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Abstract

Lattice rules are quasi-Monte Carlo methods for numerical multiple integration that
are based on the selection of an s-dimensional integration lattice. The abscissa set is
the intersection of the integration lattice with the unit hypercube. It is well-known
that the abscissa set of a lattice rule can be generated by a number of fixed rational
vectors. In general, different sets of generators produce different integration lattices
and rules, and a given rule has many different generator sets. The rank of the rule
is the minimum number of generators required to span the abscissa set.

A lattice rule is usually specified by a generator set, and the quality of the rule
varies with the choice of generator set. This paper describes a new method for
the construction of generator sets for higher-rank rules that is based on techniques
arising from the theory of simultaneous Diophantine approximation. The method
extends techniques currently applied in the rank 1 case.

1 Introduction

An s-dimensional lattice rule is a quasi-Monte Carlo rule which can be written
in the form

o =5 55 r({Samin)). )

Jj1=0 Jm=0

where each quadrature point occurs only once in the sum. In (1), g1,...,8mn €
Z* and the braces indicate that addition is modulo Z°, and N = [\~ n;, where
1<m<s,n >1and n;y | ng for i = 1,--- ,m — 1. The value of m is

called the rank of the rule and the vectors g;/n; constitute a generator set for
the rule. The quadrature points of a rule, together with the integer lattice in
Z.°, generate the integration lattice corresponding to the rule. The dual lattice,
denoted by L+, is defined by

I*={heZ :x-heZforallxec L}. (2)
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A commonly used figure of merit for lattice rules is

1
P, = Z )
heLt {0} r(h)
where r(h) = [[;_, max(1, |h;|) and « is an even positive integer. For surveys

of the theory of lattice rules the reader is referred to [Niederreiter, 1992] and
[Sloan and Joe, 1994].

A rank 1 rule is said to be simple if it has a generator g/N such that
ged(g;, N) = 1 for some ¢ € {1,...,s}. In [Langtry, 1996] a vector con-
tinued fraction algorithm was used to construct sequences of rank 1 sim-
ple lattice rules, and in [Langtry, 1998] this approach was adapted to the
construction of certain maximal rank rules. In each case a single genera-
tor is determined by each iteration of the continued fraction algorithm—
in the case of maximal rank rules a full generator set for the rule is then
determined by a process of scaling and copying the corresponding rank 1
rule. The results of these papers agree with suggestions by earlier authors
[Disney and Sloan, 1992] that certain maximal rank rules formed by copying
rank 1 rules may be at least competitive with rank 1 rules of similar orders.
Sloan and Joe [Sloan and Joe, 1994, Ch. 7] make a similar observation with
respect to certain intermediate rank rules used to construct embedded se-
quences of rules. In this paper we investigate the feasibility of constructing
intermediate rank rules directly. In particular, we seek to extend the contin-
ued fraction algorithm in a way which allows the construction of generator
sets with more than one generator. The rank of such a rule may then be found
by the techniques described in [Langtry, 1995,Lyness and Keast, 1995].

2 Background

In general terms, in order for a rule generated by rational vectors g;/n; (j =
1,...,m) to possess a good figure of merit (in particular, a small value of P,) it
is necessary that the smallest values of r(h) for h € L* be large. Now it follows
from (2) that h € L+ if and only if for j = 1,...,m we have h-g;/n; = —cy
for some cp; € Z. That is, I'¢;(1,g;/n;) = 0, where c; = (co;,h) and I, is
the linear form

Le,(w0,%) = cojzo +h - x.

That is, we would like to choose the generators so that the only values of h
for which I'c,(1,g;/n;) = 0, for each j = 1,...,m, are large in magnitude.
Since each I'¢; is continuous on R**', for fixed x; € R® with x; close to g;/n;,
this is equivalent to requiring that (allowing c¢; to vary) the smallest values



of I'c;(1,x;) be large relative to the size of h. A less stringent requirement is
that they be large relative to the size of c;, for each j =1,...,m.

This problem is closely related to a problem arising in the theory of Diophan-
tine approximation which we may express as follows. Let 1 = (1,...,1)T and,
for a given t; X t, matrix X, denote by (1,X7) the matrix with first col-
umn 1 and remaining columns those of X7 Let I'c(1, X) = (1, XT) c, where

c € Z"*!. Find those ¢ for which T'¢(1, X') best approximates 0, relative to
the size of c—that is, find ¢ and v = (v1,...,7%,)" = ['¢,(1, X) such that v is
as small as possible (for the given X') when c is small. For the purpose of con-
structing generator sets for lattice rules, we seek to identify matrices X such
that these small values of y are relatively poor (that is, large), or equivalently,
such that to obtain small values of v we must have c relatively large. It then
follows from a classical transference theorem [Cassels, 1957, Ch. V, Theorem
IT] that the matrix X is poorly approximated by rational matrices (of lower
denominator, if X is itself rational).

