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Abstract

Electricity market designs are complex, diverse and constantly evolving frameworks of policies

with multidisciplinary theoretical work underpinning them. The fast transforming landscape of

the electricity sector, driven by the global commitment to meet emission goals, calls for a con-

stant re-evaluation of market designs around the world. To this end, the economic equilibrium

models aiding market oversight should also be adapted to the reality of power markets. The

current thesis contributes to this discussion.

The first chapter describes the general features of electricity markets, focusing on the theory

of price formation on security-constrained economic-dispatch (SCED) principles. The equiva-

lence of obtaining price as the dual of the energy balance constraint from an SCED optimisation

to the standard economic equilibrium argument is shown under certain conditions. The applica-

tion of this argument to electricity markets using the merit order rule to infer supply and demand

curves from the bid data is also demonstrated from first principles. This equilibrium framework

is then extended with the typical features of power markets, such as storage fuel activity and

physical constraint effects.

The second chapter contributes an in-depth survey of Australia’s National Electricity Market

(NEM) with numerical examples that untangle several typical price outcomes from the central

dispatch data. A wide array of industry publications are summarised to comprehensively de-

scribe how the market works and how the price is set in the NEM, including the reliability

mandate, the timeline of dispatch and the security constraints in the NEM Dispatch Engine.

This survey reveals a number of additional market design features that have a price impact and

should be incorporated into the economic equilibrium argument.

The third chapter presents a novel economic equilibrium approach for price modelling that

replaces the widely used exponential supply function with a hyperbolic one to permit price

negativity. The previously identified market design factors that are compatible with the assumed

supply curve construction mechanics are also incorporated into this model. Renewable and
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storage fuels in the fuel mix, capacity limits, inter-regional trade, network constraint effects

and disorderly bidding are thus included in the proposed semi-structural price model. The

distributional fit of this approach is verified in a multi-regional empirical study.

The fourth chapter infers the supply curve of a particular market by approximating the price

result of the market clearing process for different levels of demand. This is performed for

three real-world market designs around the world – the Pennsylvania-New Jersey-Maryland

Interconnection (PJM) in the United States, the Balancing Market (BM) in Great Britain and

the NEM in Australia – to investigate the monotonicity property of the implied supply curves.

A small-scale case study compares supply curves and welfare across these market designs.

Non-monotonicity of supply is confirmed owing to fixed cost by slow-start units in the PJM

and minimum loading and dynamic interconnector losses in the NEM. A detailed discussion is

presented on welfare outcomes, underscoring the primacy of the PJM market design in social

surplus.
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Chapter 1

Introduction

1.1 Motivation

The simplifying arguments of economic theory in Parkin and Bade (2016) elucidate several

key concepts for understanding markets in general. Importantly, the unit price of a good or

a service is determined by the equilibrium of supply and demand. In efficient markets, the

demand curve captures the marginal benefit of obtaining another unit, which decreases as the

available quantity increases. Consumer surplus is also calculated from this demand curve. In

contrast, the supply curve captures the marginal cost of producing an additional unit. By the

law of supply, this curve or function is increasing in that marginal cost increases as quantity

increases. The supply curve also determines producer surplus. The sum of consumer surplus

and producer surplus, known as social surplus, is a common measure of welfare.

These standard economic arguments can be applied to wholesale electricity markets using

auction bids to specify the supply and demand curves. Price and welfare are then obtained by

aggregating the bids following the assumptions of the general case. This is in line with the merit

order rule, whereby bids are filled in increasing order of price, starting from the lowest price

bid.

However, the thus assumed mechanics of bid aggregation ignore a number of complicating

factors characteristic to power markets. These either relate to the physical nature of electricity,

such as operational limits and network safety constraints, or are elements of the electricity

market design, such as bid language, and thus impact the way equilibrium is obtained. Adapting

the economic equilibrium argument to the reality of power markets provides improved clarity

on how prices are formed and what welfare results eventuate.

Most real-world market designs are constantly being probed by industry groups and the

public and are re-evaluated by regulators to endorse efficiency and reliability while transitioning
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to low-carbon systems. As a result, market designs in different parts of the world have developed

to operate based on vast and varied adequacy planning and dispatch rules. Some markets rely

on a multi-stage security-constrained dispatch algorithm, known as integrated pool markets;

others work on an exchange basis. Some organise a mix of day-ahead, intra-day and real-time

trading, whereas others use 5-minute real-time settlement only. Some co-optimise operating

reserves, whereas others trade those separately from the energy market. Overall, the market

methodologies can vary significantly from country to country and have important implications

for price formation.

Focusing on a particular market design, once endowed with a good understanding of the

dispatch rules and the required data, price formation in practice can be recovered in numeri-

cal detail. In integrated pool markets this highlights the disparities between the fully-fledged

engineering models and the theoretical economic equilibrium arguments and provides valuable

insights into what factors are required for improving the equilibrium interpretation for any given

market.

The modelling of electricity price is an important research topic. It is central to investment

and asset valuation – including physical power investments, commercial licences, clean energy

certificates, debt and equity claims, and financial derivatives – as projecting the cash flows of

these types of assets usually requires the expected value of the electricity price. The optimal

control and financial risk management involved in using these types of assets are no less depen-

dent on the electricity price evolution. These applications require a price model that recovers

the common empirical features of the spot price path, including negativity and spikes, with dis-

tributional accuracy at the minimum. In addition, the price impact of planned market design

changes is often of interest in regulatory oversight favouring a more structural approach to price

modelling.

Different interpretations of the equilibrium argument are inherent in a large body of semi-

structural modelling literature (see Barlow (2002); Howison and Coulon (2009); Aid et al.

(2009); Carmona et al. (2013); Aid et al. (2013); Carmona and Coulon (2014); Ware (2019)).

Most of these studies assume perfectly inelastic demand and a monotonically increasing func-

tional form to the supply curve. A new interpretation that closely reflects the market design of

the NEM and incorporates the factors deemed relevant after recovering the price formation in
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the engineering model is proposed along these lines for a novel price model.

However, the monotonically increasing form of the supply curve breaks down owing to

non-convexities and other factors in the security-constrained dispatch model. To show this, the

mathematical formulation of the multi-stage dispatch algorithm of a market is used in this thesis

to compute prices at different levels of demand. In this way, an implied supply curve can be

obtained, which may exhibit decreasing prices as quantity increases.

Lastly, computing welfare taking a much wider array of factors into consideration than

just the bids provides a good vantage point for comparing different market designs in terms of

efficiency.

1.2 Literature review

This thesis makes contributions to two strands of the literature: electricity market design

and semi-structural price modelling. Literature reviews on both strands are detailed below.

1.2.1 Electricity market design

The academic literature on electricity market design comes in five flavours. Some papers

focus on reporting about market design around the world such as Mayer and Trück (2018). Oth-

ers describe certain markets historically and at present, e.g., Cramton (2017), Liu et al. (2022)

and Csereklyei and Kallies (2022). Another strain of the literature discusses the more recent

issues around electricity market design, such as the ‘missing money’ or the ‘missing policy’ co-

nundrum (Newbery (2016); Simshauser (2019a)) the emergence of new ancillary service side

markets (Mountain and Percy (2020)), etc. In addition, textbooks have been written about the

economics of power systems for those studying either economics or electrical engineering, such

as Biggar and Hesamzadeh (2014) and Wood et al. (2013). Last, some authors are attempting

to characterise a socially optimal – ideal – electricity market design in low-carbon settings, as,

for example, Newbery et al. (2018).

1.2.1.1 Standard theory

The standard theory of efficient spot pricing using direct current (DC) flow approximation by

Schweppe et al. (1988) depicts a mostly unregulated, centrally dispatched, energy-only, nodal
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system with liquid forward markets, as in Simshauser (2019a). However, this market design

has not become a reality since the inception of the framework in the 1980s because the theory

assumes short-term demand price elasticity. Even today, consumers are seldom able to react to

spot price signals instantaneously as real-time metering is fairly uncommon (Hirst and Hadley

(1999); Stoft (2002); Bidwell and Henney (2004); De Vries (2005); Joskow (2008)). Demand is

highly inelastic; therefore, relatively high levels of demand can threaten blackouts: the market

fails to clear an equilibrium because supply and demand never match, in which case the spot

price tends to infinity (Stoft (2002); Finon and Pignon (2008); Cramton et al. (2013)). Such

absurd spikes seldom arise under the ideal market design, but price caps must be used to avoid

them in practice (De Vries (2005)). Indeed, a second-best social solution is found by Stoft

(2002), who modify this market design by setting the price cap at the dollar amount that con-

sumers would agree to pay on average to avoid blackouts, called the value of lost load (VOLL).

This optimum does not eliminate rolling blackouts; it optimises their duration, assuming that

the administratively set VOLL is indeed an accurate measure of the disutility value (Cramton

et al. (2013)). The blackouts and the potential network collapses they might trigger are opti-

mised by managing the reliability of the system, which includes long-term resource adequacy

and short-term security (De Vries (2005); Cramton et al. (2013)).

Should the price cap fall short of the VOLL, either thanks to political pressure to set the

price cap below the VOLL or due to uncertainties in the value of VOLL, scarcity pricing fails,

hindering the profit recovery of generation investments to ensure resource adequacy, known

as the ‘missing money’ problem (Bidwell and Henney (2004); Hogan (2005); Newbery et al.

(2018)). If generation and storage units bid on a cost basis, the uncapped spot price then re-

flects the marginal cost of the incrementally or decrementally dispatched plant, rather than its

long-run incremental cost (LRIC). It follows that infra-marginal plants are better able to recover

their long-run costs during scarcity events – when peaking plants with higher marginal costs set

the price – than peaking plants that only receive their own marginal costs (below their LRIC) or

the sub-VOLL price cap (Bidwell and Henney (2004); Joskow (2008)). Consequently, and be-

cause of the lagged nature of investment cycles preventing timely entry, electricity markets and

peaking plants in particular are often ‘withering’ off equilibrium (Bidwell and Henney (2004);

De Vries (2005); Simshauser (2019a)). Profitability is further eroded when expensive plants are
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used for out-of-market dispatch by the system operator to resolve scarcity without the spot price

reflecting the utility value provided by these plants or if various ancillary services are insuffi-

ciently remunerated (Hogan (2005); Roques (2008); Joskow (2008); Hogan (2014); Newbery

(2016)). However, imperfect future information, regulatory uncertainty, construction permits,

and risk aversion also contribute to the ‘missing money’ problem (Schweppe et al. (1988); Lit-

tlechild (1992); De Vries (2005); Joskow (2008)). Consequently, markets with these measures

often break with the energy-only design and establish capacity mechanisms to encourage gen-

eration investments for resource adequacy or they permanently increase their operating reserves

(Bidwell and Henney (2004); Hogan (2005); Finon and Pignon (2008); Cramton et al. (2013);

Simshauser (2018)).

As the standard theory on efficient spot pricing has significant flaws, workarounds to ensure

the satisfaction of several stakeholder groups became necessary in practice. These have led to

significantly different market designs. These are briefly explored in the present thesis before

providing an in-depth review of the NEM market design.

1.2.1.2 The case for the NEM

The Australian NEM has an energy-only market design with a relatively high price cap that is

currently at a VOLL of $15,500/MWh (AEMC (2023)) and uses bilateral out-of-market relia-

bility reserves (AEMO (2020g)). Whereas Stoft (2002), De Vries (2005), Hogan (2005) and

Cramton et al. (2013) argue that a price cap at or above the fair value of the VOLL is desirable

to achieve a clearer price signal and sufficient generation investments through the wealth trans-

fer from consumers to generators in a way that the ‘missing money’ problem vanishes, some

also stress the significant market power concerns in connection to high prices, most notably

the tactics whereby generators withhold capacity to exploit scarcity pricing or use their isolated

locations to unilaterally game system congestion, both of which reduce reliability. However,

as mentioned above, price caps are not always binding during scarcity events owing to out-

of-market mechanisms in dispatch. Indeed, Simshauser (2008), Tómasson et al. (2020) and

Holmberg and Ritz (2020) assert that capacity mechanisms are often needed to close off the

equilibrium gap towards a socially more optimal outcome, even with a price cap at the correct

estimate of the VOLL.
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A few further comments are also important regarding the NEM market design. First, it al-

lows price-based bidding and re-bidding, which can be disorderly: bids do not have to match

marginal costs and may be revised any number of times before the start of every 5-minute trade

interval (AEMC (2021c); AEMO (2021s)). Second, the only means by which slow-start units

can inform the market operator of their plant status is their price–quantity bids (no multi-part

bidding), and after bidding, they must legally abide by the dispatch targets issued for them by

the central engine. Third, there is a market price floor at -$1000 (as per Clause 3.9.6 in AEMC

(2021c)), and negative prices are common. Fourth, a period of administered pricing commences

if the cumulative sum of the spot prices reaches a certain threshold (AEMO (2019a)). As a

result, the bidding behaviour of the units is geared towards a complex, if not completely un-

regulated, game theoretical setting where strategic bidding and the ability to unilaterally move

prices are a function of technological flexibility, input costs, grid location and the adoption of

software for automated bidding. For example, units often bid at negative prices to avoid compe-

tition within a network constraint and secure dispatch. It is unclear if this state of affairs helps

resolve the ‘missing money’ conundrum, or, alternatively, whether it promotes investments into

storage fuels such as battery and hydro.

In addition, endorsements for non-generation investments promoting short-term system se-

curity, such as interconnectors, grid forming storage, inverters, capacitors and retrofitted syn-

chronous condensers, are important for adequate market design, especially for high-renewable

markets with greater intermittency (Cramton et al. (2013); Newbery (2016); Mountain and

Percy (2020)). Security typically involves various products and services, including (fast) fre-

quency balancing, system restart, voltage control, transient and oscillatory stability, ramping,

as well as system strength and inertia, and less conventionally also carbon capture (Newbery

(2016); AEMO (2021k)). Failing to efficiently price any of these is known as the ‘missing

markets’ problem, which also perpetuates the ‘missing money’ problem through remunerative

deficiencies. Owing to the NEM market design that co-optimises frequency balancing into

the spot market, concerns with regard to the bilateral, non-market procurement of the rest of

the security services have revived in Australia, after the last coal plant of the high-renewables

South Australia region exited in mid-2016 (Simshauser (2018); AEMO (2021k); Department of

Industry, Science, Energy and Resources (2022)).



7

The lack of perfect forward markets, another assumption of the socially optimal spot price

theory, is also often considered to be part of the ‘missing markets’ problem. In the NEM, near-

term forward markets for energy are only liquid enough up to three years, whereas they are

non-existent for the capacity or quantity of service products. These aspects are problematic

for project financing and adverse because of the incentive reduction effect of forward markets

to gaming the spot market (Newbery (2016); Simshauser (2018); Ahlqvist et al. (2018)). The

forward market conditions have only deteriorated in recent years, due to the loss of hedge ca-

pacity for energy by the exiting coal plants, the large-scale variable generators entering via

government-supported contracts for differences (CfD), certificate side-markets, and the ‘miss-

ing’ climate change policy continuity (Simshauser (2018, 2019a,b, 2021a)).

With no nuclear generation, the aspirations for sustainability through decarbonisation and

electrification envisage ever greater increases in the share of renewables and storage tech-

nologies (including hydro) in Australia. However, incentivising variable renewables comes

at the cost of increased security service provision in addition to the direct subsidy costs and

the implied costs of forward market distortions (Simshauser and Gilmore (2020); Simshauser

(2021b)). Nevertheless, transitional fuels, such as natural gas, and firming technologies offer

complementary properties to maintain the physical security of high-renewables systems, given

also the susceptibility of aging coal plants to technical failures (Pollitt and Anaya (2016); New-

bery et al. (2018); Simshauser (2021a); Nelson et al. (2023)).

The challenges of moving towards a socially optimal NEM market design are heightened by

criticisms of the short-run efficiency of the theoretical nodal marginal spot price and by the fact

that the NEM operates with a spatially less granular zonal (regional) rather than with a nodal

locational marginal price (LMP). Early on, Littlechild (1992) warns that the continuity, differ-

entiability, and convexity of the cost, demand, and loss functions required to obtain the short-

run social optimum do not hold in electricity systems and remarks that the power-engineering

literature explained why mixed integer programs should be used for efficiency. Today, uplift

payments are often used to compensate for the capital losses from the market-clearing solutions

that ignore unit commitment decisions (Hogan (2014); Ahlqvist et al. (2018)).1 Strikingly,

1Uplift payments compensate units so that they do not incur any losses over their costs when following dispatch
targets.
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however, fast-start unit commitment pre-processing in the NEM uses mainly linear constraints

to pre-empt infeasible outcomes (AEMO (2021j)), and the lumpy start-up and shut-down costs

of plant economics mostly remain with the plants to bid upon, not with the system operator

to optimise. Uplifts are typically not paid in the absence of intervention. Furthermore, the

NEM is a regional market that does not expressly price congestion: it usually relaxes all but

the tie-break constraints until a violation cost of nil, and constrains plants on or off without ei-

ther a locational compensation in the spot price or a bid-price guarantee (Hogan (2005); Leslie

et al. (2019)). Thus, prices may reflect binding security constraints far away on the grid, and

counter-price flows through cross-regional interconnectors are part of the norm (Biggar and

Hesamzadeh (2014)). By contrast, nodal prices are usually preferred in the literature as a more

efficient way of transitioning to higher levels of renewables (Newbery et al. (2018); Ahlqvist

et al. (2018); Wolak (2019)).

This thesis adds to this literature by explicating the workings of the optimisation routine used

for dispatch and pricing in the NEM to explicate the prevailing market design in conceptual and

mathematical detail. Many price-relevant features of market design and the key sources of non-

price data are identified. This creates an extensive repository of industry publications, which

might be useful to those who wish to learn more about the mentioned aspects of market design.

1.2.1.3 The general case

There is a growing consensus that the electricity dispatch and pricing problem is non-convex

in both nodal and zonal settings, which is attributable to the discrete costs and decisions in-

herent in the problem, including but not limited to fixed costs and minimum loading require-

ments (Liberopoulos and Andrianesis (2016)). It follows that using linear programming (LP) to

solve for the dispatch targets and the price result does not support the competitive equilibrium

condition, i.e., profit-maximising units would sometimes prefer to deviate from their assigned

dispatch targets given the price signals under LP (Wang et al. (2023)). Moreover, although MIP

is readily available to solve dispatch, the duals (or dual functions) in MIP cannot be interpreted

as shadow prices, as in Pachkova (2004): these models lack an economically sensible way of

calculating prices. The seminal idea of O’Neill et al. (2005) is that separating the MIP in a first

step to obtain the optimal values for the integer constraints, and running an LP optimisation with
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those constraint values fixed allows for computing prices. However, the prices from their model

are not consistent with the competitive equilibrium, unless complemented by uplift payments,

which they also compute.

Similar two-step methodologies are widely used in electricity pool markets today (Eldridge

et al. (2019)). However, even markets with the same core two-step methodology differ in terms

of market design settings, such as bid language, and on whether they pay uplift, include slow-

start plants in the MIP run, co-optimise ancillary services, use minimum operating level relax-

ation, etc. In contrast, exchange-based (self-dispatch) markets tend to vary from the two-step

methodology even more (Ahlqvist et al. (2018)).

The assumptions for obtaining the supply curve (marginal cost curve) are equally hetero-

geneous, but the use of fixed configuration pricing (FCP) is an intuitive starting point in the

pool market literature. FCP corresponds to the two-step methodology above, but without the

uplift payments, to construct the implied supply curve, as in Byers and Hug (2023). They also

state that FCP is often considered the non-convex analog of LP marginal pricing, as it takes the

slope of the total cost curve, when defined, to obtain the price. Indeed, Hogan and Ring (2003),

Gribik et al. (2007), Bjørndal and Jörnsten (2008), Ruiz et al. (2012) and Byers and Hug (2023)

have observed that price is not a monotonically increasing function of output quantity under

FCP and other FCP-style models, mainly owing to start-up costs.

The last essay of the thesis starts by fine-tuning the FCP approach to an extended set of

market design assumptions to construct and analyse supply curves in different markets. This

involves time-sequential and discretionary aspects of the market as well as bid language and out-

of-market payments. We show that certain market design elements explicitly dampen energy-

linked supply curve non-monotonicity compared with the baseline case with multi-part bids.

By contrast, we also posit that unmitigated non-monotonicities may appear due to dynamic

losses under bid price negativity. The main objective in this regard is drawing out a small-scale

but conceptually detailed numerical example where the degree of non-monotonicity2 can be

illustrated and welfare can be quantified across the market designs of three real-world electricity

markets.

2Note that the aggregate inverse supply curves and not the supply curves of the individual units lose mono-
tonicity. The supply curve aggregation mechanism of the dispatch and pricing, particularly the application of
security constraints, is responsible for most monotonicity distortions.
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1.2.2 Semi-structural price modelling

There has been a renewed interest in modelling the electricity price in such a way that the

price effects of certain market factors such as the capacity changes of the regional fuel mix or

the cross-regional interconnectors are traceable. These features open any price model to sce-

nario analysis, commonly used in, for example commissioning and capacity planning, system

constraint cost pricing, investigating interconnector arbitrage and setting the regulatory price

thresholds by the market operator and in regulatory oversight. The replication of the available

capacity variation, including ramping speed, must-run amounts, shut-down periods, etc., and

the intricate link between intermittent generation and the price, as found in empirical studies

by Paraschiv et al. (2014), Csereklyei et al. (2019), Maciejowska (2020), Mwampashi et al.

(2021) and Mwampashi et al. (2022), are sources of detailed modelling assumptions in recent

years. These often also have considerable data support, providing more accurate modelling

frameworks that are often highly specific to the fuel mix (see, for example, Moazeni et al.

(2016); Benth and Ibrahim (2017); Deschatre and Veraart (2017); Gianfreda and Bunn (2018)).

Such models, which aim to reflect the way prices are formed in the market, are typically called

‘structural’, as opposed to ‘reduced–form’ models, which simply assume a particular stochastic

dynamic for prices.3

1.2.2.1 Bid stack modelling context

The supply function (bid stack) model literature – starting with Barlow (2002), who retrieve

the stochastic microeconomic market structure of Föllmer and Schweizer (1993) and write the

spiky electricity price as a non-linear transformation of a jumpless diffusion process for demand

– typically maintains a characteristic, fundamental set of assumptions about the pre-existing

supply–demand and auction schema relations. Most bid stack models still at least implicitly re-

tain this characteristic market structure with perfect demand inelasticity and frictions (Carmona

and Coulon (2014)). Further, to obtain the price, the different parametric bid stack models pro-

vide different forms of the aggregate supply function – that is, the market bid stack function –

as appropriate in the local context. These differentiations highlight the various instances of the

3For reduced-form models see Clewlow and Strickland (2000), Lucia and Schwartz (2002), Cartea and
Figueroa (2005) and, more recently, Gudkov and Ignatieva (2021).
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largely typical market structure. The rationale is that the price formation cannot significantly

detach from the equilibrium mechanism as long as end-user demand is assumed inelastic and

electricity is not economically storable. In what follows, this thesis presents a generic overview

of wholesale price settlement from the Australian perspective, which demonstrates that any

strict non-storability assumption is already untenable at the operational level. The market struc-

ture underpinning the usual bid stack framework can easily be adjusted for storability.

Electricity is typically cleared as a homogeneous commodity in an automated multi-unit

and often also uniform price auction (Krishna (2009)). The wholesale price is typically deter-

mined from the participants’ bids based on economic principles under the physical constraints

of the electric system, using constrained linear optimisation programs, such as the NEM Dis-

patch Engine in the NEM as per AEMC (2021c). Simply put, this program collects the bids in

the maximum registered capacity of the units, discards the ones that are physically infeasible

(constrained-off), enforces those that cannot be omitted for feasibility reasons (constrained-

on), and returns the least-cost price from the marginal prices at the optimum solution (AEMO

(2021g)).

Bids are a series of price–quantity pairs offered by a unit as terms of trade. There are two

basic types of bids. Generator bids are placed by generator units of any fuel type – e.g. coal,

gas, solar, battery, hydro, etc. – to sell electricity. Regardless of their availability, the units

partition their full capacity into quantity blocks. They assign the lowest price that they would

ask for producing every quantity block to each block. These are the price–quantity pairs, i.e., the

generator bids. They submit as many bids as there are blocks, and that number is usually capped

by the market operator. Load bids are placed by load units of any fuel type – e.g. battery, hydro

– to buy electricity. Regardless of their availability, the units also partition their full capacity

into quantity blocks. They then assign the highest price that they would offer for purchasing

every quantity block to each block. These are the price–quantity pairs or the load bids. The

units submit as many bids, as there are blocks, and that number is usually capped by the market

operator.

For market price settlement, the generator bids are pooled and arranged in ascending order of

price – that is, in merit order. The generator bid stack is the cumulative sum of the bid quantities

in merit order, at or below every price in the complete set of bid prices in ascending order from
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the regulatory price floor to the regulatory price cap. It is agnostic to the fuel type behind the

bids. The generator bid stack is a left-continuous, step-wise relation, that resembles the implied

aggregate inverse supply. As such, the bid stack is typically plotted with the quantity along

the horizontal axis and the price along the vertical axis. With fully inelastic end-user demand,

the price at demand – where the vertical demand line intersects the generator bid stack – is the

market price. It is the price of the last bid in merit: the price of the most expensive generator

bid still needed to fill the demand in full.

Similarly, load bids are pooled and arranged in descending order based on price – that

is, in merit order. The load bid stack is the cumulative sum of the bid quantities in merit

order, at or above every price in the complete set of bid prices in descending order from the

regulatory price cap to the regulatory price floor. The load bid stack is a right-continuous,

step-wise relation that resembles the implied inverse demand of the load units. Market price

settlement is not complete without coalescing the load bid stacks with the generator bid stacks

in the equilibrium mechanism. The load bids that are eventually granted uptake in addition to

end-user demand are the ones at or above the market price. Consequently, in the presence of

loading, aggregate demand is higher and becomes slightly elastic compared with the generation-

only market structure.

Above, in stating that the bid stacks of the two basic bid types resemble implied inverse

supply and implied inverse demand, respectively, we are assuming that there exist appropri-

ate parametric formulae for transforming the bid information to supply and demand functions

within a mostly typical stochastic market structure. For generator bids and the implied inverse

supply curve, this is a fundamental assumption in the parametric bid stack model literature (Car-

mona and Coulon (2014)). For load bids and the implied inverse demand curve, however, this

is a new assumption.4

Supply function (bid stack) models that emulate the above mechanism make extensive and

varied assumptions about what constitutes aggregate supply under the operational constraints of

4When using parametric bid curve formulae, the variable quantities are usually estimated from the appropriate
non-price data, as the equilibrium formulation has a way of converting the non-price data into the expected value
of the price. This is valuable for modelling the electricity price in scenarios that are in some way unprecedented,
e.g. in anticipating the highest rates of green generation on record, or shutting down a historically relevant coal
plants. Furthermore, the model can then be tested on historical price data, without having to split the price data
between calibration and testing, as explained in Eydeland and Wolyniec (2003).
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the electric system,5 mostly through the capacity variation effect, which concerns the removal of

unavailable capacity (Burger et al. (2004); Cartea and Villaplana (2008); Coulon et al. (2013))

or, similarly, the scarcity effect, which captures sudden capacity depletion (Howison and Coulon

(2009), Aid et al. (2013)) as well as through the merit order dynamics – that is fuel bid curve

aggregation – when the fuel types are differentiated (Howison and Coulon (2009); Aid et al.

(2009); Carmona et al. (2013); Aid et al. (2013)). The models propose different functional

forms of the aggregate inverse supply function, but usually omit two-way (i.e. storage) fuels

with loads. Moreover, some are more explicit about the underlying market structure than others

(Ware (2019)). The diversity of the model literature also shows that the geographic and the

commercial wholesale environment has a profound impact on the spot price trajectory.

Indeed, as wholesale electricity is traded almost immediately after it is produced, and always

locally, the main features of the local market, such as the fuel mix, the network sparsity, and the

rules and regulatory requisites of the automated auction algorithm, all tend to factor into price

discovery to some extent (Eydeland and Wolyniec (2003)). This thesis argues that the properties

of the local market routinely determine the correct modelling assumptions and heavily restrict

the functional form of the aggregate supply function.

1.2.2.2 Applicability to the NEM

Surprisingly, the well-known bid stack models with fuel-type differentiation mentioned above

encounter difficulties at the model assumption level when simulating the NEM power price

owing to the following peculiarities of the local market: the already high and increasing re-

newable penetration, the ongoing two-way fuel expansion, the price effects of binding network

constraints, the price-based auction mechanism, and the resulting frequent price negativity. The

seminal model by Carmona et al. (2013) has an attractive merit order dynamic, which the present

thesis retrieves and adapts in five directions to propose an improved approach that better reflects

the NEM.

In the NEM, the fuel mix is increasingly high in solar, wind, and hydro generation (Depart-

ment of Industry, Science, Energy and Resources (2022)); therefore, the model cannot rely on

5See Carmona and Coulon (2014) for a summary of bid stack models.
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the spot and futures prices of the input fuels, such as gas and coal, as closely as the existing lit-

erature suggests (Carmona et al. (2013); Carmona and Coulon (2014); Aid et al. (2013)). Given,

however, that the NEM has a price-based auction mechanism – that is, the participants can bid

at any price within the regulatory price thresholds with no obligation to justify their price on a

cost basis according to AEMC (2021c) – the proposed model can establish the fuel-specific bid-

ding behaviours by fitting a time-dependent fuel bid stack function to the different fuel bid data

with fuel-specific variables. Using the fuels, or explicitly evaluating the relationship between

the bidding behaviour and the input fuel prices by fuel type, then provides the implied inverse

supply curves in reduced form without tying the fitted functions to the production costs or the

utility equations of the individual plant (thus making the model ‘semi-structural’ in this sense).

In any liberalised market, this is applicable to all fuels for which the individual operators engage

in bidding, including renewables.

Although the model for fitting the functions to the fuel bid data can be easily adapted to

different fuel types, the physically available capacity of the fuels cannot be readily captured by

the same formulation. In the NEM, individual participants bid in their full capacity (AEMC

(2021c)); this is the bid data. They also provide other real-time technical data, such as ramp

rates, renewable forecast measurements, etc., from which the available quantities can be cen-

trally ascertained. Drawing on the same data set, rather than introducing a ‘hidden’ variable

for average capacity variation (Burger et al. (2004); Cartea and Villaplana (2008); Coulon et al.

(2013)) or a scarcity effect (Howison and Coulon (2009); Aid et al. (2013)), the proposed model

makes use of the technical data for approximating what constitutes the available aggregate ca-

pacity under the operational constraints.

The NEM also has considerable pumped hydro generation and a rapidly growing battery

fleet, as described by the Department of Industry, Science, Energy and Resources (2022). These

two-way fuels enter on both sides of the market by placing two distinct sets of generator and

load bids, and thus open the typical market structure to demand elasticity with an evident effect

on the electricity price. Therefore, the suggested equilibrium formulation that extends to two-

way fuels is a new contribution to the bid stack modelling literature.

Furthermore, dispatch scheduling and price settlement in the NEM are subject to a myr-

iad of security constraints. When some of these constraints bind, some bids are forced on
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(constrained-on) and others are consequently curtailed (constrained-off), depending on the con-

straint coefficients of the participating units placing the bids. Accordingly, the market bid stack,

or more simply and equivalently (as we show) the demand quantity, must be adjusted to re-

flect these constraint effects on quantity. This is not a case of increased scarcity when the

constrained-on quantities are considered, but a new feature we suggest incorporating into the

usual market bid stack formulation.

Finally, the regulatory market price floor is−$1000 in the NEM, and negative prices, includ-

ing negative price spikes, are common. This requires a model that evaluates the positive and

the negative price outcomes much the same way. Whereas the existing bid stack models present

elaborate mechanisms for positive prices, they only provide probabilistic overlays (Carmona

et al. (2013); Carmona and Coulon (2014)), if anything, for negative prices. More commonly,

they disallow (Howison and Coulon (2009); Ware (2019)) or disregard (Aid et al. (2009, 2013))

price negativity. In contrast, our approach assigns a hyperbolic form to the fuel bid stack func-

tions and preconditions the negative price outcomes the same way as the positive ones, as long

as the bid data records negative bids. This hyperbolic feature is akin to the spread adjustment

method of Ward et al. (2019), who apply this to the short-term marginal cost of thermal tech-

nologies: both approaches clearly identify what puts prices under downward pressure near the

negative end of the price spectrum, and use a hyperbolic feature to reproduce that.

1.2.2.3 Other recent developments

For completeness, note other more recent papers that model the electricity price via an equi-

librium between supply and demand curves. These models are thus structural to some degree.

However, the more refined (the more structural) a model, the more likely it is to reflect the

settings of a specific exchange or wholesale market. A day-ahead market model in Europe

might have very different ingrained assumptions, such as sequential arbitrage, stable offer ca-

pacity over time and lack of real-time balancing constraints, compared with the requirements

of a wholesale real-time market model for the NEM in Australia. In addition, negative prices

are relatively large and common in some regions in the NEM, which is why the standard as-

sumption of an exponential supply curve is not adequate in this setting without adjustments.

Therefore, the applicability of the models below to the Australian NEM is limited.
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The X-model proposed by Ziel and Steinert (2016) and further improved by Kulakov (2020)

first creates a small number of price classes, that is price ranges that are sub-segments of the

full price range. The authors then stochastically model the bid volume within every price class,

whereby the correlation structure of the bids is also retained. Finally, the bid volumes are

probabilistically reassessed for every discrete price within every price class. This is referred

to as price curve reconstruction. The original model in Ziel and Steinert (2016) reconstructs

both supply and demand, whereas Kulakov (2020) reworks the supply curve so that it contains

the elastic negative supply bids from the demand curve, allowing for the demand curve to be

perfectly inelastic. The latter thus models the supply curve with multiple price classes but the

demand curve with only one price class. The name of the approach comes from the fact that

in equilibrium, the curves appear as the letter X . This approach would be problematic for

Australia without first adjusting the bid-in data to the available capacity and constrained-on/off

volumes. Moreover, the computational burden of the entire exercise would be relatively high

for the NEM, because more price classes would be required in that setting, since market prices

might take any value in the range [-A$1000, A$16000] in the NEM and not only in the range of

[-C50, C3000].

Buzoianu et al. (2012) suggest an exponential supply curve function that incorporates tem-

perature and seasonality effects, and distinguishes between gas-fuelled and non-gas generation.

In addition, they formulate a linear demand function with an autoregressive component to equi-

librate the two. Rassi and Kanamura (2023) use a stochastic power transform to map excess

supply quantity minus liquefied natural gas volume to the price using a closed-form expression.

Their model admits a near-exponential shape for the supply curve when implemented on Japan

Electric Power Exchange data. Neither of these models is likely to admit negative prices and

they are most suitable for markets or price regions with a high share of natural gas.

Beran et al. (2019) assume a piece-wise linear supply curve, bidding at marginal cost by

fuel type and a level of must-run combined heat and power capacity. They apply fuel-specific

available capacity truncation as well before obtaining the price at the intersection of supply and

demand. This approach is well-developed in terms of fuel specification, but the assumption

that fuels bid at marginal cost is problematic for the Australian market. In Australia, disorderly

bidding away from marginal cost and shadow bidding, i.e., submitting more than one price–
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quantity bid pairs, are allowed.

Mahler et al. (2019) tackle the pricing problem as an optimisation, where the objective func-

tion minimises the sum of the parameterised marginal prices times residual generation quanti-

ties by production type. The authors make special adjustments for nuclear and hydroelectric

plants. The parametric stack function for the marginal prices is linear. This model is also well-

developed in terms of fuel availability, but the linear assumption limits the model’s ability to

predict positive and negative price spikes.

Pinhão et al. (2022) posit a polynomial form for the so-called price sensitivity curve, which

is obtained by subtracting the supply curve from the demand curve. The root of this curve

gives the price. The parameters of the curve are updated over time using a vector autoregressive

model with harmonic components. This method does not attempt to isolate fuel-specific prop-

erties in the bid stack; therefore, similar to Ziel and Steinert (2016) and Kulakov (2020), one

would need to first adjust the fitted bid-in data for availability and constrained-on/off quantities.

Otherwise, the supply and demand curves cannot capture the true volumes owing to physical

network constraints. These are, however, inevitably present in every real-time wholesale elec-

tricity market.

1.3 Thesis outline

The arc of the thesis is described as follows. The first essay is about market design in

general – as much as market design across the world can be generalised – with a focus on the

merit order principle and the standard bid stack framework, which is also extended to better

capture the properties of real-life markets. The second essay unveils the NEM market design

by collating information from a wide array of sources with an interest in price formation.6 A

screening of the academic literature for a fitting semi-structural price hypothesis or price model

– preferably a bid stack model – reveals that most of the existing models build their assumptions

on European or North American market design principles. Therefore, in the third essay, we

propose a novel bid stack–style price model that better reflects the underlying assumptions and

the required stylised features of regional electricity prices in the NEM. However, an obstacle to

using these types of models for the Australian context is – as we soon discover – that the NEM

6No descriptive summary of this sort is found in the academic literature as of late 2023.
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supply curve is not always monotonically increasing. This property and welfare are investigated

internationally in a small-scale numerical example in the last essay. That, in turn, opens a

window into a critical assessment of several key market design features.

Accordingly, this thesis comprises four essays under the following titles:

• Chapter 2: Market design in electricity markets;

• Chapter 3: A survey of the Australian National Electricity Market;

• Chapter 4: A hyperbolic supply function approach to price modelling;

• Chapter 5: Supply function non-monotonicity and welfare under different market designs.
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Chapter 2

Market design in electricity markets

2.1 Introduction

Electricity is a heavily traded commodity in most markets around the world. Unlike most

commodities, however, electricity is neither globally transferable, nor economically storable.

Infrastructural developments such as network extensions and storage technologies hold the po-

tential to overcome these restrictions in the near future. At present, however, electricity is

exchanged almost always instantaneously at local or sometimes coupled markets.

Local markets typically adopt one of the two dominant market models, the integrated pool

model or the exchange model, as classified by Cramton (2017) and Mayer and Trück (2018).

The integrated model finds the price as the equilibrium result of a security-constrained dispatch

optimisation using actual system information. Pricing is ex-post or dispatch-based; therefore, it

aptly reflects the true grid economics given the security constraints. In contrast, the exchange-

based model obtains the equilibrium solution from voluntary bid participation via self-dispatch,

similar to financial markets. Pricing is therefore ex-ante; it is not based on actual dispatch and

may lack validity.7

This chapter provides an overview of electricity markets in the integrated pool model.

These markets might handle bid offer curves, virtual bids, and forward contracts simultane-

ously in the market value maximising central dispatch algorithm (Ott (2003); Cramton (2017)).

The simple bid offer curves recording competitive price–quantity bids per unit are relatively

widespread. However, because the cost function of the market value maximisation often ex-

hibits non-convexities (lumpiness) due to start-up costs, must-run times, unit commitment (on-

line/offline status), etc., other more involved multi-part bid curves are also fairly common

(Hogan (2014); Cramton (2017)). Multi-part bid curves – as we refer to them here – internalise

7Mayer and Trück (2018) explain that “As the market is balanced only based on the price, technical limitations
can sometimes make it impossible to physically fulfill the trades.”.
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the fixed energy economics of the plants by including fixed costs in the bid language. More-

over, contrary to the simple and the multi-part bid offer curves, which usually involve physical

amounts, virtual bids are financially settled bids offered into the physical market (Ott (2003)).

According to Cramton (2017), virtual bids have been found particularly useful in resolving cost

non-convexities and other spot market frictions by providing liquidity. Furthermore, forward

contracting – that is, bilateral transactions into the spot market – have been shown to help dis-

incentivise strategic bidding (gaming).

Energy is the main commodity in the various bid offers, but there is reserves trading too,

in most dispatch-based markets, to promote reliable non-stop supply. Energy and reserves are

more or less identical in material substance, with delivered quantity measured in watt-hours

(Wh)8, but they have very different roles in the system. As suggested by Cramton (2017),

‘operating reserves’ is a broad area covering a number of ancillary services. In general, the in-

stalled capacity on standby in various ancillary services is potentially co-optimised with energy,

but an installed capacity on standby earning scarcity rent through the capacity markets may not

be. Further, the contracted demand response before involuntary load9 shedding and the con-

tracted reliability unit commitment are mostly also not co-optimised out-of-market operations,

as detailed in Hogan (2014) and Cramton (2017) for the North American regulatory context.

Exploring the similarities between pool markets worldwide with an emphasis on price dis-

covery reveals two main shared facets between most wholesale markets in the integrated model.

First, because the economic objectives of the agents are virtually indistinguishable and the trans-

mission networks acting as the distribution channel have similar physical constraints, the sets

of market participants and governance goals are broadly the same. Second, as long as the price

solutions constitute uniform prices so that every megawatt (MW) power is sold at the same

price to some – albeit varying – degree of price locality, that is at a locational marginal price,

but not without security constraints, the security-constrained utility maximising price protocols

will perforce bear some resemblance.

This chapter discusses how electricity prices are set by specifying the bid aggregation as-

8Watt-hours is a unit of energy obtained as a unit of average power (in Watts) multiplied by a unit of time (in
hours).

9We use the terms load and demand interchangeably within the wholesale context.
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sumptions in line with the above similarities to retrieve the equilibrium price. Storage fuel units

and physical constraint effects are also assumed to be reflected in the extended economic frame-

work, which is presented from the ground up. Numerical examples are used to emphasise the

effects of these extensions on the price.

Finally, alternative forms of electricity exchange have significantly proliferated in recent

decades. Some examples include bilateral contracts such as power purchase agreements, behind-

the-metre batteries, non-integrated hybrid utilities, such as wind farms combined with battery

storage, distributed energy resources, e.g., rooftop solar panels, and decentralised demand re-

sponse activities. These solutions are all viable but are usually small-scale or increasingly

integrated into wholesale trading. In this chapter, we only discuss these alternative forms of

exchange as relevant to the wholesale spot price.

The remainder of the chapter is organised as follows. After this brief introduction, Sec-

tion 2.2 explores some common characteristics of electricity markets. Then, Section 2.3 expli-

cates ex-post marginal pricing in the integrated pool model and expands the equilibrium pricing

framework to storage fuel and network constraint effects. Section 2.4 highlights some features

that distinguish different market designs within the pool model, and Section 2.5 discusses the

role of financial markets. Finally, Section 2.6 concludes the chapter.

2.2 Market participants and governance goals

Owing to the natural monopolistic setting, perhaps the most overt similarities between the

pools at different geographic locations are the similar sets of governance goals and market

participants. This section presents the four most general governance goals and the usual market

participants involved on the operative side of market conduct.

The rule maker sets market regulations in four important directions. The rules promote

short- and long-run reliability, equitability, and sustainability through generation, storage and

transmission investments, market power mitigation, efficient equilibrium price approximation,

and efficient hedge markets.10 First, the market design incentives for new investments aim to

meet the dual goal of having sufficient long-term generation capacity and adequate operating

10See Cramton (2017) for a global overview of electricity market governance objectives and AEMC (2018a)
(pages 56-59) for a discussion of particular issues in efficient equilibrium price approximation.
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reserves to manage the short-run scarcity risk. Second, market power mitigation is necessary to

ensure that the agents are unable to unilaterally move the prices, to maintain an equitable market

environment and consumer welfare (Cramton (2017)). Third, drawing from the arguments put

forward by Hogan (2014), the efficiency of the dispatch-based price outcome – that is, market

price quality – is of interest while aiming to keep the uplift payments at a minimum11 so that

the spot prices determined at the efficient grid equilibrium better reflect the costs of capacity

investments. Finally, liquid and efficient hedge markets are beneficial for participants to contin-

ually manage the price risk, basis risk, and dispatch risk involved in their physical and financial

positions. Price risk arises out of spot price volatility, whereas basis risk denotes the zonal12 or

nodal price differentials between the prices at different locations due to losses and congestion

(AEMC (2018a), page 56). Dispatch risk involves the lack of financial firmness in dispatch;13

it is the risk of not being dispatched – for example, being curtailed due to security-constraint

costs in spite of bidding price competitively.14

The distribution system operator (DSO), or so-called market operator, is the central entity

mandated to plan out the processes for orchestrating optimal power flow (OPF) and spot pricing,

and to operate the market in real-time, in agreement with the above outlined governance goals.

Besides these core functions, market operators may or may not own and manage assets and hold

responsibilities in facilitating auxiliary functions, such as forward contracting, financial rights

trading and capacity trading, while maintaining some degree of their independence (Cramton

(2017); Hogan (2014)). Whether there is one system-wide DSO, or many operators perform

these functions at the same time through coaction, depends on the jurisdiction and the gover-

nance choices, as do many other settings (Eydeland and Wolyniec (2003), pages 5-6). However,

it follows from the discussion in Cramton (2017) that the independence of the market operator

is generally preferred for market power concentration reasons.

11Every aspect of market settlement can rarely be covered in one central dispatch. Therefore, uplift payments
are also often needed. Common examples include the make-whole payments that compensate for the non-convex
costs that are not funded by the spot price and the compensation payments for firm access, e.g. when nominally
low-priced quantities are curtailed in the dispatch outcome. These are typically socialised with no effect on the spot
price (Hogan (2014)). For further discussions about uplift, see Hogan (2014) and Cramton (2017). Note further
that NERA (2013) (pages 13-16) provides an assessment for the possible curtailment of nominally low-priced
quantities.

12We use the terms zonal and regional interchangeably.
13Financial firmness is the volumetric certainty about the contracted transfer.
14Following the definition of dispatch risk in AEMC (2018a) (pages 57-59).
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The generator and load units are the main body of bidders. Generator units produce and

sell electricity. They may be powered by thermal, renewable or nuclear fuels. Or, they can

be the energy injection legs of integrated two-way units – that is, units endowed with storage

capabilities such as a pumped hydro or battery plants. In contrast, load units buy electricity from

the grid. They can be load-only industrial demand response providers or the energy withdrawal

legs of storage units (Cramton (2017)). The fuel or resource mix of a market describes the

relative magnitudes of different fuels in the system typically by nameplate capacity or by some

historical throughput measure.

The transmission network and distribution network providers maintain the closely moni-

tored electric network that connects the units and the end users, as detailed in AEMC (2022a).

They maintain the high voltage transmission lines, the substations with voltage transformers, the

low voltage distribution lines, and the various grid forming and phase control equipment in sta-

ble and secure operating conditions. The lines have secure flow limits constraining throughput,

and telemetry instruments including weather scanners are installed to ensure that OPF is being

directed within these limits at all times, even during extreme events. Moreover, transmission

and distribution lines inevitably incur electric losses due to resistance.15

The interconnectors are the actively maintained transmission lines that carry capacities be-

tween the regions if a market has multiple interconnected price regions (AEMO (2021c), page

5). Similar to the intra-regional lines, interconnectors, too, have physical capacity limits and

incur transmission losses.16 According to AEMO (2015a) (page 7), these can be directed lines

under the market operator’s management or market interconnectors that participate by placing

bid offer curves.

Finally, retail utility providers are entrusted with representing the end users in accessing vol-

umes of electricity from the wholesale market. They ensure that the demand of the consumers

is being met at the flick of a switch. However, the 2000-2001 crisis of the California market

also illustrates the case for efficient hedge markets benefitting retailers.17

15Personal communications with Bill Jackson (ElectraNet) Oct 28, 2021.
16The calculation of interconnector losses is detailed in AEMO (2009) (pages 3-4).
17A detailed account of the California market crisis is set forth in Cramton (2017).
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2.3 Security-constrained least-cost pricing

Energy is typically cleared as a homogeneous commodity in multi-unit auctions, which is an

umbrella term including discretionary price, uniform price and Vickery auctions.18 Any of these

settings could apply to electricity pools (Hinz (2004)). In this essay, we focus on (automated)

electricity auctions adhering to uniform price principles. These trade every megawatt (MW) of

delivered quantity at the same price within the price locality, such as a price region.

In integrated market models, the real-world uniform price auction protocols maximise the

economic utility of the consumers under security constraints. The uniform price is set as low

as possible, given the bid-in quantities (MW offers) in merit order,19 using three important

notions. First, stacking the bids from the bid offer curves in the most basic way develops some

implied supply and demand curves, the equilibrium of which defines the price. Second, these

implied curves for energy remain well understood in the marginal pricing framework as long

as we assume simple bid curves and not multi-part bids. Third, the physical constraints of the

interconnected networks have price effects.

2.3.1 Merit order principles in pricing

Biggar and Hesamzadeh (2014) show that under certain conditions, centrally optimised

generator-only wholesale electricity dispatch adheres to pricing on merit order principles (also

see page 115 in Wood et al. (2013)). These conditions involve unit-level capacity limits but no

network constraints. Their argument is as follows.

Given a set of generators Nj at a single bus j, let generator i ∈ Nj have a constant cost ci

for all of its quantity served Qi within its capacity limits 0 ≤ Qi ≤ Ki.

Let us define the objective function of this economic dispatch problem as min
∑I ciQi,

where Ci(Qi) = ciQi for 0 ≤ Qi ≤ Ki. The objective function is then subject to the following

constraints:
∑I Qi = Q(↔ λ), ∀i, Qi ≤ Ki(↔ µi) and Qi ≥ 0(↔ νi). These can be

respectively re-expressed asQ−
∑I Qi = 0(↔ λ), ∀i,Qi−Ki ≤ 0(↔ µi) and−Qi ≤ 0(↔ νi).

The Lagrange function can be formed as L =
∑I ciQi + λ(Q −

∑I Qi) +
∑I µi(Qi −

18For auction theory, we refer the reader to Krishna (2009).
19We interpret the merit order concept based on Hinz (2004).
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Ki) +
∑I νi(−Qi). Then, the Karush-Kuhn-Tucker (KKT) conditions give for ∀i that ∂L

∂Qi
=

ci−λ+µi− νi = 0, from which ci = λ−µi+ νi, and that ∀i, µi ≥ 0 and µi(Qi−Ki) = 0, ∀i,

νi ≥ 0 and −νiQi = 0. Therefore, µi = 0, νi = 0 and ci = λ if the dispatch quantity values are

within the capacity limits. We can say that λ is both the marginal value of the demand balance

constraint and the system marginal cost at this bus. If a unit is dispatched at its upper capacity

Ki, then ci + µi = λ for µi ≥ 0; that is λ is at or above ci. Otherwise, if a unit is undispatched,

then its costs are at or above λ, as ci = λ+ νi for νi ≥ 0. Therefore, firms with the lowest ci are

dispatched first: the dispatch follows merit order.

This result substantiates the basic results in bid stack–based pricing where quantities are

dispatched on merit order principles while ignoring network constraints and losses.

2.3.2 Market bid stack framework

The as-bid bid offer curves are a series of price–quantity bids offered by the bid-eligible

units to indicate their preferred terms. The standard unit of measurement for the bids is dollar

per megawatt hour ($/MWh). These rates are later converted into the sustained rate of dispatch

in megawatt hours, which can then be apportioned to the duration of the trade period, e.g. to

five minutes. In most markets, units may change their bids over time; therefore, the merit order

is dynamic over time. Alternatively, should the majority of the bidders use the same bids for

days or longer, i.e., not change the term structure of their offers, perhaps owing to a market-

specific rule, then the merit order of the bids could be described as non-dynamic (Carmona et al.

(2013)).

To obtain the uniform price, the market operator first sorts the cumulative price-quantity

blocks of generators in ascending order based on price (in merit order) and sums the energy

quantities offered at or below every price. This gives the as-bid implied inverse supply curve

of the generator units; the total generation is expressed as a function of the price. The step-

wise view thereof is the inverse of the generator bid stack function, as in Chapter 1. In the

mainstream structural modelling literature, the generator bid stack function – that is, the step

function that expresses the price as a function of the total generation without load activity – is

the as-bid market bid stack function.20 The market operator may then assume that demand is

20The mainstream bid stack price modelling literature mostly but not exhaustively comprises Barlow (2002),
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inelastic and that the least-cost price is set at the dollar level at which the demand line intersects

the market bid stack. Identically, the marginal system cost of energy is the price of the last bid

in merit, i.e., it is the most expensive bid still needed to meet demand.

Two-way fuel units simultaneously offer negative supply (demand) on their load legs and

positive supply on their generation legs. The negative supply offers to buy electricity are the

load bids. The construction of the market bid stack function is not fundamentally different in

the presence of two-way fuel units, except that the negative energy quantities are summed with

negative signs. The load bid stacks are coalesced with the generator bid stacks in the market

by summing the offered negative and positive quantities, respectively, at every price over the

full price range. The elastic implied demand curves of the two-way fuel units or the load-

only activity (with positive quantities, i.e. the mirror images of the load bid stacks along the

y-axis) are then implicit in the market bid stack21 by construction. The market operator may

use this modified market bid stack to read the price off at the price-quantity point at which the

supposedly inelastic demand line intersects it or may by other means find the last available bid.

