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Abstract

In recent years, deep neural networks have significantly advanced the field of com-

puter vision. However, these advancements have largely relied on the assumption

of independent and identical training and test data distribution. In real-world sce-

narios, violations of this assumption due to covariate shift can trigger performance

degradation, thereby highlighting the challenge of out-of-distribution (o.o.d.) gener-

alization. In contrast, humans excel in o.o.d. generalizability based on their acquired

generalizable knowledge. However, current deep learning models struggle with bi-

ased dataset confounders, hindering their acquisition of such knowledge. Therefore,

in this research, experiments are conducted to explore the mechanisms and princi-

ples behind the acquisition and exploitation of generalizable knowledge, in order to

address the challenge of o.o.d. generalization.

Our initial explorations focus on the learnability of generalizable knowledge using

2D transformation estimation tasks. Results demonstrate that utilizing a convolu-

tion neural networks that accept image pairs as inputs, along with causal synthetic

datasets, enables machines to acquire knowledge about 2D transformations that can

be generalized to unrelated semantic domains.

Based on this insight, this research introduces InterpretNet, a novel architecture

to explicitly exploit generalizable knowledge of 2D transformations, which achieves

enhanced test accuracy and explainability in hand-written digit classification. Ex-

panding the scope, we integrate the learning methodology into a contrastive learning

paradigm to implicitly exploit the generalizable knowledge. The results demonstrate

enhanced model representation capability and classification accuracy in point cloud

understanding tasks.
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Finally, to further validate the potential of disentangling more confounding mech-

anisms in real-world tasks, we propose PCExpert, a self-supervised representation

learning approach to transfer knowledge learned from a pre-trained image-text model

to 3D point cloud understanding. Our results show that PCExpert outperforms

state-of-the-art models across various tasks with enhanced representation capabil-

ity, while substantially reducing trainable parameters.

In summary, this research investigates knowledge acquisition of target concepts

based on causal theory, and introduces InterpretNet and regression loss to explic-

itly and implicitly exploit the acquired knowledge, respectively. This methodology

is further validated through the PCExpert architecture in 3D understanding tasks.

The findings in this research offers new insights and methodologies for future studies

on o.o.d generalization.

iii



Dedication

To my beloved mom and dad.

iv



Acknowledgements

To my mom and dad. This journey was fueled by your unconditional love and

support. Words can scarcely express my gratitude. This thesis is dedicated to you.

To Prof. Sean He and Dr. Gray Peng from Intergenepharm. My incredible doctoral

journey and adventure in academia would not even start without you. I am so

grateful for the opportunity you provided.

To Associate Professor Wenjing Jia. Having you as my supervisor has been both

a privilege and a stroke of fortune. You always offered support in every possible

way, prioritizing the personal development and interests of your students. With so

many challenges faced during my Ph.D. study, your patient guidance and insightful

advice always helped me make a crucial step forward. It is the accumulation of

these small but significant steps that have brought me to where I am today. I

have gradually come to realize that the way you guide your students, and how

you approach everything else, how you tackle every challenge, is the same – it’s

about taking a small step at a time, steadily moving forward. This is one of the

most invaluable gifts from you, which has profoundly shaped my approach in both

research and life.

To my candidature assessment panel – Associate Professor Qiang Wu, Associate

Professor Min Xu and Professor Stuart Perry, for your insightful challenges and

the constructive suggestions you provided for my work and thesis. Your rigorous

and valuable feedback have greatly contributed to the refinement and depth of my

research.

To my relatives in Sydney – Aunt Nan, Xinru and Beibei. Thank you for your

invitations for meals and gatherings, and all the familial warmth in a land far from

v



home. Aunt Nan, thank you for your help and those city walks we shared during

my early days in Sydney.

To my friends in Australia. You all have painted my life here with vibrant colors

of friendship, making everything, including my research journey, so meaningful.

Thanks to Lucas, Wenbo and Kevin, for each moment shared with you, from the

belly-busting hotpot gatherings to the joyful ping pang contests. A special thanks

to Lucas for consistently calling me out, and for introducing me to new friends. My

days in Sydney would have been dull and uninteresting without you. To Sam and

Zack for offering your apartment at a ridiculously low rate. To Gerry, Ethan, Scott

and all my board game buddies, for the endless conversations and the unforgettable

board game nights.

To the people who created various online learning resources and information, which

have constantly inspired me and broadened my perspective. Among these are:

Andrew Ng, Yannic Kilcher, 3Blue1Brown, Mu Li, bryanyzhu, PaperWeekly, Big-

DataDigest, AI era, and many others.

And thanks to everybody else who has supported me throughout this journey. A

special mention to Ke Ding, Rokey Zhang, Ye Huang, Leizhong Zhang, Yanjing Liu,

Xiang Su, Lu Zhang, all my aunts and uncles in Lanzhou, Zequn Jia, Peng He,

Zhenhuan Li, Xiaochen Fan, Prof. Guan, Jinglin Lv, Ming Qin, Jia, Xiaoyang Lu,

Xudong Song, Chengpei Xu and Si Wang, Axuan Sun, Jiangxin Xie, Xian Li, Yanhui

Su, Yue Yang, Xiguang Yang, Byron, Xiao He, Mengfan Lv, Feng Ge, Yining Hou,

Bo He, Liangyan Wang, Yan Zhang, Xiao Tan, Xiao Li, Qijian Deng, Jianhua Li,

Yi Li and Jiarong Zhang, Yang Wang and Yihui Lv, Lynn Wu and Jojo, Hongen

Wang, Zhanzhong Gu, Weiwei Du, Zijie Zhang, and Chenguang Hu.

Jiachen Kang

March 18, 2024

Sydney, Australia

vi



Contents

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Human Generalizability . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 A Causal Perspective . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 11

2.1 Generalizable Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Definition and Significance of Generalization . . . . . . . . . . 12

2.1.2 Factors Affecting Generalization . . . . . . . . . . . . . . . . . 13

2.1.3 Challenges in Achieving Generalization . . . . . . . . . . . . . 20

2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Towards Learning Generalizable Knowledge of 2D Transformations 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Knowledge Learning . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Learning of 2D Transformation Mechanisms . . . . . . . . . . 42

vii



3.4.3 Key Elements in Knowledge Learning . . . . . . . . . . . . . . 48

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Improving 2D/3D Classification with Learned Generalizable Knowl-

edge 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 The Hypothesis-Verification Process . . . . . . . . . . . . . . . 54

4.1.2 Enhancing Real-World Applicability . . . . . . . . . . . . . . 56

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 InterpretNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Methods Based on Self-supervised Learning . . . . . . . . . . 62

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 InterpretNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Regression Loss and Transfer Learning . . . . . . . . . . . . . 69

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Simulation of Human’s Visual Perception . . . . . . . . . . . . 73

4.4.2 Related Work on Parameter Estimation . . . . . . . . . . . . . 76

4.4.3 Language and Mechanisms . . . . . . . . . . . . . . . . . . . . 76

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 3D Classification with 2D Generalizable Knowledge Transfer 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Contrastive Learning for Point-image Modality . . . . . . . . . 86

5.2.2 Knowledge Transfer with Pre-trained Image Models . . . . . . 86

5.3 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Input Representations . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 PCExpert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Pre-training Setup . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Generalization and Beyond 108

6.1 Summary of Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Looking Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



List of Figures

1.1 A simplified causal graph of the image generation process . . . . . . . 6

2.1 Sample in-game images (left column) rendered with GTA V [60] and

their semantic map annotations (right column). . . . . . . . . . . . . 16

3.1 The causal graph of image transformation . . . . . . . . . . . . . . . 38

3.2 The forward process of three CNN models used for knowledge learn-

ing. (a) CNN pair: paired images x and xf are concatenated in

channel dimension before being fed into CNN. The transformation

information is encoded as representations in the latent space, which

are then sent to the fully connected (FC) layer; (b) Siamese network:

x and xf are fed into CNN separately. The representations are then

concatenated and fed into the FC layer; (c) CNN single: Only the

transformed images xf are fed into CNN and encoded. The represen-

tations are then linearly transformed through the FC layer, and the

2D transformation parameters are predicted as output. . . . . . . . . 39

3.3 The performance of CNN pair for individual rotation learning. (left)

Predictions of rotation angle vs. the ground truth (normalized to

[−1, 1]) in test set. (right) Distributions of absolute percentage errors

(in %) of all data points in the dataset. . . . . . . . . . . . . . . . . 44

3.4 The performance of learning individual transformations across differ-

ent models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Performance of CNN pair for individual 2D transformation learning.

(left) Rotation. (center) Scaling. (right) Translation. . . . . . . . . 45

x



3.6 Performance of CNN pair for joint 2D transformation learning. (left)

Rotation. (center) Scaling. (right) Translation. . . . . . . . . . . . 45

3.7 Performance of CNN pair in rotation learning with controlled black-

/white pixel ratios in EXP NOISE. Pixel values are swapped in MNIST b. 47

3.8 The learning curves in transformation learning across different mod-

els. Fast learning on translation and scaling and slower learning on

rotation can be observed for all models. . . . . . . . . . . . . . . . . . 49

3.9 Images obtained with the Translation CNN pair through gradient de-

cent. The image in the center is the original one x. According to the

values of θ (four of them are marked in the corners), xT are generated

through gradient descent. In each of xT , an obvious offset of the light

area from the original position (the blue dot) to the target position

can be observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Examples of training and test data. (a) Transformed CIFAR-10 im-

ages without masks. (b) Transformed CIFAR-10 images with applied

masks. (c) Masked black/white noise images. (d) Masked ImageNet

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 The InterpretNet architecture. Potential classes are hypothesized by

the classifier C, and verification on these classes is made by the

estimator E and the identifier I through the pipeline of (1) an-

alyzing possible transformations, (2) reconstructing from candidates

and (3) matching them with the sample. . . . . . . . . . . . . . . . . 55

4.2 The integration of transformation parameter estimation task through

regression loss into contrastive-based self-supervised learning. . . . . 57

4.3 The abstraction of image-text contrastive learning. The purpose of

learning is to predict the probability of consistency between the con-

tent in an image (result of transformation) and the textual description

(transformation parameters). . . . . . . . . . . . . . . . . . . . . . . 58

4.4 The intuition behind the integration of regression loss into the con-

trastive objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 The architecture for knowledge transfer learning. . . . . . . . . . . . 66

xi



4.6 The performance of classification. InterpretNet 5 and InterpretNet 10

denote InterpretNet with hypothesis k = 5 and k = 10, respectively. . 68

4.7 The classification accuracy of InterpretNet with different numbers of

candidates. Performance exceeds the basic classifier (the green dash

line) when N ⩾ 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 What is in image (a)? There are at least two ways to interpret it, i.e.,

(b) three black circles partly covered by a white triangle, or (c) three

black circles with a notch on each of them. (The former interpretation

may have a stronger tendency in perception, according to the Gestalt

principles [181].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Comparison with current SSRL methods. (a): Reconstruction-based

methods. (b): Contrastive-base methods. (c): Our approach em-

ploys a pre-trained image model to encode both point and image

data, and a modular network (PCExpert) for point cloud-specific

knowledge acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 The pipeline of PCExpert. Left: The input representations consist of

sequences of embeddings, which are the summation of the patch/CLS

tokens, the type embeddings and the position embeddings for the re-

spective point and image data. Middle: The point and image input

representations are then fed into a series of Transformer blocks. In

each block, the representations are first processed by a shared Vision

Transformer (ViT) Multi-head Self-Attention (MSA) module, and

then processed by separate Feed Forward Networks (FFNs), according

to their modality. Right: During the pre-training process, the pa-

rameters in ViT are kept frozen, while only the parameters related to

point processing and projection heads are optimized, via three objec-

tives: cross-modal contrastive (Lcm), intra-modal contrastive (Lim)

and rotation angle regression (Lreg). . . . . . . . . . . . . . . . . . . 84

5.3 Training samples used in point-image contrastive learning. Left:

Point cloud samples. Middle: Images rendered from 3D CADmeshes.

Right: Images rendered directly from the original point clouds, with

the shape and details well preserved. . . . . . . . . . . . . . . . . . . 94

xii



5.4 left: Gradient calculation is based on Lcm and Lreg, excluding Lim.

Optimizing for Lreg (the red curve) concurrently results in a reduction

of Lim (green). right: Gradient calculation is based on Lcm and Lim,

excluding Lreg. Optimizing for Lim has no effect on Lreg. . . . . . . . 105

xiii



List of Tables

3.1 The parameters of 2D transformations investigated in experiments.

Each parameter is uniformly sampled within its range. . . . . . . . . 41

3.2 The training and test data used in the three groups of experiments

for knowledge learning. Five example images are provided for each

dataset to demonstrate the 2D transformations in each experiment.

These transformations, shown from left to right, include the orig-

inal image, rotation, translation, scaling and a combination of the

three. To prevent potential artifacts being generated during transfor-

mations, such as slanted image edges, a circular mask is applied to

CIFAR-10 and Noise images. . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 The architecture of models for knowledge learning. . . . . . . . . . . 43

3.4 Performance metrics of the CNN pair across various experiments, re-

porting the mean and median Absolute Percentage Error (APE, %)

for transformations of rotation, scaling and translation. . . . . . . . 48

4.1 Effect of the regression loss (Reg) and knowledge transferred from

CLIP (Reg+CLIP) on classification accuracy on ModelNet40 and

ScanObjectNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Comparison between two loss functions for the regression loss. . . . . 72

4.3 The effect of the regression loss incorporation on different model ar-

chitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiv



5.1 Classification results on ScanObjectNN. SO-BG, SO-OBJ, and SO-

PB: the OBJ BG, the OBJ ONLY, and the PB T50 RS variants of

the ScanObjectNN dataset, respectively. ∗: Results based on Support

Vector Machines (SVMs). CL: Methods that are based on contrastive

learning are marked with
√
. The overall accuracy (%) is reported. . 97

5.2 Classification results on ModelNet40−1k. “1k” signifies that 1, 024

points are sampled from each sample during the training and test

stages. ∗: Results based on Support Vector Machines (SVMs). CL:

Methods that are based on contrastive learning are marked with
√
.

The overall accuracy (%) is reported. . . . . . . . . . . . . . . . . . 99

5.3 Few-shot classification results on ModelNet40. The overall accuracy

(%) is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Ablation study on the effectiveness of incorporating FFNs. SO-BG:

the OBJ BG split of the ScanObjectNN dataset. MN-1k: the 1k-

sampling setting of the ModelNet40 dataset. The overall accuracy

(%) under the LINEAR protocol is reported. . . . . . . . . . . . . . . 102

5.5 Ablation on network architecture. SO-BG: the OBJ BG split of the

ScanObjectNN dataset. MN-1k: the 1k-sampling setting of the Mod-

elNet40 dataset. The overall accuracy (%) under the LINEAR protocol

is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Comparison of PCExpert performance pre-trained with mesh ren-

dered (PCExpert-M) and point cloud rendered images (PCExpert-

P). SO-BG, SO-OBJ, and SO-PB: the OBJ BG, the OBJ ONLY, and

the PB T50 RS variants of the ScanObjectNN dataset, respectively.

MN-1k: the 1k-sampling setting of the ModelNet40 dataset. MN-

iwjs: the i-way j-shot few-shot setting of the ModelNet40 dataset.

The overall accuracy (%) is reported. . . . . . . . . . . . . . . . . . . 106

5.7 Ablation on pre-training objectives. Overall accuracy (%) on the

ScanObjectNN OBJ BG (SO-BG) benchmark under the LINEAR pro-

tocol are reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

1



Chapter 1

Introduction

1.1 Background

Deep learning algorithms based on neural networks (NN) have made rapid progress

in the past two decades. These algorithms have impressive performance in challeng-

ing tasks such as image recognition, image generation, machine translation, robotics,

etc. However, one of the main problems current deep learning community encoun-

ters with is out-of-distribution (o.o.d.) generalization. Most of these algorithms

are based on statistical learning principles, and thus strongly rely on the assump-

tion of i.i.d., i.e., the training data and test data are independently and identically

distributed. In practice, however, this assumption could be violated when the dis-

tribution of the training dataset is not representative to that in the real scenario,

which leads to performance drop on the actual production data (i.e., test data)

comparing with the training data. This situation is also described as generaliza-

tion performance drop under covariate shift [1], which has become one of the main

challenges that the deep learning community encounters nowadays.

To tackle the problem of o.o.d. generalization performance drop, extensive studies

have been carried out recently. One obvious category of solutions is data-centric.

Under the assumption of i.i.d., the more precisely the distribution of the training

dataset can approximate to that in real production environment, the better perfor-

mance we can obtain. This is why the current deep learning algorithms typically

require extensive training datasets. But the question is: what constitutes an ad-
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equately extensive dataset? ImageNet [2], a standard dataset extensively used for

training classification and detection algorithms, contains more than 14 million im-

ages, with around one thousand images in each synonym set. However, even models

trained on this vast dataset have suffered from 40 − 45% performance drop when

evaluated on ObjectNet [3]. ObjectNet is a bias-controlled dataset that generates

thousands of images through 600 combinations of parameters, only intervening on

three factors of variation during the photo generation process, including viewpoint,

object rotation and background. This implies that should we attempt to construct a

sufficiently large dataset to approximate the distribution of real-world data, by con-

sidering all possible combinations of parameters of factors of variation, the number

of necessary data points would approach infinite. Similar generalization problems

in various sensory domains have been reported in deep learning literature, such as

3D object modeling [4], [5], natural language processing [6], [7], time series signal

processing [8]–[10], etc.

Furthermore, in the paradigm of supervised learning, each training data point is

required to be labeled. Take ImageNet [2] again as an example, each image is

manually annotated with one or some of more than twenty thousand labels. This is

merely the tip of the iceberg, though. Compared with ImageNet where every image

is only attached with some word labels and a few of bounding box coordinates,

datasets suitable for training semantic segmentation require pixel-level metadata

which need orders of magnitude longer time to annotate. It is reported in [11],

[12] that for images with high-quality semantic annotations in CamVid [11] and

Cityscapes [12] datasets, it took 60 and 90 minutes on average to label a single image,

respectively. The time-consuming and therefore prohibitively expensive human labor

work usually result in insufficient dataset size [13]. Besides, sometimes annotation

is not able to provide complete information of content in images due to occlusion,

lighting conditions, etc. [14]. In extreme scenarios, correct annotation on real world

images is impossible [15].

In summary, despite the remarkable advancements in deep learning, generalization

performance drop remains a challenging problem. Although enlarging the training

dataset may alleviate this problem, particularly with the advancements of multi-

modal generative algorithms empowered by large language models (LLMs), the fea-
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sibility and cost associated with unlimited expanding of datasets make this approach

an arduous and potentially unsustainable path. Perhaps this is an inevitable path?

Or not? Before further discussion, let us reflect on ourselves, and examine how

humans perform in terms of generalizability.

1.1.1 Human Generalizability

To begin with, let us simply take image recognition task as an example. When

we have seen elephants, whether in documentaries or in real life, the concept of

elephants has left an impression in our minds. Later, when we saw a photo of an

elephant, we could naturally associate this photo with the concept of an elephant.

This is also what most current state-of-the-art neural networks can do with a high

accuracy rate. But what if the image is a top view photo taken with a drone, or

a close-up one of an elephant nose? And how about an elephant in a refrigerator,

or a purple elephant drawn by a kindergarten kid? As human beings, there is a

high probability that we can still recognize the content in the image. Note that, the

data required for human learning a new concept is also inevitably limited. In other

words, we can generalize the concept of an elephant to novel scenarios with efficiently

learned knowledge. It’s quite questionable, though, whether neural networks can do

the same, given the reports of failures caused by various unintentional or intentional

interference [16], [17].

The ability of infants to efficiently acquire knowledge and flexibly reuse them in

novel scenarios has been extensively studied [18]–[21]. Some researchers refer to this

generalizability as systematicity [22] in language learning. A more easily grasped

description appears in Gary Marcus’s discussion in [23]. He describes human cogni-

tion activities as the “Algebraic Mind”, indicating human mind as a “computer-like

manipulator” of symbolic variables. One of the properties of algebraic operations is

symmetry, resembling human cognition ability. That is, if human learn the knowl-

edge of a concept or mechanism, they can generalize this knowledge to other related

or even unrelated domains. For instance, in the aforementioned example of elephant

images, it’s quite unlikely in reality for an elephant to appear in a refrigerator, yet

this does not hinder human from recognizing. It is even a bold assertion to say

that humans are capable of recognizing an elephant regardless of its location. The
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concept of an elephant is disentangled from other factors of variation and exhibits

symmetry.

In mathematics, symmetry can be described as an intrinsic property of a mathemat-

ical object which causes it to remain invariant under certain classes of transforma-

tions [24]. Consequently, symmetry in deep learning algorithms can be concretely

defined as follows.

Definition 1.1.1 (Symmetry). Consider a machine learning algorithm designed to

approximate a function f : X→ Y, where X and Y represent the input and output

spaces, respectively. The function f is said to exhibit symmetry with respect to a set

of transformations T , if for every transformation t ∈ T applied to X, the function’s

output remains invariant. Mathematically, this symmetry property is defined as:

f(X ) = f( t(X) ), ∀ t ∈ T

In this context, symmetry refers to the invariance of the learned information in the

dataset {X,Y} under the specified transformations T .

Based on this definition, it can also be expressed that the learned information (pa-

rameterized in f) is disentangled from the transformations T . In this thesis, the

learned information that is symmetric or disentangled is also referred to as “gen-

eralizable knowledge”. Based on the findings and conclusions drawn from the

aforementioned research, we assume that it is precisely the acquisition of generaliz-

able knowledge that accounts for humans’ remarkable generalizability. This leads to

another plausible hypothesis: should machines also acquire generalizable knowledge,

their generalizability could also be enhanced. We now discuss why acquisition of

generalizable knowledge can be challenging for machines.

1.1.2 A Causal Perspective

Let us return to the example of elephant images. From the causal perspective, we

can think of image generation process as a result of the interaction of various mecha-

nisms. In elephant images, the mechanisms include those intrinsically related to the

concept of elephants, such as the shape, color and size of various body parts, char-

acteristics of the elephant’s skeleton (which determines the positional relationship
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of these body parts), the characteristics of materials of the skin (which determines

the way the light reflects), etc. In addition, there are some indirectly relevant mech-

anisms, such as the environment, the intensity of sunlight when taking the photo,

the position and angle of the camera, etc. These mechanisms are the cause by which

a photo presents its content.

If a causal graph is created according to the generation process of a photo (Fig-

ure 1.1), it can be found that:

• Classification tasks infer along the anti-causal direction, and the label (cause)

variable is not the direct cause of the image (effect) variable.

• Environment variable U1 acts as the confounder.

• Image capturing equipment (e.g. a camera) variable U2 is another source of

distribution shift in popular computer vision datasets.

Therefore, in order to make robust prediction on E(Y |X) in cases of distribution

shift, we should also condition on variable U1 at least, which is impossible though,

because image X is the only observable variable that can be conditioned on. This

may explain how performance drop happens with distribution shift, and why im-

proving o.o.d. generalization is a very challenging task.

