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ABSTRACT. For periodic integrands with unit period in each variable, certain error
bounds for lattice rules are conveniently characterised by the figure of merit p, which
was originally introduced in the context of number theoretic rules. The problem of
finding good rules of order N (that is, having N distinct nodes) then becomes that of
finding rules with large values of p. This paper presents efficient search methods for
the discovery of rank 1 rules, and of maximal rank rules of high order, which possess
good figures of merit.

1. INTRODUCTION

Lattice rules are quasi-Monte Carlo multidimensional quadrature rules defined
on the unit hypercube [0,1)°. These rules have been extensively studied in recent
years, and the reader is referred to [19] and [23] for the basic definitions and results.
This paper presents methods for finding rank 1 lattice rules and 2° copies of rank 1
rules (which terms we define later in this section) that are optimal, in a particular
sense.

It is known [24] that an s-dimensional lattice rule Q7 can be expressed in the
form of a non-repetitive sum:

ni—1 Ny —1

(11 Alh =5 > > (3 Lep ).

j1:0 ]mZO

where m < s, the vectors g1, -+ ,gm are fixed integral vectors called generators
of the rule, N = ]2, n; is its order, and nj41 | n; for ¢ = 1,--+ ,m — 1, with
Ny > 1. The number m is called the rank of the rule and nqy, -+ ,ng,, 1,1,

with s — m units, are its imvariants. The braces in (1.1) indicate that addition
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is modulo Z*® which, in the case that f is 1-periodic in each variable, is clearly
equivalent to using the usual addition operation in R®. A rank 1 rule is simple if
it has a generator with one component that has value 1. The integration lattice
L of the rule (1.1) is the set of linear combinations with integer coefficients of
{g1/n1, ,8m/Nm,€1, - ,es}, where e, -+ , e, are the standard Cartesian basis
vectors in R?®. Different choices of generators may yield different integration lattices
and quadrature rules. Where necessary we shall denote by L(g1/n1,...,8m/"m)
the integration lattice with generators gi/nq,...,8m/mm-

Informally, two lattice rules are geometrically equivalent if the quadrature points
of one can be transformed into those of the other by a symmetry of the cube. More
formally, we may give an operational definition of the notion as follows.

Definition 1.1. Let N > 1. Two s-dimensional integration lattices Ly and L, are
geometrically equivalent if and only if Lo is the image of Ly under a finite sequence
of operations on R? of the form:
Sy @ Ui(x) = U;x, where U, is the identity matrix with the ¢th diagonal element
replaced by —1, or
Sy : Vij(x) = P;;x, where P;; is a permutation matrix which interchanges ele-
ments ¢ and 7 of x on premultiplication.

The lattice rules 1, and ()1, are geometrically equivalent, denoted by @1, L Qr,,
if and only if L; and L, are geometrically equivalent.

Geometric equivalence of rules has been investigated in previous works ([10],
[15], [25]). In [10] and [15] it was noted that, for a given set of lattice rules,
geometric equivalence is an equivalence relation. We shall refer to the corresponding
equivalence classes as geometry classes.

The quality of a lattice rule—in particular, its suitability for use with periodic
integrands having unit period in each variable—is often assessed by the values of

p(L) = min{r(h): h e L+ — {0}}

and

1
P S

heL+—{0}

where Lt = {h € Z* : Vx € L,x-h € Z} is the dual of the integration lattice L
and r(h) = [[}_, max{1, [h;|} for h € Z*. The series for P, converges for a > 1.
The most commonly used values of « are even positive integers, for which a closed
form expression for P, is available (see for example [23]). Geometrically equivalent
rules have equal values of p and of P,.

There have been a number of previous papers concerned with searches in dimen-
sions exceeding 2 for lattice rules that perform well with respect to p and P,. Some
early numerical results were reported in [22], with later results in [2], [5], [9], [18§]
being concerned with searches over sets of rank 1 simple rules only. Later results
reported in [4], [7], [15], [16], [17], [25] are from searches over other classes of rules.

In all of these searches, the rules being sought are specified by generator sets,
either of the integration lattice or of its dual. However, different generator sets
may generate the same rule, or a geometrically equivalent rule. If the number of



such unnecessary investigations can be reduced, the efficiency of the search proce-
dure may be enhanced. The results in [14], [21] describe strategies for the unique
specification of certain lattice rules.

For searches which use p as the figure of merit it is also worth noting that the
calculation of p(L) for a given lattice L is relatively time-consuming. Consequently
the efficiency of the search procedure may be enhanced by eliminating from consid-
eration, prior to the calculation of p(L), any rule @1, such that it is known a prior:
that there exists a rule Q1 of lower order satisfying p(L) < p(L'), or of equal order
satisfying p(L) < p(L'), since in these cases Q1 is superior to @)1, with respect to p.

Definition 1.2. We shall say that an s-dimensional lattice rule @ of order N is
bestp with respect to a set S of lattice rules if, when QQp € S:

(1) if order(Qr/) < N, then p(L') < p(L), and

(2) if order(Qr/) = N, then p(L") < p(L).

Most computer searches with respect to p use a variety of strategies to eliminate
inferior rules prior to the calculation of p, as well as to reduce redundancy in
the search due to the inclusion of generator sets corresponding to the same, or
geometrically equivalent, rules. In this regard the work of Maissoneuve [18] appears
to be fundamental, with both [9] and [2] following the previous author’s general
approach. These papers are concerned exclusively with finding rank 1 simple rules
which are bestp with respect to the set of rank 1 simple rules in three, four and five
dimensions. Lyness and Sgrevik [15], [16] have incorporated some of the methods
used by these authors in the ‘rank 1 simple’ phase of searches for rules which
are bestp with respect to the sets of all three-dimensional lattice rules and all four-
dimensional lattice rules, respectively. The same authors, in [17], develop techniques
for finding good, although not necessarily bestp, rules of higher order by scaling
rules of low order along some axes and copying the scaled rules along these axes.
More recently Disney [3] has applied techniques similar to those of earlier authors
in searches in dimensions three to ten for rules which are bestp with respect to the
set of 27 copies of rank 1 simple rules.