In the case where t; = t, = 1, these problems reduce to finding numbers
x that are badly approximated by rationals (where x ¢ Q), or by rationals
of lower denominator (where z € Q), relative to the size of the denomina-
tor. These are precisely those numbers whose continued fractions have small
partial quotients. The classical two-dimensional Fibonacci rules (see for ex-
ample [Sloan and Joe, 1994, §4.3]) provide an example of their use in the con-
struction of lattice rules. The ordinary continued fraction algorithm in one
dimension has many applications, one of which is the construction of rational
numbers which are good approximations to the number, say x, represented by
the continued fraction. This is a rational number in the case of a terminating
continued fraction, and an irrational in the non-terminating case.

In the case where £; > 1 and ¢, = 1, vectors x that are badly approximable in
the sense of the preceding paragraph are characterised by having best rational
approximations whose denominators are not widely separated [Lagarias, 1982].
Further, it is known [Langtry, 1996, Corollary 4.2] that if x € R is badly
approximable then so are its best rational approximations, except possibly a
finite number of them. In [Langtry, 1996] these observations were exploited in
the construction of sequences of rank 1 rules with good figures of merit from
the sequence of best rational approximation vectors yielded by the Szekeres
continued fraction algorithm [Szekeres, 1970]. In this paper we generalise this
algorithm to the case of ¢ > 1 and obtain sequences of lattice rules of rank
m > 1.



3 Multidimensional continued fractions

In [Szekeres, 1970], Szekeres describes a general framework for extending the
ordinary continued fraction algorithm to vectors in higher dimensions, giving a
particular example. Later authors [Brentjes, 1981a,Brentjes, 1981b,Lagarias, 1994]
have elaborated this approach. Szekeres’ approach is based on a geometric
interpretation of the one-dimensional algorithm in which Farey dissections
are made of an initial interval with one end-point fixed, characterised as a
one-dimensional simplex with a fixed vertex, yielding a sequence of simplexes
containing the number x to be approximated. The vertices of the simplexes
determine the intermediary approximations and convergents of the ordinary
continued fraction algorithm. Successive dissections continue from one direc-
tion (that is, with one vertex fixed) until an approximation error relative to
the reciprocal of the denominator (that is, a value of I'.(1, ), for suitable c) is
found which is larger than that corresponding to the previous best approxima-
tion. The preceding approximation is a convergent of the continued fraction
and is a best rational approximation to x. Since it is known that successive
convergents lie on opposite sides of z, succeeding dissections occur from the
opposite direction.

The higher-dimensional analogue, described in [Szekeres, 1970], of the ordi-
nary continued fraction algorithm is designed to yield good approximations to
a vector x € R!, and, correspondingly, small values I'c(1,x) = ¢y + XL, ¢
at (1,x) of the linear form .. An initial simplex, containing x, with vertices
in R’ is identified. Corresponding to this simplex is a (£ + 1) x (¢ + 1) matrix
M© in which are stored the numerators and denominators of the nearest ¢+ 1
integer vectors to x. These are stored as rational vectors: the denominator and
numerator of each vector is stored as a column of the matrix—the denomina-
tor is stored in the initial row (with row index 0) and the numerator in the
remaining rows of the column. The initial simplex is then iteratively reduced
by applying generalised Farey dissections to its edges. Each dissection yields
a new smaller simplex containing x and having ¢ vertices in common with the
preceding simplex. It has one new vertex, which yields a new rational approx-
imation to x. Corresponding to the n’th simplex is a matrix M containing
t + 1 rational approximations to x, which correspond to the intermediary ap-
proximations and convergents of the one-dimensional algorithm.

At each iteration two things must be determined: (i) whether the current ap-
proximation is (in some appropriate sense) a ‘best’ approximation, and (ii)
which edge of the simplex should be dissected in the next iteration. Examples
are known [Lagarias, 1980] for which the Szekeres algorithm does not find all
best rational approximations to a given x. The best approximations found
by the algorithm are called principal approzimations. The initial principal ap-
proximation is that represented by the initial column (with column index 0) of



M®©_ As in the one-dimensional case, the vertex of the simplex corresponding
to the current principal approximation is fixed and generalised Farey dissec-
tions are applied iteratively to edges with this vertex in common until a value
of I'(1, x) is found that is larger than that found in the previous step. The pre-
ceding approximation then yields a new principal approximation. Each time
a principal approximation is found the corresponding vertex of the simplex is
fixed in succeeding iterations and dissections are applied to a new subset of
edges. The rule for selecting the next edge to be dissected in each iteration
is designed to reduce the volume of the simplex in a way which avoids the
construction of a needle-shaped region, in order not to miss the identification
of good approximations. For this reason the selection rule, denoted by u, does
not depend explicitly on the vector x—rather, it depends on a measure of the
size of the simplex.