XU2

U1

Y

Figure 1.1: A simplified causal graph of the image generation process. X: image

variable, Y : ground truth (label of the image), U1: variables of objects in the

environments, such as foreground subject, background objects, the sunlight, etc.,

U2: variables of the image capturing equipment, such as position and view angle

of the camera, exposure parameters, etc. Variables contained in U1 and U2 are all

unobservable, i.e., they are not available in the dataset.
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While children gain generalizable knowledge and understand physical mechanisms

through extensive observations and experimentation over time [25]–[27], building

foundations for object perception and future knowledge acquisition [20], [28], [29],

such opportunities are rarely available to existing deep learning models, which can

only learn from samples drawn from the joint distribution of these mechanisms.

Current datasets for visual learning inevitably introduce confounding mechanisms,

which make it difficult for models to learn unbiased representations and to acquire

disentangled knowledge [30]–[32].

Thus, this leads us to the key questions in this thesis:

• Is there a methodology that allows deep learning models to acquire generaliz-

able knowledge? If yes,

• How to exploit the knowledge in computer vision tasks?

These questions serve as the core motivation in this thesis.

1.2 Overview

In order to address the research questions mentioned above, the following objectives

and contributions are accomplished in my PhD studies.

• Through specifically designed synthetic datasets and learning tasks, general-

izable knowledge of 2D transformation can be acquired utilizing deep neural

networks (DNN).

• We propose InterpretNet, a novel architecture that can explicitly exploit the

generalizable knowledge acquired by DNNs in handwritten digit classification

tasks. InterpretNet exhibits remarkable o.o.d. performance under covariate

shift.

• We integrate the methodology of generalizable knowledge learning into self-

supervised learning, thereby enhancing the generalizability of DNN models in

encoding 3D point clouds.

• We devise a novel transfer learning architecture “PCExpert” to efficiently ex-

ploit and transfer generalizable knowledge from pre-trained image-text models
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for 3D point cloud understanding.

The above findings are discussed in depth in Chapters 3 to 5 in this thesis. These

findings also resulted in the following publications:

• J. Kang, W. Jia, and X. He, “Toward Extracting and Exploiting Generalizable

Knowledge of Deep 2D Transformations in Computer Vision,” Neurocomput-

ing, 2023.

DOI: https://doi.org/10.1016/j.neucom.2023.126882

• J. Kang, W. Jia, X. He, and K. M. Lam, “Point Clouds Are Specialized Images:

A Knowledge Transfer Approach for 3D Understanding,” IEEE Transactions

on Multimedia, 2023. Under review.

• J. Kang, W. Jia, and X. He, “Disentangled Knowledge is Generalizable: A

Cognitive Perspective,” Under submission.

The rest of the thesis is organized as follows:

• In Chapter 2, we conduct a comprehensive literature review to lay a solid foun-

dation for the investigations and discussions that follow in subsequent chapters.

We first delve into the definition of generalization and the significance of this

concept. We also explore existing works and challenges in improving model

generalization, which is crucial to understand the context of the research in

this thesis. Furthermore, we provide a comparative analysis of various method-

ologies on transfer learning, identifying gaps that our research aims to fill. By

integrating the insights from previous studies, Chapter 2 establishes the stage

for our original contributions presented in the later chapters.

• We begin our work with Chapter 3 by exploring the learnability of generaliz-

able knowledge, through a series of experiments focusing on 2D transforma-

tions such as rotation, scaling, and translation. The aim of the exploration

is to establish the methodology enabling DNNs to estimate the parameters of

transformations applied to an image, regardless of the image’s semantic do-

main, like human beings. Our results demonstrates that utilizing a convolution

neural network that accept image pairs as inputs alongside causal synthetic

datasets enables the machine to acquire knowledge about 2D transformations
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that is generalizable to unrelated semantic domains. This finding has provided

us with the toolkit to disentangle specific knowledge, and laid the foundation

for further exploiting this knowledge.

• In Chapter 4, we investigate potential ways to exploit generalizable knowledge

in downstream tasks. Inspired by the “hypothesis-verification” interpretation

process of humans, we propose InterpretNet architecture for handwritten digit

classification. InterpretNet consisting of two distinct modules: an estimator

and an identifier, each of which equips generalizable knowledge acquired

with the methodology introduced in Chapter 3. The results show that In-

terpretNet not only classifies images under covariate shift with significantly

higher test accuracy, but also provides underlying explanations, which closely

resembles human perception.

Furthermore, we also explore a more effective and efficient way to exploit

generalizable knowledge in real-world tasks, i.e., through the integration of a

regression loss into the framework of self-supervised learning. This approach

allows us to incorporate generalizable knowledge into a DNN model in a more

implicit manner, and facilitate the learning of more descriptive representations.

We also discuss the relationship between image-text contrastive learning and

generalizable knowledge learning, which forms our hypothesis that models pre-

trained in this manner exhibit enhanced generalizability. To validate this

hypothesis, we conduct experiments on complex and realistic datasets such as

3D point clouds. Our results indicate a significant improvement in the model’s

representation capability and accuracy in point cloud classification tasks.

• In Chapter 5, we take a further step in examining the benefits of generalizable

knowledge that is acquired through large-scale text-image contrastive learning.

We introduce PCExpert, a novel architecture that exploits and transfers the

knowledge of 2D images to 3D point cloud understanding. Our results reveal

that transferring generalizable knowledge from a pre-trained text-image model

significantly enhances the model’s representation capability for point clouds,

which further strengthens our understanding of the learning and exploitation

of generalizable knowledge.
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• In Chapter 6, we conclude this thesis by integrating the key findings of our

work and implications our contributions have for the field of study. Moreover,

we briefly discuss some of the challenges ahead in future research, and how

the insights gained through our research can be potentially useful addressing

these challenges.
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Chapter 2

Literature Review

This chapter conducts an in-depth review of literature, aiming to understand two

core topics that are critically relevant to this thesis. The first topic investigates

the foundations and development of generalization, a core concept that drives the

field towards more robust and versatile models. The second topic examines the

various methodologies developed for transfer learning, a learning paradigm that

utilizes knowledge acquired by a model on one problem and applies it to a different

problem.

In Section 2.1, a comprehensive analysis of the first topic is conducted, focusing on

the concept of generalization and its related aspects. We begin with Section 2.1.1,

by exploring the definition and paradigms that have contributed to shaping our

understanding of this concept. This is followed by Section 2.1.2, which provides a

review of various factors that could affect generalizability of deep learning models.

Section 2.1.3 concludes this part by discussing the potential gaps and challenges for

future exploration.

To address the second topic, Section 2.2 presents an in-depth review of current

works on transfer learning. We first review the technique of domain adaptation

in Section 2.2.1, which is one of the most popular methodologies that facilitate

the transfer of learned knowledge across different but related domains. Then, Sec-

tion 2.2.2 discusses the technique of fine-tuning as a strategy for adapting pre-trained

models to new tasks or domains.
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The body of literature reviewed in this chapter predominantly consists of articles

in the studies of deep learning that were published within the last five years. The

majority of these publications appear in academic conferences and journals that hold

a high level of scholarly reputation. A smaller portion comprises articles that, while

published on Arxiv and not peer-reviewed, have had considerable citations from the

community.

The scope of this review is deliberately focused on emerging trends and methodolo-

gies in the field of deep learning, particularly with regard to generalizable knowledge

and its application in 2D and 3D understanding tasks. While this focus allows for

a detailed discussion, it also inherently poses limitations. For instance, this scope

may neglect machine learning studies in general and interdisciplinary approaches

which might contribute to the broader understanding of these topics. Moreover,

the exclusion of older, foundational works could potentially overlook their enduring

relevance.

2.1 Generalizable Knowledge

2.1.1 Definition and Significance of Generalization

Generalization in the context of deep learning refers to the model’s ability to apply

learned knowledge to unseen data effectively. The performance gap between training

data and test data is a measure of generalization. A narrower gap generally indicates

better generalization. This characteristic is central to the utility of deep learning

models, which represents the quality of predictions or decisions in novel situations.

Goodfellow et al. [33] defined generalization as “the ability to perform well on previ-

ously unobserved inputs”. A contrastive concept is overfitting, which “occurs when

the gap between the training error and test error is too large” [33]. Generalization

addresses the challenge of overfitting by emphasizing the understanding of patterns

that are universally applicable rather than those that are dataset-specific [33]. In

this thesis, the usage and definition of generalization (or generalizable knowledge)

are aligned with the above definition.

Because generalization in machine learning determines the ability of a model to
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perform on new, unseen data, which can be effectively quantified in practical tasks,

the concept becomes the cornerstone of a model’s utility in practical applications.

Without this, a model would fail to deliver reliable results in real-world scenarios,

regardless of its accuracy on training data. This concept is particularly significant

in the context of deep learning due to the complexity and high dimensionality of the

deep neural networks involved. Deep neural networks, known for their capacity to

learn intricate patterns in large datasets, can easily overfit to training data, capturing

noise and specificity that do not generalize to broader contexts. Therefore, the

pursuit of generalization continuously pushes the boundaries of model architecture

design and training methodologies, and makes deep neural networks a transformative

force across a wide range of academic and industrial fields.

2.1.2 Factors Affecting Generalization

In earlier deep learning research, researchers have explored how generalization cor-

relates with various factors, including the size of datasets [34], regularization tech-

niques [35], [36], training dynamics [37], etc. This section provides an in-depth

review focusing on current studies that explore the factors affecting model general-

ization, including dataset diversity, regularization, and model complexity.

Dataset Diversity

The diversity and size of the dataset play a significant role in model generalization.

Diverse datasets covering a wide range of data variations provide more information

for models to learn from and help them to generalize better.

One technique to diversify a dataset is data augmentation. Data augmentation is a

common practice to improve model generalization by enlarging the training dataset

using various transformations on the original data. Techniques like rotation, scaling,

and cropping are employed to create a more diversified dataset that helps in making

the model more robust to unseen data [38]–[42].

Besides traditional image transformation techniques such as rotation, flipping, color

intensity variations, etc., some studies aim at generating abundant variations be-

yond the support of training data by randomizing certain parameters during image
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generation process. These studies can be categorized into domain randomization. In

object detection tasks [43]–[45], various objects with random pose, scale, color, tex-

ture and position were placed in 3D scenes. Illustration parameters, camera angle,

etc., were adjusted randomly within predefined ranges. Prakash et al. [46] devel-

oped this technique by introducing structured randomization. With a hierarchical

conceptual model, the probability distribution of each parameter is conditioned on

its parent parameter, so that more realistic images could be generated.

Another direction to augment data is through adversarial gradients. In study [47],

being guided by the loss gradients from a label and a domain classifier, the distribu-

tion of training data can be expanded across different domains without decreasing

label classification accuracy. Volpi et al. [48] proposed to generate “worst-case”

samples iteratively along the adversarial gradient, so that the model is allowed to

be trained to generalize to “hard” samples.

Generative models such as auto-encoder and GANs are also utilized to generate new

data by stylizing source domain images with styles from other source domains [49],

ImageNet [50], a specific style set [51], or instances from other domains [52].

However, in many scenarios it is very difficult and costly to obtain a real-world

dataset that is of abundant amount of data and with accurate labels. To address the

issue of data (or rather annotation) insufficiency, an effective way is to use synthetic

data as substitute for or complement to real data. Through the development of

computer graphics and electronic games, one can now easily create a 3D virtual

scene from scratch and render realistic images. Thanks to the structural information

architecture in graphic engines, theoretically unlimited synthetic images with pixel-

accurate annotations can be produced efficiently in the terms of time and money.

This section focuses on reviewing research related to synthetic datasets and their

role in enhancing model performance.

LINEMOD [53] is one of the earliest developed datasets that provide RGBD video

sequences and 3D models of 15 3D objects in cluttered indoor scenes with ground

truth class labels and 3D pose. It has become a popular benchmark for object

classification and 3D pose estimation tasks.

The dataset vKITTI [54], initially consisting of 35 synthetic videos with about

14



17, 000 frames was built with Unity upon real world traffic video dataset KITTI [55].

To resemble the real world traffic scenarios as closely as possible, researchers con-

structed 3D virtual worlds according to the real traffic information recorded and

annotated in KITTI, which includes positions, sizes, rotation angles of surrounding

cars and the movement information of the recording car itself. Five different scenes

in KITTI were used to cover most of driving situations. Annotations in each frame is

accurate and adequate for downstream visual learning tasks, which include detailed

properties of surrounding cars and the recording camera, depth map, instance-level

segmentation map, dense optical flow between frames, and multi-instance bounding

boxes.

Because of its rich API, Grand Theft Auto V (GTA5) by Rockerstar Games [56] is

widely used in computer vision community. The game is basically a driving game

in a city scenario with realistic rendering, so it is adopted in many deep visual

learning tasks such as detection [57], crowd counting [15], segmentation [58], [59],

etc. The game was initially introduced to computer vision community by Richter

et al. [60]. The authors created 24, 996 pixel-level accurately annotated images for

semantic segmentation tasks covering 19 classes commonly seen on urban streets.

Benefit from the APIs released to the public, resources of elements appeared in a

scene including mesh, texture and shader can be tracked. Based on predetermined

association rules, related resources can be grouped and annotated to be one of

the 19 classes, so that the semantic information in that scene can be extracted.

Most importantly, these rules can be automatically constructed and propagated in

other scenes, which dramatically accelerate the annotation efficiency. The authors

reported that the annotation process for 25 thousand images completed in only 49

hours. In comparison, annotation of similar quality in Cityscapes [12] would require

90 minutes per image. Sample images rendered with GTA V and corresponding

annotations are shown in Figure 2.1.

VisDA is one of the widely used datasets constructed by Peng et al. [61] dedicated

for synthetic-to-real domain adaptation studies. VisDA can be exploited as the

off-the-shelf datasets for training deep visual domain adaptation algorithms, as the

validation and test sets are chosen from widely used public datasets, e.g. Microsoft

COCO [62] and YouTube Bounding Boxes [63] according to the object categories
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Figure 2.1: Sample in-game images (left column) rendered with GTA V [60] and

their semantic map annotations (right column).

in the source domain without further manual filtering. The datasets were updated

in [64] with the addition of two datasets, i.e., Syn2Real-D for detection task and

Syn2Real-O for open-set classification task. Syn2Real-D and Syn2Real-O adopt 3D

models of 33 more classes from ShapeNet [65] and are rendered with objects of 20

categories semi-randomly scattered in the scene.

Vehicle X is a synthetic dataset created by Yao et al. [66] dedicated for vehicle

re-identification tasks. To render images of cars, 272 3D vehicle models and 1, 362

vehicle identities were created. Unity [67] was adopted for rendering and 5 parame-

ters were adjusted to control the appearance of rendered images, including pose of

3D model, direction and intensity of light, and height and distance of camera.

In addition to the advantages of efficient synthesis and accurate annotation, another

benefit of utilizing synthetic virtual world is the possibility of controlled analysis.

Being powered by modern game engines such as Unity [67] and Unreal Engine [68],

it is possible to control nearly every single mechanism in the virtual world, while

keeping all the others unchanged. This feature is especially useful in scenarios such

as ceteris paribus analysis or “what-if analysis” where rare cases or “hard samples”

can be intentionally created and investigated, which, however, is nearly impossible
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for real world datasets.

From a causal perspective, being able to control every single mechanism means

that intervention and treatment randomization becomes possible, which will make

each mechanism detach from its causal parent, and thus get rid of confounding

association. In this way, a virtual world provides an excellent laboratory for us to

experiment on deep learning algorithms with regard to the generalization ability in

a causal theoretical framework.

Regularization

Regularization is crucial in preventing overfitting and thereby improving model gen-

eralization. Techniques such as L1 and L2 regularization, dropout, and early stop-

ping have been employed to achieve better generalization by introducing some form

of constraint or penalty on the complexity of the model.

Huang et al. [69] proposed a novel regularization technique, called Feature Variance

Regularization (FVR), focusing on penalizing the empirical variance of features dur-

ing the training process. The concept behind FVR is to induce a form of confusion in

feature extraction, preventing models from learning features overly specific to train-

ing samples. The authors theoretically and empirically justified FVR, demonstrat-

ing its effectiveness across multiple visual tasks such as classification and semantic

segmentation.

In study [70], the authors proposed Guillotine Regularization (GR), a technique

that involves training a deep neural network with self-supervised learning and sub-

sequently removing its last few projector layers for downstream tasks. This proposed

approach is based on the hypothesis that the performances across layers are different

which can be affected by optimization methods and data distribution during train-

ing. The research highlights that when the positive views are more aligned with the

downstream task, the optimal layer to use is closer to the last layer. This method

has shown to significantly boost performance in applications like ImageNet classifi-

cation, where more than 30 percentage improvement in accuracy can be gained.

Gao et al. [71] proposed “coupled tensor norm regularization” to reduce overfitting

by ensuring that both the model’s output feature matrix and the input data lie in a
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low-dimensional manifold. In the context of DNNs, the coupled tensor norm regu-

larization presents as non-convex and non-differentiable. To address this, the study

introduces an auxiliary variable leading to a quadratic penalty formulation. An

alternating minimization method is then employed to manage the non-separability

of the optimization problem. The results indicate that the technique outperforms

traditional methods such as the L1, L2 and Tikhonov regularizations, particularly

in scenarios with limited data availability.

Bacanin et al. [72] presented a novel approach to optimize the dropout regularization

in convolutional neural networks. This method employs an automated framework

that is based on a hybridized version of the Sine Cosine Algorithm and Firefly

Algorithm swarm meta-heuristics to determine the optimal dropout rate. The ex-

perimental results on four benchmark datasets indicate that the proposed method

outperforms other state-of-the-art methods in terms of classification accuracy.

The technique of batch normalization, which helps in stabilizing the training of deep

neural networks, has also shown to improve model generalization significantly [73]–

[76]. Ioffe et al. [75] argued that batch normalization regularizes the model, reduc-

ing the need for dropout. Specifically, in experiments on the MNIST dataset, the

authors found that batch normalization made the distribution of inputs more stable

and reduced internal covariate shift. This stability translated into faster training and

higher accuracy of the network. Furthermore, the authors applied batch normaliza-

tion to an ImageNet classification network and demonstrated that it can match the

network’s performance using only 7% of the training steps and exceed its accuracy

by a substantial margin.

Santurkar et al. [74] challenged the common belief that the effectiveness of batch

normalization stems from the reduction of internal covariate shift during training.

Instead, they emphasized its role in creating models that depend less on single

directions in activation space, which was first discussed by Morcos et al. [77]. Ad-

ditionally, the study highlights the impact of batch normalization in decoupling the

length and direction of weights in a network, which has been shown to enhance

training efficiency through faster convergence.

Cakaj et al. [76] introduced a novel method called spectral batch normalization
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(SBN), which aims to improve generalization by normalizing feature maps in the

frequency domain. They argued that this approach prevents large values in the

feature maps throughout the training process, thereby reducing overfitting. The

experimental results show a notable increase in network accuracy when SBN is

employed alongside the traditional batch normalization.

Model Complexity and Capacity

The capacity and complexity of a deep learning model are crucial factors affecting

its generalization. It was believed that models with high complexity might fit the

training data very well but fail to generalize on unseen data. Various studies have

delved into understanding the balance between model complexity and generalization,

some of which present findings that contradict traditional perspectives.

Kawaguchi et al. [78] explored the intricacies of model generalization, addressing a

central question in the field: How do deep learning models generalize well despite

their large capacity and complexity. The paper challenges the traditional belief

that models with large hypothesis-space complexity inherently lead to poor gener-

alization. It illustrates that even models with overwhelming capacity can achieve

small test errors and expected risks, thus maintaining good generalization. Specif-

ically, the paper suggests that conventional wisdom about the norm of parameters

and over-parameterization may not fully explain the generalization of some models,

such as over-parameterized linear models. The paper presents a theorem indicating

that over-parameterized linear models can memorize any training data and reduce

training and test errors to near zero, regardless of the norm of parameters and their

distance from ground-truth parameters.

In their survey, Hu et al. [79] examined the current research on the measurement

of model complexity in deep learning. They argued that the general proposition

from [80], which suggests that “a learned model with lower complexity generalizes

better”, may still be valid if model complexity can be analyzed in a more detailed

and systematic manner. The authors categorized model complexity into two facets:

expressive capacity and effective model complexity. The paper identifies four criti-

cal factors that influence model complexity, including model framework, model size,

optimization process and data complexity. Expressive capacity has been explored
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from four aspects, which are depth efficiency, width efficiency, expressible functional

space and VC dimension and Rademacher complexity. These tools provides us a nu-

anced perspective on how to systematically analyze deep learning model complexity

and its influence on the generalization and performance.

In their book titled “Geometry of Deep Learning: A Signal Processing Perspective”,

Ye [81] reviewed and extended the above discussions. A central finding presented is

the “double descent” curve, which revises the traditional bias-variance trade-off. The

curve demonstrates that as model capacity increases beyond a certain point, known

as the interpolation threshold, test performance can actually improve. This phe-

nomenon also contradicts the expected outcome of overfitting in over-parameterized

models. The author also examined the role of optimization algorithms in influenc-

ing generalization. It is found that stochastic gradient descent (SGD) introduces

a bias towards simpler models, which results in better generalization even in over-

parameterized models.

2.1.3 Challenges in Achieving Generalization

As the core problem in deep learning, the fundamental challenge in model general-

ization originates from our incomplete understanding of how deep learning models

work. Zhang et al. [82] highlighted in their study that the conventionally believed

factors contributing to improving generalization are continuously being challenged.

The authors conducted experiments where labels of the training data were replaced

randomly. Surprisingly, the convolutional neural networks for image classification

trained with stochastic gradient methods easily fit this randomized data. The paper

also theoretically demonstrates that even simple two-layer ReLU networks can ex-

press any labeling of the training data, given sufficient parameters. These findings

challenge the traditional belief that over-parameterization leads to overfitting, and

suggest that the effective capacity of neural networks might be larger than previ-

ously thought. Furthermore, this study shows that most regularization techniques

in deep learning are not necessary for generalization. These findings [82] that con-

tradict empirical and intuitive expectations unmistakably indicate a substantial gap

in our existing understanding about generalization.
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The study by Zhang et al. [82] poses a conceptual challenge to traditional statistical

learning theory. As discussed by Kawaguchi et al. in [78], theoretical frameworks

such as Vapnik–Chervonenkis Bounds, Rademacher Complexity, etc., while useful,

often fail to provide tight generalization bounds for deep neural networks that align

with empirical results. Hence, the gap between theoretical predictions and practical

outcomes in deep learning generalization is still an open challenge requiring further

research [78], [81].

It is also pointed out in [82] that the existing measures of model complexity struggle

to explain the generalization ability of large neural networks. Hu et al. [79] also

highlighted several promising research directions for effective measures of model

complexity and expressive capacity. These include cross-model complexity compar-

isons, exploration of model size bottleneck, among others. These identified directions

represent challenging aspects of generalization that await further exploration and

resolution in the field.