Definition 1.3. The n® copy Q™ of a quadrature rule () is the rule obtained by
subdividing the closed unit cube [0, 1]* into n® cubes each of side n™1, and applying
a properly scaled version of the rule () to each smaller cube.

It is clear (for example, see [18]) that, without loss of generality, we may restrict
complete searches of rank 1 rules to considering only rules having an ordered genera-
tor, which term we define in §2. Similar restrictions may be applied when searching
2% copies of rank 1 rules. In dimension three the tables of [18] and [9] extend to
rules of order N not exceeding 6066. In dimension four the tables of [18] and [2]
extend to N = 3298. In dimension five the latter authors reach N = 772. Lyness
and Sgrevik, treating all lattice rules and not only rank 1 rules, reach N = 3916 in
dimension three [15] and N = 562 in dimension four [16]. Disney [3] incorporated
the techniques developed in earlier searches into searches for 2° copies of rank 1
simple rules, producing some very good rules of orders ranging from approximately
100000 in dimension three to approximately 300000 in dimension ten. In this paper
we investigate the extension of these techniques to the case of non-simple rank 1
rules and their 2° copies.



In §2 we identify a rank 1 search set, that is, a set of generators of rank 1 rules,
including non-simple rules, to be considered which contains at least one represen-
tative from each geometry class. The set to be identified is chosen to enhance the
efficiency of the search procedure. In §3 we extend the elimination strategy of [18]
to dimensions exceeding four and to the case of non-simple rules, and in §4 to 2°
copies of rank 1 rules. Numerical results are presented in §§5-6.

Note. In parts of this paper we make use of the elementary theory of linear Dio-
phantine equations. A useful summary of the results we require is available in [20].

2. THEORETICAL CONSIDERATIONS FOR A FULL RANK 1 SEARCH

Following [18] we may begin the determination of a search set by restricting
gi, for i € {1,--- s}, to the set {1,--- ,N/2} since it is clear that every rank 1
rule of order N has a generator g/N with elements in this set, or is geometrically
equivalent to a rule which has such a generator. If there is an ¢ such that ¢; = 1
then the rule is simple. If for some ¢ we have ged(g;, N) = 1 then there exist integers
1, ¢ such that ¢19; + coN = 1, that is, ¢19; = 1 (mod N), and the rule is again
simple since ¢1g/N (mod Z°) also generates )y, and has 1 as its ¢’th component.
Conversely, if ged(g;, N) > 1 for every ¢ € {1,---,s} then there are no integers ¢,
c1, ¢ such that ¢yg; + co N = 1, and the rule is not simple. Finally we note that
every simple rule is geometrically equivalent to a simple rule having a generator
g/N such that g; = 1. Thus the case of simple rules may be covered by considering
generators with g1 = 1. For such generators it is again clear that we may restrict

gi, for 1 € {2,-+- s}, to the set {1,---  N/2}.

Definition 2.1. Let N be a positive integer. We shall say that a set Gr(N) of
integers is ezhaustive if and only if each rank 1 rule of order N either has a generator
g/N such that g1 € Gr(N), or is geometrically equivalent to such a rule. We shall
say that an exhaustive set is minimal if there exists no exhaustive set with fewer
elements.

We observe that, for N > 1, the set
(2.1) Gr(N)={1}Uu{m:0<m < N/2, gedim,N) > 1}

is exhaustive. However it is not, in general, minimal. For example, it is an immedi-
ate corollary of Theorem 2.5 below that, for N a prime power, the set G7(N) = {1}
is exhaustive and minimal. To identify a minimal exhaustive set for arbitrary N
we generalise the notion of ‘simple’ rules. For a given rank 1 rule ), the smallest
positive integer component of any quadrature point must be a divisor of the order
N. Clearly, the least such value must occur in a generator—for simple rules this
value is 1, and more generally we shall call this value the simplicity of the rule.

Definition 2.2. Let N > 1 and let g/N generate the s-dimensional rule @7, of
order N, where g; # 0 for : = 1,...,s. Define the simplicity of g with respect to N
and the simplicity of Qr, denoted respectively by simp(g, N) and simp(Qy, ), by

simp(Qr) = simp(g, N) = min{ged(g;, N): e =1,--- ,s}.



It is shown in [10, §3.2] that simp(Qy ) is well-defined, that is, it is independent
of the choice of generator for a given rule. The values assumed by simp(Q 7y, ), where
()1, ranges over the set of s-dimensional rank 1 rules of order N, are positive divisors
of N. These values will be called the simplicity residues of N.

Definition 2.3. Let N > 1. A point g € Z” is said to be ordered with respect to
N if g/N generates an s-dimensional rank 1 rule and

1 <simp(g,N) =ged(g1,N)=¢g1 < g2 <+ <gs < NJ2.

A rule Qr(g/n) of order N is said to be ordered if it has a generator g/N such that
g is ordered with respect to N.

Definition 2.4. Define a partial order relation on a set of s-dimensional ordered
generators in which two vectors g /Ny and g2 /No, where g; = (¢i1,...,6:,s), are
comparable if and only if Ny = N = N, say. For comparable vectors we shall say
that g1 /N precedes go/N, oris a precedent of go/N (denoted by g1 /N < g2/N),
if there is a j € {1,--- ,s} such that g1 ; = g2,; for 1 <i¢ < j and ¢1; < g2,;. We
shall say that g/N is primary in its geometry class if it has no precedents amongst
the generators of rules in the geometry class of Qr,g/n)-

In [10, §3.2] it was shown that every rank 1 rule is geometrically equivalent to
an ordered rule with the same simplicity. From this it follows immediately that,
for N > 1, the simplicity residues of N form an exhaustive set. The next result
identifies a minimal exhaustive set. The proof is straightforward and the interested
reader is referred to [10]. We note that it may also be shown [10, Theorem 3.2.17]
that we may further modify the procedure by restricting the other components of
g to be multiples of the proper divisors of N which are greater than or equal to ¢;.

