the speech audio and transcribed speech text [249].

Besides, some gestures in the TED dataset are not expressive and may not convey

explicit semantics. Meanwhile, some introverted speakers may not tend to provide

apparent movements in speech. To reflect the improvements in the semantic aspect,

we provide a Semantic-aware test set (SatTED) based on the above dataset in [249].

Specifically, we re-rank the testing set of the TED dataset based on the confidences of

P and collect about the top 50% data as SatTED. The original test set in [249] contains

25,930 samples. Our SatTED includes 12,000 samples and more than 7.5 hours. We
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compare methods in the SatTED and further discuss the superiority of our method in

the semantic aspect.

Evaluation Metrics: We evaluate our method based on three metrics:

1) FGD: evaluating the distances between the features of predictions and the ground

truth. It robustly reflects the similarity between gestures in appearances.

2) Diversity metrics [79]: the measurement of diversity and flexibility. As expressive

speakers tend to provide various gestures to support their expressions [76, 98], this

metric can reflect the naturalness and semantic correlation to some degree.

3) Semantic-Aware Accuracy (SAA): we additionally propose a Semantic-Aware Accu-

racy (SAA) as the measurement for semantic expressiveness. With the semantic prompter,

we can label the predicted gestures for semantic classes. Meanwhile, for the speech con-

tent, the semantic label can be assigned by voting. For every word in a sentence of the

speech, we search the most similar description v in the gallery and assign the corre-

sponding class C∗ as the label of this word. After voting for every word, we select the

class with the highest voting value as the label for the current sentence. Then, with the

labels of gestures and sentences, we calculate the accuracy as SAA.

It is worth noting that Lalign supervised the semantic expressions of predicted

gestures and the ground truth gestures, which avoid the problem of misalignment. It

does NOT supervise that the gestures should correspond to the text. Meanwhile, SAA

describes the text-gesture correlation. This is a higher requirement since the ground

truth may also not reflect the semantics closely. SAA measures the semantic expressions

in an ideal condition that all gestures are semantic gestures.

Subjective Evaluation: We perform the user study through actual humans to

evaluate the gestures. We random sample 20 pieces of speech audio, text, and the

gestures of actual humans, Trimodal Context [249], and ours. Then, we publish these

as the questionnaire for 50 different people to grade the gestures by three factors:

naturalness, speech-gesture correlation, and gesture frequency. The factors are commonly

used in gesture evaluation as in [228]. The range of grades is from 0 to 10. We collect all

the questionnaires and calculate the average marks in experiments.

6.3.2 Quantitative Evaluation

Comparisons with state-of-the-art models: We first compare the values of FGD

based on the TED dataset. We train the encoder Es with decoder D individually, gener-

ating gestures based on semantic-irrelevant data without the prompter network. This

corresponds to the generation of beat gestures. As shown in Table 6.1, With Es + D only,
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Methods FGD (↓)
Seq2Seq [250] 18.154
Speech2Gesture [75] 19.254
Language2pose [4] 22.083
Trimodal Context [249] 3.729
Ours (Eb + D only) 3.751
Overall SEEG 6.244

Table 6.1: The performance of different methods for co-speech gesture generation in the
TED dataset. We adapt FGD as the evaluating metrics. The performances are comparable
even only using encoder Eb and decoder D in our method. Note that FGD may NOT well
reflect the gesture semantics. The evaluations on gesture semantics are presented in
other tables.

Dataset Method FGD (↓) Diversity (↑)
SAA (↑)

Emphasize Listing Deictics Positive Negative Average

TED
Real Gesture - 1.405±0.058 52.135 41.028 65.515 19.388 27.255 37.688

Trimodal Context [249] 3.729 0.759±0.029 32.496 43.203 51.647 17.021 29.600 30.286
SEEG 6.244 1.059±0.045 40.438 44.465 66.116 19.004 27.246 36.851

SatTED
Real Gesture - 1.271±0.056 54.709 64.169 82.587 22.522 29.052 43.904

Trimodal Context [249] 4.505 0.782±0.037 32.928 55.612 61.844 12.833 21.496 30.956
SEEG 7.451 1.118±0.049 44.518 52.322 70.461 21.322 27.763 38.457

Table 6.2: Comparison of all metrics in the TED dataset and SatTED dataset. Our
method shows better performances significantly in some semantic-relevant metrics like
diversity and SAA. Real Gestures indicate the gestures of real humans in the ground
truth. ± means 95% confidence interval. ↑ indicates that higher values are better, and ↓
means lower values are better.

our result compares favorably to state-of-the-art methods in FGD, which utilizes com-

prehensive data from speech. This indicates that the network can achieve similar FGD

to the recent method without mining any semantic cues. Only by mining the semantic-

irrelevant data, the network can ‘pretend’ to produce meaningful gestures. Though we

expect the network to learn semantics and produce expressive semantic gestures, the

networks can also perform well without learning any semantics. This reveals two defeats

in current research: 1). The beat gestures may dominate the dataset. Meanwhile, the

semantic cues are hard to be mined with the comprehensive inputs. Thus, decoupled

learning is valuable. DEM separately learn cues for beats and semantics, which guide

the network not to be trapped in beat gestures. Besides, rather than the method side,

a new sub-set with a larger ratio of semantic gestures is also required to uncover the

semantic expressiveness of results. 2). FGD may be solvable in the current dataset by

merely considering beat gestures. Merely measuring the distances between predictions

and the ground truth is not enough. More semantic-aware measurements should be

introduced. To solve the above defeats, the SatTED dataset and SAA are proposed in our

89



CHAPTER 6. TOWARD BETTER ACCURACY FOR SEMANTIC-AWARE POSE
GENERATION

work.

Meanwhile, our overall method in FGD also outperforms previous methods with large

gaps. Though slightly lower than Es + D, our overall method also achieves competitive

results than the current state-of-the-art. Since SEEG method is energized by SEM and

tends to be more expressive and diverse, it may not completely follow the ground truth

and focus on semantics.

Semantic-aware Evaluation: We compare all the metrics in two datasets as in

Table 6.2. We also display all the semantic-aware accuracy in every class from the gallery.

Results demonstrate that our method shows significant improvements in diversity and

SAA than Trimodal Context [249], the current state-of-the-art in co-speech gesture

generation.

Specifically, though the values of FGD are slightly lower, the diversity of our results

is far better than [249]. With the SatTED dataset, the diversity of our method even

approaches the real gestures of ground truth. Meanwhile, the semantics conveyed in

our results are more recognizable and significant. Almost all values of SAA in every

class and the average are better than Trimodal Context [249]. All these results show

that SEEG is comparable in stimulating the gestures of actual humans and capable of

understanding the semantics. Besides, SEEG achieves higher results than the ground

truth in some categories of SAA since the ground truth may be beat gestures and do not

respond to corresponding semantics.

In addition, the SatTED possesses a larger ratio of semantic gestures and is hard

to be solved by the current method. As shown in Table 6.2, our method presents more

significant improvements in this dataset. Results demonstrate that our method effectively

boosts semantic learning for gestures and conducts a better semantic-aware generation.

Effect of Semantic Decouple: In our work, we decouple the semantics from inputs

and enforce the networks to mine information for semantic and beat gestures separately.

As in method design, we expect to achieve semantic gestures with Es + SEM, beat

gestures with Eb + D only, and the total outputs considering both sides (Overall). In this

section, we experiment and verify the three parts as in Table 6.3. Specifically, we train Eb

+ D only with Lr eg and Ladv. Es + SEM is trained with Es + D with L . Then, to show

the interactions between Es and Eb in the overall pipeline, we take the overall SEEG

training from scratch with all modules and separately test each module. As Table 6.3, for

Eb + D overall, we test the results by padding features zb from Eb with zero. Similarly,

Es + D in overall pads features zs with zero.

As shown in Table 6.3, Eb + D only achieves higher performances in FDG metrics
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Dataset Method FGD (↓) Diversity (↑) SAA (↑)

TED

Eb + D only 3.751 0.984±0.044 30.022
Es + SEM 7.805 1.113±0.051 37.259

Overall
Eb + D 5.472 0.901±0.045 30.597
Es + D 7.320 1.127±0.047 39.981

SatTED

Eb + D only 5.114 0.922±0.384 33.986
Es + SEM 9.291 1.164±0.049 44.218

Overall
Eb + D 5.490 0.990±0.326 34.344
Es + D 6.797 1.128±0.049 46.533

Table 6.3: Comparison of different training manners. Eb + D only indicates that training
individually with Es and D without P. Es + SEM denotes only training without encoder
Eb. Overall means training with the complete method. Meanwhile, Eb + D indicates
inferring the overall method with padding features from Eb as 0. Es + D is inferring
with padding features from Es.

