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We present a flexible method that can calculate Bloch modes, complex band structures, and

impedances of two-dimensional photonic crystals from scattering data produced by widely available

numerical tools. The method generalizes previous work which relied on specialized multipole and

finite element method (FEM) techniques underpinning transfer matrix methods. We describe the

numerical technique for mode extraction, and apply it to calculate a complex band structure and to

design two photonic crystal antireflection coatings. We do this for frequencies at which other methods

fail, but which nevertheless are of significant practical interest. VC 2012 American Institute of Physics.

[doi:10.1063/1.3674281]

I. INTRODUCTION

When modeling photonic crystals (PCs), it is important

to consider all the relevant Bloch modes. Light at a fixed fre-

quency, polarization, and incident angle exists in a PC as a

superposition of a set of propagating and evanescent Bloch

modes, the PC’s eigenstates. At low frequencies, only one

mode generally needs to be considered. For light at frequen-

cies above the first Wood anomaly,1 each row of holes in the

PC diffracts light into several propagating orders, so the PC

may support multiple propagating Bloch modes. At the PC’s

front and back interfaces, some of its modes couple via reflec-

tion, affecting the overall reflection and transmission through

the PC, so it is important to model all relevant modes.

It is often important to include evanescent modes.2 If

the PC is not long—for example, if it is a layer in a thin anti-

reflection coating—then evanescent modes can play a role in

energy transport.3 Evanescent modes can also play a role in

field matching across an interface between PCs4 or PC wave-

guides.5 The propagative qualities of an evanescent mode

are well-represented by its complex band structure,6 which

augments the traditional band structure, conveying informa-

tion about the rate at which the mode accumulates phase to-

gether with information about the mode’s decay rate.

There have been a number of studies seeking to derive

impedance-like quantities to characterize reflection at PC

interfaces by a scalar.7,8 Furthermore, a number of studies

have adapted metamaterial parameter extraction techniques9

to photonic crystals, and used them to design antireflection

coatings.10,11 However, since these techniques characterize

reflection and transmission by a single complex number

each, they cannot handle problems involving multiple

modes, where every mode reflects into every other mode.

Scalar-based methods generally give manifestly incorrect

results for light at frequencies above the first Wood anomaly,

which ranges from ax/k¼ 1/n for normally incident light to

ax/k¼ 1/2n for light at the Brillouin-zone edge, where ax is

the length of the lattice vector parallel to the interface, k is

the free space wavelength and n is the PC’s background

index. Above this frequency, generally several Bloch modes

must be simultaneously considered in each PC, regardless of

whether these modes are propagating or evanescent. Reflec-

tion at a PC/PC interface is well-described by a matrix that

maps incident modes to reflected modes, as we have shown

previously.4,12 In our experience, the minimum acceptable

dimension of this reflection matrix, as argued in Sec. II A, is

usually

Mmin ¼
ax

nk
ð1þ sin hiÞ

j k
þ ax

nk
ð1� sin hiÞ

j k
þ 1; (1)

where hi is the incident angle from a uniform dielectric with

the PC’s background index, and xb c denotes the floor of x.
We have previously achieved accurate results modeling PC

stacks using impedance matrices of this dimension and

higher.4,12,13

A number of methods for finding multiple Bloch modes

and complex band structures have been demonstrated. Trans-

fer-matrix14 and scattering-matrix15 based methods were

developed to derive a PC’s Bloch modes from the properties

of a single grating layer. The plane wave expansion method

has also been extended to include evanescent modes.16

Finally, Ha et al. presented a method for extracting Bloch

modes from the output of an electromagnetic field (EM)

solver,17 or even near-field measurements.18,19 We improve

the accuracy, stability, and efficiency of Ha et al.’s method

and extend it to calculate PC impedances for two-dimensional

(2D) PCs, which can be used to calculate reflection and trans-

mission at interfaces.4,12 These PC impedances and the reflec-

tion and transmission operators are represented by matrices;

our method supports the presence and interaction of multiple

Bloch modes and so it can work well both above and below

the first Wood anomaly.

We have made software available that uses the method

described in this paper to calculate PCs’ Bloch modes,a)Electronic mail: felix@physics.usyd.edu.au.
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complex band structures, and impedances. The software,

called BlochCode, can then use these complex band struc-

tures and impedances to calculate reflection and transmission

matrices and coefficients for arbitrary stacks of PCs. Bloch-

Code is open-source and is available on the Internet.20

In Sec. II, we present our method for finding Bloch

modes from the electric field E and the magnetic field H in a

PC structure. Section II A recaps some useful results from

our previous work12 and provides some background theory.