The assumptions for establishing the merit order market price as the marginal system cost

of energy from bidding are direct developments from economic theory. At market level, the

uniform price bid stack mechanism we describe is akin to the standard supply–demand mech-

anism in microeconomics. That is, we let aggregate market demand be fully inelastic and

conjecture, based on the mainstream bid stack modelling literature, that the inverse market bid

stack represents the aggregate market supply. Also, the merit order corresponds to trade utility

maximisation on the basis of price competition under simplified conditions, as in Biggar and

Hesamzadeh (2014). At unit level, in stating that the bid stacks of generators resemble an im-

plied inverse supply relation, we are affirming a fundamental assumption from the parametric

bid stack model literature. For loads, however, the implied inverse demand representation is a

new assumption, as load units have not been included in the bid stack modelling literature in

this way. The price impact of such an embedded elastic negative supply curve is examined in

Table 2.2.

Howison and Coulon (2009), Aid et al. (2009), Carmona et al. (2013), Aid et al. (2013), Carmona and Coulon
(2014), Ware (2019).

21The market bid stack is commonly shown with quantity along the x-axis and price along the y-axis.
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Furthermore, the notion that the last bid in merit, rather than the next unused bid, sets

the price, is based on the principle proposed in Hua et al. (2019) that a commercial dispatch

solver would price the last MW.22 The left-continuity assumption for the generator and load

bids follows from the last MW premise as well.

The above discussion of the price discovery process and the example below demonstrate

the mechanics of the implied supply and demand curves and the price calculation with the two

types of energy bids. However, the now presented framework is relatively simple in the sense

that it omits reserve bids, security constraints, losses and interconnectors from the price setting

context, which we shall later include. The following example shows the basic construction of

the market bid stack step function with and without two-way fuel activity.

Example 2.1. The uniform price is calculated on merit order principles to illustrate the price

effect of the two-way fuel activity in the market. The two-way loads are assumed to use a generic

strategy, whereby they bid considerably lower to buy than they bid to sell.

Let a market receive three generator bids – 20 MW at $100, 70 MW at $1000, and 10 MW

at $10 – and no load bids at first. The merit order can then be written as (10 MW, $10) −→ (20

MW, $100) −→ (70 MW, $1000), in increasing order on price.23 It follows that the generator

bid stack, the cumulatively increasing generation offers 1 (10 MW, $10)−→ 2 (30 MW, $100)

−→ 3 (100 MW, $1000) is the as-bid market bid stack. It is also left-continuous. Note the

implications of left-continuity. At every bid price, the generation quantity goes up to the full bid

quantity (inclusive), which implies the possibility of complete dispatch. However, zero dispatch

is impossible given the left-continuous definition of the first bid in merit order. Also, should

the price fall between two bid prices, the associated quantity is the lower one at the lower

22This relates to the problem of dual degeneracy in the marginal price when it is determined as the dual variable
of the demand balance constraint (as in Section 2.3.3). If one was to write a simple linear example for security-
constrained least-cost dispatch as a two-band minimisation problem in its Lagrange equation form, such that both
bands were completely dispatched, seeking to determine the price as the Lagrange multiplier, one would find that
the price cannot be uniquely determined without an assumption about whether the last MW or the next hypothetical
MW is used to set the price (Wood et al. (2013), page 114). This pre-assumption case leaves infinite price solutions
within the price range defined by the marginal costs considering the last MW and the next MW at the end points
of the range, i.e., a problem of dual degeneracy within the range, for the given edge case when both bid bands
are fully utilised. Hogan (2012), Ela and O’Malley (2015) and Biggar and Hesamzadeh (2022) reach the same
conclusion for more general settings and explain that the problem is due to the (piece-wise) linearity of the solver’s
objective function and that it implies the time inconsistency of the trade value maximising price outcome.

23In this notation, (10 MW, $10) refers to 10 MW of energy being supplied at $10 or more until it is superseded
by the next bid, (20 MW, $100) supplying an additional 20 MW at minimum $100.
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price: suppliers do not offer to sell additional quantities at prices below the next bid price,

which makes economic sense. For example, at $900 that falls on [$100, $1000), the generator

bid stack takes 30 MW as at $100 and not 100 MW as at $1000. Therefore, in the inverse

view in Table 2.1, 1 (10 MW, $10) is 10 MW on [$10, $100), 2 (30 MW, $100) is 30 MW on

[$100, $1000) and 3 (100 MW, $1000) is 100 MW on [$1000,∞).

The market operator may then assume that demand is inelastic and use the economic notion

that the least-cost price is set at the dollar level at which the demand line intersects the market

bid stack. Identically, the least-cost price can also be found as the price of the last bid in merit.

For the price calculation, let pool demand be 50 MW. Because 30 MW is not sufficient to fill 50

MW in full, the last bid used for setting the price at the marginal system cost would be the third

in merit order: (70 MW, $1000). To the same effect, the market operator could just evaluate

the last rung of the market bid stack at the demand quantity, 3 (100 MW, $1000), to get the

unit price of the incremental 1 MW energy at 50 MW. The generation-only price is 1000 $/MWh

both ways, as in Table 2.2.

Table 2.1 : Market bid stack with two-way fuel activity

The table coalesces the positive generator bid stack and the negative load bid stack in the market at every price. This gives the market bid stack
as 1 (5 MW, $10) −→ 2 (25 MW, $100) −→ 3 (30 MW, $900) −→ 4 (100 MW, $1000) −→ 5 (135 MW, $2000).

Price Generation fuels: generator bid stack (MW, $) Two-way fuels: generator and load bid stack (MW, $) Market bid stack
level 1 (10, $10) 2 (30, $100) 3 (100, $1000) 4 (135, $2000) 1 (-25,-$100) 2 (-5,-$10) 3 (0, $900) (MW, $)

-$100 +0 MW -25 MW Negative MW
-$10 +0 MW -5 MW Negative MW
$10 +10 MW -5 MW 1 (5, $10)
$100 +30 MW -5 MW 2 (25, $100)
$900 +30 MW -0 MW 3 (30, $900)
$1000 +100 MW -0 MW 4 (100, $1000)
$2000 +135 MW -0 MW 5 (135, $2000)

Now consider adding one positive load bid of 35 MW at $2000 and three negative load bids

of -20 MW at -$10, -10 MW at -$100 and -5 MW at $900 to the market for the two-way fuels,

which sum to zero MW overall. The bid on the generation leg can be appended to the previous

generation bid stack (positive supply), and the load leg can be treated as negative supply. First,

the load merit order is (-10 MW, -$100) −→ (-20 MW, -$10) −→ (-5 MW, $900) in increasing

price order. Then, the load bid stack 1 (-25 MW, -$100) −→ 2 (-5 MW, -$10) −→ 3 (0 MW,

$900) is the cumulatively increasing energy load in merit order that is left-continuous. Note the
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implications of left-continuity. The load fuels can never be dispatched in the full bid volume,

but they can go to nil easily. Also, should the price fall between two bid prices, the associated

quantity is the more negative one at the lower price: buyers offer to buy more quantities at prices

below a given bid price. For example, the load bid stack at $10 that falls on [−$10, $900) takes

-5 MW as at −$1 and not 0 MW as at $900). In this way, 1 (-25 MW, -$100) is -25 MW on

[−$100,−$10), 2 (-5 MW, -$10) is -5 MW on [−$10, $900) and 3 (0 MW, $900) is 0 MW on

[$900,∞) in Table 2.1.

In addition, the generation leg of the two-way fuel unit gives the last rung of the combined

generator bid stack 1 (10 MW, $10) −→ 2 (30 MW, $100) −→ 3 (100 MW, $1000) −→ 4 (135

MW, $2000) as 135 MW on [$2000,∞) due to the left-continuity on the inverse.

Figure 2.1 : Market bid stack

The figure shows the aggregate market bid stack that coalesces both generator and load bids, as in Example 1.
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For the price calculation with load bids, the load-adjusted market bid stack coalesces the

positive generator bid stack and the negative load bid stack quantities at every price in the

market. As shown in Table 2.1 and Figure 2.1, meshing the generator and the load bid stacks

gives the load-adjusted market bid stack as 1 (5 MW, $10) −→ 2 (25 MW, $100) −→ 3 (30

MW, $900) −→ 4 (100 MW, $1000) −→ 5 (135 MW, $2000). This ordering can then be used to

determine the system cost price at 50 MW demand. Because 30 MW is not sufficient to meet the

50 MW demand, the last rung of the market bid stack, 3 (100 MW, $1000), would be used for

setting the price. That gives a price of 1000 $/MWh for the last 1 MW.
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In edge cases – that is, at quantities at full bid amounts – the price is still that at the

aggregated market bid curve. For example, 30 MW demand is an edge case, because the first

two generator bids in merit order sum to 30 MW, whereas the offset from the load bid is zero

MW, as shown in Figure 2.1. Here, the price would have been $100 in the absence of load

activity (green), but with loads, the price is $900. Note that because of left-continuity, this

value is consistent with any quantity over the last 1 MW, i.e., on the range of (29 MW, 30 MW].

In this example, at 29 MW, there is 1 MW load activity and 30 MW dispatched generation, after

which the load is shed at 30 MW over the incremental change; hence, it is the price of the load

bid that sets the price.

Table 2.2 : Price effect of two-way fuel activity

The table shows the merit order price effect of adding two-way loads to the market (right) compared to the generator-only setting (left). Price
differentials arise between 5-10 MW and 25-30 MW.

Demand Generator-only With two-way fuels

[0 MW, 5 MW] $10 $10
(5 MW, 10 MW] $10 $100
(10 MW, 25 MW] $100 $100
(25 MW, 30 MW] $100 $900
(30 MW, 100 MW] $1000 $1000
(100 MW, 135 MW] $2000 $2000

To evaluate the price effect of the two-way fuel activity, i.e., the embedded elastic negative

supply curve, we show an illustrative breakdown for different levels of demand in Table 2.2. As

one might expect, the load legs of the loads absorb supply at low prices, which contracts the

implied inverse supply curves if demand is low. As a result, the load effect results in higher

prices at lower levels of demand – that is, a price of $100 between 5 and 10 MW instead of $10

and $900 between 25 and 30 MW instead of $100, as in Table 2.1. In summary, when loads

follow a broadly typical buy low sell high strategy, the price effect results in a price increase at

lower quantities and a quantity increase at high prices at higher quantities.

2.3.3 Marginal pricing principles

The market price is thus determined as the marginal system cost of energy, i.e. the cost of

an incremental 1 MW load, which is typically given as the dual variable of the demand balance
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constraint of the LP central dispatch program.24 Locational marginal pricing (LMP) principles

are now introduced for a more complete treatment of security-constrained least-cost marginal

price discovery in a general DC load flow model, in line with the work of Schweppe et al.

(1988).

There are two frequent settings of LMP: nodal and zonal. The nodal model uses every sub-

station bus (source) separately as an injection point to obtain the gradient of the total system cost

for marginal demand withdrawals at the reference node25 ex-post, given the dispatch solution

(Ott (2003)). It computes many different market prices at a multitude of locations for the same

network area. It follows that nodal LMP can comprehensively price congestion, as it considers

various transmission routes separately (AEMC (2020), pages 18-22)). In the zonal setting, in

contrast, the market price is calculated as the gradient of the total system cost for a change in

the demand at a single reference node of the network area (swing bus or sink), ex-post, after the

dispatch result is known. Therefore, there is only one zonal price per network area. The zonal

setting is usually viewed as an approximation of the full-fledged nodal LMP design (AEMO

(2012c), page 10).

Most commonly, nodal prices can be decomposed into the bid-in marginal system cost, the

locational marginal loss and the locational marginal congestion. A simpler representation of

nodal prices in Ott (2003) omits marginal losses, whereas the more general form in Hogan

(2014) accounts for both the co-optimised reserve requisites and losses. We can express the

price pi at node i for all k in the binding constraint set B as

pi = λc,lN −
∑
∀k∈B

Ai,l,kSk, (2.3.1)

where λc,lN denotes the marginal cost of energy for a unit change in MW injection at node i with-

drawn at the reference node N , co-optimised with reserves (upper index c) and after losses (up-

per index l),26 which can be collapsed to the as-bid marginal system cost of energy as λc,lN := λi

24“Economic theory derives the fact that marginal cost pricing is optimum in a social welfare sense. This can be
viewed as a way to introduce spot prices which causes the customer to choose a value for demand which satisfies
the social optimality conditions for the demand at the time.” as in AEMO (2012c) (page 9).

25We use the terms node and bus interchangeably.
26Equation (2.3.1) restates the first equation on page 534 in Ott (2003).
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while neglecting reserves co-optimisation and losses. Then, Ai,l,k denotes the constraint coeffi-

cient, the power flow change over network element (link) l for a unit increase in MW injection

at node i and withdrawal at node N . Furthermore, Sk denotes the shadow price (marginal

value) of the constraint: the cost of a unit increase in the constraint coefficient with respect to

constraint k. Note that Sk = 0 for all non-binding constraints. Therefore, pi at all locations i

collapses to the same system price λc,lN if there are no binding constraints. When there is a bind-

ing constraint over any link l, however, this affects every nodal price with a non-zero constraint

coefficient Ai,l,k for l anywhere in the network.27

Hogan (2014) warns that dispatch-based LMP is built on the actual dispatch solution, which

is an imperfect approximation of the optimal outcome, and that therefore the accuracy of the

constraint coefficients might deviate from the optimal flows in the presence of reliability unit

commitment or other lumpy system requirements. Indeed, sometimes not all binding constraints

are used; for example, contingency constraints may be left out (Ott (2003)). Similarly, based

on Cramton (2017), the constraints that are non-competitive by some market concentration or

constraint violation measure may be removed to mitigate market power anomalies.

In contrast, the zonal price at reference node N breaks down into the bid-in marginal cost

with reserves co-optimisation and losses as

pN = λc,lN , (2.3.2)

because Aik = 0 at N as in Biggar and Hesamzadeh (2014) (page 154). The shadow price

of the constraints (congestion) is no longer explicit in (2.3.2) compared with (2.3.1).28

2.3.4 Security-constraint price effects

Although the security-constraint bottlenecks are not explicit in the zonal price in (2.3.2),

the physical limitations are present in the network; they inevitably influence the viable set of

27As Hogan (1999) states for non-radial networks, “A single transmission constraint in an electric network can
produce different prices at every node. Simply put, the different nodal prices arise because every location has a
different effect on the constraint. This feature of electric networks is caused by the physics of parallel flows.”
Otherwise, the constraints over the links only apply for neighbouring nodes.

28The nodal structure better disentangles the shadow price of line congestion at least in radial systems. By
contrast, the zonal design without nodal price differentials tends to export the price effects of local line limits to
entire regions (AEMC (2019a); Leslie et al. (2019); NERA (2020); AEMC (2020)).
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MW offers for dispatch and therefore the market price outcome. What bid or bids turn out to be

marginal and in what quantity depends both on the demand level and the underlying constraint

topography.29

Two price channels are associated with the physical constraints that can modify the merit-

order-based marginal bid selection for computing the marginal system cost of energy before

losses λcN in (2.3.2). First, the bid-in quantities are constrained-on or constrained-off in out-of-

merit interventions.30 Second, quantity offsets due to binding constraints over the marginal 1

MW are fairly common. Both price effects stem from pre-empted constraint violation.

First, the constrained-on quantities are nominally high-priced MW offers that must run ei-

ther because of binding technical limitations such as a ramp-down rates or to relieve system

gridlocks by buying, for example inertia or system strength counterflows. Analogously, the

constrained-off quantities are nominally low-priced MW offers that are curtailed due to binding

technical limitations, such as thermal constraints, ramp-up rates, the lack of system strength, or

any other constraint. Although these quantities appear uneconomic and economic, respectively,

in a nominal sense, before considering any security-constraint non-bid factors, they are in fact

feasible and unfeasible in the least-cost solution given the opportunity costs of breaching the

physical limits of the network. On the supply side, constrained-on quantities are appended to

the merit order, whereas constrained-off quantities are blocked out and not included in the merit

order. Translating that into the equivalent effect on inelastic demand, constrained-on quantities

decrease demand, whereas constrained-off quantities increase it. These modifications indirectly

affect the marginal bid set and the price result.

Second, sometimes network elements must reduce throughput to relieve an otherwise violat-

ing constraint or to change quantities (decision variables) within a binding constraint to permit

the incremental 1 MW power flow increase on the grid. Although the net amount of reduction

and increase would equal 1 MW, these forced changes most probably involve targets summing

to more than 1 MW that directly affect the marginal bid set and the price result.

Expanding on Example 2.1, the price impacts of these direct and indirect security constraint

29Including the effects of security constraints relaxes the ‘as-bid’ assumption and replaces it with an ‘as-
feasible’ view of the market bid stack.

30The scenarios shown in AEMC (2018b) (pages 242-254) and AEMC (2018a) (page 57) detail the conditions
for constraining quantities. See also AEMO (2021d) (pages 6-7).
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effects are demonstrated in greater detail in the following example.

Example 2.2. As earlier, on a hypothetical grid with no security constraints, the unit price of

the incremental 1 MW power at 50 MW demand is evaluated as 1000 $/MWh using the as-bid

market bid stack with two-way fuel activity, 1 (5 MW, $10) −→ 2 (25 MW, $100) −→ 3 (30

MW, $900)−→ 4 (100 MW, $1000)−→ 5 (135 MW, $2000). Similarly, price is $100 at 15 MW

demand.

Relaxing the no-constraint assumption, first, the constrained-on quantities are bid-in vol-

umes that must run despite having offered a price in their bids that is above the market price

(in the absence of constraints) – that is, a price above 100 $/MWh at 15 MW demand. Assume

that 12 MW offered at $2000 is constrained-on. This will see a negative demand adjustment of

12 MW. The demand after adjustment is 15-12 = 3 MW. The cost of the last MW supply from 2

MW to 3 MW is obtained as follows. Because 2 MW ≤ 5 MW and 3 MW ≤ 5 MW, the price is

1 × 10 $/MWh using the adjusted demand and the original market bid stack. This shows that

constrained-on quantities decrease the market price.

Second, the constrained-off quantities are bid-in volumes that are curtailed despite having

offered a price in their bids that is at or below the realised market price, which is $100 at 15

MW load. This constrained-off amount pops off of the market bid stack, and the remaining

market bid stack contracts leftwards. Equivalently, demand is adjusted upwards by 12 MW. For

15 MW demand, the demand after adjustment is 15+12 = 27 MW, and the market bid stack

stays as is. Then, the cost of the last MW supply from 26 MW to 27 MW is obtained as follows.

Because 26 MW ≥ 25 MW and 27 MW ≤ 30 MW, the price is 1 × 900 $/MWh. This shows that

constrained-off quantities increase the market price.

Moreover, when a network bottleneck reduces MW flows on some nodes and increases them

on others, so that the net as seen in dispatch-based pricing is always (approximately31) 1 MW,

we might observe the following at 50 MW demand. The incremental 1 MW power is subject to a

binding constraint 1×qA+0.8×qB ≤ 10, where qA and qB are the node-level decision variables.

If this constraint is already binding, i.e., 1 × qA + 0.8 × qB = 10, then the changes in these

decision variables must be such that the constraints on the left hand side (LHS) do not increase

31Ignoring losses in this discussion.
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above zero (1×∆qA+0.8×∆qB ≤ 0), but their sum increases by 1 MW (∆qA+∆qB = 1). In

the solution, −∆qA = 4 MW power is removed from the node that serves the quantities from 45

to 49 MW in the market bid stack, and ∆qB = 5 MW is supplemented from the node dispatching

49–54 MW in the market bid stack. This will see no demand adjustment and no change in the

original market bid stack but only a significant ‘multiplier change’ in the price calculation. For

50 MW demand, because 44 MW ≥ 30 MW and 54 MW ≤ 100 MW, the price is -4 × 1000 + 5

× 1000 = 1000 $/MWh using the original market bid stack.

A small variation to the above example would be the removal of 4 MW power from the

node that serves the quantities from 16 to 20 MW in the market bid stack, if that corresponds

to −∆qA = 4 MW, as a way of relieving the binding constraint and causing the price effect.

In addition, ∆qB = 5 MW is supplemented from the generation node dispatching 49–54 MW

in the market bid stack. In combination, the reduction and the increase result in a net 1 MW

incremental change in quantity. Then, the price becomes -4 × 100 + 5 × 1000 = 4600 $/MWh

using the original market bid stack, giving rise to a price increase relative to the price ignoring

the security constraints.

2.4 Differences in market design and fuel mix

Here, the key differences across market designs are discussed within the integrated pool

model. As related to price discovery, the number of prices per market, the timing of the trade

intervals, the regulatory price thresholds, the basis for bidding, the extent to which the reserves

are co-optimised and the fuel mix are the main differences within the category of integrated

pool auctions around the world.

First, the market prices are published per price node in nodal markets and per price region in

zonal markets (Eydeland and Wolyniec (2003) (page 11); Cramton (2017)). As regions involve

multitudes of nodes, there are only a handful of prices in regional markets but hundreds in nodal

pools (PJM (2022b)). Other markets operate in a single-price setting, where there is only one

price per country (Mayer and Trück (2018)).

Secondly, pools specify the dispatch and the trade intervals for the day-ahead, real-time or

multi-settlement schedules usually at 5-minute, 30-minute or hourly resolution, which impact

the timing of the trade intervals. The dispatch interval determines the periodicity for dispatch
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target allocation, and the trade interval is the recurrence of price settlement. These may be

aligned for a single schedule, or they may differ. The two kinds of schedules, day-ahead and

real-time. The day-ahead market is a form of forward market into the dispatch and trade in-

tervals of the next trading day. Plants may plan their delivery both physically and financially

using the day-ahead market, according to Ott (2003), as is common in many countries in Eu-

rope (Mayer and Trück (2018)). In contrast, bidding into real-time markets inevitably gives less

predictable quantity outcomes as these are settled directly in the dispatch and trade intervals of

the trading day. Real-time markets without day-ahead markets are common in Canada and Aus-

tralia (Mayer and Trück (2018)). Nodal markets in North America tend to have both day-ahead

and real-time schedules in combination. The purpose of this multi-settled design is to enhance

the efficiency of the equilibrium price approximation for capacity decisions mainly through

arbitrage between the day-ahead and the much more volatile real-time market.32 Indeed, Ott

(2003) shows for such a market that day-ahead and real-time prices strongly converge.

Third, using a regulatory price band consisting of a price floor and a price cap, as mentioned

in Barlow (2002), is a common technique for maintaining the market price in a particular band.

Although these price thresholds are typically imposed at vastly different levels in different coun-

tries, the trade-off between a more restrictive and a less restrictive policy is well-understood. A

narrower price band promotes price stability and impedes exercising market power, whereas a

wider price band rewards private investment into generation and storage infrastructure.33 The

regulatory choice between the two works towards either mitigating or aggravating the positive

and potentially negative price spike events.

Fourth, some pools adopt a cost-based approach to bidding, whereas others accept price-

based bids. In the cost-based approach, the bids must reflect the bidder’s audited production

costs based on the short-run marginal costs of production (SRMC), as discussed in Munoz et al.

(2018) and Ward et al. (2019). In the price-based (bid-based) setting, bidders are not limited on

a cost basis (Munoz et al. (2018)), although regulatory price thresholds may still apply.

Moreover, as energy is aimed to meet end user consumption as precisely as possible, in

principle, throughput follows centrally scheduled target directives: the units receive targets in

32The advantages of the spot-forward arbitrage are detailed in Cramton (2017), Ott (2003) and Hogan (2014).
33Personal communications with Bill Jackson (ElectraNet) Oct 28, 2021.



37

every dispatch interval. However, because the scheduled demand by the end of the dispatch

interval is necessarily a prediction, disparities will arise between the scheduled targets and in-

stantaneous consumption. In response, ancillary-type reserves can be kept on standby to safely

balance the electric frequency of the system within a band around, for example, 50 hertz (Ey-

deland and Wolyniec (2003) (pages 8-9); Cramton (2017)). Energy pools are often augmented

by ancillary-type reserves trading, although the details of synchronising energy and reserves are

often extremely dissimilar. One end of the spectrum is when price settlement for energy and

reserves is mostly joint (co-optimised), and the other end is when the two are fully separate –

that is, when all reserves receive out-of-market payments. There are many configurations in

between. Different market designs can be developed to include some ancillary-type reserves in

the co-joint processes, such as frequency balancing, but not others, such as voltage stability or

system restart services, as is the Australian experience (AEMC (2021c)).

Finally, the fuel mix plays an important role in market design owing to a few reasons. One

aspect why the fuel mix must be a balanced mix of different resources is MW reliability to

avoid short-run scarcity. Renewable energy, particularly wind generation, is highly intermit-

tent and requires quick-response high-reliability complements such as hydro generation, battery

throughput or industrial demand response. Another challenge to the market design in allowing

high penetration of renewables that are inverter-based is that these resources do not provide in-

ertia. Turbine generators that do, such as gas and coal, are in this case required in the fuel mix.

Finally, depending on the dispatch formulation, some fuels are more likely than others to create

lumpy costs in the network; for example definite must-run conditions apply for coal-based gen-

eration in Cramton (2017), which might make a stronger argument for a mixed integer dispatch

solver as part of the market design.

2.5 Financial markets along electricity markets

Electricity markets today are often complemented by derivatives markets for price, conges-

tion and scarcity risk hedging. They trade firm instruments on a fixed MW of electricity flow

as the underlying asset to manage the spot price volatility of physically or financially binding

firm positions (ASX (2020)). There are also products more specific to congestion-linked diffi-

culties, such as the basis risk and the dispatch risk. Point-to-point financial transmission rights
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(FTR) trading is common in nodal markets, which also provides financial firmness on the quan-

tity (Cramton (2017)). Similarly, flowgate and other solutions have existed in zonal markets to

provide firm access to hedge the dispatch risk associated with security constraints.34

Furthermore, capacity markets are annual forwards auctions for electricity trading during

scarcity periods based on Cramton (2017). These aim to solve the dual problem of scarcity risk

and suppressed spot prices that are insufficient to cover the costs of new generation investment

by introducing another source of revenue for generators that are willing to reserve some of

their capacity for reliability response in exchange of some forward-type payments as in Hogan

(2014).

Any of these financial contracts are either physically settled, in which case the underly-

ing commodity is physically transmitted, or cash settled, in which case it is not. As trade

with physical delivery requires transmission infrastructure, electricity market operators are in a

unique position to facilitate trade or act as a counterparty in short-term (for example hourly or

daily) derivative contracts with physical settlement if that is permitted by the applicable legis-

lation (Deng and Oren (2006); Cramton (2017)). If not facilitated by the main market operator,

physical settlement is either conditional on the cooperation of a private operator according to

Eydeland and Wolyniec (2003) (pages 5-6), or off-grid purchase agreements can be struck if

the generator is in the immediate vicinity of the buyer, and if the parties can set up a private

transmission line (Broom (2020)). Once established, trade with physical settlement has a di-

rect impact on price discovery, as it effectively removes both capacity and demand from the

wholesale market.

In contrast, cash settlement makes financial contracts much more accessible, which implies

higher liquidity for convenience-related financial reasons. These markets potentially also im-

pact spot price formation, most directly by influencing the participants’ bidding decisions.

2.6 Conclusion

The fact that electricity price formation heavily depends on market rules motivates this

chapter on electricity market design. In terms of similarities and dissimilarities across market

34For an international review on creating congestion compensation and firm access, see NERA (2013) (pages
13-23).
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designs around the world, the sets of market participants and government goals – as well as

dispatch optimisations, to a lesser degree – can be viewed as relatively similar. However, a

number of other aspects exist from which market designs significantly vary, including the timing

of the trade intervals, the regulatory price thresholds, the bid language, the extent to which the

reserves are co-optimised and the fuel mix.

After unravelling the different aspects of market design, an emphasis is placed on the link

between price formation based on constrained optimisation and economic bid aggregation prin-

ciples. Importantly, an equivalence of the two is shown under limiting conditions. Some impor-

tant conceptual background is also built on bid stack–based pricing by extending the standard

bid aggregation framework to storage fuels and network constraint effects. This reveals that by

consuming at incrementally lower rates, storage fuels too can set the electricity price. Moreover,

constrained-on and constrained off quantities are shown to take effect by shifting the inelastic

demand line, which is also not without a price impact.

Note that the current essay aims to set the scene for Chapter 3 about the Australian market

design by deciphering the most commonly used nomenclature of the field.
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Chapter 3

A survey of the Australian National Electricity Market35

3.1 Introduction

Electricity market designs comprise the rules for market operations in response to the ‘en-

ergy trilemma’ that states that markets should manage the trade-offs between achieving af-

fordability, security and sustainability through policy and planning (Newbery (2016)). This

complicated multi-interval problem usually results in very specific local market designs.

Precisely expressing how such a market operates enables the identification of the key fac-

tors that impact price formation within that setting. Therefore, this chapter presents an in-depth

survey of the market design of the Australian NEM to build knowledge for an improved price

hypothesis over the extended equilibrium framework presented in Chapter 2. A descriptive

summary of the prevailing regulations (AEMC (2021c)), the available technical reports and im-

plementation software (Gorman et al. (2022)), and some insights from practitioners and relevant

data are set forth. The main contribution is the unravelling of the constrained dispatch optimi-

sation formulation of the NEM Dispatch Engine (NEMDE) within the broader market context.

This allows recovering how the electricity price is set by NEMDE. Worked numerical examples

are also provided to analyse actual price outcomes using the historical solver solution data.

Multi-regional interconnectedness, network losses, wholesale load activity, co-optimised

ancillary services, and congestion effects surface in this analysis as highly relevant to pricing.

Some of these factors can be integrated into theoretical equilibrium frameworks, whereas others

unveil the limitations of the economic equilibrium argument for electricity markets. The present

survey might be useful to those interested in the nexus between these factors and the price or in

the NEM market design in general.

35This chapter is largely based on the paper Katona et al. (2023b) with Christina Sklibosios Nikitopoulos and
Erik Schlögl contributing in a supervisory capacity.
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The rest of the chapter is organised as follows. Section 3.2 summarises the NEM across

the market design features mentioned in Chapter 2. Section 3.3 discusses the optimisation

procedure of the NEMDE focusing on dispatch, and Section 3.4 presents price formation in that

setting. Section 3.5 concludes the chapter.

3.2 Overview

This overview of the Australian NEM begins with the sheer size of the grid. Spanning

about 5,000 km end to end and counting 6 interconnectors and over 55 GW nameplate capacity

along the east coast of Australia, the NEM is the longest interconnected market in the world

(AEMC (2022a)). Its length is paired with what is colloquially known as a chilli shape. The rest

of Australia belongs to the Northern Territory Electricity Market (NTEM) and the Wholesale

Electricity Market (WEM) in Western Australia (AEMO (2023e,f)).

3.2.1 Institutions

The responsibilities around the orderly operation and effective oversight of the NEM are

held by the following institutions. First, the Energy Security Board (ESB) oversees that the

evolving market design honours the NEM’s commitment to efficiently integrating competitive

new technologies and reducing the system’s carbon footprint while maintaining strong sys-

tem adequacy (ESB (2020), pages 15-28). Second, the Australian Energy Market Commission

(AEMC) presides over rule making to promote the long-run interests of consumers as in AEMC

(2022b). The AEMC establishes and amends the National Electricity Rules (NER, the Rules36)

under the National Electricity Law (as per Rule 1.2 in the Rules). Finally, the Australian Energy

Regulator (AER) enforces the Rules made by AEMC as in AEMC (2022b).

Furthermore, according to AEMC (2022b), the Australian Energy Market Operator (AEMO)

is the sole, independent market operator that establishes, reviews and executes procedures to

fulfil extensive operative obligations in secure and reliable dispatch and price settlements under

3.2.1 in the Rules.37 The AEMO automates the security-constrained least-cost auction mecha-

36The present chapter is written using version 175 of the Rules, which is referenced in AEMC (2021c).
37The AEMO does not facilitate physically settled bilateral agreements, and it is impartial to resolving current

market issues.
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nism in a linear solver framework, the NEM Dispatch Engine (NEMDE),38 which co-optimises

the dispatch of energy and market-based ancillary services, such that interconnector flows, too,

are synchronised over the five price regions in real time (see 3.9.2 in the Rules). For the market

to operate with the least amount of intervention as per 3.1.4 (a) in the Rules and AEMO (2020d)

(page 5), supply–demand and bid analysis both by the market operator and by individual bidders

heavily rely on telemetry, price (AEMO (2022j,c)), demand and supply adequacy forecasts, and

other information sources administered by AEMO. Many of these resources are also dissemi-

nated to registered market participants to inform their bidding and potentially re-bidding actions

on the minute, as per 3.1.4 (a.2) in the Rules. Some are also publicly available on the NEMWeb

(AEMO (2022h)).39 Finally, the different systems supporting the NEMDE are shown in Table

3.1.

Table 3.1 : Market systems

The table lists the different AEMO data systems that underpin real-time dispatch by delivering pre-calculated values to the NEMDE.

System Function

Automatic Generation Control AGC Communications tool for sending out dispatch
instructions (as per 3.8.21 (d) in the Rules) including
frequency balancing Regulation targets electronically
(AEMO (2021g), page 9).

Australian Solar Energy Forecasting System ASEFS Solar forecast algorithm for intermittent output
(UIGF) feeds to the NEM Dispatch Engine (AEMO
(2023c), pages 4-5).

Australian Wind Energy Forecasting System AWEFS Wind forecast algorithm for intermittent output
(UIGF) feeds to the NEM Dispatch Engine (AEMO
(2023c), pages 4-5)

Electricity Market Management Systems EMMS Portal and API interface for submitting bids and
intermittent plant availability (AEMO (2017c), page
1), (AEMO (2022d), pages 10-11).

Market Management Systems Data Model MMS Data Model Data model for providing data to market participants
(AEMO (2021h)).

Market data NEMWeb NEMWeb Public website for historical data based on MMS Data
(AEMO (2022h)).

Network Outage Scheduler NOS Planned outage calendar for informing the medium-
term adequacy process (AEMO (2018), pages 9-10),
(AEMO (2020d), page 12).

Supervisory Control and Data Acquisition SCADA Telemetry system (metering) for informing higher
level applications (AEMO (2021g), pages 8, 14).

38An open-source reference implementation of NEMDE is also available thanks to Gorman et al. (2022).
39Indeed, a number of publicly available data sources underpin the present survey, including the ‘Register of all

current Market Participants’ (3.2.1 (b) in the Rules) in AEMO (2022f), the bid submission files of AEMO (2022i)
as part of the MMS Data Model in AEMO (2021h), and the NEMDE outcome data in AEMO (2021p).
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3.2.2 Market settings

The NEM operates in a zonal market design. There is one locational reference node, i.e.

price node, for each of the five regions in the market – New South Wales (NSW), Queensland

(QLD), South Australia (SA), Tasmania (TAS), and Victoria (VIC) – roughly corresponding to

the administrative divisions of the country. Therefore, five market prices are issued by in the

NEMDE per trade interval.40 Note further that the nodal LMPs are also calculated in the NEM

at every market connection point (bus) as a congestion information resource on mis-pricing as

per 3.4.1 (3) and 3.7A (b.2) in the Rules to better understand the costs of security constraints.

These costs are, however, not directly expressed in the five zonal spot prices.41

Since 1 October 2021, both the dispatch interval and trade interval are 5 minutes, in contrast

with the earlier methodology with 30-minute trade intervals but 5-minute dispatch intervals,

where six preliminary 5-minute prices had been averaged for every half-hourly price (AEMO

(2021i), page 3). Therefore, the prices are single real-time (5-minute intra-day) prices, as there

is neither multi-settlement nor market coupling in Australia apart from the import–export be-

tween the price regions. The switch to 5-minutes settlement prevents exercising market power

through certain gaming strategies to bidding42 and promotes price transparency.

Moreover, the NEM market design ascertains the following regulatory price threshold set-

tings. A regulatory price floor is administered at −$1000 per MW and the price cap is at

$15,100 per MW as of October 2021.43 The price cap is also indexed to inflation based on

AEMO (2021i) (page 3). This is a relatively unrestrictive policy compared with the stricter

regulatory thresholds in other markets worldwide.

40See the RegionID and BandCost fields in the PriceSetting tab of the AEMO (2021p) data.
41From a price quality perspective, explicitly priced congestion effectively recovers the security constraint costs

(the shadow price) at different points on the grid. Whereas the cost of congestion is directly expressed in nodal
markets, the price only contains vague information about congestion in zonal markets.

42One such strategy involved bidding high to move the prices to the market price cap in the first 5-min interval
and bidding low for the rest of the 30-minutes to collect the resulting relatively high price (after averaging) in large
quantities.

43In line with the AEMC reliability standards (as per 3.9.4 in the Rules) AEMC (2021a), respectively.
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3.2.3 Bidding rules

Bidding is price-based in the NEM. Bidding away from the verifiable costs, often by means

of bidding software, called disorderly bidding, is fully consistent with the Rules. One impli-

cation of this, and the fact that the prices are not suppressed between strict regulatory price

thresholds, is the lack of limitation on market power concentration: exercising market power

through strategic bidding is evidently encouraged. However, the lack of limitation reinforces

price results closer to the costs of capacity investments that better pay for new investments.

The bid-eligible units fall under the three categories: energy bidders (as per 3.8.6 and 3.8.7

in the Rules), reserves bidders (as per 3.8.7A in the Rules) and market interconnectors, i.e.

Market Network Service Providers (MNSPs) (under 3.8.6A in the Rules). The standard bid

type involves ten price–quantity pairs, but there are a few more bid types within some bidder

categories. First, for energy bidders, generators and loads44 are warranted the standard ten and

twice ten price–quantity bid slots every trade interval (as per 3.8 in the Rules), respectively,

much like in the example in Section 2.3.2. An upcoming rule change may, however, replace the

twice ten bid bands by 20-bid single trader submissions for the two-way fuels (AEMC (2021b),

pages 2-4). In addition, all energy bidders can use fixed bids when they intend to act as price

takers and secure trade amounts that might not be otherwise allotted to them in the auction.45

Second, reserves bidders include two groups of service providers: the market-based ancillary

services and the non-market scarcity reserves providers. The market ancillary services bids –

that is, the Frequency Control Ancillary Services (FCAS) bids (AEMO (2021o), page 6) – are

co-optimised with energy in the NEM. There are a number of different FCAS bid types for

the different FCAS services, which are all standard 10-slot bids (see Section 3.3.5.2). Further-

more, non-market reserves occasionally enter the market calculations through placeholder bids

for scarcity and distributed capacities, such as Reliability Emergency Reserve Trader (RERT)

bids,46 as per 3.20.7 (d) in the Rules and AEMO (2020g) (pages 4-11), and Distributed Gen-

eration bids.47 Third, market interconnectors, too, use the ten standard price–quantity bands

44Two-way fuels and hybrid plants are registered as generators and loads separately within each category based
on AEMO (2021l) (page 5) and AEMO (2022f). Load-only units are registered as loads only.

45See the FIXEDLOAD field definition of the AEMO plant commitment (bid) data (AEMO (2022i)).
46RERT is an example of out-of-market payments.
47See the RT_ and DG_ prefixes, respectively, under the DUID field in the AEMO (2022i) data.
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to express their MW offers under 3.8.6A in the Rules.48 Finally, the units are obliged to pro-

vide technical information about their availability in accord with their registration profiles to

complete their bid submissions (AEMO (2022i)).

Re-bidding is another facility provided to the bid-eligible market members under 3.8.22 in

the Rules. The previously submitted bid quantities can be revised any number of times during

the day until the start of the relevant trade interval; there is ‘no gate closure’ for changing the

bid quantities other than the start of the trade interval based on AEMC (2015) (page ix) and

AEMO (2021s) (page 6). Prices, too, can be modified in re-bidding but only until the start

of the trading day, as there is only one price submission per day.49 There are various valid

reasons for re-bidding, but in each case, particularly for late re-bids, regardless of the disclosed

re-bid explanations, bidders are obliged to act with fidelity (in good faith) in changing their

commitments as per 3.8.22A in the Rules.50

3.2.4 Fuel mix

Table 3.2 shows the regional breakdown for the NEM generation fuel mix. The fuels most

dominant in at least one region are listed on top. Coal-fired plants are the most common in NSW,

QLD, and VIC, and hydro is the most prevalent in TAS. SA is the most diverse region in terms

of fuel mix, with natural gas and renewable generation in almost 50%–50% proportion. The

load fuel breakdown at the bottom of Table 3.2 only shows battery and omits pumped hydro.

Again, SA has the largest battery capacity of all NEM regions.

According to the modern market design principle, the fuel mix should present a reliable

and environmentally sustainable fuel combination. Renewable energy generation, including

solar and wind generation, is unmistakably paving the way to meeting the up-to-date CO2 tar-

gets in the NEM; however, these methods, particularly wind generation, are highly intermit-

tent. They require complementary quick-response FCAS by gas turbines, hydro generation,

battery throughput, or industrial demand response for MW reliability. Because FCAS is fully

co-optimised with spot energy in the NEMDE, it is already streamlined for the highest opti-

48Basslink is the only MNPS is the NEM currently under two DUID fields, BLNKVIC and BLNKTAS AEMO
(2022f)

49See the OFFERDATE field for the price rows with BIDDAYOFFER_D) in the AEMO (2022i) data.
50Personal communications with Bill Jackson (ElectraNet) Oct 28, 2021.
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Table 3.2 : Fuel mix in the NEM

The table shows the regional generation fuel mix breakdown for the NEM market with data from calendar year 2010-21. The interconnector
count is shown as of 2021, with a new SA-NSW line (through VIC) called EnergyConnect also underway as of the writing of this chapter
(ElectraNet (2021)). Source: Table O9 for calendar year 2021 in % terms in Department of Industry, Science, Energy and Resources (2022),
Table O12 for calendar year 2020 in Department of Industry, Science, Energy and Resources (2021), and AEMO (2017e) (pages 4-8).

NSW VIC QLD SA TAS

Generator fuels (%/year)
Hydro 4.0% 5.5% 1.5% 80.6%
Black coal 69.7% 65.1%
Brown coal 63.0%
Natural gas 2.8% 3.2% 14.2% 33.8% 1.0%
Wind 7.6% 16.3% 2.5% 41.2% 15.9%
Solar 13.8% 10.2% 13.2% 23.3% 2.1%
Biomass 1.5% 1.4% 1.8% 0.7% 0.3%
Oil products 0.5% 0.3% 1.5% 1.0% 0.2%
Load fuels (GWh/year)
Battery 51.4 64.3
Interconnectors (6) 3 4 2 2 1

misation efficiency. Another challenge in allowing a high penetration of renewables including

distributed energy such as rooftop solar panels that are inverter-based, is that these resources do

not provide inertia. Turbine generators that do, such as gas and coal, are in this case required

in the fuel mix. On the other hand, grid forming storage solutions can provide fast frequency

response, despite being inverter-based.

3.2.5 Hedge markets

Finally, the NEM pool is in contact with the Australian Securities Exchange (ASX) that

offers financial risk management products. First, the ASX trades financially settled contin-

gent products on spot electricity51 as the underlying flow asset with continuous delivery (ASX

(2020)). These are used to hedge price risk. Second, in terms of the basis risk, the regional

NEM has fewer price differentials than markets in the nodal design; it only has the five re-

gional prices. Thus, there is neither FTR trading nor any flowgate-based congestion rights

solution; there are no auction- or exchange-traded financial products to hedge the regional price

differentials. Third, with regard to the dispatch risk implicitly covering the congestion rent in

zonal settings, hedge markets should provide a form of firm access to hedge the risk of being

51Referencing the five regional prices obtained in the NEMDE.
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constrained-off or constrained-on. However, no such contracts are currently available in the

NEM outside perhaps ‘over–the–counter’ (OTC) deals. Fourth, utilities and eventually market

participants are sometimes exposed to the elevated costs of importing from higher price regions.

According to AEMC (2014) (page 13), “currently there is no mechanism available to market

customers to be able to hedge against the negative IRSR [inter-regional settlements residue]

cost”. Finally, physical contracts are not traded either at the ASX or at any centralised auction

or clearing house (non-OTC), and there are no capacity markets alongside the NEM to help

manage the scarcity risk. In summary, the ASX only offers hedge products against the price

risk.

3.2.6 Reliability planning

The trade schedule issued at every 5-minute dispatch/trade interval marks the culmination

of months if not years of market planning. This point is illustrated by elaborating the long-term

to short-term to real-time considerations in capacity planning and system upgrades.52

Reserves and system upgrades planning is centred on “the reliability standard, set by the

NER, [that] specifies that a region’s maximum expected unserved energy (USE) should not ex-

ceed 0.002% of energy consumption per year” (AEMO (2020c), page 21). The AEMO must

take every reasonable endeavour to achieve this rate and to monitor other reliability and sustain-

ability proxies in the interim to mitigate the scarcity risk.53 The AEMO undertakes annual re-

views of several forecasting and planning assessments on an ongoing basis, including both long-

term capacity models and medium- and short-term and security-constrained time-sequential LP

reliability models, while also making provisions for the immediate nature of continuous sys-

tem stability remediation, especially during extreme events, under up-to-date future scenario

assumptions.54

The Integrated System Plan (ISP) is a comprehensive forward-looking roadmap for mar-

ket upgrades (AEMO (2021n), pages 6-7). Drawing from AEMO (2021n) (pages 6-7, 58),

52Note that there is no day-ahead market in the NEM and therefore no day-ahead information about the next
day’s scarcity risk. This makes robust real-time adequacy planning a more challenging task in general.

53A more detailed record of these success indicators can be found in AEMO (2015b) (pages 4-15) and AEMO
(2020c) (page 21).

54As stipulated in AEMO (2020c) (pages 15-31, 49) and AEMO (2021b) (pages 4-8).
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although the integrated methodologies used in the report (a suite of interlinked market mod-

els) are primarily aimed at system development analysis while minimising capital expenditure,

the future constraints they formulate on first principles are often also practicable later at higher

time resolutions. The ISP model group accommodates weather and climate effects, gas supply,

outage simulations, thermal capability, stability, system strength, inter-regional limitations, unit

commitment, inter-temporal plant limits in two-way fuels and bid profiles that depart from the

SRMC, to name but the main features of this comprehensive security-constrained LP frame-

work, in quantitative detail.55

The Electricity Statement of Opportunities (ESOO) is a 10-year-ahead evaluation of supply

adequacy and a reserve requirement breakdown for the USE goal using a system-constrained

market simulation over larger time blocks as per 3.13.3A in the Rules and AEMO (2021a)

(pages 13-20). Preparing this assessment is inseparable from producing reliable minimum,

maximum and mean demand forecasts (AEMO (2021a), pages 21-29), which later form the

basis of a cascading sequence of wholesale, distributed (e.g. rooftop solar) and retail (residential

and business) consumption projections (AEMO (2021f), pages 12-22). The supply adequacy

calculations use the up-to-date Pre-dispatch constraints and projected network constraints to

forecast the USE over the 10-year window (AEMO (2015b), pages 7-9).

The Energy Adequacy Assessment Projection (EAAP) is a 2-year-ahead probabilistic as-

sessment of the available supply capabilities for satisfactory USE results in line with 3.7C in

the Rules and AEMO (2020a) (pages 4, 7). The security-constrained EAAP solver considers

daily generation limits and replenishment information in all relevant fuel types, including reser-

voir storage and pump generation (AEMO (2020a), pages 8-19), using the resource-constrained

Generator Energy Limitation Framework (GELF) declarations submitted by the scheduled gen-

erators (AEMO (2014a), page 4-5).

In addition, the AEMO administers two granular security-constrained Projected Assess-

ment of System Adequacy (PASA) procedures using LP in line with 3.7.1 in the Rules, AEMO

(2015b) (pages 11-12) and AEMO (2012b) (pages 8-9). These are the weekly Medium Term

PASA (MT PASA) up to two years with a daily resolution, and the two-hourly Short Term

PASA (ST PASA), which is six trading days ahead with 5-minute granularity (AEMO (2020d),

55The ISP methodology is thoroughly presented in AEMO (2021n) (pages 8-59).



49

page 5). Both use the Supervisory Control and Data Acquisition (SCADA) telemetry (see Ta-

ble 3.1) and the submitted PASA energy availability of the generator units.56 Moreover, MT

PASA may rely on the GELF resource limit declarations (AEMO (2020d), page 8). Another

difference is that the MT PASA allocates resource (energy) constrained capacities that have fuel

stockpile or water storage limitations to high demand periods over weekly blocks whereas the

ST PASA uses the daily-resolution submission data for this allocation (AEMO (2015b), page

15).57 Finally, in addition to the unit-specified plant limit information and the long-run ESOO

load, AEMO prepares the Unconstrained Intermittent Generation Forecasts (UIGF) for wind

and solar generation in the dedicated Australian Wind Energy Forecasting System (AWEFS)

and Australian Solar Energy Forecasting System (ASEFS) (see Table 3.1) as inputs to the MT

PASA (AEMO (2020d), page 9).

The main MT PASA objective is then to calculate the anticipated USE in the medium term,

and indicate the timing and location of any expected breaches as per 3.7.2 in the Rules. This

includes the days at the highest risk of security shortfalls and the Low Reserve Condition (LRC)

status (AEMO (2020d), pages 11-12). These tasks require medium-term demand forecasts as

discussed in AEMO (2020d) (pages 21-26). The MT PASA process signals the violating net-

work constraints in view of the Network Outage Scheduler (NOS) and the Monte Carlo sim-

ulated ambient forced outage landscape (AEMO (2020d), pages 12-19; AEMO (2018), pages

9-10). Conversely, the medium-term LRC output also helps participants schedule outages in the

NOS.

Closer to the time of dispatch, the ST PASA subsequently publishes the final LRC and

the Lack of Reserve (LOR) statuses for the trade interval under 3.7.3 of the Rules (AEMO

(2012b), page 15). As explained in AEMO (2012b) (page 11), the LOR1, LOR2 and LOR3

are the largest contingency-linked explicit benchmark triggers for the AEMO to enable inter-

vention procedures such as constraint relaxation, load shedding, and reserve trader bids (see

Section 3.3.6). This also requires a load forecast considering reserve sharing between the re-

gions (AEMO (2012b), page 7). The last step of the ST PASA cycle feeds the calculated

56See the PASAAVAILABILITY field in the plant commitment data of AEMO (2022i), where “PASA avail-
ability includes the generating capacity in service as well as the generating capacity that can be delivered with 24
hours’ notice” (AEMO (2020d), page 8).

57See the DAILYENERGYCONSTRAINT field in the AEMO (2022i) data.
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short-term capacity and the forward-looking assessment of the most likely reserve requirements

to the Pre-dispatch protocol as in AEMO (2010b) (pages 56-57).

During Pre-dispatch NEMDE publishes the dispatch and price forecasts in a security-constrained

LP routine in Pre-dispatch mode, at two timescales; there is a day-ahead run with 30-minute

resolution and an overlapping hour-ahead run with 5-minute resolution (AEMO (2021q), pages

6-7). Note, however, the main differences between Pre-dispatch and Dispatch.

Pre-dispatch lacks the following four features of Dispatch (AEMO (2010b), page 7). First,

Pre-dispatch used to omit Fast Start Inflexibility Profiles (see Section 3.3.5.1).58 Second, Pre-

dispatch does not calculate Unit Economic Participation Factors for apportioning aggregate

transmission node losses to unit level. Furthermore, Pre-dispatch does not consider intervention

scenarios (see Section 3.3.6) or communicate with the AGC remote control activation system

(see Section 3.3.5.2) besides the SCADA metering (AEMO (2021q), page 9).

On the other hand, Dispatch lacks two functions that are available in Pre-dispatch (AEMO

(2010b), page 7). First, Unit Daily Energy Constraints are used from the bid submissions similar

to PASA for energy constrained units in Pre-dispatch.59 Second, spot price sensitivities, the

expected changes to the published price results over changes to the demand and scheduled

generation forecasts, are posted as part of Pre-dispatch as in AEMO (2021r) (page 3), but not

for the actual Dispatch.

This concludes the reliability assessments undertaken by AEMO and takes us to the start of

the 5-minute dispatch and trade interval.

3.3 Dispatch

The Dispatch mode of the main LP run of the NEMDE algorithm is dedicated to update

the security-constrained least-cost MW targets in the market, as per 3.8.1 in the Rules, while

maximising the value of trade as well as to determine the spot price. This is achieved using a

cost minimising objective function subject to system constraints. Ex-post price settlement then

58This has, however, been subject to a rule change, as having these profiles in Pre-dispatch is more helpful for
5-minute settlement than it had previously been for the 30-minute trade intervals (AEMC (2019b), pages 9-11;
AEMO (2021q), page 8).