Figure 6.5: Examples of generated gestures. Our method shows better semantic expres-
siveness and conspicuous and reasonable responses to corresponding words. We highlight
the significant gestures for [249] and ours with the blue and orange shading, respectively.

but shows significant decreases in diversity and SAA since it is unavailable to learn

semantics with semantic decoupled inputs. Meanwhile, the isolated training with Es

and D tends to learn semantics only and may not perform similarly to the ground truth.

This leads the results to obtain significant improvements in SAA but becomes worse in

FGD. Moreover, in the overall pipeline, similar regularities also occur compared with

training individually. In comparison, the learning of two parts would not be too radical.

As a part of the overall pipeline, both Eb and Es acquire improvements.

Ablation Study for Semantic Prompter: SEM relies on the semantic prompter to

learn semantics in gestures. The impact of the prompter network for semantic learning
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Method
Metrics

FGD (↓) Diversity (↑) SAA (↑)
Overall w/o Ts 4.937 1.004±0.037 30.920
Es + D w/o Ts 3.915 0.854±0.037 30.216

Table 6.4: Ablation study for effect of the semantic prompter. Without the semantic
prompter, the performances of diversity and SAA degrade.
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Figure 6.6: User study for synthesized gestures. The ground truth, current state-of-the-
art, and our methods are compared based on three evaluating factors.

is explored in this section. We experiment with the SEM and overall pipeline with or

without a semantic prompter, respectively. As shown in Table 6.4, without the semantic

prompter, both semantic-aware performances like diversity and SAA degrade. Meanwhile,

removing the prompter network leverages the improvements in FGD. The individual Es

+ D without a prompter network performs similarly to the method in [249].

6.3.3 Qualitative Evaluation

Subjective Evaluation by User Study: We collect questionnaires from different

volunteers and compute the average scores in different factors. The factors are all

regular questionnaire items as in [228]. The statistical results are shown in Fig. 6.6.

To investigate the performances of parts in our method, we train Eb + D only as of the

beat gestures of our method (Beat), Eb + SEM as the semantic gestures of our method

(Semantic), and the entire method (Overall), respectively. We compare our method with

the current state-of-the-art and the ground truth. In comparison, our method shows

significant improvements in all three factors. Moreover, the semantic gestures perform

worse in naturalist and frequency but achieve remarkable advantages in speech-gesture

correlation. This corresponds to the design of SEM, which focuses on semantic learning

and may deviate from the ground truth.

Visualization: We showcase the results of our method and compare them with the

current state-of-the-art [249]. In examples of generated gestures, as shown in Fig. 6.5,
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significant responses occur corresponding to some words (e.g., clearly, at the beginning,

quit a, available, easy, first step). The visualizations prove that our method learns

semantics better and generates vivid gestures with semantic expressiveness.

6.4 Conclusion

In this chapter, a novel method for semantic-aware gesture generation is proposed. The

proposed method contains two parts: DEcoupled Mining module (DEM) and Semantic

Energized Module (SEM). DEM decouples semantics from inputs and forces the network

to mine information for semantic and beat gestures. SEM contains a semantic prompter

to leverage semantic-based supervision for the networks and produces semantic gestures.

Experiments in various metrics, user study, and visualizations prove that the proposed

method learns semantics better and produces semantic gestures corresponding to the

speech content.
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7
MULTI-MODAL LEARNING FOR REAL-WORLD PROBLEMS

7.1 Introduction

Recently, robots have been widely used in various applications in manufacturing, trans-

portation, and other industries. Toward diverse tasks, a fundamental requirement is to

interact with objects by robots. To this end, the robots need to understand real-world

objects, use grippers or other manipulators in the robotic system, and interact with given

objects in a given scenario. As a primary problem, the object affordance problem [84, 112]

is conceptualized and summarized as the first step for the interaction of robots and

objects. It aims to figure out where and how to interact with an object by the robot in a

given environment. Many works [23, 160] propose various solutions to solve the affor-

dance problem. However, due to the diversity of instances and complexity of practical

robotic scenarios, the problem is still far from being resolved.

Specifically, recent works focus on the affordance problem of interacting with 3D

articulated objects [63, 161]. Mo et al. [159] introduce a solid benchmark for learning to

manipulate articulated objects. They construct a large-scale 3D articulated object dataset

and formulates a standard benchmark for the 3D articulated object affordance problem.

Wang et al. [227] consider the kinematic and dynamic uncertainties of objects. They

design multiple critics to improve the understanding of hidden kinematic information in

articulated objects. More works [160, 269] continuously emerge, pushing the frontier of

This chapter is based on joint work [132] with Xiaohan Wang, Linchao Zhu, and Yi Yang, presented
primarily as it appears in the ICCV 2023 proceedings.
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Figure 7.1: Comparison of methods. MAAL contains a MME module, which provides
better multi-modal learning ability. Besides, previous methods with critics or decoders
require multiple training stages. MAAL pipeline only contains one step and is trained in
one go, which is more efficient.

solving the 3D object affordance problem.

Moreover, previous works can be concluded as early fusion [122] for learning multi-

modal data and critic-based learning [159, 227] for 3D object affordance. Specifically,

they usually concatenate all data (e.g., the point cloud of a 3D object, the robot gripper

direction, etc.) as inputs. Then, multiple critics or decoders, trained by classification loss

according to labels (negative or positive) initially, are introduced to leverage supervision

for other networks.

The straightforward idea leads to significant advancements but still has two defeats.

First, learning of inputs neglects the correlation between multi-modal data. In the 3D

object affordance problem, the input data are from various modalities (i.e., object modality

and robot modality). The relationships and interactions between objects and robots are

valuable clues for understanding affordance [84, 112]. However, as shown in Fig 7.1,

direct concatenation, as in [159, 227], considering as an early fusion operation [122],

would miss the correlation between inputs [153, 248]. This leads that the multi-modal

inputs and their interaction may not be sufficiently learned by the previous works.

Second, the critic-based pipeline is not efficient enough. It requires adequately labeled

samples to teach the critics to distinguish the difference between negative samples and

positive samples [252, 259]. However, as in [159], training data of articulated object

affordance are sampled from SE(3) space, and most actions fail during manipulation.

This means most of the samples are negative. For example, sometimes, only 1% [159]
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of the data are positive samples for pulling action. Training of critic-based methods

needs all the samples for training and consumes larger training time. Moreover, critics or

decoders need to be trained independently. Then, they will be fixed or iteratively updated

with the training of other networks, as shown in Fig 7.1. The training procedure with

multiple stages further increases the overall training time.

To overcome above defeats, we present a novel solution named Multimodality-Aware

Autoencoder-based affordance Learning (MAAL). In MAAL, a MultiModal Energized

Encoder (MME) is introduced to handle multi-modal inputs in the affordance problem.

MME energizes the multi-modal learning ability to understand 3D object affordance.

Then, rather than a critic-based designation, MAAL leverages the deep autoencoder

(AE) [77, 92] to solve the affordance problem and achieve better training efficiency.

Toward better multi-modal learning, MME is proposed to comprehensively under-

stand data from various modalities and fused features at different levels. Specifically, it

involves three branches, carefully designed for learning information in object modality,

robot modality, and their interactions. This empowers MAAL to pursue a better un-

derstanding of affordance from different perspectives in modalities. Moreover, rather

than directly concatenating all data and applying early fusion for various modalities,

our encoder considers the correlation between inputs and fuses multi-level features

according to the modalities. This can formulate better multi-modal learning than simply

early fusion, as proved in [25, 163, 248].

Furthermore, MAAL introduces AE [77] pipeline to solve the 3D affordance problem

more efficiently. AE can learn the valuable pattern [215, 252, 259] in high-dimensional

data points without labeled examples [42, 80, 86]. This property leads AE can only use

positive samples to learn specific valuable patterns from datasets. This also induces the

better computational efficiency of the AE pipeline in solving the affordance problem.

Besides, rather than learning representations with multiple critics, it only uses recon-

struction loss [252, 259] as supervision. The overall pipeline can be trained in one go

without multiple training steps for different parts. All these advantages lead that MAAL

can achieve better training efficiency than previous critic-based works.

In addition to the above encoder, our MAAL has an action memory and an action

decoder, which are used to formulate the AE pipeline. More than applying AE, MAAL

specifically considers the properties of 3D object affordance, which takes object informa-

tion as known conditions and aims to produce action proposals. Correspondingly, MAAL

takes multi-modal data as inputs and only reconstructs action proposals as outputs. This

leads the network to concentrate on learning action information and the interaction be-
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tween robots and objects rather than remembering object information and overfitting to

some points in objects. Overall, MAAL fully considers the multi-modal inputs, leverages

the AE pipeline, and formulates a novel framework for learning 3D articulated object

affordance.

Our main contribution can be summarized as follows:

1. We propose a novel pipeline named Multimodality-Aware Autoencoder-based

affordance Learning (MAAL). It is an efficient framework for solving the 3D object

affordance problem. MAAL does not need multiple training steps and only requires a few

data samples compared to previous methods.