Section II B details our improvements to Ha et al.’s method17

of finding Bloch factors and modal fields, and Sec. III out-

lines our procedure for successfully applying this method to

minimize the residual derived in Sec. II B. Section II C

explains how we calculate PC impedance matrices from the

modal fields. In Sec. IV, we apply our method to demonstrate

its utility. In Sec. IV A, we calculate the complex band struc-

ture for light normally incident on a triangular lattice PC. In

Sec. IV B, we reproduce the design process of a known anti-

reflection coating for a PC, at a frequency and incident angle

for which it is critical to include at least two Bloch modes in

the calculations. Finally, in Sec. IV C, we use our method to

design an all-polarization antireflection coating for a square

lattice self-collimating PC, at a high frequency where a scalar

method cannot find a coating for the PC.21

II. THEORY

Our method uses a two-step process to extract a PC’s

modes and impedance from the field in a finite length of the

PC. The PC is assumed to be two-dimensional, lossless, and

to have relative permeability lr¼ 1. Like Ha et al.’s
method,17 we could use data generated by finite element

method (FEM) or finite difference time domain (FDTD) sim-

ulations, or even experimentally measured by a near-field

probe such as a scanning near-field optical microscopy

(SNOM),19 although the impedance part of our method is not

valid for SNOM data, which is derived from a 3D object.

First, the Bloch factors and the Bloch modal fields are found

(Sec. II B), then these modes are analyzed to calculate the

PC’s impedance (Sec. II C).

A. Background theory

Two-dimensional PCs in the x-y plane may be described

as a stack of gratings parallel to the x axis,22 each of which

diffracts incident light into an infinite set of grating orders.

At the edge of each unit cell, the PC’s Bloch modes may be

written as a superposition of the underlying grating orders.15

Their directions are given by the grating equation

kðpÞx ¼ kx þ
2pp

ax
¼ k sin hi þ

2pp

ax
; (2)

where kx is the x component of the incident plane wave’s

wavevector, kðpÞx is that of the pth diffraction order, and ax is

the length of the lattice vector parallel to the x axis. The

wavevector component in the direction perpendicular to the

grating is k
ðpÞ
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k

ðpÞ2
x

q
where k is the wavenumber in

the medium. Evanescent grating orders have imaginary ky
(p),

so for a given k and kðpÞx , the number of propagating grating

orders is the number of solutions to Eq. (2) with real ky
(p), or

Mmin in Eq. (1). In our experience, Mmin also provides an

upper bound on the number of propagating Bloch modes,

and at non-normal incidence is a lower bound on the number

of Bloch modes required to model a PC accurately. At nor-

mal incidence, symmetry allows odd modes to be ignored, so

in this case good results may be obtained with fewer than

Mmin modes—see Sec. IV C. Using Bloch modes found from

accurate multipole and FEM transfer matrix methods,23,24

we have consistently had success modeling PCs with no

more than Mminþ 2 Bloch modes.

Bloch’s theorem relates the electric and magnetic fields

associated with each mode at equivalent points in different

unit cells of a PC. The ratio of each mode’s field at points

separated by the lattice vector e1¼ (ax, 0) is eikxax . For the

PC’s other lattice vector e2, this ratio is different for each

mode and is the mode’s Bloch factor, denoted by l. Calculat-

ing l for each mode is the goal of Sec. II B. For square and

rectangular lattices, e2¼ (0, ay) and l¼eikyay , where ky is the

y component of the mode’s wavevector. For triangular latti-

ces, the lattice vector e2 is (ax/2, ay) and so the Bloch factor

may be written l¼eiðkxax=2þkyayÞ.
Bloch modes come in forward/backward pairs. Popov

et al. provide a useful discussion of symmetry properties.25

We assume mirror symmetry in each unit cell, which means

that each backward mode’s field profile in a unit cell is the

reflection on the x axis of its forward partner’s. The Bloch

factors of a pair are related because of this: for square and

rectangular lattices, lb¼ 1/lf, where lf and lb are, respec-

tively, the Bloch factors of the forward and backward modes.

For triangular-like lattices, the symmetry is more compli-

cated since the reflection of e2 is not �e2, the translation cor-

responding to the field ratio 1/lf, but (ax/2, �ay); these

vectors differ by �e1. Accounting for this discrepancy, we

find lb¼e�ikxax=lf for triangular lattices.

A PC’s impedance is defined in terms of two matrices,

E and H.12 For E¼Ez polarized light, each matrix maps a

vector of forward Bloch mode amplitudes cþ to a vector of

the Ez or Hx fields associated with each grating diffraction

order. Specifically, Ep,m, the (p,m)th element of E, is the Ez

field of normalized mode m due to forward and backward

plane waves in grating order p, at the center (x¼ 0) of a unit

cell’s edge. Thus, for a set of forward propagating/decaying

Bloch modes cþ, the field components along the edge of the

unit cell, i.e., the quantities that are continuous across an

interface between PCs or dielectrics, are

EzðxÞ ¼
X

p

Epcþeik
ðpÞ
x x; HxðxÞ ¼

X
p

Hpcþeik
ðpÞ
x x; (3)

where Ep and Hp are the rows of E and H corresponding to gra-

ting order p. In the H¼Hz polarization, E and H map to Ex and

Hz fields, and these quantities replace Ez and Hx in Eq. (3).

