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Abstract

With the rapid advancement of quantum computing hardware, numerous quantum

programming languages are continually proposed to facilitate the implementation of

quantum algorithms. This research focuses on enhancing the correctness of quan-

tum programs from the perspective of formal verification, given the counter-intuitive

nature of quantum mechanics and environmental noise challenges. Two formal veri-

fication approaches are explored to validate the correctness of quantum programs.

The first approach extends classical incorrectness logic to the quantum domain,

establishing a logical foundation for statically detecting bugs in quantum program-

ming. The proposed quantum incorrectness logic is based on an intuitive explanation

derived from a reachability standpoint. Based on under-approximation relations, the

formulation of the incorrectness triple is found to be dual to quantum Hoare logic.

The corresponding proof system is sound, complete, and decidable.

The second approach introduces approximate quantum coupling as a key tool for

studying relational reasoning in quantum programs. This novel proof system gener-

alizes the widely used approximate probabilistic coupling in probabilistic programs,

addressing an open question regarding projective predicates in quantum contexts. The

application of approximate relational logic aids in assessing the robustness of quan-

tum programs between ideal specifications and imperfect implementations.

The practical utility of these approaches is demonstrated through case studies in-

volving quantum teleportation, Grover’s search, the repeat-until-success algorithm,

the approximation of unitary gates, and the bit flip code. Notably, the formal verifi-

cation of the low-depth approximation of the quantum Fourier transform is provided

through approximate relational reasoning, showcasing the effectiveness of the pro-

posed methodologies.
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Chapter 1

Introduction

In recent years, quantum computing has earned significant attention from researchers

as classical computers approach their physical hardware limits. Owing to some spe-

cial quantum properties such as superposition, entanglements and no-cloning rule of

quantum states, it has been proven that many quantum algorithms can significantly

speed up the computational missions. Examples include Shor’s factoring algorithm

[Sho94], hidden subgroup problem [EHK04], Grover’s search [Gro96], and HHL al-

gorithm [HHL09]. The rapid advancement of quantum hardware [Tra17, ZWD
+
20,

AAB
+
19] suggests that the realization of genuine quantum supremacy is just near

the corner. The deployment of a reliable large-scale quantum computer with nu-

merous qubits holds the potential to facilitate the practical implementation of quan-

tum algorithms. Leading by the belief that quantum computers will play a pivotal

role in the future, an increasing number of proposals for quantum programming

languages and quantum computing platforms [AFD
+
12, GLR

+
13, SGT

+
18, WVMN19,

Dev21, HSM
+
20, Gra05] continue to emerge for more straightforward implementation

of quantum algorithms.

Program logic and verification can provide formal reasoning about the correctness

of programs. The classical Floyd-Hoare logic, also known as Hoare logic, introduced

by Floyd [Flo93] and Hoare [Hoa69] in 1969, constitutes a formula for the verification
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of program correctness. The Hoare triple, denoted as {𝑃}𝑆{𝑄}, states that the outputs

of the execution of program 𝑆 should satisfy postcondition 𝑄 if the inputs satisfy the

precondition 𝑃 . Typically, Hoare triples are employed to establish a set of axioms and

inference rules, forming a proof system for a programming language. In recent years,

considerable attention has been directed towards extending classical program verifica-

tion techniques into the realm of quantum computing. One such extension is the Logic

of Quantum Programs (LQP), a quantum dynamic logic proposed by Baltag and Smets

[BS06]. LQP, as a direct extension of classical propositional logic, provides a formal

syntax and relational semantics for describing various quantum operations, including

unitary transformations, measurements, and entanglements between multi-systems.

Another approach, presented by Brunet and Jorrand [BJ04], establishes a quantum

logic based on the foundational ideas of Garrett Birkhoff and John von Neumann

[BN36]. This logic utilizes closed Hilbert spaces to describe system properties and

treats logical propositions as operations on state spaces. The extension of the usual

propositional languages is achieved by introducing additional unary connectives to

represent corresponding quantum unitary transformations and measurements.

As an extension of probabilistic Hoare logic, the quantitative state logic proposed

by Chadha et al. [CMS06] was defined as an ensemble of logic enriched by attach-

ing probabilities to pure quantum states. This logic established a sound and complete

Hoare proof system under the condition of bounded iterations. In contrast to Chadha’s

approach, which employed distinct syntax and semantics for pure and mixed states,

Selinger [Sel04a] defined the denotational semantics of the QPL language in terms

of complete partial orders of super-operators that treat mixed and pure states uni-

formly. Later, Yoshihiko [Kak09] formulated rules for while programs in his sound but

not complete Hoare-style proof system based on Selinger’s denotational semantics.

D’Hondt and Panangaden [DP06a] introduced the concept of weakest preconditions.