2. We propose MultiModal Energized Encoder (MME) to handle the multi-modal

information and their interaction in the 3D object affordance problem. The proposed

encoder comprehensively learns data in all modalities and provides better multi-modal

learning ability.

3. Without bells and whistles, our method outperforms all current methods in both

F-score and sample success rate. Visualizations also show the effectiveness of our MAAL.

7.2 Preliminary

Following the problem settings in [159], the 3D affordance problem can be generally

formulated as where and how to act for a given 3D object. During training, 3D object

information and interactive points are given as inputs. The methods are required to

produce actionability scores for corresponding points, action proposals, and success

likelihoods for proposals, respectively.

In detail, each input sample involves four kinds of data: xo, xp, xa, and xh. Specifically,

xo indicates the 3D object information represented by the 3D point cloud. xo ∈RO×3, where

O is the dimension of point clouds. xp is the interactive point, and xp ∈ xo. xa means

an interaction proposal and can be described by gripper orientation xa ∈ SO(3). Finally,

given gripper orientation xa, articulated object xo, and point xp to the simulator, xh is

the part motion. It can indicate whether the action is successfully manipulated or not

after simulation.

In this task, methods are required to:

• Given an object (xo) and interactive point (xp), produce an actionability score φ.

• Given an object (xo) and interactive point (xp), produce an action proposal ρ.

• Given an object (xo), interactive point (xp), and action proposal (xa), produce a

success likelihood score σ.
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We propose a Multimodality-Aware Autoencoder-based affordance Learning (MAAL)

to solve the 3D object affordance problem. Specifically, MAAL contains three parts:

a MultiModal Energized Encoder (MME), an action memory, and an action decoder.

MME is proposed to learn multi-modal information, model the interaction and provide a

comprehensive understanding of the inputs of the 3D object affordance problem. Then,

action memory is used to record action information. Outputs from the encoder are

taken as retrieval queries and are used to select items in the memory. Finally, given the

aggregations of selected items from memory, the action decoder is proposed to reconstruct

the corresponding actions.

7.3.1 MultiModal Energized Encoder

We propose MultiModal Energized Encoder (MME). MME empowers better multi-modal

learning ability and solves the 3D affordance problem more effectively. Specifically, two

kinds of modalities (object modality and action modality) and their interaction should be

understood. Object modality mainly includes the point cloud of 3D objects and the points

of the object for interaction. The action modality contains the gripper directions of the

robot. Then, to model the interactions, object data, action data, and motion data from

the simulator should be jointly considered. Although all the data are collected from the

3D space, there are still domain gaps among modalities: 1) Dimensional variations. The

point cloud data in object modality has a dimension of R10000×3. The gripper direction in

robotic modality is a vector in R3×3. 2) Physical property differences. Point cloud data

are scalar values that indicate spatial information of objects. Robotic modality data are

vectors and indicate the direction of the action. 3) Distinct networks in representation.
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Different encoders or embedding layers are utilized to process various inputs, resulting

in features with varying distributions, further enlarging the gaps between modalities.

In our work, as shown in Fig 7.2, rather than directly processing all modalities by early

fusion, MME contains multiple branches of networks to handle different modalities and

carefully fuses features to learn the interaction.

First, following [159, 227], we use PointNet++ [180] network to encode the 3D point

cloud of the object into feature fo, where fo ∈RC and C is the dimension of the feature.

Then four embedding layers are introduced to embed action xa, motion xh, object feature

fo, and point xp, respectively. All embedding layers learn individually and are built by

two fully-connected layers.

Then, as shown in Fig. 7.2, we have three branches to learn multi-modal features

and their interaction separately: the action branch Ea, object branch Eo, and interaction

branch E i. Each branch contains a learner module and an adapter module. Learner mod-

ules aim to learn information, particularly for each modality and interaction. Then, the

adapters convert features from learners to adapt the action encoding module. Different

branches in MME help the network to learn affordance with different perspectives. The

network is encouraged to mine valuable clues for object affordance from every modality

separately. This leads to comprehensive multi-modal modeling and would not neglect

any modalities.

Specifically, in the action branch, the action learner module is proposed to learn

features after embedding and is constructed by three fully-connected layers. Similarly, in

the object branch, the embedded features from fo and xp are given to an object learner

module. The object learner contains a batch normalization layer and three fully-connected

layers. Moreover, the interaction branch takes all information from modalities and aims

to learn the interaction between objects and robots further. It contains a bilinear network

to model the interaction between features from the action learner and object learner. A

residual connection block is also involved in merging features from all modalities. This

designation introduces the better ability for multi-modal fusion [215, 248]. Features

from different levels are considered and fused in the module. This provides a better

understanding of information in multiple modalities.

Then, the adapters are introduced in the pipeline, which consists of two fully-

connected layers. Finally, a shared encoding module generates query features from

the different branches, denoted as qa, qo, and qi, respectively. The procedure of MME
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Figure 7.3: An overview of our Multimodality-Aware Autoencoder-based affordance
Learning (MAAL). MAAL contains three parts: MultiModal Energized Encoder (MME),
action memory, and action decoder. The encoder produces query feature q. The memory
module receives queries, selects items, and aggregates them as m. Action decoder takes
action information ( fo and xp) and features m as inputs and reconstructs corresponding
action xa as ρ.

can be formulated as follows:

qa = Ea(xa),(7.1)

qo = Eo(xo, xp),(7.2)

qi = E i(xa, xo, xp, xh,θa,θo).(7.3)

where θa and θo are the features extracted from the action learner and interact learner,

respectively. The feature dimension of all queries is C. More details are presented in the

supplementary.

Moreover, other works directly use concatenated data (e.g., [ fo, xp, xa, xh] in [227],

where [∗] is the concatenate operation.) as inputs. Taking all data as a whole, different

modalities are learned equivalently. Comparatively, our encoder considers the learning

of different modalities and their interaction. The encoder fuses multi-modal data at

different levels and forms a comprehensive understanding. This leads our encoder to

possess better multi-modal learning ability than the early fusion methods [159, 227].

7.3.2 Multimodality-aware Autoencoder-based Affordance

Learning:

We propose Multimodality-Aware Autoencoder-based affordance Learning (MAAL).

MAAL provides a more efficient pipeline to solve the affordance problem. As shown

in Fig. 7.3, more than MME, we leverage a memory module M and a decoder module D
to construct an AE pipeline. The memory module aims to prevent the “over-generalized”

problem [77] in the original AE framework (only with an encoder and a decoder). Though

only trained with positive samples, the original AE may also reconstruct negative samples

with low reconstruction error during evaluation. By introducing a content-addressable

memory, we do not directly provide encoder outputs to the decoder for reconstruction.
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The representation from the encoder is used as a query to retrieve the most relevant

item in action memory. Then, the selected memory features are aggregated and provided

to the MAAL decoder. The memory module is a widely used strategy in AE, which has

been applied and discussed in many works [9, 170, 187].

As shown in Fig 7.3, given qa, qi, and qo, the memory module addresses memory

items and aggregates them as ma, mi, and mo, respectively. ma = M(qa), mi = M(qi), and

mo = M(qo). Finally, the decoder network is introduced to reconstruct action information.

Given object information ( fo and xp), it reconstructs the actions ρo, ρa, and ρ i according

to features ma, mi, and mo, respectively. ρo = D(ma, fo, xp), ρa = D(ma, fo, xp), and

ρ i = D(mi, fo, xp). To be noticed, the decoder network also takes object information as

inputs. This is because the 3D affordance problem treats object information as known

conditions. Under the real scenario, the robots have to know the object information

and then produce actions to interact. Moreover, the decoder is constructed by two batch

normalization layers and five fully-connected layers. More details will be offered in the

supplementary.

Generally, MAAL is not expected to memorize and reconstruct the objects precisely.

The memory module only needs to record and represent action information. Given fea-

tures selected by queries, the decoder is responsible for reconstructing action information

according to known object information.

7.3.3 Training and Evaluation

The overall loss function L can be formulated as follows:

(7.4) L = ∥xa −ρo∥+∥xa −ρa∥+∥xa −ρ i∥

where ∥∗∥ indicates the ℓ2 distances of input actions xa and action proposals ρ from

every branch. The overall training loss consists of reconstruction losses for three queries,

respectively. Only a single and end-to-end training step is required in our work, as in

Fig. 7.1.

During the evaluation, the final goal of the affordance problem requires predicting

action proposal ρ by given object information, actionability score φ by given object infor-

mation, and success likelihood score σ by given action proposal and object information.

The action proposal can be directly produced by reconstruction result ρo in MAAL. How-

ever, φ and σ are hard to be obtained directly through MAAL. They can be estimated

according to reconstruction errors. Meanwhile, the reconstruction error in MAAL is an

absolute error [152], which indicates that it may be variant by different data splits. To
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overcome this problem, we additionally utilize the k-nearest-neighbor (KNN) algorithm

to produce φ and σ.