Previously,12 we defined PC impedances in terms of these

matrices. For Ez polarized light, the impedance of a PC is

Z ¼ HT
0 ðIþQÞEþ ET

0 ðI�QÞH; (4)

and for Hz polarized light it is

013105-2 Lawrence et al. J. Appl. Phys. 111, 013105 (2012)
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Z ¼ � HT
0 ðI�QÞEþ ET

0 ðIþQÞH
� �

; (5)

where E and H are calculated for the PC, and E0 and H0 are

calculated for a reference material, usually free space. Q is a

diagonal matrix that takes into account the half-period shift

of gratings in triangular lattice PCs: for square lattices Q¼ I,

and for triangular lattices Q¼ diag [(�1)p], where p is the

grating order.

Given impedances Z1 and Z2 for two PCs, it is simple

to calculate the reflection and transmission matrices across

their interface12

T12 ¼ ðAT
12A12 þ IÞ�1

2AT
12; (6a)

R12 ¼ ðA12AT
12 þ IÞ�1ðA12AT

12 � IÞ; (6b)

where A12¼Z�1
1 Z2.

B. Finding modes

Our method of finding the Bloch modes and Bloch fac-

tors is based on the method presented by Ha et al.,17 although

our method offers some significant improvements in accuracy

and efficiency. We take field data for several unit cells of a

PC, and try to write it as a superposition of Bloch modes,

thus finding the modal fields and Bloch factors. The final

steps of our mode-finding method impose symmetry relation-

ships between forward and backward modal fields, increasing

accuracy by almost halving the number of unknowns in the

problem. We now outline our method.

In an EM solver, we simulate a section of 2D PC with

Bloch-Floquet periodic boundary conditions on two bounda-

ries, and uniform dielectric on the others (Fig. 1). We sample

the Ez or Ex (depending on polarization) field component at

many (Np) points in unit cell ‘¼ 0, and then at the equivalent

points in each of the other unit cells. If desired, Ey, Hx, Hy, or

Hz may be used in place of or in addition to Ez and Ex. For

triangular lattice PCs, we use the field in the simulated unit

cells (dashed edges in Fig. 1) to calculate the field in the unit

cells separated by a lattice vector (solid edges): we apply

Bloch’s theorem with integer multiples of the lattice vector

(ax, 0).

We seek to write these electric field components as a

superposition of forward and backward Bloch modes. So we

want to express every U‘(r), i.e., the Ez or Ex field compo-

nent for sampled point r in unit cell ‘, as

U‘ðrÞ ¼
X

m

l‘mAmðrÞ þ
X

m0
ð1=lL�1�‘

m0 ÞAm0 ðrÞ þ wð‘; rÞ;

(7)

where Am(r) and lm are, respectively, the modal field and the

Bloch factor of forward mode m; m0 denotes backward modes,

and wð‘; rÞ is the residual error. More specifically, for forward

modes, Am(r) is the field component of mode m at point r of

the first unit cell, ‘ ¼ 0. The Bloch factor lm is the ratio of the

field in cells ‘þ 1 and ‘, so l‘mAmðrÞ is the field component

of forward mode m at point r of unit cell ‘. To avoid ill-

conditioning, the field Am0(r) at point r of each backward

mode m0 is defined in the last unit cell, ‘ ¼ L� 1. This means

that the coefficients of Am(r) and Am0(r) in Eq. (7) have mod-

uli no greater than 1. As noted in Sec. II A, the Bloch factor

lm0 of each backward mode is related to that of its forward

partner; we enforce this relationship in practice, thereby halv-

ing the number of Bloch factors that must be found.

Equation (7) for all ‘ and all sampled r may be written

in matrix form as

U ¼ CAþW; (8)

where U contains the Ez or Ex field components from the EM

solver, A is a matrix of modal fields, C is a matrix con-

structed from Bloch factors, and W is a matrix of residuals

wð‘; rÞ that must be minimized. U is a L�Np matrix: the

field in its ‘th row and rth column is U‘;r ¼ U‘ðrÞ, the field

component at point r in unit cell ‘. Similarly, A is a M�Np

matrix; the field in its mth row and rth column is

Am,r¼Am(r), the field of mode m at point r in cell ‘ ¼ 0 for

forward modes, or cell ‘ ¼ L� 1 for backward modes. C is

a L�M matrix. For a forward mode m, the ð‘;mÞth element

of C is l‘m, and for a backward mode m0, the ð‘;m0Þth ele-

ment is 1=lL�1�‘
m0 . If multiple field components (e.g., Ez, Hx,

and Hy) are to be used to find the modes, then the additional

data can be added as extra columns in U.

We start the optimization process knowing U, and with

information about the structure of C, and no direct informa-

tion about A. In our method, we first find the Bloch factors

that determine C, a relatively difficult problem. Once C is

known, solving Eq. (8) for the modal fields A becomes a

pure least-squares problem that can be solved accurately and

efficiently using standard techniques.

To find the modes, we seek to minimize the difference

between the observed field U and the superposition of Bloch

mode fields CA. That is, we seek to minimize Wk k2
F in Eq.