59See the DAILYENERGYCONSTRAINT field of the AEMO (2022i) data.
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obtains the marginal value of demand, or the marginal price, from the solution of this dispatch

process, in line with 3.1.4 (a.4) in the Rules.

3.3.1 5-minute cycle of dispatch and price settlement

In accordance with the NEM timetable in AEMO (2021s) (page 8), as per 3.4.3 in the

Rules, the 5-minute cycle for dispatch and price settlement can be reconstructed as six steps.

The timeline of the 7:05 AM price run is posited as follows.

1. Before 7:00 AM, the NEMDE is running in Pre-dispatch mode for two overlapping

timescales in parallel to issue price and target forecasts 5 and 30 minutes ahead as per

3.2.2 (b) in the Rules (AEMO (2021s), page 8). Nearing 7:00 AM, the forecasts are made

available in EMMS to inform bid revisions until 7:00 AM.

2. At 7:00 AM, the NEMDE receives a snapshot of the electric system in SCADA. These

initial MW values are compared with the MW targets from the previous cycle to verify

the units’ conformance (see Section 3.3.2).

3. At 7:00 AM, the NEMDE in Dispatch mode collects the forward-looking demand, outage

(AEMO (2021g), page 29), and constraint information from the most recent 5-minute

Pre-dispatch run.

4. Immediately after 7:00 AM, the NEMDE runs in Dispatch mode (AEMO (2021s), page

8), including a cascading series of re-runs (see Section 3.3.6), to schedule the MW quan-

tities and set the price.

5. Immediately before 7:05 AM, the AEMO sends out the dispatch instructions including

the MW target quantities and either the required times of completion or the linear ramp

rates to be used through AGC or EMMS at 7:05 AM (AEMO (2021g), page 9).

6. Immediately after that, the prices for 7:05 AM are calculated ex-post (see Section 3.4)

and published in EMMS.

3.3.2 Bid-eligible unit classification and conformance

The NEMDE uses the initial assumption that all bid-eligible units are conforming with the

dispatch targets received in the previous time period. However, the devoirs associated with re-
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ceiving a target are not the same for every bid-eligible unit. Market service providers with a Dis-

patchable Unit Identifier (DUID) are classed as scheduled, semi-scheduled or non-scheduled.

However, only the scheduled and semi-scheduled units are bid-eligible as per 3.8.2 (a) in the

Rules.60

The vast majority of the large-sized ≥30 MW generation and load units are scheduled

(AEMO (2022b), page 2). They receive dispatch instructions in the form of point targets that

they must neither exceed nor fall short of.

In comparison, the small-sized ≤30 MW units are mostly non-scheduled units (AEMO

(2022b), page 2). They typically neiter bid nor receive any dispatch targets. Non-scheduled

units are unrestricted in their output, which is forecast by AEMO for a demand adjustment

(AEMO (2021f), pages 13-15). As price takers, non-scheduled units have a negligible impact

on the energy spot price.

In between are the large-sized≥30 MW semi-scheduled units, i.e. the wind and solar farms,

which merit an additional category owing to their characteristically intermittent nature (AEMO

(2022b), page 2). The NEMDE relies on the AWEFS and the ASEFS for the UIGF output from

semi-scheduled plants as per 3.7B in the Rules and AEMO (2023c) (page 12). These systems

integrate technical plant specifications using plant-level conversion models and various aspects

of the expected ambient weather conditions using SCADA.61 One may argue that these models

have improved significantly over time.

Indeed, before a recent rule change semi-scheduled units received cap targets62 in place of

a currently much stricter obligation to follow their resource availability as point targets (AEMC

(2021e), page ii). The cap targets were only allotted during the semi-dispatch interval when

certain trigger conditions were met;63 otherwise, the semi-scheduled plants acted as price tak-

ers. So-called semi-dispatch caps (SDC) were issued at every trade interval to notify the units

whether they were given a target like scheduled units (capped, SDC = 1), or they were permit-

ted to operate without limits similar to non-scheduled units (not capped, SDC = 0) (AEMO

60For the Classification and DUID information, see the Generators and Scheduled Loads tab in AEMO (2022f).
61The model inputs of the UIGF metric are detailed in AEMO (2022a) (page 9-12), AEMO (2022d) (page 5-8),

and AEMO (2021g) (page 42).
62They could fall short of their targets but they must not have exceeded them.
63See ‘semi-dispatch interval’ in the Glossary in the Rules in AEMC (2021c).
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(2021g), page 10). The main reasons for a SDC = 1 flag, i.e. for a semi-dispatch interval, were

uneconomic bids and constraint-driven transmission bottlenecks. However, units were able to

bid exclusively at the market price floor to receive an SDC = 0 and only later decide whether

or not to inject any energy into the grid. Depending on the expected market price, they could

avoid negative prices and still be conforming with SDC = 0.64 This avoidable source of in-

termittency by arbitrary ceases of dispatch carried system stability implications. For this and

further price quality reasons, a recent rule change requires semi-scheduled plants to dispatch

at the level of their resource availability under a SDC = 0 flag and at the level lower of their

resource availability and cap target under a SDC = 1 flag (AEMC (2021e), pages ii, 10-11).

Given the classification-specific targets, an error tolerance system is used to regulate when

plants reach non-conformance. This employs two error counts, a large and a small error count,

based on which the plants maintain a compliance status throughout the trade intervals, as dis-

cussed in AEMO (2021g) (page 10, 32-41). Starting from the normal status, increasing error

counts cause plants to go off-target, and then to gradually worsen to non-responding, NC-

pending or non-conforming (AEMO (2021g), pages 32-41). As a direct consequence of this

status, non-conforming units cannot set the spot price as per 3.8.23 in the Rules.

3.3.3 Energy demand elasticity

First, we refer to Barlow (2002) for the mainstream argument that electricity demand is

mostly inelastic. As technological advances allow new freedoms in consumption planning,

however, optimised consumption patterns via, for example, smart systems, bilateral agreements,

demand response, storage fuel activity and distributed energy solutions, also start to factor into

electricity demand both in households and in industrial production. These quantities are con-

ditional on the price of electricity and pose a fundamental challenge to the theoretical inelastic

demand assumption.

Electricity is being withdrawn at wholesale, retail, and non-market locations simultane-

ously. Based on AEMO (2021a) (pages 22-25), for unravelling wholesale demand elasticity in

the NEMDE must first consolidate all relevant consumption planning practises to specify en-

64Unless a system constraint reason materialised for them to receive a target SDC = 1 while bidding at very
low prices.



54

ergy demand. As retail participants are becoming increasingly responsive to prices by means

of distributed energy resources – for example, by installing solar panels65 and small-scale bat-

teries, by scheduling energy intensive tasks overnight, and more indirectly via power purchase

agreements – retail consumption decreases with greater price elasticity and wholesale demand

follows. Only after these adjustments, retail demand and wholesale demand are virtually indis-

tinguishable in the absence of wholesale storage activity and demand response units, such as

aluminium smelters.

This wholesale energy demand excluding wholesale storage uptake and demand response is

predicted by the market operator for every 5-minute trade interval in advance. The demand fore-

cast with 50% probability of exceedance (POE) minus the projected non-scheduled generation

and minor adjustment terms for the regional reference nodes (RRNs), is the scheduled demand

currently used as energy demand in the Dispatch run for price settlement (AEMO (2021f), pages

10-11, 13, 16). After the predicted demand measure enters the automated NEMDE auction the

only sources of price elasticity are wholesale storage uptake and demand response.66

3.3.4 Objective function in Dispatch mode

Dispatch minimises the whole-of-the-market costs of energy and FCAS simultaneously as

per 3.8.1 in the Rules. The objective function can be expressed as

min
∑
r

∑
b

∑
s

∑
d

m∑
i=1

bid_pricer,b,s,d,i × bid_qtyr,b,s,d,i+

+
∑
n

∑
j

violation_degreen,j × cvpn ×mpc

s.t. constraints

(3.3.1)

where by r we denote the price region (NSW, QLD, VIC, SA, or TAS), by b the bid type (energy,

FCAS, or MNSP), by s the service type, by d the dispatchable unit ID (DUID) of the bid, and by

m the number of tranches where i is the ith tranche. For energy, s distinguishes generation from

65The NEM is leading the way in integrating distributed generation, particularly rooftop solar, according to
AER (2021) (page 33).

66Apart from the numerical example in Section 2.3.2 (see Table 2.2), the price elasticity of the demand is not
quantified in this chapter. Total energy demand is assumed to be mostly but not perfectly inelastic.
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loading, and there are eight different FCAS types s for ancillary services (see Section 3.3.5.2).

Then, bid_pricer,b,s,d,i captures the as-bid prices for the bid_qtyr,b,s,d,i decision variables (in

MW). Note that bid_qtyr,b,s,d,i is only negative for b = energy and s = loading as in AEMO

(2010c) (page 13). Furthermore, violation_degreen,j is the jth slack/deficit variable in the

nth constraint denoting the MW difference between the left hand side (LHS) and the right

hand side (RHS) of a given constraint (AEMO (2011), page 9). Then cvpn gives the constraint

penalty factor associated with the set of the constraint. An exhaustive summary of the constraint

sets is shown in Table 3.3, with the set-level penalty cvpn values shown for all sets (AEMO

(2023d), pages 5-27). Finally, mpc stands for the market price cap at the time (indexed to

inflation) in dollar terms, and
∑

n violation_degreen×cvpn×mpc captures the violation costs

associated with the physical constraints. The objective function (3.3.1) turns these penalties into

dollar amounts so that the conjoint effect of the as-bid cost of supply and the constraint-invoked

penalty costs can be simultaneously minimised.

A binding constraint is any constraint that has LHS = RHS with
∑

n violation_degreen =

0. In contrast, any violating constraint would see LHS different from the RHS and a non-zero

penalty of
∑

n violation_degreen > 0. In the absence of binding or violating constraints,∑
n violation_degreen = 0, equation (3.3.1) collapses to

∑
r

∑
b

∑
s

∑m
i=1 bid_pricer,b,s,d,i ×

bid_qtyr,b,s,d,i. But that is not equivalent to only minimising
∑

r

∑
b

∑
s

∑m
i=1 bid_pricer,b,s,d,i×

bid_qtyr,b,s,d,i to start with. Optimum bid selection purposely absorbs the violation costs asso-

ciated with physical constraints while establishing a constraint hierarchy – that is, allowing

“conflicting constraints to be violated in a pre-determined priority order based on their relative

CVP prices” (AEMO (2011), page 6). Last, the as-bid costs with an implicit cvpbid ≤ 1 tend to

have a lower priority than a constraint violation with cvpn > 1 for the same MW quantity.

3.3.5 Constraints in Dispatch mode

Most constraints in the NEMDE are generic constraints67 formulated as linear equations in

the form of

67In fact, pursuant to Mackenzie et al. (2020) (page 24), “most changes to the dispatch optimisation process
have been done via generic constraints rather than through explicit modifications to the formulation of the NEMDE
optimisation”. This is also revealed in the way more recent system requirements have found their way into the
NEMDE, e.g., system strength shortfalls in SA have been resolved using a new class of generic constraints for
system strength according to AEMO (2020c) (page 30). See also the Binding Impact tab in the NEM constraint
report (AEMO (2020e)).
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Table 3.3 : Constraint sets in the NEM

The table shows the system constraints recognised by the main price run of the NEMDE engine as in AEMO (2023d) (pages 5-27), including
the usual constraint sets under normal system state and outage events. In particular, this table excludes the constraint sets used by the NEMDE
only in What-If and Outturn intervention pricing modes. Note that every listed constraint set holds a multitude of exact linear constraint
equations (see the Binding Impact tab in AEMO (2020e)). Source: AEMO (2023d) (pages 5-27); however the presented information draws on
other AEMO publications too listed in the References. *constraint set item 38 has a variable penalty factor.

Constraint set cvpi Source of RHS Item #

Operational plant limitations, see Section 3.3.5.1
Unit Zero 1160 AEMO (NOS/SCADA) 1
Unit Dispatch Conformance 1160 AEMO (SCADA) 2
Unit Ramp Rate 1155 Bid submission 3
Fast Start Inflexible Profile (T1, T2, T3, T4) 1130 Bid submission 4
Unit Direction System Security 755 AEMO (control room) 5
Unconstrained Intermittent Generation Forecast (UIGF) 385 AEMO (AWEFS/ASEFS) 6
Energy Inflexible Offer (Fixed Loading) 380 Bid submission 7
Unit MaxAvail 370 Bid submission 8
Joint constraints (FCAS), see Section 3.3.5.2
FCAS MaxAvail 155 Bid submission 9
FCAS Joint Ramping 155 AEMO (formula) 10
FCAS EnablementMin and EnablementMax 70 Bid submission 11
FCAS Regulation Raise (R5RE) 10 AEMO 12
FCAS Regulation Lower (L5RE) 10 AEMO 13
FCAS Contingency Very Fast Lower 1 second 9 AEMO –
FCAS Contingency Very Fast Raise 1 second 9 AEMO –
FCAS Contingency Fast Raise 6 second (R6SE) 8 AEMO 14
FCAS Contingency Fast Lower 6 second (L6SE) 8 AEMO 15
FCAS Contingency Slow Raise 60 second (R60S) 6 AEMO 16
FCAS Contingency Slow Lower 60 second (L60S) 6 AEMO 17
FCAS Contingency Delayed Raise 5-minute (R5MI) 4 AEMO 18
FCAS Contingency Delayed Lower 5-minute (L5MI) 4 AEMO 19
System conditions, see Section 3.3.5.3
Interconnector Zero 1160 AEMO (NOS/SCADA) 20
Interconnector Dispatch Conformance 1160 AEMO (SCADA) 21
Interconnector Capacity Limit 1150 AEMO (ratings) 22
MNSP Interconnector Ramp Rate 1155 Bid submission 23
MNSP Availability 365 Bid submission 24
MNSP Losses 365 Fixed feature 25
Satisfactory Network Limit 360 AEMO 26
Secure Network Limit Stability and Other 35 AEMO 27
Secure Network Limit Thermal 30 AEMO 28
Interconnector Outage (Hard) Ramping 35 AEMO (NOS/formula) 29
Planned Network Outage (Hard) Ramping 26 AEMO (NOS/formula) 30
Planned Network Outage (Soft) Ramping <1 AEMO (NOS/formula) 31
Interconnector Outage (Soft) Ramping <1 AEMO (NOS/formula) 32
Non-Physical Loss Oscillation Control <1 Fixed feature 33
Market requirements, see Section 3.3.5.4
Total Band MW Offer 1135 Bid submission 34
Total Band MW Offer MNSP 1135 Bid submission 35
Regional Energy Demand Supply Balance - Load Shedding 150 AEMO (forecast) 36
Regional Energy Demand Supply Balance - Excess Generation 150 AEMO (forecast) 37
Negative Residue Management 2* Fixed feature 38
Tie-Break <1 Fixed feature 39
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∑
t

c∑
i=1

Ai,l,k× ID_qtyi ≤ RHSpre−calc+ violation_degreek +operating_margink, (3.3.2)

for the kth constraint over link l in price region r over all c connection points, where t de-

notes the type of each connection point quantity ID_qtyi (intra-regional connection point or an

interconnector) according to AEMO (2021d) (page 5) and AEMO (2017a) (pages 9-10). The

LHS collects the ID_qtyi corresponding to the decision variables bid_qtyr,b,s,d,i in (3.3.1) but

grouped by connection points, which can be optimised. The Ai,l,k ≥ 0.07 terms represent the

monitored flow across the network elements for an incremental change at the RRN N , i.e. the

constraint coefficients, as per AEMO (2021d) (page 9-10) and AEMO (2015a) (page 11).68

Moreover, the RHS hardcodes various system limits of the constraint (AEMO (2021d), pages

7-8) in the MW term RHSpre−calc, which is pre-calculated using real-time telemetry (see Ta-

ble 3.1) and pre-processed data from various planning schedules (see Section 3.2.6), and the

operating_marginn managing the approximations and errors associated with the limit (AEMO

(2010a), pages 8-12). The aim is to quantify every constraint RHS such that the dynamic MW

values on the LHS can be equated to them.69 Last, the orientation of the constraint in (3.3.2)

is ≤; therefore, violation_degreen > 0 is a surplus variable (AEMO (2017a), page 7), and a

positive coefficient Ai,l,k means that “a generator may be ‘constrained-off’ when the constraint

binds, while a negative coefficient means a generator is ‘constrained-on’ ” (AER (2012), page

7). Also, the marginal value of the constraint is negative, as “by constraining off the Left Hand

Side (LHS) terms these lower the objective function” (AEMO (2021e)). While ≤- and ≥-type

constraints are both fairly common, the = orientation is largely avoided in security constraints

(AEMO (2015a), page 7)).

The requirement that the decision variables in the objective function bid_qtyr,b,s,d,i sum to

the r, b, s demand types over all m ≤ 10 bids by the dispatchable units d in each demand

type in the optimal solution is facilitated by the regional energy demand balance constraints for

68According to AEMO (2021d) (page 7), “The constraint equation decides the optimal balance of supply from
the various [competing] contributors, while providing a high degree of confidence that the network limit is not
violated.” It follows that a high Ai,l,k in a ‘≤’-type equation is a competitive disadvantage.

69For reference, see AEMO (2021e), AEMO (2015a) (pages 7-8), AEMO (2021d) (page 16) and AEMO
(2021d) (page 5).
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b ̸= FCAS and a particular region r = A (AEMO (2023d), pages 13-14). This constraint can

be written as

min
∑
b

∑
s

∑
DUID

m∑
i=1

bid_qtyr=A,b,s,d,i − net_exports + losses =

= RHSpre−calc + violation_degreek,

(3.3.3)

introducing two new variables, net_exports and losses, and using the notation of (3.3.1)

and (3.3.2). First, net_exports =
∑

IC interconnector_flowIC=ICA
captures the sum of the

relevant interconnector flows at the regional boundary points (AEMO (2009), page 3) as net

export from the direction of region A. This variable is computed using the decision variables

bid_qtyr,b,s,d,i for r ̸= A. Second, as per Gorman (2023), losses =
∑

IC lossIC is defined as

the sum of every lossIC = interconnector_flowIC×avg_loss×proportioning_factor for the

relevant interconnectors with a non-nil proportioning_factor for region A. Note that avg_loss

is computed using Special Ordered Set 2 (SOS2) from a quadratic function detailed in AEMO

(2009) (page 14-16).

As of 2020, there are 13,127 constraint equations in the NEM, split across multiple con-

straint sets, shown in Table 3.3.70 Many originate in the limit equations calculated by the

transmission and distribution service providers and some in the plant-specific models devel-

oped by AEMO (Mackenzie et al. (2020), page 25; AEMO (2021d), page 13; Mountain and

Percy (2020), page 36). In line with AEMO (2021d) (page 8), an important feature of this fun-

damental equation set and the way the constraint equations based on this equation set interlink

is their overall applicability regardless of whether the system is in a normal operating state or

in a heavily constrained outage mode. Moreover, most equations are static, with the exception

of the dynamic feedback equations shown in AEMO (2021d) (page 16).

The AEMO must further ensure that the constraint formulation is neither overly restrictive

(over conservative) nor too slack (under conservative) (AEMO (2021g), pages 30-31). The

former causes concerns from a market efficiency perspective and the latter exacerbates the ex-

70See the Constraint Changes tab in AEMO (2020e) and AEMO (2021d) (page 8).
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posure to safety hazards. However, throughout the 5-minute Dispatch cycles, the AEMO can

also relax the over conservative constraint equations, use variable constraint violation penalties

or enact additional quick constraints ad hoc.71 The freedom of discretionary constraint overrides

does not, however, extend to stability constraints (AEMO (2021g), page 28).

Last, the NEMDE is an LP solver with only two binary modules. One is related to loss

allocation “at connection points where one MLF [marginal loss factor] does not satisfactorily

represent active power generation and consumption” (AEMO (2022e), page 75): dual MLFs

are needed for generators versus loads or for different flow directions over an interconnector, as

in AEMO (2012c) (page 29). The other handles the calculation of average losses using SOS2

equations (AEMO (2021g), page 41).72 Note that none of these cases directly relate to plant-

level unit commitment. As a consequence, the unit bid stacks are convex,73 and while the onus

is on the units to bid in a way to be able to conform with the received targets, there are additional

workarounds for lumpy unit requirements apart from the fast-start flexibility unit commitment

profiles (see Section 3.3.5.1). For example, the solver heavily relies on negative price bids for

self-commitment from slow-start units (see Section 3.3.5.1), and it must take two switch runs to

evaluate the on/off status of the Basslink interconnector in each dispatch interval (see Section

3.3.6).

3.3.5.1 Technical plant limitations

Next, we show the plant-level operational constraints regulating scheduled generation and up-

take from the first segment of Table 3.3 (items 1–8). The standard bid submission template

for all scheduled and semi-scheduled units requires the units to not only specify their terms of

trade using ten price–quantity bid pairs but also indicate some other (non-price74) availability

71AEMO’s use of discretionary constraints is mentioned in AEMO (2017a) (pages 9-11), AEMO (2021d) (page
12), AEMO (2021g) (pages 27-28) and AEMO (2013) (page 8).

72Personal communications with Nicholas Gorman Oct 4, 2022.
73Adding almost always convex virtual bids into the bid pool is an effective way of increasing the convexity

of the pool for a better optimum schedule approximation according to Cramton (2017). Nonetheless, there are no
virtual bids in the NEM.

74Disorderly bidding can be an implication of the fact that the price-quantity offer tranches are the only priced
bid components: “Thermal generators in particular tend to face ‘lumpy’ [non-linear] unit start-up costs, minimum
generation levels and ramp rate constraints. This means that a generator’s bid may need to reflect its judgement as
to how long it may be dispatched, to what extent and at what price.” (AER (2017), page 26).
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parameters for the period, as per 3.8.6, 3.8.7 and 3.8.19 in the Rules, depending on whether is it

a fast-start unit or not (AEMO (2021j), page 2).75 These inform the NEMDE’s constraint RHS

values about the physically feasible plant-level unit capacity.

First, all units report the minimum and maximum MW capacity limits they might have in

their normal operation using the MINIMUMLOAD and MAXAVAIL fields, respectively (as per

3.8.4 in the Rules). They also need to advise AEMO about their ramp rates using the ROCUP

and ROCDOWN fields (as per 3.8.3A in the Rules).

Second, every fast-start unit can submit information to opt in to submit a dispatch capability

profile – that is, a Fast Start Inflexible Profile (FSIP). This involves four time parameters, T1, T2,

T3, and T4 (in minutes) about re-start and ramping. T1 indicates “the time to synchronise” (T1

field definition, AEMO (2022i)) or start up from nil output for a generator unit. For example, a

thermal plant with a ‘hot banking’ furnace is faster than a cold one.76 T2 gives the time to speed

up to the Minimum Load MW level as specified by the plant. T3 is the number of minutes a unit

can stay on within its feasible output bounds while it is still lower-bounded (AEMO (2021j),

page 6). T4 indicates the time it takes for the unit to shut down.

In addition, the rule around self-commitment states that given the inflexibility parameters

as above, “the sum (T1 + T2) must be less than or equal to 30 minutes” (3.8.19 (e.6) in the

Rules) and the sum T1 + T2 + T3 + T4 less than 60 minutes (AEMO (2021j), page 5). If not,

units “must self-commit to be eligible for dispatch” (see 3.8.17 (a-b) in the Rules) until they

notify AEMO about their “intention to self-decommit” (3.8.18 (c) in the Rules)“ at least 2 days

in advance of dispatch” (3.8.18 (b) in the Rules). Then, “a scheduled generating unit is self-

committing if it has a self-dispatch level of greater than 0 MW, where the self-dispatch level

equals the sum of all energy bid in offloading (negatively priced) price bands in its dispatch

offer” (AEMO (2021g), page 15). In other words, fast-start units may have to bid at negative

prices to set their binary unit commitment variable to one (see Section 3.3.6).

Finally, the daily energy constraint is only populated by units with resource-constrained

operations (see Section 3.2.6), such as hydro generators.

75These are shown as MINIMUMLOAD, MAXAVAIL, ROCUP, ROCDOWN, T1, T2, T3, T4 and DAILYEN-
ERGYCONSTRAINT in the AEMO (2022i) data.

76Personal communications with Bill Jackson (ElectraNet) Oct 28, 2021.
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Focusing on the plant-level constraints from the dispatch engine’s perspective, the top pri-

ority constraint set77 is Unit Zero (item 1 in Table 3.3). This coordinates the rate of change

adjustments related to shutting individual units in the engine representation of the grid, ow-

ing to a forced or planned outage. The second most important constraint set is Unit Dispatch

Conformance (item 2 in Table 3.3), for which the rationale is that non-conformance with the

issued targets (see Section 3.3.2) outside the acceptable operating margins (AEMO (2010a),

pages 9-10) carries undesirable consequences for optimum planning; detecting issues around

overloaded network elements is difficult. This constraint forces NEMDE to correct any dis-

connect between the previous MW dispatch target and the real-time SCADA MW before many

other aspects in the optimisation. Most of the remaining constraint sets (items 3–4 and 6–8) are

used to stay within the technical and availability requests of the units given their bid submission

inputs, whereas Unit Direction System Security (item 5) puts a handle on directing individual

unit output arbitrarily as and when needed for network security purposes.

3.3.5.2 Joint capacity requirements (FCAS)

Reserves service provision is also present in the NEM, both in the form of co-optimised market-

based frequency balancing (FCAS) and as auxiliary non-market contracts (AEMO (2021k),

pages 8-12; AEMO (2012a), page 6)). The NEM is a co-optimised market because the energy

and FCAS targets are evaluated concurrently in the objective function. The FCAS-registered

units first indicate their preference profiles for energy and FCAS provision; then, the task of a

physically constrained minimum price optimum target co-allocation falls to the joint capacity

engine constraints in the second segment of Table 3.3 (items 9–19).

Table 3.4 shows the standard ancillary service contract types in the NEM under the broader

categories of market and non-market services. Market services only include FCAS, whereas

non-market provision involves System Restart (SRAS) and Network Support and Control An-

cillary Services (NSCAS). As opposed to market services, non-market enablement is not part of

the co-optimisation. Therefore, these have no direct effect on the energy spot price.78 NSCAS

77The constraint set with the highest constraint violation penalty cvpi factor has top priority.
78Note, however, that “Where applicable, AEMO will apply constraint equations to reflect the network support

agreement between the service providers and the generators, so that the market dispatch is consistent with operation
under those agreements.” (AEMO (2021d), page 11).
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Table 3.4 : Ancillary services

The table shows the different ancillary service types in the NEM as per 3.11 in the Rules including both the market-based FCAS specifications
and several standard bilateral non-market Network Support Agreements as per AEMO (2021k) (pages 8, 13) and AEMO (2023b) (page 7).

Service Category Function

FCAS Regulation Raise (R5RE) Market Continuing response over AGC to even out minor
frequency drops.

FCAS Regulation Lower (L5RE) Market Continuing response over AGC to taper minor
frequency hikes.

FCAS Contingency Very Fast Raise 1 second Market 1 second frequency response after a credible
contingency.

FCAS Contingency Very Fast Lower 1 second Market 1 second frequency response after a credible
contingency.

FCAS Contingency Fast Raise 6 seconds (R6SE) Market 6 second frequency response after a credible
contingency.

FCAS Contingency Fast Lower 6 seconds (L6SE) Market 6 second frequency response after a credible
contingency.

FCAS Contingency Slow Raise 60 seconds (R60S) Market 60 second frequency response after a credible
contingency.

FCAS Contingency Slow Lower 60 seconds (L60S) Market 60 second frequency response after a credible
contingency.

FCAS Contingency Delayed Raise 5 minutes (R5MI) Market 5-minute frequency response after a credible
contingency.

FCAS Contingency Delayed Lower 5 minutes
(L5MI)

Market 5-minute frequency response after a credible
contingency.

NSCAS Network Loading (NLAS) Non-market Manual MW load control on interconnectors after a
credible contingency.

NSCAS Voltage Control (VCAS) Non-market Automatic enablement to absorb or supply reactive
power after a credible contingency.

NSCAS Transient & Oscillatory Stability (TOSAS) Non-market Monitored fast-regulation of voltage, inertia and load
against circuit faults after a credible contingency.

System Restart (SRAS) Non-market Instructed system restart after a partial or full system
blackout.

are usually only enabled at times of network failures, called credible contingencies, such as gen-

erator trips, short-circuiting and insulation faults (AEMC (2021d)) and SRAS are only enabled

after full or partial system blackouts. These are provided mostly by non-market participants

endowed with the required equipment and deemed apt by AEMO on a case-by-case basis as

per the pre-existing bilateral contracts in the standard non-market procedures as an example of

uplift payments (AEMO (2021k), pages 13-14).

FCAS relates to the rotational speed on the network such that “frequency is maintained

within the normal operating band of 49.85 Hz [hertz] to 50.15 Hz” (AEMO (2021k), page 6).

If consumption suddenly drops but generators keep injecting the same MW load, then the fre-

quency of the system will increase towards 50.15 Hz, and FCAS Lower services are necessarily

called upon to withdraw quantities for balancing. Analogously, if consumption suddenly spikes

but generators keep injecting the same MW load, then the frequency of the system decreases to-

wards 49.85 Hz, and FCAS Raise services are required for system security according to AEMO
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(2021k) (page 5). As shown in Table 3.4, there are two disparate mechanisms for frequency

balancing, regulation and contingency that both incorporate lowering and raising. Contingency

services are enabled using remote devices to detect and counteract contingency-event-related

frequency breaches at 1 second, 6 second, 60 second, or 5-minute notice according to AEMO

(2021k) (page 6), AEMO (2023b) (page 7), and AEMC (2021d). Regulation works through

AGC at 4 second frequency (AEMO (2021g) (page 10) and AEMO (2021k) (page 6)). The

requirement has a base value of 120–130 MW and a cap of 250 MW as in AEMO (2015a)

(page 27). The mainland contingency requirement (demand) depends on the dispatch amount

of the largest online generator (largest contingency) minus load relief, whereas in TAS, it also

depends on inertia, as per AEMO (2015a) (pages 19, 25).

Units bidding in regulation and contingency FCAS use a similar bidding template per FCAS

service as that for energy.79 Apart from the ten price and quantity bands and the same availability-

related fields as in the energy bid template, the ancillary submissions must also input the fol-

lowing four FCAS trapezium variables (see Figure 3.1) as per AEMO (2021k) (page 10).80

The first two, ENABLEMENTMIN and ENABLEMENTMAX, correspond to the lowest and

highest MW levels of energy dispatch required to provide a particular FCAS. In addition, LOW-

BREAKPOINT and HIGHBREAKPOINT bound the energy MW levels needed for servicing

the stated MAXAVAIL quantity in the particular FCAS. These variables are then further scaled

to AGC enablement and UIGF limits within the NEMDE (AEMO (2017b), pages 10-13).

The optimum combination of the regulation, contingency and energy targets – that is, the

MW thermal loading on the LHS of the joint FCAS constraints in Table 3.3 – are subject to the

respective service demand levels (items 12–19) individually and confined to unit-level capacity

limitations on the RHS (items 9–11) collectively. The capacity limits of every service are more

restrictive than stated in the FCAS trapeziums, as they take into account concurrent dispatch

in other services and energy as well. More specifically, “FCAS availability for a unit at a

given energy target is the maximum amount of the service that the unit can provide when it is

fully delivering the amounts of all other services for which it is enabled at that energy target”

(AEMO (2017b), page 23). Different kinds of joint ramping constraint equations (under item

79See the BIDTYPE field definition in the bid submission data of AEMO (2022i).
80These are shown as ENABLEMENTMIN, ENABLEMENTMAX, LOWBREAKPOINT and HIGHBREAK-

POINT in the AEMO (2022i) data.
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Figure 3.1 : FCAS trapezium

The figure shows an FCAS trapezium for a single service, where the shaded area captures service availability based on the bid submissions. The
upwards sloping segment of the trapezium captures a complementary relationship between energy and the particular FCAS service, whereas
the downwards slope indicates a trade-off between the two. Source: AEMO (2017b).
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10) are applied to enforce this (AEMO (2017b), pages 14-26).

First, the energy and regulating FCAS capacity constraints reinforce the scaled regulation

service trapeziums. Second, the joint ramping constraints limit every regulation service trapez-

ium to the area defined by the AGC ramp-up and ramp-down rates. Third, the joint capacity

constraints capture the offset between regulation, contingency and energy by shifting the sloped

lateral sides of the contingency trapeziums to narrow service availability by the concurrent reg-

ulation targets. Finally, the most restrictive of all the above relations emerges as the limiting

constraint for each service.

The conjoint nature of FCAS and energy grants that when the co-optimisation constraints

bind, they may alter the energy target. In fact, it is not uncommon for a unit to be “trapped

within the FCAS trapezium” (AEMO (2017b), page 20) – that is, for the NEMDE not to ramp

up or ramp down a unit’s energy dispatch while supporting regulation or contingency provision.

3.3.5.3 Secure and reliable system conditions (excluding FCAS)

We now turn to the main body of non-plant constraints that aim to avoid equipment damage and

safety hazards in general to lend reliability to the operation of the complex electric network as

a whole. The third segment of Table 3.3 (items 20–33) showcases interconnector operations,

network stability, thermal capacity limits and outage management as the most important non-

plant aspects to system security.

First, Interconnector Zero (item 20) is the highest priority network constraint that handles
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both planned and forced outages – that is, the full loss of a directed or MNSP interconnector at

any notice – for a minutely accurate representation of the disconnected element in the NEMDE

so that power flows avoid black lines (AEMO (2023d), pages 5-6). However, interconnector

limits also apply absent line disconnections. When interconnectors (including MNSP) are fully

operational, the security objective is to ensure they conform to the advised thermal capacity

ratings (AEMO (2021d), page 8), availability limits and ramp rates as well as to correct non-

conformance (see Section 3.3.2) if needed (items 21–24). Moreover, based on AEMO (2023d)

(page 12), there are minor equations for preventing “non-physical circulating flows in both

MNSP flow offer directions at once” (item 25) and managing frequency variation after a rate of

change of frequency (ROC) in loading MW on a network element.81 Note that ROC corrections

are also possible by enabling NSCAS Network Loading (NLAS).

The second highest priority in network security is maintaining every Satisfactory Network

Limit (item 26), such as no exceedance to line ratings, no transformer overheating and no out-

age.82 Provided these are met, an operationally stable network under this set of constraints is in

a normal system state (NIL) according to AEMO (2013) (page 8).

Secure Network Limit Stability and Other constraints (item 27) manage voltage, oscilla-

tory and transient stability, including system strength (AEMO (2023d), pages 16-17; AEMO

(2021d), page 8). A large amount of stability is already provided by the network elements, such

as the generating plants, over the normal course of operation at no cost. Stability constraints are

then used, in addition, to prevent unsafe variances to these limits.83 Note also that the AEMO

has the option to use NSCAS (see Table 3.4) for managing network stability when the marginal

value of the binding constraint being offset is greater than the cost of the NSCAS providing the

offset (AEMO (2012a), pages 7–8).84

The last constraint set under NIL is the Secure Network Limit Thermal (item 28), which

controls the pre- and post-contingency MW capacity loading (Mackenzie et al. (2020), page 26).

81See the Binding Impact tab in AEMO’s constraint report AEMO (2020e).
82For a brief summary about this limit refer to AEMO (2015a) (page 9), AEMO (2020f) (page 6) and AEMO

(2023d) (page 12).
83See the Binding Impact tab in AEMO’s constraint report AEMO (2020e).
84An excellent discussion on the future system strength in the NEM is provided by Mountain and Percy (2020)

who review the topic with high renewable energy penetration and electricity storage including grid forming batter-
ies in view.
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These constraints are often formulated as feedback equations using the ratings or limit equations

provided for each line by its operator to AEMO; the thermal capacity limits are usually written

as two bounds around the initial MW flows as measured in SCADA (AEMO (2021d), page 16).

Regarding the outage constraints (items 29–32), these are, in principle, very similar to the

Zero limits in that they invoke line limitations (i.e. islanding), which tend to cause signifi-

cant changes in the flow direction, as stated in AEMO (2023d) (pages 12, 17–25). Hard and

soft ramping distinguishes the constraints applied over different but overlapping timescales to

achieve smooth and steady switches, if at all possible, considering phase changes (AEMO

(2021d), page 22). Finally, Non-Physical Loss Oscillation Control (item 33) is put in place

to prevent directional over-oscillation – that is, repeated directional changes in subsequent trad-

ing intervals over an interconnector – beyond the degree at which it can no longer be safely

managed (AEMO (2023d), page 26).

3.3.5.4 Market requirements

The system-level operational constraint sets warranting economic dispatch are shown in the last

segment of Table 3.3 (items 34–39). These involve market offers, expected demand, settlement

residues and price-ties.

The first constraint set in priority order is Total Band MW Offer (including MNSP) (items

34–35). This ensures that the dispatch targets by the NEMDE correspond to the total band size

of the ten bid quantities of the units. The total quantity band, as explained in AEMO (2023d)

(page 9), “must add up to equal or greater than (as designed) the registered maximum capacity”.

Therefore, the bid quantities are typically greater than or equal to the nameplate capacity – that

is, not all are available. In the context of this chapter, refer to Table 3.5 for a summary of

the various capacity measures mentioned so far, which displays the indicators starting with the

least restrictive Total Band MW Offer. From there, the onus is on the engine to determine the

available target quantities using the sophisticated set of constraint rules from Table 3.3.

Regarding the Regional Energy Demand Supply Balance (items 36–37), the economic ob-

jective is to match demand with supply. Nearing the start of every 5-minute trade cycle, the

preceding efforts in forecasting the usual patterns of consumption minus distributed generation
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Table 3.5 : Capacity indicators

The table shows multiple capacity indicators and measures to express the contingent capacity of a unit in decreasing order of magnitude.

Availability Source Function

Total Band MW Offer Bid submission All bid quantity by the BANDAVAIL1-10 field defi-
nition in AEMO (2022i).

Rated capacity Plant survey Nameplate capacity after seasonal adjustments
(AEMO (2021n), page 29).

Generator energy limitation GELF declaration Stockpile scarcity or water storage–bound daily or
weekly maximum capacity as estimated over the
long run (AEMO (2014a), page 4).

PASA availability Bid submission Capacity currently in service or available for service
within 24 hours by the PASAAVAILABILITY field
definition in AEMO (2022i) in line with AEMO
(2020d) (page 8).

Daily energy constraint Bid submission Stockpile scarcity or water storage-bound daily or
weekly maximum capacity as indicated by the units
in real time by the DAILYENERGYCONSTRAINT
field definition in AEMO (2022i).

MaxAvail Bid submission Maximum availability for the 5-minute trade interval
as indicated by the units by the MAXAVAIL field
definition in AEMO (2022i).

Dispatch targets NEM Dispatch Engine NEMDE target outcome (AEMO (2021g), page 9).

approximate the value of the total quantity to be cleared (i.e., scheduled), within the 5-minute

interval. This enters the engine as the regional Total Demand (AEMO (2021f), page 17). Then

balancing demand and supply within a narrow but initially symmetric – as the associated penalty

factors are the same – headroom is achieved using the two Regional Energy Demand Supply

Balance constraint sets shown in Table 3.3 (AEMO (2023d), pages 13-14).

The inter-regional residue settlement as per 3.6.5 in the Rules requires constraints for counter-

price flows. Negative residues arise when the NEMDE optimum dispatch solution directs

counter-price flows through directed (non-MNSP) interconnectors, i.e. when electricity gen-

erated in a high price region is consumed in a low price region (AEMO (2021c), page 5; AEMC

(2013), page i). This is a perfectly legitimate NEMDE outcome as long as it minimises the

objective function (3.3.1) but is problematic because AEMO receives less from retailers than

it is liable to pay out for wholesale generation, as stated in AEMC (2013) (page 5). The costs

are borne by the market customers in the importing region as in AEMC (2014) (page 18). The

coordination involved is commonly known as Negative Residue Management (NRM) (AEMO

(2021c), page 3). The main platform for NRM is the Settlement Residue Auctions (SRA) as

per 3.18 in the Rules, where the accumulated negative residues are settled and distributed. The
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secondary trading of these cash flows has also been permitted more recently.85 Relevant to

real-time dispatch, the NRM constraint (item 38) with a low constraint violation penalty in Ta-

ble 3.3 is in fact a dynamic penalty factor that can be raised by AEMO for counter-price flow

management.86 According to AEMO (2021c) (page 7), as a general rule, AEMO should ‘cease’

[‘clamp’] the accumulation of negative inter-regional settlement residues in the NEM when this

accumulation reaches or exceeds the negative residue accumulation threshold of -$100,000 (as

of 1 July 2010)”. Congestion and disorderly bidding are the two main drivers of negative residue

accumulation, and there is an ongoing discourse between industry reference groups and AEMC

to streamline the NRM process to reduce the gaming of the counter-price flows and maximise

consumer welfare (AEMC (2013), pages 13-14; AEMC (2014), pages 17-25; AEMC (2020),

page 59).87

Finally, there is a small but important consideration in managing price-tied dispatch out-

comes. Should the kind of NEMDE case solution occur wherein a number of bids, none of

which bind or violate any constraints, are equally feasible on a price basis, AEMO then has

to allocate targets equitably. The Tie-break constraint set (item 39) with a minimal effective

violation penalty is used for this purpose. The quantity targets for the price-tied energy bids are

split in proportion to the MW quantities in the relevant bid slots, whereas price-tied FCAS bids

are “dispatched randomly” (AEMO (2023d), page 27).

3.3.6 Out-of-market operations

The usual functions of the main NEMDE run are not fulfilled until a cascading series of out-

of-market operations are also evaluated (AEMO (2021g), page 15). These include fast-start unit

commitment and alternative network constraint formulations as NEMDE re-runs as per 3.8.10

85A detailed overview of SRAs is provided by AEMO (2014c) (page 5) and AEMO (2019c) (pages 6-22)
86Automated counter-price flow management is discussed in AEMC (2013) (page 9) and AEMO (2021c) (pages

3-9).
87It is alarming from a market power concentration point of view that plants at certain electric locations have

access to unilaterally moving the real-time spot price through strategic (disorderly) bidding. Based on participants’
submission on issues papers, particularly Macquarie (2013) (page 1), “Remote generators in the higher priced
region can bid in ways to relieve NRM constraints on an interconnector that was otherwise “clamped” to limit
negatively priced flows”, i.e., to relieve the clamp and then to restart it, known as ‘cycling’. The increased negative
residue that accumulates through cycling is later distributed among the generators in the higher priced region
in negative residue auctions. Therefore, cycling is detrimental to consumer welfare in the low-priced region.
The same issue may arise in new locations once the new high-voltage alternating current (HVAC) interconnector
EnergyConnect is built.
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(e) in the Rules as well as price administration under system distress, should such a scenario

arise, as per 3.14 in the Rules.

Under the principles of self-scheduling, unit commitment is not centralised in the NEM for

units that do not meet the requirements for fast-start classification. However, the FSIP of the

fast-start units are considered in a two-pass scheme as outlined in AEMO (2021j) (pages 10-11)

and Gorman (2023). This involves three steps. In step one, NEMDE is run ignoring the FSIP.

In step two, units are committed or decommitted using the targets from step one as well as their

plant-level technical limits based on their FSIP. Finally, in step three, NEMDE is re-run with

the unit commitment variables fixed for fast-start plants.

Then, the NEMDE is re-run as part of the market methodology for three reasons. Firstly,

the Basslink’s control system88 must enforce security rules that are difficult to integrate into the

NEMDE using linear constraints according to AEMO (2021g) (page 17). In particular, there is

a No-Go zone for power flows between ± 50 MW, and FCAS transfer is not always possible

near full capacity.89 Therefore, there is always a normal NEMDE run in Dispatch mode using

the SCADA indicated Basslink status (on/off), as well as a re-run that assumes Basslink to

be offline. The lower cost solution of the two is ultimately selected for the dispatch solution

(AEMO (2021g), page 17).

Second, the automated Over Constrained Dispatch (OCD) process rectifies when the solu-

tion of the engine in Dispatch mode still contains constraint violation costs that drive the price

results near or beyond the market price thresholds (AEMO (2017a), pages 5, 9; AEMO (2021g),

pages 15-16; AEMO (2011), page 8). Barring any serious distortions requiring a market notice

and intervention, such as a significant MW shortfall or a voltage instability, the arising vari-

ances can usually be resolved by relaxing the RHSs of the violating constraints iteratively or

manually.90, 91

Another reason for out-of-market re-formulations is a market intervention. If the ST PASA

88The Basslink HVDC undersea cable is a scheduled market interconnector (MNSP) across the Bass Strait
between VIC and TAS (AEMO (2022f); Basslink Pty Ltd (2022)).

89For technical details we refer the reader to AEMO (2021g) (pages 17) and AEMO (2021d) (pages 18-19).
90Figure 1 in AEMO (2021g) depicts the OCD flowchart.
91The only exception being that price-tied bids (item 39 in Table 3.3) are split out on a pro-rata basis as per

3.8.16 in the Rules, i.e., this constraint is not relaxed during OCD. See the Tbslack entries in the DispatchedMarket
field in the PriceSetting tab of AEMO (2021p).
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routine detects a high risk of supply inadequacy, it communicates the intervention conditions

to the real-time Dispatch solver immediately using the dedicated LRC and LOR notices (see

Section 3.2.6). These then initiate the following two layers of re-runs. The general requisite

is that AEMO seeks to restore the market price outcome to the level that would have prevailed

had the intervention scenario not arisen, as per 3.9.3 (b) in the Rules, while making every

possible effort to secure non-market quantities to meet the reserve shortfall (AEMO (2021m),

page 5; AEMO (2019b), page 4)).92 This is usually performed in two re-runs by means of

voluntary or involuntary load shedding and non-market reserve contracts.93 The first re-run

is in Outturn mode and it determines the new target quantities using reserve trader (RERT)

bids for the non-market quantities, and the direction constraints specific to Outturn (AEMO

(2023d), pages 5-27; AEMO (2021g), page 19; AEMO (2021m), page 4). Then the second

layer to the intervention policy is another run in What-if mode. This removes the RERT bids

and the direction constraints, and seeks to recover the price under the original circumstances

(AEMO (2023d), pages 7-24); AEMO (2021g), page 19; AEMO (2021m), page 5). A binary

label shows in the solution files whether there had been an intervention during a Dispatch run.94

Price administration under system distress involves administered pricing and suspension

pricing. First, administered pricing periods realise an inter-temporal limitation on the energy

spot price as per 3.14.2 in the Rules. Under the AEMC reliability settings in AEMC (2021a),

an administered pricing cap (APC) of APC ≈ $300 (as per 3.14.1 (a) in the Rules) is applied

to curb the duration of high price periods when the energy spot price is successively high and

breaches the effective 7-day cumulative price threshold (CPT). The CPT is $1,359,100 as at

October 2021. In case of a CPT exceedance, the energy spot price is set to the APC until the

CPT breach is subdued. Similarly, an administered pricing floor of APF ≈ -$300 applies when

92Market price levels that would have arisen from the alternative network formulations are thereby averted,
i.e., the spot prices do not reflect the grid economics under scarcity. Instead, market-price-cap-level out-of-market
uplift payments are paid out for the non-market demand response and unit commitment quantities that have been
used to avoid load shedding. From a price quality perspective, the out-of-market payments pay for providing the
emergency loads, but they do not encourage new investments in general that might minimise the scarcity risk to
begin with.

93Non-market reserve contracts include provisioned arrangements through Clause 4.8.9 directives (AEMO
(2014b), page 7) using constraints beyond the constraints in Table 3.3 in a pre-set priority flow. Note that the
details of the related re-runs are available in AEMO (2023d) (pages 7-20), AEMO (2021m) (pages 5-10) and
AEMO (2019b) (pages 4-6).

94See the Intervention field in the TraderSolution tab in the NEMDE solution data of AEMO (2021p).
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prices skew oppositely as per 3.14.1 (b) in the Rules. Second, suspension pricing applies during

severe demand deficit, for example, after a voltage collapse as per 3.14.3 in the Rules. The

price methodology for a black system or emergency scenarios relies on a market suspension

pricing schedule consisting of historical price averages (AEMO (2017d), page 4). At these

times, non-market ancillary services are predominantly used to re-start parts of the network

(AEMO (2012a), page 8).

3.4 Price settlement

Ex-post price settlement computes the marginal value of an incremental change in load at

the regional reference node (RRN), as per 3.9.2 (d) in the Rules, as the dual variable (shadow

price) of the regional energy balance constraint (items 36–37 in Table 3.3) as in Mackenzie et al.

(2020) (page 28). In addition, as 3.8.1(c) in the Rules requires the market operator to implement

a constraint relaxation routine according to AEMO (2017a) (page 5) to pre-empt infeasible dis-

patch solutions, this involves the assignment of constraint violation penalties to every constraint

to establish the priority order of the constraints (AEMO (2017a), page 5), as shown in the ob-

jective function (3.3.1), as well as the OCD re-runs that relax the violating constraints removing

these penalties from the dispatch solution (see Section 3.3.6). The regional original price (ROP)

then contains the pre-OCD constraint violation penalty costs, but the regional reference price

(RRP) does not, according to AEMO (2016) (page 4). In what follows, we refer to the RRP as

the unit price of electricity in the NEM.

This price, determined as the marginal value of an incremental change in load at the RRN,

is represented by net 1 MW change in load before losses – that is, λc,lN in (2.3.2) in Chapter 2.

However, the change in load does not always correspond to quantities from a single bidder, let

alone quantities from a unique bid slot. Often there are multiple price setter bids. Analysing the

price setter data over a 5-day interval starting at 4:05 AM 16 September 2021 (see NEOPoint

(2021); AEMO (2021p, 2022i)) reveals that depending on the region only about 12-45% of the

market prices are set by a single energy bid from the focus region with inter-regional loss and

ancillary service effects remaining under 2 dollars. The upcoming examples delineate several

other scenarios when the quantity-weighted averages of multiple price setter bids establish the
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regional electricity prices in a more complicated manner.95

Example 3.1. Continuing Example 2.1 – whilst omitting the security constraint effects ex-

plained in Example 2.2 – the targets associated with each bid can be written as in columns

(b) and (c) in Table 3.6. Conceptually, the differences in the targets in column (b) at 50 MW

minus those in column (a) at 49 MW give the (marginal) quantities for each bid in column (c).

The price is then expressed as the sum product of the values in the quantity column (c) and the

bid price column (d). In particular, 1× $1000 = $1000 sets the price.

Table 3.6 : Price settlement: An as-bid λc,lN := λi setting

The table shows all bids in the market and identifies the 70 MW at $1000 as the price setter bid behind the incremental change in the market-wide
target allocation from 49 to 50 MW given a market demand of 50 MW.

Bid Bid type Service type Target Target Quantity Price Comments
(49 MW) (50 MW)
(a) (b) (c) = (b) - (a) (d) (c) × (d)

10 MW at $10 Energy Generator 10 MW 10 MW 0 MW $10 $0

20 MW at $100 Energy Generator 20 MW 20 MW 0 MW $100 $0

70 MW at $1000 Energy Generator 19 MW 20 MW 1 MW $1000 $1000 The only price setter bid is marginal in
exactly 1 MW.

35 MW at $2000 Energy Generator 0 MW 0 MW 0 MW $2000 $0

-20 MW at -$10 Energy Load 0 MW 0 MW 0 MW -$10 $0

-10 MW at -$100 Energy Load 0 MW 0 MW 0 MW -$100 $0

-5 MW at $900 Energy Load 0 MW 0 MW 0 MW $900 $0
Price: $1000

3.4.1 Reserves

For a greater degree of realism λc,lN := λcN , the following example shows FCAS reserves

impacting the market price.

Example 3.2. In Table 3.7, five price setter bids are involved in setting the price: one energy bid

and four FCAS bids. One generation bid by unit POAT220, a gravity hydro generator located

in TAS, sees the complete marginal target increase of 1 MW. At the same time, POAT220 no

longer provides 5-minute raise regulation FCAS (-0.67 MW) or 60 second raise contingency

FCAS (-0.12 MW) due to the trade-off it apparently has between energy and reserves provision.

These services are recovered by enabling units MP2 and MP1 in the same amounts instead,

95See the PriceSetting tab of the AEMO (2021p) data.
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Table 3.7 : Price settlement: FCAS effects in a λc,lN := λcN setting

The table shows the price setter bids behind the incremental change in volume for TAS as at 5:05 AM on 15 July 2021. Source: NEOPoint
(2021); AEMO (2021p).

Unit ID State Bid type Service type Quantity Price Comments
(1) (2) (1) × (2)

POAT220 TAS Energy Generation 1 $25.36 $25.36 The only price setter bid that is marginal
in exactly 1 MW.