In detail, we train the KNN algorithm using the average reconstruction error in the

validation set. For every sample in the validation set, we have data xv
a, xv

o, xv
p, and xv

h,

which indicate action, object, point, and motion data, respectively. Then, by MAAL, we

achieve corresponding action proposals in the validation set, which are denoted as ρv
o,

ρv
a, ρv

i . Thus, the reconstruction error ev for a given sample in the validation set can be

written as: ev = (∥xv
a −ρv

o∥+∥xv
a −ρv

a∥+∥xv
a −ρv

i ∥)/3. Then, we denote the KNN model as

K . K is trained by reconstruction error ev from all the samples (including both positive

and negative samples) and corresponding labels (binary labels indicate whether the

actions can be successfully manipulated or not).

During the evaluation, we first achieve ρt
o by testing object data xt

o and xt
p. Then, the

reconstructed action results of ρt
o can be calculated by:

mt
a = M(Ea(ρt

o)),(7.5)

mt
i = M(ρt

o, xt
o, xt

p, xt
h,Ea(ρt

o),Eo(xt
o, xt

p)),(7.6)

ρt
a = D(mt

a, xt
o, xt

p),(7.7)

ρt
i = D(mt

i, xt
o, xt

p).(7.8)

where xt
h is padded by zero. ρt

a and ρt
i are reconstruction results for ρt

o with action and

interaction branches for testing. Then, for the current test sample, the actionability score

φ = K (∥ρt
o −ρt

o∥+∥xt
o −ρt

i∥)/2). Similarly, for evaluating actions xt
a in the test set, we

can achieve reconstruction results ϱt
a, ϱt

i, and ϱt
a for xt

a, respectively. Then, the success

likelihood score can be computed as σ=K ((∥xt
a −ϱt

a∥+∥xt
a −ϱt

o∥+∥xt
a −ϱt

i∥)/3).

7.4 Experiment

In this section, we discuss all the details of our method design and task settings, evaluate

our method with various metrics, and show the superiority and effectiveness of our work.

7.4.1 Experimental Setup

Implementation Details: Instead of training multiple critics and iterative training,

all training procedures of our MAAL can be operated in one go. Specifically, the encoder,

memory, and decoder modules are trained and updated at the same stage. Adam optimizer

is used to optimize the networks within the learning rate 0.001 and weight decay 0.00001.
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More details about the network design will be presented in the supplementary. The

memory module is implemented following [77], which has been widely used in many

works [9, 170, 187]. We set memory size N as 200, and the dimension C is 128. Ablations

will be offered in Sec. 7.4.2. Other settings (e.g., training data generation, gripper data

processing, simulator settings, etc.) follow [227]. Additionally, during evaluation, the

number of nearest neighbors of the KNN classifier is 500. Due to space limitations, more

details of network designs and ablations will be offered in supplementary. We will also

provide more details and update the results of real-world experiments on Github .

Datasets: We experiment with all methods and operate comparisons based on

PartNet-Mobility dataset [161]. It is a large-scale and standard dataset for 3D articulated

object affordance problems and has been widely used in previous works [159, 160, 227,

269]. The action simulation is operated through SAPIEN simulator [234]. In this dataset,

972 articulated 3D objects within 15 object categories are used for conducting 3D object

affordance tasks. There are ten classes for training and five classes for testing. Besides,

the validation set is also split and contains ten categories same as the training set. For

better comparison, we separately report the results for shapes with training categories

and shapes with unseen novel categories, which are marked as “train cat.” and “ test cat.”

in tables, respectively. The data split is constructed following [159, 227]. Moreover, the

3D articulated object affordance task has six pre-defined actions (“pushing”, “pushing up”,

“pushing left”, “pulling”, “pulling up” and “pulling left”). For a fair comparison, categories

are split into “pushing all” and “pulling all” actions following [159, 227]. All actions are

parameterized in the SE(3) space according to the robot gripper poses. Corresponding to

the actions, the training and test data samples are generated by the simulator.

Moreover, we also apply settings in [227] to evaluate some special categories and

further show the effectiveness. We sample data from the doors category from pulling

actions and faucet categories from pushing actions following [227]. This data split further

shows the ability of methods to handle kinematic ambiguity. Besides, we also visualize

the actionability scores to plot affordance heatmaps following [159, 227], which further

prove the effectiveness of MAAL.

Evaluation Metrics: To evaluate and compare methods, we apply the two standard

metrics in the affordance task as in [159, 227], which are F-score for success likelihood

score and sample-success-rate (Sample-Succ) for action proposals. Since the generated

actions are randomly sampled, the positive and negative samples may not be balanced.

Thus, in [159], the authors introduced an F-score to balance precision and recall for

https://github.com/akira-l/MAAL
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Dataset Method F-score (%) Sample-Succ (%)

Pushing All (train cat.)
Where2Act [159] 66.29 27.33
AdaAfford [227] 73.21 32.50
MAAL 76.63 34.25

Pushing All (test cat.)
Where2Act [159] 52.38 21.04
AdaAfford [227] 65.50 26.20
MAAL 69.88 28.34

Pulling All (train cat.)
Where2Act [159] 48.76 6.40
AdaAfford [227] 53.80 8.18
MAAL 59.26 10.47

Pulling All (test cat.)
Where2Act [159] 40.88 5.71
AdaAfford [227] 42.35 6.02
MAAL 43.57 6.67

Table 7.1: The performance of the different methods for the 3D affordance problem in
PartNet-Mobility dataset. Our method outperforms other methods in both data splits
and metrics and also produces better action proposals than AdaAfford.

Figure 7.4: Comparison of data usage and training time. To better show the differences,
we assume the data usage and training time of AdaAfford as 100% and calculate the
relative percentages of MAAL compared with AdaAfford. Our method only consumes a
small part of data samples and training times.

unbalanced samples. Then, Sample-Succ reflects the quality of proposals. It calculates

the proportion of successfully manipulated actions among action proposals. Following

[159, 227], we generate 100 candidates to compute the metric. We First select 100 points

according to the actionability score φ in the given testing object. Then, we produce query

qo according to the object and point information and generate an action proposal. We

experiment 10 times per testing object and report the average values of both metrics.

7.4.2 Results and Analysis

Comparisons with State-of-the-art Methods: As shown in Table 7.1, we first compare

MAAL with previous works with four data splits following [159, 227]. Our method

outperforms other methods in all data splits and metrics. The higher results reveal the
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effectiveness of our method. The comparison shows the advantages of our method in two

aspects. The higher values of F-score indicate that our method assesses the actions better.

This proves that the reconstruction error from MAAL works well for evaluating actions.

Without any critics and multiple training stages, MAAL can perform and even better

complete this task. Besides, MAAL also achieves better performances in Sample-Succ.

This reveals that the quality of our proposals is also better than the previous works.

Moreover, in another data split from [227], our method also achieves better results, as

shown in Tab 7.2. The performance gain reveals the effectiveness of our MAAL in solving

the kinematic ambiguity.

Statistic for Data Usage: Due to the properties of AE, our MAAL only takes the

positive samples (successfully manipulated actions in simulation) as inputs. To show

the efficiency of our data usage, we statistic the percentage of positive samples in all

training data. We produce data samples following [159, 227] three times and calculate

the average proportion. Comparatively, our method only uses positive samples and is

more efficient. As shown in Fig. 7.4, Our method only takes 17.69% data of AdaAfford

for training pushing action. Meanwhile, in pulling action, the positive samples are mere

9.63%, and our method only requires such limited data samples. Moreover, our method

also possesses lower training time. We compute the average time of 100 training epochs

of different methods, as in Fig. 7.4. Due to the training procedure with multiple stages

and more data samples, the training time of AdaAfford is 23.34 and 12.72 times than

ours. All these results show the efficiency of our method.

Comparisons with Different Action Proposals: To compare the quality of action

proposals, we take action proposals and actionability scores from different methods

separately and combine them for comparison. Specifically, as shown in Tab. 7.3, the

action proposals are provided by different methods. Where2Act-P and AdaAfford-P

indicate using the action proposal parts in these methods. Where2Act-C and Adaafford-C

mean using critics in these works, which are responsible for predicting confidence for

action proposals. The action proposal from MAAL can be directly achieved by ρo, and

we score the action proposals by reconstruction errors as in 7.3.3. Then, we select the

top-100 action proposals by corresponding scoring modules and compute the Sample-Succ

of selected actions.

Given proposals from different methods, action selections by MAAL achieve a higher

or comparable success rate compared with others. This indicates that MAAL possesses a

high ability to assess and score actions compared with other methods. Besides taking

proposals from MAAL, other methods also achieve better Sample-Succ values. The results
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Dataset Method F-score (%) Sample-Succ (%)

Pulling Door
Where2Act [159] 58.26 12.84
AdaAfford [227] 69.34 17.62
MAAL 70.39 18.27

Pushing Faucet
Where2Act [159] 78.14 36.35
AdaAfford [227] 81.62 39.89
MAAL 81.82 40.06

Table 7.2: Comparison of categories selected by [227]. MAAL still achieves better results
in these relatively harder categories.
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Figure 7.5: Visualization of affordance heatmap. All objects are from the test set. The
heatmap is plotted by per-pixel action scores and produced by reconstruction error of
action proposals from MAAL. Our method can effectively solve the 3D affordance problem
and outperform the previous work.

further reflect that the proposal quality of our method is higher than others.