Theorem 2.5 [10, Theorem 3.2.18]. Let N > 1 and let k be the number of positive
proper divisors of N. Define

. Gr(N)={m;: 1 <i<k;m; | N;mip1 >m; >0;
(22) dm > m; such that m | N and ged(m;,m) =1)},
that us, the ordered set of positive divisors of N such that, for each element of the set,

there exists a larger divisor of N to which the element is relatively prime. Then
Gr(N) us @ minimal exhaustive set and is precisely the set of simplicity residues

of N.

Example. For N = 56 = 23.7 the divisors are 1, 2, 4, 7, 8, 14, 28 and the
simplicity residues are 1, 2, 4, 7. For the 56-point 3-dimensional rule Qg /n) With
g = (20,35,14) we have ged(20,56) = 4, ged(35,56) = 7, ged(14,56) = 14 and
so simp(@Qr) = 4. In fact, 20 = 4 x 5 (mod 56) and so @1, is also generated by
5 1g /56, where 57! denotes the multiplicative inverse of 5 modulo 56, that is, 45.
In particular, we have 45g = (4,7,14) (mod 56), which is ordered with respect to
56 and primary in its geometry class.



3. PRELIMINARY ELIMINATIONS IN A FULL SEARCH OF RANK 1 RULES

In her searches over rules of increasing order N = 2,3, .-- for those which are
bestp with respect to the set of rank 1 simple rules in dimensions three and four,
Maisonneuve [18] developed a technique for eliminating from the search, prior to
the calculation of their p values, large numbers of rules which could be predicted
to have values of p less than the highest value found up to that point in the search.
Such rules clearly cannot be bestp and, since the calculation of p is computationally
intensive, this strategy significantly enhanced the efficiency of the search procedure.
Lyness and Sgrevik [15] have used this technique in their algorithm for determining
rules that are bestp with respect to the set of all rules in a given dimension.

This strategy can be extended in a straightforward way to searches over rank 1
rules of all simplicities in dimensions s > 2. For N = 2.3,---, and given py =
p(L(g'/N')) achieved for some N' < N, increment py and eliminate g such that
p(L(g/N)) < po.

The elimination strategy we shall use consists of, for each value of ¢g; and for
k=2 --- s, successively identifying (k — 1)-tuples of the form (g;,,--- ,¢i,) such
that a vector g containing such a sub-tuple must satisfy p(L(g/N)) < po. Such
sub-tuples we shall refer to as ‘bad’ for the given values of N and pg. Clearly any
tuple (¢i,, - ,¢i, ) which contains a bad sub-tuple is itself bad, since if

glhl + gi2hi2 + +gik—1hik—1 = AN and r(hlvhim T 7hik—1) < po
then
glhl +gi2hi2+"'+gik—1hik—1 —I_gik():/\N and r(hlvhim"' 7hik—170)</00'

It follows that a good tuple can contain no bad sub-tuples. In the remainder of this
section we describe a procedure for constructing sets Gr(N, po, k) of good tuples.

Theorem 3.1. Let N, s be integers greater than 1 and let py be a positive integer.
Then a set Gr(N, po, s) can be explicitly constructed such that: (a) p(L(g/N)) > po
for all g € Gr(N,po,s); and (b) for every s-dimensional rank 1 lattice rule Qs
of order N such that p(L") > po, there exists a g € Gr(N, po,s) such that Qr/ 1s
geometrically equivalent to the rule generated by g/N.

Proof. The proof is given in three parts.

(1) Overall strategy. Given N, by Theorem 2.5 we need consider only those g with
values of g1 contained in the set Gr(N) of simplicity residues defined in (2.2). By
Definition 2.2 and [10, Theorem 3.2.17], for each value of ¢; we need consider only
vectors g whose remaining components g; are drawn from the set Gr(N,g1) = {km :
m | N,g1 < m,km < N/2}. To construct Gr(N, po, s) we begin by constructing, for
each ¢1, a set of candidate pairs Gr(N, po,¢1) = {91} xG1(N, g1) and, by elimination
from this set, a set Gr(N, po,91,2) € Gr(N, po,¢1) of good pairs (¢1,¢i,), that is,
pairs with values of ¢;, such that p(L((g1,¢i,)/N)) > po. As we have noted, pairs
with values of ¢;, such that p(L((g1,¢i,)/N)) < po are undesirable since if g contains
such a pair then there is a non-zero h = (hy,0,---,0,h;,,0,--- ,0) € Lt(g/N)
such that r(h) < pg, and thus p(L(g/N)) < po. For similar reasons, a good point
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g may contain no bad k-tuples for k = 2,--- |s. An elimination strategy for the
construction of Gr(N, po,g1,2) is described in detail in (ii) below.

More generally, for £ = 3,--- ,s, we construct by elimination successive sets
Gr(N,po, g1, k) of good ordered k-tuples, that is, tuples (¢1,¢i,,- -, ¢i, ) such that
P(L((g1,Giys - »9ir)/N)) = po. The construction proceeds as follows: since no
good tuple may contain a bad sub-tuple we must have (g1, ¢i,, " ,¢i,_, ) & good
(k — 1)-tuple. Thus we may form, for each good (k — 1)-tuple (g1, ¢i,, " 1 Gir_, ), @
set

gI(N7P079179i27"' 7gik—1)

(3.1)
= {(9179i27"' 7gik—1vgik) Y0 € gI(Nvgl)vgik > gik—1}

of candidate k-tuples. From this set we eliminate any elements which have a bad
(k — 1)-tuple, yielding a reduced set Q\I(N, P0s 915 Gins " »Gip_,) Of candidate k-
tuples having no bad sub-tuples. This step requires the storage of all good (or
alternatively, all bad) (k — 1)-tuples, that is, the set G (N, po, g1,k — 1). Then we

eliminate from the set Gr(N, po, 91, ir,- - +9i,_, ) all bad k-tuples, yielding a set

Q\T(Nv P0s915 Y55 " 7gik—1) of gOOd k_tuples derived from (glvgim T 7gik—1)‘ The
elimination scheme itself is described in (iii) below. The set