(8), the sum of squared moduli of the elements of W. Con-

straining the problem by dividing by the squared Frobenius

norm Uk k2
F of U, the quantity we minimize is

FIG. 1. Schematic of L¼ 5 PC structures for a square and a triangular PC

lattice. The squares with solid edges are the unit cells used by our method.

For the triangular lattice PC, the field in the solid-edge unit cells are calcu-

lated from the unit cells of the simulated structure (dashed edges) using

Bloch’s theorem, with the ratio eikxax between adjacent cells’ fields.
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w2 ¼ jjU� CAjj2F
jjUjj2F

; (9)

where w2 ¼ Wk k2
F= Uk k2

F. First we eliminate A from Eq. (9)

in order to find C with a numerical minimizer. We use

an alternative representation of the Frobenius norm,

jjUjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðUHUÞ

q
, to write

w2 ¼
tr ðUH � AHCHÞðU� CAÞ
� �

jjUjj2F
: (10)

Finding A for arbitrary C is a standard least-squares prob-

lem; the optimal A satisfies CHCA¼CHU. We expand Eq.

(10), twice apply this relation, and rearrange to get

w2 ¼ 1� trðUHCCþUÞ
jjUjj2F

; (11)

where C
þ¼ (CH

C)�1
C

H is the Moore-Penrose pseudo-

inverse of C.

Using Eq. (11) and a numerical minimizer, the Bloch

factors that determine C may often be found to a useful level

of accuracy (see Sec. III for implementation details). In order

to improve the accuracy and reliability of the results, we

impose further physical constraints.

The PC impedance method4,12 assumes the unit cell to

be up-down symmetric, which causes the forward and back-

ward modes to be related. So far, we have only imposed a

relationship between the forward and backward Bloch fac-

tors, not the modal fields within each unit cell. We can halve

the number of unknowns in A and strongly improve the qual-

ity of our results by enforcing this relationship in the minimi-

zation process.

We commence by partitioning the forward (f) and back-

ward (b) modes, and the points in the left (L; y � ay/2) and

right (R; y � ay/2) halves of the unit cell:

U ¼ UL;URð Þ; C ¼ Cf ;Cb

� �
; (12a)

A ¼ AL;f AR;f

AL;b AR;b

	 

: (12b)

After normalization, the field of a backward mode is the field

of its forward partner reflected about the x axis, thus

AL;b;AR;b

� �
¼ cAR;f P; cAL;f P

�1
� �

; (13)

where P is the permutation matrix that maps points (x, ay�y)

to (x, y), and c is a normalizing diagonal matrix whose ele-

ments are the ratios of backward and forward mode ampli-

tudes. The columns of AR,f and AR,b, corresponding to points

in the right half of the unit cell, can easily be ordered so that

P¼ I; from now on we assume this ordering. Equation (8)

can now be written with roughly half as many unknowns,

UL;URð Þ ¼ Cf ;Cbc
� � AL; f AR; f

AR; f AL; f

	 

þW: (14)

Cbc represents each backward mode’s amplitude in each cell,

relative to that of the corresponding forward mode in cell 0.

The constraints on A [Eq. (13)] mean that Eq. (14) does

not have a least-squares form, so may not be immediately

simplified in the way that Eq. (9) led to Eq. (11). To trans-

form Eq. (14) into a more useful form, we block-diagonalize

A and right-multiply by the matrix I I
I�I

� �
, to show

ðUþ;U�Þ ¼ ðCþAþ;C�A�Þ þW0: (15)

Here we have introduced the symmetric and antisymmetric

forms U6¼UL 6 UR, C6¼Cf 6 Cbc, and A6¼AL,f 6 AR,f.

Equation (15) takes the form of two independent least-

squares equations, each with half the dimension of Eq. (14).

The two equations must be satisfied simultaneously, so to

find the Bloch factors we can minimize

w2 ¼ jjUþ � CþAþjj2F þ jjU� � C�A�jj2F
jjUþjj2F þ jjU�jj

2
F

; (16)

or equivalently

w2 ¼ 1�
trðUH

þCþCþþUþÞ þ trðUH
�C�Cþ�U�Þ

jjUþjj2F þ jjU�jj
2
F

: (17)

Again, this quantity may be minimized by a numerical opti-

mizer. The residual w2 for any solution to Eq. (17) is equal

to the residual obtained by inserting the solution into Eq.

(11): the two equations differ only in the symmetry con-

straint on backward modal fields [Eq. (13)]. Compared to

Eq. (11), we have removed NpM unknowns from A (where

Np�M is the number of sampled points in each unit cell),

halving its dimension at the cost of adding M unknowns to

C6 as c. These new unknowns must be found simultaneously

with the Bloch factors using a numerical minimizer, so it is

important to supply a good starting estimate; our method for

doing so is detailed in Sec. III.