Instead of Chadha’s representations of probabilistic predicate transformations, they

chose the expectation value of a quantum Hermitian operator as a quantum analog

to the classical predicate. Subsequently, Ying [Yin12] utilized quantum weakest pre-
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conditions to construct a comprehensive Hoare-type logic that provided a sound and

complete proof system for both partial and partial correctness for deterministic quan-

tum programs. Zhou et al. [ZYY19] constrained quantum predicates as projections

and simplified certain proof rules to facilitate the verification of correctness formu-

las. [BHY
+
19, Unr19] proposed the quantum relational Hoare logic based on quantum

couplings to verify non-trivial relational properties of quantum programs. A quantum

counterpart of separation logic was explored in [ZBH
+
21] based on the model of the

substructural logic of bunched implications, where separable quantum states can be

described as the separating conjunction of bunched implications.

This thesis builds upon prior research efforts on quantum Hoare logic and in-

vestigates two formal verification methodologies to validate the correctness of quan-

tum programs, considering the perspectives of incorrectness logic and relational logic

respectively. The incorrectness logic, introduced by [dVK11, O’H19], represents an

emerging bug-detection technique emphasizing the static analysis of bug existence.

Our approach takes an initial step towards establishing an incorrectness logic tailored

for quantum programs, introducing novel concepts such as underapproximation and

reachability analysis. Another approach addresses an unresolved question posed by

[BHY
+
19], devising an approximate relational Hoare logic to robustly reason about the

approximate relational properties of two quantum programs. The following sections

provide detailed introductions to both approaches.

Incorrectness logic

Due to the counter-intuitive nature of quantum mechanics, small quantum programs

written and reviewed by professional quantum computing experts are sometimes er-

roneous. For example, bugs arose in the example programs of IBM’s OpenQASM

project [CJAA
+
21], Qiskit [WVMN19], and Rigetti’s PyQuil project [SCZ16] in their

official GitHub repositories. Huang and Martonosi [HM19a, HM19b] proposed a bug

taxonomy based on their debugging experience with Scaffold [AFD
+
12, JPK

+
15]. A
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comprehensive study by [LZM
+
22] on bug fixing in four popular quantum program-

ming languages (Qiskit, Cirq, Q#, and ProjectQ) revealed that a high proportion (over

80%) of bugs in quantum programs were quantum-specific.
1
Another study [PP22]

gathered and inspected a set of 223 real-world bugs from 18 open-source quantum

computing platforms and showed that a significant fraction of these bugs (39.9%) are

quantum-specific. Theories and techniques for debugging are in urgent demand.

There are two lines of approaches aiming at debugging quantum programs. One

approach is dynamic assertions [LBZ20, LZY
+
20], which detect erroneous states via

quantum measurements at the cost of additional qubits and quantum operations at

run-time. The other is statistical assertions [HM19b, HM19a] that detect errors via

statistical tests over sampled simulations. Unfortunately, both approaches suffer from

two main limitations:

• Limited support for bug-finding ahead of run-time. It is desirable to debug a quan-

tum program before submitting it to a quantum device, which might be busy

and make the program have to wait in the queue before being executed. The

dynamic assertions are designed for run-time debugging instead. Statistical as-

sertions achieve static debugging via repeated simulated measurements, which

is inefficient, as argued in [LZY
+
20].

• Lack of soundness or completeness arguments. Though these approaches should

alarm only true bugs, none of themmakes formal arguments about their sound-

ness. Even without complicated control structures like while-loops, none of

them guarantees completeness (do not miss bug): both dynamic assertions and

statistical assertions capture a bug by chance due to the probabilistic nature of

quantum measurement.

To address these limitations, program logic like quantum Hoare logic [Yin12] and

applied quantum Hoare logic (aQHL) [ZYY19] seem to be a good choice since they

facilitate static reasoning and provide soundness and completeness guarantees. How-

1
Generally, fixing quantum-specific bugs requires the domain knowledge of quantum-related con-

cepts, properties, computational formulas, and quantum programming languages.
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ever, these logics are not suitable for debugging purposes. They are not known to

be decidable, and their proof rules do not prove the existence of a bug: propositions

of the form ¬({𝑃}𝑆{𝑄}). Negating the postcondition will not help much, because in

general,

¬({𝑃}𝑆{𝑄}) ⇏ {𝑃}𝑆{¬𝑄},

which means true bugs could be missed.

An approach that addressed the aforementioned issues in the classical world is the

incorrectness logic [O’H19] (IL), an under-approximate analogy of Hoare logic used

for reasoning about bugs. Specifications in IL are of the form

[presumption]code[result] .

It says that the post-assertion result is an under-approximation (subset) of the final

states obtained by executing the code from states in presumption. It can be equiva-

lently interpreted as every state in result is reachable from some state in presumption.

When result specifies the erroneous states, such an interpretation matches the prin-

ciple of debugging tools to avoid false positives (bug suggestions that are not true).

Guided by such a principle, static debugging tools [BGOS18, GOS19, DFLO19] were

developed and proved practical, making it easier for programmers to locate and fix the

bugs. This novel idea was also advanced to Incorrectness Separation Logic [RBD
+
20],

which derived a begin-anywhere, intra-procedural symbolic execution analysis with

no false positives. A similar theory for quantum programming would benefit quan-

tum software development and guide the design and implementation of debugging

tools. However, it is unclear how to generalize IL to the quantum settings, where the

state model and the predicates are fundamentally different. In particular, it is not clear

how to use quantum predicates to characterize errors and how to explain achieving

(reaching everything described by) a quantum predicate.