QT(N,pO,gl,k): U gT(N7p07glvgi27"' 7gik—1)

(glagiQ G, g )EgT(Napoaglak_l)

is then the set of good k-tuples. By induction it follows that Gr (N, pg,g1,s) is
precisely the set of points g, with first component g1, that are ordered with respect
to N and satisfy p(L(g/N)) > po. The required set is then given by

gT(N,,Oo,S) = U gT(NnOngle)'
g1€6G1(N)

(ii) Construction of Gr(N, po,¢1,2). From the set

(3.2) Gr(N,po,g1) = {g1} x G1(N, g1)

we wish to eliminate 2-tuples (¢1, ¢i, ) with values of ¢;, such that p(L(g/N)) < po,
in particular, values for which there exist integers hi, h;,, not both zero, and A
satisfying both

2

(33) glhl —|— gl‘2hi2 = /\N
and
(34) T(hl, hl2) = ?Lliblé < po,

where h; = max(1,|h;|).
Since h € L+ if and only if —h € L+ and r(h) = r(—h), it follows that we may
arbitrarily fix the sign of one component of h. We shall require h;, > 0. In this
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case it is clear that if the relations (3.3) and (3.4) are satisfied for a particular g;,,
then 0 < h;, < po and hence

(3.5) 0< || < 7'30 .
Combining (3.3) and (3.5) yields
(3.6) [g1h] = AN = giuhia| < 252,

i2

The values of ¢;, which satisfy both this bound and equation (3.3) for suitable A
and h;, are bad for the given ¢; and may be found by enumeration over h;, and A.
However, bounds on A that are independent of ¢;, are required for the enumeration.
Solving the inequality in (3.6) for A we obtain

1 gd1pP0 1 gd1pP0
— i, — = A — i P = .
N<g22 h>< <N<g2 =T

i2 i2

Together with the observation that ¢;, € Gr(N,¢1), this yields

1
N (hi2 min(Gr(N,g1)) — g;LZO>

(3.7)

1
el (’”‘ wax(Gr(N.g1) + géf)'

If the set Gr(N,g¢1) is held in storage then the minimum and maximum values
which appear in this relation are easily determined and (3.7) gives the bounds on
A required for the enumeration. For each value of h;, and A, then, the values of
¢i, to be eliminated are those for which there exists an hy € Z satisfying (3.3).
Now, if h;, = 0 then (3.3) reduces to g1h; = AN, yielding no information about
¢i, and hence no eliminations from G;(N, pg, ¢1). If on the other hand h;, # 0, let
d = ged(gq, hiy ). Then there exists a value of hy which satisfies (3.3) if and only if
d | AN. In this case we observe from (3.3) that we can find o € {0,--- ,h;, — 1}
such that ¢gy29 = AN (mod hy, ). Let yo = (AN — g120)/hi,, then values of hy and
¢i, which satisfy (3.3) are of the forms

2

hi g1
" tv Ji, = Yo — _tv

hlzl‘o—l-d d

for t € Z. Enumerating over those values of ¢ such that |hy| < po/h

hi2 >0,
d d
(i) e (e i)

now yields precisely the pairs (g1, ¢:,) to be eliminated from G;(N, po, ¢1) in order
to obtain Gr(N, po, g1, 2).

in, that is, since




(iii) The general case: construction of Q\T(N, POy G1s Gins " »Gin_y)s Jor k > 3.
Given Gr(N, po, g1, ins- -+ »i,_, ) as defined in (3.1), with ¢1,¢i,, - , ¢i,_, known,
we first eliminate k-tuples containing known bad (k — 1)-tuples to obtain the set
Gr(N,po,g1,Gips " +Gin_, ). We then seek to eliminate k-tuples (g1,¢i,, - +6s,)
such that there exist integers A, hy, h -, hi,, all non-zero except possibly for A
and hq, satisfying both

i27"

(3.8) grhy + gishiy, + -+ gi b, = AN

and

(3.9) hihi, -+ hi, < po.

The assumption that h;; is non-zero, for j € {2,--- ,k}, is justified by the obser-

vation that tuples which would be eliminated were this not the case would already
have been eliminated during an iteration with a smaller value of k (in the case that
this value is 2, by using the procedure described in (ii) above). The value of hy
may, however, be zero. Again we may arbitrarily fix the sign of one component of
h, and in particular we shall require that h;, > 0. From (3.8) we have

(310) |glh1| - |/\N_(gi2hi2 ++gzkhzk)|
and from (3.9) it follows that we may require

0 < hik < pPo
0 < ‘hik_l‘ < Lo

by,
(3.11) :
0 < || < hgpiohk

Combining (3.10) and the final inequality of (3.11) yields

(3.12) lg1hi| = AN — (gishiy, + - + gi, hay )| < B i

i2..

In a similar fashion to the derivation of (3.7) we then obtain the following bounds
on A:

1 g1po
~ | 9ixhin + -+ gmin hi, — 57—

(3.13)
1 g1 po

<AL ﬁ(f]ifz\,h@ + -+ Gmax, hi, + m ,

where ¢min, and gmax, are respectively the minimum and maximum of the set

{glk :(glvgim"' 7glk) S gI(N7p079179i27"' 7gik—1)} :

9



,hi, and A satisfying (3.11) and (3.13) re-
spectively now yields the tuples to be eliminated from Gr(N, po, g1, Gins - s Gir_1)-

These are the tuples for which, for given h ,hi, and A, there exists hy € Z
satisfying (3.8). Let

Enumeration over values of h,,---

i27...