Ablation Study for theMulti-modal Learning: We compare different multi-modal

learning as shown in Tab. 7.4. Experiments for using individual branches (only action

branch, only object branch, and only interaction branch) and using the combinations of

branches (action branch + object branch, action branch + interaction branch, and object

branch + interaction branch) are provided.

Due to the comprehensive learning of multi-modal data, our method performs best

among all the combinations. Learning with more modalities can improve the ability

of the encoder. As in Tab. 7.4, the designation with only interaction outperform the

designation with single modalities. Meanwhile, due to the intermediate fusion with

other modalities, the interaction branch combines with another branch and outperforms

the encoder only with the interaction branch. All the results prove the effectiveness
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Method
Sample-Succ (%)

Action Proposal Actionability Score

Where2Act-P [159]
Where2Act-C [159] 27.33
AdaAfford-C [227] 28.58
MAAL 28.67

AdaAfford-P [227]
Where2Act-C [159] 30.90
AdaAfford-C [227] 32.50
MAAL 32.36

MAAL
Where2Act-C [159] 31.50
AdaAfford-C [227] 33.44
MAAL 34.25

Table 7.3: Comparison of different combinations of methods. The higher performances
prove that MAAL possesses a higher ability to evaluate actionability scores and generate
high-quality proposals.

Multi-modal Learning Method F-score (%) Sample-Succ (%)
only action branch 32.47 13.54
only object branch 53.42 21.75
only interaction branch 58.74 24.01
action branch + object branch 59.87 23.88
action branch + interaction branch 73.26 32.55
object branch + interaction branch 75.54 33.89
All branches 76.63 34.25

Table 7.4: Combinations of learning different modalities. MAAL jointly considers object
modality and action modality and further learn the interaction from both modalities.
The comprehensive multi-modal learning by MAAL achieves better performance in the
comparison.

of our method design. These may also reveal the necessity of multi-modal learning in

3D affordance. With better multi-modal learning, the network can better model and

understand the affordance of a given object.

Furthermore, we modify our encoder with early fusion. We remain all three branches

in the encoder but do not provide features from the action and object learner to the

interaction branch. This leads the encoder to degrade to an early fusion-based method

but still considers multi-modal learning. Then, the performance decreases by 8.31% in

F-score compared with ours. All results reveal that our encoder is effective in multi-modal

learning. The idea of intermediate fusion also improves learning ability.

7.4.3 Visualization for Affordance Predictions

We showcase the affordance predictions by heatmap as Fig. 7.5. The value of each pixel

is calculated by the actionability score of MAAL following [227]. The visualized results

show the effectiveness of MAAL in learning 3D object affordance. The actionable point in
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3D objects can be correctly predicted by MAAL. Besides, we visualize different shapes

with different categories from the validation set and test set in Fig. 7.5. For the unseen

categories in the test set, our method can also understand the 3D object affordance and

produce high confidence for actionable points. This further reveals the generalization of

our MAAL.

7.5 Conclusion

This chapter introduces a simple and data-efficient pipeline for the 3D affordance prob-

lem, named Multimodality-Aware Autoencoder-based affordance Learning (MAAL).

MAAL contains three parts: MultiModal Energized Encoder(MME), action memory,

and action decoder. We specifically design the encoder for multi-modal learning in 3D

object affordance. The previous work usually directly applies early fusion to process

multi-modal data. Comparatively, in our work, MME provides a comprehensive under-

standing of multi-modal learning and boosts the multi-modal learning ability for 3D

affordance. In the experiment, the comparisons reveal the effectiveness of our method.

MAAL outperforms former methods in different data splits, conditions, and metrics.
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CONCLUSION AND FUTURE WORK

In this thesis, we have expanded the scope of multi-modal learning research, providing

valuable insights to the community, especially in understanding and applying multi-

modal data. This exploration has not only enhanced the abilities of AI systems but also

provide new insights for stimulating human-like perception and interaction. Through

this research, we have ventured into the complexities of integrating and interpreting

diverse forms of data, drawing closer to achieving AI systems with human-like sensory

experiences.

Specifically, in the field of visual perception, our investigations have led to a deeper

understanding of how machines can process and interpret visual data, drawing closer to

the nuanced capabilities of human vision. From the complexities of fine-grained visual

classification to the broader challenges of general visual representation, this research

has delved into the intricate aspects of visual data processing, laying the groundwork for

AI systems that see and interpret the world with enhanced accuracy and efficiency.

Moving beyond visual stimuli, the incorporation of auditory information has added

another dimension to our exploration. Understanding and generating responses to audio

inputs have brought us closer to simulating real human reactions and behaviors. The

exploration in co-speech gesture generation, in particular, has shed light on how AI

can process auditory information and respond with appropriate physical expressions,

mirroring human communication dynamics. Furthermore, the integration of tactile

sensory data through affordance learning for robotic grippers has marked a significant

advancement in AI’s interaction with the physical world. This research has not only
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enabled machines to perceive and understand their environment better but also to act

upon it in a manner akin to human manipulation.

Throughout this thesis, the emphasis has been on not just improving the individual

capabilities of AI systems in handling different modalities but on synthesizing these

modalities to create a more holistic and integrated approach to AI perception and

interaction. The novel methodologies and insights derived from this research contribute

significantly to the field of AI, demonstrating how multi-modal data can be leveraged to

enhance the accuracy, efficiency, and human-like capabilities of AI systems.

Looking to the future, several avenues for research emerge from the findings of

this thesis. The potential for further refining and expanding the MHEM strategy and

ELP classifier in broader contexts of visual recognition presents a promising direction.

Investigating these methodologies in more diverse and challenging datasets could yield

deeper insights into their scalability and adaptability. In generative tasks, extending the

application of IcoCap, SEEG, and MAAL to more intricate scenarios and multi-modal

integrations offers fertile ground for research. Exploring these methods in dynamic real-

world environments, augmented reality, and more complex human-computer interactions

could further push the boundaries of what these technologies can achieve. Moreover,

the integration of emerging technologies such as deep reinforcement learning (e.g.,

improving robot gripper movements in MAAL) and unsupervised learning approaches

(e.g., integrating data across all modalities to construct more unified and larger models)

in multi-modal learning presents a promising direction. These approaches could offer

novel ways to address some of the unsolved challenges in the field, leading to more

advanced and autonomous AI systems.

In conclusion, this thesis represents a substantial step forward in the quest to create

intelligent, adaptable, and efficient AI systems capable of interpreting and interacting

with the complex types of multi-modal data that defines our world. The insights and

advancements presented are poised to inspire further research and development, rein-

forcing the synergy between different sensory modalities in the continual evolution of

artificial intelligence. In the future, the foundations laid by this research promise to

guide and inform the next generation of AI innovations, driving us closer to systems that

can perceive, understand, and interact with the world in ways that are truly reminiscent

of human intelligence.
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AND R. HOLCER, Speech technologies for advanced applications in service
robotics, Acta Polytechnica Hungarica, 10 (2013), pp. 45–61.

[166] A. OWENS, J. WU, J. H. MCDERMOTT, W. T. FREEMAN, AND A. TORRALBA,

Ambient sound provides supervision for visual learning, in Computer Vision–

ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October

11–14, 2016, Proceedings, Part I 14, Springer, 2016, pp. 801–816.

[167] B. PAN, H. CAI, D.-A. HUANG, K.-H. LEE, A. GAIDON, E. ADELI, AND J. C.

NIEBLES, Spatio-temporal graph for video captioning with knowledge distilla-
tion, in CVPR, 2020.

[168] Y. PAN, T. MEI, T. YAO, H. LI, AND Y. RUI, Jointly modeling embedding and
translation to bridge video and language, in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 4594–4602.

[169] K. PAPINENI, S. ROUKOS, T. WARD, AND W.-J. ZHU, Bleu: a method for automatic
evaluation of machine translation, in Proceedings of the 40th annual meeting

of the Association for Computational Linguistics, 2002, pp. 311–318.

[170] H. PARK, J. NOH, AND B. HAM, Learning memory-guided normality for anomaly
detection, in Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, 2020, pp. 14372–14381.

[171] M. PATRICK, P.-Y. HUANG, Y. ASANO, F. METZE, A. G. HAUPTMANN, J. F. HEN-

RIQUES, AND A. VEDALDI, Support-set bottlenecks for video-text representation
learning, in International Conference on Learning Representations, 2021.