In Chapter 3, we expand on the idea of IL by using projection-based quantum pred-

icates from the quantum logic [BN36]. This approach has proven successful in rea-

soning about the correctness [ZYY19] of quantum programs and designing dynamic



CHAPTER 1. INTRODUCTION 6

assertions [LZY
+
20]. The main result is a sound and complete logic system for rea-

soning about bugs in quantum programs statically. Technical contributions include:

• A novel interpretation of projection-based quantum predicates in the context of

bug-catching. The key ingredient is an under-approximation relation, which is

the inverted satisfaction relation for projections. We explain why the satisfac-

tion of projections is not suitable for characterizing erroneous quantum states

and why our under-approximation relation can capture errors without intro-

ducing false positives.

• An incorrectness triple based on the under-approximation relation to incorpo-

rate the spirit of reachability analysis proposed by O’Hearn [O’H19]. The triple

turns out to be an under-approximate dual of the aQHL triple. To better under-

stand and justify our triple, we compare it with several possible alternatives in

Sec 3.6 and find our triple the best in expressiveness and efficiency.

• A sound and complete quantum incorrectness logic (QIL) based on the incor-

rectness triple. The resulting proof rules in our logic have a similar structure

to their classical counterparts. We further prove that bounded loop-unrolling

is sufficient to guarantee completeness when the quantum system is finite-

dimensional, ensuring that a complete inference is decidable even if the state

space is uncountably infinite. This result also shows that aQHL is decidable.

• Three examples for demonstrating the incorrectness reasoning by QIL, namely

quantum teleportation (5.1), Grover’s algorithm (5.2), and a repeat-until-success

program (5.3). In these examples, we introduce and reason about two types of

bugs mentioned in Huang et al. [HM19b]. We also developed a prototyped static

analyzer built on top of our proof rules to automate the reasoning.

Relational Hoare logic

Compared with many program verifications that traditionally focus on proving prop-

erties of single program execution, relational verification aims to prove the rela-
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tion between two program executions. A specific instance is program equivalence

[CE79, BTT82, Pit97], where two programs can have the same behavior, even though

they may be implemented using different algorithms or programming languages.

Program equivalence holds significant importance in various areas of computer sci-

ence, including software engineering [WFF13, MZW
+
16, LSH15], translation vali-

dation of compilers [Nec00], program optimization [KTL09], and program analysis

[CPSA19, BALR20, LR15]. In program analysis, program equivalence is used to verify

programs’ correctness or prove that two programs are functionally equivalent. This

verification is typically done by analyzing the program’s control flow, data flow, or

other characteristics to determine whether the program has the same behavior as an-

other program. To verify the program equivalence, one has to consider the general

relationship beyond the equivalence during the program analysis because the imple-

mentation of the two programs could be very different.

Relational verification aims to prove the relational properties between two pro-

grams. A simple approach is to reason each program and compare the relation be-

tween the output. However, this methodology may be resource-consuming. For in-

stance, one must consider the output corresponding to each input to reason about the

equivalence between two programs. Expressing the property using Hoare-style rela-

tional logic is much more convenient. A typical Hoare-style relational judgment is of

the form ⊢ 𝑐1 ∼ 𝑐2 : Ψ ⇒ Φ where 𝑐1 and 𝑐2 represent two compared programs, Ψ

and Φ are relational assertions in the deterministic scenario [Ben04], where relational

Hoare logic (RHL) predicates are binary relations over memories. The judgment states

that for any initial memories𝑚1 and𝑚2 that satisfy the precondition Ψ, the resulting

memories𝑚′
1
and𝑚′

2
should satisfy postcondition Φ.

For probabilistic programs [BGZB09], probabilistic relational Hoare logic (pRHL)

lifted the predicates into relations over probabilistic distributions on memories. It

was deployed to provide formal computer-aided verification of cryptographic proofs.

Furthermore, [BKOZB13] introduced extra parameters to allow approximate lifting of

relations to distributions. To be specific, the authors defined the judgments in approx-
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imate probabilistic relational Hoare logic (apRHL) of the form

𝑐1 ∼𝛼,𝛿 𝑐2 : Ψ ⇒ Φ

with parameters 𝛼, 𝛿 to reason about differential privacy.

Among techniques in program analysis and verification, the exact relational logic

for quantum programs attracts lots of attention [BHY
+
19, Unr19, LU21]. Relational

logic provides a more expressive approach to characterize the relation between two

programs. For instance, direct verification of the equivalence between two quantum

programs 𝑆1 and 𝑆2 defined on register 𝑞 requires checking the equivalence between

⟦𝑆1⟧(𝜌) and ⟦𝑆2⟧(𝜌) for any 𝜌 in Hilbert space H𝑞 that involves enumerations of

an infinite set. A quantum relational judgment concerning the quantum equivalence

predicate can concisely explain the direct enumerations.
2

However, none of the aforementioned works considers approximate reasoning

that is universal in practice.