2.2 Transfer Learning

In the ever-evolving landscape of machine learning, transfer learning has emerged

as an important technique, especially in the realm of deep learning. This approach,

fundamentally different from traditional machine learning methodologies, involving

the core principle of leveraging pre-learned patterns or knowledge from one domain

to enhance learning in another, different, but related domain. Its growing signifi-

cance is not merely a byproduct of theoretical interest but is deeply rooted in its

practical efficacy across various applications, from computer vision to natural lan-

guage processing.

In traditional deep learning approaches, models are designed and trained for spe-

cific tasks, requiring a substantial amount of data that is often expensive and time-

consuming to collect. However, transfer learning circumvents this limitation by

adapting pre-trained models, which have been exposed to vast and diverse datasets,

to new tasks with relatively limited data. This method not only accelerates the

training process but also often leads to improvements in model performance, par-

ticularly in scenarios where data availability is a constraint.
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The conceptual foundation of transfer learning shares a connection with human

learning processes [83]. Just as humans apply knowledge gained from previous ex-

periences to new situations, transfer learning enables artificial intelligence systems to

replicate this aspect of learning efficiency. The practicality of this concept is evident

in the utilization of pre-trained neural networks. For example, models trained on

large image datasets, such as ImageNet, have been successfully adapted to medical

imaging tasks, demonstrating the versatility and power of transfer learning.

This section will delve into the seminal works and recent advancements in trans-

fer learning, exploring their theoretical foundations and practical implementations.

Two major areas in transfer learning will be focused on. In Section 2.2.1, we ex-

plore the techniques and theories behind domain adaptation. Then, typical works

of different approaches in fine-tuning are reviewed in Section 2.2.2.

2.2.1 Domain Adaptation

In this study, we mainly focus on the o.o.d. generalization problem that is caused

by domain shift. In the context of causality, domain shift can be considered as

consequence of distribution shift of parameter value(s) of one or more mechanisms,

when comparing source domain(s) (i.e., training data) with the target domain (i.e.

test data).

Formally, it is assumed that there exist K (K ⩾ 1) source domains, DS = {D(k)
S }Kk=1,

and each domain D
(k)
S = {(x(k)

i , y
(k)
i )}N

(k)
S

i=1 , where X(k), Y (k) denote input dataset and

corresponding label drawn from the domain probability distribution P
(k)
S (x, y), and

N
(k)
S denotes the size of the dataset. If K = 1 or domain label is not of concern

in the context, data points and distribution of source domain can also be denoted

as XS, Y S ∼ PS(x, y). Similarly, the target domain is DT = {(XT
i , Y

T
i )}NT

i=1, where

XT , Y T ∼ PT (x, y). In the setting of domain shift, P
(k)
S (x, y) ̸= P

(k′)
S (x, y) for k ̸= k′

and k, k′ ∈ {1, ..., K}. Moreover, P T (x, y) ̸= P
(k)
S (x, y), ∀k ∈ {1, ..., K}.

If Y T is unavailable and only XS, Y S and XT is accessible during training, it is

usually considered as a domain adaptation task. If any data from DT is unavailable

during training, then it is generally classified as a domain generalization problem.

In both settings, the objective is to find a function f : x⇒ y, so that after reducing
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the source risk ϵS(f) = E(xS ,yS)∼PS
[f(xS) ̸= yS] by training the model on the source

data, the target risk ϵT (f) = E(xT ,yT )∼PT
[f(xT ) ̸= yT ] in the test stage can also be

reduced and has ϵS(f) as the lower-bound.

In this section, mainstream methodologies and crucial techniques in domain adap-

tion and domain generalization are reviewed. In general, there exists two main

directions to adapt models from source domain to target domain with domain adap-

tation techniques, i.e., domain mapping and distribution alignment.

Domain Mapping

One of the directions involves manipulation of images in the source domain in the

term of style or texture, as if they were sampled from the distribution of the target

domain. More specifically, after domain mapping, source domain images will be

indiscriminate to domain discriminator w.r.t. the statistical information of image

style, while the semantic information remains unchanged.

One successful application of domain mapping technique is conducted by Shrivastava

et al. [84]. To tackle gaze estimation problems, the researchers proposed a refinement

network using SimGAN in order to adapt source dataset of UnityEyes [85] to target

dataset of MPIIGaze [86]. A gaze estimation network is then trained on refined

images and achieved state-of-the-art results.

In their research, several techniques and tricks are notable to improve domain adap-

tation performance. To obtain better refined images that look more realistic and

at the same time preserve the semantic information of gazing direction, local ad-

versarial loss and self-regularization loss are introduced. To make the adversarial

training more stable and reduce artifacts in generated images, a pool of refined im-

ages produced at previous stages are used so that the discriminator can be trained on

samples not only in current mini-batch (generated by the current version of GAN),

but also in the whole training process.

After this work, there have been increasing approaches on domain mapping that

continuously improve the adaptation performance and apply the technique to var-

ious applications. Bousmalis et al. [87] trained the generator by conditioning on

not only source images but also a noise vector, so theoretically the size of training
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dataset mapped to the target domain could be unlimited. Zheng et al. [14] proposed

T 2Net for single-image depth estimation. Stein et al. [88] utilized CycleGAN [89]

for their synthetic data mapping module and report performance improvement in

tasks of semantic segmentation and obstacle avoidance. In the setting of person re-

identification (re-id) tasks, where each person could be captured by multiple cameras

along his/her route of travel, it is assumed that the domain gap is caused by camera

condition e.g. locations/backgrounds, lighting conditions, quality, etc. This means

there exist multiple domains in person re-id datasets. Bak et al. [90] tackled this

problem with a multi-domain mapping approach, where one of synthetic domains is

selected and translated to target (test) domain for fine-tuning the re-identification

network. Domain mapping is conducted with CycleGAN, with addition of a regula-

tory loss similar to [84] and a foreground mask which ensure the semantic identity

information could be preserved during style translation.

Distribution Alignment

The other direction of domain adaptation is devoted to, instead of mapping one

domain to the other, aligning representational distributions of these two domains.

In other words, the feature representation for each data should be domain-invariant.

One way to do so is to directly measure and penalize the divergence between the two

representation distributions. Rozantsev et al. [91] used MaximumMean Discrepancy

(MMD) [92], [93] for divergence criterion. As a contrast, Zhang et al. [58] suggested

that we should “avoid the assumption” that there exists the function shared by

source and target domain mapping to the same representation distribution in the

context of semantic segmentation. Instead, a constraint based on label distribution

is exploited, which is based on a simpler assumption that, in cityscape images, the

proportion of pixels belonging to the same class e.g., cars, roads, etc. does not vary

too much, even across two domains. In the result, misclassifications that may be

caused by similar proportions of pixels (e.g. rider vs person) may suggest defect in

their criterion, as similar label distribution can not guarantee pixels being assigned

correct label, but it provides complementary ideas in regularizing domain shift.

An algorithm to learn domain-invariant representations in an adversarial manner

is originally proposed by Ganin et al. [94], [95]. Their algorithm, i.e., domain-
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adversarial neural network (DANN) introduces a domain classifier with a gradient

reversal layer in order to confuse the classifier which domain the input data is from.

Together with the domain classifier, a task specific network is jointly trained through

normal back-propagation process, i.e., gradient descent to improve its performance

on target domain data in the task.

This whole process can be described as a mini-max game as the parameters of

deep feature extractor tries to minimize the task specific loss while maximizing

the domain classification loss, during which the task discriminative and domain-

invariant feature representations are allowed to arise. Lee et al. [96] applied this

idea in vehicle re-identification task and obtained improved performance compared

with the baseline. Saito et al. [97] developed this idea by proposing an algorithm

called “Maximum Classifier Discrepancy” (MCD), where the two players in the

minimax game become to a feature generator and two task-specific classifiers (with

no domain classifier). Lee et al. [98] further enhanced the MCD performance by

introducing Wasserstein Distance to measure the discrepancy instead of absolute

values of output difference in the initial MCD. The approach of Conditional Domain

Adversarial Networks (CDAN) by Long et al. [99] replaces the representation used

to train the discriminator in DANN with a combination of the representation and

the classification prediction via the randomized multilinear map, to encode class

information into domain information. To reduce the domain-specific information

encoded in feature representation, Luo et al. [100] proposed a constraint on latent

space by applying penalty on KL divergence between the marginal distribution of

latent representation and the standard Gaussian.

Domain Generalization The most significant difference between domain adap-

tion and domain generalization is that the latter does not rely on the assumption

that data from target domain is available during training. Therefore, domain gener-

alization has more commonalities with real-world tasks, where the generation process

and distribution of the test data are not predictable, and it is very likely that it is

not i.i.d. with the training data.

Nevertheless, methods used in domain adaptation can still be exploited in domain

generalization approaches. Similar to the approaches of distribution alignment in
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domain adaptation, extensive studies [101]–[107] proposed to align representations

across multiple source domainsD
(k)
S , for k ∈ {1, ..., K} andK > 1, with the objective

to learn (source-)domain-invariant representations. However, without the support

of data from target domain, representations learned with these methods can not be

theoretically guaranteed to be invariant to unseen domains. It is also reported that

with a proper data augmentation technique, models can outperform the distribution

alignment methods [108].

2.2.2 Fine-tuning

Fine-tuning in transfer learning is an approach designed to tailor pre-trained models

to specific tasks or datasets. This process addresses a fundamental challenge in

machine learning: the need for large, diverse datasets for training robust models.

Initially, a model is pre-trained on a large, general dataset (source domain), where it

learns a broad range of knowledge. These knowledge represented as learned weights

serve as the starting point. During fine-tuning, the model is further trained (usually

with a reduced learning rate) on a smaller, target dataset (target domain). This

process involves selectively retraining (i.e., fine-tuning) some layers of the network

while keeping others fixed, in order to adjusts the model’s parameters to optimize

performance on a smaller, task-specific dataset. The degree to which layers are fine-

tuned can vary; in some cases, only the final layers are updated, while in others,

more extensive fine-tuning is conducted.

The goal is to leverage the generic knowledge learned during the initial training

while adapting the model to capture the nuances of the new task. This balancing

between retaining learned knowledge and adapting to new information is at the

heart of fine-tuning. By doing so, fine-tuning solves the problem of data scarcity

and specificity, allowing for the efficient application of powerful, pre-trained models

to a wide array of specialized tasks. In this section, we conduct literature review in

two areas: computer vision (CV) and natural language processing (NLP).
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Computer Vision

In the context of computer vision, fine-tuning has proven particularly advantageous

and effective due to the hierarchical nature of learned features in convolutional neural

networks (CNNs). In the layered structure of CNNs, lower layers process basic

patterns and often capture low-level features (e.g., edges and textures in images),

which are applicable across various tasks, while higher layers tend to handle high-

level concepts and learn task-specific features. Therefore, the higher layers are more

adaptable through fine-tuning and are usually tailored to specific vision tasks [109].

In this way, by leveraging existing knowledge of visual features, the general features

in pre-trained models can be repurposed to enhance learning efficiency and accuracy

for specific tasks which share similar visual properties.

In this section, we review in literature the role of fine-tuning in enhancing the

performance of deep convolutional neural networks. We classify the existing studies

into four categories, based on the degree of fine-tuning involved. Then we choose a

representative study from each category for an in-depth review.

Head Fine-tuning In their study, Wan et al. [110] focused on improving radar

signal sorting using a deep transfer learning framework. The authors deployed un-

manned aerial vehicle swarms to collect data from various areas (source domain),

which is then used to pre-train deep learning models. Subsequently, these models

were fine-tuned using data from specific target areas (target domain). The fine-

tuning strategy involved using the lower layers of convolutional neural networks,

which tend to capture more abstract and universal features, and adapting the top

fully-connected layers to specific problems. By effectively mitigating issues like in-

terference and missing pulses in main sorting processing, this approach shows higher

signal sorting accuracy compared to baseline methods. The mean Average Preci-

sion (mAP) scores for models pre-trained with radar signal are higher than both

the baseline (without pre-training) and ImageNet pre-trained models, demonstrat-

ing the effectiveness of transfer learning. The results also indicate that using data

closely resembling the target domain as the source domain significantly facilitates

knowledge transfer and improves model accuracy.
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Change-Head Fine-tuning In the study [111], the researchers removed the fully-

connected head layers and employ a new head layer during fine-tuning based on a

modified ResNet50 [112] architecture for leaf classification. Additionally, this study

used a two-phase fine-tuning approach. In the first phase, the initial layers of the pre-

trained ResNet50 model are frozen to preserve the generic features they have learned.

The newly added layers are trained using a different learning rate obtained by the

one-cycle policy. In the second phase, the entire model is unfrozen and trained,

during which, the image size is progressively increased from 80 to 180 pixels. This

method allows the model to leverage both generic features learned from ImageNet

and specific features relevant to leaf classification.

Last-Layer Fine-tuning Ay et al. [113] focused on leveraging deep transfer learn-

ing for classifying stages of pressure injuries using various convolutional neural net-

works. Six different CNN models pre-trained on ImageNet were employed in this

study, including DenseNet121, InceptionV3, MobilNetV2, ResNet50, ResNet152,

and VGG16. During fine-tuning, only the parameters of the last layer are updated

through back propagation, while the parameters of all the other layers are kept

frozen. This approach, combined with early stopping and regularization techniques

(dropout and L2 regularization), effectively adapts these pre-trained networks for

the specialized classification task in medical imaging. Among the six CNN models,

the ResNets consistently demonstrate superior performance over the other architec-

tures.

Full-Model Fine-tuning The study in [114] proposed a novel transfer learning

approach to address the challenge of limited training data in medical imaging tasks.

This approach involved training a convolutional neural network on a large number

of unlabeled medical images and then fine-tuning it on a smaller, labeled dataset for

specific tasks like skin and breast cancer classification. The study employed parallel

convolutional layers with various filter sizes and multiple skipping connections in

the CNN architecture for effective feature extraction. During training, techniques

including batch normalization, dropout, and global average pooling were also incor-

porated to optimize training and reduce over-fitting. The model, with its hybrid

architecture, is subjected to a two-phase training procedure. It is first pre-trained
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from scratch on the unlabeled source domain dataset, and then fine-tuned on the

labeled target domain dataset for the specific classification task. The experimental

results demonstrate that models trained with this two-phase fine-tuning approach

consistently exhibit an approximate 10% improvement in F1-score for challenging

classification tasks, compared to models trained from scratch.

Natural Language Processing

In the area of NLP, due to its advantage in scalability, the transformer architecture

has become the predominant framework. Transformers are typically pre-trained on

vast textual corpora data and undergo fine-tuning tailored to enhance performance

on specific downstream tasks. Several popular fine-tuning strategies are discussed

in this section.

Full-Model Fine-tuning The study in [115] focused on the variance in perfor-

mance during the fine-tuning of the entire BERT (340 million parameters) [116], with

the final layer being randomly initialized. Extensive experiments were conducted on

the GLUE benchmark, modifying only random seeds controlling weight initialization

and training data order. The authors observed significant performance differences

due to these two factors, and some seeds consistently perform better than others

across different tasks. In certain cases, the fine-tuned BERT even demonstrates

comparable performance with more newer models. Based on these observations, the

authors recommended best practices for early stopping using their algorithm that

monitors the training curves and correlation plots. This early stopping strategy help

optimize the fine-tuning efficiency and save computational resources.

Prompt and Model Fine-tuning In addition to full model fine-tuning, Ben et

al. [117] proposed to train prompts that are crucial parameters in down-stream

tasks. This study introduced PADA, an innovative “Prompt learning for Any-

Domain Adaptation” in NLP. The core of PADA’s methodology involves generating

prompts based on Domain Related Features (DRFs), which are semantically sig-

nificant tokens associated with source domains. These prompts are then used to

predict task labels for new domains. The training process of PADA is a two-step

framework. Initially, the model is fine-tuned to generate prompts based on an exam-
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ple’s domain. Subsequently, it is trained on the example’s label using these prompts.

Tested across various NLP tasks, PADA demonstrates significant improvements over

existing methods, especially in scenarios involving multi-source adaptation.

Parameter Efficient Fine-tuning Lester et al. [118] presented an innovative

approach to fine-tune pre-trained language models with the use of “prompt tuning”

technique for specific NLP tasks. This technique introduces a small set of trainable

parameters act as the prompt and prepend them to the input while keeping the

parameters of the original language model frozen during fine-tuning. The experi-

ments show that prompt tuning can achieve comparable or improved performance

to full model fine-tuning, especially in scenarios where generalization to different

domains is crucial. The approach effectively leverages the pre-trained knowledge

in large language models like T5 while updating a significantly smaller number of

parameters, making it a more efficient method for adapting large language models

to various tasks.

Hu et al. [119] introduced an alternative approach of parameter efficient fine-tuning.

They introduced the “Low-Rank Adaptation” (LoRA) of large language models,

like GPT-3, significantly reducing computational requirements. Specifically, LoRA

injects trainable low-rank matrices A and B into the self-attention modules in each

transformer block, in order to approximate the weight update of parameters of

the original transformer during fine-tuning. Formally, this can be expressed as

W0 + ∆W = W0 + BA, where W0 represents the original parameters. In this way,

W0 can be kept frozen during fine-tuning and only parameters of A and B are

updated instead. This method reduces the number of trainable parameters by up to

10, 000 times and GPU memory requirement by three times, compared to full model

fine-tuning. Remarkably, it maintains or even improves performance across various

benchmarks and backbone architectures.

2.3 Summary

In summary, this chapter provides a detailed review of two key areas relevant to

the thesis: the concept of generalization in deep learning and the methodologies of
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transfer learning. Generalization is firstly explored, including its definition, factors

affecting it, and existing challenges. Then we examine various techniques of transfer

learning, focusing on domain adaptation and fine-tuning of pre-trained models for

new tasks or domains.

It is shown in the literature review that our understanding of model generalization,

particularly in the o.o.d. setting, remains limited, with significant gaps in research.

Moreover, the in-depth investigation into various transfer learning methodologies

indicates that domain adaptation is not very effective in addressing o.o.d. gener-

alization challenges, given its reliance on the knowledge in target domain. This

constraint limits its adoption in our study. Instead, our approaches predominantly

focus on leveraging knowledge by explicit exploitation with InterpretNet (Chap-

ter 4), and implicit transferring from pre-trained models via fine-tuning (Chapters 4

and 5).
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Chapter 3

Towards Learning Generalizable

Knowledge of 2D Transformations

The first question we focus on is the learnability of generalizable knowledge. In this

chapter, we devise a synthetic dataset and corresponding learning tasks based on

causal theory, aiming to investigate the methodology for learning knowledge of 2D

transformations, including rotation, scaling, and translation. Our objective is to

enable DNN models to possess a human-like understanding of 2D transformations,

such that the machine should be capable of determining whether, and to what extent,

an image has been transformed, regardless of the image’s semantic domain. The

experimental results indicate that through our designed methodology, the knowledge

acquired by DNNs exhibits a degree of generalizability. Interestingly, DNNs can even

learn patterns of 2D transformations from meaningless black-and-white noise. This

finding has provided us with the potential tools to disentangle specific knowledge,

and laid the foundation for further exploiting this knowledge.

3.1 Introduction

As introduced in Chapter 1, we can think of image generation process as a result of

the interaction of various mechanisms. To begin our exploration into the learnability

of generalizable knowledge of a mechanism, it is essential to first define what we

mean by the knowledge of a mechanism. We take the 2D rotation of images as an
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example of such mechanisms. As human beings, if we have gained the knowledge of

2D rotation, it means that for any image, with a proper tool, (a) we can rotate the

image at will, and (b) we are able to determine whether (and even how many degrees)

the image has been rotated. Obviously, the knowledge that we know about 2D

rotation generalizes systematically and is independent of the domain of images. For

transformation mechanisms studied in this work, the affine transformation functions

are in accord with the description in (a), and are used as a tool to make precise

operations1. Therefore, our main purpose is the learning of the latter aspect (b),

i.e., the estimation of transformation parameters. To achieve this, we devise a

new training methodology and use synthetic datasets generated with the target

transformation mechanisms for training.

It has been found that with this training methodology, the transformation param-

eters can be estimated accurately and stably, even when networks are trained on

random noise and tested on images of semantically different domains. Additionally,

when the transformation is matched with the inductive bias of the model, it exhibits

some interesting properties as a by-product, with which, we can actually restore (to

some extent) the transformed images from the originals using only gradient descent.

To the best of our knowledge, this is the first work that attempts to learn generaliz-

able knowledge about a specific mechanism. The main contribution of this chapter

lies in our development of a learning methodology based on causal theory, through

transformation estimation tasks exploiting synthetic datasets. Using this method-

ology, DNNs are able to disentangle the concept of 2D transformation mechanisms

from confounding factors, thereby robustly acquire generalizable knowledge of these

mechanisms.

Real-world images can be considered as the result of the interactions between mech-

anisms, such as foreground and background objects, lighting conditions, camera

attributes, etc. Additionally, with the rapid development of computer graphics,

photo-realistic synthetic datasets with 1) controlled interventions on target factors

of variation, and 2) automatic pixel-accurate annotations, can be efficiently created

1It does not imply that transformation operations cannot be learned from data. Generative

models, which are beyond the scope of this study, have been studied in various tasks [120], [121].
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with 3D rendering engines. Therefore, the proposed methodology offers a poten-

tial toolkit for learning generalizable knowledge of diverse mechanisms in real-world

data.

In the following sections, we first review research works related to our study in

Section 3.2. We then propose the methodology to learn generalizable knowledge of

2D Transformations in Section 3.3. Details of experiments and results are presented

in Section 3.4. Finally, the chapter concludes in Section 3.5.

3.2 Related Works

In this section, we provide a brief overview of research works and techniques that are

relevant to this study, showing how these various research areas provide the theoret-

ical and technical foundations for our study. However, our work also distinguishes

itself in many aspects, which are illustrated in the respective sub-sections.

Data Augmentation and Domain Randomization

To tackle the potential performance drop in o.o.d, commonly used effective tech-

niques include data augmentation [122]–[126] and domain randomization [127], [128].

Data augmentation plays a crucial role in computer vision by expanding the size and

diversity of training datasets, reducing overfitting, and enhancing the accuracy of

machine learning models. In this section, we briefly review recent works in computer

vision to illustrate various data augmentation techniques.

Geometric and color transformations such as rotation, shearing, translation, con-

trast, brightness, and color jittering, are widely used techniques. Researchers of-

ten combine these transformations to improve performance. Therefore, Cubuk et

al. [123] proposed a search space for automated augmentation strategies that control

all operations jointly. This technique has led to reduced computational expense and

improved performance across various tasks (e.g., 1.0 - 1.3% accuracy improvement

on object detection tasks). Noise injection is another commonly used technique. Kar

et al. [125] developed an approach that generates noise and corruption by incorpo-

rating 3D information consistent with the scene geometry. This approach includes

corruptions such as motion blur, fog, etc., which better represents distribution shifts
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occurring in the real world, leading to a lower error rate across various tasks (e.g.,

1.56% l1 error reduction on the AE benchmark). Synthetic image generation is

gaining attention in computer vision. Hao et al. [126] proposed MixGen, a tech-

nique that generates new image-text pairs preserving their semantic relationships,

thus enhancing data efficiency. This technique achieved significant performance im-

provements (a 6.2% accuracy boost on the COCO fine-tuned image-text retrieval

task).