[172] Y. PENG, X. HE, AND J. ZHAO, Object-part attention model for fine-grained image
classification, IEEE Transactions on Image Processing, 27 (2017), pp. 1487–

1500.

[173] J. PENNINGTON, R. SOCHER, AND C. D. MANNING, Glove: Global vectors for word
representation, in Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), 2014, pp. 1532–1543.

[174] D. POEPPEL, W. J. IDSARDI, AND V. VAN WASSENHOVE, Speech perception at
the interface of neurobiology and linguistics, Philosophical Transactions of the

Royal Society B: Biological Sciences, 363 (2008), pp. 1071–1086.

129



BIBLIOGRAPHY

[175] T. PORCELLO, L. MEINTJES, A. M. OCHOA, AND D. W. SAMUELS, The reor-
ganization of the sensory world, Annual review of anthropology, 39 (2010),

pp. 51–66.

[176] S. PORIA, E. CAMBRIA, AND A. GELBUKH, Deep convolutional neural network
textual features and multiple kernel learning for utterance-level multimodal
sentiment analysis, in Proceedings of the 2015 conference on empirical methods

in natural language processing, 2015, pp. 2539–2544.

[177] R. R. PROVINE, Laughter punctuates speech: Linguistic, social and gender contexts
of laughter, Ethology, 95 (1993), pp. 291–298.

[178] H. PURWINS, B. LI, T. VIRTANEN, J. SCHLÜTER, S.-Y. CHANG, AND T. SAINATH,

Deep learning for audio signal processing, IEEE Journal of Selected Topics in

Signal Processing, 13 (2019), pp. 206–219.

[179] Z. PYLYSHYN, Is vision continuous with cognition?: The case for cognitive im-
penetrability of visual perception, Behavioral and brain sciences, 22 (1999),

pp. 341–365.

[180] C. R. QI, L. YI, H. SU, AND L. J. GUIBAS, Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space, Advances in neural information

processing systems, 30 (2017).

[181] R. QIAN, T. MENG, B. GONG, M.-H. YANG, H. WANG, S. BELONGIE, AND Y. CUI,

Spatiotemporal contrastive video representation learning, in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,

pp. 6964–6974.

[182] S. QIAN, Z. TU, Y. ZHI, W. LIU, AND S. GAO, Speech drives templates: Co-speech
gesture synthesis with learned templates, in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2021, pp. 11077–11086.

[183] A. RADFORD, J. W. KIM, C. HALLACY, A. RAMESH, G. GOH, S. AGARWAL,

G. SASTRY, A. ASKELL, P. MISHKIN, J. CLARK, ET AL., Learning transferable
visual models from natural language supervision, in International Conference

on Machine Learning, PMLR, 2021, pp. 8748–8763.

130



BIBLIOGRAPHY

[184] D. RAMACHANDRAM AND G. W. TAYLOR, Deep multimodal learning: A survey
on recent advances and trends, IEEE signal processing magazine, 34 (2017),

pp. 96–108.

[185] J. REDMON AND A. ANGELOVA, Real-time grasp detection using convolutional
neural networks, in 2015 IEEE international conference on robotics and au-

tomation (ICRA), IEEE, 2015, pp. 1316–1322.

[186] J. RISCHEL, Formal linguistics and real speech, Speech Communication, 11 (1992),

pp. 379–392.

[187] L. RUFF, J. R. KAUFFMANN, R. A. VANDERMEULEN, G. MONTAVON, W. SAMEK,

M. KLOFT, T. G. DIETTERICH, AND K.-R. MÜLLER, A unifying review of
deep and shallow anomaly detection, Proceedings of the IEEE, 109 (2021),

pp. 756–795.

[188] D. E. RUMELHART, R. DURBIN, R. GOLDEN, AND Y. CHAUVIN, Backpropagation:
The basic theory, Backpropagation: Theory, architectures and applications,

(1995), pp. 1–34.

[189] D. E. RUMELHART AND D. ZIPSER, Feature discovery by competitive learning,

Cognitive science, 9 (1985), pp. 75–112.

[190] M. SABOKROU, M. KHALOOEI, AND E. ADELI, Self-supervised representation
learning via neighborhood-relational encoding, in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2019, pp. 8010–8019.

[191] N. SEBE, I. COHEN, A. GARG, AND T. S. HUANG, Machine learning in computer
vision, vol. 29, Springer Science & Business Media, 2005.

[192] V. SEHWAG, M. CHIANG, AND P. MITTAL, On separability of self-supervised repre-
sentations, ICML workshop on Uncertainty and Robustness in Deep Learning

(UDL), (2020).

[193] R. R. SELVARAJU, M. COGSWELL, A. DAS, R. VEDANTAM, D. PARIKH, AND

D. BATRA, Grad-cam: Visual explanations from deep networks via gradient-
based localization, in Proceedings of the IEEE international conference on

computer vision, 2017, pp. 618–626.

131



BIBLIOGRAPHY

[194] P. H. SEO, A. NAGRANI, A. ARNAB, AND C. SCHMID, End-to-end generative
pretraining for multimodal video captioning, in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp. 17959–

17968.

[195] Z. SHEN, J. LI, Z. SU, M. LI, Y. CHEN, Y.-G. JIANG, AND X. XUE, Weakly
supervised dense video captioning, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 1916–1924.

[196] W. SHI, Y. GONG, X. TAO, D. CHENG, AND N. ZHENG, Fine-grained image clas-
sification using modified dcnns trained by cascaded softmax and generalized
large-margin losses, IEEE transactions on neural networks and learning sys-

tems, 30 (2018), pp. 683–694.

[197] X. SHI, J. CAI, S. JOTY, AND J. GU, Watch it twice: Video captioning with a refo-
cused video encoder, in Proceedings of the 27th ACM International Conference

on Multimedia, 2019, pp. 818–826.

[198] C. SHORTEN AND T. M. KHOSHGOFTAAR, A survey on image data augmentation
for deep learning, Journal of Big Data, 6 (2019), pp. 1–48.

[199] J. SHU, Q. XIE, L. YI, Q. ZHAO, S. ZHOU, Z. XU, AND D. MENG, Meta-weight-
net: Learning an explicit mapping for sample weighting, arXiv preprint

arXiv:1902.07379, (2019).

[200] K. SIMONYAN AND A. ZISSERMAN, Two-stream convolutional networks for action
recognition in videos, Advances in neural information processing systems, 27

(2014).

[201] S. SINHA, H. OHASHI, AND K. NAKAMURA, Class-wise difficulty-balanced loss for
solving class-imbalance, in Proceedings of the Asian Conference on Computer

Vision, 2020.

[202] C. G. SNOEK, M. WORRING, AND A. W. SMEULDERS, Early versus late fusion in
semantic video analysis, in Proceedings of the 13th annual ACM international

conference on Multimedia, 2005, pp. 399–402.

[203] K. SON, J. HAYS, AND D. B. COOPER, Solving square jigsaw puzzles with loop
constraints, in European Conference on Computer Vision, Springer, 2014,

pp. 32–46.

132



BIBLIOGRAPHY

[204] C. STEPHENSON, S. PADHY, A. GANESH, Y. HUI, H. TANG, AND S. CHUNG, On
the geometry of generalization and memorization in deep neural networks, arXiv

preprint arXiv:2105.14602, (2021).

[205] C. SUN, A. MYERS, C. VONDRICK, K. MURPHY, AND C. SCHMID, Videobert: A joint
model for video and language representation learning, in Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2019, pp. 7464–7473.

[206] M. SUN, Y. YUAN, F. ZHOU, AND E. DING, Multi-attention multi-class constraint
for fine-grained image recognition, in Proceedings of the European Conference

on Computer Vision (ECCV), 2018, pp. 805–821.

[207] C. SZEGEDY, S. IOFFE, AND V. VANHOUCKE, Inception-v4, inception-resnet and
the impact of residual connections on learning, CoRR, abs/1602.07261 (2016).

[208] C. SZEGEDY, V. VANHOUCKE, S. IOFFE, J. SHLENS, AND Z. WOJNA, Rethinking
the inception architecture for computer vision, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

[209] M. TANG, Z. WANG, Z. LIU, F. RAO, D. LI, AND X. LI, Clip4caption: Clip for
video caption, in Proceedings of the 29th ACM International Conference on

Multimedia, 2021, pp. 4858–4862.

[210] M. A. TANNER AND W. H. WONG, The calculation of posterior distributions by
data augmentation, Journal of the American statistical Association, 82 (1987),

pp. 528–540.

[211] L. VAN DER MAATEN AND G. HINTON, Visualizing data using t-sne., Journal of

machine learning research, 9 (2008).

[212] A. VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ,

Ł. KAISER, AND I. POLOSUKHIN, Attention is all you need, in Advances in

neural information processing systems, 2017, pp. 5998–6008.

[213] R. VEDANTAM, C. LAWRENCE ZITNICK, AND D. PARIKH, Cider: Consensus-based
image description evaluation, in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2015, pp. 4566–4575.