(3'14) glhl + gikhik = AN — gizh - gik—1hik—1 = M,

say, and let d = ged(g1,h;,). Then d > 0 and as in (ii) above, provided that
d | M, we may find x¢ € {0,--- ,h;, — 1} such that gy2¢ = M (mod h;, ). Let yo =
(M — g120)/hi, . The solutions hy and g;, to (3.14) yield the tuples (g1, ¢ip, -+ » sy, )

to be eliminated from Gr(N, po, g1, iy, - »Gir_, ). These solutions are of the forms
h; g1
hy = x0 + %t, Ji, = Yo — Et7

where t € Z. Enumeration over those values of ¢ such that |hy| < po/ |hiy -+ R, ],
that is, since d, h;, > 0,

_ go+— V<t< — (—zo+ —2 ),
hi, [Piy - B | P, [Piy - B |

now gives precisely the tuples to be eliminated from Q\I(N, POy Y1y Gins " 5 Gip_y) tO

yield gT(N7 L0915 Y455 " 7gik—1)‘
As afinal remark on the elimination scheme we note that, at the conclusion of the

preliminary eliminations, any vector g such that ged(g1,--- ,¢s, N) > 1 should be
eliminated since the corresponding rules are clearly of order N/ged(g1, -, gs,N)
<N. O

In practice, during a search py usually exceeds by 1 the highest value of p achieved
for a lower value of N. If, for a given N, the set Gr(N, po, s) is empty then we may
immediately increment N and repeat the search procedure with the current value
of pg. Otherwise, the set contains at least one vector which is bestp with respect
to the search set. In practice, the set is usually empty, or contains only a small
number of elements, in which case the bestp elements may be identified by direct
evaluation of p as described, for example, in [18]. The values of N and py are then
updated and the search procedure repeated with the new value of py.

4. SEARCHES FOR 2% COPIES OF RANK 1 RULES

In a number of previous searches the class of rules to be considered has been
restricted in various ways, thereby allowing higher orders of rules to be reached
in the search. These searches include those of Korobov-type rank 1 rules reported
by Maisonneuve [18], the sample rank 1 and rank 2 searches of Sloan and Walsh
[25], the sample searches of 2° copies of rank 1 simple rules reported by Disney and
Sloan [4], and of intermediate rank rules reported by Joe and Disney [7], and the
searches of rules formed by component scaling reported by Lyness and Sgrevik [17].
A comparison of the numerical results obtained in these searches suggests that
certain sets of higher rank rules contain rules which are at least competitive with
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the best known rank 1 rules of similar orders (see, for example, the tables of bestp
rules in [15], [16] and the comparison of the results of Sloan and Walsh [25] with
those of Disney and Sloan presented in [4]). This suggestion is in fact due to Disney
and Sloan [4], and is in accord with the theoretical results concerning copy rules and
intermediate rank rules presented in [4] and [7]. These authors point out that, in
practice, information about certain higher rank rules of relatively large orders can
be ascertained more efficiently by examining related rank 1 rules of smaller orders,
and in particular that searches of sets of these higher rank rules can be carried out
by searching for rank 1 rules of relatively low order that perform well with respect
to slightly modified figures of merit. Disney and Sloan [4] note that if a rule @
has lattice L then QU”—that is, the n® copy of Q—has lattice %L and dual lattice
nL+. Hence they show that

Po(Q™) = Pan(Q) = Q(fan) — 1,
where

1 127h-x
fonb) = 2
heZs
They point out that, for & an even positive integer, an explicit expression can be
obtained for the function f, , in terms of the Bernoulli polynomials. In fact, these
expressions are given by Joe and Sloan [8, equations 5.6-5.8] and the recurrence
relation for the Bernoulli polynomials B, (x), n = 1,2,---, is given in [28, p. 60] and
[6, Lemma 6.6]. Maisonneuve [18, p.124] gives explicit expressions for By and Bjy.
In later work Disney [3] has extended the work of [18] and [15] to produce an
efficient search algorithm for rules that are bestp with respect to the set of 2° copies
of rank 1 simple rules. The 2° copy Q?) of a rank 1 rule with generator g/N has
N = 2°N points and is given by

E 5 ...i?‘:%{%gmwéﬂ}).

j1:0 szO =

The search procedure in [3] also relies on the preliminary elimination, from a set
of candidate generators g/N of rank 1 rules, of those generators for which there
exists an h € L1 (g/N) and an integer A such that, for some k < s,

(i) hiy,- -+, h;, are non-zero,

(i) 2h1 + gi,2h4, + -+ - + g, 20, = A2°N, and

(iii) 2hq ---2h;, < po, where pg is the current target value for p.

Clearly, the method of preliminary eliminations for exhaustive rank 1 searches
described in §3, which is based directly on the method of [18], may be similarly
extended to searches for bestp 2° copies of rank 1 rules of all simplicities.

Theorem 4.1. Let n > 1 and Q(Lri) and Q(LZ) be the n® copies of Qr, and Qr,,

respectively. Then Qr, s geometrically equivalent to Qr, if and only if Q(Lri) 18
(n)

geometrically equivalent to Q.

Proof. Assume that Qr, L (@1,. Then clearly these rules are of equal order, say
N, and there exists a finite composition 7 = 7; o --- 0 7y of operations, of the
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forms U;, V;; described in Definition 1.1, such that Ly = T(Lq). Let Lgn) and Lgn)

be the integration lattices corresponding to (Lri) and Q(LZ) respectively. Clearly, if

Ly = U;(Ly) then
L8 =07 Ly = n (L) = Us(n T Ly) = UL,

Similarly, if Ly = V;;(Lq) then Lgn) = Vi]‘(Lgn)) and it follows that Lgn) is geomet-
n)

rically equivalent to Lg . The converse is established by a similar argument. [

Together with [10, Theorem 3.2.17] and the observation that every geometry class
of rank 1 rules of order N > 1 has a unique primary ordered rule, Theorem 4.1
yields the following corollaries.

Corollary 4.2. The n® copy of a rank 1 rule of order N > 1 is geometrically
equivalent to the n® copy of a unique primary ordered rank 1 rule.

Corollary 4.3. The n® copy of a rank 1 rule of order N > 1 is geometrically
equivalent to the n® copy of a rank 1 ordered rule with generator g/N such that g 1s
ordered with respect to N, and the components of g are multiples of proper divisors
of N and satisfy simp(g, N) < g; < N/2.

The next result now justifies the adaptation of the construction of Theorem 3.1
to searches over n®-copies of rank 1 rules.