With this type of construction, a multidimensional continued fraction is de-
termined by an initial choice of simplex and the vector x to be approximated.
Successive approximation vectors are determined by a simple recursion based
on the selection rule p. The algorithm produces a sequence {¢,} of binary
values indicating whether in the n’th iteration a new principal approximation
has been determined (€,,1 = 1) or not (e,,1 = 0). Equivalently, this may be
specified by the sequence {s,,} defined by

so=0, sp=min{n:e,=1,n>s,-1}, (m>0) (3)
or the sequence {b,,}:
b1 =1, bpm = 5Sm — Sm—1 (m >1). (4)

The sequence {b,,} is precisely the sequence of partial quotients of an ordi-
nary continued fraction in the one-dimensional case. Szekeres [Szekeres, 1970]
proved that every vector continued fraction constructed in this way converges
to a vector x € R'. On the other hand, in [Langtry, 1996] it was pointed
out that, as in the one-dimensional case, an initial choice of simplex and a
given sequence {b,,} determine a particular vector x to which the algorithm
converges. This was then exploited in a search for generators of good rank 1
lattices rules amongst good approximations to poorly approximable vectors.

4 A matrix continued fraction algorithm

We seek to extend Szekeres’ approach to the construction of good approxima-
tions to a t; X to matrix X. We shall do this essentially by approximating each
column vector of the matrix using a method based on that of [Szekeres, 1970].
However, the method requires a number of modifications. In the following we
shall denote the columns of X by x,, p = 1,...,%,. For each x, we choose



an initial simplex and corresponding matrix MISO) as in §3. In describing the
algorithm we shall require the following definitions.

MO ={MO :p=1,... 1},
T ={01y-J1) 1 0< 4, <t1,1 <p<ty},

DyiJp ) i=1,..., ttl )
p=1,..., 2
(0) _ (0)
Bj - (Mp’o’]p)pil,...,tQ ’
©) 0 _ (1O /10
A‘i /Bj o (Mp,i,jp/Mp,O,jp) i=1,...,t7 ?

p=1,..., to

where Mlg?i),j represents the element in the ¢’th row and j’th column of M;°>.

The t; + 1 columns of MISO) represent the nearest integer vectors to x,. By
selecting one column (say the j,’th) from each matrix M;SO) we can form a

total of (t; + 1)” integer matrices Ajgo)/Bj(O) approximating X. We specify as
an initial approximation to X the matrix Ag))/B(()O).

A sequence of further approximations is then determined iteratively by ap-
plying generalised Farey dissections to a subset of the simplexes at each step,
yielding a corresponding new set M = {Mé”) p=1,... ,t2} of matrices
via the equations

Y

M("-H) _ (1 - 6n+1) M;Sz?o + €nt1 152?#,3@), if Mp(") #
PO M, if pp(n) =

p

0
0

e Mii + M, e i y(n) #0, (5)
Dyipip(n) Mp,i,up(n)’ if Mp(n) =0,

n+1 n P
Mzg,ijjr' ) = Mzg,i?j’ if j # pp(n),

where 11, is defined below. Thus at the n’th iteration each column x, is as-
sociated with a simplex and a corresponding (¢; + 1) x t; + 1) representation
matrix MIS”). This in turn yields new approximations A}") / Bj("), forje J, to
X via the equations

Agn) - (MISZ?J}J) i=1,.,t1 Bj(n) - (Mz%)’jp)pzh--’t? ,

(n) ypn) _ (n) (n)
A5 /BJ - (Mp,i,jp/Mp,O,jp) zzllttl .

From this candidate set we select one matrix, corresponding to the multi-index
pu(n) = (u1(n), ..., u,(n)). Its p’th column is the rational vector stored in the
11p(n)’th column of the representation matrix M{™, and from these vectors we

construct the next iteration of the algorithm via (5). The matrix ALTE:)I)/BL?;)I)



then yields a new approximation that we shall call the n+ 1th approzimation
matriz.

It remains to specify the selection rule p and the sequence {¢,}. As in the case
where t5 = 1, the selection rule p is intended to be independent of the matrix
X—it is designed so that the simplexes corresponding to the columns of X
reduce in a way that avoids the development of needle-shaped regions, and
which allows the consideration of as many potential approximations to X as
possible. In the next section we shall assume that X is not given a priori, but
that the sequence {e,} is given, either directly or by (3) or (4). If, however,
X is given, we specify the quality of the approximation in terms of values of
the linear forms v = I'.(1, X) for suitable c.