POAT220 TAS FCAS R5RE -0.67 $5.5 -$3.67

POAT220 TAS FCAS R60S -0.12 $0.61 -$0.07

MP2 NSW FCAS R5RE -0.67 $7.99 $5.33

MP1 NSW FCAS R60S -0.12 $2.01 $0.24
Price: $27.19

respectively, but this afflicts higher prices. We also see that these net to 0 MW and have no role

in impacting the marginal change in energy. Although the FCAS target variation sums to zero,

the FCAS price increase−0.67× $5.5+−0.12× $0.61+0.67× $7.99+0.12× $2.01 = $1.83

is reflected in the energy spot price. The price is the marginal quantity weighted average of the

energy bid prices plus the ancillary service distortion as an additive cost 1× $25.36+ $1.83 =

$27.19.

3.4.2 Losses

For the λc,lN := λlN setting, the marginal MW change is adjusted for intra- and inter-regional

losses, owing to the fact that almost all network elements, including lines, are imperfect conduc-

tors (AEMO (2012c), page 5). Under marginal pricing, the zonal design of the NEM approxi-

mates nodal LMP in using marginal loss factors (MLFs) as per AEMO (2012c) (pages 10-11),

which represent marginal losses, i.e., “the incremental change in total losses for each incre-

mental [1 MW] unit of electricity” (AEMO (2020b), page 5; AEMO (2012c), page 15). MLFs

are forward-looking estimates (AEMO (2020b), page 5), note however that average losses are

typically lower than marginal losses as in AEMO (2012c) (page 10).

There are two kinds of MLFs in the NEM. Intra-regional MLFs are static loss factors within

the regions under 3.6.2 in the Rules. These MLFs are the volume-weighted average changes in

load at the RRN (swing bus) for changes in injection at the unit connection points, calculated

from historical network flow data using TPRICE, as in AEMO (2012c) (pages 5, 11, 20) and

AEMO (2020b) (page 14). The static MLF is then applied as the divisor of the as-bid price at
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the source to obtain the (typically higher) intra-regional MLF–adjusted bid price at the RRN of

the region.

In contrast, inter-regional (interconnector) MLFs are dynamic loss factors between the re-

gions updated every dispatch interval using a number of system variables, mainly demand and

interconnector transfers, in loss factor equations as per 3.6.1 in the Rules. These equations

“describe the variation in loss factor at one RRN with respect to an adjacent RRN” (AEMO

(2022e), page 48), which also come from the load flow calculations in TPRICE, as in AEMO

(2020b) (page 15). The MLF equation coefficients for demand and interconnector transfers are

estimated using linear regression. The MLF estimated dynamically using this inter-regional

MLF equation is then applied as an RRP multiplier to obtain the spot price at the RRN of the

focus region (AEMO (2012c), page 22).

We can also establish the trade directions from the inter-regional MLFs in general while

observing the DUID-level marginal quantity values.96 We have the following relations for a

1 MW change in the focus region’s generation. If the DUID-level marginal quantity is less

than 1 MW and positive, e.g. 0.95 MW, then the focus region is exporting 1 MW less and

some DUID in the other region is recovering the lost amount after inter-regional line losses by

increasing its own generation by 0.95 MW. Similarly, if the DUID-level marginal quantity is

greater than -1 MW and negative, e.g. -0.95 MW, then the focus region is exporting 1 MW

more and some DUID in the other region is matching the incoming amount after inter-regional

line losses by decreasing its own generation by 0.95 MW. However, if the DUID-level marginal

quantity equals 1 MW exactly, then the focus region is increasing its own generation by 1 MW.

Analogously, if the DUID-level marginal quantity is greater than 1 MW, e.g. 1.05 MW, then the

focus region is importing 1 MW more from the DUID in another region, which has to increase

dispatch by 1.05 MW to account for the increased demand before inter-regional line losses.

Similarly, if the DUID-level marginal quantity is less than -1 MW, e.g. -1.05 MW, then the

focus region is importing 1 MW less from the DUID in another region, which has to decrease

dispatch by 1.05 MW to account for the decreased demand before inter-regional line losses.

In contrast, if the DUID-level marginal quantity equals -1 MW exactly, then the focus region

96Which correspond to the Increase field values in the PriceSetting tab of the AEMO (2021p) data, particularly
the energy offer (ENOF) attributes. The load offers (LDOF) have the opposite signs.
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is decreasing its own generation by 1 MW. We use these results to construct the upcoming

examples.

The following example recreates and, for exposition purposes, refashions the conditions in

Example 3.2 to show the price effects of intra- and inter-regional losses.

Table 3.8 : Price settlement: Loss effects in a λc,lN := λlN setting

The table shows the price setter bid(s) contributing to the incremental change in the energy demand for TAS in two hypothetical scenarios. One
is where the price is fully set by bid(s) from the region (above), and another is where there are additional unit(s) supplying from another region
(below).

Price for TAS with intra-regional line losses:
Unit ID State Bid type Service type Quantity Price As-bid price Comments

(1) (2) (1) × (2)

Unit A TAS Energy Generation 1 $25.36 $24.58 $25.36 Intra-regional loss adjustment is re-
flected in the price.

Price: $25.36

Price for TAS with both intra-regional and inter-regional line losses:
Unit ID State Bid type Service type Quantity Price As-bid price Comments

(1) (2) (1) × (2)

Unit A TAS Energy Generation 0.60 $25.36 $24.58 $15.22

Unit B VIC Energy Generation 0.50 $26.00 $23.00 $13.00 Note the additional inter-regional effect.
Price: $28.22

Example 3.3. Focusing on the top segment of Table 3.8, the bid price at the RRN ($25.36) would

be equal to the as-bid price ($24.58) without intra-regional line losses. However, as in 3.8.6

(h) in the Rules, we must account for the intra-regional MLF too. The as-bid price, the price

placed by unit A in its bid submission, is $24.58. Only after dividing that by the intra-regional

MLF can we see the additive intra-regional loss adjustment of 78 cents (as $24.58 + $0.78 =

$25.36). In both segments of Table 3.8, the price setter bid price of the unit A hydro plant is

$25.36 after intra-regional MLF, as measured at the RRN. Furthermore, the single price setter

bid by unit A is only subject to intra-regional losses. There are no inter-regional losses, as it is

located in the focus region, TAS. This is also revealed from the fact that marginal quantity is at

exactly 1 MW. The TAS price is then 1× $25.36 = $25.36.

In the bottom segment of Table 3.8, however, there are two different price setter bids. One

by unit A located in TAS and another by unit B located in VIC. The as-bid price is $24.58 and

the intra-regional loss is 78 cents on unit A, as before. In comparison, the as-bid price is $23.00

and the intra-regional loss is 300 cents on unit B.97 This is a scenario where the marginal MW

97From the higher dollar loss, we infer that unit B is electrically further away from the reference node within
its own region.
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is met by local generation (0.60 MW) and partly by generation increase elsewhere (in VIC). We

also know that TAS is importing from VIC, because the generation increase in VIC is more than

the difference of 1 and 0.60 MW. VIC has to increase generation by more than 0.40 before line

losses to deliver exactly 0.40 to TAS. The TAS price is then 0.6× $25.36+ 0.5× $26 = $28.22.

3.4.3 Loads

The examples have so far only looked at instances when a generator incrementally increased

output to arrive at the marginal 1 MW change. We now look at a case with a change in loading

(storage uptake).

Example 3.4. In Table 3.9, a single bid by the HPRL1 battery load unit sets the price. Load in

the system increases by decreasing the target of the load unit. The price is the marginal quantity

weighted average of the energy bid prices, −1.18×−$56.74 = $66.81.

Table 3.9 : Price settlement: marginal load in a λc,lN := λi setting

The table shows the price setter bid behind the incremental change in volume for NSW as at 5:45 AM on 16 September 2021. Source: NEOPoint
(2021); AEMO (2021p).

Unit ID State Bid type Service type Quantity Price Comments
(1) (2) (1) × (2)

HPRL1 SA Energy Load -1.18 -$56.74 $66.81 NSW imports 1 MW more (after losses)
from SA, where loading (storage up-
take) at -$56.74 decreases by 1.18 MW.

Price: $66.81

3.4.4 Real-world examples with binding constraints

Whenever a plant, FCAS, thermal, stability, or economic constraint is binding over the

incremental MW increase, congestion is concomitant. Constraint equations from the constraint

sets from all segments of Table 3.3 might invoke line closures and resource trade-offs as per

3.6.4 (a1) in the Rules. This typically complicates price settlement and induces detectable price

effects.98 Below, we present three not atypical real-world examples in the full λc,lN := λc,lN setting

with reserves, losses, and loads and with one or more binding security constraints.

98From a price quality aspect, prices should keep to grid economics, i.e., they should rise at times of scarcity
and drop otherwise to return the true costs of capacity investments. However, when constraints equations bind the
prices tend to rise and drop irrespective of the overall scarcity level.
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Example 3.5. For price settlement in NSW, the incremental increase in energy requires a

marginal quantity increase by the brown coal units LYA1, LYA2, LYA3 and LYA4 in VIC,

whereas the local, nominally lower priced solar farm LIMOSF21 (NSW) sees a marginal quan-

tity decrease of 0.11, as in Table 3.10.99 That is because a congested network element (e.g. a

line) requires the backing off of cheaper quantities so that load can be increased by injecting

more expensive quantities elsewhere on the grid. More specifically, the NˆˆN_NIL_3 voltage

stability constraint, which is a less than or equal to constraint and features LIMOSF21 with a

coefficient of 1 and the VIC1–NSW1 interconnector (at the boundary) with a coefficient of 0.093

at the LHS, is binding.100 Given an inter-regional MLF of 1.077 over VIC1-NSW1 (AEMO

(2021p)) and a proportioning of 34.38% of the losses to VIC, the extra flow at the boundary due

to losses is 1.077/1.027 = 1.0497 MW per 1 MW increase in flow at the boundary, as in AEMO

(2009) (page 5), times a quantity multiplier of 1.104, as 1.104×1.077 = 1.19 gives back the

change in VIC – that is a change in flow at the boundary of 1.0497×1.104=1.159, which in turn

creates a constraint LHS increase of 1.159×0.093 = 0.11. This amount is offset by changing the

target of LIMOSF21 by -0.11, as shown in Table 3.10. As a result, the NSW price can be written

as the sum product 1.19 × −$31.05 − 0.11 × −$1000 = $71.12, which, quite extraordinarily,

gives a positive price using solely negative marginal bids (−$1000 and −$31.05).

Table 3.10 : Price settlement: High price in a λc,lN := λc,lN setting

The table shows the price setter bids behind the incremental change in volume using the actual engine outcomes for NSW as at 2:55 PM 15 on
July 2021. Source: NEOPoint (2021); AEMO (2021p).

Price for NSW:
Unit ID State Bid type Service type Quantity Price Comments

(1) (2) (1) × (2)

LYA1, LYA2,
LYA3, LYA4

VIC Energy Generation 1.19 -$31.05 -$37.08 NSW imports 1.19 MW more quantities
(before losses) generated in VIC for -
$31.05.

LIMOSF21 NSW Energy Generation -0.11 -$1000 $108.20 NSW generates 0.11 less at -$1000.
Price: $71.12

Example 3.6. Overall, more than ten price setter bids are involved in setting the price in the

focus region SA in Table 3.11. The marginal increase in energy in SA requires flow modifications

99There is also a tie-break and associated costs in the order of magnitude of 1e-4 for LIMOSF21 as in AEMO
(2021p).

100The binding constraint information and the proportioning factors are obtained using Nempy, as in Gorman
et al. (2022), with default data settings for the dispatch interval.
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over the V-S-MNSP1 (Murraylink) and the VIC1-NSW1 interconnectors and therefore dispatch

target changes in NSW and VIC but, interestingly, not in the focus region SA. The following

dynamic unfolds. First, SA is importing from VIC through Murraylink to meet the 1 MW increase

in load in SA, where this is met by a -0.961 MW flow at the boundary, a value obtained using the

inter-regional MLF of 0.872 over V-S-MNSP1 (AEMO (2021p)), a proportioning of 72.31% of

the losses to VIC to calculate 0.872/(1+(0.872-1)×0.7231) = 0.961, as in AEMO (2009) (page

5), and a negative sign as it is an easterly flow.101 Then, after rounding, the change on the

VIC side of Murraylink is 0.872 MW and on the SA side is 1 MW, as computed as the at the

boundary flow 0.961 plus incremental losses 0.961×(0.872-1)×0.7231=-0.088 (from region),

0.961-0.088=0.872, and as the at the boundary flow minus incremental losses 0.961×(0.872-

1)×(1-0.7231)=-0.034 (to region), 0.961+0.034≈1.

At the same time one of the voltage stability constraints, NˆˆN_NIL_3, which is a less than

or equal to constraint, is binding.102 The LHS of this constraint includes V-S-MNSP1 with a

-0.5197 coefficient and VIC1-NSW1 with 0.09287. Therefore, as the additional -0.961 MW

negative flow at the boundary of V-S-MNSP1 increased the LHS of the constraint, the VIC1-

NSW1 flow must increase in the northern direction by -0.961×(-0.5197/0.09287)=5.378 MW at

the boundary to neutralise the LHS increase.

Then, with an inter-regional MLF of 1.147 (AEMO (2021p)) and a proportioning of 34.38%

of the losses to VIC, the change on the VIC side of VIC1-NSW1 is approximately 5.6 MW

and on the NSW side after rounding it is 4.9 MW, computed as the at the boundary flow 5.378

plus incremental losses 5.378×(1.147-1)×0.3448=0.271 (from region): 5.378+0.271≈5.6, and

as the at the boundary flow minus incremental losses 5.378×(1.147-1)×(1-0.3448)=0.517 (to

region): 5.378-0.517≈4.9.

Then, the 6.5 MW increase in dispatch in VIC by the units LYA1, LYA2, LYA3 and LYA4 at

-$31.05 is the sum of the flows sent through the two different interconnectors, 0.872+5.6≈6.5,

as shown in Table 3.11. Also, the 4.9 MW decrease at the other end of VIC1-NSW1 in NSW is

met by the higher cost ($43.60) black coal units ER01, ER03 and ER04.

101Note that any positive interconnector flow travels northwards or westwards as in AEMO (2023a).
102The binding constraint information and the proportioning factors are obtained using Nempy as in Gorman

et al. (2022) with default data settings for the dispatch interval.
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Regarding the related update in ancillary services, the units ER01, ER03 and ER04 are im-

pelled to lower their 5-minute regulatory FCAS provision after decreasing their energy output,

and the next least expensive service provider LOYYB2 must step in at a higher price. Even after

some losses in value on FCAS, however, the engine has realised considerable value, as the price

result for SA is −$348.86 despite using much higher priced marginal bids for energy (−$31.05

and $43.60).103

Table 3.11 : Price settlement: Low price in a λc,lN := λc,lN setting

The table shows the price setter bids behind the incremental change in volume using the actual engine outcomes for SA as at 12:40 PM on 15
July 2021. Source: NEOPoint (2021); AEMO (2021p)

Price for SA:

Unit ID State Bid type Service type Quantity Price Comments
(1) (2) (1) × (2)

LYA1, LYA2,
LYA3, LYA4

VIC Energy Generation 6.51 -$31.05 -$202.25 SA reduces exports to VIC by 1 MW.
6.51 MW more quantities are generated
in VIC for -$31.05, of which 4.92 MW
arrive at NSW.

ER01, ER03,
ER04

NSW Energy Generation -4.92 $43.60 -$214.50 Imports into NSW replace 4.92 MW
$43.6 dispatch in NSW.

ER01, ER03,
ER04

NSW FCAS L5RE -4.92 $0.00 $0.00 With 4.92 MW NSW-generated energy
being replaced by imports there is 4.92
MW less capacity in NSW to provide
L5RE FCAS.

LOYYB2 VIC FCAS L5RE 4.92 $13.80 $67.89 The next least expensive L5RE FCAS
provider.

Price: -$348.86

There is one further remark to Table 3.11 containing information about SA. At the time

of this data, system strength directives under the Rules state that “the minimum requirement in

South Australia drops to two synchronous units online, mainly for system security reasons rather

than to address the system strength shortfall. This requirement remains until the commissioning

of Project EnergyConnect (if built)” (AEMO (2020c), page 30). The input bid data and the

cleared target output data in the NEMDE solution files of AEMO (2021p) indeed confirm that

two synchronous units were kept online despite bidding at prices near the market price thresh-

olds, which is an example of constrained-on bids that are implicit but not directly observable in

the price setter bid selection.

103Based on personal communications with Allan O’Neil in the second half of November 2022.



80

Example 3.7. A price outcome is shown for NSW wherein changes in the Basslink market

interconnector come into play, as per Table 3.12. To meet the incremental increase in load,

the ER02 local unit is directed to increase generation by 1 MW for $55.01 in NSW, as the

flow through the VIC-NSW interconnector is blocked by the binding voltage stability con-

straint VˆˆN_DPWG_X5_1. The increase in energy dispatch also allows the ER02 unit to

raise its FCAS lowering service enablement over two response time categories, 60-second and

5-minute, for $1.03. These FCAS increases do, in turn, lead to increases on the LHSs of a

binding loss of Basslink (F_MAIN++NIL_BL_L60) and loss of a potline mainland constraints

(F_MAIN++APD_TL_L5), respectively.104

In both equations, there is increase in the mainland enablement of L60S and L5MI, where

ER02 has a constraint coefficient of 1, as part of the regional coefficients for NSW1 L60S and

NSW1 L5MI; thus the Basslink interconnector flow TVMNSP1 is positive in the northern di-

rection. Therefore, the engine is able to offset the increase caused by ER02 by decreasing the

TVMNSP1 by 1 MW, for trade value maximisation. Decreasing the northern flow is achieved

by increasing the southern flow, i.e., by sending an additional 1 MW to TAS without increasing

the LHSs of the constraints by more than 1 MW after losses. This is satisfied by increasing the

target for the NUMURSF unit in VIC by 1.06 MW after losses and decreasing it for TUNGATIN

in TAS by 1 MW. Notice also the price effect of the market interconnector; should the bid price

of T-V-MNSP1 be different from $0.0, one would see an additive price impact.

Due to this increase on the LHSs of the binding mainland constraints, however, it is no

longer possible to decrease the L60S and L5MI FCAS targets back to net nil from the main-

land. Any such change in FCAS would have to come from TAS. Accordingly, TUNGATIN

(TAS) decreases the L5MI service by 1 MW, but neither TUNGATIN, nor any other unit would

be able to decrease L60S back to net nil because of a binding local L60S constraint in TAS,

F_T+NIL_ML_L60. Considering all these changes over the last 1 MW, the NSW price result is

$37.78.105

Summarising Examples 3.1–3.7, the energy spot price is the cost of the marginal increase

104The binding constraint information and the proportioning factors are obtained using Nempy, as in Gorman
et al. (2022), with default data settings for the dispatch interval.

105Based on personal communications with Allan O’Neil on 4 November 2022.
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Table 3.12 : Price settlement: Mid price in a λc,lN := λc,lN setting

The table shows the price setter bids behind the incremental change in volume using the actual engine outcomes for NSW as at 11:25 AM 17
Sep 2021. Source: NEOPoint (2021); AEMO (2021p).

Price for NSW:

Unit ID State Bid type Service type Quantity Price Comments
(1) (2) (1) × (2)

ER02 NSW Energy Generation 1.00 $55.01 $55.01 1 MW energy increase in the focus re-
gion as the VIC-NSW interconnector is
blocked by a binding voltage stability
constraint.

ER02 NSW FCAS L60S 1.00 $1.03 $1.03 1 MW L60S FCAS increase provided by
ER02 more economically than by main-
land competitors.

ER02 NSW FCAS L5MI 1.00 $1.03 $1.03 1 MW L5MI FCAS increase provided
by ER02 more economically than by
mainland competitors.

T-V-MNSP1 TAS - Interconnector 1.00 $0.00 $0.00 TAS is sending 1 MW less through
Basslink.

NUMURSF1 VIC Energy Generation 1.06 -$18.90 -$19.98 On the mainland end of Basslink gener-
ation increases for -$18.90.

TUNGATIN TAS Energy Generation -1.00 -$0.87 $0.87 On the TAS end of Basslink generation
decreases for -$0.87.

TUNGATIN TAS FCAS L5MI -1.00 $0.18 -$0.18 The L5MI FCAS increase is offset by a
decrease in TAS that does not affect any
binding constraints.

Price: $37.78

in supply at the RRN, discretised as 1 MW, but with several security constraint factors at play.

First, as emphasised in Section 2.3.4 in Chapter 2, the curtailed (constrained-off) and must-run

(constrained-on) quantities influence the price outcome most indirectly by changing the supply

pool of bids. More directly, FCAS reserves, losses, and binding security constraints change the

price calculation in a way that is irreproducible using the usual merit order rules, i.e. such that

the 1 MW change in power takes rearranging more than 1 MW of resources. In effect, security-

constrained least-cost pricing comes down to pricing the MW changes that the NEMDE deems

as the most economic way of delivering an extra unit of demand at the RRN. It follows that

price replication in a traditional bid stack type model framework using historical data under

the NEM assumptions is mostly only practicable when the price is not susceptible to these

effects. Collating the market bid stack, adjusting it for the constrained-off quantities, adjusting

the demand for the constrained-on quantities and letting the inelastic demand line intersect the

bid stack gives only the price before various non-bid effects. Furthermore, we can decompose

the price with non-bid effects and put the pieces back together, as shown in Examples 3.5–3.7,
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but it is relatively challenging to predict some of the multiplicative components in a bid stack

price model setting, which highlights the limitations of the traditional bid stack price modelling

approach.

3.4.5 Outlook

The NEM market clearing process aims to dispatch wholesale electricity at minimum cost.

It is not straightforward, however, whether the described mechanism indeed warrants afford-

ability by setting the regional wholesale prices at true marginal costs. The problem is twofold.

First, price setting is complicated by a number of factors related to the physical feasibility of

dispatch. These include line losses, inter-regional trade, ancillary service co-optimisation, as

well as network constraints for system safety. The price of wholesale electricity often fails to

correspond to the price of the last used bid in merit order from the focus region (frequently

regarded as “the” marginal cost). The above effects obfuscate marginal cost–based price set-

tlement and make the semi-structural modelling of the electricity price more challenging. The

novel market model we propose in the upcoming chapter, extending the work of Carmona et al.

(2013), is motivated by these findings, in that it captures the mentioned factors to reveal the way

they affect price formation in the NEM.

Second, there is some doubt as to whether the bid-in costs reflect the true marginal costs of

the units in the NEM. This is because potentially disorderly price-based bidding is allowed in

the NEM as opposed to a stricter cost-based regime. This, and other aspects of the current NEM

market design that distinguish it from market designs in North America and Europe are more

comprehensively evaluated on their welfare impacts in Chapter 5.

3.5 Conclusion

In the broader context of sustainability in worldwide electricity markets, the NEM is an

innovative leader in integrating renewable fuels and battery solutions despite of the operative

challenges involved. Inverter-based power resources cannot provide inertia; therefore, new

system strength constraints had to be introduced, causing some renewable capacities to be

constrained-off. In addition, rapid frequency balancing has become important now more than

ever to stabilize the hertz equilibrium of the system in the presence of intermittent capacities,
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which sometimes causes additive FCAS price components to arise. Also, given the market in-

terconnectness, we see that low-bidding renewables can impact the price outcome in multiple

regions because the NEMDE is a market-wide trade value maximisation routine. Evidently,

these solutions also induce observable price effects in the continuing transitional shift to clean

energy.

Understanding reliability planning and security-constrained real-time dispatch scheduling is

key to thoroughly decipher ex-post price settlement in the NEM. Target allocation is preceded

by years of reliability planning to ensure that the resources from which the engine is scheduling

gives an adequate solution. Then, the objective function of the real-time dispatch underpinning

price settlement ensures that the trade value maximising optimal dispatch schedule is physically

viable given the security constraints. Finally, price settlement is performed by valuing the

marginal unit of demand.

This valuation is rather complex taking real-time physical system limitations into consid-

eration. Understanding how the NEM operates enables the identification of the key factors

that impact price formation. These include multi-regional interconnectedness, network losses,

wholesale load activity, co-optimised ancillary services, and constrained-on/off effects. Con-

sidering these factors, as they are highly relevant to pricing, the present chapter builds a deep

understanding of the NEM market design for an improved price hypothesis over the extended

equilibrium framework presented in Chapter 2. Moreover, an important contribution of the pre-

sented survey is the finding that not all of the above factors can economic bid stack–type market

modelling frameworks be easily adapted to.
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Chapter 4

A hyperbolic supply function approach to price modelling106

4.1 Introduction

The application of the standard equilibrium argument to electricity markets is common

across bid stack models (Barlow (2002); Howison and Coulon (2009); Aid et al. (2009); Car-

mona et al. (2013); Aid et al. (2013); Carmona and Coulon (2014); Ware (2019)). However, this

type of price modelling omits fixed cost bids. In addition, the engineering optimisations used

in some real-world markets that admit nodal LMPs incorporate the marginal values of the bind-

ing security constraints. The applicability of most bid aggregation mechanisms is restricted for

market designs with these features. However, as the NEM operates with single-part marginal

cost bids and no congestion component in the price, it lends itself readily to bid stack–type

modelling.

The implicit assumptions of bid stack models in the literature often mimic a given mar-

ket design. For example, the non-overlapping fuel merit order principle in Aid et al. (2009)

reflects a particular approach to market clearing in the presence of nuclear generation. In con-

trast, Carmona et al. (2013) use overlapping fuel curves. Another, more direct assumption is

the functional form of the market supply curve. Originally, Barlow (2002) suggest a power law

supply function, but quantile function (Howison and Coulon (2009)), exponential function (Car-

mona et al. (2013); Carmona and Coulon (2014)) and polynomial formulations (Ware (2019))

are also present in the literature. Most of these assume a ‘hockey stick’ shape for the supply

curve while ignoring the possibility of negative price bids. The contribution of this study is a

market model formulation on bid stack principles wherein price negativity arises in a structural

manner.

This chapter presents a novel market model that adapts the economic equilibrium interpre-

106This chapter is based on the published article by Katona et al. (2023a).
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tation of Carmona et al. (2013) to the bid stack extensions developed in Chapter 2 and the

insights provided into the market design of the NEM in Chapter 3. The resulting bid aggre-

gation mechanism constructs an increasing hyperbolic supply function that is intersected by a

perfectly price inelastic demand quantity107 to obtain the price considering a number of key

factors in the assumptions. The proposed model allows for five interconnected regions where

bidding is price-based, renewable technology penetration is high, battery storage is an increas-

ingly integral part of the daily operation, network constraints apply and plants have capacity

limits. Moreover, due to its modular structure, the model can easily be adapted to other market

designs with similar features.

A trade specification is built on the assumption that the as-bid price at the marginal regional

dispatch amount sets the price. This treats the demand before adjustments as the net local

generation in the region (net of storage loading), which is the sum of end-user consumption

and trade, i.e. export–import flows. The specification estimates the sum with a deterministic

function with intra-week and diurnal changes. The size and direction of the trade flow between

any two regions can be inferred from this sum as well. Randomness comes from the stochastic

constrained-on/off demand adjustment in this case.

The inclusion of renewable fuels is achieved by a departure from modelling the inter-

temporal changes in the generator and load fuel bid stack (inverse supply) functions in con-

nection to the input fuel, such as gas and coal prices. Shifting the fuel supply curves by some

fuel-specific quantities that follow seasonal and diurnal patterns is recommended to capture the

strategic bidding behaviour for the different fuels regardless of the input fuel prices.

With regards to model evaluation, a multi-regional implementation study using the Wasser-

stein metric shows that the proposed framework is sufficiently accurate in its distributional fit

for most regions in the NEM. One exception is the SA region, where the model hypothesis

fails to capture significant changes in the bid curves over time owing to strategic bidding. This

implies that the dynamics of the bidding behaviour are just as important for modelling price

formation as correctly capturing the bid aggregation mechanism.

The chapter is organised as follows. Section 4.2 provides an overview of the proposed

107See Section 3.3.3 for a discussion on this assumption.
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electricity price model and shows the formulation of the core map and input processes. Section

4.3 discusses the implementation of the new model, and the findings are presented in Section

4.4. Section 4.5 concludes the chapter.

4.2 Description of the hyperbolic electricity price model

4.2.1 Model design

4.2.1.1 Bid aggregation

The proposed method captures supply and demand in the wholesale market to recover the elec-

tricity price as the equilibrium solution of the assumed market structure. The supply represen-

tation combines the supply from a multitude of power plants fuelled by various generator fuels,

e.g. coal, solar, hydro, etc., through time-dependent fuel bid stack functions. These express

the supply contributed by each fuel over a range of price levels, as implied by the bid data of

the plants using the fuel. Demand is expressed as a combination of end-user demand from the

consumers, both industrial and household, in the region, export–import, and demand from the

load leg of the two-way fuels, such as pumped hydro and battery. End-user consumption plus

trade (net generation loads) is assumed to be perfectly inelastic, and it is subject to a number

of adjustments in the model. Formulating it as a diffusion process is generally sufficient for the

model to admit a price sequence with spikes. In addition, we propose load fuel bid stack func-

tions to capture the uptake demand by each two-way fuel over a range of price levels, usually

with a degree of price elasticity, using the respective plant commitment (bid) data.

A market bid stack function is then built based on the fuel bid stack functions considering

that every fuel bid stack equation is fundamentally dependent on the typical availability varia-

tion of the particular fuel. This temporal variation can be linked to a factor that is physically

induced or to a factor that is both physically induced and arises out of the market mechanism.

For example, the quantity of solar supply relies on the rate of solar irradiance, an entirely phys-

ical component that puts an upper bound on the available quantity domain of the solar bid stack

function. In contrast, the quantity of the coal supply usually relies on the ramp rates, a factor

that is both physical and economic. The ramp-down and ramp-up rates pose a lower and an

upper bound, respectively, on the available quantity domain of the coal bid stack function. It
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is a physical factor, as the supply quantity range around the initial output level is based on the

technical ramping specifications of the plants using the fuel. Further, it is an economic factor

because the initial output level is the output quantity dictated by the equilibrium solution of the

preceding time interval. In summary, the different fuel bid stack functions are defined based on

different quantity domains, as determined by the appropriate availability factors, prior to being

aggregated in the market bid stack function.

The resulting market bid stack function is a time-dependent price map that transforms the

expected value of the inelastic demand quantity into the expected value of the electricity price.

Visually, the market bid stack function gives the price at the quantity where the inelastic de-

mand, a vertical line, intersects the market supply curve, which is an increasing function over

higher quantities. This is consistent with the merit order principles, as end-user demand is first

matched with least-cost supply.

4.2.1.2 Equilibrium mechanism

The volumes of electricity the fuels generate and uptake to meet end-user demand to realise the

price result (dispatch quantities) are a consequence of the equilibrium solution, which highlights

that compliance with the dispatch targets is what makes the scheduled units of a fuel compati-

ble with the proposed framework. In the NEM, using the dispatch quantities at the end of the

previous trade interval, the engine determines the optimal dispatch schedule and accordingly

issues quantity targets for the next interval (AEMO (2021g)): that is, the targets correspond to

the dispatch quantities at the end of the current time interval provided that the plants change

their dispatch precisely as prescribed. To orchestrate this, the engine possesses timely technical

information about the physical limitations of the plants for all fuel types. Using this information

and other network data, it performs congestion and contingency planning to find the most opti-

mal schedule for the interval and to provide the plants with viable targets. In addition, to ensure

a well met congestion and contingency protocol, the market operator enables ancillary response

services (reserves) to maintain the operational frequency of the electric system between 49.85

and 50.15 Hz at all times (AEMO (2021o)). Ancillary balancing is necessary when the units

of a fuel type are unable to change their dispatch quantities precisely as planned. However, the

need for ancillary balancing seldom arises under the simplifying assumptions of the proposed
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hyperbolic price model. The available quantity domains of the fuel bid stack functions are pre-

sumed fully feasible – that is, the fuels, which are the aggregate of all unit-level bids within a

fuel type, are modelled such that they are always able (and willing) to change their generation

and uptake to any value within the available quantity domains of their bid stack functions. This

is achieved by introducing fuel-level capacity limitations in summary of the unit-level available

capacity limits as well as constraint-driven capacity limitations that capture the network-wide

infeasibilities of some quantities, for example, for thermal overload, stability thresholds, tie-

breaks, etc., subsumed under the constrained-on/off variable. These settings are designed to

promote the accuracy of the available quantity domain in the model. Then, the fuels’ compli-

ance, i.e., whether the units in the fuels in fact alter their dispatch as needed to realise the price

result, is immediate under the model assumptions. Therefore, unit of a fuel type that do not alter

their generation and uptake at economic command cannot be modelled through fuel bid stack

functions in the proposed approach.

Moreover, the units for a fuel type may forgo bidding but supply or demand smaller quan-

tities. However, this only occurs either when the plants are given a non-scheduled status at

registration, or when they use fixed bids to act as price takers to secure trade with no price

conditions. The model accommodates this activity using fixed bid quantity variables.

The most important aspect of the equilibrium solution is the merit order dynamic. Three

steps are involved in matching end-user demand with the least-cost supply, insofar as the avail-

ability and feasibility factors as well as the fixed bid quantities permit, and thus prepare our

discussion of the merit order dynamic. The first step is to calculate the inelastic demand for the

scheduled fuels to fill. For that, we take the net of the expected value of the inelastic demand

term, the fixed bid quantities and the constrained-on/off variable. The second step is to cate-

gorise the scheduled fuels as low-priced, mid-priced or high-priced for the following purpose.

The low-priced generator fuels and high-priced load fuels are granted complete dispatch and are

netted against demand, similar to how the fixed bid quantities had been in step one. Then, the

high-priced generator fuels and the low-priced load fuels with an available quantity lower bound

at nil are taken out – that is, their bids are removed from the merit order – as these quantities

are uneconomic. If, however, the available quantity lower bound of a high-priced (uneconomic)

generator fuel is not zero, i.e., the fuel is physically unable to shut down, then it is labelled an
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online fuel (a scheduled fuel that must be kept online). It remains dispatched in its lower bound

quantity and gets netted from the demand at this time. There might be one or more online gen-

erator fuels simultaneously. That leaves the remaining mid-priced fuels as marginal to set the

price at the adjusted inelastic demand, the demand for the marginal fuels to fill. The third step

is to express the market bid stack function that returns the price at the adjusted inelastic demand

in closed form.

4.2.1.3 Assumed market dynamics

The three steps in combination realise a market merit order dynamic that retains the core math-

ematical apparatus and the overlapping and dynamic properties of the model by Carmona et al.

(2013) but also introduces three new price effects, which are the load effect, the online fuel

effect and the network constraint effect. The overlapping property allows the different bid stack

functions to overlap on price. For example, solar may bid at prices between -$10 and $10 and

coal between $0 and $100, and the fact that these overlap between $0 and $10 is perfectly ac-

ceptable. The dynamic property allows the fuel bid stack functions to be time-dependent, which

is desirable for modelling the variability in the bid curves owing to strategic bidding. The load

effect is then the price effect that arises out of the two-way fuels entering with both a generator

bid stack and a load bid stack at the same time. The online fuel effect ensures that fuels with

a minimum operating level that cannot shut down are represented accordingly in the model.

Lastly, the network constraint effect uses the constrained-on/off variable as a demand offset to

avoid using quantities subject to curtailment and ensure the use of must-run quantities.

The regional market merit order dynamic that determines the dispatch quantities and marginal

price in the model is also subject to the influence of export–import between the regions in multi-

regional markets. In real life, NEMDE determines the price as the cost of the incremental 1 MW

change in supply in the focus region by the end of the next 5-minute trade interval, including

the costs of the marginal energy targets and the consequential marginal frequency balancing

target re-arrangements as per AEMO (2010b), which involves interconnector availability as fol-

lows. When there is free interconnector capacity for price regions that have undispatched bids

at lower prices, the engine allows for trade, and the regional prices are set at a similar level.

In the absence of interconnector flow capabilities, however, the price is set within each focus
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region such that the prices of the different islanded regions are remarkably different. The model

accommodates these export–import assumptions by carefully estimating the trade quantities be-

tween different regions within the respective interconnector capacity bounds that then enter as

adjustments to the inelastic demand level.

The model generally maps well to other electricity markets that meet the following criteria.

First, in regional markets, the dual variables of the physical constraints should not be compo-

nents of the marginal price. Moreover, the auction scheme of the market must be sufficiently

similar to that of the assumed market structure, i.e. to the liberalised regional markets where

the participants engage in price-based bidding. Whether bidding is price-based or cost-based in

a market can impact the suitability of the model when capturing the price levels and temporal

changes in the fuel bid stack functions. The diurnal and seasonal shift variable of the proposed

model is only concerned with strategic bidding, as is arguably appropriate in the price-based

NEM; however, this may not be the recommended approach in cost-based markets, for exam-

ple, input fuel price–based overlays might be needed for certain fuels. Moreover, sufficient

historical non-price data must be available for the model to be accurately calibrated to ensure

the physical feasibility of the projected equilibrium solutions over time.

Thus, the new model returns the electricity price as the equilibrium solution of the assumed

market structure as described. Note that the proposed hyperbolic model can also be helpful

for market analysis, as it does not detach from the production activity dictated by the auction

scheme of the assumed market structure.

4.2.2 Model formulation

The model functions as a transformation map that takes inelastic demand Dt as an input and

produces price pt as an output at time t.

4.2.2.1 Fuel bid stack functions

We denote with I = (1, ...n) the scheduled generator fuel set of a price region, with L =

(1, ...m) the scheduled load fuel set of the same price region, and with U = (I, L) the complete

scheduled fuel set of the region. Let fuel i ∈ I be a generator fuel and fuel l ∈ L be a load

fuel. We provide two distinct fuel bid stack functions; one for the n generator fuels and another
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one for the m load fuels. Both have fuel-, region-, and time-dependent parameters. We also

introduce the price taker fuel set F = (1, ...f) for the f fuels that make small, price-independent

quantity commitments.

Consider t ∈ (t0, T ] as the time that partitions the pricing period from time t0 until times T

into 5-minute time intervals starting at t1.

At time t, the maximum registered capacity of generation fuel i is represented by c̄i,t, and the

maximum registered capacity of load fuel l by c̄l,t, both measured in MW. Then, the maximum

scheduled generation capacity c̄t of the region (in MW) is computed as the sum of the maximum

scheduled registered generation capacities in the region – that is, c̄t =
∑n

i=1 c̄i,t. The full

capacity range of generation fuel i is [0, c̄i,t] and the full capacity range of load fuel l is [0, c̄l,t],

respectively. When proportionate to the maximum generation capacity c̄t of the region, the

scaled full capacity range of generation fuel i is given by [0,
c̄i,t
c̄t
] (in unit amounts), and the

scaled full capacity range of load fuel l is given by [0,
c̄l,t
c̄t
] (in unit amounts). The bid stack

functions are fitted to data on these scaled full capacity ranges.

If the lower and upper availability generation bounds are ci,t,lower and ci,t,upper (in MW),

respectively, then the available capacity range of generation fuel i would be (ci,t,lower, ci,t,upper].

Similarly, if the lower and upper availability load bounds are cl,t,lower and cl,t,upper (in MW), then

the available capacity range of load fuel l would be [cl,t,lower, cl,t,upper). When proportionate

to the maximum generation capacity in the region c̄t, the scaled available capacity range of

generation fuel iwould be ( ci,t,lower

c̄t
,
ci,t,upper

c̄t
] (in unit amounts), and the scaled available capacity

range of load fuel l would be [
cl,t,lower

c̄t
,
cl,t,upper

c̄t
) (in unit amounts). The bid stack functions are

restricted to these scaled available capacity ranges after the available capacity truncation.

Further, we introduce the regulatory price thresholds Pfloor for the market price floor, which

is usually negative (at around -$1,000), and Pcap for the market price cap (at around $15,000 in-

dexed to inflation) in AUD. When proportionate to the market price cap, Pcap at time t, the scaled

price range between the regulatory thresholds would be [
Pfloor

Pcap
, Pcap

Pcap
] or equivalently [

Pfloor

Pcap
, 1]

(in unit amounts).

Let the generator fuel bid stack function be the map from the scaled available capacity range

of generation fuel i (the quantity x fuel i is able to trade) in unit amounts, to the price range of
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generation fuel i (the price y fuel i receives per MW after scaling) in unit amounts, asR+ : x ∈

(
ci,t,lower

c̄t
,
ci,t,upper

c̄t
] → R : y. While price y on the real codomain is a monotonically increasing

function of quantity x, price y is not necessarily within the scaled regulatory thresholds. The

economic interpretation of the map identifies it as an inverse supply curve, or as an implied

inverse supply curve, when fitted to data.

Let the load fuel bid stack function be the map from the scaled available capacity range of

load fuel l (the quantity x fuel l is able to trade) in unit amounts, to the price range of load fuel l

(the price y fuel l pays per MW after scaling) in unit amounts asR+ : x ∈ [
cl,t,lower

c̄t
,
cl,t,upper

c̄t
)→

R : y. While price y on the real codomain is a monotonically decreasing function of quantity x,

price y is not necessarily within the scaled regulatory thresholds. The economic interpretation

of the map identifies it as an inverse demand curve, or as an implied inverse demand curve,

when fitted to data.

In this setting, we give two separate fuel bid stack functions, one for the generator fuels and

another one for the load fuels.

First, we express the bid stack function for every generator fuel i ∈ I as a strictly increasing

hyperbolic map from quantity x ∈ R in unit amounts to price y ∈ R in unit amounts, x → y :

bḠ,i,t(x) as

bḠ,i,t(x) = αt0 sinh(βi,t0x− γi,tβi,t0), (4.2.1)

with αt0 , βi,t0 > 0 at time t.

Then for a left-continuous fuel bid stack map x → y : bG,i,t(x) focusing only on the avail-

able capacity in the fuel, we define bG,i,t(x) := bḠ,i,t(x) on the scaled available capacity quantity

range R+ : x ∈ (
ci,t,lower

c̄t
,
ci,t,upper

c̄t
] of fuel i in most cases, except when the lower availability

generation bound ci,t,lower = 0 of the fuel is nil. In this circumstance, we define the map on

R
+ : x ∈ [

ci,t,lower

c̄t
,
ci,t,upper

c̄t
].

Furthermore, we introduce the bid stack function for every load fuel l ∈ L as a strictly

decreasing hyperbolic map from quantity x ∈ R in unit amounts to price y ∈ R in unit amounts,

x→ y : bL̄,l,t(x) as
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bL̄,l,t(x) = −αt0 sinh(βl,t0x− γl,tβl,t0), (4.2.2)

with αt0 , βl,t0 > 0 and at time t.

Then for a right-continuous fuel bid stack map x → y : bL,l,t(x) focusing only on the

available capacity in the fuel, we define bL,l,t(x) := bL̄,l,t(x) on the scaled available capacity

quantity range R+ : x ∈ [
cl,t,lower

c̄t
,
cl,t,upper

c̄t
) of fuel l.

In comparison, Carmona et al. (2013) use exponential fuel bid stack functions only on the

positive real codomain for generation fuels, making no assumptions about fuel availability.

Finally, the fuel bid curve equations for generator (4.2.1) and load fuels (4.2.2) are inherently

symmetric. Before the availability truncation, the regional alpha αt0 captures the price elasticity

(positive relationship) and the fuel beta β·,t0 the width (negative relationship) of the mid-range of

the symmetric fuel curves. The regional alpha αt0 parameter is the same for all generator fuels i

and load fuels l in the price region108. The beta β·,t0 parameter, i.e. βi,t0 for generator fuels and

βl,t0 for load fuels, is specified for every fuel independently. However, the symmetry of the fuel

bid stack equations is limited by the scope of the scaled full capacity range of generator fuel i

on which its bid stack curve will have been fitted to the data [0,
c̄i,t
c̄t
], and also by the available

capacity truncation.

4.2.2.2 Inverse fuel bid stack functions

We also propose inverse fuel curves, first in the spirit of Carmona et al. (2013) in general form,

and then using the hyperbolic formulae to specify them.109

Let the inverse fuel bid curve for fuel i ∈ I be the strictly increasing, left-continuous hyper-

bolic map b−1
G,i,t(y) from price y in unit amounts, to quantity x, on the scaled available capacity

range, as110 y → R
+ : x ∈ (

ci,t,lower

c̄t
,
ci,t,upper

c̄t
] : b−1

Ḡ,i,t
(y) giving the lowest quantity x with

108The alpha and beta (αt0 , β·,t0) parameters are estimated by least-squares from data at time t0. Note, however,
that one should evaluate whether the quality of the fit would suffer significantly by this restriction on alpha, and if
so, it may be worth opting for different values for alpha per fuel per region and a numerical solution in place of a
closed-form solution.

109For graphs, we refer the reader to Carmona et al. (2013), who readily provide those for the exponential (rather
than the hyperbolic) specification.

110Or on R+ : x ∈ [
ci,t,lower

c̄t
,
ci,t,upper

c̄t
] when the lower availability generation bound ci,t,lower = 0 of the fuel
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bḠ,i,t(x) at or above price y, if such exists, or giving the scaled available capacity upper bound
ci,t,upper

c̄t
otherwise as

b−1
G,i,t(y) =

ci,t,upper
c̄t

∧ inf

{
x : bḠ,i,t(x) ≥ y

}
, (4.2.3)

as inf ∅ = +∞ (see Carmona et al. (2013)).

We express the inverse of the fuel bid stack function (4.2.1) for generator fuel i as

b−1
Ḡ,i,t

(y) =
sinh−1

(
y

αt0

)
+ βi,t0γi,t

βi,t0
. (4.2.4)

Analogously, let the inverse fuel bid stack function for fuel l ∈ L be the strictly decreasing,

right-continuous hyperbolic map b−1
L,l,t(y) from price y in unit amounts, to quantity x on the

scaled available capacity range, as y → R
+ : x ∈ [

cl,t,lower

c̄t
,
ci,t,upper

c̄t
) : b−1

L̄,l,t
(y) giving the

highest quantity x with bL̄,l,t(x) at or above price y, if such exists, or else giving the scaled

available capacity lower bound cl,t,lower

c̄t
as

b−1
L,l,t(y) =

cl,t,lower

c̄t
∨ sup

{
x : bL̄,l,t(x) ≥ y

}
, (4.2.5)

as sup ∅ = −∞.

We give the inverse of the fuel bid stack (4.2.2) for load fuel l as

b−1
L̄,l,t

(y) =
− sinh−1

(
y

αt0

)
+ βl,t0γl,t

βl,t0
. (4.2.6)

4.2.2.3 Fuel subset definition

The fuel subsets help distinguish the type of quantity commitment made by each scheduled

fuel within U . Two strands of quantity commitment are considered: constant and formulaic,

for both generator and load fuels. Scheduled fuels are categorised as low-priced, mid-priced

or high-priced, and the type they are allotted determines the way they usually fill demand Dt

is nil.
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and set the price – that is, they might enter as price-constant amounts or with price-dependent

quantity formulae.

More specifically, every generator fuel can be CI completely dispatched (low-priced, con-

stant), MI marginal (mid-priced, formulaic), OI online or ZI unused (high-priced, constant). In

contrast, the load fuels can be CL completely dispatched (high-priced, constant), ML marginal

(mid-priced, formulaic), orZL unused (low-priced, constant), i.e.,CI ,MI , OI , ZI andCL,ML, ZL

are the only legal subsets loosely following Carmona et al. (2013).

Then, every generator fuel i ∈ I is allocated to one of the following four disjoint subsets,

(CI ,MI , OI , ZI) ⊆ I , as

CI := {i ∈ I : generators in fuel i are completely dispatched at ci,t,upper},

MI := {i ∈ I : generators in fuel i are partially dispatched},

OI := {i ∈ I : generators in fuel i are kept online at ci,t,lower ̸= 0},

ZI := {i ∈ I : generators in fuel i are not used at ci,t,lower = 0}.

Every load fuel l ∈ L is allocated to one of the following three disjoint subsets, (CL,ML, ZL) ⊆

L, as

CL := {l ∈ L : loads in fuel l are completely dispatched at cl,t,upper},

ML := {l ∈ L : loads in fuel l are partially dispatched},

ZL := {l ∈ L : loads in fuel l are not used}.

Furthermore, let b(MI ,ML)q∗,t(x) be the market bid stack function that aggregates the fuel

bid stack functions in (MI ,ML), assuming that only the fuels in (MI ,ML) contribute formu-

laically to the market bid stack and that the fuels in the remaining subsets (CI , ZI , OI , CL, ZL)

contribute to the demand quantity with price-constant quantity adjustments. From above, the
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(MI ,ML) set is the union of the marginal generator fuel MI set and the marginal load fuel ML

set. Then the function b(MI ,ML)q∗,t(x) solves for the market price at the adjusted demand quan-

tity x such that the value of the applied demand adjustment is linked to the subset specification

Uq∗.111 This adjusts demand Dt by a term encapsulating the price-constant supply contribution

of the fuels in (CI , ZI , OI , CL, ZL), which gives x = Dt −
∑

k∈CI

ck,t,upper
c̄t

−
∑

i∈OI

ci,t,lower

c̄t
+∑

k∈CL

ck,t,upper
c̄t

. Thus, the value of x is not equal to Dt, unless the supply contribution of the

excluded fuels equals zero.

Denoting the upper price in generation fuel i at time t with b̄G,i,t := bG,i,t(
ci,t,upper

c̄t
) and

the lower price with bG,i,t := bG,i,t(
ci,t,lower

c̄t
), the merit order rule for generation gives that

max(b̄G,k∈CI ,t) < min(bG,a∈MI ,t
) the highest price in any completely dispatched generator fuel

k ∈ CI is always lower than the lowest price in any marginal generator fuel a ∈ MI . Also,

max(b̄G,a∈MI ,t) < min(bG,o∈OI ,z∈ZI ,t
) the highest price in any marginal generator fuel a ∈MI is

always lower than the lowest price in any online or unused generator fuel o ∈ OI , z ∈ ZI . Then,

for n generator fuels on four subsets112 the following fuel categorisation defines the elements of

CI (low-priced), MI (mid-priced) and OI , ZI (high-priced):

•
{
i ∈ CI |b(MI ,ML)q∗,t(x) > max(b̄G,i∈CI ,t)

}
, generator fuel i is in subset CI , if the price

from the market bid stack function b(MI ,ML)q∗,t(x)
113 at quantity x = Dt−

∑
i∈CI

ci,t,upper
c̄t
−∑

o∈OI

co,t,lower

c̄t
+
∑

k∈CL

ck,t,upper
c̄t

, demand net of the quantity supplied by fuels ∀i ∈

CI , ∀o ∈ OI , ∀l ∈ CL, is greater than the highest price by any completely dispatched

generator fuel ∀i ∈ CI ,

•
{
i ∈ OI |b(MI ,ML)q∗,t(x) < min(bG,i∈OI ,z∈ZI ,t

) and ci,t,lower > 0
}

generator fuel i is

in subset OI , if the price from the market bid stack function b(MI ,ML)q∗,t(x) at quantity

x = Dt−
∑

k∈CI

ck,t,upper
c̄t

−
∑

i∈OI

ci,t,lower

c̄t
+
∑

k∈CL

ck,t,upper
c̄t

, demand net of the quantity

supplied by fuels ∀k ∈ CI , ∀i ∈ OI , ∀l ∈ CL, is lower than the lowest price by any online

and unused fuel ∀i ∈ OI , ∀z ∈ ZI , and if the lower capacity bound ci,t,lower of fuel i is

greater than 0,

111Note that the allocation of the fuels into fuel subsets Uq∗ is anterior to the market bid stack function.
112For the two-fuel case on three subsets see Table 1 in Carmona et al. (2013).
113Using the market bid stack formula as specified in the upcoming Section 4.2.2.4.
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•
{
i ∈ ZI |b(MI ,ML)q∗,t(x) < min(bG,i∈ZI ,o∈OI ,t

) and ci,t,lower = 0
}

generator fuel i is

in subset ZI , if the price from the market bid stack function b(MI ,ML)q∗,t(x) at quantity

x = Dt−
∑

k∈CI

ck,t,upper
c̄t
−
∑

o∈OI

co,t,lower

c̄t
+
∑

k∈CL

ck,t,upper
c̄t

, demand net of the quantity

supplied by fuels ∀k ∈ CI , ∀o ∈ OI , ∀l ∈ CL, is lower than the lowest price by any

online or unused fuel ∀o ∈ OI , ∀z ∈ ZI , and if the lower capacity bound ci,t,lower of fuel

i equals 0,

• i ∈MI otherwise.