C. Calculating impedance

Once the Bloch factors and c are known, the modal

fields can be reconstructed and analyzed to determine the

PC’s impedance. The essential quantities for this calculation

are the E and H field components in the plane of the PC

interface (i.e., Ez and Hx, or Ex and Hz, depending on polar-

ization) of each Bloch mode m along the left edge (y¼ 0) of

a unit cell (see Fig. 1). These quantities, Em(x) and Hm(x),

may be found from Eq. (15) using the known values for Cþ
and C� and inserting the appropriate E or H fields into Uþ
and U�.

To calculate the impedance, we find the E and H matri-

ces for the PC, as defined in Sec. II A. Inserting multiples of

unit vectors cþ into Eq. (3), we can show that

EmðxÞ ¼ Am

X
p

Ep;meik
ðpÞ
x x; (18a)

HmðxÞ ¼ Am

X
p

Hp;meik
ðpÞ
x x; (18b)

013105-4 Lawrence et al. J. Appl. Phys. 111, 013105 (2012)

Downloaded 31 May 2012 to 138.25.78.25. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



where Am is the amplitude of the normalized mode m, and

Ep,m and Hp,m are the elements of E and H. It is straightfor-

ward to exploit the orthogonality of the plane wave grating

diffraction orders to show that

AmEp;m ¼ 1=ax

ðax=2

�ax=2

EmðxÞe�ik
ðpÞ
x xdx; (19a)

AmHp;m ¼ 1=ax

ðax=2

�ax=2

HmðxÞe�ik
ðpÞ
x xdx: (19b)

Equations (19) let us calculate each element of the E and H

matrices, up to a normalization constant Am per column. We

remove the constants by calculating the PC’s impedance

[Eq. (4) or (5)] with the PC itself as the reference material:

by reciprocity-derived Bloch mode orthogonality relations,12

this quantity should be the identity matrix. The diagonal

entries of this matrix are the A2
m; the off-diagonal terms,

which should be zero, provide an error estimate. After nor-

malizing the E and H matrices for the PC, we calculate its

impedance matrix Z from Eq. (4) or (5) using a reference

medium such as free space.

III. NUMERICAL PROCEDURE

Having outlined the theoretical basis of our method for

finding the Bloch factors and impedance of a PC at a given

frequency, incident angle, and polarization, we now provide

some practical detail about our implementation of the

method. We outline the procedure for M¼ 3 pairs of Bloch

modes.

In COMSOL Multiphysics 4.2, we simulate a 1� 8 unit

cell sample of PC, embedded in its background dielectric,

with Bloch-Floquet periodic boundary conditions along the

two long boundaries (Fig. 1 shows a 1� 5 structure). Equa-

tion (15) is a set of LNp equations, with 2M and MNp

unknowns in C6 and A6, respectively. To be overspecified,

the method requires LNp>MNpþ 2M; thus L¼ 8 periods and

a large Np is sufficient to find M¼ 3 modes. A deeper struc-

ture with more unit cells does not necessarily provide useful

information about additional evanescent modes, as their am-

plitude deep inside the structure may be negligible. From

COMSOL we export the relevant E and H field components

in the L¼ 8 unit cells, sampled over a 101� (50Lþ 1) grid.

In order to compute a mode, it must be present in the

structure with sufficient amplitude to be detected. Light at

normal incidence often fails to excite odd Bloch modes; these

uncoupled modes26 consequently cannot be found by an opti-

mization, which loses accuracy in searching for modes that

are not present. At frequencies above the first Wood anomaly,

the frequencies at which the higher order modes are most im-

portant, this problem may be avoided by exciting the PC slab

not with a normally incident plane wave, but with the first

grating diffraction order. This technique is used in Secs. IV A

and IV C. If the uncoupled mode is not relevant to a particu-

lar problem, it may instead be ignored.

If we seek to find M¼ 3 Bloch modes, then finding a

global minimum of Eq. (17) involves searching for 2M¼ 6

complex numbers. This is a hard problem if attacked directly,

but we use an algorithm that gives more consistent success by

providing a good starting estimate. We start by minimizing

the residual w2 in Eq. (11), which forces a relationship

between forward and backward Bloch factors but not the

modal fields. This involves finding only M complex numbers.

As a starting estimate for the forward Bloch factors, we either

take the result of a neighboring simulation, or the analytically

calculated Bloch factors for the dielectric background of the

PC. At every step of the minimization, evanescent modes are

sorted into forward and backward decaying modes, based on

the moduli of their Bloch factors. The minimization can be

done by any standard numerical minimizer, such as SciPy’s27

fmin, which is a modified Nelder-Mead optimization.28 At

this point, the results are equivalent to those from the method

of Ha et al.,17 except that we have lessened the likelihood of

C being ill-conditioned by renormalizing the backward Bloch

factors lm0 in Eq. (7) and setting their phase origin to the end

of the PC.

Occasionally, we encounter an instability in which a

pair of modes have very large equal and opposite field ampli-

tudes and very small Bloch factors. When this occurs, we

follow a Gram-Schmidt-like process: we subtract the field of

non-problematic modes (i.e., modes with jlj > 10�3) from U

and repeatedly minimize Eq. (11) to find each of the remain-

ing modes individually.