In particular circumstances, each of these techniques has its own advantages and

disadvantages. For example, in the case of multi-modal pre-training which is growing

in influence in computer vision, geometric and color transformations may result

in mismatching of image-text pairs, thereby leading to unnecessary data pollution

within multi-modal datasets. Synthetic data generation may be more suitable in

such cases, even though they may require additional computational resources.

The technique of domain randomization aligns with the underlying principles of data

augmentation. Data augmentation is primarily associated with 2D transformations,

whereas domain randomization is typically employed for parameter manipulations

in 3D environments. From a causal perspective, both techniques use treatment

randomization to eliminate confounders and to enhance the learning of invariance.

Based on this principle, our work also produces synthetic datasets through treat-

ment randomization, but for a different purpose. Instead of randomizing out the

mechanisms of variation, we aim to take them into consideration for downstream

tasks.

Parameter Estimation

As introduced above, the purpose of learning mechanisms of 2D transformations is

to estimate the transformation parameters. This task has been extensively studied

in various computer vision topics, such as 2D spatial invariance learning [129], ob-

ject detection [130], [131], and 3D pose estimations [132], [133], among many others.

However, in most existing studies, parameter estimation is restricted to object cat-

egories that appear in the training sets. An important reason is that single-image

parameter estimation is an ill-defined problem, in the sense that parameters of trans-

formations are actually procedural variables, whose values are determined by both
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of the pre- and post-transformation states. The analysis and results in Sections 3.3.1

and 3.4.3 show that models trained with methodologies based on single images, are

not able to generalize to unseen categories. In this work, we seek to develop a pa-

rameter estimation ability that should display a certain degree of generalizability,

similar to that exhibited by humans. Another series of works [134], [135] and the

study in [136] conducted representation learning based on pairs of images that are

related through mechanisms, by using a single encoder for multiple mechanisms. In

this work, to eliminate the potential confounding between multiple mechanisms, we

try to isolate knowledge of single mechanisms and reuse them in downstream tasks.

Time Series Analysis

Deep learning studies on time series cover almost every field of real-world appli-

cations, because of its inherent connection with the temporal dimension of the

world. These applications include geophysical processes modeling [137], human

physical [138], [139] and mental [140]–[142] activity analysis, cybersecurity [143],

to name a few. If we consider the transformations of images as sequential pro-

cesses, and focus on the most critical time slices which are those before and after

the transformations, we can see this study as related to a time series analysis. Ar-

chitectures such as Convolutional Neural Networks (CNNs) [139]–[141], [144], Long-

Short-Term-Memory (LSTM) [140], [145], Extreme Learning Machine (ELM) [144],

[146], etc., are widely used in research on time series. CNN is adopted in this study

to better model 2D image transformations.

Program Induction

Knowledge learning in this work is essentially a program induction problem. Active

deep learning topics in this area include program synthesis [147], [148], image gen-

eration [149], [150], etc. Program induction aims for a more effective generation of

programs, whereas this work focuses more on the interpretation of images. There-

fore, domain-specific languages in this work are fundamentally different, being more

semantically relevant to the downstream tasks.

Based on the above overview of related works, it is clear that our study is distinctive

in its unique motivation of exploring the learnability of generalizable knowledge.
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This motivation has guided us to develop a novel approach to disentangle a target

mechanism using synthetic datasets in specifically designed tasks, which underscores

our unique contributions to the existing body of knowledge.

3.3 Methodology

As introduced in Section 3.1, our objective in this chapter is to learn the general-

izable knowledge of 2D transformations. To achieve this, we train the models in

parameter estimation tasks using synthetic datasets that are generated through tar-

get transformations. In the following sections, we first describe how the datasets are

constructed in Section 3.3.1 and then describe the training method in Section 3.3.2.

3.3.1 Synthetic Datasets

To facilitate the learning of generalizable knowledge about a mechanism with DNNs,

the underlying principle guiding the synthesis of a training set is described below.

Generally, let us denote by x and xf , respectively, the images before and after

transformation f (parameterized with θ). Thus, we have

xf = f(x;θ). (3.1)

Note that, θ here can be a vector, representing any transformation parameters. In

this study, θ represents the rotation angle, the scaling factor, the translation offsets,

or the combination of these. As explained in the Introduction, the goal of the knowl-

edge learning is to estimate the value of transformation parameter θ. Let X, Xf and

Θ be the variables from which x, xf and θ are instantiated, respectively. According

to the causal graph in Figure 3.1, if the estimation is made based only on the image

after transformation, i.e., E(Θ|Xf ), given that Xf is a collider, conditioning on it

will inevitably cause the information flow from U to Θ, which will hinder us from

learning stable and thus generalizable knowledge of f (via Θ). Therefore, in order to

remove confounding caused by U , thus making the prediction of Θ generalize better

in test domains, we have to condition on both X and Xf , i.e., the Markov blanket

of Θ. 2

2This is also intuitively true, because it is pointless to ask how a picture has been transformed

when no reference is provided.
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Figure 3.1: The causal graph of image transformation. X: Image before the transfor-

mation. Xf : Image after the transformation. Θ: Parameter(s) of the transformation

in this study, as the variable is randomly sampled, this “treatment randomization”

operation removes all arrows pointing to Θ. U : Other unobservable variables that

cause the generation of X.

Concretely, in knowledge learning we aim to compute EPtest(Θ|X,Xf ) given only

access to Ptrain(x,xf ,θ). The Covariate Shift Assumption and Same Support As-

sumption, i.e.,

Ptrain(θ|x,xf ) = Ptest(θ|x,xf ) and, (3.2)

supptrain(x,xf ) = supptest(x,xf ), (3.3)

are required for the causal model to work, where Ptrain and Ptest are distributions

of data in training and test sets, and Ptrain(x,xf ,θ) ̸= Ptest(x,xf ,θ).

In this work, synthetic datasets for knowledge learning are constructed according to

the above causal framework. Each data point is composed of a pair of images x and

xf that are before and after the transformation, and the transformation parameter

θ. Since the labels are automatically generated and no manual annotation is needed,

this can be viewed as a self-supervised learning problem.

3.3.2 Knowledge Learning

To explore DNNs that are capable of learning generalizable knowledge, we investi-

gate a less studied Convolutional Neural Network (CNN) model, which takes con-

catenated image pairs as input (shown in Figure 3.2(a)). This model is referred to

as “CNN pair” in this thesis. Additionally, we select two commonly investigated

CNN models as our baselines because of their relevance to this research, namely,
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the Siamese networks [151] (Figure 3.2(b)) and a vanilla CNN (Figure 3.2(c)). The

Siamese networks, extensively studied on datasets with intrinsic relations in metric

learning and representation learning, also take image pairs as input during training.

Vanilla CNN, which is another common method for numerical regression tasks, takes

single-images as input and is denoted as “CNN single” in this thesis.

FCCNN(a)

(b)

(c)

concat.

share
weight FC

FC

CNN

CNN

CNN

concat.

Figure 3.2: The forward process of three CNN models used for knowledge learn-

ing. (a) CNN pair: paired images x and xf are concatenated in channel dimension

before being fed into CNN. The transformation information is encoded as represen-

tations in the latent space, which are then sent to the fully connected (FC) layer;

(b) Siamese network: x and xf are fed into CNN separately. The representations

are then concatenated and fed into the FC layer; (c) CNN single: Only the trans-

formed images xf are fed into CNN and encoded. The representations are then

linearly transformed through the FC layer, and the 2D transformation parameters

are predicted as output.

In parameter estimation tasks, the mean squared error is used as the loss function,

i.e.,

LMSE(θ̂,θ) =
1

Nk

N∑ k∑
i

(θ̂i − θi)
2, (3.4)

where N is the batch size, and θ̂i denotes the i-th dimension of θ̂ ∈ Rk.
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Therefore, the objective of knowledge learning is

argmin
α
LMSE(fα(x,xf ),θ) (3.5)

where fα is a deep neural network for knowledge learning parameterized with α.

3.4 Experiments

In this section, experiments are conducted to answer the question raised in the

Introduction, i.e., whether the learned knowledge of transformation mechanisms can

exhibit some degree of generalizability?

In order to study the robustness of the estimations on θ of f , synthetic datasets

are constructed according to the procedure described in Section 3.3.1. Three DNN

models are trained and tested based on the methodology illustrated in Section 3.3.2,

with the training details described in Section 3.4.1. Next, we examine the general-

izability of learned knowledge in Sections 3.4.2. Further discussions are conducted

in Section 3.4.3.

3.4.1 Training

Datasets

In the experiments, the original images in MNIST, EMNIST [152] and CIFAR-

10 [153] are randomly transformed before being used as x to alleviate the potential

overfitting. We obtain xf = f(x;θ), where the transformation parameters θ are

randomly sampled in a uniform distribution (see Table 3.1).

In this work, we conduct learning on four types of f , including individual trans-

formations of rotation, scaling and translation, and the joint transformation of the

above three. For learning individual transformations, only one of the three trans-

formations is applied at a time, while in the joint case, all three transformations are

applied simultaneously.

Furthermore, to demonstrate that the generalizable knowledge is independent of the

domain of images, a synthetic dataset composed of black/white noises (of a Bernoulli

distribution) is randomly generated and used as x. To better test generalizability, all
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Table 3.1: The parameters of 2D transformations investigated in experiments. Each

parameter is uniformly sampled within its range.

Parameter Range

Rotation angle [−90◦, 90◦]

Translation (horizontal) [−5, 5] pixels

Translation (vertical) [−5, 5] pixels

Scale factor [0.7, 1.3]

test data are sampled from datasets that are semantically different from the training

sets. Three groups of experiments are conducted, whose detailed schemes are listed

in Table 3.2.

Model Settings for Knowledge Learning

The CNN model in [134] is used as the backbone in CNN pair and the two baselines

(i.e., the Siamese network and CNN single). All input pairs of x and xf are con-

catenated along the channel dimension before being fed into the CNN pair. Thus,

the input dimension is Nbatch × 2 × 28 × 28 in Exp MNIST and Exp NOISE, and

Nbatch × 6 × 32 × 32 in Exp CIFAR, where Nbatch is the batch size. We keep the

default settings for the baselines.

We follow the implementation in [134] to construct the three models (in Figure 3.2)

for knowledge learning experiments. The architectures for individual mechanism

learning are shown in Table 3.3. The models for joint learning are different only

in channel sizes, which are all doubled in Exp MNIST and Exp NOISE, and 50%

larger in Exp CIFAR.

Training Details

The CNN models are trained using Adam optimizer [154] with a batch size of 512

and the weight decay set to 5.0×10−4. In Exp MNIST and Exp CIFAR, the models

are trained for 500 epochs in each experiment, with the learning rate initialized to

0.03 and decaying by a factor of 0.6 for every 50 epochs. In Exp NOISE, since the

noise images are generated on-the-go, the models are trained for 1.0 × 105 steps

with the same batch size of 512. The initial learning rate is also set to 0.03 with a
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Table 3.2: The training and test data used in the three groups of experiments for

knowledge learning. Five example images are provided for each dataset to demon-

strate the 2D transformations in each experiment. These transformations, shown

from left to right, include the original image, rotation, translation, scaling and a

combination of the three. To prevent potential artifacts being generated during

transformations, such as slanted image edges, a circular mask is applied to CIFAR-

10 and Noise images.

Experiment Training set Test set
Exp_MNIST

Exp_CIFAR

Exp_NOISE 

MNIST (training)

CIFAR-10 (training, 9 classes)

black/white noise

EMNIST (test, ‘letter’ division)

CIFAR-10 (training, the remaining class)

MNIST (test)

decaying factor of 0.5, and a decaying cadence of 1.0 × 104 steps.

The codes of our methodology are publicly available. 3

3.4.2 Learning of 2D Transformation Mechanisms

Individual Learning

The performance of CNN pair in learning the knowledge of the three individual

transformations is presented in Figs. 3.3 and 3.4. It can be observed in Figure 3.3

that the most of the absolute percentage errors (APE) (e.g. the third quartile in the

distributions) are below 20% in most experiments for CNN pair. Moreover, because

of the domain shift between the training and test sets, varying degrees of distribution

shifts of the APE can be observed in Figure 3.4. However, the shift is significantly

smaller for model CNN pair compared to the other two models. When considering

the shift of median in APE distribution, averaged across all three transformations,

the CNN pair exhibits a significantly lower shift of 2.5% APE between training and

3Our codes are released at https://github.com/jiachenkang/InterpretNet.
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Table 3.3: The architecture of models for knowledge learning.

Models in Exp MNIST and Exp NOISE Models in Exp CIFAR

5×5 Conv 96, BatchNorm, ReLU 5×5 Conv 192, BatchNorm, ReLU

1×1 Conv 64, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU

1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 64, BatchNorm, ReLU

3×3 MaxPooling stride 2 3×3 MaxPooling stride 2

3×3 Conv 32, BatchNorm, ReLU 3×3 Conv 128, BatchNorm, ReLU

1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU

1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU

3×3 MaxPooling stride 2 3×3 MaxPooling stride 2

3×3 Conv 32, BatchNorm, ReLU 3×3 Conv 128, BatchNorm, ReLU

1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU

1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU

3×3 MaxPooling stride 2 3×3 MaxPooling stride 2

2×2 Conv 32, BatchNorm, ReLU 2×2 Conv 128, BatchNorm, ReLU

1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU

1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU

3×3 MaxPooling stride 2 3×3 MaxPooling stride 2

FC FC

FC (Siamese networks only) FC (Siamese networks only)

test sets. In contrast, the Siamese network and the CNN single present shifts of

9.2% and 76.8% APE, respectively.

The minor distributional difference of APE in above results indicates the robust

generalizability of 2D transformation knowledge learned by CNN pair. This is a

noteworthy finding, considering that the data in the training and test sets differ

completely in terms of semantics.

Further results demonstrating the performance of CNN pair in learning individual

2D transformation across the three dataset settings are presented in Figure 3.5.

Similar to the result shown in Figure 3.3, it is observed that the majority of APE

can be controlled below 20% for each learning cases of individual transformation.

Moreover, the distributions of APE between the training and test sets consistently
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Figure 3.3: The performance of CNN pair for individual rotation learning. (left)

Predictions of rotation angle vs. the ground truth (normalized to [−1, 1]) in test set.

(right) Distributions of absolute percentage errors (in %) of all data points in the

dataset.
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Figure 3.4: The performance of learning individual transformations across different

models.

exhibit minor variations across all experiments, indicating robust generalizability.

These findings collectively indicates the effectiveness of our methodology for learning

generalizable knowledge of 2D transformation.

Joint Learning

In the case of joint transformation learning, a noticeable decline in performance

for both training and test sets can be observed in Figure 3.6, compared to indi-

vidual learning, despite the fact that the number of parameters in the CNN pair

used for joint learning is four times that of models used for individual learning.

Similar results of decreased performance are reported in study [155], where more
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Figure 3.5: Performance of CNN pair for individual 2D transformation learning.

(left) Rotation. (center) Scaling. (right) Translation.
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Figure 3.6: Performance of CNN pair for joint 2D transformation learning. (left)

Rotation. (center) Scaling. (right) Translation.

accurate estimates of variables are made by separately trained models, because of

the improved “selectivity and invariance at the individual neuronal level”.

Nevertheless, the distributions differences of APE between the training and test sets

continue to present negligible variations in most experiments, indicating robust gen-

eralizability. The notable exception is the EXP NOISE case, which will be discussed

in further detail below.
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CNN pair Trained in Exp NOISE

While CNN pair exhibits strong generalizability, its performance shows a relative de-

cline when there is a significant pattern difference between the training and test sets.

For instance, in the Exp NOISE experiment, a more pronounced performance gap

between the training and test set is observable, as compared to the other two exper-

iments in Figures 3.5 and 3.6. The most apparent characteristic in the Exp NOISE

experiment is the distinct difference in patterns between noises and hand-written

digits, suggesting a potential variation in exploitation of patterns during the training

process.

To prove this hypothesis, an ablation study was conducted by altering the black-

to-white pixels ratio in the training data of Exp NOISE. As shown in Figure 3.7,

the most best-performing model for rotation learning is trained with a 7 : 3 ratio

of black-to-white noises. However, when the pixel values in MNIST are swapped

( i.e. black digits on white background), the best performance is observed around

a 4 : 6 ratio. The different ratios present distinct patterns that can be exploited

in training. The ideal ratio for individual learning of translation and rotation is

around 7 : 3, while for scaling it is closer to 3 : 7. This observation also explain the

suboptimal o.o.d. generalization performance in joint learning in Exp NOISE, since

it is challenging for the model to equally well learn the three transformations with

a single fixed ratio.

Validation on ImageNet

To further assess the effectiveness and adaptability of our proposed algorithm across

different domains and data complexities, we extended our evaluation to include the

ImageNet dataset [156], a popular benchmark in the field of computer vision.

The experimental setup for ImageNet closely follows that described in 3.4.1, but

with a few dataset-specific modifications. We adopt a ResNet-50 architecture [112]

as the backbone of CNN pair model, modifying only the final fully connected layer

to output the estimated transformation parameters. From the dataset, we selected

images from 900 classes (with label indices under 900) for training, reserving images
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Figure 3.7: Performance of CNN pair in rotation learning with controlled black-

/white pixel ratios in EXP NOISE. Pixel values are swapped in MNIST b.

from the remaining 100 classes for testing. Each image undergoes standard prepro-

cessing before being center-cropped to 224 pixels, resulting in an input dimension

of Nbatch × 6× 224× 224, where Nbatch represents the batch size. The rotation and

scaling parameters are uniformly sampled within the ranges specified in Table 3.1,

while translation offsets are set to the range of [−40, 40] pixels. Training was con-

ducted using the Adam optimizer [154] with a batch size of 256 and a weight decay

factor of 5.0× 10−4. The models are trained for 100 training epochs, starting with

an initial learning rate of 0.1, which is decayed every 10 epochs with a decaying

factor of 0.5.

The experimental results, detailed in Table 3.4, reveal that the CNN pair model

maintains consistent performance across all conducted experiments, even if the se-

mantic diversity and image size has increased in the ImageNet experiment. The

negligible discrepancy between training and testing results indicates the model’s

excellent generalizability, especially considering the test images are from entirely

unseen categories. These findings strongly support the effectiveness of our method-

ology in the acquisition of generalizable knowledge.
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Table 3.4: Performance metrics of the CNN pair across various experiments, report-

ing the mean and median Absolute Percentage Error (APE, %) for transformations

of rotation, scaling and translation.

Experiment Split
Rotation Scaling Translation

mean median mean median mean median

ImageNet
training 40.58 11.56 11.27 5.32 42.78 19.92

test 64.82 11.63 16.21 5.33 45.53 22.87

Exp MNIST
training 27.89 9.04 20.75 4.02 67.85 11.78

test 29.10 10.95 33.10 5.83 94.56 15.59

Exp CIFAR
training 22.07 6.71 15.85 4.21 34.30 8.24

test 19.33 6.50 21.48 4.11 32.26 7.95

Exp NOISE
training 27.16 7.88 24.19 4.97 47.42 15.75

test 82.96 12.42 165.39 18.90 78.26 17.68

3.4.3 Key Elements in Knowledge Learning

In this section, ablation results are discussed to examine elements crucial for gener-

alizable knowledge learning.

Firstly, as analyzed based on the causal graph in Figure 3.1, if there exists a causal

relationship from U to X, it is necessary to condition on both X and Xf in order

to predict Θ robustly. As shown in Figure 3.4, the generalization degradation of

CNN single is much more severe in all learning cases, compared with CNN pair and

Siamese networks that both take paired images X and Xf as inputs. The translation

learning of CNN single generalizes relatively better than its learning of rotation or

scaling, because the position of X (the original images in this case) is always in the

center and independent of U . However, while being able to estimate rotation angles

accurately in the training set, CNN single completely fails in the test set. This

is primarily because rotation angle estimation is heavily dependent on the pattern

of images, which is determined by U . This finding provides valuable insights into

numerical regression tasks in contemporary computer vision studies, such as object

pose estimation. It suggests that when training is conducted solely with images

after transformation, expecting robust generalization performance is unrealistic.
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Figure 3.8: The learning curves in transformation learning across different models.

Fast learning on translation and scaling and slower learning on rotation can be

observed for all models.

Secondly, for CNN backbones, computation based on image-level concatenation (in-

stead of feature-level) is beneficial for making more accurate estimates. Figure 3.4

shows inferior performance of Siamese networks, in comparison to CNN pair across

all learning tasks. For the Siamese networks, substantial information regarding

transformations is lost through the application of convolutional and max pooling

operations. In contrast, the CNN pair retains a greater amount of information from

the beginning of data processing.

Additionally, we speculate that the inductive bias of CNNs fundamentally affects the

effectiveness of knowledge learning. This is based on the observation of the learning

curves of the three mechanisms (in Figure 3.8). Across all three models, a rapid

learning pace is evident in translation and scaling, contrasted with a slower one in

rotation. This indicates that CNN models have a greater challenge in learning the

mechanism of rotation.

Another interesting property of CNN pair and Siamese networks can be found (only)

in learning translations. Given two images x and xT both with a small square in the

center, and the target value of translation θT , we can obtain a (coarse) translated
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Figure 3.9: Images obtained with the Translation CNN pair through gradient decent.

The image in the center is the original one x. According to the values of θ (four

of them are marked in the corners), xT are generated through gradient descent. In

each of xT , an obvious offset of the light area from the original position (the blue

dot) to the target position can be observed.

version of xT by optimizing xT with gradient decent according to:

xT ← xT − α∇xT
LMSE(E(x,xT ),θT ), (3.6)

where α is the learning rate. As shown in Figure 3.9, this operation can be viewed as

an approximation of the translation function fT . Although this reversed generation

of images is by no means accurate and only limited to very simple patterns, the

phenomenon clearly shows what the models have learned.

Considering CNN’s properties of translation-equivariance, positional information

can be encoded and operated with CNN at higher efficiency. An extensive investi-

gation into other inductive biases should be made in the future, to provide support

for any more solid claim.

Impact of Masking

Initial experiments indicated a tendency for the model to overfit during training. A

closer inspection of the training samples revealed that affine transformations could

introduce artifacts, such as skewed edges, as shown in the grey regions around the

corners in Figure 3.10 column (a). These artifacts were readily exploited by the

model, negatively impacting its performance. To mitigate this issue, a circular

mask was applied to the images, obscuring peripheral regions and compelling the
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(a) (b) (c) (d)

Figure 3.10: Examples of training and test data. (a) Transformed CIFAR-10 images

without masks. (b) Transformed CIFAR-10 images with applied masks. (c)Masked

black/white noise images. (d) Masked ImageNet samples.

model to focus on features in the center. Therefore, instead of simplifying the task,

this masking strategy actually makes knowledge learning more robust.