To explain these conditions for one fuel i ∈ I at a time, first consider a setting where the

market price is known in advance. Given the upper b̄G,i,t and the lower bG,i,t price of fuel

i, it can be assigned to a subset by arranging b̄G,i,t, bG,i,t, and the market price in ascending

order. If the market price is greater than b̄G,i,t, then i ∈ CI is completely dispatched. Or, if

the market price is lower than bG,i,t, then i ∈ (OI , ZI) is online or unused, depending on the

lower capacity bound ci,t,lower. Otherwise, i ∈ MI is marginal. But because b(MI ,ML)q∗,t(x)

solves for the market price using the preexisting subset allocation on Uq∗, one cannot determine

the market price until ∀i ∈ I ⊆ U are assigned to the correct subset, i.e. the market price is

typically not yet known. One can, however, show, that i always behaves online or unused on the

price range [
Pfloor

Pcap
, bG,i,t), marginal on the price range [bG,i,t, b̄G,i,t] and completely dispatched

on the price range (b̄G,i,t, 1] from the given upper b̄G,i,t and the lower bG,i,t price of fuel i and

the inverse bid stack formula in (4.2.3). By partitioning the entire price range [
Pfloor

Pcap
, 1] at the

upper b̄G,i,t and the lower bG,i,t price of every fuel i ∈ I , one can obtain a string of smaller price

segments114, and each segment then has a well-defined subset configuration Uq∗ associated with

it, which is the same for all quantities within the segment, but may or may not be the same

for two adjacent segments. The two price points defining each segment can be used to obtain

the correct subset allocation Uq∗ by replacing "the market price" by the two price points and

arranging b̄G,i,t, bG,i,t, and the two prices in ascending order. If the two price points are both

greater than b̄G,i,t, then i ∈ CI is completely dispatched. Else, if the two prices are both lower

than bG,i,t, then i ∈ (OI , ZI) is online or unused. Otherwise, i ∈MI is marginal.

114The present discussion ignores load fuels l ∈ L, but the subset and price algorithm in the example in Section
4.2.2.5 does not. Where then more generally, the string of smaller price segments (the extended partitioning) is
obtained by dissecting the price range [Pfloor

Pcap
, 1] at the upper b̄G,i,t, b̄L,l,t and the lower prices bG,i,t, bL,l,t of every

fuel ∀i, ∀l on U = (I, L).
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Next, considering load fuels, let us denote the upper price in load fuel l with b̄L,l,t :=

bL,l,t(
cl,t,lower

c̄t
) and the lower price with bL,l,t := bL,l,t(

cl,t,upper
c̄t

) at time t. Using the merit or-

der rules for load uptake, whereby min(bL,k∈CL,t
) > max(b̄L,a∈ML,t) the lowest price in any

completely dispatched load fuel k ∈ CL is always greater than the highest price in any marginal

load fuel a ∈ ML, and min(bL,a∈ML,t
) > max(b̄L,z∈ZL,t) the lowest price in any marginal load

fuel a ∈ML is always greater than the highest price in any unused load fuel z ∈ ZL, the follow-

ing are the fuel category conditions for m generator fuels on three subsets, CL (high-priced),

ML (mid-priced) and ZL (low-priced):

•
{
l ∈ CL|b(MI ,ML)q∗,t(x) < min(bL,l∈CL,t

)
}
, generator fuel l is in subset CL, if the price

from the market bid stack function b(MI ,ML)q∗,t(x) at quantity x = Dt−
∑

k∈CI

ck,t,upper
c̄t
−∑

o∈OI

co,t,lower

c̄t
+
∑

k∈CL

ck,t,upper
c̄t

, demand net of the quantity supplied by fuels ∀k ∈

CI , ∀o ∈ OI , ∀l ∈ CL, is lower than the lowest price by any completely dispatched load

fuel ∀l ∈ CL,

•
{
l ∈ ZL|b(MI ,ML)q∗,t(x) > max(b̄L,z∈ZL,t)

}
, generator fuel l is in subset ZL, if the price

from the market bid stack function b(MI ,ML)q∗,t(x) at quantity x = Dt−
∑

k∈CI

ck,t,upper
c̄t
−∑

o∈OI

co,t,lower

c̄t
+
∑

k∈CL

ck,t,upper
c̄t

, demand net of the quantity supplied by fuels ∀k ∈

CI , ∀o ∈ OI , ∀l ∈ CL, is greater than the lowest price by any unused load fuel ∀l ∈ CL.

• l ∈ML otherwise.

These conditions are perhaps more intuitive considering that a single fuel l ∈ L is always

completely dispatched on the price range [Pfloor

Pcap
, bL,l,t), marginal on the price range [bL,l,t, b̄L,l,t]

and unused on the price range (b̄L,l,t, 1], as from the inverse bid stack formula in (4.2.5). By

partitioning the entire price range [
Pfloor

Pcap
, 1] at the upper b̄G,i,t, b̄L,l,t and the lower prices bG,i,t,

bL,l,t of every fuel i ∈ I and l ∈ L, one obtains a string of smaller price segments, such that

each segment has a particular subset configuration Uq∗ associated with it. The subset of fuel l

can then be found using the above observation and the previously described subset process with

this extended partitioning, as opposed to a more direct application of the subset rules.

In conclusion, the subsets of the fuels determine their role in filling the adjusted inelas-

tic demand Dt and consequently in price formation, i.e., in the market bid stack formula
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b(MI ,ML)q∗,t(x) that solves for the market price. The completely dispatched fuels in CI , CL

generate or uptake in the quantity at their upper capacity bound ci,t,upper or cl,t,upper, which are

constant in the sense that they do not depend on the exact price level beyond what is already

known about the possible range of the price level that assigned them to CI , CL in the first place.

Similarly, the online fuels in OI generate in the quantity at their lower capacity bound ci,t,lower,

which is also constant in that sense. Moreover, the unused fuels in ZI , ZL do not generate or up-

take any quantity. In contrast, the marginal fuels inMI ,ML generate or uptake in some quantity

within their capacity bounds, but the quantity has not been determined by the subset as such.

Thus, from the perspective of the market bid stack formula b(MI ,ML)q∗,t(x), the type of quan-

tity commitment the fuels must make due to being allocated to one particular subset and not to

another, polarises the subsets into constant dispatch and formulaic (marginal) dispatch subsets.

The generation or uptake quantity in any fuel in the constant dispatch subsetsCI , CL, OI , ZI , ZL

is determined outside b(MI ,ML)q∗,t(x) and enters b(MI ,ML)q∗,t(x) as part of an additive term, i.e.

as a demand adjustment. Whereas the dispatch quantity in any fuel in the marginal dispatch

subsets MI ,ML is determined by the market bid stack formula b(MI ,ML)q∗,t(x).

4.2.2.4 Market bid stack formula

Let b(MI ,ML)q∗,t(x) be the market bid stack function that aggregates every fuel bid curve on the

complete regional fuel set under the appropriate subset allocation Uq∗ in merit order to evaluate

the market price at quantity x. To that effect, first, it distinguishes the constant dispatch fuels

(in CI , CL, OI , ZI , ZL) from the formulaic – marginal or price setter – fuels (in MI ,ML).

The contribution of the former is captured in the constant term h that adds up the constant

supply sum in the generator fuels ∀i ∈ (CI , OI , ZI) with a negative sign and the constant

demand sum in the load fuels ∀l ∈ (CL, ZL) with a positive sign as

h = −
∑
i∈CI

ci,t,upper
c̄t

−
∑
i∈OI

ci,t,lower

c̄t
+
∑
l∈CL

cl,t,upper
c̄t

. (4.2.7)

To move these quantities to the inelastic demand side of the equilibrium, the demand quantity

for the marginal fuels to fill can be expressed as Dt + h.

In contrast, every marginal fuel inMI ,ML is represented by the inverse bid stack function of
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the fuel. The strictly increasing left-continuous market bid stack function b(MI ,ML)q∗,t(x) maps

the adjusted demand quantity x = Dt + h to the highest price pt, such that the corresponding

quantity over all inverse fuel bid stack functions
∑

i∈MI
b−1
Ḡ,i,t

(pt)−
∑

l∈ML
b−1
L̄,l,t

(pt) is still below

the cleared quantity Dt+h, provided that there is at least one marginal generator fuel |MI | ≥ 1

in the region. Then the main structural components of the market bid stack, the constant term h

and the aggregate of the inverse fuel curves, give the price solution of the function as

pt = b(MI ,ML)q∗,t(Dt) = sup

{
pt ∈ R :

∑
i∈MI

b−1
Ḡ,i,t

(pt)−
∑
l∈ML

b−1
L̄,l,t

(pt) < Dt + h

}
. (4.2.8)

in general form, extending the market merit order dynamic of Carmona et al. (2013) (see Propo-

sition 1 in Carmona et al. (2013)) to a new generator fuel subset OI and load fuels.

Then the hyperbolic specification of (4.2.8) is expressed as

pt =b(MI ,ML)q∗,t(Dt)

=αt0 sinh

( (
Dt + h−

∑a
i=1 γi,t +

∑b
l=1 γl,t

)∏a
i=1 βi,t0

∏b
l=1 βl,t0∑a

i=1

(∏a
j=1 βj ̸=i,t0

∏b
l=1 βl,t0

)
+
∑b

l=1

(∏a
i βi,t0

∏b
j=1 βj ̸=l,t+0

)). (4.2.9)

Example 4.1. To demonstrate the proposed method, we consider a price region at time t with

four generator and two load fuels, where the bid stack parameters αt0 , βt,i, βt,l, γt,i, γt,l and the

adjusted inelastic demand quantity Dt are already known, but remain unspecified. By careful

arrangement,115 the subset configuration Uq∗ is also given. We know that |CI | = 1 of the

generator fuels is completely dispatched, |OI | = 1 is online and |MI | = 2 are marginal. Then

there is also |CL| = 1 completely dispatched and |ML| = 1 marginal load fuel.

We can then express h as

h = −ci∈CI ,t,upper

c̄t
− ci∈OI ,t,lower

c̄t
+
cl∈CL,t,upper

c̄t
,

115Using the subset and price algorithm as in the example in Section 4.2.2.5.



101

and denote the inverse fuel bid stack functions of the two marginal generator fuels with

b−1
Ḡ,1,t

(pt) and b−1
Ḡ,2,t

(pt), and the inverse fuel bid stack function of the marginal load fuel with

b−1
L̄,3,t

(pt).

We evaluate price pt inside the supremum in (4.2.8) as

b−1
Ḡ,1,t

(pt) + b−1
Ḡ,2,t

(pt) = Dt + h+ b−1
L̄,3,t

(pt),

sinh−1
(

pt
αt0

)
+ βt,1γt,1

βt,1
+

sinh−1
(

pt
αt0

)
+ βt,2γt,2

βt,2
= Dt + h+

− sinh−1
(

pt
αt0

)
+ βt,3γt,3

βt,3
,

then

sinh−1
( pt
αt0

)
=

(
Dt + h− γt,1 − γt,2 + γt,3

)
βt,1βt,2βt,3

βt,2βt,3 + βt,1βt,3 + βt,1βt,2
,

and for the hyperbolic equilibrium formulation from (4.2.9)

pt = αt0 sinh
((Dt + h− γt,1 − γt,2 + γt,3

)
βt,1βt,2βt,3

βt,2βt,3 + βt,1βt,3 + βt,1βt,2

)
.

4.2.2.5 Price formula

The market bid stack function (4.2.9) solves for the market price under the so-called normal

market assumption. The value of demand Dt implies this normal market assumption when

it is between the lowest S1
t ≤ Dt ≤ S2

t and the highest available generation quantity in the

market.116 The market price can then be written as pt(Dt)1[S1
t ,S

2
t ]

. Conversely, should the

market have either a demand deficit Dt < S1
t or a supply deficit S2

t < Dt, it is then in a system-

tied state, and the corresponding prices are pt(Dt)1[−∞,S1
t )

= max(bG,i∈OI ,t
,
Pfloor

Pcap
) = bt and

pt(Dt)1S2
t ,,∞] =

Pcap

Pcap
= 1, respectively. In general, we can express the market price as

116The values of S1
t and S2

t are specified shortly.
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pt = pt(Dt)1[−∞,∞] = pt(Dt)1[−∞,S1
t )
+ pt(Dt)1[S1

t ,S
2
t ]
+ pt(Dt)1(S2

t ,∞], (4.2.10)

the price in any state of the system.

To find the price in a normal market, let us partition the demand domain of the normal state

[S1
t , S

2
t ] into a string of quantity segments, such that one particular subset configuration Uq∗

holds for any level of demand Dt within each segment. Finding the boundary points of the

segments involves a corresponding string of price segments as well, as the quantity domain and

the price codomain are bijective, since the fuel bid stack functions in (4.2.1) and (4.2.2) are

strictly monotonic.

The boundary points of the price segments with the property can be given by the upper

b̄G,i,t, b̄L,l,t and the lower bG,i,t, bL,l,t price points in all generation and load fuels in U . Let

(y1, y2, ..., yj..., y2(n+m)) denote these prices in increasing order.

Let then for every price yj quantity xj be the quantity that sums the generation sum from the

left-continuous inverse fuel maps b−1
G,i,t(yj) in (4.2.3) with a positive sign, the uptake sum from

the right-continuous inverse fuel maps b−1
L,l,t(yj) in (4.2.5) with a negative sign, and the constant

quantities h in (4.2.7) with a negative sign, as

xj(yj) =
n∑

i=1

b−1
G,i,t(yj)−

m∑
i=1

b−1
L,l,t(yj)− h, (4.2.11)

giving the boundary points of the respective quantities (x1, x2, ..., xj, ..., x2(n+m)) also in

increasing order.

Then, S1
t := x1 and S2

t := x2(n+m). Additionally, every segment of the partitioned quantity

domain [S1
t , x2], (x2, x3], (x3, x4], ..., (x2(n+m)−1, S

2
t ], has a well-defined fuel subset combi-

nation Uq∗ associated with it that holds for any level of demand Dt within the segment. The

market bid stack function b(MI ,ML)q∗,t(Dt + h) in (4.2.9) gives the price using the subset com-

bination q∗, which can be represented by q1∗ for segment [St, x2], by q2∗ for segment (x2, x3],

by q3∗ for (x3, x4], and so on. For the same fuel set U , the appropriate fuel subset config-

uration Uq∗ changes over the different quantity segments. As a result, the market bid stack
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formula b(MI ,ML)q∗,t(Dt + h) also has a segment-wise formulation, owing to its dependence on

the segment-wise different Uq∗.

Loosely following Carmona et al. (2013), we can then express price p as a segment-wise

relation extending (4.2.10) as

pt = pt(Dt)1[−∞,S1
t )

+ pt(Dt)1[S1
t ,x2] + pt(Dt)1(x2,x3] + pt(Dt)1(x3,x4] + ...+ pt(Dt)1(x2(n+m)−1,S

2
t ]

+ pt(Dt)1(S2
t ,∞],

(4.2.12)

where

pt(Dt)1[−∞,S1
t )
= bt

pt(Dt)1[S1
t ,x2] = b(MI ,ML)q1∗,t

(Dt + h)

pt(Dt)1(x2,x3] = b(MI ,ML)q2∗,t
(Dt + h)

pt(Dt)1(x3,x4] = b(MI ,ML)q3∗,t
(Dt + h)

...

pt(Dt)1(x2(n+m)−1,S
2
t ]
= b(MI ,ML)q2(n+m)−1∗,t

(Dt + h)

pt(Dt)1(S2
t ,∞] = 1.

(4.2.13)

Lastly, we recover the market price Pt in AUD from the price pt in (4.2.12) in unit amounts.

To get Pt, the price pt is first multiplied by the market price cap Pcap. The result is projected

to the regulatory price floor Pfloor or cap Pcap, if it is exceeding either of the two. The reason

why the threshold restriction has been delayed until now is that tracing the fuel dispatch quan-

tities over time, i.e. computing the generation and the uptake quantities from the inverse fuel

curves based on pt, requires strictly monotonic fuel bid stack formulations, which an untimely

threshold projection could potentially impair.

Example 4.2. We suggest an efficient algorithm for finding the appropriate fuel subset configu-

rations on all segments of the partitioned demand domain and executing pricing using (4.2.12).
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To see how this computation works, we consider a price region with five generator and two

load fuels, where the bid stack parameters αt0 , βt,i, βt,l, γt,i, γt,l and the demand quantity Dt are

already known. The scaled available capacity ranges ( ci,t,lower

c̄t
,
ci,t,upper

c̄t
] and [

cl,t,lower

c̄t
,
cl,t,upper

c̄t
)

and the fixed net generation quantity ct,fixed (if any) are also already specified at the start of the

algorithm as shown in Table 4.1.

Table 4.1 : The fuels in the example

The table shows the fuels of both the regional scheduled U fuel set and the regional price taker F fuel set by type, economic classification,

parameters, and quantity (in MW) and bid price (in AUD) range. The region in this example has a maximum registered generation capacity of

c̄t = 155. The parameters αt0 and γ·, t are rounded to two decimal places and the β·,t0 to integers for every fuel i, j ∈ U . The market in the

example has a market price floor of Pfloor = −4 and a price cap of Pcap = 14, but bids may appear outside that range, e.g., in fuel G4 we

see the upper price at $15.

Fuel type Parameters

αt0 β·,t0 γ·, t

Generator fuels

G1 Coal Scheduled 0.001 12.4 0.192

G2 Hydro Scheduled 0.001 47.4 0.002

G3 Solar Scheduled 0.001 150.3 0.043

G4 Gas Scheduled 0.001 131.9 -0.041

G5 Biomass Price taker - - -

Load fuels

L1 Battery Scheduled -0.001 48.9 0.000

L2 Hydro Scheduled -0.001 77.1 0.089

Fuel type Quantity range Price range

c·,t,lower c·,t,upper b·,·,t ∗ Pcap b̄·,·,t ∗ Pcap

Generator fuels

G1 Coal Scheduled 30 MW 120 MW $0 $10

G2 Hydro Scheduled 0 MW 25 MW $0 $14

G3 Solar Scheduled 0 MW 7 MW -$3 $0

G4 Gas Scheduled 0 MW 3 MW $2 $15

G5 Biomass Price taker ci,t,fixed = 1.5 MW - -

Load fuels

L1 Battery Scheduled 0 MW 20 MW -$4 $0

L2 Hydro Scheduled 0 MW 25 MW -$2 $0

Table 4.1 shows the four scheduled generator fuels (G1-G4), the one price taker generator

fuel (G5), and the two scheduled load fuels (L1-L2) in this example. First by fuel type, which

identifies the fuel source and places the six scheduled fuels in set U = (I, L) and the one price

taker fuel in set F . It then gives the bid stack parameters of the fuels. In the third column, the



105

table specifies the available capacity ranges of the fuels in MW, which is subsequently scaled

by the maximum registered generation capacity c̄t = 155. This value appears to coincide

with the total available (scheduled) generation capacity
∑

i∈I
ci,t,upper

c̄t
= 120

155
+ 25

155
+ 7

155
+

3
155

= 155
155

in the region. In addition, the lowest available generation capacity in the region is

St =
∑

i∈I
ci,t,lower

c̄t
= 30

155
+ 0 + 0 + 0 = 30

155
117. The fourth column shows the price ranges

of the fuels, which have been calculated using the bid stack parameters, the quantity ranges,

and the maximum registered generation capacity. Finally, it is also stated that the region has a

regulatory market price floor of Pfloor = −4 and a cap of Pcap = 14.

Table 4.2 : Market view

The table gives a tabulated view of the market showing the contribution of each scheduled fuels to the net market quantity (bottom line) at any

price level. As the price increases, the generator fuels are contributing more and the load fuels are demanding less. For a more concise view, the

price range (in AUD) has been discretised to integers and the quantity amounts (in MW) have been rounded to integers as well. The quantities

shown in bold are obtained from the inverse fuel bid stack functions (4.2.4) and (4.2.6). The remaining (not bold) quantities are constants, as

these are either below the available quantity lower bound c·,t,lower , or above the available quantity upper bound c·,t,upper in the given fuel

as per Table 4.1.

Price -$5 -$4 -$3 -$2 -$1 $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12 $13 $14 $15

Generation quantity

G1 30 30 30 30 30 30 91 100 105 109 111 114 116 117 119 120 120 120 120 120 120

G2 0 0 0 0 0 0 16 19 20 21 22 22 23 23 23 24 24 24 25 25 25

G3 0 0 0 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

G4 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 3

Total 30 30 30 31 32 37 114 126 132 137 141 144 147 149 151 153 153 154 154 154 155

Load uptake quantity

L1 20 20 19 18 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L2 25 25 25 25 24 14 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0

Total 45 45 44 43 39 14 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0

Net market quantity (generation minus load uptake)

Total -15 -15 -13 -12 -7 23 110 123 130 136 140 144 147 149 151 153 153 154 154 154 155

Then, Table 4.2 carries the main operations of the algorithm:

1. Get the lower and the upper available capacity bound quantities from the third column

in Table 4.1, i.e. every ci,t,lower, cl,t,lower, ci,t,upper and cl,t,upper in MW. Scale (divide) these

117The fact that St does not include the load fuels (therefore always non-negative St ≥ 0) is acceptable, because
the electric system is always a net generator, but not without drawbacks, as it sometimes leads to underestimating
the must-run price, see demand between 23 and 30 in Table 4.2.
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by the maximum registered generation capacity c̄t = 155. Then, use the fuel bid stack

functions in (4.2.1) and (4.2.2) to find the corresponding prices, i.e., the upper b̄G,i,t, b̄L,l,t

and the lower bG,i,t, bL,l,t price points, as shown in column four in Table 4.1, e.g., $0 and

$10 for G1, $0 and $14 for G2, etc. When scaled by Pcap = $14 and in increasing order,

these prices correspond to (y1, y2, ..., yj..., y2(n+m)) = (−4
14
, −3
14
, −2
14
, 0, 2

14
, 10
14
, 14
14
, 15
14
). For

exposition purposes, Table 4.2 (unscaled view) also fills the price interval with additional

prices for an evenly spaced price interval between -$5 and $15 (first row). Also notice

that the prices are not yet projected to the regulatory price thresholds -$4 and $14.

2. Fill the table with the constant quantities (not bold) at the prices outside the price ranges

of the fuels, i.e. with ci,t,lower, cl,t,lower, ci,t,upper and cl,t,upper. See lines G1, G2, G3, G4

and L1, L2 in Table 4.2. Notice how the G1 line lists 30 MW at every price level up to $0.

In this way, if the market price ends up below price $0 (and G1 is online in OI), it would

still be accounted for and dispatched in 30 MW.

3. Fill the table with the formulaic quantities (bold) at the prices inside the price ranges of

the fuels using the inverse fuel bid stack functions (4.2.4) and (4.2.6). See rows G1, G2,

G3, G4 and L1, L2 in Table 4.2.

4. Sum the quantities in rows G1, G2, G3, G4 vertically at every price for the generation

quantity total. Similarly, sum the quantities in the L1, L2 lines for the load uptake quantity

total. Take away the load uptake total from the generation total to get the net market Total

at every price (last row), which is equivalent to the (x1, x2, ..., xj, ..., x2(n+m)) interval

plus h (unscaled view in Table 4.2).

5. Assume the constrained-on/off adjustment Xt = 0 (in MW). Get the inelastic end-user

demand proxied by net generation Gt (in MW), the fixed net generation quantity of the

price taker fuels ct,fixed = 1.5 MW (see Table 4.1), and the maximum generation c̄t =

155 MW in the region. Then the adjusted inelastic demand Dt is computed as Dt =

Gt−Xt−ct,fixed
c̄t

= Gt−0−1.5
155

. We are going to look at two different demand levels. First,

Dt =
31−1.5
155

= 29.5
155

when Gt = 31 MW. Second, Dt =
115−1.5

155
= 113.5

155
when Gt = 115

MW.

6. Establish the state of the market, i.e. whether St ≤ Dt ≤
∑

i∈I
ci,t,upper

c̄t
holds. From
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earlier, St =
30
155

and
∑

i∈I
ci,t,upper

c̄t
= 115

155
. Thereby the market has a demand deficit at

Gt = 31 and it is in a normal state at Gt = 115.

7. If the market has a demand deficit, every scheduled fuel is SI or SL and the price pt (in

unit amounts) is set by p(Dt)1[−∞,St) = bt. This value may then be multiplied by Pcap

and projected to the regulatory thresholds to get the market price Pt in AUD — this is the

end of the algorithm.

8. In a normal market, get the two quantity points (last row) nearest to Dt and get the

corresponding two price points too (first row). We have that Dtc̄t = 113.5 falls within

110 and 123 (last row), and price $1 and $2. Using the two prices, we can assign every

fuel to a subset using simple rules.

9. For generator fuels G1, G2, G3, G4, if the two prices $1 and $2 are both greater than

b̄G,i,tPcap, then fuel i ∈ CI is completely dispatched. Or if the two prices are both lower

than bG,i,tPcap, then fuel i ∈ (OI , ZI) is online or unused. Otherwise, fuel i ∈ MI is

marginal.

10. For load fuels L1, L2, if the two prices $1 and $2 are both lower than b̄L,l,tPcap, then fuel

l ∈ CL is completely dispatched. Or if the two prices are both greater than bL,l,tPcap, then

fuel l ∈ (ZL) is unused. Otherwise, fuel l ∈ML is marginal.

11. Get price pt (in unit amounts) from the market bid stack function

b(MI ,ML)q∗,t(Dt + h)

in (4.2.9) using the subset configuration on Uq∗ from above. Back out the current dispatch

quantity in each fuel. Then pt may be multiplied by Pcap and projected to the regulatory

thresholds to get the market price Pt in AUD — this is the end of the algorithm.
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Table 4.3 : Subset result

The table shows the appropriate subset configuration Uq∗ in demand deficit scenario with end-user demand at Gt = 31 MW (first column)

and in a normal market with Gt = 115 MW (second column). At Gt = 31 MW, all generator and load fuels are in SI and SL, respectively,

and their dispatch quantities are all shown to be constants. The Total dispatch quantity also overshoots to 31.5 MW. At Gt = 115 MW, the

table shows which fuels are marginal (coal G1, hydro G2 and hydro L2) and which fuels are contributing to the constant term for the demand

adjustment (solar G3), and the Total dispatch quantity is exactly 115 MW. The price taker fuel (biomass G5) enjoys complete dispatch in both

cases.

Gt = 31 MW Gt = 115 MW

Fuel type Subset Dispatch quantity Subset Dispatch quantity

Generator fuels

G1 Coal Scheduled SI ci,t,lower = 30 MW MI b−1
G,i,t(pt)

G2 Hydro Scheduled SI ci,t,lower = 0 MW MI b−1
G,i,t(pt)

G3 Solar Scheduled SI ci,t,lower = 0 MW CI ci,t,upper = 7 MW

G4 Gas Scheduled SI ci,t,lower = 0 MW ZI 0 MW

G5 Biomass Price taker - ci,t,fixed = 1.5 MW - ci,t,fixed = 1.5 MW

Load fuels

L1 Battery Scheduled SL - ZI 0 MW

L2 Hydro Scheduled SL - MI b−1
L,l,t(pt)

Total: 31.5 MW Total: 115 MW

Finally, Table 4.3 displays the subset solutions of the algorithm for the two different demand

levels, Gt = 31 and Gt = 115, discussed in the example. For Gt = 31, the price is equal to

pt = max(bG,i∈OI ,t
,
Pfloor

Pcap
) = bt in unit amounts. Whereas for Gt = 115, the price can be found

computing b(MI ,ML)q∗,t(Dt + h) using (4.2.9).

4.2.3 Input processes

The market price formula (4.2.12) requires several input processes including the formulaic

bid stack function parameter that captures strategic bidding over time, fuel-specific processes

of available capacity truncation, fixed capacity input, constrained-on/off quantity process that

encompasses network feasibility, and pre-adjustment demand term, which we decompose into

regional consumption and export–import.
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4.2.3.1 Fuel gamma

The formulaic fuel gamma R : γ·,t := γ·,(tday ,ttime), i.e. γi,t for generator fuels and γl,t for

load fuels, expresses what proportion of the maximum fuel capacity is being offered at negative

prices in a given fuel at time t. More precisely, γi,t is the inflection point of the fuel bid curve

(4.2.1) for generator fuel i and (1 − γl,t) is the inflection point of the formulaic load bid stack

(4.2.2) for load fuel l. The fact that these are time-dependent assumes that bidding activity

changes over time, i.e., the bid stack functions shift horizontally, as gamma changes over time.

For any time t ∈ (t0, T ] in the pricing period, we can give t = (tday, ttime) the day and

the time can be identified precisely. Let tday ∈ N : [1, 366] be the day of year, assuming leap

years. Then we denote with ttime ∈ N : [1, 366ñ] the time of year for ñ time points per day,

i.e. (ttime mod ñ) is the time of day. For example, for ñ = 288, ttime has 5-minute increments.

Further, let t̃time be a shifted time of day parameter

t̃time = 10(ttime mod ñ)
1

ñ
− 5.

Further, γ·,t := γ·,(tday ,ttime) is a sinusoidal function that captures both yearly seasonality for the

day of year tday through parameters s1, s2, s3, s4 and diurnal variation for the time of day t̃time

using d1, d2, d3, d4, d5, d6.

For a generator fuel i, we express γi,t := γi,(tday ,t̃time) as

γi,(tday ,t̃time) = s1 + s2 sin
(tday + s3

s4

)
+ d1e

−d5(t̃time−d3)2 + d2e
−d6(t̃time−d4)2 . (4.2.14)

For a load fuel l, we give γl,t := γl,(tday ,t̃time) as

γl,(tday ,t̃time) = 1− s1 − s2 sin
(tday + s3

s4

)
− d1e−d5(t̃time−d3)2 − d2e−d6(t̃time−d4)2 . (4.2.15)

Note that the gamma γ·,t parameters of the fuel bid curves can take the formulaic form

γ·,t = γ·,(tday ,t̃time) directly from (4.2.14) and (4.2.15) at time t.
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An alternative to that would be estimating the initial gamma γ·,t0 parameters together with

the initial alpha and beta (αt0 , β·,t0) parameters of the fuel bid curves in the least-squares

method. Then, over time, updating the gamma parameter by the cyclical change ∆γ·,(tday ,t̃time) =

γ·,(tday ,t̃time) − γ·,(t−1day , ˜t−1time)
in the formulaic form, while retaining its estimated level from

t0, we would have

γ·,t := γ·,t−1 +∆γ·,(tday ,t̃time). (4.2.16)

4.2.3.2 Available capacity

Available capacity truncation involves restricting bḠ,i,t(x) in (4.2.1) for generator fuel i to quan-

tity x on to the scaled available capacity range x ∈ (
ci,t,lower

c̄t
,
ci,t,upper

c̄t
] in unit amounts. Also,

we let bL̄,l,t(x) in (4.2.2) for load fuel l take quantity x on the scaled available capacity range

x ∈ [
cl,t,lower

c̄t
,
cl,t,upper

c̄t
) in unit amounts for all fuels.

From a non-stop power system point of view, the available capacity range is the range around

the initial dispatch quantity at time tn that bounds the dispatch quantity at time tn+1.

A non-zero lower capacity bound c·,t,lower

c̄t
is necessary, whenever a fuel – that is, the individ-

ual units in a fuel collectively – is unable to shut down immediately. Regardless of the economic

value of their activity, the units in this position are usually given appropriate non-zero targets

in the central dispatch optimisation (AEMO (2010b)). In the model, we have an analogous

treatment for the fuels with inflexible ramping profiles and minimum loading requirements e.g.,

black and brown coal, in anticipation of this problem, using non-zero lower capacity bounds

and the online fuel category OI .

In addition, different upper bounds arise as full availability up to the maximum registered

capacity c·,t,upper = c̄·,t rarely holds in most fuels. First, given the ramp rate specifications

and the length of the scheduling intervals, the units in the fuel might be too slow to ramp up

to a higher, economically feasible capacity region, approaching the maximum registered fuel

capacity c̄·,t, at time tn by the start of next interval at tn+1. Second, the units in particular

fuels are often unwilling or unable to produce at their full capacity due to external factors,

such as existing ancillary commitments, planned outages, or more commonly, weather effects.
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Third, there are two-way fuels that trade both sides of the market, i.e., act as generators or loads

interchangeably over time. As any load unit e.g. pumped hydro or battery, would need to charge

up in order to "produce" electricity, load units are usually registered in both categories and bid

in both categories as well, to participate accordingly (AEMC (2021c)). In this sense, we refer

to them as two-way fuels. Two-way fuels are actively balancing a storage level, which usually

determines their remaining capacity for load uptake and generator dispatch at the same time.

Moreover, the model can capture the permanent changes in the maximum registered fuel

capacity c̄·,t of the regional fuel mix for some time ahead, e.g., at the anticipated commissioning

or decommissioning of units. The available capacity truncation is then a subsequent layer of

capacity reduction.

Let ci,tn be the dispatch quantity in generator fuel i and cl,tn be the dispatch quantity in

load fuel l, at time tn, in unit amounts. After we have the market price ptn at time tn from

(4.2.12), we can obtain the current dispatch quantity c·,tn of a fuel by passing ptn in the inverse

fuel bid stack function of the fuel ptn → ci,tn : b−1
G,i,tn

(ptn) in (4.2.4) for a generator fuel i and

ptn → cl,tn : b−1
L,l,tn

(ptn) in (4.2.6) for a load fuel l. We then give the available capacity bounds

ci,tn+1,lower < ci,tn ≤ ci,tn+1,upper and cl,tn+1,lower ≤ cl,tn < cl,tn+1,upper at time tn+1 around the

dispatch level c·,tn at the end of the previous time tn interval in a fuel specific manner.

4.2.3.2.1 Base case

Let rupi , rdown
i denote the ramp-up and ramp-down rates in MW per 5-minutes for every

generator fuel i and rupl , rdown
l the ramp up and ramp down rates in MW per 5-minutes for every

load fuel l. Furthermore, let m denote the regional ramp rate multiplier. This multiplier makes

an allowance for the distortions arising out of the fact that the unit ramp rates are aggregated at

fuel level to obtain the fuel-level ramp rates instead of applying unit-level ramping directly.

Across all fuels, particularly fossil fuels, e.g., coal, gas, etc., as a base case solution we can

specify the available capacity bounds in MW using these fuel-specific ramp-up and ramp-down

rates as follows. Let the lower availability bound c·,tn+1,lower of fuel i or l at time tn+1 be the

higher of the dispatch quantity in the previous period minus the ramp-down rate c·,tn −mrdown
·

and 0 as
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c·,tn+1,lower = max
(
c·,tn −mrdown

· , 0
)
. (4.2.17)

Let then the upper availability bound c·,tn+1,upper of fuel i or l at time tn+1 be the lower of

the dispatch quantity in the previous period plus the ramp-up rate c·,tn +mrup· and full as-bid

fuel capacity c̄·,t

c·,tn+1,upper = min
(
c·,tn +mrup· , c̄·,t

)
. (4.2.18)

Assuming that the ramp rate specifications are time and dispatch level invariant, we write

these as averages and estimate them from the historical ramp rate data for the different fuels,

ensuring that the MW per minutes raw ramp rate data is interpreted correctly118.

4.2.3.2.2 Intermittent fuels

Across renewable fuels, such as solar and wind, as an intermittent case solution, we can

give the available capacity upper bounds in MW using fuel-specific available capacity forecasts.

This assumes either the direct or the indirect availability of some renewable generation forecast

measures via prediction models or predictive indicators. We opt for two very simple forecast

processes for the upper availability bounds of solar and wind generation.

Let the lower availability bound ci,tn+1,lower of intermittent fuel i at time tn+1 be zero

c·,t,lower = 0. This is a reasonable approximation as the ramp down rates are generally quite

high and not restrictive in renewable generation.

Let the upper availability bound ci,t,upper of solar energy i at time t be estimated by a deter-

ministic sinusoidal intraday generation function specified as

csolar,t,upper = min(max(sin (a(˜̃ttime + c) + e) + sin (b(˜̃ttime + d) + f), 0), g)), (4.2.19)

where ˜̃ttime = (ttime mod ñ) is the time of day for ñ observations per day. In this formula, the

118Multiplied by 5 for the 5-minute ramping limits.
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sum of two shifted sine functions is evaluated for generation between 0 and an upper bound g.

Finally, let the upper availability bound cwind,t,upper of wind generation at time t be estimated

by a scaled Brownian motion discretised as

∆cwind,t,upper ∼ N (0, σ2∆t) (4.2.20)

such that cwind,t,upper = min(max(cwind,t−1+∆cwind,t,upper, ψc̄wind,t), ψ̄c̄wind,t) where we denote

with ∆t = 1 the time increment and with ψ and ψ̄ the allowed thresholds of wind output.

4.2.3.2.3 Two-way fuels

Two-way fuels, such as hydro plants and batteries, actively balance a storage level k over

time. Generator dispatch is kc̄i,t at time t and the remaining capacity for load uptake is (1− k)

times the maximum capacity in the fuel c̄i,t.

An interesting outcome of the proposed hyperbolic market bid stack method is that the

implied storage level k can be inferred from the modelled dispatch solution at the end of each

interval when leaving the storage level unrestricted 0 ≤ k ≤ 1 at the beginning of the interval.

4.2.3.2.4 Minimum capacity criterion

Fuels that are slow to start-up often have operational capacity minima in the price settlement

and scheduling process of the market operator, such as minimum load amounts. We represent

this in the model for all affected generator fuel i via the lower bound criterion ci,lo in unit

amounts, such that the available capacity lower bound ci,t,lower of the fuel is always at or above

this criterion ci,lo ≤ ci,t,lower.119

4.2.3.3 Net fixed generation by price takers

Apart from the basic bid types used in compulsory bidding, fixed bids are optional for both

generators and loads in the NEM (AEMC (2021c)). In a fixed bid, the bidder opts to trade a

119Data for the minimum load amounts are not used in the present model implementation.
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predetermined amount at the regional market price as price taker. At time tn, we denote the

fixed bid quantity in generator fuel i ∈ F with ci,tn,fixed and the fixed bid quantity in load fuel

l ∈ F cl,tn,fixed, both measured in MW.

We also introduce ctn,non−scheduled for the net non-scheduled generation quantity in the re-

gion (in MW) at time tn, to capture the quantity flows of the small-scale units excluded from

bidding (AEMC (2021c)).

Then we express the fixed net generation quantity ctn,fixed as

ctn,fixed =
n∑

i=1

ci,tn,fixed −
m∑
l=1

cl,tn,fixed + ctn,non−scheduled, (4.2.21)

at time tn.

The price taker quantities enter the pricing mechanism in two ways. First, the fixed net

generation quantity ctn,fixed (in MW) is subtracted from the end-user demand as an adjustment

when we calculate the demand for the scheduled fuels to fill.

Second, if a generator fuel i or load fuel l has both a bid stack function and a non-zero fixed

bid quantity at time tn, i.e. i ∈ I∩F or l ∈ L∩F respectively, then the time tn dispatch quantity

of that fuel would have to be revised accordingly. In case of a generator fuel i that is both a

scheduled and a price taker at the same time i ∈ I ∩ F , the fixed bid quantity ci,tn,fixed ̸= 0

would have to be added to the dispatch quantity ci,tn at the end of the tn time interval for

ci,tn ← ci,tn + ci,tn,fixed. Similarly, in such a load fuel l ∈ L ∩ F the fixed bid quantity

cl,tn,fixed ̸= would have to be added to the dispatch quantity cl,tn for cl,tn ← cl,tn + cl,tn,fixed. In

principle, this can impact the available capacity bounds of the particular fuel at time tn+1.

4.2.3.4 Demand

The demand term Dt incorporates trade (inter-regional export–import) as follows. Let Gt rep-

resent the input process for net regional generation, c̄t the maximum scheduled generation,

ct,fixed the fixed net generation of the price taker fuels, and Xt the input process for the net

constrained-on/off quantity in the price region at time t. The quantity Dt can then be computed

as Dt :=
Gt−ct,fixed−Xt

c̄t
in unit amounts, where Gt can be expressed as a deterministic func-
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tion with yearly seasonality for the day of year tday through parameters s1, s2, s3, s4 and diurnal

variation for the time of day t̃time using d1, d2, d3, d4, d5, d6

Gt = s1 + s2 sin
(tday + s3

s4

)
+ d1e

−d5(t̃time−d3)2 + d2e
−d6(t̃time−d4)2 , (4.2.22)

and ct,fixed is from (4.2.21) and Xt is introduced in Section 4.2.3.5.

4.2.3.5 Constrained-on/off quantity

In practice, price settlement is performed by an LP engine subject to thousands of security

constraints. Often, the binding constraints force the dispatch of some bid quantities and pre-

vent the dispatch of some others. These are the constrained-on and constrained-off quantities,

respectively.

Let XI,on,t denote the constrained-on (must-run) generator quantity sum in the region. This

is the quantity extent to which the generators are dispatched in the bids offered at prices above

the realised market price, i.e., the generators in the region collectively receive higher targets

by XI,on,t that what is expected on a price basis. Taking into account the effect of using these

expensive bids when parsing the supply data in merit order can be achieved by reducing end-

user demand by XI,on,t. Note that this term refers to all must-run generator quantities in the

system, which is broader than the ramp-rate–implied must-run quantity
∑ co∈OI,t,lower

c̄t
over all

fuels in set OI . More specifically, XI,on,t =
∑ co∈OI,t,lower

c̄t
+X−

I,on,t.

LetXI,off,t denote the constrained-off (curtailed) generator quantity sum in the region. This

is the quantity extent to which the generators are not fully dispatched in the bids offered at

prices below the realised market price, i.e., the generators in the region collectively receive

lower targets by XI,off,t that what is expected on a price basis. Skipping over these unused

inexpensive bids when parsing the supply data in merit order can be achieved by incrementing

end-user demand by XI,off,t.

LetXL,on,t denote the constrained-on (must-run) load quantity sum in the region. This is the

quantity extent to which the loads are dispatched in the bids offered at prices below the realised

market price, i.e., the loads in the region collectively receive higher targets by XL,on,t that what

is expected on a price basis. Taking into account the effect of exceedingly high targets for the
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price when parsing the supply data in merit order can be achieved by incrementing end-user

demand by XL,on,t.

Let XL,off,t denote the constrained-off (curtailed) load quantity sum in the region. This

is the quantity extent to which the loads are not fully dispatched in the bids offered at prices

above the realised market price, i.e., the loads in the region collectively receive lower targets

by XL,off,t that what is expected on a price basis. Skipping these missed expensive load bids

when parsing the supply data in merit order can be achieved by reducing end-user demand by

XL,off,t.

It follows that the constrained-on/off quantity is the sum of the above introduced variables

Xt = X−
I,on,t −XI,off,t −XL,on,t +XL,off,t, (4.2.23)

it is expressed stochastically as

dXt = −κXtdt+ σdZ, (4.2.24)

and it is subtracted from demand before adjustments.

4.3 Model implementation

The implementation of the proposed approach is now described. The results are from three

31-day intervals between t0 4:00 AM 1 January 2022 and T 4:00 AM 1 February 2022, t0 4:00

AM 1 May 2022 and T 4:00 AM 1 June 2022, and t0 4:00 AM 1 October 2022 and T 4:00 AM

1 November 2022 for 5-minute time intervals t ∈ (t0, T ] (8928 observations each period).

The implementation begins by obtaining the fuels on the regional fuel set U in full capacity

c̄·,t
120, and initialising the ramp rates rup· , rdown

· and the fixed bid quantities c·,tn,fixed. The

hyperbolic fuel bid stack formulae are then fitted to the stacked fuel bid data to acquire the fuel

bid curve parameters α·,t0 , β·,t0 , γ·,t0 at time t0.

The time-dependent input processes are initialised for t ∈ (t0, T ]. First, strategic bidding is

120The bid data is truncated to the maximum availability of the units, i.e., the full registered capacity of the fuel
c̄·,t is proxied by the maximum available capacity in it, as indicated by the units at the time.
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Table 4.4 : Input data

The table shows the source of the input data together with the parametric interpretation of each field in the price algorithm.

Model parameter/variable Source (File) Source (Field) Data as of Type
α·,t0 , β·,t0 in (4.2.1-4.2.2) AEMO (2022i) PRICEBAND1-10, BANDAVAIL1-10 See Table 4.5-4.7 Fitted
γ·,t in (4.2.1-4.2.2) from (4.2.14 - 4.2.16) AEMO (2022i) PRICEBAND1-10, BANDAVAIL1-10 5 working days before t0 Fitted
rup· , rdown

· in (4.2.17-4.2.18) AEMO (2022i) ROCUP, ROCDOWN t0 (t−288 in May) Read off
m in (4.2.17-4.2.18) - - - Arbitrary
c̄·,t in (4.2.18) AEMO (2022i) MAXAVAIL, reg. cap.* t0 (t−288 in May) Read off
csolar,t,upper from (4.2.19) AEMO (2022g) EnergyTarget 5 working days before t0 Randomly generated
cwind,t,upper from (4.2.20) AEMO (2022g) EnergyTarget 5 working days before t0 Randomly generated
ctn,fixed from (4.2.21) AEMO (2022i) FIXEDLOAD t0 (t−288 in May) Read off
Xt from (4.2.23) AEMO (2022g) Price, Bids, EnergyTarget 5 working days before t0 Computed, fitted
Gt from (4.2.22) NEOPoint (2022) Dispatchable Gen 31 days a year earlier Fitted

*This is calculated as the minimum of the maximum availability (MAXAVAIL in AEMO (2022i)) and the registered capacity (as in AEMO
(2022f)) of all scheduled DUIDs in the fuel.

captured by altering the value of the intercept variable of every fuel bid curve γ·,t, i.e., by shifting

the bid curves over time. Moreover, available capacity truncation is executed to restrict the fuel

bid stack functions to their available capacity quantity domains defined between a lower c·,t,lower

and an upper capacity threshold c·,t,upper each trading interval. The upper capacity bounds of

the renewable fuels follow formulaic relations and ramp rates are applied around the initial

dispatch quantity in other fuels to obtain both the lower and the upper bound. Furthermore,

the physical feasibility of the fuels overall under the binding network constraints is also time-

dependent. This enters the model via the constrained-on/off variable Xt, which adjusts demand

over time. Then, demand given as generation Gt is also updated using the applicable time-

dependent formulae.

The fuel set allocation and price calculation are performed as in Example 4.2, noting that

because the wind availability cwind,t,upper and the constrained-on/off variable Xt are stochastic,

one must also iterate the model a number of times for every time point. The current implemen-

tation takes 25 iterations before averaging those for the model result.

4.3.1 Data source

A source summary of the data used to estimate the input process (4.2.14 - 4.2.22) parameters

is shown in Table 4.4.
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4.3.2 Fuel summary

All plants present within the Bidmove Complete file (AEMO (2022i)) with a DUID at time

t0
121 are mapped to fuel types using the market operator’s mapping in AEMO (2022f) to retrieve

the regional fuel sets. Each fuel type with a non-zero full bid capacity c̄·,t is included122 as shown

in Table 4.5–4.7.

121Or at time t−288 in case of the May sample where the last day of the previous month falls on a weekend.
122In addition, if only the zero maximum availability of a load fuel prevents it from being included then that

load fuel is included in 20 MW full capacity.
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Table 4.5 : Regional fuel sets – January 2022

The table shows the scheduled fuel set of each of the five NEM regions for January.

Fuel Full bid capacity Ramp speed, multiplier Fixed bids Fitting date, range

c̄·,t rup· rdown
· m c·,t,fixed

NSW

G1 Black coal Slow-start 6340 MW 0.05 0.05 4 - t−144, [$0,$500]

G2 Gravity hydro Quick-start 2553 MW 0.80 0.80 4 65 MW t−144, full range

G3 Natural gas Quick-start 1085 MW 0.62 0.62 4 - t−144, full range

G4 Pumped hydro Two-way 160 MW - - - - t−144, full range

G5 Battery Two-way 49 MW - - - - t−144, full range

L1 Battery Two-way 46 MW - - - - t−144, full range

G6 Solar Intermittent 2382 MW - - - - t−144, full range

G7 Wind Intermittent 2237 MW - - - - t−144, full range

QLD

G1 Black coal Slow-start 6472 MW 0.07 0.07 4 - t−144, [$0,$500]

G2 Coal seam gas Quick-start 1034 MW 0.30 0.30 4 - t−144, [$0,$500]

G3 Kerosene Quick-start 395 MW 0.41 0.41 4 - t−144, full range

G4 Natural gas Quick-start 697 MW 0.53 0.53 4 - t−144, full range

G5 Run of hydro Quick-start 154 MW 0.91 0.91 4 - t−144, [$0,$500]

G6 Pumped hydro Two-way 570 MW - - - - t−144, full range

G7 Solar Intermittent 1692 MW - - - - t−144, full range

G8 Wind Intermittent 509 MW - - - - t−144, full range

VIC

G1 Brown coal Slow-start 3825 MW 0.07 0.07 4 - t−144, [$0,$500]

G2 Gravity hydro Quick-start 2165 MW 0.62 0.62 4 - t−144, [$0,$500]

G3 Natural gas Quick-start 1758 MW 0.48 0.48 4 - t−144, full range

G4 Battery Two-way 33 MW - - - - t−144, full range

L1 Battery Two-way 80 MW - - - - t−144, full range

G5 Solar Intermittent 973 MW - - - - t−144, full range

G6 Wind Intermittent 3271 MW - - - - t−144, full range

SA

G1 Diesel oil Quick-start 253 MW 1.44 1.44 1 - t−144, [$0,$500]

G2 Natural gas Quick-start 1029 MW 1.05 1.05 1 - t−144, [$0,$500]

G3 Oil products Quick-start 553 MW 0.32 0.32 1 - t−144, [$0,$500]

G4 Battery Two-way 135 MW - - - - t−144, full range

L1 Battery Two-way 112 MW - - - - t−144, full range

G5 Solar Intermittent 365 MW - - - - t−144, full range

G6 Wind Intermittent 1923 MW - - - - t−144, full range

TAS

G1 Gravity hydro Quick-start 2008 MW 1.13 1.13 1 - t−144, [$0,$500]

G2 Natural gas Quick-start 30 MW 5.50 5.50 1 - t−144, full range

G3 Wind Intermittent 422 MW - - - - t−144, full range
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Table 4.6 : Regional fuel sets – May 2022

The table shows the scheduled fuel set of each of the five NEM regions for May.

Fuel Full bid capacity Ramp speed, multiplier Fixed bids Fitting date, range

c̄·,t rup· rdown
· m c·,t,fixed

NSW

G1 Black coal Slow-start 5360 MW 0.05 0.05 4 - t−432, [$0,$500]

G2 Gravity hydro Quick-start 2454 MW 0.82 0.82 4 49 MW t−432, [$0,$500]

G3 Natural gas Quick-start 1099 MW 0.61 0.61 4 - t−432, full range

L1 Pumped hydro Two-way 160 MW - - - - t−288, full range

G4 Battery Two-way 49 MW - - - - t−432, full range

L2 Battery Two-way 46 MW - - - - t−432, full range

G5 Solar Intermittent 2502 MW - - - - t−432, full range

G6 Wind Intermittent 2225 MW - - - - t−432, full range

QLD

G1 Black coal Slow-start 5823 MW 0.07 0.07 4 - t−432, [$0,$500]

G2 Coal seam gas Quick-start 870 MW 0.36 0.36 4 - t−432, [$0,$500]

G3 Kerosene Quick-start 396 MW 0.40 0.40 4 - t−432, full range

G4 Natural gas Quick-start 719 MW 0.51 0.51 4 - t−432, full range

G5 Run of hydro Quick-start 132 MW 1.06 1.06 4 - t−432, full range

G6 Pumped hydro Two-way 285 MW - - - - t−432, full range

L1 Pumped hydro Two-way 244 MW - - - - t−288, full range

G7 Solar Intermittent 1739 MW - - - - t−432, full range

G8 Wind Intermittent 549 MW - - - - t−432, full range

VIC

G1 Brown coal Slow-start 3058 MW 0.08 0.08 4 - t−432, [$0,$500]

G2 Gravity hydro Quick-start 1584 MW 0.85 0.85 4 - t−432, [$0,$500]

G3 Natural gas Quick-start 1813 MW 0.47 0.47 4 - t−432, full range

G4 Battery Two-way 240 MW - - - - t−432, full range

L1 Battery Two-way 268 MW - - - - t−432, full range

G5 Solar Intermittent 1001 MW - - - - t−432, full range

G6 Wind Intermittent 2874 MW - - - - t−432, full range

SA

G1 Diesel oil Quick-start 269 MW 1.36 1.36 1 - t−432, full range

G2 Natural gas Quick-start 773 MW 0.97 0.97 1 - t−432, full range

G3 Oil products Quick-start 537 MW 0.33 0.33 1 - t−432, full range

G4 Battery Two-way 98 MW - - - - t−432, full range

L1 Battery Two-way 112 MW - - - - t−432, full range

G5 Solar Intermittent 381 MW - - - - t−432, full range

G6 Wind Intermittent 2152 MW - - - - t−432, full range

TAS

G1 Gravity hydro Quick-start 2044 MW 1.02 1.02 1 - t−432, [$0,$500]

G2 Natural gas Quick-start 92 MW 1.79 1.79 1 - t−432, [$0,$500]

L1 Battery Two-way 16 MW - - - - t−432, full range

G3 Wind Intermittent 422 MW - - - - t−432, full range
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Table 4.7 : Regional fuel sets – October 2022

The table shows the scheduled fuel set of each of the five NEM regions for October.