Theorem 4.4. Let N, n, s be integers greater than 1 and let py be a positive
integer. Denote by L the integration lattice corresponding to the n® copy of
the rank 1 lattice rule with integration lattice L. Then a set g(T")(N,,oo,s) can be
explicitly constructed such that: (a) p(LU(g/N)) > po for all g € g(T")(N,,oo,s);
and (b) if Q(LT,L) 18 the n® copy of an s-dimensional rank 1 lattice rule Q. of order
N such that p(L’(n)) > po, then there exists a g € Q(T")(N,po,s) such that Q(er) i8

geometrically equivalent to the n® copy of the rank 1 rule generated by g/N

Proof. By Theorem 4.1, n® copies of rank 1 rules are geometrically equivalent if
and only if the uncopied rank 1 rules are geometrically equivalent. Also,

p(L™(g/N)) = pu(L(g/N)) = min { [[ max{L,|nh;} :h € L* — {0} {

i=1

and so g(T")(N, po,s) can be constructed by the elimination procedure used in the
proof of Theorem 3.1, with the exception that we use p,, as our figure of merit for
the rank 1 rules in place of p, and

0 < hik < %)
0 < ‘hik_l‘ < po

0 < |hyl < W
ot
bl < = hiy iy

as the bounds on hy,h
current target value of p,,. O

ins**+ y hy, during the enumeration, where now py is the
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5. NUMERICAL RESULTS FOR RANK 1 RULES

Preliminary searches were conducted for rank 1 simple rules in dimensions 3
to 5 terminating at N = 6066, 3298 and 1000, respectively. The full results of
these searches are presented in the tables of [10]. All searches were conducted on
a Silicon Graphics Datastation 4D /25 workstation running the Unix System V.3
operating system.

Comparing the results with those obtained by previous authors, we note that
the omission reported in [2] of the three-dimensional rule Qr((1,203,517)/1199) from
Table 9 of [18] is not significant, since this rule is geometrically equivalent to
Qr((1,121,311)/1199), Which does appear in the table. In R® we note that there
are two omissions from Table 2 of [2]—in particular, there is a second ordered
rule Qr,(1,36,79,84,04)/275) of order 275, with p value equal to that of the rule re-
ported in [2], and with better P, and P, values (3.53 and 4.63 x 1072, respec-
tively); also, the rule Qr, = Qr((1,154,170,230,256) /772 listed in this table is not, in
fact, bestp, since p(Qr,) = 10 whereas our search produced a rule of lower order
(N = 770) and the same p value and with P, = 8.71 x 10~ and Py = 2.78 x 1073,
namely Qr,((1,72,06,112,332)/770)- Our search also produced a bestp five-dimensional
rule Qr((1,38,194,276,338)/862), With p = 12, P, = 0.76 and P, = 2.07 x 1073, that
has not been previously reported, to the best of our knowledge.

The results of rank 1 searches including non-simple rules in dimensions 3, 4 and
5 are presented in [10, Appendix B]. These searches were terminated at N = 4358,
1169 and 587, respectively, and the results establish that there are non-simple rank
1 rules which are better with respect to p than some of the bestp rank 1 simple
rules listed in [18], [9], [2]. Those non-simple rank 1 rules of order exceeding 3916
in R? are in fact better with respect to p, P, and Py than any previously published
rules of similar orders, although the results of [4] and [17] suggest that higher rank
rules may exist that have similar orders and better p values. We note, however,
that the computational cost of the search procedure is higher in the full rank 1 case
than in the case of rank 1 simple rules.

6. NUMERICAL RESULTS FOR 2° COPIES OF RANK 1 RULES

Of greater significance is the possibility of conducting efficient searches for n?®
copy rules of high order, based on the elimination strategy suggested in the proofs
of Theorems 3.1 and 4.4. The results of searches of this type in dimensions 3, 4
and 5 for bestp 2° copies, with orders up to 16000, of rank 1 rules are presented in
Tables 5.1-5.3. These searches reach rules of this order at a fraction of the cost of
searches for bestp rank 1 rules of the same order. Tables extending these results to
larger orders and dimensions are available over the Internet in [13].

Comparison of these results with those obtained for rank 1 rules suggests that the
best copy rules are generally at least comparable with the best rank 1 rules of similar
orders, and often (but not always) better, at least with respect to the criterion p.
The parameter z; = pN ! (log N )*~2 gives an indication of how ‘good’ a particular
value of p is, relative to the order N of the rule—the higher the value of z,, the
better the rule is with respect to p. One may also compare, for dimensions three
to five, the orders and P, values for the best 2% copy rules found in Tables 3 and 4
of [4] with the orders and P values for the rules of nearest order in Tables 5.1-5.3.
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TaBLE 5.1. Bestp 22 copies of rank 1 rules over all simplicities.