Furthermore, the image preprocessing steps, including random affine transforma-

tions, color adjustments, and center cropping, etc., often displace or obscure the

primary subjects of the images, leaving behind non-informative textures, as shown

in Figure 3.10 columns (b) and (d). Particularly in the Exp NOISE, the dataset

intrinsically lacks semantic content or any “main bodies” of subjects (Figure 3.10

columns (c)), further challenging the model’s ability to discern meaningful patterns.

The experimental results, discussed in Section 3.4.2, confirm that models trained on

masked noise images exhibit comparable performance to those trained on authentic

imagery. This highlights the effectiveness of the masking technique in not merely

raising the training challenge, but also in fostering more robust model performance.

3.5 Summary

In this chapter, we have conducted comprehensive experiments to address the learn-

ability of generalizable knowledge of 2D image transformations. The experimental
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results have demonstrated that learning such knowledge is possible if the CNN pair

model is trained on synthetic images that are intrinsically related through the trans-

formation. The CNN pair model has exhibited a notably lower shift in the average

of median APE, as low as 2.5%. This performance is markedly better compared to

9.2% and 76.8% observed in the Siamese and the CNN single models, respectively.

This result indicates robust generalizability of the learned knowledge, irrespective

of the semantic domain difference of images. Therefore, this study introduces a

potential toolkit for learning other forms of generalizable knowledge, that is by dis-

entangling the concepts from confounding factors using parameter estimation tasks

based on causal datasets.
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Chapter 4

Improving 2D/3D Classification

with Learned Generalizable

Knowledge

In the previous chapter, we have gained some insights into how to learn knowledge

with a degree of generalizability, which involves disentangling the target concept

from confounding factors. These insights naturally prompt a further question: Given

that generalizable knowledge is learnable, how can we exploit the learned knowledge

in real tasks? In this chapter, we endeavor to explore two distinct paradigms (i.e.

the InterpretNet and regression-loss-integrated self-supervised learning) to address

this question.

4.1 Introduction

In this chapter, two distinct paradigms for generalizable knowledge exploitation

are investigated, i.e., explicit and implicit exploitation. For the first paradigm, we

introduce “InterpretNet”, an innovative architecture that emulates the hypothesis-

verification process observed in human perception. To tackle the limitations brought

by “InterpretNet”, we propose a second paradigm, which integrate the acquisition of

generalizable knowledge into the framework of self-supervised representation learn-

ing. We provide an overview of these two paradigms in the following subsections.
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4.1.1 The Hypothesis-Verification Process

The process of “hypothesis-verification” in human conscious perception is initially

discussed by Marcel (1983) [157], and is often referred to as predictive coding in

current research [158]. This process is a significant model in understanding cor-

tical activity and perception. It implies that perception is a hierarchical process

wherein the brain continuously updates and adapts its processing of sensory inputs

based on predictions. These predictions are formulated from an internal model of

the world and are constantly compared to incoming sensory information to min-

imize “prediction errors” — the difference between the prediction and the actual

observation [158], [159].

There is emerging evidence connecting the hypothesis-verification process with high-

level symbolic manipulation in the human brain [160]. As we introduced in Chap-

ter 1, it is suggested that the human “algebraic mind” could provide a generaliz-

able model of the world, which offers a crucial computational foundation for the

hypothesis-verification process. In the previous chapter, we have gained some in-

sights into the acquisition of knowledge that exhibits a degree of generalizability.

Consequently, the next question we investigate is whether applying such generaliz-

able knowledge to real tasks can enhance the o.o.d. generalizability of deep learning

models. To address this, we propose “InterpretNet”, an innovative architecture that

emulates the hypothesis-verification process in human perception, and apply it to

the classification of hand-written digits.

The proposed InterpretNet, depicted in Figure 4.1, is composed of two distinct

modules: an estimator and an identifier. These modules, trained offline sepa-

rately, are equipped with generalizable knowledge of target mechanisms, including

2D transformations. With the acquired knowledge, InterpretNet is able to provide

additional explainability when classifying images with covariate shifts. Specifically,

InterpretNet’s functionality extends beyond the basic classification questions such

as “Is there a ‘5’ in the image? ” It is also capable to answer interpretative questions

such as “Why do you think it is a ‘5’? ”

However, two limitations of the explicit knowledge exploitation approach in Inter-

pretNet have been identified. Firstly, a covariate shift is introduced in test set by in-
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Figure 4.1: The InterpretNet architecture. Potential classes are hypothesized by the

classifier C, and verification on these classes is made by the estimator E and

the identifier I through the pipeline of (1) analyzing possible transformations,

(2) reconstructing from candidates and (3) matching them with the sample.
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tervening on a single mechanism (i.e. rotation), which is an over-simplified scenario.

In real-world tasks, however, there always exists covariate shift caused by various

mechanism simultaneously. It is still challenging for InterpretNet to leverage mul-

tiple estimators and address this problem. Secondly, the hypothesis-verification

process in InterpretNet utilizes a greedy algorithm, which requires a thorough com-

parison between the target sample and a large pool of candidate samples. This

method is quite straightforward, but is time-intensive and computationally demand-

ing. Moreover, the operations for reconstruction and comparison are conducted at

the image level rather than the more efficient vector level, further escalating com-

putational expenses. These two drawbacks limit its applicability in real-world

scenarios.

4.1.2 Enhancing Real-World Applicability

In order to exploit the acquired generalizable knowledge more effectively in real-

world tasks, we investigate more methodologies in this chapter.

Integration into Self-supervised Learning

From the findings of the previous chapter, we know that generalizable knowledge

can be learned by conditioning on samples before and after transformations, which is

similar to the paradigm of contrastive learning. The difference of the two lies in the

target of the learning processes, while acquisition of generalizable knowledge focuses

on equivariance learning, contrastive objectives are aiming at invariance learning.

Thus, our hypothesis is that by incorporating transformation parameter estimation

as a pretext task into self-supervised learning based on contrastive objectives, neural

networks can implicitly learn generalizable knowledge through disentanglement and

obtain enhanced representational capabilities.

Therefore, in this work, we introduce an innovative “regression loss” function specif-

ically designed for transformation parameter estimation in self-supervised learning,

as illustrated in Figure 4.2.

It is found in the results that this function is crucial for learning more descriptive

representations, which facilitate the differentiation of individual samples by lever-
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Figure 4.2: The integration of transformation parameter estimation task through

regression loss into contrastive-based self-supervised learning.

aging knowledge about their intrinsic relationships. This approach offers a more

feasible pathway for exploiting generalizable knowledge to real-world tasks.

Exploiting Knowledge in Pre-trained Models

The above findings have inspired us to take a further step in exploiting knowledge

more effectively. In the process of self-supervised learning, we can further enhance

the model’s representational capability by increasing the number of transformation

parameters to estimate. This increasing could presumably disentangle more con-

cepts, and thus improve the generalizability of model representation by leveraging

the knowledge about these concepts.

However, the recent advancements in multi-modal contrastive learning have provided

us a novel pathway to acquire generalizable knowledge. Take the CLIP model [161]

as an example, the model is trained with contrastive methodology based on image-

text data pairs and has achieved impressive performance in downstream tasks, par-

ticularly demonstrating exceptional capability in zero-shot classification. Under

this learning paradigm, each word in the textual descriptions can be considered as

providing semantic grounding for the corresponding image content. If we regard

certain content within the image as the concept we aim to learn, then the words

in the description can be seen as parameters for the concept to show in the image.

Consequently, this contrastive learning objective can be abstracted as to predict the

probability of consistency between the transformation results and transformation

parameters, as depicted in Figure 4.3.

Therefore, we hypothesize that models trained with this methodology can achieve

better disentanglement and enhanced generalizability, thereby possessing superior
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Figure 4.3: The abstraction of image-text contrastive learning. The purpose of

learning is to predict the probability of consistency between the content in an image

(result of transformation) and the textual description (transformation parameters).

representational capabilities. Based on this hypothesis, instead of training the model

from scratch, we propose employing the pre-trained image-text models such as CLIP

to transfer their knowledge to downstream tasks, potentially enhancing performance

through established generalizability. This proposition gains verification from recent

studies [162]–[164], which utilized the CLIP model to positive effect. Our experi-

mental results also corroborate this hypothesis, revealing that the integration of pre-

trained CLIP embeddings can significantly improve task performance even across

another modality (e.g. point clouds).

The main contributions in this chapter are:

• We introduce a novel architecture “InterpretNet” to explicitly exploit learned

knowledge in image classification. To the best of our knowledge, InterpretNet

is the first work that emulates the human hypothesis-verification cognitive

process and provides enhanced o.o.d. generalizability and extra explainability

in hand-written digits classification.

• We devise a novel regression loss function for the integration of transformation

parameter estimation into contrastive self-supervised learning. This approach

implicitly enables neural networks to learn generalizable knowledge via disen-

tanglement, leading to more descriptive and generalizable representations for

downstream real-world tasks.

• We show that image-text contrastive learning enhances the acquisition of gen-

eralizable knowledge, as demonstrated by successful transfer learning applica-

tions employing pre-trained models.

58



In the following sections, we first describe methodologies for the explicit and implicit

knowledge exploitation, respectively, in Section 4.2. Section 4.3 provides a detailed

description of our experimental procedures and results. This is followed by in-depth

discussions in Section 4.4. The chapter concludes in Section 4.5.

4.2 Methodology

4.2.1 InterpretNet

In the previous chapter, we have gained some insights regarding the acquisition of

knowledge with a measurable degree of generalizability. Building on this under-

standing, this study introduces InterpretNet, comprising two deep neural network

(DNN) modules: an estimator E and an identifier I. The effectiveness of

exploiting generalizable knowledge is examined by evaluating the model’s perfor-

mance in image classification. This evaluation is particularly focused on how the

model handles potential covariate shifts in the test set, which arise due to a specific

target mechanism.

In our experimental setting, the target mechanism remains unaddressed by data

augmentation techniques. This scenario is frequently encountered in real-world ap-

plications. To simulate this condition, we apply random 2D transformations (e.g.,

rotation) to the MNIST test set, while deliberately avoiding any form of data aug-

mentation during the training phase.

In the following subsections, we first propose the training methodology for modules

E and I in Section 4.2.1. InterpretNet makes predictions in classification by raising

hypotheses with a vanilla classifier and verifying them with E and I. The details

about the architecture are described in Section 4.2.1.

Training

Dataset To train the E and I modules of InterpretNet, a synthetic dataset is

created based on the methodology detailed in Section 3.3.1. This dataset com-

prises pairs of images, x and xT , representing the pre-transformation and post-

transformation states, along with the associated transformation parameters θT ).

59



InterpretNet leverages two types of generalizable knowledge in the image classifi-

cation task. Firstly, it utilizes knowledge about 2D transformation for estimating

transformation parameters. Secondly, it employs knowledge of identity matching to

determine the identity of an image pair defined by an identity function fI . An image

xT generated through 2D transformation fT can be represented as:

xT = fT (x;θT ). (4.1)

In this study, transformation is implemented using affine transformation functions.

For the identity function fI(x;θI), when θI = 1, the function returns a same-identity

but transformed image x̂T , and any random sample other than x̂T when θI = 0.

Concretely, the identity function is defined by:

xI = fI(x;θI) =

x̂T if θI = 1;

x̂′
T if θI = 0,

(4.2)

where

x̂T = fT (x; θ̂T ),

x̂′
T = fT (x

′; θ̂T ).

Here, x′ is a random sample other than x, and θ̂T is the 2D transformation parameter

estimated by the estimator E (see Sections 4.2.1 and 4.2.1 for the details).

Learning Objectives Based on the above synthetic dataset, the estimator E

and the identifier I are trained to learn knowledge of 2D transformation fT and

the identity function fI , respectively. Specifically, we employ E which takes as the

input paired images x and xT generated from fT , to predict the transformation

parameters θ̂T . The role of I, on the other hand, is to learn from fI and to predict

the probability that a pair of images are of the same identity. Note that, in practice,

the inputs of I are xT and xI (instead of x and xI).

The mechanism of fT is independent of fI , and thus E is optimized first, by mini-

mizing the mean squared error loss LMSE on θT . I is then trained based on datasets

generated with fI and E, and optimized by minimizing the binary cross entropy loss

LBCE on θI . Therefore, the objectives of knowledge learning in this study can be
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represented as:

argmin
E

LMSE(E(x, fT (x;θT )),θT ), (4.3)

argmin
I

LBCE(I(fT (x;θT ), fI(x;θI)),θI). (4.4)

Architecture

Subsequently, we illustrate the exploitation of acquired knowledge through Interpret-

Net in image classification tasks. InterpretNet is composed of two DNN modules: an

estimator (E) and an identifier (I). The architecture functions by integrating

hypotheses generated by a basic classifier (C) and verifying these hypotheses us-

ing the E and I modules (Figure 4.1). This section delves into a detailed description

of each module and their respective contributions to emulating the human cognitive

process of hypothesis and verification.

Classifier C To establish an out-of-distribution (o.o.d.) task, images from the

MNIST test set are transformed prior to testing, indicated as X test
T . In contrast,

images in the training set, X train, remain unaltered. For a given test sample xtest
T ∈

X test
T , the basic classifier C generates a probability distribution reflecting the

likelihood of the sample belonging to each class. This distribution is utilized to

derive confidence scores. If the highest confidence score among all classes falls below

a predetermined threshold, C refrains from making an immediate classification.

Instead, it proposes a hypothesis H(xtest
T ) = {yi}ki=1, comprising a list of the top k

class labels based on confidence scores, subjected to further verification.

Estimator E The estimator E samples N(N ⩾ 1) random candidates from

X train for each class identified in the hypothesis H(xtest
T ). The set of all candi-

dates corresponding to the test sample xtest
T is represented as Xc ⊂ X train, where

Xc = {X(yi)
c }ki=1, and each X

(yi)
c consists of N candidates: {x(yi),j}Nj=1. Under the

presumption that xtest
T could be a transformed version of any candidate in Xc, E

examines the relationship between xtest
T and each candidate w.r.t. the 2D trans-

formation. This analysis is based on the previously acquired knowledge. For each

candidate, E calculates θ̂i,j
T = E(x(yi),j,xtest

T ), which represents the estimated trans-

formation parameters between the test sample and the candidate.
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Identifier I Given that E is a deterministic function and will yield an output

irrespective of the actual relationship between two images, the identifier I is

tasked with determining which candidate exhibits the greatest similarity to xtest
T .

This process begins with reconstructing each candidate using the parameters θ̂i,j
T

predicted by E. The reconstruction produces x̂
(yi),j
T = fT (x

(yi),j; θ̂i,j
T ). Subsequently,

x̂
(yi),j
T is evaluated by I to assess its likelihood of matching xtest

T . This evaluation

is based on I(xtest
T , x̂

(yi),j
T ), which is trained using the identity function fI . The

label of the candidate with the highest likelihood score is then selected as the final

prediction, represented by ŷ = argmaxyi I(x
test
T , x̂

(yi),j
T ).

In the described methodology, potential classes are initially proposed by the classi-

fier C. Subsequently, the modules E and I verify these classes through a sequence

of steps: (a) analyzing potential transformations, (b) reconstructing images from

the candidate pool, and (c) assessing the match between these reconstructions and

the test sample.

It is noteworthy that the pre-trained modules E and I are designed to operate

independently of the MNIST training data and do not necessarily depend on the

classifier C for their functionality. Given that the training and test sets of MNIST

share the same class label space, we also investigate a classification approach devoid

of the basic classifier C, referred to as “InterpretNet noC”. The primary distinc-

tion with InterpretNet noC is its approach to hypotheses generation: it considers

all classes by default (k = 10), thus eliminating the initial class prediction step by

the classifier C.

4.2.2 Methods Based on Self-supervised Learning

In the following subsections, we first describe the design of the “regression loss”

function and its integration into the framework of contrastive self-supervised learning

in Section “Regression Loss”. Section “Knowledge Transfer Learning” illustrates the

learning methodology employed for transferring knowledge from image-based models

to point cloud understanding tasks.
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Regression Loss

The regression loss function is designed for acquisition of transformation knowledge

through predicting transformation parameters. To facilitate this, we have converted

the task from a numerical regression problem into a logistic regression one. This

conversion involves a redefinition of how we handle parameter values. The parame-

ter data range [θa, θb) is first segmented into C equal parts. Each of these segments

represents a distinct category within the total C categories. Then, instead of pre-

dicting a specific value for the parameters, our approach assigns each parameter to

one of these categories. This categorization process results in the target yi being

classified within the discrete range of [0, C).

In order to effectively integrate the regression loss into the framework of contrastive

self-supervised learning, we adopt the Siamese Network, as depicted in Figure 3.2(b)

and Figure 4.2. The input to the Siamese Network consists of a batch of N data

pairs, represented as {xi,x
′
i}Ni=1. Each data point comprises two elements: xi and

x′
i, which correspond to the pre-transformation and post-transformation states, re-

spectively. The network’s output hidden representations are denoted as {hi,h
′
i}Ni=1.

Subsequently, we calculate the difference between hi and h′
i, and project the resul-

tant difference vector into a RC space using a linear projection fFC , i.e.,

ŷi = norm[fFC(hi − h′
i)] (4.5)

where norm signifies the normalization operation. Consequently, the regression loss

Lreg can be expressed as:

Lreg =
1

N

N∑
i=1

(1− ŷi,yi) (4.6)

For the contrastive objective, we adopt a widely-used loss function, as outlined

in [161]. This function is designed to distinguish positive pairs from a total of N2

potential pairs in a batch of size N . The loss function is represented as:

LO2T
i = − log

exp (hi
T h′

i/τ)∑N
j=1 exp (hi

T h′
j/τ)

(4.7)

Lctr =
1

2N

N∑
i=1

(LO2T
i + LT2O

i ) (4.8)
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where τ stands for the temperature co-efficient, and the superscripts O2T and T2O

denote the matching of original-to-transformed and transformed-to-original sample

pairs, respectively. The formula LO2T
i represents the loss for discerning the correct

transformed match for an original sample, while LT2O
i accounts for identifying the

original sample for a transformed one. The overall contrastive loss Lctr is then

calculated as the average of these losses across all samples in the batch.

Finally, the overall objective of the regression-loss-integrated self-supervised learning

is to optimize the model with the combination of the above two losses:

L = λctrLctr + λregLreg (4.9)

Here, λctr and λreg represent the coefficients that adjust the influence of Lctr and

Lreg, respectively. Both coefficients are set to 1.0 in our experiments to ensure an

equal contribution from each loss.

Intuitively, this approach minimize the similarity across distinct semantic categories

on a large scale through the regularization of contrastive loss, while concurrently

preserving a microstructure within each semantic category by employing the equal-

variance principle governed by the regression loss, as depicted in Figure 4.4.

Knowledge Transfer Learning

In this study, our objective is to transfer generalizable knowledge from the image

encoder of a large-scale image-text model to a point cloud encoder. This process is

achieved through a self-supervised learning approach, as illustrated in Figure 4.5.

For the dataset, we construct each mini-batch to contain N pairs of point clouds

and images, with each pair representing the same object. The point and image data

are processed through their respective encoders, which yield output representations

denoted as {hP
i ,h

I
i }Ni=1, respectively. Contrastive loss is conducted to maximize the

cosine similarity between the corresponding output representations:

LP2I
i = − log

exp (hP
i

T hI
i /τ)∑N

j=1 exp (h
P
i

T hI
j /τ)

(4.10)

Lctr =
1

2N

N∑
i=1

(LP2I
i + LI2P

i ) (4.11)
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Figure 4.4: The intuition behind the integration of regression loss into the contrastive

objective.

where the superscript P2I and I2P indicate the point-to-image and image-to-point

sample pair matching, respectively. A key aspect of the training methodology is

that only the parameters belonging to the point cloud encoder are updated via

back-propagation, while the parameters of the pre-trained image encoder are kept

frozen.

4.3 Experiments

This section begins with an analysis of the InterpretNet’s performance in image

classification under covariate shift, as detailed in Section 4.3.1. Subsequently, the

impact of implicit knowledge exploitation on the model’s performance in point cloud

classification is explored in Section 4.3.2.
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Figure 4.5: The architecture for knowledge transfer learning.

4.3.1 InterpretNet

Model Training

To construct InterpretNet, the modules E and I are instantiated using the CNN pair

models, which is described in Section 3.3.2. Specifically, the CNN pair models con-

sist of four sequential CNN blocks. Each block is composed of three convolutional

layers, featuring a range of 32 to 96 channels. Following each block, there is a 3× 3

max pooling layer. The output head is a fully connected layer, which outputs the

estimated transformation parameter and the probability of identity matching, for

modules E and I, respectively. The detailed architecture is listed in Table 3.3

A black-white noise dataset is created based on the methodology used for Exp NOISE

detailed in Section 3.3.1 of Chapter 3. Specifically, the input dimension is Nbatch ×

2×28×28, where Nbatch is the batch size. The black/white ratio for the noise images

is set to 7 : 3. 2D rotation is chosen as the covariate, which is applied to the dataset

and leads to the o.o.d. data scenario. The rotation angle is randomly sampled in a

uniform distribution in the range of [−90◦, 90◦].

The modules E and I are trained using Adam optimizer [154] with a batch size of

512 and the weight decay set to 5.0 × 10−4. The models are trained for 1.0 × 105

steps. The initial learning rate is set to 0.03 with a decaying factor of 0.5, and a

decaying cadence of 1.0× 104 steps.
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Classification Performance

We follow common practices in the computer vision community [165], [166], by con-

ducting the investigation with the most popular and fundamental MNIST dataset [167].

The classifier C is trained with original samples X train in MNIST without any

data augmentations. The length k of hypothesis H(xtest
T ) is set to 5 and 10. The

number of candidates N for E is set to 200 for each class. The confidence threshold

of C is set to 0.9999.

The classification accuracy obtained on the MNIST test set, with or without rota-

tions, is shown in Figure 4.6. The first observation is that, in the case of rotated test

set, the basic classifier has experienced nearly a 40% performance drop. However,

the accuracy of InterpretNet has increased to 77% when k = 5 (InterpretNet 5)

and even further to 82% when k = 10 (InterpretNet 10), with a minimal impact on

performance for test sets with no rotation applied. In InterpretNet, E and I are

introduced for further interpretation when C is not very confident in its prediction.

They provide extra explanations about why the sample is classified as such and how

it is rotated, by leveraging the knowledge of rotation with E. Specifically, when

posed with a question such as “What number is in the image, and why do you think

it is that number?”, InterpretNet might respond, “It appears to be a ‘5’, primarily

because it looks similar to a reference image of a ‘5’ (from the candidate pool), but

rotated by 24 degrees.” In this scenario, the first half of the answer is predicted

by C, whereas the latter half, the explanation of identity and transformation, is

generated through modules E and I.