• It is implausible to physically implement quantum gates with perfect accuracy

on the hardware level, and the need to consider approximations is likely in-

evitable. As noted by John Preskill, the noise in quantum gates will limit the size

of reliable quantum circuits, and technologies for more accurate quantum gates

are of great value in the Noisy Intermediate-Scale Quantum (NISQ) [Pre18] era.

This insight sheds light on the importance of modeling hardware with noise.

• On the software level, the NISQ nature of hardware signifies the importance

of taking noise into account at the level of quantum algorithm design. More

specifically, approximate computation can be more efficient and less erroneous

than precise one since it can improve the depth of circuits and simplify the

calculation. A good example is the approximate quantum Fourier transform

[CW00], which achieves a lower circuit depth approximation of the exact quan-

tum Fourier transform used in Shor’s celebrated algorithm [Sho94].

2
Details refers to Definition 4.9 and Example 4.14.
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As for approximate reasoning in quantum settings, [ZYY19] discussed the robust-

ness of quantum programs by introducing the concept of approximate satisfaction of

predicates, [HHZ
+
19] proposed a parameterized diamond norm to characterize the

distance between an ideal program and a noisy one. Despite the significant advance-

ments in quantum approximate reasoning and the recognition of the importance of

relational reasoning, there remains a notable gap in the field — an absence of a robust

logical framework for effectively reasoning about the approximate relational proper-

ties between quantum programs.

In quantum approximate relational reasoning, the main obstacles are:

• There is no mathematical theory for a quantum version of approximate cou-

plings, an open question in [BHY
+
19]. The lack of such a theory significantly

affects the applications of exact quantum coupling and relations quantumHoare

logic. Usually, two quantum programs have different branching probabilities

in the presence of noise or approximations. Under these circumstances, their

corresponding quantum states have different traces, where exact quantum cou-

plings on these states do not exist. The main difficulties in defining an approx-

imate quantum coupling include defining a distance between quantum states,

which can be highly nonlinear. Previous knowledge about probabilistic cou-

plings may not directly apply: even for the exact quantum coupling, fundamen-

tal properties of probabilistic coupling [Hsu17] are no longer true [LBZ20].

• Designing an approximate relational quantum Hoare logic system is indeed

highly challenging. The system needs to consider several factors, including in-

finite executions of quantum while loops, approximated quantum couplings,

and the applicability of the logic rules. In quantum programming, a while loop

can have infinite executions of the loop body because of the probabilistic fea-

ture of quantum measurements. Furthermore, when dealing with approximate

quantum couplings, the system must handle the inherent uncertainty and ap-

proximation errors that arise when coupling with program branches.
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• Additionally, the applicability of logic rules adds another layer of complexity. To

strike a balance between the accuracy of the logic rules and simplicity, efficiency,

and usability is a crucial consideration when designing a logic system. Ensuring

the logic rules are powerful yet easy to use for reasoning relational properties

of complicated quantum programs requires careful consideration and analysis.

In Chapter 4, we derive an approximate version of the existing quantum relational

Hoare logic, thus making approximate relational reasoning feasible. Our judgment is

of the form

𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵

where 𝑆1 and 𝑆2 represent compared quantum programs,𝐴 and 𝐵 are projective quan-

tum predicates over the whole system. The validity of our judgment is based on the

idea of approximate (quantum) coupling and lifting. A state 𝜌 is a 𝛿-coupling for the

state pair ⟨𝜌1, 𝜌2⟩ if trace distances 𝐷 (𝜌1,Tr2(𝜌)) and 𝐷 (𝜌2,Tr1(𝜌)) are both not big-

ger than 𝛿 . And the state 𝜎 is a witness of the 𝛿-lifting 𝜌1 ∼𝛿𝑃 𝜌2 if 𝜎 is a 𝛿-coupling for

the state pair ⟨𝜌1, 𝜌2⟩ and satisfies the predicate 𝑃 (𝑃𝜎 = 𝜎). Informally, our judgment

holds if for any quantum lifting 𝜌1 ∼0

𝐴
𝜌2 of the inputs, there exists a witness of the

𝛿-lifting ⟦𝑆1⟧(𝜌1) ∼𝛿𝑃 ⟦𝑆2⟧(𝜌2) of the outputs.

The main result is a sound logic system for approximate relational reasoning for

quantum programs. Technical contributions include:

• Approximate quantum liftings. We propose a novel notion of approximate quan-

tum liftings concerning projection-based quantum predicates to make approxi-

mate reasoning simple and powerful. We do not require two quantum states to

have the same trace in approximate quantum lifting. In other words, the exact

quantum coupling may not exist. We employ the existing distances, including

trace distance and diamond norm, and define a “Hausdorff-like" distance be-

tween projections incorporated with quantum coupling to be the metric of the

approximation of the couplings.
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• Sound aqRHL. We propose a formal relational judgment to incorporate the spirit

of classical apRHL with a new quantum explanation based on the proposed ap-

proximate quantum liftings. A sound approximate quantum relational Hoare

logic (aqRHL) is built based on our relational judgments. Our choice of quan-

tum 𝛿-lifting allows us to track the relational properties of two programs with

different classical branching probabilities. In particular, ourmethodology allows

us to compute proper upper bounds for approximate liftings for quantum equiv-

alence relations, which plays a central role in characterizing the equivalence of

quantum programs.