N N =2° P Zs P2 P4 g
2 16 4 6.93e-01 2.13e+00 7.43e-02 111
7 56 8 5.75e-01 3.87e-01 2.68e-03 123
14 112 12 5.06e-01 1.46e-01 4.46e-04 135
18 144 16 5.52e-01 9.59e-02 1.58e-04 157
29 232 20 4.70e-01 4.82e-02 4.61e-05 1513
32 256 24 5.20e-01 4.26e-02 3.60e-05 169
38 304 28 5.27e-01 3.22e-02 1.93e-05 1711
48 384 32 4.96e-01 2.24e-02 8.44e-06 1914
2.28e-02 9.69e-06 11721
51 408 36 5.30e-01 1.90e-02 5.63e-06 11116
57 456 40 5.37e-01 1.63e-02 4.54e-06 110 25
61 488 48 6.09e-01 1.40e-02 2.68e-06 11319
84 672 56 5.43e-01 9.09e-03 1.29e-06 115 26
93 744 60 5.33e-01 7.89e-03 1.03e-06 11525
105 840 64 5.13e-01 6.07e-03 5.86e-07 116 38
107 856 72 5.68e-01 5.60e-03 4.26e-07 119 47
128 1024 76 5.14e-01 5.06e-03 3.64e-07 122 34
134 1072 92 5.99e-01 3.83e-03 1.83e-07 12359
154 1232 96 5.55e-01 3.14e-03 1.35e-07 12569
155 1240 112 6.43e-01 2.93e-03 9.30e-08 1 36 56
181 1448 120 6.03e-01 2.40e-03 7.22e-08 1 31 48
196 1568 144 6.76e-01 2.01e-03 4.53e-08 137 57
209 1672 160 7.10e-01 1.81e-03 3.49e-08 1 45 65
287 2296 180 6.07e-01 1.14e-03 1.79e-08 145127
302 2416 200 6.45e-01 9.44e-04 8.49e-09 16594
364 2912 220 6.03e-01 7.95e-04 8.96e-09 175165
392 3136 260 6.67e-01 7.09e-04 4.74e-09 174114
476 3808 264 5.72e-01 4.96e-04 3.20e-09 190 125
477 3816 272 5.88e-01 4.90e-04 2.92e-09 1105 139
494 3952 288 6.04e-01 4.34e-04 2.15e-09 1 88 151
4.34e-04 2.04e-09 1107 154
508 4064 304 6.22e-01 4.37e-04 2.39e-09 1 147 235
537 4296 320 6.23e-01 3.82e-04 1.50e-09 199 164
566 4528 344 6.40e-01 3.56e-04 1.40e-09 1109 158
624 4992 352 6.00e-01 3.39e-04 1.22e-09 1 94 166
638 5104 360 6.02e-01 2.89e-04 9.55e-10 196 167
645 5160 384 6.36e-01 2.65e-04 6.88e-10 1119 197
2.77e-04 8.21e-10 1 148 226
739 5912 400 5.88e-01 2.15e-04 4.84e-10 1126 196
763 6104 424 6.05e-01 2.04e-04 4.37e-10 1 144 222
776 6208 432 6.08e-01 2.00e-04 4.27e-10 1 201 306
795 6360 440 6.06e-01 1.98e-04 4.20e-10 1 169 366
811 6488 468 6.33e-01 1.92e-04 4.07e-10 1 140 215
862 6896 472 6.05e-01 1.77e-04 3.59e-10 1165 224
874 6992 480 6.08e-01 1.68e-04 3.22e-10 1 229 338
887 7096 488 6.10e-01 1.64e-04 3.03e-10 1134 195
906 7248 512 6.28e-01 1.52e-04 2.16e-10 1 208 381
932 7456 560 6.70e-01 1.47e-04 2.17e-10 1193 431
943 7544 572 6.77e-01 1.38e-04 1.70e-10 1168 291
1102 8816 576 5.94e-01 1.15e-04 1.39e-10 1 161 265
1126 9008 600 6.07e-01 1.15e-04 1.53e-10 1 164 255
1175 9400 640 6.23e-01 9.70e-05 9.14e-11 1 209 304
1220 9760 864 8.13e-01 8.08e-05 4.36e-11 1 319 501
1703 13624 880 6.15e-01 5.11e-05 2.49e-11 1 328 474
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TABLE 5.1. (continued)

N N=2:N P Zs P, P, g
1735 13880 896 6.16e-01 5.23e-05 2.81e-11 1262 381
1742 13936 920 6.30e-01 5.12e-05 2.66e-11 1241 412
1758 14064 936 6.36e-01 5.06e-05 2.59¢-11 1 238 539
1793 14344 944 6.30e-01 4.90e-05 2.54e-11 1274 463
1840 14720 952 6.21e-01 4.73e-05 2.30e-11 1439 578
1855 14840 984 6.37e-01 4.73e-05 2.30e-11 1 246 836
1879 15032 1008 6.45¢-01 4.33e-05 1.85¢e-11 1 400 589
1935 15480 1056 6.58¢-01 4.07e-05 1.51e-11 1 268 458

TABLE 5.2. Bestp 2* copies of rank 1 rules over all simplicities.

N N=2:N P Zs P, P, g
2 32 4 1.50e4-00 4.58e+00 1.33¢-01 1111
9 144 6 1.03e4-00 7.59¢-01 5.52e-03 1234
10 160 8 1.29¢4-00 6.78¢-01 4.21e-03 1234
16 256 12 1.44e4-00 3.41e-01 8.64e-04 1357
24 384 16 1.48e4-00 2.00e-01 3.35¢-04 15711
48 768 24 1.38e4-00 7.90e-02 4.93e-05 1710 22
58 928 32 1.61e4-00 5.76e-02 2.17e-05 117 22 26
101 1616 36 1.22e4-00 2.80e-02 7.49¢-06 19 14 40
103 1648 40 1.33e4-00 2.71e-02 6.71e-06 111 25 30
112 1792 48 1.50e4-00 2.40e-02 5.14e-06 11319 29
2.30e-02 4.46e-06 11323 41
2.29¢-02 3.68¢-06 1 34 41 50
135 2160 56 1.53e4-00 1.67e-02 1.75e-06 116 28 37
145 2320 64 1.66e4-00 1.56e-02 1.68¢-06 117 28 41
193 3088 80 1.67e4-00 9.89¢-03 6.23¢-07 121 36 81
237 3792 88 1.58e4-00 7.24e-03 3.43e-07 129 41 107
243 3888 96 1.69e4-00 7.53e-03 3.98¢-07 124 68 101
318 5088 108 1.55e4-00 4.71e-03 1.38e-07 135 55 135
336 5376 112 1.54e4-00 4.59e-03 1.32e-07 14193 117
353 5648 120 1.59¢4-00 4.08e-03 1.15e-07 134 131 146
369 5904 128 1.63e4-00 3.79¢-03 8.22¢-08 139 88 150
432 6912 144 1.63e4-00 2.96e-03 5.23e-08 149 131 158
449 7184 160 1.76e4-00 2.75e-03 4.35e-08 167 92 122
525 8400 184 1.79e4-00 2.14e-03 2.56¢-08 1118 218 251
549 8784 188 1.76e4-00 2.11e-03 2.73e-08 147 74 245
562 8992 212 1.95e4-00 1.85¢-03 1.58¢-08 153 89 221
709 11344 216 1.66e4-00 1.32¢-03 9.90e-09 169 96 243
730 11680 224 1.68e4-00 1.32¢-03 1.02¢-08 1 67 98 345
775 12400 256 1.83e4-00 1.14e-03 6.32e-09 189 249 314
952 15232 336 2.05e+00 8.06e-04 2.99¢-09 1117 257 307