Secondly, InterpretNet noC is studied by removing C from InterpretNet. Because of

the absence of C and thus the length of label space is unknown, the value of k is set

to 10. It is found that InterpretNet noC outperforms the basic classifier by +13%,

with a classification accuracy of 75% (in Figure 4.6). It is worth noting that the

performance is achieved without any knowledge of the handwritten digits (since both

E and I are trained in Exp NOISE), but only through the processes of analyzing,

reconstructing and matching. Furthermore, only 4% (200×10/50000) of the training

data are accessed during inference. This result indicates that InterpretNet noC is

capable of classifying characters, even those it has never encountered or had any
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Figure 4.6: The performance of classification. InterpretNet 5 and InterpretNet 10

denote InterpretNet with hypothesis k = 5 and k = 10, respectively.

prior knowledge of, given the condition that some necessary references are provided.

This capability is behaviorally similar to that of human beings.

To investigate the role of E with its knowledge about rotation, an ablation study was

conducted on InterpretNet noE by removing E from the InterpretNet. As shown in

Figure 4.6, the InterpretNet noE loses the ability to interpret rotation information

and the performance on recognising rotated test set has dropped from 82% to less

than 60%. On the one hand, this indicates the importance of rotation knowledge to

I, which requires instructions for reconstruction. On the other hand, since the ro-

tated samples look very different from the candidates, it also indirectly demonstrates

the effectiveness of I.

Number of Candidates. As shown in Figure 4.7, classification accuracy is greatly

affected by the number of candidates. Given that I is trained on noise, the module

is really sensitive to subtle differences. Therefore, in order to find a candidate that is

very similar to a sample, a candidate pool of a proper size is required. In addition,

the generation of digits can also be viewed as a mechanism. Unlike 2D transfor-

mations, the parameterization of digit generation is much more complicated [168].

While the integration of an estimation module for digit generation (as a new E)

into the existing InterpretNet would presumably reduce the required number of

candidates significantly, this will, at the same time, introduce new challenges in

68



5 1
0

2
0

5
0

10
0

20
0

50
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 o

f I
nt

er
pr

et
N

et

Number of candidates

1

0.9

0.8

0.7

0.6

0.5

5 2010 50 100 200 500

Figure 4.7: The classification accuracy of InterpretNet with different numbers of

candidates. Performance exceeds the basic classifier (the green dash line) when

N ⩾ 10.

compositionality, which involves the collaboration between multiple Es.

4.3.2 Regression Loss and Transfer Learning

In this section, we aim to further validate that our methodology facilitates the

acquisition of generalizable knowledge, which enhances the model’s performance,

across broader domains. To strengthen the reliability of this validation, we have

chosen a modality that is distinct yet related to 2D images: 3D point clouds, and we

also utilize model architectures other than CNNs. To apply the acquired knowledge

in real-world tasks, we use the methodology outlined in Section 4.2.2 for its implicit

exploitation. The specifics of the training process are detailed in Section “Training

Setup”, followed by analysis of the experimental results in Section “Point Clouds

Classification”.

Training Setup

In order to ensure alignment with existing work and facilitate fair comparisons,

the training setup and protocol in this study aligns with the framework established

in CrossPoint [169]. The loss functions for cross-modal and inter-modal instance
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discrimination, as detailed in CrossPoint [169], are adopted as the foundational

contrastive learning objectives. DGCNN [170] and CNN are employed as the default

encoders for point clouds and images, respectively, unless stated otherwise.

The following variations are introduced to compare with the baseline established by

CrossPoint:

• Reg: This variant incorporates the regression loss into the contrastive frame-

work, as described in Section 4.2.2 “Regression Loss”. The objective is to as-

sess the impact of transformation parameter estimation tasks on the model’s

representational capabilities.

• Reg+CLIP: In addition to the integration of regression loss, this variation

substitutes the CNN image encoder with a pre-trained CLIP. This experiment

aims to transfer knowledge from large-scale text-image contrastive learning

models, and evaluate the effect of the transferred knowledge on the repre-

sentational capabilities of point cloud encoder. As described in Section 4.2.2

“Knowledge Transfer Learning”, the parameters of CLIP are kept frozen dur-

ing training.

• ViT: This variant replaces both the point and image encoders with a ViT-

based [171] architecture PCExpert [172], thereby broadening the spectrum

of models under examination. The image tower utilizes the CLIP, with its

parameters remaining fixed throughout the training phase.

Point Cloud Classification

In evaluating model performance in point cloud classification, we freeze parameters

of the point cloud encoder after pretraining, and fit and test a linear SVM classifier

on two point cloud datasets: ModelNet40 [173] and ScanObjectNN [174]. In line

with standard procedures, we sample 1, 024 points from each instance in ModelNet40

for SVM fitting and testing, and the results are denoted by ModelNet40-1k. All

classification results are reported in terms of overall accuracy (OA), unless specified

otherwise.

The classification results on ModelNet40 and ScanObjectNN are reported in Ta-

ble 4.1. Firstly, it is shown that the introduction of our proposed regression loss
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Table 4.1: Effect of the regression loss (Reg) and knowledge transferred from CLIP

(Reg+CLIP) on classification accuracy on ModelNet40 and ScanObjectNN.

Method ModelNet40-1k ScanObjectNN

Multi-Task [175] 89.1 -

Self-Contrast [176] 89.6 -

Jigsaw [177] 90.6 59.5

STRL [178] 90.9 77.9

Rotation [179] 90.8 -

OcCo [174] 89.2 78.3

CrossPoint [169] 91.2 81.7

Reg (Ours) 91.4 (↑ 0.2) 84.0 (↑ 2.3)

Reg+CLIP (Ours) 91.7 (↑ 0.5) 87.8 (↑ 6.1)

consistently enhances the model performance over CrossPoint and other methods.

On ModelNet40-1k, there’s a marginal increase of 0.2%, while on ScanObjectNN,

the improvement is more substantial at 2.3%. This result suggests that the super-

visory signal provided by the regression loss can further improve the model’s ability

to discriminate between instances that are intrinsically related by transformations.

This improved ability is implicitly integrated into the model’s representational capa-

bility through self-supervised representation learning, and is reflected in the model’s

enhanced generalizability when applied on novel datasets.

Secondly, it can be noticed that the addition of knowledge transferred from CLIP

(Reg+CLIP) leads to even more pronounced improvements. For ModelNet40-1k,

the increase is 0.5% over the baseline CrossPoint, while on ScanObjectNN, there is

a significant leap of 6.1%. These results suggest that incorporating knowledge from

a large-scale text-image contrastive learning model like CLIP substantially enhances

the model’s ability to generalize and accurately classify point clouds, especially in

the more complex and challenging ScanObjectNN dataset. This result validates

our hypothesis to some extent that text-image contrastive learning fundamentally

involves the acquisition of generalizable knowledge. Even if the knowledge is trans-

ferred from image models and applied to point cloud tasks, it can still enhance the
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Table 4.2: Comparison between two loss functions for the regression loss.

Method ModelNet40-1k ScanObjectNN

Baseline (CrossPoint [169]) 91.2 81.7

CrossEntropy (Ours) 90.8 83.1

Cosine (Ours) 91.4 84.0

model’s generalization performance.

Loss Functions In the study, we explore various loss functions for implementing

the regression loss. Along with the method described in Equation 4.6, we examine

another approach using cross-entropy as the loss function, represented as:

Lreg =
1

N

N∑
i=1

− log
exp (ŷi,yi)∑C
c=1 exp (ŷi,c)

(4.12)

where C denotes the number of categories. This approach essentially redefines the

parameter estimation task as a classification problem. The effect of these two loss

functions on model performance is shown in Table 4.2. The results reveal a marginal

decrease in performance with the CrosssEntropy loss compared to the Cosine loss.

This suggests that the Cosine loss function aligns better with the intrinsic properties

of the model’s learning process for transformation parameter estimation task, and

thereby it is more effective in enhancing the model’s representational capabilities.

Model Architecture We investigate the effect of the regression loss on different

model architectures, i.e., DGCNN [170] and ViT [171], with the results shown in

Table 4.3. It can be observed that incorporating the regression loss consistently

improves model performance across both architectures and datasets, which further

validate the effectiveness of our methodology for generalizable knowledge learning.

Furthermore, in the case of the ViT model, the introduction of the regression loss

yields a even more substantial improvement on ScanObjectNN, with an accuracy

increase of 7.0%. This significant increase could imply that ViT, being a more com-

plex and capable architecture, is better able to leverage the additional information

provided by the regression loss. We will investigate the reasons behind this findings

further in Chapter 5 and explore further the potential of transformer-based models

in point cloud understanding tasks.
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Table 4.3: The effect of the regression loss incorporation on different model archi-

tecture.

Backbone Benchmark w/o Lreg w/ Lreg

DGCNN [170]
ModelNet40-1k 91.2 [169] 91.4 (↑ 0.2)

ScanObjectNN 81.7 [169] 84.0 (↑ 2.3)

ViT [171]
ModelNet40-1k 91.8 92.7 (↑ 0.9)

ScanObjectNN 83.0 90.0 (↑ 7.0)

4.4 Discussion

In this section, we delve into several relevant questions that emerge from the con-

tent of this chapter. Our discussion will first address the similarities and distinc-

tions between InterpretNet and human visual perception in Section 4.4.1. We then

review related work on parameter estimation, and discuss the distinction and inno-

vation of our regression loss. Finally, we examine the relationship between human

language and visual perception, by presenting hypotheses about the impact of lan-

guage on knowledge learning and its correlation with our experimental findings, in

Section 4.4.3. These examinations are aimed at providing insights about human

cognitive behavior that could inspire and contribute to the advancement of artificial

general intelligence in future research.

4.4.1 Simulation of Human’s Visual Perception

In this work, we propose InterpretNet as an exploratory simulation of a human

hypothesis-verification process in visual perception. Although the simulation is not

reverse engineering of the human brain, based on psychological studies about cog-

nition and behaviors, both humans and InterpretNet share similarities in how infor-

mation is processed.

To elucidate the hypothesis-verification process more clearly, let us consider Fig-

ure 4.8, and examine the interpretations derived from Figure 4.8 (a) [180]. Obser-

vation of the same figure may yield at least two distinct interpretations, as depicted

in Figs. 4.8(b) and (c). This simple example demonstrates a typical human percep-

tual process, where causal inference (in the anti-causal direction) is performed by
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(c)(b)(a)

Figure 4.8: What is in image (a)? There are at least two ways to interpret it, i.e.,

(b) three black circles partly covered by a white triangle, or (c) three black circles

with a notch on each of them. (The former interpretation may have a stronger

tendency in perception, according to the Gestalt principles [181].)

exploiting the knowledge of concepts like occlusion or notching upon variables of

circles and/or triangles.

Specifically, this cognitive process involves formulating a hypothesis about the cause

of the image — in this case, three circles being occluded by a triangle — and verifying

the hypothesis through a simulation that reconstructs the process. Alternatively,

if we propose a different hypothesis, such as three circles each having a notch, the

image can still “make sense” with verification made by simulating the notching

process.

Our ability to “make sense” of an object through simulating using mechanisms hap-

pens not only in visual perception, but also in other aspects of behaviors [182], [183],

where individuals attempt to rationalize or explain their behaviors with convincing

(but sometimes incorrect) reasons. In the context of InterpretNet, the role of E and

I is actually to provide explanations. This functionality enables machines, to some

extent, to “make sense” of the visual data they process.

Furthermore, the simulation and imagination in brains have been studied in various

works, and are proposed as the key elements in the understanding of physical scenes

and counterfactual reasoning [19], [184]. Based on the model of the world in their

minds, humans can make predictions about the future (in a causal direction) and

infer the causes of things that have happened (in an anti-causal direction). In the

architecture of InterpretNet, the module E and the affine transformation functions

enable the simulations of 2D transformations in anti-causal and causal directions,
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respectively. This architecture effectively equips the system with an imagination

space.

Limitations of InterpretNet

Despite the advancements and capabilities demonstrated by InterpretNet, this sec-

tion offers insights into the challenges and constraints that currently exist in the

architecture.

Firstly, a covariate shift is introduced in test set by intervening on a single mecha-

nism (i.e. rotation), which is an over-simplified scenario. In real-world tasks, there

always exists covariate shift caused by various mechanism simultaneously. Ideally, in

these scenarios, it would be beneficial if multiple Es could by utilized leveraging the

knowledge learned separately and cooperate with each other. However, preliminary

findings suggest that while E s exhibit good generalizability on the mechanisms they

are specifically trained for, they struggle to generalize across other mechanisms. This

is in line with [155], where the generalization improves only if more combinations of

mechanisms (category and pose) are exposed during training. Therefore, address-

ing covariate shift caused by multiple mechanisms could involve either a stochastic

training strategy or an intricate architectural design to handle interactions between

modules (especially Es). This significantly increases the training cost and/or archi-

tectural complexity, and poses a substantial challenge in effectively leveraging the

acquired knowledge.

Secondly, the hypothesis-verification process in InterpretNet utilizes a greedy algo-

rithm, which, while straightforward, is proved to be time-intensive and computation-

ally demanding. The method requires a thorough comparison between the target

sample and a large pool of candidate samples, leading to significant consumption

of computational resources and time. Moreover, the operations for reconstruction

and comparison are conducted at the image level rather than the more efficient vec-

tor level, further escalating computational expenses. Such inefficiencies make the

approach less suitable for real-time or large-scale applications where computational

efficiency are crucial.

By identifying these limitations, we can better set realistic expectations for its per-
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formance, as well as lay the groundwork for future enhancements and research di-

rections.

4.4.2 Related Work on Parameter Estimation

Parameter estimation has been extensively studied in existing research, with various

studies employing supervised learning to predict parameter values [129]–[133], while

others integrate parameter estimation with self-supervised learning for the enhance-

ment of representation learning [134]–[136]. This research generally aligns with the

latter approach, but with notable innovations.

Firstly, most existing studies employ single-image datasets for parameter estimation.

According to causal theory, these approaches are restricted to object categories

present in training datasets and are not able to generalize to unseen categories. In

other words, these models can not acquire generalizable knowledge about relevant

transformations. In contrast, this study aims to develop a parameter estimation

capability with a level of generalizability regardless of categorical differences, akin

to human cognition. This is achieved through the utilization of image pairs, and

removal of confounders using random treatment. Furthermore, this work propose

regression loss for parameter estimation. Instead of striving for precise parameter

value prediction via MSE loss [134], we aim to maintain a microstructure within

each semantic category in the representation space, by employing the equalvariance

principle regulated under the regression loss. Therefore, this study adopts the idea

of integrating parameter estimation into SSL, but it is distinctive and innovative in

methodology.

4.4.3 Language and Mechanisms

As previously introduced in Chapter 1, humans demonstrate remarkable o.o.d. gen-

eralization capabilities through the “algebraic mind”, as conceptualized by Marcus

(2003) [23]. This concept refers to the human ability to manipulate symbolic vari-

ables across various domains, enabling them to re-apply previously acquired concepts

to novel scenarios [18]–[21].

Recalling the visual perception example depicted in Figure 4.8, we can more clearly
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illustrate the aspect of “algebraic mind” in cognitive process. During the process of

verifying the hypothesis that “three circles are occluded by a triangle”, we simulate

the reconstruction process, as if we manipulate variables in a function, which can

be algebraically modeled as:

figure = occlude(

circle(3, black, [positional args]),

triangle(1, white, [positional args])

)

Alternatively, for the hypothesis of “three circles with a notch on each of them”, the

verification is made by simulating the make notch() function:

figure = make_notch(

circle(3, black, [positional args]),

[positional args]

)

This showcases how cognitive processes are analogous to algebraic operations. It

can be noticed that mechanisms in image generation processes (e.g. occlusion or

notching) play a crucial role in human visual perception. Our interpretation of

images is based on our understanding of these mechanisms, which is fundamentally

different from the current deep learning models that largely rely on recognition of

patterns from past visual experiences. It is also noteworthy that our knowledge of

these mechanisms, like occlusion and notching, is systematic [22], and independent

of the domain of the involved variables.

If we take a step further, it becomes evident that human language also shares sig-

nificant similarities with algebraic operations. Human language can be considered

as a multi-level nested and recursive system of symbol manipulation [185]. We

can effortlessly convert the above algebraic operations into linguistic expressions, as

exemplified below:

The figure shows (

3 (

black (
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circles (

[evenly spaced]

)))

that are occluded (

by a (

white (

tringle (

[in the center]

))))).

When analyzing sentences using the above multi-layer nested structure, it is ap-

parent that many words, in addition to verbs and nouns, can act like algebraic

operations, manipulating variables. This observation leads to a bold hypothesis

that potentially each word in a sentence could function in this manner, which opens

up a new perspective to view the functionality of words. Considering each word as

a function or mechanism also leads to the connection between the term of generaliz-

ability in deep learning and the term of compositionality [186] in Natural Language

Processing (NLP). In computer vision, treating words as mechanisms allows us to

consider text-image contrastive learning fundamentally the same as the learning of

generalizable knowledge. This conceptual connection justifies the use of a pre-trained

CLIP model for knowledge transfer in this study, which is validated by the findings

detailed in Section4.3.2 demonstrating the impressive generalizability of CLIP.

4.5 Conclusion

In conclusion, this chapter has effectively explored two paradigms for exploiting

generalizable knowledge in image classification tasks: the explicit and implicit ex-

ploitation. Our novel architecture, InterpretNet, which emulate human perception

based on the process of hypothesis-verification, demonstrates that explicit knowl-

edge exploitation can significantly enhance o.o.d. performance in hand-written digit

classification. However, the limitations of InterpretNet suggest a need for alternative

methods. This leads to our exploration of implicit knowledge exploitation, partic-

ularly through integration of the regression loss into self-supervised learning and
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leveraging pre-trained models like CLIP. Our results indicate that such methodolo-

gies not only improve the representational capabilities of neural networks, but also

offer a more efficient way to exploit generalizable knowledge in diverse and complex

real-world scenarios.
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Chapter 5

3D Classification with 2D

Generalizable Knowledge Transfer

In the preceding chapter, the experimental results demonstrate the effectiveness of

regression loss in enhancing the generalizability of models, within a self-supervised

learning paradigm. Furthermore, the discussion on the relationship of language

and transformation mechanisms leads to the hypothesis that image-text contrastive

learning, as a variant of regression loss-based self-supervised learning, can facilitate

the acquisition of more generalizable knowledge. Consequently, a primary objective

of this chapter is to empirically validate this hypothesis. This involves exploiting

generalizable knowledge in a pre-trained image-text model (e.g., CLIP [161]), and

applying it via transfer learning to tasks in a different data domain. Moreover, this

chapter also aims to integrate our understandings about the learning and exploiting

generalizable knowledge from previous chapters, and apply these insights to chal-

lenging real-world tasks. To this end, we utilize regression loss in our proposed

PCExpert architecture, thereby establishing a new benchmark across various 3D

understanding tasks.

5.1 Introduction

To assess the generalizability of the image-text model, we have selected tasks related

to 3D understanding as our focal point. Essentially, this involves leveraging the
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knowledge derived from 2D representations of objects to infer their characteristics

in a 3D context. Such tasks significantly challenge the model’s capacity to gener-

alize across different levels of concepts. For the representative of 3D data, we have

employed point cloud, which utilizes coordinates and various attributes to represent

objects in three-dimensional space. This data format has demonstrated significant

potential in deep learning and found wide-ranging applications. However, the acqui-

sition of point cloud data is still inconvenient, because scanning equipment’s design

is usually aimed toward professional needs, and the scanning process is more com-

plex than 2D photo capturing [187]. Furthermore, annotating the labels (ground

truth) of 3D data for supervised learning tasks is typically more complex and time-

consuming than 2D image data [188]. As a result, point cloud datasets tend to

be smaller in terms of the number of individual samples, and only using annotated

data may not be sufficient for point cloud understanding and applications. In order

to better comprehend point cloud data while circumventing time-consuming data

annotation, point cloud self-supervised representation learning (SSRL) has gained

growing attention in recent years. This paradigm sidesteps the need for data anno-

tation and, with properly designed models and pretext tasks, can yield performance

comparable to supervised approaches.

Current SSRL encompasses two popular approaches: contrastive-based [169], [189],

[190] and reconstruction-based [162], [191]–[193]. Since reconstruction-based ap-

proaches do not require positive or negative samples, they are more feasible to im-

plement and thus have recently received prominence in point cloud understanding

studies.

However, with the current substantial advancements in multi-modal learning [161],

[194], [195], we identify novel opportunities to enhance SSRL’s effectiveness using

contrastive objectives. Various studies [161], [196] have shown that the representa-

tional capacity of image models can be significantly enhanced when they are aligned

with large volumes of textual data. The alignment has even led to impressive per-

formance in zero-shot classification scenarios. In these explorations, image data is

studied as if it were a “foreign language” [194]. This naturally provokes a question:

can point clouds be regarded as specialized images? Motivated by this question,

the present study pursues a point-image contrastive-based approach to point cloud
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Figure 5.1: Comparison with current SSRL methods. (a): Reconstruction-based

methods. (b): Contrastive-base methods. (c): Our approach employs a pre-trained

image model to encode both point and image data, and a modular network (PCEx-

pert) for point cloud-specific knowledge acquisition.

understanding.

The standpoint of considering point cloud data as “specialized images” brings a

paradigm shift in our mindset towards the design of architectures. Firstly, to ad-

dress the aforementioned issue of the scarcity of point cloud datasets, we propose

that models pre-trained on large-scale image datasets, instead of point datasets, can

also serve a crucial role in guiding point cloud learning. This proposition is sup-

ported by recent research [163], [164], where the CLIP model [161] was employed as

guidance. Secondly, in order to transfer knowledge more effectively between modal-

ities, we assume that a substantial degree of parameter sharing between the image

and point cloud encoders can be beneficial. Previous studies on point-image con-

trastive learning generally utilize separate encoders for each modality [163], [164],

[169], [197]–[199](Figure 5.1). This separated encoding facilitates the adaptation of

inductive biases to each modality. However, these methods miss the potential to

apply knowledge acquired from large-scale image to point data at a deeper level

through parameter sharing.

In this study, a multi-way Transformer [196] is adopted for point-image contrastive

learning. Throughout the encoding of image and point data, this architecture en-

ables an extensive sharing of parameters belonging to the image encoder, while pro-

viding a modular network for the acquisition of point cloud-specific knowledge. As

this modular network is solely dedicated to the processing of point cloud data, we call
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it “PCExpert” (Point Cloud Expert) in this study. Figure 5.2 illustrates the pipeline

of our proposed PCExpert architecture, detailing three key components: 1) the pro-

cess of input representations, 2) the integration of PCExpert within Transformer

blocks, and 3) the employed learning objectives for SSRL. Furthermore, PCExpert

can also be conceptualized as a plug-in system for pre-trained Transformers. This

system extends the network’s functionality to a new modality with only a marginal

increment in the number of parameters, while preserving the performance of the

original model.