[214] A. VEIT, N. ALLDRIN, G. CHECHIK, I. KRASIN, A. GUPTA, AND S. BELONGIE,

Learning from noisy large-scale datasets with minimal supervision, in Proceed-

133



BIBLIOGRAPHY

ings of the IEEE conference on computer vision and pattern recognition, 2017,

pp. 839–847.

[215] P. VINCENT, H. LAROCHELLE, Y. BENGIO, AND P.-A. MANZAGOL, Extracting and
composing robust features with denoising autoencoders, in Proceedings of the

25th international conference on Machine learning, 2008, pp. 1096–1103.

[216] A. VOULODIMOS, N. DOULAMIS, A. DOULAMIS, E. PROTOPAPADAKIS, ET AL.,

Deep learning for computer vision: A brief review, Computational intelligence

and neuroscience, 2018 (2018).

[217] C. WAH, S. BRANSON, P. WELINDER, P. PERONA, AND S. BELONGIE, The caltech-
ucsd birds-200-2011 dataset, Tech. Rep. CNS-TR-2011-001, California Institute

of Technology, 2011.

[218] B. WANG, L. MA, W. ZHANG, W. JIANG, J. WANG, AND W. LIU, Controllable video
captioning with pos sequence guidance based on gated fusion network, in ICCV,

2019.

[219] H. WANG, Y. XU, AND Y. HAN, Spotting and aggregating salient regions for
video captioning, in Proceedings of the 26th ACM international conference on

Multimedia, 2018, pp. 1519–1526.

[220] J. WANG, D. CHEN, Z. WU, C. LUO, L. ZHOU, Y. ZHAO, Y. XIE, C. LIU, Y.-G.

JIANG, AND L. YUAN, Omnivl: One foundation model for image-language and
video-language tasks, in NeurIPS, 2022.

[221] R. WANG, D. CHEN, Z. WU, Y. CHEN, X. DAI, M. LIU, Y.-G. JIANG, L. ZHOU,

AND L. YUAN, Bevt: Bert pretraining of video transformers, arXiv preprint

arXiv:2112.01529, (2021).

[222] X. WANG, J. WU, J. CHEN, L. LI, Y.-F. WANG, AND W. Y. WANG, Vatex: A large-
scale, high-quality multilingual dataset for video-and-language research, in

The IEEE International Conference on Computer Vision (ICCV), October 2019.

[223] X. WANG, R. ZHANG, C. SHEN, T. KONG, AND L. LI, Dense contrastive learning for
self-supervised visual pre-training, in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021, pp. 3024–3033.

134



BIBLIOGRAPHY

[224] X. WANG, L. ZHU, Y. WU, AND Y. YANG, Symbiotic attention for egocentric ac-
tion recognition with object-centric alignment, IEEE Transactions on Pattern

Analysis and Machine Intelligence, (2020), pp. 1–1.

[225] X. WANG, L. ZHU, Z. ZHENG, M. XU, AND Y. YANG, Align and tell: Boosting
text-video retrieval with local alignment and fine-grained supervision, IEEE

Transactions on Multimedia, (2022), pp. 1–11.

[226] Y. WANG, V. I. MORARIU, AND L. S. DAVIS, Learning a discriminative filter bank
within a cnn for fine-grained recognition, in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 4148–4157.

[227] Y. WANG, R. WU, K. MO, J. KE, Q. FAN, L. J. GUIBAS, AND H. DONG, Adaafford:
Learning to adapt manipulation affordance for 3d articulated objects via few-
shot interactions, in Computer Vision–ECCV 2022: 17th European Conference,

Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIX, Springer Nature

Switzerland Cham, 2022, pp. 90–107.

[228] P. WOLFERT, N. ROBINSON, AND T. BELPAEME, A review of evaluation prac-
tices of gesture generation in embodied conversational agents, arXiv preprint

arXiv:2101.03769, (2021).

[229] N. WOLFSON, The bulge: A theory of speech behavior and social distance., Penn

Working Papers in Educational Linguistics, 2 (1990), pp. 55–83.

[230] A. WU, Y. HAN, L. ZHU, AND Y. YANG, Instance-invariant domain adaptive
object detection via progressive disentanglement, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 44 (2021), pp. 4178–4193.

[231] D. WU, L. PIGOU, P.-J. KINDERMANS, N. D.-H. LE, L. SHAO, J. DAMBRE, AND

J.-M. ODOBEZ, Deep dynamic neural networks for multimodal gesture segmen-
tation and recognition, IEEE transactions on pattern analysis and machine

intelligence, 38 (2016), pp. 1583–1597.

[232] X. WU AND H. YU, Mars-fl: Enabling competitors to collaborate in federated
learning, IEEE Transactions on Big Data, (2022), pp. 1–11.

[233] Z. WU, Y. XIONG, S. X. YU, AND D. LIN, Unsupervised feature learning via non-
parametric instance discrimination, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 3733–3742.

135



BIBLIOGRAPHY

[234] F. XIANG, Y. QIN, K. MO, Y. XIA, H. ZHU, F. LIU, M. LIU, H. JIANG, Y. YUAN,

H. WANG, ET AL., Sapien: A simulated part-based interactive environment,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 11097–11107.

[235] Q. XIAO, H. LUO, AND C. ZHANG, Margin sample mining loss: A deep learning
based method for person re-identification, arXiv preprint arXiv:1710.00478,

(2017).

[236] T. XIAO, Y. XU, K. YANG, J. ZHANG, Y. PENG, AND Z. ZHANG, The application of
two-level attention models in deep convolutional neural network for fine-grained
image classification, in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 842–850.

[237] Q. XIE, M.-T. LUONG, E. HOVY, AND Q. V. LE, Self-training with noisy student
improves imagenet classification, in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 10687–10698.

[238] S. XIE, C. SUN, J. HUANG, Z. TU, AND K. MURPHY, Rethinking spatiotemporal fea-
ture learning: Speed-accuracy trade-offs in video classification, in Proceedings

of the European conference on computer vision (ECCV), 2018, pp. 305–321.

[239] J. XU, T. MEI, T. YAO, AND Y. RUI, Msr-vtt: A large video description dataset
for bridging video and language, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 5288–5296.

[240] C. YAN, Y. TU, X. WANG, Y. ZHANG, X. HAO, Y. ZHANG, AND Q. DAI, Stat:
Spatial-temporal attention mechanism for video captioning, IEEE transactions

on multimedia, 22 (2019), pp. 229–241.

[241] B. YANG, T. ZHANG, AND Y. ZOU, Clip meets video captioning: Concept-aware rep-
resentation learning does matter, in Chinese Conference on Pattern Recognition

and Computer Vision (PRCV), Springer, 2022, pp. 368–381.

[242] Y. YANG, Z. MA, A. G. HAUPTMANN, AND N. SEBE, Feature selection for multime-
dia analysis by sharing information among multiple tasks, IEEE Transactions

on Multimedia, 15 (2012), pp. 661–669.

136



BIBLIOGRAPHY

[243] Y. YANG, J. SONG, Z. HUANG, Z. MA, N. SEBE, AND A. G. HAUPTMANN, Multi-
feature fusion via hierarchical regression for multimedia analysis, IEEE Trans-

actions on Multimedia, 15 (2012), pp. 572–581.

[244] Y. YANG, Y. ZHUANG, AND Y. PAN, Multiple knowledge representation for big data
artificial intelligence: framework, applications, and case studies, Frontiers of

Information Technology & Electronic Engineering, 22 (2021), pp. 1551–1558.

[245] Z. YANG, T. LUO, D. WANG, Z. HU, J. GAO, AND L. WANG, Learning to navigate
for fine-grained classification, in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 420–435.

[246] B. YAO, G. BRADSKI, AND L. FEI-FEI, A codebook-free and annotation-free ap-
proach for fine-grained image categorization, in 2012 IEEE Conference on

Computer Vision and Pattern Recognition, IEEE, 2012, pp. 3466–3473.

[247] H. YE, G. LI, Y. QI, S. WANG, Q. HUANG, AND M.-H. YANG, Hierarchical modular
network for video captioning, in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2022, pp. 17939–17948.

[248] D. YI, Z. LEI, AND S. Z. LI, Shared representation learning for heterogenous face
recognition, in 2015 11th IEEE international conference and workshops on

automatic face and gesture recognition (FG), vol. 1, IEEE, 2015, pp. 1–7.

[249] Y. YOON, B. CHA, J.-H. LEE, M. JANG, J. LEE, J. KIM, AND G. LEE, Speech
gesture generation from the trimodal context of text, audio, and speaker identity,

ACM Transactions on Graphics, 39 (2020).

[250] Y. YOON, W.-R. KO, M. JANG, J. LEE, J. KIM, AND G. LEE, Robots learn social
skills: End-to-end learning of co-speech gesture generation for humanoid robots,

in 2019 International Conference on Robotics and Automation (ICRA), IEEE,

2019, pp. 4303–4309.