• Application. We demonstrate the first formal verification (5.6) of the low-depth

approximate quantum Fourier transform (QFT) with an error bound that is

asymptotically equivalent to the one in [CW00]. Implementing QFT is a sig-

nificant step in the development of quantum algorithms such as period finding

[Sho94], HHL algorithm [HHL09] and quantum principal component analysis

[LMR14]. In the example of appropriate decomposition of unitary gates (5.5),

we also apply aqRHL, particularly the loop rule, to reason the repeat until suc-

cess which is one of the essential loop programs in quantum computation. We

also use aqRHL to verify the correctness of bit flip code against an arbitrary

single-qubit error (5.4).

Organization of the thesis

The thesis has a straightforward organizational structure. In Chapter 2, fundamental

preliminaries are presented, including key concepts and notations related to quan-

tum computing, the syntax and semantics of Ying’s quantum while-program lan-

guage [Yin12], and quantum predicates. Chapter 3 initiates our exploration of quan-

tum incorrectness logic (QIL). It starts with explaining themotivations for characteriz-

ing quantum errors and subsequently introduces modifications to Ying’s language for

characterizing abnormal terminations. The under-approximation relation and incor-
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rectness triple are introduced to establish a sound and complete proof system. Chap-

ter 4 covers the investigation of approximate quantum relational logic (aqRHL). It

introduces the concepts of quantum approximate couplings and lifting, utilizing them

to approximate measurement conditions and relational judgments. Consequently, a

proof system is developed based on the specification of aqRHL judgments. Chapter 5

showcases six concrete examples, illustrating how our logic can be applied to reason

about the correctness of quantum programs. Chapter 6 reviews some related work

and outline prospective directions for future studies.
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Chapter 2

Preliminaries

2.1 Background of Quantum Computing

This section presents an essential background of quantum computation to make this

thesis self-contained. Necessary notations and definitions are also given in this sec-

tion. If necessary, readers can find more details in the textbook [NC11].

Quantum states

For any isolated physical system, its state space is known as a complex vector space

with inner product, that is, a Hilbert space H . This thesis only considers finite-

dimensional Hilbert space H . Given a quantum system on a register 𝑞 that consists

of 𝑛 qubits, its corresponding Hilbert space, denoted byH𝑞 , is essentially the complex

vector space C2
𝑛

. We use a subscript 𝑞 in H𝑞 to denote the register 𝑞 of concern and

omit it when it is evident from context. The number of qubits in register 𝑞 is denoted

by |𝑞 |, which equals the dimension Dim(H𝑞) of the corresponding Hilbert space H𝑞 .

A quantum system can be completely described by its state vector. The Dirac nota-

tion |·⟩ is usually used to denote the unit complex vector in the system’s Hilbert space

H . The simplest quantum system is the qubit, a quantum analog to the classical bit.

A qubit has a two-dimensional Hilbert space. The most important orthonormal basis
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of one-qubit system is the computational basis {|0⟩ , |1⟩} with

|0⟩ = ©«
1

0

ª®¬ |1⟩ = ©«
0

1

ª®¬
, which encode the classical bits 0 and 1, respectively. The vector dual of |𝜓 ⟩, denoted

by ⟨𝜑 |, is the Hermitian conjugate of |𝜑⟩. The inner product of two vector states |𝜓 ⟩

and |𝜑⟩ is denoted by ⟨𝜓 |𝜑⟩, and the outer-product of two vector states |𝜓 ⟩ and |𝜑⟩ is

denoted by |𝜓 ⟩⟨𝜑 |.

The vector state |𝜓 ⟩ is also called as a pure state. Moreover, a mixed state can be

represented by a classical distribution over an ensemble of pure states (𝑝𝑖, |𝜓𝑖⟩). That

is, the system is in vector state |𝜓𝑖⟩ with probability 𝑝𝑖 , where 𝑝𝑖 ∈ (0, 1] and∑𝑖 𝑝𝑖 = 1.

The density operator or density matrix can widely represent the pure or mixed quan-

tum state. A density operator 𝜌 for the ensemble of pure states (𝑝𝑖, |𝜓𝑖⟩) is a positive

semidefinite operator 𝜌 =
∑
𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |. One may notice that there might be multiple

ensembles that have the same density operator representation. In this case, we do

not distinguish these quantum states because they are not physically distinguishable.

Particularly, a pure state |𝜓 ⟩ can be represented by the density operator |𝜓 ⟩⟨𝜓 |. A

positive semidefinite operator 𝜌 is said to be a density operator if Tr(𝜌) = 1, and par-

tial density operator if Tr(𝜌) ≤ 1, where Tr(𝜌) denotes the trace of the density matrix

𝜌 . Formally, the set of partial density matrices over H (denoted by D(H)) is defined

below, as we use 𝜌 for elements in D(H). In particular, 0 is a partial density matrix

representing an invalid or impossible state.