In addition to the proposed PCExpert architecture, this study also introduces a

novel pretext task for point-image contrastive learning. Drawing from the insights

in study [200] that learning factors of variation can enhance invariance learning,

we hypothesize that the task of estimating transformation parameters can be a

good complement to the conventional contrastive learning objectives. Therefore, we

propose to minimize “regression loss” during the estimation of the transformation

parameters, and reinforce the learning of more descriptive representations which are

capable of differentiating point clouds by leveraging their intrinsic relationships.

In experimental results, PCExpert exhibits robust representational capacity, with

a much lower number of parameters in comparison to the current SSRL methods.

Combined with the regression loss, the model has achieved state-of-the-art (SOTA)

results across several benchmarks. For instance, in the real-world dataset ScanOb-

jectNN, PCExpert achieved an overall accuracy (OA) of 90.02% in the LINEAR fine-

tuning protocol, with a 5% improvement over the SOTA performance. Furthermore,

we have also taken into account the circumstance where the dataset lacks contrastive

images. We conducted a parallel series of pre-training that is solely based on the 3D

modality, using images rendered directly from point clouds. Even in this scenario,

PCExpert still achieves performance on par with the established benchmarks.

Our main contributions in this study are as follows:

• We propose PCExpert for point cloud SSRL. To the best of our knowledge,

it is the first architecture that exploits both image knowledge guidance and

extensive parameter sharing in image-point contrastive learning. PCExpert

provides evidence that Transformer blocks for image encoding are also capable
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Figure 5.2: The pipeline of PCExpert. Left: The input representations consist of

sequences of embeddings, which are the summation of the patch/CLS tokens, the

type embeddings and the position embeddings for the respective point and image

data. Middle: The point and image input representations are then fed into a se-

ries of Transformer blocks. In each block, the representations are first processed

by a shared Vision Transformer (ViT) Multi-head Self-Attention (MSA) module,

and then processed by separate Feed Forward Networks (FFNs), according to their

modality. Right: During the pre-training process, the parameters in ViT are kept

frozen, while only the parameters related to point processing and projection heads

are optimized, via three objectives: cross-modal contrastive (Lcm), intra-modal con-

trastive (Lim) and rotation angle regression (Lreg).
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of directly encoding point clouds, thus allowing knowledge of large-scale image

data to be utilized for point cloud understanding, in a more intricate manner.

• We develop an alternative approach for rendering images directly from point

clouds for image-point contrastive learning, which reduces the cost and dif-

ficulty associated with data collection. Our research indicates that for the

positive sample pair, mesh-rendered images are not essential. Instead, images

directly rendered by point clouds can be used as positive samples, with only

a minimal impact on performance.

• In the pre-training phase, we introduce transformation parameter estimation

as an extra pretext task, leveraging on the regression loss. In synergy with the

contrastive objectives, this task further enhances model performance.

In summary, our research demonstrates that point cloud understanding can be recon-

ceptualized and realized as the understanding of “specialized images”. More impor-

tantly, the substantial advancements in current multi-modal learning are signifi-

cantly driven by 1) the exploitation of large-scale datasets and 2) the scalability and

versatility of Transformers. With this perspective, our work presents a promising

pathway towards more effective self-supervised point cloud understanding through

image-assisted cross-modal learning, leveraging the potential of large-scale, low-cost

datasets and pre-trained multi-modal Transformers.

The remainder of this chapter is organized as follows. Section 5.2 provides a com-

prehensive review of related work, focusing on multi-modal studies on point cloud

learning. Section 5.3 presents our proposed PCExpert, outlining the key compo-

nents and algorithms. In Section 5.4, we illustrate the experimental setup and

present the evaluation results, as well as ablation studies, and discussions on our

findings. Finally, Section 5.5 concludes the chapter, summarizing the key findings

and discussing future directions.
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5.2 Related Works

5.2.1 Contrastive Learning for Point-image Modality

A major subset of point cloud SSRL methodologies are based on contrastive learning

principles. The primary objective of these approaches is to maximize the agreement

between different views of the same 3D object while simultaneously minimizing the

agreement between unrelated ones. An effective ingredient to this learning paradigm

is harnessing the image modality to provide complementary information for point

cloud understanding [169], [197]–[199], [201]–[203]. For instance, Jing et al. [197]

introduced the Center loss, aimed at aligning features across multiple modalities.

Some studies [204], [205] leveraged a pre-existing embedding distribution with a

pre-trained image model, to guide point cloud feature distillation.

A notable contribution by Afham et al. [169] was the proposition of intra- and cross-

modal contrastive loss, which enhances point-image alignment and point instance

discrimination, simultaneously. As distinct from the instance-level contrastive, Li

et al. [199] proposed a patch-level contrastive approach for better spatial compre-

hension, using the Hungarian Algorithm. Moreover, some research works [198],

[201] advocate pixel/point-level contrastive learning to facilitate local feature cor-

respondence. Zhou et al. [202] proposed multi-scale contrastive objectives between

multi-modality objects, enabling local-to-global feature alignment.

Predominantly relying on feature alignment, these methodologies naturally adopt

separate feature extractors for each modality. In contrast, our approach employs

an image model for the encoding of both modalities. Additionally, we introduce a

unique task that leverages “regression loss” for transformation parameter estimation.

To the best of our knowledge, we are the first to apply this objective to point-image

contrastive learning.

5.2.2 Knowledge Transfer with Pre-trained Image Models

Instead of exploiting feature-level guidance for knowledge transfer, an alternate

strand of research seeks to directly conduct point cloud understanding with pre-

trained image models.
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For instance, Xu et al. [206] proposed an “inflating” method to convert 2D con-

volutional networks, pre-trained on image datasets, to 3D convolutional networks,

thus catering to point cloud/voxel processing. Studies in [207], [208] conducted

point cloud analysis, by transforming point data into images that are recognizable

by pre-trained image models. To realize the transformation, techniques including

geometry-preserving projection with geometry-aware coloring [208], and multi-view

projection [207] are applied, respectively. Rong et al. [209] utilized a pre-trained

image semantic segmentation model to process images rendered from point clouds

in 3D scene segmentation tasks. Moreover, Dong et al. [162] leveraged a pre-trained

image model as a cross-modal teacher during point cloud masked modelling.

In this study, based on our perspective that point clouds are “specialized images”,

we directly feed tokenized point data into a pre-trained image model, and introduce

PCExpert for point-specific knowledge acquisition.

5.3 The Proposed Method

As depicted in Figure 5.2, the architecture of the PCExpert module, combined with

the pre-trained Vision Transformer (ViT), serves as a foundation for processing

multi-modal inputs, i.e., point and image data. Before being fed into the trans-

former blocks, point and image data are initially embedded in a D-dimensional

space as sequential input representations. Within each transformer block, the point

and image input representations are first processed by the Multi-head Self-Attention

(MSA) module of the original ViT. The representations are then subjected to par-

allel projection paths in separate feed forward networks (FFNs), according to their

modality. During point cloud SSRL, the parameters in ViT are kept frozen, while

only the parameters of PCExpert and the projection heads are optimized, via three

objectives: cross-modal contrastive, intra-modal contrastive and transformation pa-

rameter (i.e., the rotation angle) regression. This architecture and training strategy

focus on point-specific representation learning with extensive image-to-point knowl-

edge transfer, without affecting the original ViT performance on image-related tasks.

In the following sections, we provide a concrete explanation of the construction of

input representations (Section 5.3.1), the architecture of PCExpert (Section 5.3.2)
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and the pre-training process of point cloud SSRL (Section 5.3.3).

5.3.1 Input Representations

In this section, we explain the process to generate sequences of point and image

representations as the input of Transformer blocks. In point cloud SSRL, a training

batch comprises N triplets, i.e., {XP
i ,X

′P
i ,X

I
i }Ni=1, where the superscripts P and

I denote the point and image modalities1, respectively. To generate data for the

intra-modal contrastive objective (see Section 5.3.3), each point data XP is applied

with a random transformation, resulting in X′P . Then, the point and image data

are embedded in a D-dimensional space, as the input for the Transformer blocks,

which we describe below.

Point Input Representations

A point cloud XP ∈ RM×3 (or X′P) consists of M points defined by coordinates in

an (x, y, z) Cartesian space. Following the previous study in [192], we sample NP

centroids using farthest point sampling (FPS). To each of these centroids, we assign

k neighbouring points by conducting a k-nearest neighbour (kNN) search. Thereby,

we obtain NP local geometric groups {Gi}N
P

i=1, where each group Gi consists of a

centroid xP
i,0, and its k neighboring points {xP

i,j}kj=1, i.e., Gi = {xP
i,j}kj=0.

The patch embeddings {ZP
i }N

P
i=1 for {Gi}N

P
i=1 are extracted with a two-layer Point-

Net++ [210], where ZP
i ∈ RD and D is the embedding size. Concretely, for

j = 1, ..., NP ,

Z̃P
i = max

xP
i,j∈Gi

[ f1(x
P
i,j ; x

P
i,j − xP

i,0) ] (5.1a)

ZP
i = max

xP
i,j∈Gi

[ f2(x
P
i,j ; Z̃

P
i ) ], (5.1b)

where f1 and f2 are Multi-layer Perceptrons (MLPs). A learnable class embedding

ZP
CLS ∈ RD is prepended to the sequence of the patch embeddings.

To obtain the point input representations HP
0 ∈ R(NP+1)×D, we sum the sequence

of patch embeddings with point position embeddings ZP
pos ∈ R(NP+1)×D and a point

1This notation is maintained consistently throughout this chapter to signify the two modalities.
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type embedding ZP
type ∈ RD:

HP
0 = [ZP

CLS, Z
P
1 , ..., Z

P
NP ] + ZP

pos + ZP
type (5.2)

Position embeddings ZP
pos are derived by applying a non-linear MLP on centroid

points {xP
i,0}N

P
i=1. In the case of ZP

CLS, a virtual centroid with coordinates set at

(0, 0, 0) is used to generate the positional embedding.

Image Input Representations

We follow the studies in [171], [196] and split the image data XI ∈ RH×W×C into NI

patches {xI
i }N

I
i=1, where NI = HW/P 2, xI

i ∈ RP 2×C , C is the number of channels,

and (H,W ) and (P, P ) are the resolutions of the image and patches, respectively.

The sequence of image patch embeddings {ZI
i }N

I
i=1 are linearly projected from these

patches: ZI
i = VxI

i with V ∈ R(P 2×C)×D.

Similar to the point input representations, the image input representations HI
0 ∈

R(NI+1)×D are calculated by summing the image patch embeddings (prepended by

the class embedding ZI
CLS) with image position embeddings ZI

pos ∈ R(NI+1)×D and

an image type embedding ZI
type ∈ RD:

HI
0 = [ZI

CLS, Z
I
1 , ..., Z

I
NI ] + ZI

pos + ZI
type (5.3)

5.3.2 PCExpert

Inspired by previous works [196], [211], we propose PCExpert (Point Cloud Ex-

pert), a specialized network for enhancing point cloud understanding based on im-

age knowledge. We employ a pre-trained ViT to encode both point and image data.

Different from the standard ViT, our architecture incorporates separate feed for-

ward networks (FFNs), each dedicated to a specific modality (denoted by FFNP

and FFNI). Concretely, if we denote by HP
l−1 and HI

l−1 the point and image input

representations for the l-th transformer block, then the output representations for

point cloud and image can be computed respectively as:

H̃P
l = MSA (LN (HP

l−1 )) +HP
l−1 (5.4a)

HP
l = FFNP ( LNP ( H̃P

l )) + H̃P
l (5.4b)
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and

H̃I
l = MSA (LN (HI

l−1 )) +HI
l−1 (5.5a)

HI
l = FFNI ( LNI ( H̃I

l )) + H̃I
l (5.5b)

where LN denotes the layer normalisation operation. The mutual Multi-head Self-

Attention (MSA) module facilitates image knowledge sharing with the point modal-

ity, while the separate FFNs ensure that the unique features of each modality are

effectively captured and integrated into the overall representations.

5.3.3 Training

PCExpert is primarily trained with a point-image contrastive objective, to exploit

the guidance offered by the image modality. Furthermore, we follow the method

in [169] and implement an intra-modal contrastive learning for the purpose of en-

hancing invariance learning of point semantics. Drawing inspiration from [200], we

integrate transformation parameter estimation as an additional pretext task. This

enables the model to capture the causal knowledge embodied in the representations

and to mitigate the influence of confounding factors of variation, thus refining the

quality of the learned representations.

As for the optimization process during training, only the parameters of PCExpert

are updated via back-propagation, while the original parameters of ViT are frozen.

This training strategy ensures the focus of optimization specific to point clouds,

and does not compromise the model performance on images. This also significantly

reduces computation and storage requirements, as only a small fraction (≈ 6.6%) of

parameters are updated.

Cross-modal Contrastive Learning

Given a batch comprising N point-image pairs {XP
i }Ni=1 and {XI

i }Ni=1, the purpose of

point-image contrastive learning is to discern the corresponding (positive) pairs from

a pool of N2 potential pairs. The output [CLS] tokens of the final (L-th) transformer

block {HP
CLS,L,i}Ni=1 and {HI

CLS,L,i}Ni=1 are used as the global representations of the

point and image data, respectively.
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Subsequently, these [CLS] tokens are mapped to an invariant space via two projection

heads fP and fI , i.e.,

hP
i = fP(H

P
CLS,L,i) (5.6)

hI
i = fI(H

I
CLS,L,i) (5.7)

The distances between the (normalized) output embeddings hP
i and hI

i in this space

are calculated using cosine similarity. Thereby, the loss function for the positive

point-image pair is defined as:

LP2I
cm,i = − log

exp (hP
i

T hI
i /τ)∑N

j=1 exp (h
P
i

T hI
j /τ)

, (5.8)

where τ stands for the temperature co-efficient, and the superscript P2I signifies

that, optimizing this loss facilitates the alignment of the i-th point with the corre-

sponding image among N images. Similarly, if we denote by I2P the reciprocal task

to align an image with its corresponding point cloud, the cross-modal contrastive

loss Lcm is expressed as:

Lcm =
1

2N

N∑
i=1

(LP2I
cm,i + LI2P

cm,i ) (5.9)

Intra-modal Contrastive Learning

In addition to aligning the features between point and image modality, we conduct

contrast within the point cloud modality.

Given a batch of point cloud data {XP
i }Ni=1, we apply transformation T on each

sample to get {X′P
i }Ni=1. A positive pair is defined as the original sample and its

transformed version. Similar to the point-image contrastive loss, the intra-modal

contrastive loss Lim can be expressed as:

Lim =
1

2N

N∑
i=1

(LP2P ′

im,i + LP ′2P
im,i ) (5.10)

where the superscripts P2P ′ and P ′2P signify the original-to-transformed and transformed-

to-original sample pair matching, respectively, and LP2P ′
im,i can be computed as:

LP2P ′

im,i = − log
exp (hP

i
T h′P

i /τ)∑N
j=1 exp (h

P
i

T h′P
j /τ)

(5.11)
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Transformation Parameter Estimation

Furthermore, we use the transformation T in intra-modal contrastive learning as an

additional supervisory signal to guide point understanding. The objective of the

transformation parameter estimation task is to perform numerical regression on the

transformation T ’s value.

Specifically, we apply y-axis rotation as the transformation in this study, thus making

the rotation angle as the ground truth. In order to circumvent numerical cycles

caused by periodic symmetry in rotation, we quantize the rotation angles into d

categories, and project each category into a Rd space as a one-hot vector {yi}Ni=1, yi ∈

Rd.

To calculate the regression loss, we first calculate the difference between hP
i and h′P

i ,

and linearly project the resultant difference vector into the same Rd space using fT ,

i.e., ŷi = fT (h
P
i − h′P

i ). Thus, the regression loss Lreg can be represented as:

Lreg =
1

N

N∑
i=1

(1− yi
Tŷi). (5.12)

Finally, the overall objective of the point cloud SSRL is to optimize PCExpert with

the combination of the above three losses:

L = Lcm + Lim + Lreg. (5.13)

5.4 Experiments

The pre-training of our PCExpert is conducted on the ShapeNet [65] dataset, using

the methodology described in Section 5.3. Comprehensive details regarding this

pre-training setup are described in Section 5.4.1. We subsequently evaluate the pre-

trained model across a variety of 3D point cloud classification benchmarks. Prior

to this evaluation, the model is fine-tuned on each downstream task. The model’s

performance on these downstream tasks is reported in Section 5.4.2. In Section 5.4.3,

we engage in a series of ablation studies exploring various aspects of PCExpert.
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5.4.1 Pre-training Setup

Dataset

Following previous studies [162], [169], we utilize ShapeNet, a dataset encompassing

over 50, 000 CAD models across 55 categories, as the pre-training dataset for PC-

Expert. We employ 40, 523 instances across 13 categories in ShapeNet to generate

point and image data triplets. For point cloud data, we follow [212] and sample

2, 048 points for each instance, and group them into 160 local patches with group

size of 32, whose centroids are sampled with FPS. As described in Section 5.3.3, the

intra-modal contrastive loss Lim and the regression loss Lreg are calculated based

on the original point data and its transformed version. To obtain the transformed

point, we rotate the original point cloud about the y-axis by a predetermined degree

between [0◦, 360◦] according to the corresponding image in the triplet (described

below).

For image data, we use two types of rendered images. The first type of images,

derived from study [213], are rendered from the CAD meshes with 36 random views

for each mesh.

The second type of images are rendered directly from point cloud data in real-

time, using the Pytorch3D [214] library, with random rotation angles around y-axis

(the yaw angle) and linear grey scale along z-axis. The rotation angles are then

recorded and utilized for the corresponding rotation of point cloud samples. In

the rasterization pipeline, the radius and point-accumulation for each pixel are set

to 0.03 units and 8 points, respectively. The FoVPerspectiveCameras is used to

produce images with more realistic perspective and depth cues.

The dimensions of image data are set to 224×224×3, with the patch size of 16×16

and no augmentation applied. The images are then normalized using the standard

ImageNet means and standard deviations. Examples of the two types of rendered

images are illustrated in Figure 5.3.
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Figure 5.3: Training samples used in point-image contrastive learning. Left: Point

cloud samples. Middle: Images rendered from 3D CAD meshes. Right: Images

rendered directly from the original point clouds, with the shape and details well

preserved.

Model

We adopt the image tower of the CLIP model [161] as the base ViT for point and

image data encoding, which consists of 12-layer Transformer blocks, with 768 hidden

size and 12 attention heads. The PCExpert module is applied on each Transformer

block with a projection dimension of 192.

The model is pre-trained for 300 epochs, with a batch size of 1024. AdamW [215]

optimizer is employed with β1 = 0.9, β2 = 0.98. The learning rate is initialized to

1e− 3 for the model which uses the mesh-rendered images, and 5e− 4 for the model

using the point-rendered images, with both weight decays set to 0.01. The training

incorporates a linear warmup over the first 10 epochs, followed by a cosine decay.
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5.4.2 Evaluation

Fine-tuning

In this study, we fine-tune the pre-trained model on widely used 3D point cloud

classification datasets, including ScanObjectNN [174] and ModelNet40 [173], be-

fore evaluating its performance on them. ScanObjectNN, a challenging point cloud

dataset, comprises 2, 880 objects spanning 15 categories, all generated via scanning

real indoor objects. In line with common practices, three variants of this datasets are

used in this study, i.e., 1) OBJ ONLY: the vanilla dataset including only segmented

objects; 2) OBJ BG: a noisier variant including objects with their background el-

ements; and 3) PB T50 RS: the most challenging perturbed variant, where each

instance is extracted from a bounding box that is randomly shifted up to 50% of

its original size from the ground-truth, in addition to random rotation and scaling.

ModelNet40 is a synthetic dataset, produced by sampling from 3D CAD models,

featuring 12, 331 objects across 40 categories. Consistent with established practice,

we sample 1, 024 points from each instance for fine-tuning and test, and the re-

sults are denoted by ModelNet40−1k. Only random rotation is performed as data

augmentation for the training set, following the methodology described by Dong et

al. [162].

During the fine-tuning stage, the CLS tokens from the final output representations

are used as the global representations of the samples. Classification heads are em-

ployed to project the representations into the target class space. We follow standard

research protocols [162] to conduct fine-tuning:

• FULL: All parameters of PCExpert and the classification head (a three-layer

non-linear MLP) are updated in fine-tuning, while parameters of ViT are kept

frozen.

• LINEAR: Only parameters of the classification head (a single-layer MLP) are

updated during fine-tuning.

• MLP3: Only parameters of the classification head (a three-layer non-linear

MLP) are updated during fine-tuning. The classification head is the same

as that in protocol FULL).
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During the evaluation stage, no voting techniques are used. All classification results

are reported in terms of overall accuracy (OA) unless stated otherwise.

3D Object Classification

The classification results of ScanObjectNN and ModelNet40 are presented in Ta-

ble 5.1 and Table 5.2, respectively.

Firstly, it can be observed that our PCExpert outperforms the existing state-of-the-

art (SOTA) SSRL methods across all benchmarks in LINEAR and MLP3 protocols,

especially for the challenging real-world dataset ScanObjectNN, where it achieves

the highest accuracy improvement of +4.8% in LINEAR. Because the majority of

model parameters are not updated during LINEAR fine-tuning, the performance on

this benchmark heavily relies on the model’s generalizability and understanding

of the underlying point cloud semantics. This attests to PCExpert’s exceptional

representation capabilities. With a much smaller model size, PCExpert can still

achieve performance comparable to other models under benchmarks using the FULL

protocol.

Secondly, in comparison to the studies based on point-image contrastive learning

(e.g., CrossPoint [169] and MVR [216]), PCExpert significantly outperforms the

existing methods, with average improvements of +4.9% and +8.3% under the FULL

and LINEAR protocols, respectively.

Thirdly, despite having minimal inductive bias towards 3D understanding (through

its patch embedding module), PCExpert still outperforms models with a strong em-

phasis on this specific inductive bias, such as Point-M2AE [212], across the majority

of benchmarks.

Furthermore, it is found that PCExpert demonstrates better performance improve-

ment on the real-world dataset ScanObjectNN compared to the synthetic Model-

Net40. We postulate this superiority is likely a result of the effective knowledge

transfer from CLIP, leveraging the vast quantity of real-world image-based training

data.
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Table 5.1: Classification results on ScanObjectNN. SO-BG, SO-OBJ, and SO-PB:

the OBJ BG, the OBJ ONLY, and the PB T50 RS variants of the ScanObjectNN

dataset, respectively. ∗: Results based on Support Vector Machines (SVMs). CL:

Methods that are based on contrastive learning are marked with
√
. The overall

accuracy (%) is reported.