Definition 1 Let

14 = Dan (1.2 = (1. X7) &)

~(n) - 5 mT\ * (n) _ ()
where ¢, ! is the j’th column of (Mp" ) . Also, let v,{ = (*yp,] )jej and

n
p.J
}

Jum) = 250, {H%(z,;z(m

o= i, (43

b

Forn € N we shall say that the n’th approximation matriz ALTEL_I)/BS(L%_I) 18

) (n)

a principal approximation matrix with respect to the norm ||| if g((,n < Gpun)-

We specify the selection rule i to choose that candidate approximation matrix
Ag") / Bj(") which is farthest from the current principal approximation matrix.

Definition 2 Forje€ J, let

U™ = AP/ _ AP /B
The selection rule p(n) with respect to the norm || - || is defined as the largest
multi-index k (with respect to lexicographic order) such that

o5 < el

For a given norm and selection rule, a particular continued fraction is specified
by t1, to, the initial simplex M and the sequence {b,,}. For convenience we

shall denote such a continued fraction by [M(O) 2by, by, .. .]t b
1 2



5 Lattice rules constructed from matrix continued fractions

As suggested in §2 we seek good rational approximations to matrices X having
the property that the smallest values of I'c(1, X'), where ¢ = (1, h), are large
relative to the size of h, or at least are large relative to the size of c. Follow-
ing the approach in [Langtry, 1996] we consider the approximation matrices
of the matrix [M(O) 1,1, ] In particular, we consider the following two
constructions, using the Euclidean vector norm.

1-extended generator matrices. Let ASELI)/BS&A) be an approximation ma-
trix for [M(O) 1,1, .](871)”2. Then the matrix (1, I:A;(A(Zl—l)/B/(LO)’L—I)] > is

a generator matrix for an s-dimensional lattice rule (see [Niederreiter, 1992,
p. 131] for a review of generator matrices). Each generator has at least one
component relatively prime to its denominator, B;?En_l) say. In the case that
to = 1 the matrix generates an s-dimensional rank 1 simple rule.

Direct generator matrices. The approximation matrices A%LA) /BL(Z(ZLI) to

the continued fraction [M(O) (1,1, . provide generator matrices for s-
SX1lg
dimensional rules directly.

We note that the ranks of the rules so constructed may be less than t,—the
rank is determined by whether the cyclic groups corresponding to different
generators have common non-trivial subgroups. This can occur only when two
generators have denominators with a greatest common divisor exceeding 1.

As an example we compare the performance with respect to P, of the four-
dimensional rules constructed using the two methods, for 1 < ¢y < 3. Tables 1
3 list the resulting rules in the order in which the corresponding approximation
matrices occur in the relevant continued fractions. The order, rank and value
of P, are given for each rule—full details are given in [Langtry, 1999]. Table 1
indicates that in the single-generator case 1-extended rules (that is, rank 1
simple rules) appear to be superior with respect to this criterion. Tables 2
3 appear to suggest that this is not necessarily so when the generator set
contains more than one generator.

6 Concluding remarks

This paper establishes the feasibility of constructing lattice rules of rank ex-
ceeding one by an extension of the methods of [Langtry, 1996]. Nevertheless,
the results achieved are not competitive with the best results yielded by the
constructions in [Langtry, 1996,Langtry, 1998|, and further work is required



Table 1
P, values for 1-extended (left) and direct (right) rules with ¢ = 1 and orders in the
range 103 to 10°.

order rank Py order rank Py
1254 1 8.41(-2) 1243 1 1.24(-1)
1624 1 7.35(-2) 1732 1 7.94(-2)
1486 1 6.94(-2) 1608 1 8.24(-2)
2313 1 3.90(-2) 1787 1 6.29(-2)
3110 1 3.39(-2) 2193 1 3.80(-2)
2740 1 3.21(-2) 2851 1 4.49(-2)
4364 1 2.29(-2) 3395 1 6.49(-2)
5850 1 1.91(-2) 3519 1 3.48(-2)
5053 1 1.92(-2) 3925 1 2.07(-2)
8163 1 1.25(-2) 5044 1 3.87(-2)
10214 1 6.27(-3) 6246 1 2.74(-2)
9417 1 1.19(-2) 7320 1 6.08(-3)
15267 1 4.16(-3) 10171 1 2.75(-2)
19631 1 2.53(-3) 9765 1 4.47(-2)
17580 1 3.49(-3) 8563 1 4.68(-3)
27794 1 1.38(-3) 14809 1 2.50(-2)
37211 1 8.60(-4) 18323 1 1.67(-3)
32847 1 1.24(-3) 15883 1 2.02(-3)
52478 1 6.32(-4) 22129 1 1.28(-3)
70058 1 2.87(-4) 30692 1 1.78(-3)
60641 1 4.77(-4) 26054 1 1.28(-3)
97852 1 2.38(-4) 28499 1 8.74(-4)
44382 1 1.70(-3)

54553 1 6.22(-4)

59191 1 4.02(-4)

52821 1 3.15(-4)

66511 1 4.89(-4)

in order to assess the practicality of such rules.
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