Fuel Full bid capacity Ramp speed, multiplier Fixed bids Fitting date, range

c̄·,t rup· rdown
· m c·,t,fixed

NSW

G1 Black coal Slow-start 6365 MW 0.04 0.04 4 - t−144, [$0,$500]

G2 Gravity hydro Quick-start 2449 MW 0.82 0.82 4 58 MW t−144, [$0,$500]

G3 Natural gas Quick-start 712 MW 0.94 0.94 4 - t−144, full range

G4 Pumped hydro Two-way 240 MW - - - - t−144, full range

L1 Pumped hydro Two-way 20 MW - - - - t−144, full range

G5 Battery Two-way 50 MW - - - - t−144, full range

L2 Battery Two-way 51 MW - - - - t−144, full range

G6 Solar Intermittent 2617 MW - - - - t−144, full range

G7 Wind Intermittent 2221 MW - - - - t−144, full range

QLD

G1 Black coal Slow-start 5858 MW 0.07 0.07 4 - t−144, [$0,$500]

G2 Coal seam gas Quick-start 712 MW 0.44 0.44 4 - t−144, full range

G3 Kerosene Quick-start 276 MW 0.58 0.58 4 - t0, full range

G4 Natural gas Quick-start 702 MW 0.52 0.52 4 - t−144, full range

G5 Run of hydro Quick-start 132 MW 1.06 1.06 4 - t−144, full range

G6 Pumped hydro Two-way 524 MW - - - - t−144, full range

G7 Battery Two-way 20 MW - - - - t−144, full range

L1 Battery Two-way 75 MW - - - - t−144, full range

G8 Solar Intermittent 2294 MW - - - - t−144, full range

G9 Wind Intermittent 661 MW - - - - t−144, full range

VIC

G1 Brown coal Slow-start 3615 MW 0.07 0.07 4 - t−144, [$0,$500]

G2 Gravity hydro Quick-start 1792 MW 0.75 0.75 4 - t−144, [$0,$500]

G3 Natural gas Quick-start 1204 MW 0.70 0.70 4 - t−144, full range

G4 Battery Two-way 295 MW - - - - t−144, full range

L1 Battery Two-way 285 MW - - - - t−144, full range

G5 Solar Intermittent 1015 MW - - - - t−144, full range

G6 Wind Intermittent 3124 MW - - - - t−144, full range

SA

G1 Diesel oil Quick-start 204 MW 1.18 1.18 1 - t−144, full range

G2 Natural gas Quick-start 822 MW 0.91 0.91 1 - t−144, full range

G3 Oil products Quick-start 40 MW 3.75 3.75 1 - t−144, full range

G4 Battery Two-way 117 MW - - - - t−144, full range

L1 Battery Two-way 130 MW - - - - t−144, full range

G5 Solar Intermittent 386 MW - - - - t−144, full range

G6 Wind Intermittent 2294 MW - - - - t−144, full range

TAS

G1 Gravity hydro Quick-start 2044 MW 1.08 1.08 1 - t−144, [$0,$500]

G2 Natural gas Quick-start 148 MW 1.11 1.11 1 - t−144, full range

G3 Wind Intermittent 422 MW - - - - t−144, full range



122

4.3.3 Fuel bid curves

The fuel bid stack functions are then fitted to the bid data as of t−144 or t0 (or t−432 or t−288 as

for the May sample where the last day of the previous month falls on a weekend) as shown in the

last column of Table 4.5-4.7.123 First, the parameters (αt0 , βi,t0 , γi,t0) and (−αt0 , βl,t0 , γl,t0) are

estimated using a squared error cost function with a number of tweaks.124 The fitted function is

projected to the regulatory maximum and minimum price levels when it would otherwise exceed

those. Also, underestimation is penalised five times as much as overestimation.125 Furthermore,

only an arbitrarily chosen price interval of the bid data is fitted, usually the mid-range prices,

as also shown in the last column of Table 4.5–4.7.126 Finally, to have the same αt0 in all fuels

in a region a helper function is used to calculate what value of αt0 minimises the fitting error

in all fuels at time t0 when fitting the bid data. Then, (βi,t0 , γi,t0) and (βl,t0 , γl,t0) are estimated

keeping |αt0 | fixed. Table 4.8 (left side) shows the parameter results.

123Note that αt−144
= αt0 , βi,t−144

= βi,t0 and we detail the approach for γi,t−144
̸= γi,t0 in Section 4.3.4.

124The data is scaled before fitting, i.e., the prices are divided by the regulatory price cap at $15, 000 and the
MW amounts by 44, 000 MW, which is an approximation of the full bid capacity sum of every generation fuel in
the NEM.

125Note that because prices exceeding the market price thresholds are projected to these thresholds, in cases
with sparse data, the fit is prone to default to a near-vertical line (fixed at a given quantity, defaulting to values at
the two thresholds). Penalising underestimation more than overestimation effectively counters this. In addition,
the accuracy of the fit is more relevant at the lower end of the merit order, since it is evaluated at higher levels of
demand as well, whereas the high end of the merit order is only factored into prices at high levels of demand.

126More precisely, the slow-start and quick start fuels are sought to be fitted on the [$0,$500] price range only.
However, if there is fewer than two bid points within that range then the fuel is fitted on the full price range instead.
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Table 4.8 : Fuel bid curve parameters

The table shows the fuel bid stack function parameters ( αt0 , β·,t0 , γ·,t0 ) given a regional |αt0 | in a NEM-wide breakdown.

January May October

αt0 β·,t0 γ·,t0 αt0 β·,t0 γ·,t0 αt0 β·,t0 γ·,t0

NSW

NSWBlack coalGENERATOR 1.99999 0.1 0.08379 0.35548 0.92 0.07641 1.09017 0.22 0.08624

NSWNatural gasGENERATOR 1.99999 159.79 0.0068 0.35548 1.44 -0.00553 1.09017 244.67 0.00125

NSWPumped hydroGENERATOR 1.99999 333.12 -0.00127 0.35548 19.86 -0.08223 1.09017 981.21 -0.00003

NSWPumped hydroLOAD — — — 0.35548 2367.99 0.00371 -1.09017 0.02 1

NSWSolarGENERATOR 1.99999 1851.45 0.05241 0.35548 1497.17 0.05159 1.09017 2285.51 0.05873

NSWWindGENERATOR 1.99999 185.48 0.04655 0.35548 434.47 0.04547 1.09017 1090.43 0.04805

NSWGravity hydroGENERATOR 1.99999 18.66 0.00239 0.35548 1.55 -0.01212 1.09017 0.33 -0.04448

NSWBatteryGENERATOR 1.99999 476.4 -0.00003 0.35548 2136.83 -0.00004 1.09017 570.82 -0.00026

NSWBatteryLOAD -1.99999 0 1 0.35548 0.16 0.98906 -1.09017 1915.19 0.24422

QLD

QLDBlack coalGENERATOR 0.614 0.9 0.10642 0.54915 1.48 0.09741 1.73724 0.48 0.09323

QLDCoal seam gasGENERATOR 0.614 8.42 0.00036 0.54915 5.73 -0.00122 1.73724 1679.01 0.00745

QLDNatural gasGENERATOR 0.614 285.07 0.01253 0.54915 787.26 0.01101 1.73724 201.29 0.00711

QLDRun of hydroGENERATOR 0.614 17.09 -0.00003 0.54915 983.36 0.00163 1.73724 4358.63 0.00215

QLDSolarGENERATOR 0.614 1875.17 0.03681 0.54915 3827.84 0.03899 1.73724 405.74 0.04834

QLDKeroseneGENERATOR 0.614 12.41 -0.0884 0.54915 130.63 -0.00104 1.73724 9.07 -0.05116

QLDPumped hydroGENERATOR 0.614 189.77 0.00631 0.54915 321.04 0.00343 1.73724 151.03 -0.0003

QLDPumped hydroLOAD — — — 0.54915 1915.19 0.24422 — — —

QLDWindGENERATOR 0.614 181.07 0.00463 0.54915 194.75 0.00520 1.73724 1736.17 0.0138

QLDBatteryGENERATOR — — — — — — 1.73724 2300.41 -0.0002

QLDBatteryLOAD — — — — — — -1.73724 1915.19 0.24422

VIC

VICBatteryGENERATOR 0.37907 2032.06 -0.00004 1.30902 341.47 0.00357 0.38197 421.3 0.00209

VICBatteryLOAD -0.37907 5.26 0.03187 1.30902 12.59 0.01019 -0.38197 0.05 1

VICBrown coalGENERATOR 0.37907 0.09 0.07338 1.30902 0.44 0.05840 0.38197 1.08 0.06282

VICNatural gasGENERATOR 0.37907 682.82 0.01303 1.30902 0.30 -0.00715 0.38197 8.67 -0.19373

VICSolarGENERATOR 0.37907 1775.27 0.01987 1.30902 482.08 0.02075 0.38197 752.42 0.02082

VICWindGENERATOR 0.37907 1039.12 0.06728 1.30902 441.68 0.05243 0.38197 364.33 0.06292

VICGravity hydroGENERATOR 0.37907 1.33 0.00041 1.30902 2.73 0.00090 0.38197 4.22 -0.00066

SA

SABatteryGENERATOR 0.32016 550.24 -0.00023 0.21425 779.41 0.00019 3.29586 95.13 -0.00017

SABatteryLOAD -0.32016 0.13 1 0.21425 0.22 1.00000 -3.29586 0.01 -1

SADiesel oilGENERATOR 0.32016 8.29 -0.0072 0.21425 8.05 -0.01433 3.29586 266.18 -0.00035

SANatural gasGENERATOR 0.32016 6.13 0.01037 0.21425 23.68 0.00489 3.29586 81.33 0.00391

SAOil productsGENERATOR 0.32016 17.42 0.00426 0.21425 306.95 0.00261 3.29586 88.88 0.00081

SAWindGENERATOR 0.32016 823.46 0.03962 0.21425 387.09 0.04007 3.29586 208.4 0.05053

SASolarGENERATOR 0.32016 5428.98 0.00787 0.21425 9997.15 0.00843 3.29586 1852.37 0.00855

TAS

TASNatural gasGENERATOR 5.377e-07 6176.97 -0.00188 1.32753 865.44 0.00188 18.66066 90.66 0.00276

TASWindGENERATOR 5.377e-07 2690.81 0.00397 1.32753 205.33 0.00624 18.66066 169.04 0.00623

TASGravity hydroGENERATOR 5.377e-07 169.49 -0.0254 1.32753 0.58 0.00571 18.66066 0.09 0.00849

TASBatteryLOAD — — — 1.32753 0.01 -0.99899 — — —
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4.3.4 Strategic bidding

It is assumed that some fuels bid following a particular dynamic bidding strategy rather than

bidding the same strategy (bid curve) all the time, i.e., some bid curves are not time-constant.

This strategy involves a reallocation of all quantities onto more (less) expensive prices along

the bid curve that is achieved by shifting the fuel bid stack to the left (right) along the quantity

axis. The shift is achieved by changing the value of the fuel bid curve intercept γ·,t.

In this implementation we take the γi,t−144 value from the parameter estimation via least

squares fitting and apply an initial update of +(γ·,(t0day ,t0time) − γ·,(t−144day ,t−144time)
) to reflect

the time differential and obtain γi,t0 . After that the value of the intercept changes according to

formula (4.2.16).127

By fitting the formulae (4.2.14) and (4.2.15) for (4.2.16), some proportion of the full bid

capacity of the particular fuel c̄·,t is returned (on [0, 1]) for γ·,t. This value is then multiplied by

c̄·,t and divided by 44, 000 MW, the approximate full bid capacity sum of every generation fuel

in the NEM, to recover γ·,t on the correct scale. The parameters of the fit are shown in Table

4.9–4.11.

127Note, however, that the intra-year seasonality of gamma is ignored as the fitting interval is only 5-days long.
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Table 4.9 : Gamma γ·,t formula inputs – January 2022

The table shows the inputs of the intra-day gamma variation formulae (4.2.14)–(4.2.16) that capture the intercept of the fuel bid curves for all

fuels in the NEM.

Fuel s1 d1 d2 d3 d4 d5 −d6 R2

NSW

NSWBlack coalGENERATOR 0.70 0.18 -0.13 -0.84 -0.86 0.05 -4.84 0.17

NSWNatural gasGENERATOR 0.19 -0.19 -0.10 0.29 -1.85 0.15 -1.64 0.49

NSWPumped hydroGENERATOR - - - - - - - -

NSWSolarGENERATOR - - - - - - - -

NSWWindGENERATOR - - - - - - - -

NSWGravity hydroGENERATOR 0.01 0.10 0.13 3.76 2.37 0.37 -6.00 0.27

NSWBatteryGENERATOR - - - - - - - -

NSWBatteryLOAD - - - - - - - -

QLD

QLDBlack coalGENERATOR 0.89 0.02 0.02 -0.78 2.81 0.38 -1.44 0.28

QLDCoal seam gasGENERATOR - - - - - - - -

QLDNatural gasGENERATOR 0.36 -0.34 -0.29 -1.00 -3.86 0.17 -0.98 0.68

QLDRun of hydroGENERATOR 0.01 0.44 0.30 2.55 1.48 2.47 -6.00 0.27

QLDSolarGENERATOR - - - - - - - -

QLDKeroseneGENERATOR - - - - - - - -

QLDPumped hydroGENERATOR - - - - - - - -

QLDWindGENERATOR 0.35 -0.43 0.43 -3.40 -3.41 3.00 -3.10 0.16

VIC

VICBatteryGENERATOR - - - - - - - -

VICBatteryLOAD 0.01 0.39 0.42 0.71 -0.29 3.00 -3.49 0.35

VICBrown coalGENERATOR 0.76 1.04 -1.11 -2.20 -2.06 0.14 -0.13 0.38

VICNatural gasGENERATOR 0.00 -1.27 1.33 2.95 2.95 1.24 -1.16 0.24

VICSolarGENERATOR 1.00 -0.10 -0.04 0.88 -1.77 0.24 -4.24 0.51

VICWindGENERATOR - - - - - - - -

VICGravity hydroGENERATOR 0.04 0.07 -0.05 3.25 0.91 1.14 -0.02 0.24

SA

SABatteryGENERATOR 0.00 0.01 -0.01 0.09 -1.06 0.46 -4.73 0.01

SABatteryLOAD 0.02 0.52 -0.39 -0.56 -0.32 1.19 -6.00 0.16

SADiesel oilGENERATOR 0.00 0.06 -0.05 0.90 0.97 2.47 -3.99 0.32

SANatural gasGENERATOR 0.22 0.08 -0.20 2.77 -1.31 0.28 -0.24 0.21

SAOil productsGENERATOR 0.00 0.35 0.23 1.01 3.00 1.20 -0.92 0.26

SAWindGENERATOR -0.20 1.20 -0.03 3.82 2.19 0.00 -5.81 0.13

SASolarGENERATOR - - - - - - - -

TAS

TASNatural gasGENERATOR - - - - - - - -

TASWindGENERATOR 0.66 0.00 -0.01 0.90 1.19 1.92 -5.23 0.01

TASGravity hydroGENERATOR 0.58 -0.20 -0.09 0.91 -1.12 1.49 -0.43 0.20
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Table 4.10 : Gamma γ·,t formula inputs – May 2022

The table shows the inputs of the intra-day gamma variation formulae (4.2.14)–(4.2.16) that capture the intercept of the fuel bid curves for all

fuels in the NEM.

Fuel s1 d1 d2 d3 d4 d5 −d6 R2

NSW

NSWBlack coalGENERATOR 0.7 -0.06 0.09 -1.38 -3.93 0.9 -1.26 0.23

NSWNatural gasGENERATOR 0.04 0.21 0.42 -4 2.49 1.46 -1.3 0.19

NSWPumped hydroGENERATOR - - - - - - - -

NSWPumped hydroLOAD - - - - - - - -

NSWSolarGENERATOR -0.86 0 1.83 -2.6 2.42 0.95 0 0.08

NSWWindGENERATOR 0.99 -0.09 -0.02 4 -2.61 0 -3.53 0.13

NSWGravity hydroGENERATOR -0.24 -1.93 2.21 -2.16 -2.65 0.04 -0.02 0.12

NSWBatteryGENERATOR - - - - - - - -

NSWBatteryLOAD 0.02 0.23 0.2 -0.34 -4 2.37 -0.63 0.12

QLD

QLDBlack coalGENERATOR 0.76 0.13 -0.16 -2.67 -2.32 0.11 -0.74 0.32

QLDCoal seam gasGENERATOR - - - - - - - -

QLDNatural gasGENERATOR 0.51 -0.31 -0.25 -1.98 0.72 0.32 -5.1 0.21

QLDRun of hydroGENERATOR -0.95 0.03 1.51 -1.49 2.35 1.24 0 0.02

QLDSolarGENERATOR 0.92 -0.03 -0.02 2.76 -2.51 0.07 -1.31 0.12

QLDKeroseneGENERATOR -0.29 -1.75 2.08 -2.23 -2.81 0.04 -0.02 0.13

QLDPumped hydroGENERATOR - - - - - - - -

QLDWindGENERATOR 0.32 0.15 -0.11 -4 -2.81 0.34 -2.22 0.16

QLDBatteryGENERATOR - - - - - - - -

QLDBatteryLOAD - - - - - - - -

VIC

VICBatteryGENERATOR 0 0.23 -0.14 -4 -2.87 0.42 -2.36 0.16

VICBatteryLOAD - - - - - - - -

VICBrown coalGENERATOR -0.14 0.86 0.08 0.16 -3.93 0 -2.19 0.14

VICNatural gasGENERATOR 0.3 0.27 0 2.33 0.31 0.52 0.19 0.12

VICSolarGENERATOR -0.84 0.01 1.75 -4 0.79 1.6 0 0.17

VICWindGENERATOR -0.98 -0.01 1.85 1.73 1.22 2.07 0 0.12

VICGravity hydroGENERATOR 1 -1.03 0.29 1.26 2.62 0.01 -1.74 0.13

SA

SABatteryGENERATOR 0.5 -1.51 1.03 1.57 1.6 0.04 -0.06 0.14

SABatteryLOAD 1 -0.99 -0.11 1.66 -2.31 0.01 -1.56 0.11

SADiesel oilGENERATOR 1 -1.01 -0.12 2.39 -2.31 0.01 -0.81 0.15

SANatural gasGENERATOR - - - - - - - -

SAOil productsGENERATOR 1.00 -0.88 -0.18 1.50 -2.90 0.00 -4.14 0.05

SAWindGENERATOR 0.88 0.12 -0.12 -1.89 -2.10 0.11 -0.23 0.11

SASolarGENERATOR -0.96 1.94 -0.10 -2.13 0.13 0.00 -6.00 0.16

TAS

TASNatural gasGENERATOR - - - - - - - -

TASWindGENERATOR 0.65 -0.01 0.08 -2.06 -4.00 0.22 -0.94 0.14

TASGravity hydroGENERATOR 0.17 0.15 -0.16 -4.00 -2.85 0.45 -2.63 0.10

TASBatteryLOAD - - - - - - - -
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Table 4.11 : Gamma γ·,t formula inputs – October 2022

The table shows the inputs of the intra-day gamma variation formulae (4.2.14)–(4.2.16) that capture the intercept of the fuel bid curves for all

fuels in the NEM.

Fuel s1 d1 d2 d3 d4 d5 −d6 R2

NSW

NSWBlack coalGENERATOR -0.65 1.28 0.10 0.21 2.26 0.00 -0.71 0.31

NSWNatural gasGENERATOR 0.54 -0.55 0.05 -0.73 2.60 0.01 -4.61 0.36

NSWPumped hydroGENERATOR - - - - - - - -

NSWPumped hydroLOAD - - - - - - - -

NSWSolarGENERATOR - - - - - - - -

NSWWindGENERATOR - - - - - - - -

NSWGravity hydroGENERATOR 0.07 0.04 0.06 -3.92 0.06 1.04 -0.27 0.37

NSWBatteryGENERATOR 0.00 -0.17 0.31 2.62 2.62 3.00 -6.00 0.24

NSWBatteryLOAD 0.00 0.02 0.09 -0.83 -0.09 1.88 -6.00 0.09

QLD

QLDBlack coalGENERATOR 0.73 -0.04 -0.05 0.49 -1.00 1.64 -1.86 0.36

QLDCoal seam gasGENERATOR 0.00 0.14 0.27 4.00 2.84 0.44 -1.94 0.61

QLDNatural gasGENERATOR 0.40 -0.37 -0.30 -2.83 0.56 0.15 -1.33 0.42

QLDRun of hydroGENERATOR 0.68 -0.79 -0.75 -4.00 -0.15 0.71 -0.52 0.74

QLDSolarGENERATOR - - - - - - - -

QLDKeroseneGENERATOR - - - - - - - -

QLDPumped hydroGENERATOR - - - - - - - -

QLDWindGENERATOR 0.93 -1.27 1.08 -0.42 -0.44 1.05 -0.97 0.47

VIC

VICBatteryGENERATOR 0.00 0.00 0.00 0.41 1.74 2.47 -5.20 0.04

VICBatteryLOAD 0.00 0.17 0.18 0.19 -3.55 1.06 -2.04 0.21

VICBrown coalGENERATOR 0.77 0.06 0.06 0.72 -0.56 0.64 -2.93 0.11

VICNatural gasGENERATOR 0.01 2.25 -2.06 2.30 2.19 0.43 -0.45 0.65

VICSolarGENERATOR - - - - - - - -

VICWindGENERATOR - - - - - - - -

VICGravity hydroGENERATOR -0.35 -0.30 0.99 1.88 0.17 0.74 -0.02 0.20

SA

SABatteryGENERATOR -0.72 -1.62 2.34 -3.17 -3.81 0.00 0.00 0.02

SABatteryLOAD 0.01 0.07 0.09 -3.23 1.04 2.60 -0.89 0.12

SADiesel oilGENERATOR 0.00 0.04 0.03 1.00 -0.62 3.00 -6.00 0.25

SANatural gasGENERATOR 0.20 -3.00 2.79 1.02 1.13 0.25 -0.20 0.62

SAOil productsGENERATOR - - - - - - - -

SAWindGENERATOR - - - - - - - -

SASolarGENERATOR - - - - - - - -

TAS

TASNatural gasGENERATOR 0.25 -0.21 0.13 -3.04 -0.01 0.34 -1.03 0.14

TASWindGENERATOR 0.65 -0.01 0.01 1.43 1.62 2.02 -5.26 0.01

TASGravity hydroGENERATOR 0.49 0.04 -0.07 -0.24 2.93 0.32 -0.54 0.32
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4.3.5 Fuel availability updates

4.3.5.1 Ramp rates

Restrictive ramp rates apply to slow-start and quick-start fuels to determine their lower and

upper capacity bounds around the starting dispatch level in the trade interval. For example, a

ramp rate of 0.05 in the case of black coal in NSW signifies a MW amount equal to 5% of the

full bid capacity of the fuel c̄·,t. These are shown in Table 4.5-4.7, where we see that the ramp

rates of the slow-start fuels are typically much lower, and therefore more restrictive than those

of the quick-start fuels.

4.3.5.2 Renewable fuels

By contrast, only the upper availability bounds are calculated for renewable fuels as their lower

bounds are kept at nil. Table 4.12 shows the parameter estimation for the upper threshold of

solar generation csolar,t,upper in (4.2.19).128 The function parameters are not very dissimilar for

the fuels across time periods, except for the value of g which is somewhat lower in May for

NSW and QLD.

128The generation data is divided by 2300 MW in all five regions before fitting for a more tractable scale.
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Table 4.12 : Solar availability formula inputs

The table shows the solar generation upper bound quantity (4.2.19) inputs of the relevant NEM regions.

Jan 2022

Region a b c d e f g

NSW 0.0000 0.0150 -1.0000 -0.9920 0.0000 -0.5818 0.8

QLD -0.0007 0.0152 -0.5354 -0.3525 -0.1253 -0.5746 0.5

VIC -3.18e-04 1.78e-02 1.16e-01 -5.36e-01 -4.73e-02 -8.92e-01 0.2

SA -0.0020 0.0119 -0.0184 0.1870 -0.2785 -0.1330 0.1

May 2022

Region a b c d e f g

NSW -1.35e-05 1.55e-02 1.81e-01 -9.57e-01 -1.95e-01 -2.49e-01 0.5

QLD -0.0008 0.0152 -0.2712 -0.1369 -0.1450 -0.5905 0.35

VIC -4.10e-04 1.86e-02 4.36e-01 -4.02e-01 -6.09e-02 -8.61e-01 0.15

SA -0.0021 0.0058 0.4605 -0.3066 -0.2906 -0.1429 0.1

Oct 2022

Region a b c d e f g

NSW -5.00e-04 1.55e-02 -9.99e-01 -9.99e-01 -4.36e-06 -9.99e-01 0.75

QLD -4.67e-04 1.53e-02 -3.19e-01 -9.49e-02 -3.55e-06 -4.58e-21 0.6

VIC -3.76e-04 1.83e-02 3.15e-01 -4.53e-01 -5.57e-02 -8.73e-01 0.2

SA -0.0020 0.0119 -0.2359 0.0365 -0.2785 -0.1078 0.125

Next, Table 4.13 shows the parameter estimation for the upper threshold of wind generation

cwind,t,upper in (4.2.20). While the σ parameters are relatively close regardless of the fitting

period, the ψ̄ and the ψ thresholds are maintained at the exact same level in all of them.
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Table 4.13 : Wind availability formula inputs

The table shows the wind generation upper bound quantity (4.2.20) inputs of the five NEM regions.

Jan 2022 May 2022 Oct 2022

Region σ ψ̄ ψ σ ψ̄ ψ σ ψ̄ ψ

NSW 18.205 0.6 0.2 14.964 0.6 0.2 20.404 0.6 0.2

QLD 11.288 0.6 0.2 11.466 0.6 0.2 13.872 0.6 0.2

VIC 42.212 0.6 0.2 25.255 0.6 0.2 30.155 0.6 0.2

SA 21.921 0.4 0.2 25.077 0.4 0.2 21.354 0.4 0.2

TAS 6.162 0.6 0.2 7.687 0.6 0.2 6.027 0.6 0.2

4.3.6 Demand process

The modelled price paths Pt are considered under a generation-based process for demand

Dt =
Gt−ct,fixed−Xt

c̄t
. This requires the Ornstein-Uhlenbeck process for the feasibility adjustment

Xt, and the deterministic formulae with intra-week and intra-day variation for generation Gt as

inputs.

4.3.6.1 Feasibility adjustment

The constrained-on/off quantity Xt in (4.2.24) constitutes the feasibility adjustment in the

model. It is computed as the sum of the unused low-price (constrained-off) and the used high-

price (constrained-on) bid quantities. The path of this process can be drawn from a distribution

with mean zero and variance σ2

2κ
(1 − e−2κt), where the values of the drift and diffusion coeffi-

cients κ and σ are estimated from the data. Table 4.14 shows these values for the three sample

intervals.
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Table 4.14 : Constrained-on/off Xt formula inputs

The table shows the inputs of the constrained-on/off quantity Xt in (4.2.24) over the three periods for the five NEM regions.

aaaaaaaaaaaaaaa Jan 2022 May 2022 Oct 2022

Region κ σ κ σ κ σ

NSW 0.1 4.60 0.1 5.68 0.1 7.11

QLD 0.1 5.25 0.1 5.43 0.1 5.30

VIC 0.25 9.84 0.25 3.02 0.25 3.17

SA 0.1 1.20 0.1 0.65 0.1 0.79

TAS 0.25 4.68 0.25 3.80 0.25 7.00

As in Table 4.14, the κ values are stable for all regions, but there is some slight variation in

the σ values.

4.3.6.2 Deterministic component

The formulae for generation Gt is given by the sinusoidal function (4.2.22) that captures both

weekly and diurnal variation. This is fitted to the data to recover the function parameters as

in Table 4.15. The quantity data is divided by 7000 MW in all five regions before fitting for a

more tractable scale. Note the variation in the fitted generation function parameters between the

different data windows.



132

Table 4.15 : Generation Gt formula inputs

The table shows the inputs of the generation quantity Gt in (4.2.22) over the three periods for the five NEM regions.

Jan 2022

Fuel s1 s2 s3 s4 d1 d2 d3 d4 d5 −d6 R2

NSW 0.83 -0.06 0.64 1.10 0.48 -0.25 1.65 0.76 0.13 -0.43 0.53

QLD 0.88 -0.03 0.56 1.14 0.26 0.00 2.62 0.87 0.24 1.43 0.75

VIC 0.74 -0.02 1.46 1.19 0.15 -0.01 2.81 1.09 0.53 -0.91 0.26

SA 0.14 -0.01 1.02 1.04 0.06 0.00 3.02 0.78 0.56 1.05 0.22

TAS 0.09 0.00 1.01 1.14 0.05 0.00 3.01 0.78 0.68 1.05 0.22

May 2022

Fuel s1 s2 s3 s4 d1 d2 d3 d4 d5 −d6 R2

NSW 0.90 -0.05 -10.78 1.16 0.61 -0.54 1.28 0.77 0.12 -0.43 0.56

QLD 0.84 0.03 -2.39 1.13 0.24 0.00 2.88 0.82 0.59 1.27 0.55

VIC 0.72 0.04 -2.43 1.13 0.19 0.00 2.90 0.91 0.83 1.02 0.42

SA 0.16 -0.01 1.01 1.28 0.09 0.00 3.02 0.78 0.97 1.05 0.32

TAS 0.16 -0.02 1.01 1.27 0.10 0.00 2.94 0.78 0.59 1.05 0.37

Oct 2022

Fuel s1 s2 s3 s4 d1 d2 d3 d4 d5 −d6 R2

NSW 0.82 -0.06 -27.91 1.15 0.57 -0.57 1.30 0.65 0.15 -0.31 0.59

QLD 0.80 0.03 1.49 1.17 0.25 0.00 2.82 0.85 0.47 1.38 0.69

VIC 0.67 0.03 -13.05 1.11 0.16 -0.11 3.00 0.34 1.08 -0.58 0.57

SA 0.14 -0.02 1.01 1.27 0.02 0.00 3.18 0.78 1.01 1.05 0.09

TAS 0.16 0.01 1.01 1.27 0.08 0.00 3.18 0.78 0.88 1.05 0.24
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4.4 Model results

The model result analysis starts with the hyperbolic map before turning to assess the full

model.

4.4.1 An assessment of the hyperbolic map

The hyperbolic map is dynamic in that it captures the changes in the strategic bidding ac-

tivity, fuel availability and fuel feasibility at every 5-minutes interval for t ∈ (t0, T ]. These

features unequivocally improve the model’s performance, although their execution is suscepti-

ble to slight inaccuracies.

First, strategic bidding is modelled with diurnal variation only. This presumes that the units

of the fuels allocate their MW quantities mostly on the same price domain during the day129

but that they are shifting their quantities onto the next more (less) expensive price points every

5-minutes as the day progresses. More precisely, the bid curves slide to the right (left) due to

strategic bidding in a pattern that repeats every day in the same way. Nevertheless, this is a

rather restrictive way of bidding, and the actual bidding profiles are somewhat more changeable

in the NEM in comparison.130 Therefore, the model is prone to errors when the fuels shift their

quantities more or less aggressively than anticipated. This is indicated by the imperfect R2

scores for the fit of the dynamic intercept γi,t in Tables 4.9-4.11.

Second, regarding the fuel availability features, the fact that their focus is inherently fuel-

specific also poses some problems. Amassing the available quantities in the different units

within a fuel for fuel-level availability sometimes misrepresents what unit bids correspond to the

available fuel quantities, for example, when the ramp rate–based availability truncation deems

extremely priced bids unavailable before deeming those priced closer to the current price level

so. The lowest-price quantities are then erroneously filled first in merit order even if those

were not in fact available, for example, because the high ramp rates correspond to higher priced

quantities falsely tagged unavailable in the model or due to locational differences in generation

in the case of renewables, which are physical factors independent from the merit order principle.

129It is a market requirement that they use the same ten price buckets over the same trading day as observed in
AEMO (2022i).

130The modelled shifts are more regular and restrictive than what actual strategic bidding might look like, which
is currently the main limitation of the proposed model.
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If one such misrepresented fuel receives higher targets at falsely deemed-available lower prices

than it would have received in real life, then another fuel is receiving lower targets than it would

have in the actual, real-life run. Then, a sharp increase in price may occur if the other low-target

fuel subsequently cannot ramp up to – that is, its fuel curve is cut off too low to be able to ramp

up to – a higher target in the next round, and a remaining quantity has to be filled by the next,

considerably more expensive fuel in merit order. This erroneous mid-price spike effect could

be mitigated using ramp rate multipliers.

Third, related to the previous argument, negative spikes also arise when a slow-start fuel

receives relatively low targets and it operates at its lower capacity bound as a must-run fuel. In

this case, the remaining flexible demand sets the price, but because this demand is lower than it

would have been in the absence of the lower bound, the price is also lower, causing the negative

spikes. This effect is, too, mitigated by the ramp rate multiplier m > 1.

Furthermore, there is an overlap between the constrained-on and must-run quantities. The

former are forced on due to physical constraints disallowing their disuse, whereas the latter

must stay online due to the supply side availability truncation. However, the constrained-on/off

data ultimately also encapsulates the must-run quantity data. The unavailable sum can be re-

moved by running the map a few times at different levels of demand and computing the average∑ co∈OI,t,lower

c̄t
, but this has been omitted from the current implementation. The possible conse-

quences of such double counting include a suppressed price level and an increased proportion

of fuels in subset OI , as the constrained-on/off variable is overestimated.

4.4.2 An assessment of the full model

The main difference between the transformation map and the full model is that the map is

agnostic to the way demand is defined. Indeed, a keystone assumption of the proposed approach

is that modelling regional net generation might be a more appropriate input for the price map

than modelling regional consumption. That is because net generation (net of storage load)

assimilates trade between the regions, after which the post-trade price level can be determined

from the market bid stack function at that quantity level, which is congruent with the trade

assumption. In practice, too, the marginal quantity being priced is understood to be the post-

trade quantity.
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Therefore, the generation-based formulation takes the post-trade quantity as the demand to

be fed into the transformation map to obtain the modelled price. Fitting the generation data for

the process Gt gives back the historical quantity of export–import over time. This estimation

is error-prone to the extent the historical generation quantities, on which Gt is based, might

deviate from the current ones, and to the extent of the general imprecision of the fit.

4.4.3 Evaluation metric

The distributional fit by the model is evaluated using the Wasserstein metric, which repre-

sents the similarity between the actual and modelled price distribution in that it measures the

‘work’ required to transform one into the other. This ‘distance to model’ is then benchmarked

against the distributional variation in the actual price data measured as the Wasserstein distances

between the three different samples pairwise. Based on the comparison of the distributional in-

accuracy of the model with the magnitude of the ex ante uncertainty in the actual price data,

if the distance to model is approximately the same or less than the distances between the em-

pirical distributions, then representing the electricity price risk using the model is reasonably

accurate – that is, the distributional fit by the model is adequate. The rationale for this is that the

model distribution is no further (in the Wasserstein sense) from the empirical distribution than

the empirical distributions themselves vary over time. Table 4.16 shows these results.

Table 4.16 : Wasserstein distances

The table shows the Wasserstein distances between the actual price series (first column) and between the modelled price averages of 25 iterations

and the actual price series.

Actual prices Modelled prices

Region January–May May–October January–October January May October

NSW 243.6 169.4 81.6 153.5 115.0 92.4

QLD 211.3 194.0 79.7 132.7 183.4 571.7

VIC 189.7 135.5 68.9 56.4 122.9 80.1

SA 223.8 219.4 74.7 251.5 913.6 1089.6

TAS 154.1 104.9 71.6 59.0 41.4 231.9
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Figure 4.1 : Modelled paths: A full-range view

The figure shows the path-wise differences for the complete price range between the average of the simulated 5-minute prices (red) with αt0
and the sample (black) of the five NEM regions for the three sample periods: January, May and October (left to right).

-
NSW: 153.5, 115.0, 92.4

QLD: 132.7, 183.4 , 571.7

VIC: 56.4, 122.9, 80.1

SA: 251.5, 913.6, 1089.6

TAS: 59.0, 41.4, 231.9

4.4.4 Results

In each of the five modelled NEM price regions the price path obtained using the generation-

based demand measure can, to some degree, be characterised to display the required empirical

properties, including price negativity and price spikes. Figure 4.1 shows the full view of the

average price path result (between the regulatory price thresholds), whereas Figure 4.2 displays

the distributional accuracy of the average results over the mid-range prices only. In addition,
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we refer to the overall distributional distance to model via the numerical values in Table 4.16.

The NSW region has a relatively good mid-range fit and correct diurnal patterns most of

the time. However, the modelled price series (red) over-delivers on mid-range price spikes in

January, as these spikes are too frequent, which also drives a higher Wasserstein metric in May

than in January. In contrast, the modelled prices for October do not exhibit any spikes, contrary

to the fact that the sample does have a couple of large spikes. In terms of price negativity,

the average results omit negative prices, which is problematic in October, but the individual

iterations allow for them.

The modelled prices (red) in QLD are, to a lesser extent, also reasonably close to the actual

price path (black) distributionally. The Wasserstein distance is below the benchmark for January

and May. During these months, the main issue is an over-emphasis on near-nil prices, which

can be traced back to inadequate bid curve shifts. Nevertheless, the intra-day pattern is largely

correct. Regarding the large spikes present in the actual price sample, the model does not

emulate them in January, but does in May and October, although with a slight overemphasis in

October, which drives the high distance to model in that period. Price negativity is rare and the

model sufficiently replicates this aspect of the price.

With the best Wasserstein metrics amongst the regions, the modelled price paths (red) in

VIC reflect the actual price distribution (black) reasonably well, although issues remain around

suppressed price volatility in the modelled sample in January and May.

The fit is overall not good in SA, with ballooned Wasserstein metrics in May and October,

due to excessive volatility in the modelled paths (red) – that is with the exception of January,

when the modelled price path is more limited owing to the [$0,$500] fit of the bid curves of

multiple quick fuels. However, in this instance, the actual spikes (black) are not captured at all.

The modelled price paths (red) for TAS struggle to maintain the correct price levels (black)

in January and October, as seen in the mid-range distributions. However, because price spikes

are infrequent and the model does not produce them at all, the Wasserstein distance to model

remains moderate. Furthermore, the diurnal patterns are mostly correct.
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Figure 4.2 : Distributional results: A mid-range view

The figure shows the mid-range distributional differences between -$1000 and $1000 of the average of the simulated 5-minute prices (red) and
the sample prices (black) for the three sample periods: January, May and October (left to right).

NSW: 153.5, 115.0, 92.4

QLD: 132.7, 183.4 , 571.7

VIC: 56.4, 122.9, 80.1

SA: 251.5, 913.6, 1089.6

TAS: 59.0, 41.4, 231.9
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4.5 Conclusion

This chapter proposes a novel parametric price model retaining the mathematical core of

the model by Carmona et al. (2013) with overlapping and dynamic merit order properties. Our

approach has primarily been developed to match the features of the multi-regional Australian

NEM for improved accuracy over existing electricity price models. The already high and in-

creasing renewable fuel penetration, the ongoing storage fuel expansion, the price effects of

binding network constraints, multi-regional trade, fuel availability, the negative price floor and

disorderly bidding are all part of the proposed price hypothesis.

Accounting for these power market characteristics in a parametric setup, the model trans-

forms demand after adjustments into a stochastic price process that allows for negativity and

extreme values, i.e. price spikes. Capturing negative electricity prices in a structural manner is

the key contribution of this chapter to the electricity price modelling literature.

A multi-regional implementation study using the Wasserstein metric is used for model eval-

uation. This assessment shows that the proposed framework is sufficiently accurate in its distri-

butional fit for most regions in the NEM. The SA region is an exception, however, as the model

hypothesis fails to capture active strategic bidding by renewable and gas units in SA. This un-

derpins our finding that bidding behaviour is just as important for modelling price formation as

correctly capturing the bid aggregation mechanism.

Finally, in terms of limitations, it is important to emphasise that the effects of ancillary ser-

vice co-optimisation and network losses are noises to the proposed model and more generally,

to most semi-structural (bid stack) model hypotheses as well.
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Chapter 5

Supply function non-monotonicity and welfare under
different market designs

5.1 Introduction

The equilibrium argument central to economic theory posits that price is determined at the

intersection of demand and supply (Parkin and Bade (2016)). Demand is often considered

perfectly price inelastic in electricity markets. Supply in price is typically assumed to be mono-

tonically increasing in that marginal costs increase along the supply curve as quantity increases.

Monotonicity of supply in price is an assumption that is so standard throughout economic theory

that it is almost axiomatic. This chapter questions the validity of this assumption for electricity

markets.

The bid aggregation mechanics assumed for bid stack–type modelling in Chapter 4 retrieve

the supply curve presuming that the price is set by a single marginal bid and ignoring ancillary

service co-optimisation and network losses. However, the recovery of price formation using

data from a central dispatch engine solution in Chapter 3 reveals that serving the marginal

unit of demand sometimes involves multiple marginal bids and omitted market design factors.

Therefore, a more exhaustive bid aggregation method is preferred for constructing the supply

curve for closer analysis.

The objective of the present study is to validate the violation of supply monotonicity. Mono-

tonicity is examined across three major market designs, the Pennsylvania-New Jersey-Maryland

Interconnection (PJM) in the United States, the Balancing Market (BM) in Great Britain and

the NEM in Australia. Therefore, the assumed mechanics of bid aggregation closely follow

market clearing. In integrated pool markets, this involves deciphering the engineering models

used for dispatch and pricing. Exchange trading as well as physical balancing are regarded

jointly in exchange-based settings. The three focus markets span both paradigms and many

different aspects of market design. Their implied supply curves are recovered by formulating
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these multi-stage processes in mathematical detail based on the available information.131

Table 5.1 : Specifications in the real-time electricity supply curve

The table shows various aspects of the focus markets that determine the assumptions for recovering their supply curves. Many of these are
specific to certain markets. Consequently, the supply curves retain a large degree of dependency on differences in market design.

Market design feature Supply function representation
BM PJM NEM
Day-ahead and intra-day
exchanges

Day-ahead settlement – The real-time supply curves make some as-
sumptions about these sub-markets.

Balancing bids and offers Multi-part bids Price–quantity pairs Bid language is often different from just us-
ing marginal price-quantity pairs.

Bid convexification, bid
shading

- Bid ‘convexification’, dis-
orderly bidding

Bidding behaviours are present.

Emissions Trading
Scheme (ETS)

Carbon pricing Large-scale generation
certificates (LGCs)

Green certificates trading may also influence
bidding behaviour.

Pay-as-bid balancing Uniform prices Uniform prices Prices are not always uniform. The supply
curve cannot be obtained under the pay-as-
bid rules of the BM.

Balancing costs Uplift payments Directions payments Out-of-market payments are a social cost to
welfare, but not part of the supply curve.

Self-dispatch Central dispatch Self-scheduling The baseline approach to scheduling most
volumes in the market.

Unit commitment changes
as part of balancing
override self-dispatch

Unit commitment being
updated throughout the
day-ahead period

Real-time unit
commitment for fast-start
plants only

The way unit commitment (on/off decision)
is integrated in the dispatch solution plays a
role in how non-monotonicities appear.

– Integer relaxation for
fast-start plants

– Marginal cost may correspond to costs by
constrained-on units.

Day-ahead solution: last
MW sets the price

Solver: next MW sets the
price

Solver: last MW sets the
price

This determines the marginal cost calcula-
tion in edge cases.

– Congestion is priced Trade-offs on the demand
constraint’s LHS due to
binding constraints

Congestion and constraint trade-offs influ-
ence prices along the constructed supply
curve.

Load-dependent
constraints

Load-dependent
constraints

Load-dependent
constraints

These depend on demand at the end of the
previous dispatch interval, which is fixed for
all levels of demand and does not impact the
supply curve in one-shot pricing.

Frequency balancing
service providers can also
provide energy

Frequency balancing is
co-optimised with energy

Frequency balancing is
co-optimised with energy

Frequency balancing may have an indirect
capacity withdrawal impact or a direct en-
ergy price impact depending on the level of
co-integration.

Static interconnector
losses

Static interconnector
losses

Dynamic interconnector
losses

Dynamic interconnector losses imply load-
dependent costs, which may lead to non-
monotonicities in the supply curve.

National Nodal Regional Supply curve resolution is different.

Table 5.1 summarises the features influencing the set of assumptions used to recover elec-

tricity supply curves in real-time markets across the three market designs. First, real-time mar-

kets are commonly complemented by so-called sub-markets for energy, such as day-ahead and

intra-day markets. These are usually material enough to affect the construction of the real-

time supply curve. Second, the bid language and usual bidding behaviours are non-identical,

which also impact the constructed supply curves. In addition, prices are not always uniform

131See, for example, Gorman et al. (2022), Elexon (2020), PJM (2022a) and many more academic resources and
industry publications referenced within the text.
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due to pay-as-bid pricing or due to out-of-market payments, although the latter are typically

not reflected in the supply curves.132 Indeed, the baseline approach to dispatching most vol-

umes in the market can be as different as self-dispatch across exchanges and bilaterally, central

dispatch following algorithmically assigned targets, or self-scheduling akin to central dispatch

but placing the responsibility of compliance onto the units more fully. Therefore, the way unit

commitment – and in some cases its relaxation – occurs is also vastly different. In addition,

solver settings can vary between those using the last MW and those using the next MW of en-

ergy as marginal amounts, which affects the construction of edge cases along the supply curve.

Moreover, sometimes congestion and constraint trade-offs are reflected in the prices along the

supply curve depending on the exact market design. However, because we consider one-shot

pricing133 load-dependent constraints have no effect along the supply curves. Nevertheless, the

co-optimisation of energy and frequency balancing services as well as a dynamic calculation of

interconnector losses can have important price effects. Last, the scope of the supply curve is

different – national, regional or nodal – under the three different market designs.

In this chapter, a small-scale case study is presented that approximates dispatch and pricing

algorithmically by emulating market clearing in the three focus markets as closely as possi-

ble while keeping the physical and cost assumptions identical within the comparative setting.

Supply curves are obtained by running the multi-stage market algorithms that take demand as

input and yield price as output for a range of demand levels. The welfare results are displayed

in a breakdown that separately presents consumer surplus, producer surplus and social surplus.

Centrally optimised market models such as the PJM and NEM outperform the market clearing

process in Great Britain on self-dispatch principles in terms of consumer surplus. However, the

BM in Great Britain leads in producer surplus. Surprisingly, the social surplus outcomes are

relatively similar across the three market designs albeit with a clear primacy of the PJM market

design.

As mentioned in Hogan and Ring (2003); Bjørndal and Jörnsten (2008); Ruiz et al. (2012);

132The use of discretionary pricing including out-of-market payments and the presence of day-ahead markets as
part of the market design cast doubt on the applicability of the economic equilibrium argument. This is because a
single real-time supply function cannot embody these market features. Although in most cases it is still possible
to discern a real-time supply curve but it is key to take the broader dispatch and pricing process into consideration
too to evaluate welfare.

133We consider pricing in a single trade interval and not in multiple consecutive intervals in this article.
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Gribik et al. (2007); Byers and Hug (2023), fixed costs as part of multi-part bidding and mini-

mum loading requirements cause non-monotonicity of supply. This study shows new evidence

that dynamic interconnector losses and ancillary service co-optimisation may result in non-

monotonicity. These findings have important implications for incentive compatibility within

particular market designs as well as for market modelling on equilibrium principles.

The market design lessons drawn from this analysis concern small, practical details. The

fact that prices drop due to constrained-on units coming online with a sufficiently high mini-

mum loading level appears to be a case when producers should perhaps either receive a make-

whole compensation in the NEM or be able to trade at prices that reflect the bid-in cost by the

constrained-on unit. Fast-start integer relaxation was introduced to a similar effect in the PJM.

In the PJM, however, it is not clear when the last unit commitment run takes place and whether it

incorporates the latest information from the bidders. Bidding until gate closure 5 minutes ahead

of the trade interval might be good practice to learn from the NEM to allow the most recent cost

information to be factored in. Last, for the BM, the units make conspicuously excessive bids

and offers as part of bid shading, which might require a data-driven investigation into how bid

shading works in reality as perhaps part of firmer regulatory oversight.

The remainder of this chapter is organised as follows. Section 5.2 describes the simpli-

fied mathematical formulations of dispatch and price optimisation under three different real-

world market designs. Section 5.3 discusses supply function non-monotonicities in the literature

due to indivisibilities in energy and provides new evidence concerning dynamic interconnector

losses. Section 5.4 presents a case study that compares supply non-monotonicity and welfare

under different market designs using the simplified mathematical formulations. Section 5.6

concludes the chapter.

5.2 Algorithms for price and welfare

5.2.1 Generic formulation

We first express the dispatch optimisation in a somewhat market design–neutral form loosely

based on LMP and fixed configuration pricing (FCP) principles described in Wood et al. (2013),

Biggar and Hesamzadeh (2014) and Byers and Hug (2023). There is no day-ahead or intra-day

market or a separate unit commitment run in this formulation. Moreover, the resulting real-time
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nodal prices are all uniform.

The notation can be set up as follows. Let i ∈ Nj be a generator unit where Nj denotes the

set of generators located at node j ∈ J . We assume that there is a single generator at every node

such that |Nj| = 1; therefore i = j for all j.

Let wi ∈ {0, 1} denote the online/offline status (i.e. on-off state) of unit i. Let QS
i denote

the quantities supplied by generator unit i, and let QB
j denote the quantities bought at node j,

which we take to be constant values based on the inelastic demand assumption. In particular,∑|J |
j=1Q

B
j = D, where D denotes demand. We assume no two-way fuels (storage fuels) in this

formulation. Then, every generator i has capacity limits 0 ≤ QS
i ≤ wiQ̄

S
i and minimum loading

wiQ
S

i
≤ QS

i .

Moreover, let Zj be the net injection at node j. In other words, Zj is the difference of all

quantities sold
∑

i∈Nj
wiQ

S
i by online generators minus all quantities bought QB

j at node j,

assuming sufficient reactive power as

Zj =
∑
i∈Nj

wiQ
S
i −QB

j . (5.2.1)

Let Fl denote the power flow over the unidirectional link l ∈ U , and let Kl be the physical

limit of the power flow over link l such that Fl ≤ Kl. Then, the power flow Fl is a linear function

of net injections Zj as Fl =
∑∀j HljZj , where Hlj is an element of the size U × J matrix of

power transfer distribution factors H. We consider Z as the net injection vector of size J×1, and

K as the physical limit vector of size U × 1, from which HZ ≤ K or ∀l ∈ U,
∑∀j HljZj ≤ Kl.

Let losses be denoted by L(Z) as a function of all net injections on the grid. Our present

formulation assumes L(Z) = 0.

Let the cost function be

Ci(Q
S
i , wi) =

Di∑
d=1

ci,dxi,d|
Di∑
d=1

xi,d = wiQ
S
i , (5.2.2)

where Di denotes the number of bid slots used by unit i in its bidding.

More succinctly, the optimisation reads as
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min
∀iQS

i ,wi

∀i∑
Ci(Q

S
i , wi) (5.2.3)

subject to the demand balance constraint

|J |∑
j=1

−Zj + L(Z) = 0(↔ λ), (5.2.4)

network constraints

|J |∑
j=1

HljZj −Kl ≤ 0(↔ µl), (5.2.5)

plant capacity constraints

QS
i − wiQ̄

S
i ≤ 0(↔ βi), (5.2.6)

and minimum loading requirements

wiQ
S

i
−QS

i ≤ 0(↔ γi), (5.2.7)

with the duals in round brackets.

However, due to unit commitment in the formulation, namely that wi ∈ {0, 1} for all i ∈ N ,

the full dispatch algorithm reads as follows:

1. Solve an MIP for (5.2.3) given (5.2.4)-(5.2.7) to find w∗
i in w∗

i ∈ {0, 1}.

2. Solve an LP for (5.2.3) given (5.2.4)-(5.2.7) fixing wi = w∗
i to find QS∗

i for all i.