Method CL #Params (M) SO-BG SO-OBJ SO-PB

Supervised Learning Only

PointNet [217] 3.5 73.3 79.2 68.0

PointNet++ [210] 1.5 82.3 84.3 77.9

DGCNN [170] 1.8 82.8 86.2 78.1

PointCNN [218] 0.6 86.1 85.5 78.5

GBNet [219] 8.8 - - 80.5

PointMLP [220] 12.6 - - 85.4±0.3

PointNeXt [221] 1.4 - - 87.7±0.4

with Self-supervised Representation Learning (FULL)

MVR [216]
√

1.8 84.5±0.6 84.3±0.6 -

CrossNet [203]
√

1.8 - - -

Point-LGMask [222]
√

- 89.8 89.3 85.3

Transformer [223] 22.1 83.04 84.06 79.11

OcCo [191] 22.1 84.85 85.54 78.79

Point-BERT [192] 22.1 87.43 88.12 83.07

Point-MAE [193] 22.1 90.02 88.29 85.18

Point-M2AE [212] 15.3 91.22 88.81 86.43

ACT [162] 22.1 92.48±0.59 91.57±0.37 87.88±0.36

PCExpert (Ours)
√

6.1 92.66±0.36 91.39±0.17 87.10±0.20

Improvement (↑ 0.18)

(Table continues on next page.)
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(Table continues.)

Method CL #Params (M) SO-BG SO-OBJ SO-PB

with Self-supervised Representation Learning (LINEAR)

CrossPoint∗ [169]
√

1.8 81.7 - -

CrossNet∗ [203]
√

1.8 83.9 - -

Point-MAE [193] 22.1 82.58±0.58 83.52±0.41 73.08±0.30

ACT [162] 22.1 85.20±0.83 85.84±0.15 76.31±0.26

PCExpert (Ours)
√

6.1 90.02±0.34 89.56±0.20 79.42±0.10

Improvement (↑ 4.82) (↑ 3.72) (↑ 3.11)

with Self-supervised Representation Learning (MLP3)

Point-MAE [193] 22.1 84.29±0.55 85.24±0.67 77.34±0.12

ACT [162] 22.1 87.14±0.22 88.90±0.40 81.52±0.19

PCExpert (Ours)
√

6.1 89.96±0.43 89.76±0.42 82.57±0.62

Improvement (↑ 2.82) (↑ 0.86) (↑ 1.05)

Few-shot Point Cloud Classification

The results of few-shot 3D object classification experiments are summarized in Ta-

ble 5.3.

Several key findings are as follows: First, our PCExpert consistently outperforms

the existing methods across all experiments. Specifically, significant performance

gains of +4% to +8% are noted under LINEAR, and +4% to +10% improvement

compared with point-image contrastive methods (e.g., CrossPoint [169]).

Secondly, it can be observed that our PCExpert’s performance under the LINEAR

protocol closely approximates that under the FULL protocol. This observation im-

plies that the model is already robustly generalizable after pre-training, and requires

only linear projections for effective application. This suggests a decreasing need for

extensive fine-tuning of the whole model parameters on specific tasks, a process

which typically demands significant time and resources. Interestingly, we observe

that as the number of training samples decreases, our model’s superiority over the

existing SOTA becomes more apparent. For instance, under LINEAR, the perfor-

mance improvement in 10-shot settings is consistently higher than that in 20-shot
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Table 5.2: Classification results on ModelNet40−1k. “1k” signifies that 1, 024 points

are sampled from each sample during the training and test stages. ∗: Results based

on Support Vector Machines (SVMs). CL: Methods that are based on contrastive

learning are marked with
√
. The overall accuracy (%) is reported.

Method CL #Params (M) Supervised Learning Only

PointNet [217] 3.5 89.2

PointNet++ [210] 1.5 90.7

DGCNN [170] 1.8 92.9

PointCNN [218] 0.6 92.2

GBNet [219] 8.8 93.8

PointMLP [220] 12.6 94.1

PointNeXt [221] 1.4 93.2

Method CL #Params (M)
Self-supervised Representation Learning

FULL LINEAR MLP3

MVR [216]
√

1.8 93.2±0.1 - -

CrossPoint∗ [169]
√

1.8 - 91.2 -

CrossNet [203]
√

1.8 93.4 91.5 -

Transformer [223] 22.1 91.4 - -

OcCo [191] 22.1 92.1 - -

Point-BERT [192] 22.1 93.2 - -

Point-MAE [193] 22.1 93.8 91.22±0.26 92.33±0.09

Point-M2AE [212] 15.3 94.0 - -

ACT [162] 22.1 93.7 91.36±0.17 92.69±0.18

PCExpert (Ours)
√

6.1 92.7 92.22±0.11 92.73±0.12

Improvement (↑ 0.72) (↑ 0.04)

settings. This phenomenon indicates that PCExpert can extract and use mean-

ingful features more effectively, while remaining robust to overfitting. This further

substantiates the representation capability and generalizability of PCExpert.

These results collectively indicate that our method provides a robust and effective

approach for point cloud classification, showing notable improvements over existing
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Table 5.3: Few-shot classification results on ModelNet40. The overall accuracy (%)

is reported.

Method
5-way 10-way

10-shot 20-shot 10-shot 20-shot

with Self-supervised Representation Learning (FULL)

CrossPoint [169] 92.5 ± 3.0 94.9 ± 2.1 83.6 ± 5.3 87.9 ± 4.2

Point-LGMask [222] 97.4 ± 2.0 98.1 ± 1.4 92.6 ± 4.3 95.1 ± 3.4

Transformer [223] 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3

OcCo [191] 94.0 ± 3.6 95.9 ± 2.3 89.4 ± 5.1 92.4 ± 4.6

Point-BERT [192] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1

Point-MAE [193] 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0

Point-M2AE [212] 96.8 ± 1.8 98.3 ± 1.4 92.3 ± 4.5 95.0 ± 3.0

ACT [162] 96.8 ± 2.3 98.0 ± 1.4 93.3 ± 4.0 95.6 ± 2.8

PCExpert (Ours) 98.0 ± 1.8 98.8 ± 0.9 93.8 ± 4.4 96.2 ± 3.0

Improvement (↑ 0.6) (↑ 0.7) (↑ 0.5) (↑ 0.6)

with Self-supervised Representation Learning (LINEAR)

Point-MAE [193] 91.1 ± 5.6 91.7 ± 4.0 83.5 ± 6.1 89.7 ± 4.1

ACT [162] 91.8 ± 4.7 93.1 ± 4.2 84.5 ± 6.4 90.7 ± 4.3

PCExpert (Ours) 97.2 ± 1.9 97.7 ± 1.4 92.9 ± 4.2 94.8 ± 3.4

Improvement (↑ 5.4) (↑ 4.6) (↑ 8.4) (↑ 4.1)

with Self-supervised Representation Learning (MLP3)

Point-MAE [193] 95.0 ± 2.8 96.7 ± 2.4 90.6 ± 4.7 93.8 ± 5.0

ACT [162] 95.9 ± 2.2 97.7 ± 1.8 92.4 ± 5.0 94.7 ± 3.9

PCExpert (Ours) 97.0 ± 2.6 98.5 ± 1.0 92.8 ± 3.8 95.5 ± 2.9

Improvement (↑ 1.1) (↑ 0.8) (↑ 0.4) (↑ 0.8)

techniques, even with reduced trainable parameters. The benefit of incorporating an

image-text pre-trained model, specifically CLIP, has been particularly demonstrated

in the tasks of the LINEAR fine-tuning and few-shot classification. To further explain

this point, it is necessary to revisit the findings presented in previous chapters. The

experimental results in Section 3.4.2 and Section 4.3.2 show the effectiveness of
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generalizable knowledge learning and the regression loss in self-supervised learning

paradigms. For image-text contrastive learning, its objective can be viewed as to

predict the probability of consistency between the content in an image (result of

transformation) and the textual description (transformation parameters). There-

fore, image-text contrastive learning can be considered as a variant of generalizable

knowledge learning (see Section 4.4.3 and Figure 4.3). This novel perspective sug-

gests that enormous textual training data can significantly enhance generalizability

of knowledge about 2D images acquired with CLIP. This generalizability is demon-

strated most effectively in tasks regarding 3D understanding using the model trained

mainly on 2D images, especially in scenarios of linear fine-tuning and few-shot learn-

ing.

5.4.3 Ablation Studies

Feed Forward Networks (FFNs)

The PCExpert architecture employs an additional FFN within each transformer

block. To ascertain the contribution of these FFNs, an ablation study is performed.

This involves the removal of all additional FFNs from the architecture, making the

remaining ViT tower from CLIP the sole encoder for data across both image and

point cloud domains.

The experimental results presented in Table 5.4 reveal that the architecture without

FFNs struggles to generate effective representations for point clouds, causing reduced

accuracy score under the LINEAR fine-tuning protocol. The results highlight the

apparent discrepancy between the domains of image and point cloud. While both

image and point cloud can be employed to represent similar objects, there exist

distinct conceptual dimensions in the representation that are not mutually shared

between these two modalities. Therefore, it is necessary to integrate additional

parameters to encode modality-specific differences, and thus bridge the substantial

gap between modalities. This investigation highlights the critical role of FFNs in

enhancing the model’s performance, and thus validating their incorporation in the

PCExpert architecture.
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Table 5.4: Ablation study on the effectiveness of incorporating FFNs. SO-BG: the

OBJ BG split of the ScanObjectNN dataset. MN-1k: the 1k-sampling setting of

the ModelNet40 dataset. The overall accuracy (%) under the LINEAR protocol is

reported.

Method SO-BG MN-1k

w/o FFNs 76.59 81.30

w/ FFNs (PCExpert) 90.02 92.22

Parameter Sharing

Based on our novel idea of reinterpreting point clouds as specialized images, we

propose that extensive parameter sharing with image encoders can be beneficial

for point cloud understanding. To validate this, we compare the performance be-

tween the proposed PCExpert and separate point encoders (e.g., Transformer and

DGCNN [170]), as shown in Table 5.5. The comparisons are based on the same pre-

training dataset and objectives, with the only difference being whether ViT partic-

ipates in point data encoding. For the separated encoders, the losses are calculated

based on the point output representations from the Transformer or DGCNN, and

the image output representations from ViT, where ViT does not access or process

point data.

It can be observed from the results that PCExpert exhibits better performance in

both evaluations, despite the inductive bias of the separate encoder (e.g., DGCNN [170]).

This outcome strongly suggests the crucial contribution of parameter sharing in im-

age knowledge transfer, which thereby enhances the model’s representation gener-

alizability. Notably, given that Transformer architectures possess advantages in: 1)

end-to-end learning on data from heterogeneous modality, and 2) the scalability with

increased computational resources, our approach in this study presents a promising

direction for future multi-modal studies and applications on point clouds.

Point Cloud-Rendered Images

Table 5.6 shows the performance of PCExpert pre-trained using point cloud-rendered

images (dubbed “PCExpert-P”).
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Table 5.5: Ablation on network architecture. SO-BG: the OBJ BG split of the

ScanObjectNN dataset. MN-1k: the 1k-sampling setting of the ModelNet40 dataset.

The overall accuracy (%) under the LINEAR protocol is reported.

Method Parameter Sharing SO-BG MN-1k

Transformer × 86.19±0.26 89.42±0.12

DGCNN × 88.73±0.43 89.44±0.26

PCExpert
√

90.02±0.34 92.22±0.11

Our experimental results reveal that PCExpert, pre-trained using mesh-rendered

data (dubbed “PCExpert-M”), consistently exhibits superior performance in the

majority of benchmarks, particularly in the few-shot experiments and those under

the LINEAR protocol. This suggests that the exploitation of mesh-rendered images,

which more closely resembles real-world photos, is more beneficial for robust repre-

sentation capabilities. Nonetheless, it is important to highlight that PCExpert-P,

in some experiments under the FULL protocol, demonstrates superior performance

to PCExpert-M. This can be attributed to PCExpert-P’s pre-training that is solely

based on the single modality of point clouds, which makes it easier for the model to

optimize in tasks related to point clouds.

Moreover, while being translated into a suitable form for image encoders, the point

cloud-rendered images have preserved crucial semantic characteristics of the original

point clouds, as shown in Figure 5.3. As a result, the performance gap between the

two models is marginal, and PCExpert-P also surpasses existing SOTA in many

benchmarks. Given that utilizing point cloud-rendered images can significantly re-

duce dataset creation costs and difficulties, the minor performance deficiencies can be

compensated by leveraging larger quantities of data in the absence of mesh-rendered

images.

Pre-training Objectives

We conduct an ablation study to assess the significance of different pre-training

objectives. The results are summarized in Table 5.7.

Our analysis reveals that the inclusion of the regression loss Lreg yields better per-
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formance in both scenarios of Lcm+Lreg and Lcm+Lim+Lreg. These results provide

evidence that the parameter estimation task contributes to enhancing the model’s

representation capability.

However, we have observed a notable decrease in performance when incorporating

Lim with Lcm, a finding that stands in contrast to that reported in study [169]. The

discrepancy can likely be attributed to loss balancing issues within our architecture,

as the intra-modal contrastive task might be more challenging for the ViT model

employed in our study, compared to the 3D-specific encoder (i.e., DGCNN [170])

used in study [169]. This difficulty may cause the model to focus excessively on

minimizing Lim, thereby neglecting Lcm and compromising the generalizability of

the overall representation.

Interestingly, when Lreg is introduced into the mix, it appears to interactively reduce

the difficulty of optimizing for Lim. As shown in Figure 5.4, when optimizing for

Lreg, there is a concurrent reduction in Lim (the left plot in Figure 5.4), even though

the latter loss is intentionally excluded from the gradient calculation. However,

the reverse relationship is not true (the right plot in Figure 5.4). This discovery

suggests that the characteristics of point cloud learned through Lreg contribute to

the objective of Lim, establishing a beneficial synergy between the two losses. This

interplay results in less optimization difficulty and, consequently, optimal model

performance.

5.5 Conclusion

In conclusion, this chapter proposed PCExpert, a novel architecture for point cloud

self-supervised representation learning. By employing extensive parameter sharing

with a pre-trained ViT and the parameter estimation task with the “regression loss”,

PCExpert has demonstrated remarkable performance across multiple benchmarks,

especially in experiments under LINEAR protocol and in few-shot scenarios. PCEx-

pert’s performance serves as a solid validation for our proposition of reconsidering

point clouds as images. This standpoint is also reflected in our novel approach of

generating contrastive images directly from point cloud rendering, which opens up

new possibilities for augmenting point cloud datasets for contrastive learning. By
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Figure 5.4: left: Gradient calculation is based on Lcm and Lreg, excluding Lim.

Optimizing for Lreg (the red curve) concurrently results in a reduction of Lim (green).

right: Gradient calculation is based on Lcm and Lim, excluding Lreg. Optimizing

for Lim has no effect on Lreg.

these means, this study strengthens our understanding on the exploitation of gener-

alizable knowledge, and indicates a promising direction for future studies on transfer

learning based on text-image models, through parameter sharing and the scalability

of Transformers.
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Table 5.6: Comparison of PCExpert performance pre-trained with mesh rendered

(PCExpert-M) and point cloud rendered images (PCExpert-P). SO-BG, SO-OBJ,

and SO-PB: the OBJ BG, the OBJ ONLY, and the PB T50 RS variants of the

ScanObjectNN dataset, respectively. MN-1k: the 1k-sampling setting of the Mod-

elNet40 dataset. MN-iwjs: the i-way j-shot few-shot setting of the ModelNet40

dataset. The overall accuracy (%) is reported.

Protocol Benchmark PCExpert-M PCExpert-P

FULL

SO-BG 91.91 92.66

SO-OBJ 91.22 91.39

SO-PB 87.09 87.10

MN-1k 92.50 92.67

MN-5w10s 98.0±1.8 96.5 ± 2.7

MN-5w20s 98.8±0.9 98.0 ± 1.5

MN-10w10s 93.8±4.4 93.2 ± 4.6

MN-10w20s 96.2±3.0 95.6 ± 3.2

LINEAR

SO-BG 90.02 88.30

SO-OBJ 89.56 87.09

SO-PB 79.42 77.03

MN-1k 92.22 91.33

MN-5w10s 97.2±1.9 97.0 ± 2.8

MN-5w20s 97.7±1.4 97.0 ± 2.2

MN-10w10s 92.9±4.2 90.8 ± 5.2

MN-10w20s 94.8±3.4 93.1 ± 4.3

MLP3

SO-BG 89.96 90.53

SO-OBJ 89.76 89.85

SO-PB 82.57 81.96

MN-1k 92.73 92.34

MN-5w10s 97.0±2.6 96.9 ± 2.5

MN-5w20s 98.5±1.0 97.8 ± 1.5

MN-10w10s 92.8±3.8 91.2 ± 4.8

MN-10w20s 95.5±2.9 94.2 ± 4.1
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Table 5.7: Ablation on pre-training objectives. Overall accuracy (%) on the ScanOb-

jectNN OBJ BG (SO-BG) benchmark under the LINEAR protocol are reported.

Lcm Lim Lreg
SO-BG

(cross-modal) (intra-modal) (regression)
√

× × 84.71±0.18
√ √

× 82.96±0.12
√

×
√

85.48±0.17
√ √ √

90.02±0.34
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Chapter 6

Generalization and Beyond

In this concluding chapter, we comprehensively revisit the primary motivations,

methodologies and outcomes of the research. This chapter aims to summarize our

key findings, and evaluate the contributions of our research to the field (Section 6.1).

Furthermore, we will discuss on the research gaps that have emerged, particularly

concerning the generalizability of current generative models, which will lead to po-

tential future research directions (Section 6.2).

6.1 Summary of Outcomes

In this research, we address a crucial challenge in deep learning: out-of-distribution

generalization. In contrast to machines, humans demonstrate remarkable ability in

acquiring and utilizing generalizable knowledge. Therefore, the underlying motiva-

tion throughout our study is to understand the mechanisms and principles under

the acquisition and exploitation of such generalizable knowledge.

A characteristic of human knowledge is its systematicity, which enables its inde-

pendent reuse regardless of other factors of variation. Inspired and motivated by

this, our research proposes that only by conditioning on images before and after the

transformation caused by a target mechanism, can we learn disentangled knowledge

about this mechanism, based on the causal theory. This proposal has been validated

in experiments on 2D transformation learning, as detailed in Chapter 3. Addition-

ally, Chapter 4 expands upon this finding to a broader scale, by experimenting on
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different datasets, different mechanisms and different deep learning architectures.

The results also validate our hypothesis consistently. Building on this proposal, we

introduce “InterpretNet”, a novel architecture that emulates the human hypothesis-

verification process in perception, by explicitly exploiting the acquired knowledge.

InterpretNet exhibits some interesting properties, especially its ability to classify

hand-written digits, even if it was trained only on black-and-white noise images.

However, recognizing its inefficiency in computation due to its image-level analy-

sis, our exploration pivots towards the embedding-level knowledge acquisition and

exploitation. Chapter 4 proposes implicit knowledge exploitation via innovative

integration of regression loss with contrastive learning, and further utilization of

pre-trained image-text model for transfer learning. Our experiments suggest that

both methodologies effectively learn disentangled knowledge and thus enhances the

ability to better discriminate samples with potential influence by the target mech-

anism, as demonstrated by the model’s remarkable representational capabilities.

Finally, we devise PCExpert based on these principles in Chapter 5, and apply this

architecture in real-world challenging tasks.

One of the primary contributions of this research lies in its application of causal

theory on explicit disentanglement of a specific target concept or mechanism, pre-

sented as the form of generalizable knowledge. This methodology facilitates the

application of regression loss in general self-supervised representation learning, and

provides solid explanation to its effect on model performance. Another important

contribution of our research is the introduction of regression loss. While previous

studies [134], [179] have investigated transformation estimation as pretext tasks for

self-supervised learning, we illustrate further that image-text contrastive learning

can be considered as a variant of regression loss, based on the similarity of model

structures and underlying principles (in Chapter 4). With this novel perspective,

image-text contrastive learning can be aligned with generalizable knowledge learn-

ing on the basis of causal theory. The alignment lays a foundational framework

for future studies in language-based multi-modal contrastive learning. Last but not

least, the introduction of the PCExpert architecture in Chapter 5, which sets a new

benchmark in state-of-the-art performance, serves as a compelling validation of our

theoretical framework.
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Despite the current limitation of applicability in real-world tasks for the hypothesis-

verification process in the architecture of InterpretNet, we have identified some po-

tential research directions, as discussed in the subsequent section, in which the design

of this approach might have implications.

6.2 Looking Forward

Learning of Metrical Variables

In this research, the acquisition of generalizable knowledge about concepts with

continuum values (or metrical variables, such as rotation, etc.) is conducted by

conditioning on pairs of images. On the other hand, image-text models pre-trained

with contrastive learning can learn generalizable knowledge about concepts with

discrete values (or categorical variables, such as an elephant, etc.). If learning of

metrical variables can also benefit from large-scale, text-based contrastive learning,

models could achieve more descriptive representations of the physical world, leading

to advancements in tasks that reply on deep understanding of spatial and temporal

dynamics. Recent studies in video-text contrastive learning [224], [225] provide

foundational framework in this direction. However, a closer examination of the pre-

training datasets indicates that the textual descriptions are still categorical, such

as “Move the red box next to the yellow ball.” Such descriptions only provide

qualitative signals, and also fail to establish grounding in the temporal dimension.

We argue that for video-text contrastive learning to effectively acquire knowledge of

metrical variables, the textual descriptions needs to be quantitatively and temporally

detailed. This requirement potentially increases the cost of dataset production, and

even make the annotation of real-world data infeasible in some scenarios. We propose

using game engines, such as Unity [67] and Unreal Engine [68], for the creation of

synthetic datasets in virtual environments, as a plausible solution to this challenge.

Top-Down Signalling

At the time of writing, we are witnessing the remarkable capabilities emerging from

large language models, notably GPT-4 [226]. In this context, we briefly discuss the

gap between these models and human cognitive capabilities, and try to scratch the
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surface in exploring key elements essential to bridge the gap. Current research [7],

[155], [227], [228] shows that modern deep learning models, GPT included, are still

limited in their generalizability beyond the training distribution. The discussion on

experimental findings in Section 3.4.2 indicates that while the models demonstrate

generalizability beyond the training semantic space, it is still essentially constrained

in the bounds of in-distribution learning. Current deep learning models still predom-

inantly rely on recognition of patterns from past data, which differs fundamentally

from humans, whose interpretation of things is grounded in our understanding of

concepts, as indicated by the demonstration of Figure 4.8 in Section 4.4.1. Con-

temporary models of cortical activity suggest the presence of top-down predictive

processes, alongside bottom-up pattern recognition [229]–[231]. Based on the the-

ories on grid cells [232], [233], we hypothesize that effective top-down predictions

may require the involvement of algebraic symbol manipulation. Inspired by the

hypothesis-verification process of InterpretNet, we argue that a key missing element

in current large language models is the capability for targeted guidance and discrete

expectation (instead of probabilistic estimation) through top-down signalling. The

ability of these models to apply knowledge in a top-down, algebraic manner could

be a critical indicator of their evolution towards artificial general intelligence.
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