Using the solution to Eq. (11) as our estimate for the

Bloch factors, the modal fields may be found with a least-

squares optimization. The average field ratio of each pair of

backward and forward modes gives us an estimate for c. We

now have a plausible estimate for c and the Bloch factors,

which we can use as a starting estimate to minimize Eq. (17).

To further refine the estimates, we repeatedly iterate

through the modes, fixing all but one l and the correspond-

ing element of c, minimizing Eq. (17) to find the two varia-

bles. After this process, we finally minimize Eq. (17) across

all 6 complex dimensions simultaneously to obtain the cor-

rect Bloch factors and modal fields from which we calculate

impedances. Forward and backward propagating modes are

sorted based on their flux,15 before impedances are calcu-

lated as outlined in Sec. II C.

IV. APPLICATIONS

We now apply our method to a range of typical prob-

lems. Each of these problems involves frequencies above the

first or second Wood anomaly—frequencies at which scalar

methods fail and multiple modes are required to describe the

system. BlochCode, software that implements our method in

Python, using SciPy27 and Sage,29 is freely available on the

Internet;20 we use it here.

A. Complex band structure

The first application of our method is to calculate the

complex band structure of a PC. The PC is a triangular lattice

of circular air holes with radius r¼ 0.3 a and lattice constant

ax¼ a in a dielectric background with n¼ 3. We calculate

the band structure for light polarized with the H field out of

the PC plane (Hz polarization) at frequencies a=k 2 ð0; 0:5Þ
in the C�M direction, i.e., at normal incidence. Using
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COMSOL, we calculate the field in an 8 period slab of the

PC, and we apply our method to find the largest three Bloch

factors. w2 varies: it is less than 10�8 at low frequencies and

less than 10�4 at high frequencies.

Figure 2 summarizes the propagation properties of the

two/three most dominant modes. The moduli of the Bloch

factors jlj, which quantify how the modes’ amplitudes vary

with propagation, are shown in Figs. 2(a) and 2(b). Below

the Wood anomaly, an inspection of A and c shows that the

third mode is barely excited by the normally incident plane

wave, and this reduces the accuracy of the results [Fig. 2(a)].

Ignoring the uncoupled mode at low frequencies (where the

p¼ 1 grating order is evanescent and so may not be used to

excite the structure, as mentioned in Sec. III) increases the

accuracy of the other two modes [Fig. 2(b)]. The complex

arguments of the Bloch factors, which quantify how phase is

acquired through propagation, are shown in Fig. 2(c), and

the information about amplitude and phase is summarized in

a single plot in Fig. 2(d). Aside from slight errors in the

phase of strongly evanescent modes in Fig. 2(c), there is

good agreement between Fig. 2 and Bloch factors calculated

by highly accurate multipole techniques.

Figure 2 shows that at frequencies below the Wood

anomaly there is at most one propagating Bloch mode, which

becomes evanescent in the first bandgap with a decay factor

jlj of no less than 0.5; it still decays far more slowly than the

other evanescent Bloch modes at that frequency. Figure 2(c)

shows that for the evanescent modes, either 0 or p phase is

acquired across each unit cell.

B. Antireflection coating

Our next application is to reproduce the design of an

antireflection coating we presented previously,12 found using

PC impedances calculated with a specialized transfer-matrix

method.24 As in this previous paper, our design strategy is to

try out a very large number of potential coatings, and choose

the coating that gives the lowest reflectance off the coated

structure. The use of PC impedances makes this a feasible

problem, as the evaluation of each coating is quick, involv-

ing a few operations on M�M (here 3� 3) matrices.

The target PC is a triangular lattice with lattice constant

ax¼ a, consisting of air holes in a dielectric background with

n¼ 2.86. The holes are cylinders with radius r¼ 0.25 a. We

seek to coat the PC to minimize reflection for light with fre-

quency a/k¼ 0.38, incident from air at an angle of 30� in the

Ez polarization. At this frequency and incident angle,

Mmin¼ 2; we consider a total of 3 modes to ensure accuracy.

As in our previous work,12 we seek a two-layer coating,

where the degree of freedom is ay, the lattice vector compo-

nent perpendicular to the air/PC interface. For a regular tri-

angular lattice, ay ¼ ð
ffiffiffi
3
p

=2Þa.

We choose 121 candidate PCs with ay 2 ½0:6; 1:8�
ð
ffiffiffi
3
p

=2aÞ and simulate 8 periods of each in COMSOL. We

apply our method to the resulting data, using the Bloch fac-

tors of the previous PC as the starting estimate for the next.

BlochCode processes the 121 PCs in approximately 13 mins

on a 3.06 GHz Intel Core 2 Duo desktop computer. An

equivalent approach that only requires one PC to be eval-

uated is detailed in Sec. IV C; we do not use it here since the

purpose of this section is to demonstrate the reliability and

consistency of the optimization procedure.