The pricing formula can then be obtained for the LP by forming the Lagrange function as

L =
N∑
i=1

Ci(Q
S∗
i , w

∗
i ) + λ

( |J |∑
j=1

−Zj + L(Z)
)
+

|U |∑
l=1

µl

( |J |∑
j=1

HljZj −Kl

)
+ βi(Q

S
i − w∗

i Q̄
S
i ) + γi(w

∗
iQ

S

i
−QS

i ) (5.2.8)
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and by applying the four KKT conditions as in Wood et al. (2013). The first condition can be

stated as (recall that i = j)

∂L
∂QS

i

= C ′
i(Q

S∗
i , w

∗
i )− λ+

|U |∑
l=1

µl(HljZj) + βi + γi = 0,

noting that L(Z) = 0. The second and third conditions ensure that the equality and inequality

constraints hold. Then, the fourth condition states that for the inequality constraints, the dual is

greater than or equal to zero, and the inequality constraint acts as an equality constraint. More

specifically, µl ≥ 0 and µl(
∑|J |

j=1HljZj −Kl) = 0 for all l. This forces µl = 0 if the constraint

is not binding, i.e., if
∑|J |

j=1HljZj −Kl > 0. The same applies for βi and γi.

Thus, assuming that generator i at node j is operating neither at minimum loading nor at

maximum output but that a network constraint binds over link l = 1, we can express the price

at node Pj as the marginal cost of unit i at the optimum

Pj = C ′
i(Q

S∗
i , w

∗
i ) = λ−

|U |∑
l=1

µ1

( |J |∑
j=1

H1jZj

)
, (5.2.9)

that is, as a function of marginal values of different constraints, which is a well-known result

for LMP (see, for example, Wood et al. (2013)).

5.2.2 PJM in the United States

In the PJM, wholesale scheduling takes place through a centrally orchestrated day-ahead

market and the Reliability Assessment and Commitment (RAC) process bridging day-ahead

and real-time dispatch, whereas real-time dispatch uses multi-part bids and fast-start integer

relaxation (PJM (2023); Hui et al. (2009)). Assuming that the mathematical details of day-

ahead settlement and RAC put forward in FERC (2012) are still up-to-date, we note that unit

commitment is performed in a constrained formulation. This is relevant to the emergence of

supply non-monotonicities due to minimum loading in the absence of full integer relaxation.

Furthermore, the multi-part bid format includes marginal cost, start-up cost, and no-load cost

bids, as well as operational information. According to PJM (2021), no-load cost bids refer to the

hourly costs of generating units to output zero MW energy. Under fast-start integer relaxation,

the start-up and no-load costs of fast-start units are incorporated into their marginal bid prices as
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well (PJM (2018)). For the real-time electricity supply curve, we interpret that this supply curve

is composed of the adjusted marginal prices for fast-start units and the unadjusted marginal cost

bids for all other units at every level of demand above the sum of all day-ahead volumes.

The real-time PJM solver is assumed to reference the marginal cost bid of the incremental

unit of load approximated by the next 1 MW of load, which should mostly be served by units

that are already online (EPRI (2019)). Note, however, that referencing of the marginal cost

bid is not yet reflective of the marginal congestion and the marginal loss components of real-

time prices in the spirit of LMP, as per Ott (2003). For simplicity, we assume that these price

components have a dollar value of zero. Moreover, discretionary uplift is being paid under

certain conditions to prevent firms from running at a loss (Monitoring Analytics (2023)).

Electricity prices are nodal in the PJM (Ott (2003)) and the market is also assumed to be

connected to other markets through interconnectors. The interconnector losses are presumed to

be static, and therefore not dependent on throughput. Under these definitions, nodal prices and

supply (marginal cost) curves are not dependent on interconnector activity.

In addition, so-called spinning reserves and regulation reserves are procured and co-optimised

with energy to provide hertz-level frequency balancing (PJM (2023)). These services may exert

some influence on the real-time electricity supply curve.

Drawing from PJM (2017), Hung-po (2019), Hytowitz et al. (2020), PJM (2022a), Tongxin

et al. (2018), FERC (2012) and FERC (2019), we then recover the price at every level of load in

part by applying the notations and initial assumptions from the generic case (see Section 5.2.1)

as follows. Regarding the notations, let ui ∈ {0, 1} be set to ui = 0 if unit i is turned off

and to ui = 1 if unit i is turned on (start-up decision). We extend the binary variable for the

online/offline status with a time dimension as wi,t for time t. Then the start-up cost is denoted

by cSUi and the no-load cost by cNL
i for each unit i. Also, let Y denote the set of fast-start units

such that i /∈ Y are the slow-start units. Last, let fi,d denote the bid-in price and QF
i the bid-in

quantity for spinning reserves that are co-optimised with energy.

To review the generic assumptions, first, let m be the proportion of every unit’s total supply

quantity (assumed m < 1) being exchanged day-ahead and in the reliability run(s).134 Sec-

134We assume a single reliability run in our simplified formulation.
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ond, let k be the proportion of total load (assumed k < 1) being settled day-ahead and in the

reliability run. Finally, we assume m = k.

We introduce a new objective function for day-ahead and real-time dispatch that reflects

multi-part bidding and frequency balancing service costs

min
QS

i ,Q
F
i ,ui,wi,t

N∑
i=1

Ci(Q
S
i , wi,t) + uic

SU
i + wi,tc

NL
i + Fi(Q

F
i , wi,t), (5.2.10)

where Fi(Q
F
i , wi,t) = fi,dwiQ

F
i , and the corresponding binary constraint

wi,t − wi,t−1 ≤ ui, (5.2.11)

with ui, wi,t ∈ {0, 1}.

In addition, the loss function in the load balance constraint (5.2.4) is modified for intercon-

nector losses as

L(Z) =
m̄

2
QS

i , (5.2.12)

for mid-point loss factor m̄ and node i located in another market.

Then for the reliability run the objective function becomes

min
QF

i .ui,wi,t

uic
SU
i + wi,tc

NL
i + Fi(Q

F
i , wi,t), (5.2.13)

roughly as in FERC (2012), with the addition of Fi(Q
F
i , wi,t) = fi,dwiQ

F
i , given that

QS
i +QF

i ≤ wiQ̄
S
i , (5.2.14)

i.e. the quantity served in energy and spinning reserves cannot exceed the maximum capac-

ity of any unit i.

Furthermore, for dispatch in the pricing run, (5.2.10) remains the objective function, but the

binary constraint is removed for fast-start plants. The start-up and status variables are relaxed
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for fast-start plants ui, wi,t ∈ [0, 1] for i ∈ Y .

In addition, pricing is performed under partial integer relaxation but separately from the

pricing run for dispatch. First, the integer-relaxed fast-start units use amortised prices as

pi,d = ci,d +
cSUi
Q̄S

i

+
cNL
i

Q̄S
i

, (5.2.15)

(see PJM (2018), pages 8-9). Second, offline units cannot participate in pricing. Third, slow-

start units are evaluated on the convexity condition – namely, on whether they are dispatched

exactly at their minimum loading level. If they are, then they cannot set the price. Then, a merit

order is assembled, and the next 1 MW is priced by the first least expensive viable unit to obtain

P ∗ (PJM (2018)).

Moreover, the settlement dispatch run has the following objective function using the price

outcome P ∗:

max
∀iQS

i ,ui,wi,t

N∑
i=1

P ∗
i Q

S
i − Ci(Q

S
i , wi,t)− uicSUi − wi,tc

NL
i − Fi(Q

F
i , wi,t). (5.2.16)

It is solved to find u∗∗i , w
∗∗
i , Q

S∗∗
i and QF∗∗

i .

The profit Πi for unit i is calculated using

Πi(ui, wi, Q
S
i , Q

F
i , Pi) = PiQ

S
i − Ci(Q

S
i , wi,t)− uicSUi − wi,tc

NL
i − Fi(Q

F
i , wi,t), (5.2.17)

which then gives the formula for uplift Ui as

Ui = Π∗∗
i − Π∗

i . (5.2.18)

Finally, for simplicity, the must-run requirements for system strength and minimum loading

are introduced via setting variable wi = 1 for any given unit i.
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The full algorithm reads as follows.

1. An MILP is solved for (5.2.10) given (5.2.4)-(5.2.7), (5.2.11) and (5.2.12) to find the

optimum level of the binary variables u∗i , w
∗
i ∈ {0, 1} and dispatch target variables QS∗

i .

An LP is also solved for the same problem by fixing wi = w∗
i to get the day-ahead prices

P day−ahead
j for every node j.

2. An MILP is solved for (5.2.13) given (5.2.4)–(5.2.7), (5.2.11) and (5.2.12) to update the

optimum values of u∗i and w∗
i . Decommitments are not allowed.

3. An LP is solved for (5.2.10) given (5.2.4)–(5.2.7) and (5.2.12) in the real-time dispatch

run to find the dispatch target variables QS∗
i , keeping the binary variables u∗i , w

∗
i ∈ {0, 1}

fixed.

4. An LP is solved for (5.2.10) given (5.2.4)–(5.2.7) and (5.2.12) in the pricing run with

fast-start integer variables relaxed. The obtained online, convex quantities are arranged

in merit order to compute the price P ∗ using amortised costs for fast-start units.

5. Profit Π∗
i (u

∗
i , w

∗
i , Q

S∗
i , Q

F∗
i , P ∗

i ) at the dispatch solution is determined using (5.2.17).

6. A MILP is solved for (5.2.16) in the settlement run given (5.2.4)–(5.2.7) and (5.2.12)

using P ∗
i to find u∗∗i , w

∗∗
i and QS∗∗

i . Profit Π∗∗
i (u∗∗i , w

∗∗
i , Q

S∗∗
i , QF∗∗

i , P ∗
i ) at the settlement

solution is determined using (5.2.17).

7. Uplift is calculated from (5.2.18).

5.2.3 NEM in Australia

In the NEM, electricity dispatch takes place in a real-time (5 minute) market only (no day-

ahead market), as per AEMO (2021i). The real-time market uses simple bids and mostly self-

scheduling with the exception of fast-start unit commitment. The bid language comprises 10

price–quantity pairs, no fixed cost bids, and some operational specifications (AEMO (2022i)).

Fast-start unit commitment is a two-step process wherein the units that can start up and shut

down within 60 minutes are centrally scheduled. The fast-start unit commitment decision is first

evaluated in a dispatch run ignoring flexibility constraints that finds the optimal commitment
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quantities (step 1). Next, the engine is re-run such that relevant constraints are imposed to keep

the committed quantities fixed at or above the required levels (step 2) (AEMO (2021j)). Apart

from fast-start scheduling, the NEM is organised on self-scheduling principles. The units are

placing marginal cost bids at prices they see fit based on private information available to them

at the time. These marginal cost bids are considered disorderly when they fail to reflect true

marginal costs. Disorderly bids might instead compensate for or ‘convexify’135 the fixed costs

incurred by the units placing them (AER (2017)). The real-time supply curve is composed of

these simple and potentially disorderly bids at every level of demand.

The NEM solver is assumed to reference the supply cost of the incremental unit of load

approximated by the last 1 MW of load. Importantly, the NEM price methodology does not

leave any LMP-style congestion or loss components in the price (AEMC (2021c)). Due to

network constraints, however, some quantities are must-run and others are curtailed, which pre-

empts the use of the standard bid stack approach for supply curve construction. In addition, the

incremental net 1 MW change might involve a bid reallocation that calls for both positive and

negative changes in the bid target differentials – that is, volumes above 1 MW might be moved

around as part of serving the last 1 MW – in the presence of binding constraints. This is due to

trade-offs on the LHS of the binding constraint equations as observable in the full dispatch data

(AEMO (2022g)).

Regarding out-of-market payments, directed participants are eligible for compensation un-

der the directions framework set out in Clause 4.8.9 in the NER (AEMC (2021c)). However,

constrained-on (not directed) units are not entitled to out-of-market compensation (see Clause

3.9.7(b) in the NER).136

Furthermore, prices are regional in the NEM, and interconnectors are used to connect the

different regions. Owing to the sheer magnitude of geographical distances in Australia, these

interconnectors have relatively large losses. These losses are dynamically calculated, which

135The term ‘convexification’ refers to the apportioning of lumpy costs such as start-up and shut-down costs into
bid slots for marginal costs (price–quantity pairs) at unit level.

136Note that the constraints associated with the directed and constrained-on (not directed) units are equal-to
constraints. Participants may bid their capacity as unavailable if they think they are going to be behind a constraint,
i.e., they are going to be constrained-on without compensation (and their bids thrown out of the solver). In turn,
the market operator may invoke the directions framework to tell the affected units to operate at a given level of
output.
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means that their level depends on the amount of interconnector throughput (AEMO (2022k)).

According to AEMO (2021g), SOS2 are used in the NEM to handle dynamic losses through

integer constraints. The SOS2 constraints for every interconnector r can be laid out as follows.

Let Kr ≤ 0 be the lower limit of the interconnector flow in a specific direction and K̄r ≥ 0

be the upper limit. Let the [Kr, K̄r] segment be split into n − 1 sub-segments on breakpoints

i = 1, 2, ..., n such that Fr,i are the values taken at the breakpoints. Also, let ∀i, zi ∈ [0, 1]

denote the binary variables, given that
∑∀i zi ≤ 2, and let ∀wi, wi ∈ R+, wi ≤ zi denote the

weight variables at breakpoint i such that the breakpoints i, j with zi = 1, zj = 1 are adjacent:

∀i, ∀j ∈ [i+ 2, ..., n], zi + zj ≤ 1. Then, the function Lr(Fr) is evaluated by finding the values

of all zi, wi such that
∑∀iwiFr,i = Fr and

∑∀iwiL
r(Fr,i) = Lr(Fr).

Finally, FCAS manage frequency balancing in the market. These reserve services are co-

optimised with energy through so-called FCAS trapeziums in a way that FCAS can influence

the energy price and regional supply curves (AEMO (2017b, 2021k)). There is a separate FCAS

trapezium for all ten types of FCAS in the NEM that a unit can provide. Five of these types

of services are contracts to raise the frequency of the system and five are to lower it, noting

that “contingency raise requirements are set to manage the loss of the largest generator on the

system” (AEMO (2021k)). Additionally, every unit that wishes to provide FCAS must submit a

bid comprising up to 10 price–quantity pairs and technical parameters (AEMO (2022i)). Then,

the FCAS trapeziums are defined from the bid-in information as follows. The x-axis records

the amount dispatched in energy and the y-axis records the dispatch volume in the FCAS. Then,

the four corner points of the trapezium are – from left to right – the enablement minimum, low

break point, high break point and enablement maximum (see Figure 3.1 in Chapter 3). The

enablement minima and maxima determine the energy bounds within which a unit can provide

FCAS, and the break points signal the start and end of FCAS provision in maximum FCAS

capacity in terms of energy output (AEMO (2021k)).

We recover the price at every level of load based on the following optimisation routine (for

more detail, see Chapter 3 or more directly Gorman (2023)).

1. Solve for optimal dispatch values whilst ignoring fast-start flexibility constraints.

2. Identify fast-start quantities. Fix the fast-start unit targets for all demand levels D given
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on the outcome of the previous step and the inflexibility profiles.

3. Re-run the co-optimisation to allocate targets using the fixed unit commitment configura-

tions.

4. Perform the necessary re-runs as outlined in Section 3.3.6 in Chapter 3.

5. Evaluate the total cost for D and D − 1 for all demand levels taking dynamic losses into

consideration.

6. Calculate price as the change in total cost as demand levels incrementally increase from

D − 1 to D for every level of demand D to build the supply curve.

5.2.4 BM in Great Britain

In Great Britain, the most volumes of wholesale dispatch are conferred on exchange-based

markets (self-dispatch) preceding the BM. After that, the BM organises real-time (30 minutes)

balancing with a unique bid language, a relatively complex constraint mechanism, and pay-

as-bid settlement (Elexon (2019, 2020)). The ‘bids’ submitted to the BM comprise bid and

offer price–quantity pairs for volumes incremental and decremental to the self-dispatched final

physical notification (FPN) quantities and operational details. The bids propose decreasing

generation or increasing load, and the offers refer to increasing generation or decreasing load.

There is no fixed cost component in the bid language. The market operator is responsible for

selecting which bids and offers to fulfill in addition to the FPN quantities to balance the grid

in line with the physical constraints (Elexon (2019, 2020)). The bid selection process and unit

commitment overrides are currently not automated. Moreover, the selected bids are remunerated

on a discriminatory pay-as-bid (or pay-your-bid) basis, meaning that at a given point in time,

there are different prices for different transactions, based on the bid-in prices rather than on one

market clearing price (Krishna (2009); Elexon (2019, 2020)). In addition, a single market price

is computed by the settlement agent as an average of various self-dispatch transactions based on

information provided by the exchanges arranging those transactions, which is mainly used as

an index for financial contracts and has but a very weak link to the real-time balancing market

(Elexon (2020)).
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In the absence of uniform real-time pricing, backing out a real-time supply curve would be

difficult even under very restrictive assumptions. Therefore, we omit the question of supply

monotonicity and focus on computing welfare. This we undertake given the following assump-

tion. First, the gap between the volumes traded before real-time balancing (the FPN level) and

the real-time demand should be the same at all levels of demand. We assume that this gap is 1

MW for simplicity: the aggregate self-dispatch volume tends to match all but the last 1 MW of

real-time demand (which is a ‘positive market’ according to Ocker, Ehrhart and Belica (2018)).

We assume that there is only one day-ahead exchange and no other bilateral or intraday trading.

Furthermore, a proportionm of their total supply quantity (assumedm < 1) is being exchanged

on the day-ahead exchange by each unit.

In principle, the day-ahead price from this exchange should be an unbiased predictor of

every BM bid and offer price, assuming nil bid–offer spreads at all levels of demand; otherwise,

arbitrage would be possible. However, noting that the BM mechanism rearranges x ≥ 0 MW

quantities to obtain a physically feasible outcome and that the money paid to certain units for

increasing output by 1+ x MW (x MW after bridging the FPN to real-time demand) and others

for decreasing their output by x MW are calculated on a pay-as-bid basis,137 we introduce seller

heterogeneity as follows. All generators are assumed to bid at their cost level subject to bid

shading in the BM. This bidding behaviour is typical for pay-as-bid auction settings (Ocker,

Ehrhart and Belica (2018)).

Bid shading involves buyers bidding below cost and sellers bidding above cost as per Kr-

ishna (2009) and Ocker, Ehrhart and Belica (2018). To quantify these amounts, we apply Equa-

tion (9) from Ocker, Ehrhart and Ott (2018) in a positive market. This formula expresses the

amount of bid shading by sellers as a function of the perceived position in the merit order

x(pSi,d) given the optimally bid shaved offer price pSi,d ∈ [Pmin, Pmax] within the lowest Pmin

and highest Pmax offer prices envisaged in the market, demand in the market D, and the ac-

ceptance (demand) probability n(x(pSi,d)) these infer. Under very simple linear assumptions, let

x(p) := (p − Pmin)
D

Pmax−Pmin
and n(x(p)) := 0.5 − x(p)0.5

D
. Then, Equation (9) from Ocker,

Ehrhart and Ott (2018) states that

137We found no reference to make-whole payments other than these balancing payments.
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pi,d = ci,d −
n(x(pi,d))

n′(x(pi,d))x′(pi,d)
,

where ci,d denotes the cost associated with the bid slot d (see Section 5.2.1). A simplified form

can be obtained as

pSi,d = ci,d −
0.5− ((pSi,d − Pmin)

D
Pmax−Pmin

)0.5
D

(−0.5
D
)( D

Pmax−Pmin
)

= ci,d + Pmax − pSi,d,

from where we obtain

pSi,d =
ci,d + Pmax

2
. (5.2.19)

For negative markets, let x(p) := D − (p − Pmin)
D

Pmax−Pmin
, whereas n(x(p)) remains

unchanged, which gives

pBi,d = ci,d −
0.5− (D − (pBi,d − Pmin)

D
Pmax−Pmin

)0.5
D

(−0.5
D
)(− D

Pmax−Pmin
)

= ci,d − pBi,d + Pmin,

from where we obtain

pBi,d =
ci,d + Pmin

2
. (5.2.20)

The spread for unit i equals

ci,d + Pmax

2
− ci,d + Pmin

2
=
Pmax − Pmin

2

regardless of the value of ci,d.

Moreover, although the BM takes place at a national level, considering the fact that it does

not operate in isolation but is coupled with other countries’ markets through interconnectors,

the loss properties of the interconnectors involved are of interest. Most importantly, the inter-

connector loss factors are typically static mid-point loss factors that are not dependent on the

level of load throughput (Nemo Link (2022)).
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Frequency balancing (reserves) service provision is also present, complementing the BM

mechanism. The “response provided within 30 seconds and sustained until 30 minutes fol-

lowing the point at which the frequency trigger was reached” is called Static Firm Frequency

Response (SFFR) as per ESO (2023). Note that this and a suite of other, partly overlapping

frequency balancing services provided alongside the BM are not co-optimised with the BM;

hence, they hardly impact the real-time energy supply curve.138

We recover the real-time balancing targets and discretionary prices in the BM using the

notation provided as part of the generic formulation (see Section 5.2.1) with a few changes.

First, we distinguish between positive balancing costs to supply additional units of energy

and negative balancing costs to purchase additional units of energy in addition to the FPN level

of a given generator i denoted by QS∗
i . The values of QS∗

i are determined in the day-ahead

exchange. Let qSi then denote the additional supply target of unit i and let pSi,d from (5.2.19)

denote the optimal cost for these quantities for d = 1, 2, .., 5 bid slots. Let qBi denote the

additional demand target of generator unit i, and pBi,d from (5.2.20) denote the associated cost

after bid shading for d = 1, 2, .., 5 bid slots. We can express the net 1 MW the BM mechanism

procures as
∑∀i qSi − qBi = 1 MW.

In addition, we use Boolean variables to decide if a given unit i is providing energy, bBi =

0, bSi = 1, or is loading it bBi = 1, bSi = 0.

Then, the cost function of positive balancing

Ci(q
S
i ) =

5∑
d=1

pSi,dxi,d|
5∑

d=1

xi,db
S
i wi = qSi (5.2.21)

and that of negative balancing

Ci(q
B
i ) =

5∑
d=1

pBi,dxi,d|
5∑

d=1

xi,db
B
i wi = qBi (5.2.22)

are separated. We use variables wi for the online status as earlier and bBi , b
S
i for the bid–offer

binaries. Note that unit i may be given a positive bid target qBi ≥ 0 (to buy capacity back that

138We assume that these services are auctioned prior to the BM and hence deploy the lowest price frequency
balancing quantities.



157

it had sold day-ahead) while being offline wi = 0. However, in the absence of demand side

bidding, offline units are always allocated nil balancing offer targets qSi = 0.

The objective function can be expressed as

min
∀iQS

i

∀i∑
Ci(q

S
i )− Ci(q

B
i ), (5.2.23)

subject to the load balance constraint

|Nj |∑
i=1

QS∗
i + qSi − qBi −D − L(qSi )− L(qBi ) = 0(↔ λ), (5.2.24)

where the loss function can be given as

L(qi) =
m̄

2
(qi) (5.2.25)

for qBi , q
S
i given mid-point loss factor m̄ and node i located in another market.

Note that must-run requirements for system strength or minimum loading are introduced via

setting variable wi = 1 for any unit i.

We then evaluate the given algorithm by the steps below.

1. For the day-ahead exchange, solve an LP for (5.2.3) subject to (5.2.4) and (5.2.25) while

ignoring losses and fixing wi = 1 such that
∑|J |

j=1Q
B
j = D − 1 to find QS∗

i for all

i.139 Note that the offered supply quantities are proportional to m. The day-ahead price

P day−ahead equals the dual value of constraint (5.2.4).

2. For real-time balancing (mimicking the BM), first solve an LP for (5.2.23) given (5.2.4)–

(5.2.7) and (5.2.25) where it appears in the formulae to find qS∗i , qB∗
i .

3. Then, recover the bid-in costs (pay-as-bid prices) associated with every MW of scheduled

balancing quantity qS∗i , qB∗
i .

139QS∗
i = 0 may be obtained for some i even though the corresponding wi = 1.
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5.2.5 Welfare calculation

Table 5.1 shows a formulaic specification of the welfare calculation. Taking the 11 steps

one-by-one, we first sum the amounts paid by consumers140 for energy (step 1). These are the

amounts paid in both day-ahead and real-time markets in the PJM, only day-ahead exchanges

in the BM and only real-time markets in the NEM. In step 2, we quantify interconnector losses

in the system and price them at real-time prices. Step 3 merely sums the amounts from steps

1 and 2 to obtain the amounts received by producers for energy. Step 4 computes the amounts

paid by frequency balancing services using the price of that service P F , which is the shadow

price of the frequency balancing requirement constraint in the PJM and the NEM and the cost

of the highest priced used capacity in the BM. Step 5 calculates VOLL, which is the maximum

value that consumers are willing to pay for 1 MWh energy, times the energy they require. Step

6 calculates consumer surplus as the difference of the value obtained in step 5 and that obtained

in step 1. In step 7, the costs of the producers are calculated using the same formula. Moreover,

out-of-market payments are obtained in steps 8a and 8b, after which producer surplus and social

surplus can be obtained via the shown formulas.

Table 5.2 : Welfare calculation

The table shows the formulaic specifications for calculating different measures of welfare under the three discussed market designs.

Generic formulation BM formulation PJM formulation NEM formulation
Steps
1) Paid by consumers

∑∀j DjPj P day−ahead(D − 1)
∑∀j P day−ahead

j kDj +

Pj(1− k)Dj

PD

2) Costs of losses – Ci(q
B
i )L(qBi ) +

Ci(q
S
i )L(q

S
i )

Pi−1L(Q
S
i ) PLr(Fr)

3) Producers receive 1)+2)
4) Paid for frequency balancing – PFQF

i

5) VOLL times demand VOLL ×
∑∀j Dj VOLL ×D VOLL ×

∑∀j Dj VOLL ×D
6) Consumer surplus 5)-1)
7) Costs of producers Ci(Q

S
i , wi,t) + uic

SU
i + wi,tc

NL
i

8a) Out-of-market payments –
∑∀i Ci(q

S
i )

∑∀i Π∗∗
i −Π∗

i –
8b) Out-of-market receipts –

∑∀i Ci(q
B
i ) – –

9) Producer surplus 3)-7)+8a)
10) System charges 2)+4)+8a)-8b)
11) Social surplus 6)+9)-10) (or equivalently 5)-4)-7)+8b))

Note that step 8 is separated into two parts to reflect a distinction of out-of-market payments

(step 8a) and receipts (step 8b) in Great Britain. This is required because producer surplus

excludes the out-of-market receipts of the grid operator paid by those units that buy quantities

as part of the balancing schedule.

140Consumers represent wholesale consumers in this context.
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5.3 Non-monotonicity of supply

The following supply or marginal cost function non-monotonicities have been recorded in

the literature. Hogan and Ring (2003), Bjørndal and Jörnsten (2008) and Ruiz et al. (2012)

discuss that ‘integer programming’ prices (IP prices) from the seminal O’Neill et al. (2005)

model are volatile and hardly increase over increasing levels of load. They use Scarf’s adapted

example (see Scarf (1994) for the original) with minimum output and start-up costs. Gribik

et al. (2007) also show that the FCP-style marginal cost curve decreases as quantity increases

due to fixed costs. Furthermore, Byers and Hug (2023) confirm that prices may decrease as

demand increases due to fixed costs under FCP.

These references all focus on indivisibilities in energy in centrally dispatched markets. They

discuss unit commitment with fixed costs and uplift but omit market complexities, such as

the co-existence of day-ahead and real-time markets, co-existence of energy markets and fre-

quency balancing markets, as well as price effects of binding constraints, dynamic interconnec-

tor losses and integer relaxation. Some of these additional market design elements abate non-

monotonicity, whereas others exacerbate it, as we explain after restating the non-monotonicities

known from the cited papers.

5.3.1 Non-monotonicities due to fixed costs and minimum loading

The real-time electricity supply function is built from lower quantities to higher quantities.

Adding incremental amounts of load usually involves committing new units and may involve

shutting down already running units. However, the decisions for start-up and shut-down are

binary. Units often have to bear fixed costs or dispatch at a discrete minimum level to start

up or shut down. Some of these non-convex features of the dispatch problem are retained in

the formulation of the dispatch solution with multi-part bidding and automated pool market

settings. Indeed, Byers and Hug (2023) recognise bid-in start-up costs and minimum output

requirements in their formulation. They apply FCP principles to extract the price and show

supply function non-monotonicity (see Table 1 and Figure 1 in their paper).

Example 5.1. Byers and Hug (2023) observe the following dynamic due to start-up costs. As-

suming two units in a market, unit 1 with $5 marginal cost and $500 start-up cost and unit

2 with $10 marginal cost and no start-up cost, the total cost function is evaluated as the sum



160

of these cost components. At lower levels of demand, the total cost is lower if only unit 2 is

dispatched, which has no start-up costs. This unit has a marginal bid of $10. Then, at higher

levels of demand, it becomes economical to dispatch unit 1, with a marginal bid at $5. The

breakeven between low and high levels of demand appears at 5x+ 500 = 10x, where x = 100

in MW. Because the price is $10 below 100 MW and $5 above 100 MW, the supply curve is said

to be non-monotonic.

Byers and Hug (2023) also record that minimum loading leads to discontinuities in the total

cost function. Rearranging their example, we show that minimum loading requirements cause

the following effect at low levels of demand.141

Example 5.2. Assuming two units in a market, unit 1 with $5 marginal cost and 100 MW

minimum loading and unit 2 with $10 marginal cost and no minimum loading, the total cost

function is evaluated subject to the minimum loading requirement that states that unit 1 cannot

be dispatched at below 100 MW. Therefore, unit 2 is dispatched below 100 MW demand at $10

and unit 1 above 100 MW demand at $5. Hence, the relationship between price and quantity is

not monotonically increasing.

Example 5.2 can then be extended to the real-world treatment of minimum loading as fol-

lows. Assuming that there is a unit 3 at $0 marginal cost, no minimum loading, and 150 MW

maximum capacity, we posit that unit 3 gets dispatched at all levels of demand up to 150 MW.

Without minimum loading requirements, an additional 1 MW of unit 1 would typically be dis-

patched at $5 for 151 MW demand under most market designs to minimise total cost (maximise

trade value). In the minimum loading–constrained case, however, this is not possible. Looking

at the three different market designs, at least three target allocation and pricing alternatives are

present at 151 MW load.

First, minimum loading requirements in the NEM are only present for fast-start fuels (AEMO

(2021j)); thus, we assume unit 1 falls into this category. At 151 MW demand, unit 3 may then

be turned down to 51 MW (-99 MW change) for unit 1 to come online in 100 MW (+99 MW

141Note that this refers to units with minimum loading that – if turned on – can only be committed at or above
certain volumes and not must-run units that must be turned on and committed at or above the minimum loading
level. The supply function would not be defined at MW levels below the minimum loading level in case of the
latter.
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change). In this case, the cost of the incremental bid is $0 by unit 3 at 151 MW because the

binding minimum loading constraint is not relaxed. This alternative is reflective of the fast-start

unit commitment market design of the NEM, where the unit commitment decision is given a

non-constrained formulation before taking minimum loading into consideration.

Second, minimum loading limits of fast-start plants vanish in the process of fast-start integer

relaxation; therefore, the illustrated indivisibilities only apply to slow-start units that do not

participate in that. For exposition purposes, we may then assume that unit 1 is a slow-start

plant. To resolve the dispatch allocation and pricing problem at 151 MW demand, unit 3 may

be kept at 150 MW and unit 2 may be committed for an additional 1 MW for $10 at 151 MW

demand. Then, only at above 250 MW demand would unit 1 be dispatched, setting the price

at $5. This alternative yields a lower centrally managed total cost at 151 MW than the first

alternative. Therefore, it may be used in markets in the United States, such as in the PJM,

where unit commitment is performed in a constrained formulation. The fact that it gives a $0

price at <150 MW, a $10 price at 151 MW and a $5 price at 250 MW implies that the above

quoted non-monotonicity due to minimum loading may materialise at any level of demand.

Third, exchange-allocated FPNs in the BM ignore physical constraints, including minimum

loading requirements. At 151 MW demand, unit 3 would be dispatched for 150 MW and unit

1 for the additional 1 MW. Then, the balancing algorithm must evaluate whether it is worth

keeping unit 1 switched on, which means allocating 99 MW balancing targets to it at its offered

price and deallocating 98 MW balancing targets from unit 3 at its bid price, taking bid shaving

into consideration or whether it is more economical switching unit 1 off instead and allocating

additional 2 MW balancing targets to unit 3 instead. Either way, although it is possible to obtain

balancing costs that are decreasing over different levels of demand, we cannot say the same

about the supply curve because prices are set out on a pay-as-bid basis. Figure 5.3 provides a

summary of these relationships for different market designs.

Table 5.3 : Supply non-monotonicities due to indivisibilities in energy

The table shows what sources of non-monotonicity apply under different market designs.

NEM PJM BM
Start-up costs Not applicable Applicable for slow-start plants Not applicable
Minimum loading Applicable for fast-start plants Applicable for slow-start plants Not applicable
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5.3.2 Mitigating factors under different market designs

Indivisibilities in energy have been shown to drive supply function non-monotonicities.

These inevitably depend on the market-specific rules of price discovery, as already shown.

The pre-existing market designs can now be more fully evaluated on the ways they mitigate

energy-related non-monotonicities.

5.3.2.1 PJM in the United States

In our supply (marginal cost) curve definitions for the PJM, the prices of real-time electricity are

tied to the adjusted or unadjusted marginal cost bids over the next 1 MW electricity supplied.

The adjustment applies for fast-start integer relaxation, as per PJM (2023), that also alters the

way the above quoted non-monotonicities unfold. To illustrate this, assume that in the above

example, unit 1 is a fast-start unit with 300 MW maximum capacity and $0 no-load costs.

The adjusted (integer-relaxed) marginal bid price p∗ is given by (5.2.15). Substituting the

above information for unit 1 into (5.2.15), we get p1∗ = 5 + 500
300

+ 0
300

= 6.67. Thus, unit 1

at an adjusted marginal cost bid of p1∗ = 6.67 is assumed to have been committed in the RAC

in a quantity pinned down as the minimum loading requirement, but has its minimum loading

constraint relaxed due to integer relaxation.

Example 5.3. First, returning to the start-up example from earlier, we add unit 2 with $10

marginal cost p2 and $0 fixed costs, assuming it is a slow-start unit. We no longer need a

breakeven calculation to compute the price depending on the level of demand. For the price

calculation, the units can be arranged in merit order given p1∗ = 6.67 and p2 = 10. Then, the

price is p1∗ up to the maximum capacity of unit 1 until 300 MW demand because p1∗ < p2 and

p2 above 300 MW. This ordering retains the monotone property.

Example 5.4. Second, the minimum loading example can be changed to better reflect the PJM

market design as follows. All unit information remains unchanged, further assuming that unit 3

has $0 fixed costs bid-in. Here, we have p1∗ = 6.67, p2 = 10 and p3 = 0. At 150 MW demand,

unit 3 is dispatched for 150 MW as earlier. At 151 MW demand, however, unit 1 is committed,

and the price is set at p1∗ = 6.67. Later, at 250 MW demand, the price is still p1∗ = 6.67, as

it is within the 300 MW maximum capacity of unit 1. At no level of demand would the supply
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function become non-monotonic because the minimum loading requirement of fast-start unit 1

is being relaxed.

In summary, the monotonic results only occur when unit 1 is a fast-start plant. This is the

alleviatory scope of the current PJM market design.

5.3.2.2 NEM in Australia

In our supply curve definitions for the NEM, the prices of real-time electricity are tied to the

cost of the last 1 MW energy supplied at all levels of demand. However, because the start-

up and no-load cost are ‘convexified’ into the simple marginal cost bids, the fixed cost–linked

non-monotonicity does not appear in the NEM.

However, non-monotonicity due to minimum loading is likely to some extent occur for the

following reason. Recall that only fast-start plants are centrally committed by the market opera-

tor in the NEM, whereas all other (slow-start) units are self-scheduled via their bids. Related to

Example 5.2, we have seen that for fast-start units, the use of minimum loading constraints with

bid replacement leads to a relatively low price, if not necessarily non-monotonicity. Had there

been another, even lower cost bid being replaced, the price could have dropped to cause non-

monotonicity. However, this only occurs for fast-start plants. For slow-start plants, minimum

loading requirements are not even formulated beyond what is being signalled by low priced

bids. Therefore, those cannot trigger any non-monotonicities either.

Overall, the NEM market design is slightly more effective in controverting non-monotonicities

due to indivisibilities in energy than the PJM design without integer relaxation.

5.3.2.3 BM in Great Britain

In our supply (marginal cost) curve definitions for the BM, the prices of real-time electricity are

tied to the per MW balancing bid prices received by the units that partake in balancing. The

balancing bid prices are proxied by the day-ahead prices at the same levels of demand minus

1 MW. Standard bid stack building is only applicable for the day-ahead price, as neither are

there physical constraints involved in computing these exchange-based prices, nor do the day-

ahead bids contain any fixed costs. Fitting the real-time supply curve to the day-ahead bid stack
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returns a curve that is not susceptible to non-monotonicities due to start-up costs or minimum

output constraints.

The BM mechanism’s resilience against violations of supply monotonicity in this sense lies

in the fact that it is ‘convexifying’ fixed costs in its bid language. In addition, we assumed that

balancing bid prices are considered on a per MW basis, although the cost of balancing at any

level of demand may be different from the per MW price due to the uncertain nature of the MW

quantity being rearranged for the grid to satisfy its physical constraints x. More specifically, x

and therefore the total compensation paid to cater to the rearrangement may be large owing to

minimum loading overrides, but this would not be captured as part of the supply curve under

our definitions.

5.3.3 Non-monotonicities due to interconnector losses (NEM only)

As opposed to energy-linked violations of non-monotonicity, another, newly discovered

source of supply function non-monotonicity is also presented in the context of the Australian

market. This is linked to dynamic interconnector losses.

The system-wide allocation of load gives the engine’s decision variables (AEMO (2021g)).

Therefore, these variables, including interconnector flows, are not kept fixed in the implied

inverse supply curve. The dynamic losses in the system may change in such a way that quantities

at one side of the interconnector must also take an accompanying change in quantity over the

marginal net 1 MW change in load that sets the price. If the interconnector flow contracts

by withdrawing exports, then there is a connected loss decrease at a given rate. Similarly, if

inter-regional transfers occur at a higher MW rate, then there is a commensurate loss increase.

These changes in losses are constant as long as the trade flows do not step into a different SOS2

segment over the incremental amount.142 Otherwise, the marginal MW amount of loss changes

over subsequent levels of load impacting the monotonicity of the implied inverse supply curve.

Example 5.5. A relatively simple example would be the following. Assume that unit 1 is export-

ing electricity into the focus region through an interconnector with dynamic losses. At lower

levels of throughput, say 10 and 11 MW, the losses are only 0.9 and 1 MW, respectively. At 19

142This was first brought to our attention by Allan O’Neil in discussions about the price setter outcome as at
12:40 AM on 15 July, 2021, for NSW.
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and 20 MW throughput, however, the losses are 3 and 3.5 MW, respectively. Assuming that the

bid-in price of unit 1 is -$20 (this must be negative) and that unit 1 is the only provider in the

focus region up to 20 MW demand, we have the following relationships. At 10 MW demand,

the total cost is −20 × (10 + 0.9) = −218. Moreover, at 11 MW demand, the total cost is

−20 × (11 + 1) = −240. Therefore, serving the last 1 MW of energy at 11 MW demand costs

−240 − −218 = −22, giving a price of -$22. Similarly, at 19 MW demand, the total cost is

−20 × (19 + 3) = −440, and at 20 MW demand, it is −20 × (20 + 3.5) = −470; hence, the

price is -$30 at 20 MW demand. Putting it differently, the inter-regional marginal loss factor is

0.5 for interconnector transfers above 16 MW, and the respective price paid by the consumers in

the importing region is −20× (1+ 0.5) = −30 (O’Neil (2019)). We see that the price–quantity

relationship is non-monotonic.143

Example 5.6. A slightly more complex case can be numerically illustrated via a hypotheti-

cal price setter outcome using data and a reference implementation of the Australian NEMDE

called Nempy (Gorman et al. (2022)) as of 07:45 on 10 April, 2022, for SA when the NˆˆN_NIL_3

voltage stability constraint and the V::N_DDSM_V2 thermal constraint are binding. Keeping

all except the engine’s decision variables, including interconnector flows and the loss-relevant

demand quantities, constant, we observe the change in the implied inverse SA supply curve as

load changes from 1155 to 1156 MW.

First, we can identify the bids that are setting the price by running Nempy at 1154, 1155

and 1156 MW and taking the differences in the allotted dispatch targets at unit level. In the

present example, LOYYB1 and LOYYB2 (brown coal, VIC), TARONG#1 (black coal, QLD)

and WEMENSF1 (solar, VIC) set the price. However, the marginal quantities will be slightly

different from the quantities in the solution, because Nempy hardcodes the demand variables of

the loss calculations; we cannot update those to reflect the changing level of load in SA.144 We

can obtain the marginal quantities by reconstructing the interconnector flow values, the losses

and the constraint equations.

143In terms of settlements, unit 1 is being compensated at the price in its own region Pnon−focus, which is
unspecified in the example, but we might assume it to be Pnon−focus = −50. In addition, the inter-regional
residue obtained by the interconnector’s transmission network service provider (TNPS) is computed as Pfocus ×
Import − Pnon−focus × Export = −30 × 20 + 50 × 23.5 = 575, as per AEMO (2014c). In summary, unit 1
receives −50× 23.5 = −1175, consumers in the focus region pay −30× 20 = 600, and the TNSP receives 575,
which all sum to nil.

144See the _format_regional_demand() function in the source code.
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The interconnector flow at the boundary point through VIC1–NSW1 is 728.508 MW at 1154

MW demand towards NSW, as per the Nempy run, and it increases by 0.1082 MW for every MW

increase in load. In this way, the flows are 728.508+0.1082=728.616 MW at 1155 MW load

and 728.508+2×0.1082=728.724 MW at 1156 MW load. The SOS2 boundary points are at 708

and 755 MW. Similarly, the flow through NSW1–QLD1 is -464.741 MW at 1154 MW demand

towards NSW, and it changes by 0.10315 MW (towards QLD) for every MW increase in load.

The SOS2 boundary points are at -493 and -459 MW. Third, interconnector transfers over V–SA

are 198.902 MW at 1154 MW load towards SA, and they marginally increase by 1.025 MW. The

SOS2 boundary points are at 185, 200 and 215 MW.

The interconnector loss factors are computed using the following equations:

MLFI:=V IC1−NSW1 = c+ fFI + dINSWD
loss
NSW + dIV ICD

loss
V IC + dISAD

loss
SA ,

MLFI:=NSW1−QLD1 = c+ fFI + dINSWD
loss
NSW + dIQLDD

loss
QLD,

MLFI:=V−SA = c+ fFI + dIV ICD
loss
V IC + dISAD

loss
SA .

(5.3.1)

These can be transformed into losses as

∫
(MLFI − 1)dFI = (CI − 1)FI +

f

2
F 2
I (5.3.2)

whereCI sums all the flow-constant terms: CI:=V IC1−NSW1 = c+dINSWD
loss
NSW+dIV ICD

loss
V IC+

dISAD
loss
SA , as per AEMO (2022k). These calculations, the segment-wise SOS2 linear relation-

ships and the loss allocations are shown in Table 5.4.

In the last section of Table 5.4, we see that at 1155 MW demand in SA, the VIC region

sees an export-driven production increase of 0.100873+1.072634=1.173309 MW and QLD an

import-lead production decrease by 0.107170 MW. At 1155 MW demand, these numbers are

slightly higher for VIC owing to higher flows and higher losses, but not for QLD.

Furthermore, information about two binding constraints helps find the value split between

the units in VIC that collectively deliver the additional 1.173309 MW.

The change on the LHS of NˆˆN_NIL_3 is given as
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Table 5.4 : Loss factor and loss calculations

The table shows the coefficients and variables used in the marginal loss factor and dynamic loss calculations as per AEMO (2022k).

I c f dINSW dIQLD dIV IC dISA

VIC1-NSW1 1.0629 0.000182 0.000005 0.000009 0.000050
NSW1-QLD1 0.9217 0.000190 0.000001 0.000017
V-SA 1.0121 0.000355 0.000001 0.000006

I DNSW DQLD DV IC DSA Dloss
NSW Dloss

QLD Dloss
V IC Dloss

SA FI

– 6235.30 5204.95 3711.70 1179.34 6556.16 5215.04 3792.56 1229.77 –
VIC1-NSW1 6235.30 3711.70 1154 6556.16 3792.56 1204.43 728.508
VIC1-NSW1 6235.30 3711.70 1155 6556.16 3792.56 1205.43 728.616
VIC1-NSW1 6235.30 3711.70 1156 6556.16 3792.56 1206.43 728.724
NSW1-QLD1 6235.30 5204.95 6556.16 5215.04 -464.741
NSW1-QLD1 6235.30 5204.95 6556.16 5215.04 -464.637
NSW1-QLD1 6235.30 5204.95 6556.16 5215.04 -464.534
V-SA 3711.70 1154 3792.56 1204.43 198.902
V-SA 3711.70 1155 3792.56 1205.43 199.927
V-SA 3711.70 1156 3792.56 1206.43 200.952

I FI x1 x2 y1 y2 w1 w2 loss ∆loss
VIC1-NSW1 728.508 708 755 47.307 53.675 0.5636 0.4364 50.0860 –
VIC1-NSW1 728.616 708 755 47.272 53.638 0.5614 0.4386 50.0644 -0.02155
VIC1-NSW1 728.724 708 755 47.237 53.600 0.5591 0.4409 50.0429 -0.02156
NSW1-QLD1 -464.741 -493 -459 19.409 16.590 0.1688 0.8312 17.0658 –
NSW1-QLD1 -464.637 -493 -459 19.409 16.590 0.1658 0.8342 17.0573 0.00855
NSW1-QLD1 -464.534 -493 -459 19.409 16.590 0.1628 0.8372 17.0487 0.00855
V-SA 198.902 185 200 6.625 7.695 0.0732 0.9268 7.6164 –
V-SA 199.927 185 200 6.625 7.695 0.0049 0.9951 7.6883 0.07187
V-SA 200.952 200 215 7.695 8.842 0.9365 0.0635 7.7652 0.07693

I DSA ∆FI ∆loss from(%) to ∆from ∆to
VIC1-NSW1 1155 0.1082 -0.02155 VIC(34) NSW 0.100873 0.122424
VIC1-NSW1 1156 0.1082 -0.02156 VIC(34) NSW 0.100869 0.122431
NSW1-QLD1 1155 0.10315 0.00855 NSW(53) QLD 0.098617 0.107170
NSW1-QLD1 1156 0.10315 0.00855 NSW(53) QLD 0.098617 0.107170
V-SA 1155 1.025 0.07187 VIC(66) SA 1.072634 1.000563
V-SA 1156 1.025 0.07693 VIC(66) SA 1.075776 0.998843

0.09287×∆FV IC1−NSW1 + 0.4487×∆WEMENSF1 ≤ 0, (5.3.3)

whereas the change on the LHS of V::N_DDSM_V2 can be expressed as

−0.1039×∆FV−SA + 0.9461×∆FV IC1−NSW1 − 0.112×∆WEMENSF1 ≤ 0. (5.3.4)

From these the ∆WEMENSF1 that gives the highest possible LHS values is estimated



168

to be -0.036 MW. To recover the 1.173309 MW net production increase in VIC, the LOYYB1

and LOYYB2 farms then collectively produce 1.173309-(-0.036)=1.209309 MW at 1155 MW

demand. The case for 1156 MW load is analogous, as shown in Table 5.5.

Table 5.5 : Price calculations

The table shows the price of the incremental change in load.

At 1155 MW demand:
Unit ID State Bid type Service type Quantity Price Comments

(1) (2) (1) × (2)

LOYYB1,
LOYYB2

VIC Energy Generation 1.2093 -$19.9508 -$24.1932 Increase in generation by 1.2093 MW
before losses.

WEMENSF1 VIC Energy Generation -0.036 -$19.9815 -$0.7193

TARONG#1 QLD Energy Generation -0.1072 $56.0617 -$6.0081
Price: -$29.4155

At 1156 MW demand:
Unit ID State Bid type Service type Quantity Price Comments

(1) (2) (1) × (2)

LOYYB1,
LOYYB2

VIC Energy Generation 1.2126 -$19.9508 -$24.1932 Increase in generation by 1.2126 MW
before losses.

WEMENSF1 VIC Energy Generation -0.036 -$19.9815 -$0.7193

TARONG#1 QLD Energy Generation -0.1072 $56.0617 -$6.0081
Price: -$29.4821

The above example highlights that the dollar magnitude of this type of non-monotonicity is

not large, yet it is prone to arise every time a constrained trade flow volume switches to the next

segment of the piecewise-linear SOS2 loss curve – that is, as many times per supply curve as

there are breakpoints on the loss curve.

5.4 Case study

The general idea is to establish three largely identical physical systems (a set of generators

in a network) and expose these to three different market design settings closely resembling those

of the NEM, PJM and BM. Our objective is then to reconstruct the supply curves, if possible,

and compare welfare across these three markets.145 Similar numerical comparisons have not yet

come to our attention.

145For simplicity, we remove the inter-temporal dimension when recovering the implied inverse supply curves
at a particular point in time (one-shot pricing).
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5.4.1 Setting the scene

Table 5.6 provides the starting information set for the numerical example. This includes

the most-equivalent layout, network and plant specifications, constraint properties and cost def-

initions of the three modelled market designs. First, the jurisdiction of interest comprises six

busses (nodes 1–6) that are located in the same region in the NEM, the same market in the PJM

and in the same country in the BM. In addition, node 7 at the other end of an interconnector is

located in a different region in the NEM, a different market relative to the PJM and a different

country for the BM. Demand is assumed to be distributed at a single ‘artificial’ reference node

in the NEM and at nodes 1–6 in the PJM and BM. Moreover, interconnector losses are assumed

to be dynamic in the NEM and static in the other two markets. These differences aside, the

network has a largely identical plant set and network constraints in all three jurisdictions. Con-

cerning the plant specifications, we see in Table 5.6 that there is one generator unit located at

every bus on the network, such as Gas A at node 1, Gas B at node 2, etc.146 There are no load

units such as batteries or pumped hydro. Every generator unit has a 100 MW maximum capac-

ity. Some of them have minimum loading criteria. All of these units are either online or offline

in the preceding trade interval in line with their minimum run times. Some are fast-start units,

whereas others are slow-start units, under the assumption that typically equivalent definitions

hold in this respect across all three market designs. Some frequency balancing constraints are

also stated from the perspective of the NEM market design. In addition, the following network

constraints are included in this numerical example. First, a thermal line limit that states that

electric throughput on the unidirectional link from node 1 to 2 cannot exceed 90 MW. Second,

a system strength limit that ensures that Gas B is always online at minimum 10 MW rate. Last,

capacity limits exist on the interconnector that connects nodes 6 and 7.

For further specifications, we see from Table 5.6 that the trade intervals are 5 minutes long

in the NEM and PJM and 30 minutes long in the BM and that there is an 80 MW frequency

balancing requirement in one direction – raise service – only with an unspecified response

time.147 In addition, renewable units’ receipts for carbon offsets are assumed to be $50 per

MWh in all three jurisdictions, which is a simplifying assumption on carbon pricing. Then,

146There are neither two-way fuels nor any virtual bids in this case study for simplicity.
147This could be extended with one or more lowering service(s) at different resolutions.
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Table 5.6 : Summary of the assumptions

The table shows the key system, product and cost assumptions behind the presented numerical example.