[251] C. YU, X. ZHAO, Q. ZHENG, P. ZHANG, AND X. YOU, Hierarchical bilinear pooling
for fine-grained visual recognition, in Proceedings of the European conference

on computer vision (ECCV), 2018, pp. 574–589.

[252] J. YU, X. ZHENG, AND S. WANG, A deep autoencoder feature learning method for
process pattern recognition, Journal of Process Control, 79 (2019), pp. 1–15.

137



BIBLIOGRAPHY

[253] X.-T. YUAN, X. LIU, AND S. YAN, Visual classification with multitask joint sparse
representation, IEEE Transactions on Image Processing, 21 (2012), pp. 4349–

4360.

[254] P. YUN, L. TAI, Y. WANG, C. LIU, AND M. LIU, Focal loss in 3d object detection,

IEEE Robotics and Automation Letters, 4 (2019), pp. 1263–1270.

[255] S. YUN, D. HAN, S. J. OH, S. CHUN, J. CHOE, AND Y. YOO, Cutmix: Regularization
strategy to train strong classifiers with localizable features, in Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2019, pp. 6023–6032.

[256] M. D. ZEILER AND R. FERGUS, Visualizing and understanding convolutional
networks, in European conference on computer vision, Springer, 2014, pp. 818–

833.

[257] C. ZHANG, S. BENGIO, M. HARDT, B. RECHT, AND O. VINYALS, Under-
standing deep learning requires rethinking generalization, arXiv preprint

arXiv:1611.03530, (2016).

[258] C. ZHANG, C. LIANG, L. LI, J. LIU, Q. HUANG, AND Q. TIAN, Fine-grained
image classification via low-rank sparse coding with general and class-specific
codebooks, IEEE transactions on neural networks and learning systems, 28

(2016), pp. 1550–1559.

[259] C. ZHANG, C. ZHANG, J. SONG, J. S. K. YI, K. ZHANG, AND I. S. KWEON, A
survey on masked autoencoder for self-supervised learning in vision and beyond,

arXiv preprint arXiv:2208.00173, (2022).

[260] D. ZHANG, J. HAN, G. CHENG, AND M.-H. YANG, Weakly supervised object local-
ization and detection: A survey, IEEE Transactions on Pattern Analysis and

Machine Intelligence, (2021), pp. 1–1.

[261] D. ZHANG, D. MENG, AND J. HAN, Co-saliency detection via a self-paced multiple-
instance learning framework, IEEE transactions on pattern analysis and ma-

chine intelligence, 39 (2016), pp. 865–878.

[262] D. ZHANG, W. ZENG, J. YAO, AND J. HAN, Weakly supervised object detection
using proposal- and semantic-level relationships, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 44 (2022), pp. 3349–3363.

138



BIBLIOGRAPHY

[263] H. ZHANG, M. CISSE, Y. N. DAUPHIN, AND D. LOPEZ-PAZ, mixup: Beyond empir-
ical risk minimization, arXiv preprint arXiv:1710.09412, (2017).

[264] L. ZHANG, S. HUANG, W. LIU, AND D. TAO, Learning a mixture of granularity-
specific experts for fine-grained categorization, in Proceedings of the IEEE

International Conference on Computer Vision, 2019, pp. 8331–8340.

[265] N. ZHANG, R. FARRELL, F. IANDOLA, AND T. DARRELL, Deformable part descrip-
tors for fine-grained recognition and attribute prediction, in Proceedings of the

IEEE International Conference on Computer Vision, 2013, pp. 729–736.

[266] Z. ZHANG, Z. QI, C. YUAN, Y. SHAN, B. LI, Y. DENG, AND W. HU, Open-book
video captioning with retrieve-copy-generate network, in CVPR, 2021.

[267] Z. ZHANG, Y. SHI, C. YUAN, B. LI, P. WANG, W. HU, AND Z.-J. ZHA, Object
relational graph with teacher-recommended learning for video captioning, in

Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2020, pp. 13278–13288.

[268] W. ZHAO, X. WU, AND J. LUO, Multi-modal dependency tree for video captioning,

Advances in Neural Information Processing Systems, 34 (2021), pp. 6634–6645.

[269] Y. ZHAO, R. WU, Z. CHEN, Y. ZHANG, Q. FAN, K. MO, AND H. DONG, Dualafford:
Learning collaborative visual affordance for dual-gripper object manipulation,

arXiv preprint arXiv:2207.01971, (2022).

[270] H. ZHENG, J. FU, T. MEI, AND J. LUO, Learning multi-attention convolutional
neural network for fine-grained image recognition, in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 5209–5217.

[271] H. ZHENG, J. FU, Z.-J. ZHA, AND J. LUO, Learning deep bilinear transforma-
tion for fine-grained image representation, in Advances in Neural Information

Processing Systems, 2019, pp. 4277–4286.

[272] H. ZHENG, J. FU, Z. J. ZHA, AND J. LUO, Looking for the devil in the details:
Learning trilinear attention sampling network for fine-grained image recogni-
tion, in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 5012–5021.

[273] Q. ZHENG, C. WANG, AND D. TAO, Syntax-aware action targeting for video cap-
tioning, in CVPR, 2020.

139



BIBLIOGRAPHY

[274] Z. ZHENG, L. ZHENG, AND Y. YANG, Unlabeled samples generated by gan im-
prove the person re-identification baseline in vitro, in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 3754–3762.

[275] Z. ZHONG, L. ZHENG, G. KANG, S. LI, AND Y. YANG, Random erasing data
augmentation, in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, 2020, pp. 13001–13008.

[276] L. ZHOU, Y. ZHOU, J. J. CORSO, R. SOCHER, AND C. XIONG, End-to-end dense
video captioning with masked transformer, in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2018, pp. 8739–8748.

[277] M. ZHOU, Y. BAI, W. ZHANG, T. ZHAO, AND T. MEI, Look-into-object: Self-
supervised structure modeling for object recognition, in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

June 2020.

[278] L. ZHU, H. FAN, Y. LUO, M. XU, AND Y. YANG, Temporal cross-layer correlation
mining for action recognition, IEEE Transactions on Multimedia, 24 (2021),

pp. 668–676.

[279] L. ZHU AND Y. YANG, Actbert: Learning global-local video-text representations,

in Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2020, pp. 8746–8755.

[280] P. ZHUANG, Y. WANG, AND Y. QIAO, Learning attentive pairwise interaction for
fine-grained classification, in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, 2020, pp. 13130–13137.

140


	List of Publications
	List of Figures
	List of Tables
	Introduction
	Improving Accuracy in Classification Tasks
	Enhancing Accuracy and Efficiency in Generation Tasks
	Thesis Organization

	Literature Survey
	Classification Tasks
	Fine-grained Classification
	General Visual Classification and Representation Learning

	Generation Tasks
	Video Captioning
	Co-speech Gesture Generation
	Affordance Generation

	Multi-modal Learning
	Video-language Representation Learning
	Multi-modal Fusion and Learning


	Toward Better Accuracy for Fine-grained Visual Classification
	Introduction
	Method
	Moderate Hard Example Modulation (MHEM)
	Formulation of MHEM
	Moderate Modulation Baseline (M2B)
	Discussion on Focal Loss

	Experiments
	Experimental Setup
	The Effectiveness of MHEM conditions
	Comparisons between M2B and the state-of-the-art methods
	Ablation Study for M2B
	Numerical Comparison of Hard Examples
	Visual Analysis

	Conclusion and Discussion

	Toward Better Accuracy for General Visual Classification Tasks
	Introduction
	Method
	Episodic Linear Probing Classifier
	The ELP-Suitable Regularization
	Training and inference

	Experiments
	Experimental Setup
	Long-tailed Visual Recognition
	Generic Visual Recognition on ImageNet
	Ablation Studies

	Conclusion

	Improving Learning Efficiency for Video Captioning
	Introduction
	Image-compounded video Captioner
	Image-video Compounding Strategy 
	Visual-semantic Guided Captioning

	Experiments
	Experimental Setup
	Performance Comparison
	Ablation Studies
	Ablation on 
	Ablation on Mixup Ratio 
	Ablation on Swap Ratio in FS
	Performance in Image Captioning
	Qualitative Analysis

	Conclusion

	Toward Better Accuracy for Semantic-aware Pose Generation
	Introduction
	SEmantic Energized Generation
	Preliminary
	DEcoupled Mining module
	Semantic Energized Module

	Experiments
	Experimental Setup
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion

	Multi-modal Learning for Real-world Problems
	Introduction
	Preliminary
	Method
	MultiModal Energized Encoder 
	Multimodality-aware Autoencoder-based Affordance Learning:
	Training and Evaluation

	Experiment
	Experimental Setup
	Results and Analysis
	Visualization for Affordance Predictions

	Conclusion

	Conclusion and Future Work
	Bibliography