We then calculate the reflectances off the 1212¼ 14 641

coated stacks (Fig. 3), which takes 34 s on a single core of

the desktop computer. The optimal coating is found to have

thicknesses ay1 ¼ 1:53ð
ffiffiffi
3
p

=2Þa and ay2 ¼ 0:65ð
ffiffiffi
3
p

=2Þa, and

reduces the reflectance of the structure from R¼ 0.945 to

R¼ 1.96� 10�4. The results in Fig. 3 agree well with data

calculated by a highly accurate multipole scattering matrix

method: the RMS difference is 3.4� 10�3, and the only no-

ticeable differences occur on the two sharp resonant features

near the lower edge of the figure. Specifically, the multipole-

based calculations show that the coating reduces the PC’s re-

flectance from R¼ 0.943 to R¼ 4.29� 10�4.

C. All-polarization antireflection coating

Finally, we apply our methods to find an all-polarization

antireflection coating for a silicon-based self-collimating

FIG. 2. (Color online) Complex band structure for the PC. The Wood anom-

aly (a/k¼ 0.333) is marked. The modes are sorted into colors by jlj; where

two modes are propagating (i.e., have jlj ¼ 1), they are sorted by jarg(l)j. (a)

Magnitude of Bloch factors jlj, with three Bloch modes found at all frequen-

cies. (b) jlj with two Bloch modes found below the Wood anomaly, three

above. (c) Argument of Bloch factors. (d) Complex band structure in 3D.

FIG. 3. (Color online) Reflectance of the coated PC as a function of ay1 and

ay2, the relative thicknesses of the two coating layers, calculated using PC

impedances from BlochCode. The minimum reflectance is marked.
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square-lattice photonic crystal presented by Park et al.21 They

investigated this class of structures using a scalar treatment of

reflections, and were able to design an all-polarization coating

at a/k¼ 0.28, below the first Wood anomaly. Since their sca-

lar treatment does not support multiple propagating or evanes-

cent Bloch modes, it generally does not work above the Wood

anomaly. Our method does not have this limitation and we

demonstrate this by designing an antireflection coating for

both polarizations at a frequency well above the Wood anom-

aly, using more than one Bloch mode.

Park et al.21 showed that at a/k¼ 0.368, a 2D silicon

(n¼ 3.518) PC with r¼ 0.45 a is self-collimating for both

polarizations at normal incidence. The large radius is an

extreme case that is challenging to simulate accurately. At

this frequency Mmin¼ 3, so for Ez polarized light we include

M¼ 3 modes in our calculations, with light incident from the

p¼ 1 grating order so that the otherwise uncoupled mode is

excited. For Hz light, this procedure does not yield accurate

results—Bloch factors are calculated accurately, but the cal-

culated reflection coefficients differ from those calculated

directly in COMSOL. The calculated impedances prove suffi-

ciently accurate to design an effective antireflection coating,

but the inaccuracies mean that the coating is not optimal.

To avoid these inaccuracies in Hz polarization, we

exploit the symmetry that causes the uncoupled mode. The

physical structure and normally incident field are both sym-

metric about the y-axis, and so modes without even symme-

try are not coupled to. Therefore, we formally ignore the

uncoupled odd mode, in each PC and in the reference me-

dium, setting M¼ 2. In our Hz COMSOL simulations for this

structure, light is normally incident.

In Fig. 2 of Park et al.’s paper,21 they state that

R ’ 0:28 for Ez polarized light, and R ’ 0:35 for Hz light.

We calculate with BlochCode that a semi-infinite slab of the

PC has R¼ 0.284 for Ez, and R¼ 0.354 for Hz polarized light

at this frequency, when incident from silicon. Specialized

FEM-based transfer-matrix calculations agree, showing

R¼ 0.284 for Ez polarization, and R¼ 0.357 for Hz

polarization.

At a/k¼ 0.368, normally incident light is reflected by the

PC into three propagating diffraction orders. Due to the sym-

metries of the problem, the 61 orders are only excited in an

even superposition, so light is reflected into two modes. A

successful coating needs to suppress reflection into both these

modes simultaneously, and so must balance two modes’

amplitudes and two modes’ phases simultaneously for each

polarization. Thus the design of a perfect all-polarization

coating requires eight continuous degrees of freedom. Rather

than trying to search an 8-dimensional parameter space,

which is computationally expensive even when the evaluation

of each point is efficient, we consider coatings with four

degrees of freedom and accept that we are unlikely to find an

all-polarization coating with zero reflectance.

Nevertheless, this is a particularly difficult problem: not

only do we need many degrees of freedom to find a satisfac-

tory coating, but if either of the Bloch factors in a PC is

incorrect or any element of the PC’s impedance matrix is

wrong, then the calculated net reflection off the structure is

incorrect as well.

To limit the coating’s thickness, we embed the four

degrees of freedom into two rows of holes by varying both

the hole radii, r1 and r2, and the space after the layers, d1 and

d2 (Fig. 4). Increasing d1 and d2 is similar to increasing ay, as

in Sec. IV B, but because the candidate PCs are independent

of d, only one PC per radius needs to be simulated in COM-

SOL. Furthermore, the properties of the layers of silicon

with thickness di may be calculated analytically. We con-

sider 36 possible hole radii in the range ri 2 ½0:10; 0:45�a
and 99 values of di 2 ð0; 1Þa. To allow a thin coating, we set

ay¼ 2rþ 0.1a for each PC. If necessary, additional degrees

of freedom could be added to find a coating with even lower

reflectances.