Australia (NEM) US (PJM) GB (BM)
System assumptions

Layout

Grid setup reference node

node 1  node 2  node 3  node 4  node 5  node 6  node 7

node 1  node 2  node 3  node 4  node 5  node 6  node 7 node 1  node 2  node 3  node 4  node 5  node 6  node 7

Jurisdiction: nodes 1-6 One regional price Six nodal prices One national price
Interconnector to/from Node 7 in another region Node 7 in another market Node 7 in another country
Load location At node 8 an artificial hub Evenly split over nodes 1-6

Losses
Across nodes 1-6 No losses
To/from node 7 Dynamic, non-linear losses Mid-point loss factor 2.5%

0.001× flow2 with SOS2 Importing value: flow × (1− 0.025/2)
Plant specifications

Gas A Max capacity 100 MW, min loading 50 MW, previously offline,
min run time 1 trade interval, fast-start, node 1

Gas B Max capacity 100 MW, min loading 10 MW, previously online,
min run time 1 trade interval, fast-start, node 2

Gas C Max capacity 100 MW, no min loading, previously online,
min run time 1 trade interval, slow-start, FCAS: 0, 5, 60, 100, node 3

Coal Max capacity 100 MW, min loading 30 MW, previously online,
min run time 120 min, slow-start, FCAS: 0, 5, 60, 100, node 4

Hydro Max capacity 100 MW, no min loading, previously offline,
min run time 1 trade interval, slow-start, FCAS: 0, 5, 60, 100, node 5

Wind A Max capacity 100 MW, no min loading, previously online,
min run time 1 trade interval, fast-start, forecast 100 MW, FCAS: 0, 5, 60, 100, node 6

Wind B Residual max capacity 100 MW, no min loading, previously online,
min run time 1 trade interval, fast-start, forecast 100 MW, node 7

Network constraints
Line limit ≤ 90 MW constraint on the link from Gas A
System strength limit ≥ 10 MW constraint on Gas B
Interconnector limit ≥ −100 MW and ≤ 100 MW constraints on the link

Market specifications
Trade interval duration 5 minutes 5 minutes 30 minutes
Freq. balancing req. 80 MW
Carbon offsets 50 $/MWh
Demand D At 1 MW increments between the physically feasible bounds
Day-ahead demand D̃ – 90 % of demand Demand minus 1 MW
Product assumptions

Plant portfolio
Gas A, B, Wind B 100 MW energy 90% offered day-ahead, 90% offered day-ahead,

the rest for real-time only the rest for balancing only
Gas C, Coal, Hydro, 100 MW energy 90% offered day-ahead, 90% - 40 MW offered day-ahead,
Wind A the rest for real-time only, the rest for balancing only,

40 MW 6 sec Raise FCAS 40 MW spinning reserve 40 MW SFFR
Cost assumptions

Energy costs
Gas A $50 start-up, $50 no-load, 50 MW @$40, 50 MW @$60
Gas B $100 start-up, $75 no-load, 50 MW @$45, 50 MW @$65
Gas C $100 start-up, $100 no-load, 50 MW @$50, 50 MW @$70
Coal $500 start-up, $100 no-load, 50 MW @$42, 50 MW @$62
Hydro $100 start-up, $100 no-load, 50 MW @$25, 50 MW @$55
Wind A $0 start-up, $0 no-load, 50 MW @-$50, 50 MW @$0
Wind B $0 start-up, $0 no-load, 50 MW @-$49, 50 MW @$1

Frequency balancing costs
Gas C 40 MW @$80
Coal 40 MW @$62
Hydro 40 MW @$58
Wind A 40 MW @$13

the assumed levels of day-ahead demand and supply are also stated. Last, the plant portfolios,
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the energy costs including fixed and variable cost components148 and the assumed frequency

balancing service costs are stated. Note that for a raise service, the headroom149 is priced

including some premia – that is, the frequency balancing price bids take values at or above the

second (more expensive) bid slot energy bid prices for each fuel.

Furthermore, Table 5.7 details the assumptions used to ‘convexify’ the energy cost infor-

mation into step-wise bid prices. All three markets have methods for this as part of the wider

settlement and/or pricing mechanism. For example, Gas A, which is a fast-start plant that is

offline in the previous pricing run, has the following costs: $50 start-up, $50 no-load, 50 MW

@$40 and 50 MW @$60 as per Table 5.6. Table 5.7 explains how this translates into the bids

Gas A submits in each jurisdiction. For the NEM,150 we assume that the start-up costs are

amortised per maximum capacity (100 MW) per the length of the trading interval (5 minutes)

over the minimum run time of the unit (5 minutes). Similarly, no-load costs are amortised per

maximum capacity. The same applies for the day-ahead exchange preceding the BM using 30

minutes increments. However, the BM bids are subject to bid shading as well, as outlined in

Section 5.2.4. In contrast, we apply the amortisation formula from (5.2.15) for PJM. The ‘con-

vexification’ of the multi-part bids continues for the rest of the fuels too along the same lines,

except for Wind A and B that have no fixed costs and two exceptions in the NEM. Recall that

the NEM allows disorderly bids at prices away from true marginal costs. There are two typical

manifestations of this, one when slow-start units are securing their minimum loading levels via

bids at the price floor (Coal) and the other when units recognise that they are bidding at the

highest price among all bidders and decide to push their highest price bid to the market price

cap (Gas C) as per Yarrow (2014).

We then implement the market-specific price and welfare algorithms prescribed in Sections

5.2.2, 5.2.3 and 5.2.4, using the above detailed inputs and assumptions. The three market al-

gorithms are as consistent as the different market designs permit. For the NEM, we deploy the

reference software called Nempy by Gorman et al. (2022), and we use our own source code for

the PJM and the BM. A number of relatively minor assumptions and limitations of the imple-

148The same costs are used for day-ahead and real-time bidding in this example.
149That is, the remaining available capacity.
150We often refer to the small-scale market with rules reflecting the market design of the NEM as ‘the NEM’.

The same is done for all three markets throughout the chapter only to ease expression.
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Table 5.7 : ‘Convexifying’ the bids

The table shows the bidding assumptions behind translating the common generation costs into bids submitted to the market operator in each
jurisdiction.

Australia (NEM) US (PJM) GB (BM)
Bidding assumptions

Energy bid calculations
Gas A Start-up: 50× 1

100
× 5

5
= 0.5 see (5.2.15) Start-up: 50× 1

100
× 30

30
= 0.5

No-load: 50× 1
100

= 0.5 No-load: 50× 1
100

= 0.5
50 MW @$41, 50 MW @$61 50 MW @$41, 50 MW @$61

+ bid shading in real time
Gas B No-load: 75× 1

100
= 0.75 see (5.2.15) No-load: 75× 1

100
= 0.75

50 MW @$45.75, 50 MW @$65.75 50 MW @$45.75, 50 MW @$65.75
+ bid shading in real time

Gas C No-load: 100× 1
100

= 1 see (5.2.15) No-load: 100× 1
100

= 1
50 MW @$51, 50 MW @$16000 50 MW @$51, 50 MW @$71

+ bid shading in real time
Coal No-load: 100× 1

100
= 1 see (5.2.15) No-load: 100× 1

100
= 1

30 MW @-$998, 20 MW @$43, 50 MW @$43, 50 MW @$63
50 MW @$63

+ bid shading in real time
Hydro Start-up: 100× 1

100
× 5

5
= 1, see (5.2.15) Start-up: 100× 1

100
× 30

30
= 1

No-load: 100× 1
100

= 1 No-load: 100× 1
100

= 1
50 MW @$27, 50 MW @$57 50 MW @$27, 50 MW @$57

+ bid shading in real time

mentation must further be highlighted.

First, all monetary values are given in dollars ($), and the VOLL values are the same con-

stant (VOLL = $12000) regardless of the depicted jurisdiction. In addition, the upcoming plots

showing ‘continuous’ demand ranges show solutions at levels of demand that are 1 MW apart.

Second, using Nempy for the Australian NEM and the Python MIP package for the BM and

PJM, we observe that both solvers take the cost of the next MW as the marginal value of the load

balance constraint. This poses a minor discrepancy compared with the intended formulation as

per Table 5.1.

Third, trade via interconnectors – that is, the dispatch of Wind B at node 7 – is possible both

in the day-ahead exchange in the BM and in day-ahead scheduling the PJM. The BM has only

real-time losses and no associated losses in the day-ahead exchange. However, there is a mid-

point loss element in PJM’s day-ahead dispatch. The costs of the losses in PJM’s day-ahead

market are assessed alongside real-time losses at real-time prices in the welfare calculation.

Note, however, that uplift is not computed in the PJM for Wind B. On a related note, although
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inter-regional losses are in this manner included, intra-regional losses are assumed to be nil

throughout the case study.

Fourth, the formulation of the line limit constraint over the unidirectional link l1,2 between

nodes 1 and 2 uses the net injections and power transfer distribution factors for the PJM. How-

ever, we do not calculate node-level net injections for the NEM or BM. Nevertheless, we assume

that the only flow on link l1,2 is from generator Gas A located at node 1 towards node 2. There-

fore, an equivalent line limit restricts Gas A to produce 90 MW or less. All other line limits are

set at 600 MW. For the system strength constraint, the units are simply forced online via some

appropriate constraints.

Fifth, frequency balancing in Great Britain is assumed to take place at auctions indepen-

dently from the BM. Therefore, the quantities used for frequency balancing are withdrawn from

the day-ahead exchange and balancing. These are assumed to replace quantities from the second

bid slots (higher bids and higher offers).

Sixth, the minimum run time is specified to be equal to the length of the trading interval for

some fuels, which causes minor inconsistencies given that this interval is only 5 minutes in the

NEM but 30 minutes in the BM, which we attempted to smooth out in Table 5.7. Both 5 minute

and 30 minute prices are per megawatt-hour, but 30 minutes prices are in effect for longer.

Seventh, it is assumed for the BM that units are only able to buy and sell for balancing the

self-dispatched amounts as per the FPN amounts – no more and no less – in each bid slot.

Eighth, the minimum run time of the Coal unit is 120 minutes. Although the NEM does

not take this metric into consideration as part of dispatch, as Coal is a slow-start unit, it is

relevant for the PJM and BM to pin down where the observed trade interval lies relative to

this 120 minutes given that we also state that the Coal unit is already online in the preceding

interval. In effect, the Coal unit is assumed to have been running for about 40 minutes at the

time of the supply curve snapshot, implying that it is unable to shut down in the present interval

(embedded unit commitment decision), as it is well within the 120 minutes minimum run time.

Furthermore, the bid-in maximum availabilities of all units in the NEM and elsewhere are the

same as the maximum capacity.

In addition, the welfare calculation in Table 5.2 assumes that frequency balancing costs
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are not included in the amounts paid by consumers. Instead, these are considered a kind of

social cost, which leaves the ‘person’ of the payer unspecified. In future work, this could be

differentiated across market designs to better reflect the welfare impact of who is paying for

frequency balancing.

Furthermore, interconnector losses in the NEM are fully attributed to the ‘from region’, i.e.

the region exporting the flow, in Nempy (this refers to the value of proportioning_factor in the

NEMDE objective function from Section 3.3.5 in Chapter 3).

Four operational modes are distinguished in the fast-start unit commitment run of the NEM

as per AEMO (2021j), which are also included in this implementation as follows. Units that

receive nil targets in the unconstrained run are assigned mode 1 that keeps them offline. Then,

previously offline units (e.g., Gas A) operate in mode 3 when given a non-nil target, which

prevents their targets to drop below minimum loading. Previously online units (e.g., Gas B) are

assigned to mode 4, which does not limit their targets in any way in the absence of ramp rates.

Moreover, loads – those that absorb demand, not storage loads – are assumed not to bid

into either of the three markets but act as price takers: there is no demand side bidding in this

small-scale example.

Finally, the PJM’s integer-relaxed pricing algorithm has the following exception. Convexity

and commitment conditions are checked for those prices that perfectly correspond to the amor-

tised bid-in prices, but not for composite prices that arise due to trade-offs in the constraints,

most commonly owing to marginal rearrangements across spinning reserves and energy. There-

fore, these composite prices may use non-convex or non-online quantities, which is a weakness

of the implementation. However, the congestion component is added to these prices where

appropriate.

5.4.2 Supply curves

Figure 5.1 shows the resulting real-time fuel mix (in colour) and supply curve. The fuel

mix can be read as follows. The x-axis of the plot shows the demand, and the y-axis shows

the generation. The sum of the generation by all dispatched fuels would be equal to demand

(forming a 45° line) in the absence of any losses. With interconnector losses, however, gener-

ation is slightly above demand when Wind B is dispatched. In general, the fuel segment with
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a slope other than nil is the marginal fuel. In addition, the sub-plot below the energy demand–

generation exhibit shows the frequency balancing service dispatch (y-axis) in comparison with

the energy demand (x-axis).

Figure 5.1 : The NEM fuel mix and supply curve

The plot shows the NEM fuel mix (in colour) and supply curve (black line).
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Some interesting price levels are highlighted by vertical blue lines at demand levels 70 and

85 MW (light blue) and 230 and 245 MW (dark blue). First, the price at 70 MW (-$51.45) is

higher than that at 85 MW (-$53.9). This non-monotonicity is due to interconnector losses as

per Example 5.5. Indeed, looking at the fuel mix at 70 MW versus 85 MW demand, there is

no change in the fuel mix other than the increased targets in the marginal fuel Wind B with a

bid-in price of -$50. The marginal amounts are being transferred from another region subject to

dynamic losses.

In addition, the price drop between 230 and 245 MW demand unfold as follows. At 255

MW load, the price is set at $27 by Hydro, which has a bid-in price of $27. At this level, Gas A

has a target quantity of nil, Hydro of 38.51 MW, Wind B of 100 MW and the rest of the fuels
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of 100 MW, which sums to 238.51 MW including 8.51 MW losses.151 FCAS is provided by

Hydro and Wind A at 40 MW each. At 245 MW demand, Gas A is dispatched at 50 MW, Hydro

only at 5 MW and Wind B at 98.25 MW, with the rest of the fuels remaining at the previous

levels. Here, Wind B sets the price at 1.175 × $1 = $1.175, where the slope of the average cost

approximation at 0.175 takes effect as well.

Figure 5.2 : The PJM fuel mix and supply curve

The plot shows the real-time fuel mix (in colour) and an the implied day-ahead (purple) and real-time supply curves (black) for the PJM-style
small-scale market in our numerical example.
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Figure 5.2 shows the supply curve result for the PJM at node 6.152 A case of non-monotonicity

is also highlighted using red vertical lines in this solution. These lines pick up a fixed cost–

related non-monotonicity between 413 and 433 MW demand. At 413 MW, the price is set by

Gas B at $61, as it is not economic to switch on Gas C. At a higher level of load, however, the

targets allocated to Gas C are non-zero and marginal. It sets the price at $51.

151The value of these losses can be verified as 0.001 ∗ 752 + (100− 8.51− 75) ∗ 0.175 = 8.51.
152For this supply curve, the price on the secondary y-axis is the price at node 6 for the total demand quantity

across all nodes shown on the x-axis.
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Figure 5.3 : The BM fuel mix

The plot shows the effective fuel mix in the day-ahead exchange and in the BM for the small-scale system based on the market in Great Britain.
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Figure 5.3 depicts the final fuel mix – summing the quantities traded day-ahead and the

balancing adjustments – and the balancing cost results for Great Britain. Note that this balancing

cost curve is not equivalent to a supply curve.

5.4.3 Welfare results

The welfare results comprise three parts: consumer surplus, producer surplus and social

surplus. A broad summary of these is shown in Table 5.8. At first glance, the PJM-style market

outperforms both other markets in social surplus at all levels of demand. The NEM market

design is highly competitive in terms of consumer surplus, especially at mid-range demand

levels. The BM struggles to keep pace with the other two markets, but it outperforms both of

those in producer surplus except at high levels of demand.

The level of demand polarises the results. The fact that the fuel mixes and the unit commit-

ment decisions are more homogeneous at low levels of demand can explain the greater degree of
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Table 5.8 : Welfare summary

The table shows the welfare results of the routine implementation. PJM outperforms the other two markets in terms of social surplus in general.

NEM PJM BM
Consumer surplus High High except at mid-range demand Low
Producer surplus Low except at high demand Low except at mid-range demand High except at high demand
Social surplus In-between High Low

convergence in the welfare results at those levels of demand. Arguably, when certain units are

required to run for physical feasibility, there is less room for market-specific unit commitment

decisions. This is reflected in the convergence of the welfare results, to some degree, at lower

levels of demand.

Figure 5.4 : Consumer surplus

The plot shows consumer surplus and its decomposition under the different market designs at different levels of load.
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First, consumer surplus is shown in Figure 5.4 as a difference of the estimated maximum

value the wholesale consumers are willing to pay (VOLL times demand) and what they pay

for energy (see Table 5.2). Note that at monotonically increasing prices, the amounts paid

by consumers increase with demand. However, at times of non-monotonicity, these values

are decreasing, as shown between the vertical lines in colour. This in turn positively impacts

consumer surplus at the highlighted non-monotonicity events. Overall, consumer surplus is

typically the highest in the NEM except at very high demand. This is driven by the low amounts

paid by consumers for energy.

Second, producer surplus and its components are shown in Figure 5.5. In order of magni-

tude, the largest component of producer surplus is what is being paid by consumers for energy.

This first sub-plot shows that consumers pay less under the NEM design than under other market
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Figure 5.5 : Producer surplus

The plot shows producer surplus and its decomposition under the different market designs at different levels of load.
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designs. In particular, the BM has the most expensive design by this metric (see discussion in

Section 5.4.4.2). The second largest component of producer surplus is producers’ costs, which

enters with a negative sign. These costs are calculated using the equivalent costs from Table

5.6 and the quantity targets from the market-specific algorithms. The lower this cost, the higher

the cost efficiency in energy dispatch excluding frequency balancing. In this respect, the PJM

seems to outperform the other two markets. The third largest component of producer surplus

is out-of-market payments to producers in some jurisdictions at some levels of demand. This

amount is nil in the NEM under the current set of assumptions and possibly positive in the PJM

and BM – see discussions in Section 5.4.4.4 and 5.4.4.5. The last and smallest component of

producer surplus is the costs of losses, which producers receive. The quantity of losses appears

highest in the NEM (see discussion in 5.4.4.6). Costs of losses are immaterial under other mar-

ket designs. In summary, producer surplus is highest in the BM, with the PJM in second place

and the NEM significantly lagging especially at mid-range demand levels.

Third, social surplus is shown for the three market designs in Figure 5.6. Two new com-

ponents appear in this calculation: the amounts paid for frequency balancing services and the

balancing (out-of-market) payments received by the grid operator for selling electricity back to

the generators. We see that frequency balancing services are most efficiently procured through

prioritisation in the BM (see discussion in Section 5.4.4.2), whereas these services themselves

are more expensive in centrally co-optimised markets such as the PJM and NEM. Minor dis-

tortions to the robustness of these calculations are put forward in Section 5.4.4.7. In addition,
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Figure 5.6 : Social surplus

The plot shows social surplus and its decomposition under the different market designs at different levels of load.
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balancing receipts are only relevant for the BM (see Table 5.8). Overall, social surplus is the

highest in the PJM.

5.4.4 Analysis of findings

This welfare analysis reveals that although the PJM dominates in social surplus, its advan-

tage is not sizeable. The biggest difference between the markets lies in the fact that the BM

allocates significantly more to producer surplus and less to consumer surplus than the other two

markets. Further analysis of these findings is presented below.

5.4.4.1 In what way do the different market designs use different fuels as demand increases?

The optimal dispatch outcomes differ across markets based on the final fuel mix. First, Wind

B comes online in the NEM at much lower levels of demand than in other markets because

interconnector losses are pushing down the related prices – involving negative price marginal

bids – non-monotonically. In other words, the negative price bid subject to losses appears to

have an even lower cost from the perspective of the NEMDE, as it is multiplied by an MLF

factor above one for imports. However, this does not result in a material cost inefficiency as per

the middle sub-plot (with 7) on the y-axis) in Figure 5.5.

Second, the NEM is using Coal at $62 for frequency balancing instead of Hydro at $58

at low levels of demand. Hydro is not switched on by the NEMDE’s fast-start unit commit-

ment run, as there is already sufficient generation by Wind A and B and the must-run units;
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hence, it cannot provide frequency balancing. At the same time, the PJM and BM have no joint

constraints preventing Hydro from providing frequency balancing services. This flags an asym-

metry of assumptions in that by using FCAS trapeziums for the NEM, we introduce a stricter

set of joint constraints on frequency balancing and energy, particularly enablement minima at

5 MW, that are not present in the other markets. Although this seems to have very little effect

on relative cost efficiency, future work should detail the equivalent assumptions on joint service

constraints for the other markets as well.

Moreover, Gas A gets committed at different levels of demand under different market de-

signs. In the BM, Gas A is switched on once it is cheaper to invoke offered quantities to meet

the minimum loading requirement than it is to invoke bid quantities in the fuel to force Gas A

offline. This takes place at roughly the same demand level as that at which the NEM’s fast-start

unit commitment run constrains Gas A on to dispatch. In contrast, PJM’s scheduling algorithm

starts dispatching Gas B before Gas A as a bridging fuel to reach the minimum loading level in

Gas A.153 Committing Gas A and the fact that it is replacing other fuels adds an observable jump

to producers’ costs – and a drop in cost efficiency – in the NEM and BM. The same involves

a much smoother transition in the PJM, as fixed costs are disclosed in multi-part bidding and

optimised centrally.

Finally, the level of demand and the initial dispatch level at which Gas C starts up differs

across market designs. The NEM and PJM are reallocating Wind A from frequency balancing

towards energy before switching on Gas C. The NEM turns on Gas B at lower levels of demand

possibly because these quantities appear relatively cheaper in the NEM at levels below maxi-

mum capacity due to bid price amortisation at the maximum capacity level. By contrast, the

quantities attract a fixed no-load cost of $100, wherefore they are only dispatched at an ‘artifi-

cial’ minimum loading level bridged by quantities from Gas A. In this way, the addition of Gas

C to the fuel mix does not seem to cause material cost inefficiency under either market design.

153Owing to the fast-start integer relaxation pricing process Gas B with a higher variable cost is not setting prices
at a higher level at lower level of demand before Gas A comes online, whereby lower price fuels would become
marginal without integer relaxation.
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5.4.4.2 Why are consumers paying more for exchange-traded energy in Great Britain than for energy

including ‘balancing’ in other jurisdictions?

Trading energy over exchanges in Europe typically ignores the physical constraints to be ad-

hered to whilst using the electric grid. Therefore, in comparing the amounts paid for exchange-

traded energy in Great Britain to those paid by consumers in centrally optimised markets, it is

somewhat surprising to find that the former are greater. Two aspects are to be highlighted here.

Figure 5.7 : Cost of energy and frequency balancing

The plot shows the amounts paid for energy and frequency balancing separately and in total.
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The first sub-plot comparing the amounts paid by consumers for energy in different juris-

dictions in Figure 5.4 (with 1) on the y-axis) does not reveal the complete picture. In reality,

the same pool of resources are used to provide energy and frequency balancing, and in centrally

optimised markets, these two are usually co-optimised. In the BM, however, the auctions for

frequency balancing services are assumed to take priority over energy scheduling. Therefore, as

the second sub-plot (with 4) on the y-axis) in Figure 5.7 shows, the amounts paid for frequency

balancing are the lowest in Great Britain. If, however, the cheapest resources are used towards

these reserves, then energy might become more expensive. The sum of the amounts paid for

both energy and frequency balancing services are shown in the third sub-plot in Figure 5.7. We

might expect that due to a lack of physical constraints in the exchange-based self-scheduling

process in Great Britain, the combined costs are still lower in that market than elsewhere.

However, we find that the combined amounts paid are still mostly the highest in Great

Britain. There is a further explanation as to why this is the case, which is related to the unused

capacity in the system. Earlier we set out that a proportion m = 0.9 of all supply capacity
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is being offered day-ahead in Great Britain and in the PJM, whereas the NEM works with all

capacities being offered real time. In addition, a proportion k := m of demand is being settled

day-ahead in the PJM, and more than that, demand minus 1 MW, in Great Britain. We see

that relatively higher levels of demand are being met in the day-ahead scheme in Great Britain,

which can drive prices up under standard assumptions about supply monotonicity (which hold

well in constraint-free settings), especially at low levels of demand; this in part explains the

lack of convergence of the BM results to the results in other markets. Note that not all amounts

that remain unused from day-ahead are in fact deployed in real time. However, the necessary

rearrangements to meet the physical constraints in real time might require larger unused capaci-

ties under the BM’s market design than in centrally optimized settings, which is reflected in our

assumptions about the value of parameter k.

5.4.4.3 Why are producers’ costs decreasing with demand at low to mid levels of demand? What drives

cost efficiency in different markets?

Producers’ costs for energy decrease with demand under all three market designs owing to

the negative variable costs of renewable fuels. These fuels are assumed to earn carbon offset

income in all three jurisdictions via conceptually largely equivalent certification schemes such

as LGCs in the NEM. In addition, these costs – as they only capture the energy costs and not the

frequency balancing costs – see a significant drop in the PJM and the NEM when these markets

withdraw from using Wind A for frequency balancing and start replacing it by Coal. Wind A

can after that be used to provide energy at $0 variable and fixed costs.

5.4.4.4 When is uplift being paid in the PJM?

As mentioned earlier, uplift is being paid to generators in North American markets whenever

compliance with targets causes a generator to run at a loss. In theory, the amount of uplift each

unit is eligible for is computed as the difference between the profit of the unit using the optimal

targets from the settlement run and the profit given the optimal targets as per the dispatch run

(see (5.2.18) for the case for the PJM). In our analysis, the fourth sub-plot in Figure 5.5 shows

uplift to be relatively rare. We find a few load segments with non-nil uplift between 199 and 201

MW ($200), 295 and 304 MW ($78.75 to $105.75), and 414 and 418 MW ($52.50 to $92.50).
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First, between 199 and 201 MW demand, Hydro, which is committed in the reliability run,

receives $200 uplift as compensation for its fixed costs. Second, at 295 MW demand, Gas B is

replaced by Gas A in the settlement run when price is P ∗
j = 42 at all nodes. More precisely, the

real-time dispatch run schedules 36.25 MW by Gas B, but the subsequent settlement run only

schedules 10 MW, which is the minimum loading requirement in this fuel. The bid-in price by

Gas B is $45 per MWh for these quantities. Thus, the real-time dispatch run creates a 26× (42-

45) = -$78.75 negative income, which is compensated by the uplift at 295 MW load. The same

pattern continues until 304 MW demand. Last, an inverse dynamic can be observed between

414 and 418 MW load when 15.25 MW by Gas C replaces Gas A and Hydro in the settlement

run, implying that it would have been profitable for Gas C to run at this rate at the price of

P ∗
j = 60 despite receiving a nil real-time dispatch target rate. Recall that Gas C has a fixed

no-load cost of $100 and a variable cost of $50 for the first 50 MW. Hence, not dispatching

15.25 MW came at the lost opportunity cost of 15.25 × (60-50) - 100 = $52.50. The same

dynamic continues until 418 MW load. In sum, uplifts are paid when the real-time dispatch

run overschedules quantities that run at sub-zero profits, taking fixed and variable costs into

consideration, as seen in the first two instances, or if it underschedules infra-marginal quantities

that could have been generated at a profit given the realised price.

5.4.4.5 What drives extreme positive and negative balancing costs in the BM?

Although the bid–offer spreads of the individual units are typically positive, it is sometimes

possible to fulfill the balancing mandate by buying the missing 1 MW load at a relatively low

price and rearranging quantities in a profitable manner. More frequently, the rearrangement

involves buying high price quantities and disposing off low price quantities, which achieves

modest positive balancing costs. However, we also observe extreme positive costs at low levels

of demand and negative costs at high levels of demand.

First, extreme positive balancing costs occur at 100 MW demand in the BM implementa-

tion, where Gas B and Coal are forced to run at $53.375 and $52.125 at their 10 and 30 MW

minimum loading levels, respectively, due to physical constraints. Therefore, 10 × $53.375 +

30 × $52.125 = $2097.5 is paid for balancing costs (see the fourth sub-plot with 8a) on the

y-axis in Figure 5.5). For full rearrangement, then Wind A buys back 5 MW at -$15 and Wind
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B buys back 29.58 MW at -$39.5 and 4 MW at -$14.5, which means an additional negative

payment of 5 × -$15 + 29.58 × -$39.5 + 4 × -$14.5 = -$1301.41 (see the fourth sub-plot with

8b) on the y-axis in Figure 5.6), further contributing to the balancing costs shown in Figure 5.3.

Second, negative balancing costs are driven by cases where the amounts paid for balancing

(8a) are lower than the amounts received from balancing (8b). Such a case can be observed at

around 400 MW demand and above that demand level. At 400 MW, the following actions are

taken for balancing. First, the grid operator buys 5 MW from Wind A and 5 MW from Wind B

for -$5 and -$5.50 per megawatt-hour, respectively, which leads to a cost of 5× $5 + 5× $5.50

= $52.5. In addition, it sells 8.94 MW back to Gas A at $15.50 for a balancing receipt of 8.94

× $15.50 = $138.57. Overall, the balancing cost is negative at $52.5 - $138.57 = -$86.07.

We see that depending on how efficient exchange-based self-dispatch is, which seems to

improve at higher rates of demand, the costs of balancing can generate an income or pose

significant costs to the grid operator.

5.4.4.6 Why do losses cost more in the NEM than elsewhere?

Achieving equivalence of assumptions across the three market designs in terms of interconnec-

tor losses is difficult. Dynamic interconnector costs are greater in the NEM than the static in-

terconnector losses at a mid-point value of 1.125% when Wind B is dispatched at above 35.795

MW, as 0.001 × (35.795 − 1.125)2 = 1.125. Dynamic losses can go up to 8.51 MW at 100

MW targets for Wind B, as 0.001 × 752 + (100 − 75 − 8.51) × 0.175 = 8.51 in the NEM. In

contrast, losses in the PJM go up to 100× 0.0125 = 1.125 in MW, whereas in the BM, they are

dependent on the balancing quantities qSi , q
B
i only and not on the self-dispatch values QS∗

i . The

higher costs of losses in the NEM are primarily attributable to the higher magnitude of losses in

that market setting.

5.4.4.7 Why do the shadow prices for frequency balancing deviate from the expectation?

First, in the NEM, an instability of the shadow price is observed, which drives the amounts paid

for frequency balancing (see sub-plot with 4) in the y-axis in Figure 5.6). At lower levels of

demand, Wind A and Coal are used for FCAS and the next unused FCAS capacity would be by
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Gas C at $80; nevertheless, we do not see costs at around 80× $80 = $6400. Similar oscillatory

results are observed at higher levels of demand as well probably owing to trade-offs within the

binding constraint set.

Similarly, for the PJM, it is unclear why the Python MIP package’s solver struggles to settle

either at a price of $58 as per the bid-in price of the last 1 MW used capacity for a total cost

of 80 × $58 = $4640 or at a price of $62 as per the bid-in price of the next 1 MW unused

capacity for a total cost of 80 × $62 = $4960 at demand levels where 40 MW spinning reserves

are provided by Wind A at $13 and 40 MW by Hydro at $58 (see the bottom sub-plot of Figure

5.2).

5.4.4.8 What drives high consumer surplus in the NEM at mid-range demand levels?

Simply put, the way Gas A is brought online over increasing levels of demand pushes real-

time prices down in the NEM, which in turn raises consumer surplus. Gas A is introduced as

a constrained-on quantity, which typically has a downward merit order effect on the resulting

spot price owing to cheaper fuels becoming price setters in the NEM, potentially causing non-

monotonicities as in the example too. Note that the non-monotonicity only came about because

the 50 MW cheaper fuel capacity had to be replaced, of which 45 MW could be taken from

the previously marginal fuel Hydro, but an additional 5 MW was due to be subtracted from the

even cheaper Wind B. Had Wind B not entered, the price would have not exhibited any non-

monotonicity. We do not observe a similar effect of committing Gas A in other markets due to

fast-start integer relaxation pricing in the PJM and pay-as-bid settings in the BM.

5.4.4.9 What market design elements warrant high producer surplus in the BM and what impair it?

At lower levels of demand, the BM is leading in producer surplus. This is attributable to its

relatively high exchange-based prices, high balancing payments and competitiveness in cost

efficiency. At higher levels of demand, however, the rearranging of much lower quantities

for balancing and the fact that it is scheduling low-price frequency balancing services impairs

its ability to remain cost competitive in energy dispatch, which then leads to relatively lower

producer surplus levels.
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5.4.4.10 What market design elements promote the first place of the PJM in social surplus?

The PJM is the most cost efficient among all three markets, which is likely because of multi-part

bidding and the fact that fixed cost components are part of central optimisation.

5.4.5 Scaling to real-world systems

It is key to highlight some caveats about scaling this small-scale analysis to real-world sys-

tems before drawing any meaningful conclusions. Markets in reality are larger in size and

physically more complex, they carry out multi-period processes instead of fixing certain as-

sumptions for one-shot pricing, and they tend have more complex pre-dispatch mechanisms

and often capacity markets as well. Also, sometimes they operate at extreme demand levels

that we truncated for convenience. The role a financial market plays alongside a physical elec-

tricity market is also not negligible: for example, in the absence of day-ahead markets, units

might seek firmness via forward contracts. These factors are not considered within the scope

of the small-scale case study, but it is important to ask whether and how they might impact

non-monotonicity and welfare.

In general, increasing the size of the system by adding more generator units increases the

number of applicable physical constraints. We identified minimum loading constraints to cause

non-monotonicities in the NEM. Therefore, some of the added units are very likely to have

this requirement, thus increasing the number of non-monotonicities along the supply curve.

However, taking a step back, just adding more previously offline slow-start generators to the

system that have positive fixed costs – without any minimum loading constraints involved –

increases the chance of non-monotonicity, too, in the PJM.154

Moreover, adding more types of frequency balancing services and other ancillary service

types to the problem definition introduces new joint constraints to the optimisation problem.

In our case study, a change in the initial assumptions as simple as labelling Hydro’s frequency

balancing cost to be one dollar more, $63 instead of $62, can be shown to invoke a trade-off

effect in the PJM, where serving the next 1 MW in energy rearranges the fuel mix serving

frequency balancing, which is then reflected in the energy price. The NEM is also susceptible

154Note that slow-start plants are expected to have longer minimum run times, which means that they are
constrained-on longer and perhaps shut down more infrequently to meet the condition of being previously offline.



188

to such trade-off effects.155 In combination with non-convex elements, such trade-off effects are

potential sources of non-monotonicity. Therefore, we argue that real-world systems with more

complex product portfolios and constraint sets are more prone to non-monotonicities than their

small-scale counterparts.

It would be interesting to see how adding more physical constraints to a simplified dispatch

optimisation problem – until obtaining a very reliable real-world system – would impact welfare

under different market designs. The present work has confirmed that balancing cost payments to

producers significantly increases producer surplus and that negative balancing cost receipts from

units due to negative pay-as-bid prices weaken social surplus results in the BM at low levels of

demand when several must-run constraints are binding. When more constraints are added,

balancing costs are likely to rise faster in the BM than required to keep pace with other market

designs in terms of welfare. The case study could easily be extended to test this hypothesis and

capture the welfare effect of adding further constraints under all three market designs.156

Another vital aspect of real-world systems is multi-interval planning either by the market

operator or by the individual units. For example, in the NEM, bidding its must-run quantities at

-$999 is the result of an inter-temporal optimisation for the Coal unit. The Coal unit could have

also chosen to withdraw capacities from the market by bidding in a nil maximum availability

in the face of a series of low demand intervals where it might be operating at a considerable

loss. In that case, the market operator could have stepped in to invoke some intervention frame-

work to constraint the Coal unit on while adhering to plant-level inflexibilities. This response

mechanism is particularly relevant at very low levels of demand when reaching an equilibrium

is more likely to involve market interventions. Our small-scale numerical example finds that

the plausibly intervention-free demand ranges are to some extent – but not fully – overlapping

under different market designs and focuses on those entirely. Careful analysis of inter-temporal

and one-off interventions is subject to future work.157

155One upshot of this is that negative price bids from outside the pricing region can become marginal (price-
relevant) due to trade-offs across several binding constraints at relatively high levels of demand too, implying that
non-monotonicities due to dynamic interconnector losses can occur at higher demand levels in the NEM.

156Another hypothesis to test would be the welfare effect of fast-start integer relaxation in the PJM.
157The role of multi-interval day-ahead, intra-day and real-time demand forecasts, their accuracy, synchrony,

and effect of welfare should also be investigated and presented in a more precise and perhaps probabilistic manner
when extending the case study to interventions.
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Furthermore, the argument put forward in Creative Energy Consulting (2020) is that the

efficiency of NEM self-scheduling lies in that the units are allowed to update their bid submis-

sion, which might include disorderly bid prices in a way that reflects private information only

they are privy to, in the pre-dispatch mechanism continuously until gate closure (see Chapter

3 for details). In contrast, the reliability run in the PJM takes place only a number of times,

primarily day-ahead, and may not capture some updates that are private information. Although

we have included one reliability run for the PJM in our numerical case study, this alone cannot

accurately depict the full-blown pre-dispatch mechanism in the three focus markets.

All three market designs have been shown as if they were energy-only market designs.

However, capacity markets do operate in the PJM and BM, which we have so far omitted.

Future work should rectify this omission.

Last, the plant-level technical assumptions behind the numerical example emulating the

real-world bid submission templates are not sufficiently precise to be equivalent across the three

markets. For instance, introducing frequency balancing minima into the markets on both sides

of the Atlantic, similar to the FCAS trapezium for the NEM, could bring about interesting

developments in terms of both supply non-monotonicity and welfare. Also, the rules around

making plant-level decisions on maximum availability, such as on withdrawing from the market

in face of a low demand forecast, would be interesting to compare in greater detail.

5.5 Implications

The implications of the above findings for incentive compatibility and economic equilibrium

modelling are described below.

5.5.1 Incentives under non-monotonicity

Incentive compatibility is satisfied when actors bid at their true costs as price takers and com-

ply with the central allocation of unit commitment and dispatch, which is assumed to be efficient

(Chao (2019)). We argue that incentive compatibility is hindered by supply non-monotonicities

in general and discuss the subtleties of this relationship. In addition, we detail the extent to

which parties are made whole under different degrees of incentive compatibility under different

market designs.
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First, in the Australian context, allowing disorderly bids and/or bid convexification is a way

to circumvent certain non-convexities in the problem formulation. Thus, incentive compatibility

is violated in the process of preventing non-monotonicities through self-scheduling, such as by

eliminating fixed costs or ignoring plant-level inflexibility profiles for slow-start plants. More-

over, allowing disorderly bids in the self-schedules gives units not only a degree of discretion

in bidding, including the chance to charge premia, but also the legal liability to comply with the

central allocation resulting from their bids. Hence, whereas the first part of incentive compati-

bility might not be met, the second part is actively enforced. To the extent units are unsuccessful

in bidding disorderly in a way that turns out to be optimal to them under non-convexities, such

as fixed costs, as well as unprevented non-monotonicities, e.g., due to dynamic interconnector

losses, they are left without any compensation for disincentives to comply with the targets al-

located to them. In our small-scale numerical example, the units are assumed to use a simple

cost convexification method without any adjustments for private information and apply no price

premium, which resulted in a relatively low producer surplus and a state of the market where

units may not have been made whole for their fixed costs. The fact that units may not have

been made whole due to non-monotonicity is a weakness of the current NEM market design

that should be addressed in the future to promote fairness.

By contrast, a single uniform price is shown to be insufficient to remove the incentive

to deviate from the efficient allocation under the non-convex North American formulation.

An additional, discriminatory price component for uplift is justified by the arguments in El-

maghraby et al. (2004), Liberopoulos and Andrianesis (2016), Chao (2019) and Wang et al.

(2023).158 It is imperative not to omit uplift payments when focussing on the truthfulness of

the bids underpinning non-monotonic supply curves from uniform prices, as any price suppres-

sion (non-monotonicity) effect of fixed costs is being compensated through uplifts. Note that

non-monotonicity is also less prevalent under the more recently introduced fast-start integer

relaxation module. Therefore, the North American design warrants a greater degree of, if not

full, incentive compatibility. Full incentive compatibility may not be attainable under this type

of market design because units remain privy to information about their true costs, and the stan-

dardised bid submission format fails to capture every detail in that respect, again, impairing the

158See also references therein.
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extent to which parties are made whole.

Additionally, incentives in two connected market facilities are also directly impacted by sup-

ply curve non-monotonicities in wholesale electricity. As Byers and Hug (2023) note, these can

disturb the efficacy of demand response programs. Furthermore, non-monotonicities adversely

impact virtual bidding outcomes (PJM (2017)).

5.5.2 Implications for market modelling

Equilibrium models have become increasingly important in electricity market analysis with

wide-spread deregulation. At the core of these models, an equilibrium supply quantity is bal-

anced against an equilibrium demand quantity whose amounts are specified in aggregate supply

and demand functions, respectively. In most bid stack models, the market supply curve is expo-

nentially increasing (Carmona et al. (2013)); in most supply function equilibrium models, there

is an explicit monotonicity requirement (Day et al. (2002)); and although complementarity-

based models seem agnostic to supply curve monotonicity, they do not disprove the need for

non-monotonic formulations (Ruiz et al. (2014)). These model classes and their nexus to our

main premise are developed next.

5.5.2.1 Market power models

The literature proposes two broad categories of equilibrium models. Models in the first cat-

egory provide some measure of market power and those in the second generally aim at spot

price simulation. More specifically, the first set of models formulates the Nash equilibrium

of the market power problem either as an analytical supply function equilibrium (SFE), or as

a complementarity-based system. In SFE models, starting with Klemperer and Meyer (1989)

and Green and Newbery (1992), the generating companies optimise their continuous supply

functions159 using some parameters of those functions as decision variables.160 The function

159This closely tracks the real-world format of bid-based strategies (bidding) in electricity markets as opposed to
‘games in quantity’ (Cournot) or ‘games in price’ (Bertrand) where a firm’s decision variable is one-dimensional.

160Static candidate solutions are then obtained by solving first-order equilibrium conditions, which can be or-
dinary differential equations in the simple case or integro-differential equations in networks with loops according
to Ruddell (2017), or using numerical techniques for asymmetric firms as in Anderson and Hu (2008) and Holm-
berg (2009). Unfortunately, SFEs quickly become intractable for large-scale networks with security-constraint
considerations (Day et al. (2002)).
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space is typically greatly restricted by the initial assumptions to satisfy existence as mentioned

in Day et al. (2002). Costs are mostly convex in these types of models as in Liberopoulos and

Andrianesis (2016). Importantly, only strictly monotonic unit-level supply curves are consid-

ered (monotonicity requirement) through the use of appropriate assumptions (Holmberg et al.

(2013)), monotonicity constraints and ‘ironing’161 (Ruddell (2017); Wilson (2008)). As a con-

sequence, prices from these models are expected to be monotonically increasing in demand.

In contrast, in complementarity-based systems, the generating companies optimise their in-

dividual cost functions using only quantity (Cournot games) (Cardell et al. (1997)), or the quan-

tity and some parameter of the rivals’ conjectured (affine) response function as in Hobbs et al.

(2000) and Day et al. (2002), as decision variables. Only the aggregate demand function and not

the aggregate supply function is given a functional form.162 Although there are multiple vari-

ations to this type of models in the literature – preeminently mixed complementarity problems

(MCP)163 and mathematical programs with equilibrium conditions (MPEC)164 – the question of

supply non-monotonicity is rarely considered even in the presence of non-convex costs.165 One

notable exception is Cheng et al. (2021) who devise an optimisation method for solving MPECs

161As Ruddell (2017) explain, “Succinctly, ironing means that where a supply curve is forced at (perfectly elastic
or perfectly inelastic) by the monotonicity constraint, there it must satisfy the first-order optimality condition on
average over the whole flat segment.”.

162Given f = 1, 2, ..., F generating companies (firms) that wish to optimise their decision variables xf with
objective functions and inequality constraints ff (x) and gf (x), respectively, each firm’s problem is minxf

ff (x)
such that gf (x) ≤ 0 : µf and −xf ≤ 0 : βf , where µf and βf are the duals, and ff (x) includes the demand
function of quantity x for the price, paraphrasing Ruiz et al. (2014). As long as ff (x) and gf (x) are continuously
differentiable and convex, a system of KKT equilibrium conditions are both necessary and sufficient to give an
equivalent solution of the optimisation problem (Ruiz et al. (2014)), although the convexity assumption is in reality
incorrect for gf (x) due to unit commitment-type binary decisions in the KKT constraints, as in Day et al. (2002).

163Mixed complementarity problems (MCP) include both equality and complementarity conditions and the prob-
lem is square if the number of endogenous decision variables equals the number of individual KKT conditions
(Ruiz et al. (2014)). This usually breaks down when a complementarity condition simultaneously links the feasible
regions of the different firms, resulting in infinitely many equilibria, since it adds as many decision variables as
there are firms for a single condition, unless the associated dual variables are restricted to the same value for all
firms (Ruiz et al. (2014)). This restriction often assumes that firms are price-takers in transmission prices and do
not manipulate their outputs to benefit from congestion or decongestion as in Hobbs and Helman (2003).

164In game theory, the leader firm is the one that determines its strategy first, often by anticipating the follower
firms’ reactions, and the follower firms only determine their strategy after that. Using these definitions, we can
also note that embedding the followers’ or the market operator’s equilibrium problem, given the actions of the
leader firm, into the KKT conditions of the leader firm in a bilevel (Stackelberg) game yields non-convex feasible
regions. Therefore, nothing in general can be asserted about the existence and uniqueness of the equilibrium in
these problems. MPECs are typically solved using equilibrium programs with equilibrium constraints (EPECs), as
explained in Ruiz et al. (2014) and Hobbs and Helman (2003).

165It is not well understood if supply aggregation mechanisms that give rise to non-monotonic market supply
curves also destabilise certain types of complementarity-based model solutions.
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while accommodating non-monotonic unit-level bid curves, e.g., due to deep peak regulation.166

Furthermore, Yang et al. (2013) suggest a formulation that allows for non-monotonic unit-level

incremental cost curves due to valve point loadings.167

5.5.2.2 Pricing models

The properties of the inverse supply function are also highly relevant to bid stack–type models

that solve for the electricity price by using an inelastic demand quantity as a modelled input

variable and formulating the market bid stack function (aggregate inverse supply function) as

a parametric map. This map transforms a typically Gaussian process for load into the required

non-Gaussian price dynamic with spikes (see Meyer-Brandis and Tankov (2008)). The proposed

continuous inverse market supply functions are often calibrated by fitting the bid stack data. Im-

portantly, they are assumed to be exponential (Burger et al. (2004); Aid et al. (2009); Carmona

et al. (2013); Kiesel and Kusterman (2016)), a quantile function (Howison and Coulon (2009)),

a Box-Cox power transform (Barlow (2002)), a power law function (Aid et al. (2013)) or a

(piece-wise) polynomial (Kanamura and Ōhashi (2007); Ware (2019)). The functional forms of

the modelled aggregate inverse supply functions or additional elements, such as regime switch-

ing, often capture the price effects of system scarcity as a departure from the energy-only bid

data. However, the inverse supply curve is considered to be monotonically increasing in all of

these functional specifications.

The use of probabilistic layers onto the main market bid stack curve similar to the regime

switching solution by Carmona and Coulon (2014) (cf. Carmona et al. (2013)) is a way to part

with the perfect monotonicity of supply in the assumptions.

5.6 Conclusion

It is a pervasive assumption in both academia and industry that the price of electricity in-

creases as the demand in the system rises. This chapter cites forerunning literature and lays

down new evidence on the topic, weakening the validity of this monotonicity assumption. Mar-

166Deep peak regulation of thermal units is used to cope with high wind penetration (Yang et al. (2019)).
167As Fraga et al. (2012) write, “Modelling valve point loadings is necessary to capture the losses incurred due

to the throttling of partially open valves in electric power generators.”.
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ket design–implied inverse supply curves are examined in the context of the PJM in the United

States, the NEM in Australia and the BM in Great Britain. First, we find that supply curves

do not always exist – for example they do not exist in the context of the BM, where there is

discretionary pricing for balancing. Second, there is not always a single-part real-time price,

such as in the PJM, that would appropriately outline the values along the inverse supply curve.

Different measures of welfare are compared considering these complicating factors via a

numerical example. The core principle of this example is having three physically and eco-

nomically equivalent small-scale markets with market settings resembling the three examined

market designs as closely as possible. This allows an evaluation of these on welfare and the

components of welfare, such as cost efficiency. Some elements of market design can then be

identified to drive these components; for example, multi-part bidding drives a smooth cost curve

(no jumps), which speaks of greater cost efficiency driving better social surplus results. Sim-

ilarly, high balancing payments are an important part of why the BM outperforms the other

markets in producer surplus, and somewhat surprisingly, the same replacement mechanism that

can cause supply non-monotonicity in the NEM suppresses prices too, to the point where the

NEM leads in consumer surplus.

Even if a single uniform price for electricity can be obtained, this price does not always

increase with increasing load in the market due to non-convexities such as fixed costs and min-

imum loading requirements as well as dynamic interconnector losses. Indeed, Hogan and Ring

(2003); Bjørndal and Jörnsten (2008); Ruiz et al. (2012); Gribik et al. (2007); Byers and Hug

(2023) have previously found that fixed costs as part of multi-part bidding and minimum load-

ing requirements cause non-monotonicity of supply. In addition, our study shows new evi-

dence that dynamic interconnector losses and ancillary service co-optimisation may also result

in non-monotonicity. These contributions have important implications for incentive compatibil-

ity within particular market designs as well as for market modelling on equilibrium principles.

Therefore, the key idea emerging from the current discussion is that pricing models and analyt-

ical heuristics relying on a monotonic supply relationship should be re-evaluated and updated

prior to wide-spread use in applications.
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Chapter 6

Conclusion

This thesis presents four essays on electricity market design, semi-structural price modelling,

supply function non-monotonicity and welfare in electricity markets. The first two essays cover

market designs in the integrated pool model in general and the market design of the Australian

NEM in particular to better understand the applicability of existing semi-structural market mod-

els, with a specific focus on bid stack–type modelling frameworks, to price modelling in the

NEM.

Most bid stack models in the literature appear to be built upon market structures reflecting

the North American or European standards. These models often lack some required properties

under the NEM market design, such as price negativity, load-dependent fuel availability, the

inclusion of renewable and storage fuels and network constraint effects, or the use of cleared

generation as a proxy for demand. To fill this gap in the literature, the third essay presents our

revised price hypothesis in the form of a novel hyperbolic bid stack approach to electricity price

modelling. In this bid stack model, much like in any other bid stack model before it, supply is

assumed to be monotonically increasing.

The fourth essay explores the applied cases of non-monotonicity in electricity markets. It

argues that due to non-convexities or dynamic interconnector flows in the optimisation problem,

supply is not always a monotonically increasing function of quantity demanded under certain

market design settings. A small-scale numerical study underpins these arguments and compares

the implied supply curves and the amount of welfare gained under three real-world market

designs. This enables us to draw conclusions about the effectiveness of these market designs.

Upon reflection, this thesis spans a broad topic. Studying any single wholesale electricity

market from physical flows – which is the domain of electrical engineering – to how pricing

works, whether it efficiently impacts welfare, and how to model it in a semi-structural manner,

is an ambitious undertaking. Nevertheless, a comparison of three different market designs is
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presented in algorithmic detail, albeit in a simplified setting.

6.1 Limitations and further research

This thesis has a number of limitations. First, the survey of the NEM in Chapter 3 seeks to

provide an up-to-date account of market design. However, this is only possible to the extent that

the market design remains constant over time, which is hardly the case in electricity markets,

as rule changes are frequently being brought forward. Therefore, the presented research un-

dertaken between 2020 and 2023 is already, to some degree, outdated. For example, the Rules

version 175 is referenced (AEMC (2021c)) instead of version 204 as of December 2023.

Second, in Chapter 5, the conclusions are drawn from a supply monotonicity and welfare

analysis that considers a relatively small and physically simple, one-shot market without an

elaborate pre-dispatch run or without considering the complete set of ancillary service and

other side service markets. Another limitation is the units’ equivalence in their slow- or fast-

start classification and plant specifications across the three jurisdictions, as different definitions,

classifications and bidding formats co-exist worldwide. Moreover, the fuel mixes of the dis-

cussed real-world markets are different and therefore the connecting physical constraint sets

vary. Acknowledging that there is a limit to the extent to which a physically and economi-

cally equivalent assumption set of these markets can be set out, it is also very interesting to see

how different market designs distinguish themselves in the way grid extensions are integrated,

network constraints are formulated, carbon offsets are factored in and incentive compatibility

and informational efficiency are encouraged. Future work aims to execute re-runs of the exist-

ing model behind the numerical example that measures the welfare effects of changing single

assumptions in each of the three market design frameworks.

Finally, the fourth essay in this thesis that finds the inverse supply curve (or market bid

stack curve) in the NEM being non-monotonic affects the hyperbolic market model in Chapter

4. Importantly, the fuel bid curves in Section 4.2.2.1 remain monotonic with the invertibility

condition intact, as the bids of the units always take a monotonically increasing form. However,

the central bid aggregation process leads to a non-monotonic effect. Forthcoming work should

address this development.

Apart from the shortcomings listed above, it is highly plausible that we made further omis-
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sions unbeknownst to us simply because the topic at hand is constantly evolving to accom-

modate regulatory changes, macro-economic conditions and actions to combat the impacts of

climate change.
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