D(H) = {∑𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | | 𝑝𝑖 ≥ 0 ∧∑
𝑖 𝑝𝑖 ≤ 1 ∧ |𝜓𝑖⟩ ∈ H}

Let two independent quantum registers𝑞1 and𝑞2 be in quantum state 𝜌1 ∈ D(H𝑞1)

and 𝜌2 ∈ D(H𝑞2) respectively, then the composite system 𝑞 = {𝑞1, 𝑞2} is in the state

𝜌1⊗𝜌2 ∈ D(H𝑞1 ⊗H𝑞2) = D(H𝑞). We usually write the tensor product state |𝜓 ⟩ ⊗ |𝜑⟩

as |𝜓𝜑⟩, |𝜓1⟩⟨𝜓2 | ⊗ |𝜑1⟩⟨𝜑2 | as |𝜓1𝜑1⟩⟨𝜓2𝜑2 | for short. On the contrary, the notion of

partial trace is a handy tool when we want to describe the subsystem of a composite
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quantum system. Formally, the partial trace overH1 is a mapping Tr1(·) from opera-

tors in H1 ⊗ H2 to operators in H1 defined as

Tr1( |𝜑1⟩⟨𝜓1 | ⊗ |𝜑2⟩⟨𝜓2 |) = ⟨𝜓1 |𝜑1⟩ · |𝜑2⟩⟨𝜓2 |

for any |𝜓1⟩ , |𝜑1⟩ ∈ H1 and |𝜓2⟩ , |𝜑2⟩ ∈ H2. Similarly, the partial trace Tr2(·) overH2

can be defined symmetrically. Suppose the composite system 𝑞 is in the state 𝜌 , then

the state of subsystem 𝑞1 and 𝑞2 can be described by Tr2(𝜌) and Tr1(𝜌) respectively.

If a state of the composite system 𝑞 = {𝑞1, 𝑞2} can be represented in the form

|𝜓 ⟩𝑞1 ⊗ |𝜑⟩𝑞2 , it is called a separable state, or product state. If the state is inseparable,

it is called an entangled state. If a composite system is in an entangled state, quantum

measurement on one component system will also have effects on the other one and

collapse the entanglement. Let 𝑞1 and 𝑞2 both be one-qubit systems. The Bell states

are the most famous entangled states of a two-qubit system.

|Φ00⟩ = ( |00⟩ + |11⟩)/
√
2 |Φ10⟩ = ( |00⟩ − |11⟩)/

√
2

|Φ01⟩ = ( |01⟩ + |10⟩)/
√
2 |Φ11⟩ = ( |01⟩ − |10⟩)/

√
2

These four Bell states form an orthonormal basis of the two-qubit system. Take Bell

state |Φ00⟩ for example,

|Φ00⟩⟨Φ00 | =
1

2

( |0⟩⟨0| ⊗ |0⟩⟨0| + |0⟩⟨1| ⊗ |0⟩⟨1| + |1⟩⟨0| ⊗ |1⟩⟨0| + |1⟩⟨1| ⊗ |1⟩⟨1|)

we have Tr1( |Φ00⟩⟨Φ00 |) = Tr2( |Φ00⟩⟨Φ00 |) = 1

2
( |0⟩⟨0| + |1⟩⟨1|) = 𝐼/2, i.e. two sub-

systems are both in a maximally mixed state 𝐼/2. If we measure the first qubit in the

computational basis, that is, M = {𝑀0 = |0⟩⟨0| , 𝑀1 = |1⟩⟨1|}, we have

𝑀0 |Φ00⟩ = |00⟩ 𝑀1 |Φ00⟩ = |11⟩

It is clear that both subsystems collapse into either state |00⟩ or |11⟩ simultaneously,

and the composite system is not entangled anymore.
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Unitary operation

The evolution of an isolated quantum system can be characterized by unitary opera-

tors. A unitary operation over a quantum system 𝑞 is encoded as a unitary matrix of

dimension 2
|𝑞 |
, that is, a matrix 𝑈 that satisfies 𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 . 𝑈 †

denotes the Her-

mitian conjugate of matrix 𝑈 , i.e. the transpose of the complex conjugate of matrix

𝑈 . When the unitary operation 𝑈 is applied to the register 𝑞 in a quantum system, it

changes the quantum state 𝜌 of the whole system into𝑈𝑞𝜌𝑈
†
𝑞 , where𝑈𝑞 is the unitary

operation over the entire system which effectively applies𝑈 over 𝑞, and leaves qubits

other than 𝑞 untouched. For example, if we apply a single-qubit unitary operator 𝑈

to the 𝑞-th qubit in an 𝑛-qubit system, we have

𝑈𝑞 = ⊗1≤𝑖≤𝑞−1𝐼 ⊗ 𝑈 ⊗𝑞+1≤ 𝑗≤𝑛 𝐼 .