On a single core of a 16� 2.4 GHz Intel Xeon-Quad

workstation, it took a total of 15 mins to find the modes of

the 36 PCs in the two polarizations. For Ez polarization,

w2 ’ 10�5 for most radii, and for Hz polarization w2 ranged

roughly from 3� 10�3 for thin unit cells to 10�7 for the

thicker cells with larger radius. Due to the large number of

candidate coatings (	1.3� 107), the embarrassingly parallel

problem was split over 16 cores of the workstation, taking

approximately 80 mins per polarization.

The best Ez coating reduces R from 0.284 to

9.56� 10�5, and the best Hz coating reduces R from 0.354 to

3.33� 10�4. The best all-round coating is taken to be the

one with the lowest total reflection in the two polarizations.

This coating has r1¼ 0.13 a, d1¼ 0.89 a, r2¼ 0.17 a, and

d2¼ 0.90 a (Fig. 4). In Ez it reduces R to 0.0141, and in Hz it

reduces R to 0.0197. Calculations from a specialized transfer

matrix method24 agree with these results, giving R¼ 0.0142

in Ez polarization and R¼ 0.0211 in Hz.

To verify these results without the aid of our specialized

methods, implementations of which are not publicly avail-

able, we simulate the structure using COMSOL Multiphy-

sics. Since COMSOL cannot directly calculate reflection

coefficients off semi-infinite PCs, we simulate a 20-period

section of the uncoated PC surrounded by the background

dielectric, and compare the results to a simulation with the

antireflection coating on both sides of the PC section. Bloch-

Code calculates the reflectance of the uncoated and coated

structures to be 0.407 and 0.0124, respectively, in the Ez

polarization, and 0.574 and 0.0074 in the Hz polarization.

The COMSOL simulations agree with these results, showing

that the coating reduces R from 0.407 to 0.0129 in the Ez

polarization, and from 0.585 to 0.0055 in the Hz polarization.

FIG. 4. Schematic of the all-polarization antireflection coating. r1 and r2 are

the radii of the holes in the first two layers, and d1 and d2 are the thicknesses

of the extra silicon background layers between the first few rows of holes.

For this coating, r1¼ 0.13 a, d1¼ 0.89 a, r2¼ 0.17 a, and d2¼ 0.9 a.
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V. DISCUSSION AND CONCLUSION

We have detailed a method for calculating the complex

band structure and impedance of PCs. The method takes

into account structural symmetries in the PC, and enforces

relationships between the fields of forward and backward

modes, thus improving the method’s accuracy by eliminat-

ing ill-conditioning and constraining modal fields. We have

applied the method to three cases, and have demonstrated

that it works for a variety of square and triangular lattice 2D

photonic crystals, for light in both polarizations and at dif-

ferent incident angles. We have demonstrated that our

method works at frequencies both above and below the first

Wood anomaly, the frequency above which scalar methods

cannot adequately describe light propagation and reflection

in PCs.

The stronger the excitation of a Bloch mode, the more

accurately our method calculates its properties. Thus, the

method is well-suited to calculating reflection and transmis-

sion through arbitrary PC stacks, where the most important

modes are those that are strongly excited. Since PC impedan-

ces make it so easy to calculate the reflection and transmis-

sion properties of many combinations of PCs in a stack, it is

feasible to search large parameter spaces of PC stacks for

particular reflective properties over a range of frequencies,

incident angles and polarizations. The method can be used to

design not only all-polarization antireflection coatings, but

also broadband antireflection coatings,12 polarization filters,

angular filters, and other devices.

Ha et al. have applied their method to slab PC wave-

guides.19 We have not yet applied our method to any 3D

structure. As long as the x-z plane mirror symmetry is pres-

ent, our method for finding the complex band structure

remains valid. The field of a slab waveguide might be

sampled only over the PC’s surface (as in a SNOM experi-

ment19) or throughout the entire volume of the structure (as

in a simulation); either case provides sufficient information

to determine the modal fields within the sampled region and

the associated complex band structure. However, the imped-

ance formalism is yet to be developed for 3D structures.

Our method is also valid for finding modes of PC wave-

guides, using supercells. Calculation of reflection and trans-

mission matrices between PC waveguides is yet to be

demonstrated using impedances, but they have previously

been calculated directly from the supercell’s E and H

matrices.5

Bloch mode analysis is a valuable tool in understanding

light’s interactions with PCs. Using an EM solver and our

method, for which source code is available,20 it is straight-

forward to find a PC’s complex band structure and its imped-

ance. Respectively, these quantities dictate how the Bloch

modes travel through the PC, and which modes they couple

with at a PC interface. If these quantities are known for a set

of PCs, then it is fast and efficient to calculate how light trav-

els through arbitrary stacks of the PCs.
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