The results of [4] were found by searches over small samples of 2° copy rules with
orders in three ‘windows’ (approximately 10?, 10* and 10° points) for those with
good P, (rather than p) values. Nevertheless the performances of the two groups
of rules are roughly comparable: the P, values of the rules from [4] are lower in
three out of six cases than those from Tables 5.1-5.3, equal (in the first two digits)
in one case, and higher in two cases, although their orders are higher in five out of
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TaBLE 5.3. Bestp 25 copies of rank 1 rules over all simplicities.

N N=2:N P Zs P, P, g

2 64 4 4.50e+00 9.09¢+00 2.09¢-01 11111

11 352 8 4.58e+00 1.31e4-00 6.52¢-03 12345

22 704 12 4.80e+00 5.68e-01 1.24e-03 13579

25 800 16 5.97e+00 4.75e-01 7.64e-04 146911

71 2272 20 4.06e+00 1.39¢-01 1.16e-04 151417 25
78 2496 24 4.60e+00 1.15e-01 5.77e-05 17102537
85 2720 28 5.09e+00 1.01e-01 4.03e-05 1716 27 40
90 2880 32 5.62e+00 9.38¢-02 3.05e-05 2 5 21 38 39
153 4896 34 4.26e+00 5.00e-02 1.15e-05 1914 39 59
160 5120 40 4.87e+00 4.58e-02 8.45e-06 111 18 42 56
164 5248 48 5.75e+00 4.32e-02 7.93e-06 123 31 37 57
244 7808 56 5.16e+00 2.45¢-02 2.51e-06 119 26 91 106
252 8064 64 5.78e¢+00 2.51e-02 2.49¢-06 116 53 62 88
376 12032 80 5.51e+00 1.39¢-02 7.57e-07 121 49 80 155
427 13664 96 6.07e+00 1.11e-02 4.25e-07 137 66 117 172

six cases.

Lyness and Sgrevik ([15], [16], [17]) report good rules of intermediate rank as well
as of ranks 1 and s. In dimensions exceeding three, these rules are predominantly
of rank higher than 1. It is important to distinguish between the results reported in
[15] and [16] and those reported in [17]. The former are obtained by searching for
bestp rules over the complete population of lattice rules in a given dimension up to
a certain order: in [15] the search is in dimension three over orders up to 3916, and
in [16] it is in dimension four over orders up to 562. It is clear that better lattice
rules (with respect to p) than those in these papers cannot be found in these sets.
In [17] the results presented are mostly constructed by the process of component
scaling described in that paper, and are not necessarily optimal with respect to
p. We compare firstly the rules presented in [15] and [16] with those in Tables 5.1
and 5.2 that are of the same dimension and of comparable order.

The table in [15] lists 68 rules for 59 distinct orders in the range 16 < N < 3916,
of which 28 are rank 1 rules that appear in earlier publications ([18],[9]). Table 5.1
lists 29 maximal rank rules of 28 distinct orders in this range, of which 6 are
equivalent (in the sense of having the same orders and p values) to rules which
appear in the table of [15]. In dimension four, Table 2 of [16] lists 23 bestp rules
of 11 distinct orders in the range 32 < N < 562, of which 3 are rank 1 rules that
appear in [18]. Table 5.2 lists 5 maximal rank rules of distinct orders in this range,
of which 4 are equivalent to rules which appear in [16].

Bestp results over all ranks are not available for orders exceeding 3916 in dimen-
sion three, 562 in dimension four and 2 in dimensions five and above. Consequently,
it is possible that searches over restricted classes of rules may give useful results.
In particular, the tables of [17] (particularly Tables 1, 2 and 8) provide many good
rules in these ranges—mostly of rank greater than 1. The first two of these tables
contain the best rules reported in that paper for dimensions three and four respec-
tively. Table 8 of [17] contains the only five-dimensional rules reported in that
paper. Rules equivalent to some of those listed in [17] also appear in Tables 5.1
5.3. In dimension three, Table 5.1 contains 3 rules in the range 3917 < N < 16000
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that are equivalent to rules listed in Tables 1 and 5 of [17]. In dimension four,
Table 5.2 contains 3 rules in the range 563 < N < 16000) that are equivalent to
rules appearing in Tables 2, 6 and 7 of [17]. In dimension five, Table 8 of [17] lists
34 rules of 25 distinct orders, of which 8 are rank 1 rules that appear also in [2] and
one is of maximal rank and appears also in Table 5.3.

7. CONCLUDING REMARKS

As an alternative to using searches to discover good rules, there have been a
number of constructions of sequences of rules which are good with respect to some
figure of merit, typically z5 or P, (for example, [1], [6], [11]), [26], [27], [29]. In high
dimensions these figures of merit may be preferable to p since lists of bestp rules
tend to become increasingly sparse as the dimension increases. The constructions
of particular rules of which the author is aware are mostly of rules of rank 1 ([1],
[6], [11], [27], [29]) and ranks 2, s — 1 and s [26]. At least for dimensions exceeding
three, these yield rules that do not appear to be competitive (with respect to Py)
with the best higher rank rules discovered by the techniques of [4], [7] and [17].
Nevertheless, an understanding of the characteristics that are likely to be shared
by good rank 1 constructions are of interest, and have been applied in [12] to the
construction of good higher rank rules that appear to be comparable with those in
the latter works.

The results of this paper demonstrate that good 2° copies of rank 1 rules may
be found by adapting search techniques used in the rank 1 case for s > 3. Related
work by Disney [3] considers searches for 2° copies of rank 1 simple rules in the
context of dual lattices, and greatly extends the numerical results presented in this

paper.
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