We often write 𝑈𝑞 as 𝑈 for short, omit the subscript 𝑞 in 𝑈𝑞 when it is clear from the

context.

We introduce some commonly used unitary operators (also called gates) thatwould

arise in further discussion. Their matrix representations are shown as follows,

𝑋 =
©«
0 1

1 0

ª®¬ 𝑌 =
©«
0 −𝑖

𝑖 0

ª®¬ 𝑍 =
©«
1 0

0 −1
ª®¬ 𝐻 =

1

√
2

©«
1 1

1 −1
ª®¬

𝑃 (𝜃 ) = ©«
1 0

0 𝑒𝑖𝜃

ª®¬ CNOT =
©«
𝐼 0

0 𝑋

ª®¬ 𝑐-𝑃 (𝜃 ) = ©«
𝐼 0

0 𝑃 (𝜃 )
ª®¬

The behavior of these operators can also be described by its transformations on com-

putational basis {|0⟩ , |1⟩}. For Pauli operators we have 𝑋 |0⟩ = |1⟩, 𝑋 |1⟩ = |0⟩,

𝑌 |0⟩ = 𝑖 |1⟩, 𝑌 |1⟩ = −𝑖 |0⟩, 𝑍 |0⟩ = |0⟩, 𝑍 |1⟩ = − |1⟩. For the Hadamard operator, we

have𝐻 |0⟩ = |+⟩ = 1√
2

( |0⟩+ |1⟩), and𝐻 |1⟩ = |−⟩ = 1√
2

( |0⟩− |1⟩). Apart from {|0⟩ , |1⟩},

{|+⟩ , |−⟩} is another widely used orthogonal basis for one-qubit system. These two

bases can be transformed to each other by applying the Hadamard operator. The gate

𝑃 (𝜃 ) is a general phase gate with 𝑃 (𝜃 ) |0⟩ = |0⟩ and 𝑃 (𝜃 ) |1⟩ = 𝑒𝑖𝜃 |1⟩. Another impor-

tant class is muti-qubit controlled gates. A controlled unitary gate takes qubit𝑞1 as the
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control qubit and applies unitary operator𝑈 to qubit𝑞2 if qubit𝑞1 is in the state |1⟩. For

example, the CNOT gate performs the transition |𝑏1⟩𝑞1 ⊗ |𝑏2⟩𝑞2 ↦→ |𝑏1⟩𝑞1 ⊗ |𝑏1 ⊕ 𝑏2⟩𝑞2 ,

where 𝑏1 ⊕ 𝑏2 denotes the logical XOR of 𝑏1 and 𝑏2. The 𝑐-𝑃 (𝜃 ) gate perform the

transition |𝑏1⟩𝑞1 ⊗ |𝑏2⟩𝑞2 ↦→ (𝑒𝑖𝜃 )𝑏1·𝑏2 |𝑏1⟩𝑞1 ⊗ |𝑏2⟩𝑞2 , where 𝑏1 · 𝑏2 denotes binary mul-

tiplication of 𝑏1 and 𝑏2.

Quantum Measurements

Programs read information from a quantum system via quantummeasurements, which

is the source of probabilistic non-determinism during the execution of a quantum

program. A measurement is described by a set𝑀 of linear operators on H , such that

𝑀 = {𝑀𝑚} with
∑
𝑚𝑀

†
𝑚𝑀𝑚 = 𝐼H ,

where 𝐼H is the identity operator on H , and 𝑀
†
𝑚 is the conjugate transpose of 𝑀𝑚 .

The subscript 𝑚 stands for the measurement outcome. Given a pure state |𝜓 ⟩, after

applying a measurement𝑀 = {𝑀𝑚}, the outcome𝑚may be observed with probability

𝑝𝑚 = ⟨𝜓 |𝑀𝑚𝑀
†
𝑚 |𝜓 ⟩, the state after the measurement with outcome 𝑚 collapses into

𝑀𝑚 |𝜓 ⟩ /√𝑝𝑚 when 𝑝𝑚 ≠ 0.

An orthogonal projection is a linear operator 𝑃 onH that satisfies 𝑃2 = 𝑃 = 𝑃†, we

call it a projection for short. A projective measurement is a special kind of measure-

ment described by a set of projections {𝑃𝑚}, that is

𝑀 = {𝑃𝑚} with
∑
𝑚 𝑃𝑚 = 𝐼 and 𝑃𝑚𝑃𝑛 =


𝑃𝑚 if𝑚 = 𝑛

0 otherwise

The corresponding observable of projective measurement 𝑀 = {𝑃𝑚} is

∑
𝑚𝑚𝑃𝑚 ,

where 𝑃𝑚 is the projector on the eigenspace of

∑
𝑚𝑚𝑃𝑚 with eigenvalue𝑚. A critical

property of a projective measurement𝑀 = {𝑃𝑚} is, when a quantum state is a mixture

of unit vectors in 𝑃𝑚 for some𝑚, measuring the state with𝑀 will return the outcome

𝑚 for sure, and leave the state unchanged.

There is a known fact that any general quantum measurement 𝑀 = {𝑀𝑚} can

always be implemented by a projective measurement 𝑀′ = {𝑃𝑚} with the help of
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introducing a unitary � and ancillary system. Specifically, we need to introduce a

unitary � such that � |� 〉 |0〉 =
∑

� �� |� 〉 |�〉, where |0〉 is in the ancillary system.

Let �� = � ⊗ |�〉〈� |, thus we have ��� |� 〉 |0〉 = �� |� 〉 |�〉. Therefore, our examples

in this thesis would only consider projective measurements for briefness.

One-to-one correspondence between a projection and a linear subspace. We do not

distinguish between a projection and its corresponding subspace. Given the eigen-

decomposition of a projection � =
∑

� |��〉〈�� |, its corresponding subspace is the space

spanned by {|��〉}. On the contrary, we can construct a projection � =
∑

� |��〉〈�� |

for an arbitrary subspace with its complete orthogonal basis {|��〉}. For example,

give a projection � = |+〉〈+| = 1

2

(
1 1

1 1

)
, it corresponds to one-dimensional subspace

spanned by {|+〉}. For the entire subspace of the one-qubit system, we choose the

basis {|0〉 , |1〉} and then get its corresponding projection � = |0〉〈0| + |1〉〈1| = � 1
.

Fig. 2.1 further illustrates how a projection � takes effects on a quantum state � .

Projection � maps the state � into ��� that lies in the subspace � . Projection �⊥

maps the state � into �⊥��⊥
that lies in the subspace �⊥

, where �⊥
is the orthogonal

complement of � , i.e. �⊥ = � − � . The mapping works similarly to the decomposition

of Euclidean vectors where we have Tr(���) + Tr(�⊥��⊥) = Tr(�). The states in

subspace � and �⊥
are orthogonal to each other. For example, projection � = |0〉〈0|

maps state |+〉〈+| into state |0〉〈0| /2, and its complement �⊥ = |1〉〈1| maps |+〉〈+| into

state |1〉〈1| /2.

Figure 2.1: Projection � on state � .

1
If you choose another basis {|+〉 , |−〉}, you will still get the same � = |+〉〈+| + |−〉〈−| = �
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Superoperator

A general quantum operation, described by a superoperator E, can be implemented

by combining unitary transformations with quantum measurements by introducing

ancilla systems and discarding post-measurement states. Readers may refer to the

system-environment model in Sec.8.2 [NC11] for more details. The following Kraus

representation theorem for superoperator E is necessary to denote quantum noise in

our further discussions.

Theorem 2.1. The superoperator E is a completely-positive map over partial density

operators from D(H1) to D(H2) if and only if for any 𝜌 ∈ D(H1), we have

E(𝜌) = ∑
𝑘 𝐸𝑘𝜌𝐸

†
𝑘

for a set of Kraus operators {𝐸𝑘 : H1 → H2}with
∑
𝑘 𝐸𝑘𝐸

†
𝑘
≤ 𝐼 . The Kraus representation

of E is also written as E =
∑
𝑘 𝐸𝑘 · 𝐸†𝑘 for short.

Apparently, both quantum unitary operations and measurements alone can be

seen as special cases of superoperators. It is important to note that the superoper-

ator E is trace non-increasing, as Tr(E(𝜌)) ≤ Tr(𝜌) holds for any 𝜌 . We say that a

superoperator E is trace-preserving if

∑
𝑘 𝐸𝑘𝐸

†
𝑘
= 𝐼 , also written as

¯E explicitly. Ad-

ditionally, we use E2 ◦ E1 to denote the composition of superoperators E1 and E2,

namely, E2 ◦E1(𝜌) = E2(E1(𝜌)). Besides, we use tensor products E1⊗E2 to represent

the combination of two superoperators E1 ∈ H1 and E2 ∈ H2 over the composite

subspaceH1 ⊗H2. The concept of the dual of a superoperator E, denoted by E∗
, will

also be useful in our further reasoning.

Definition 2.2. The Schrödinger-Heisenberg dual of a superoperator E : D(H1) →

D(H2), denoted by E∗
, is the mapping on any operator 𝐴 fromH2 to H1 such that

Tr(E∗(𝐴)𝜌) = Tr(𝐴E(𝜌))

for any 𝜌 ∈ D(H1), where we have the Kraus representation E∗ =
∑
𝑘 𝐸

†
𝑘
· 𝐸𝑘 .
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2.2 Quantum Programming Language

In this section, we will review the quantum while-language that we will use our logic

to reason. We provide a brief review of the syntax and semantics of this language, and

readers who require more information about it can refer to [Yin12]. We define Var as a

set of quantum variables and use Var (𝑆) to represent the set of all quantum variables

present in a quantum program 𝑆 . Moreover, we use H𝑆 = ⊗𝑞∈Var(𝑆)H𝑞 to represent

Hilbert spaces of all the quantum variables in program 𝑆 . The syntax presented in

Def. 2.3 is slightly different from [Yin12]. We add the statement 𝑞 := E[𝑞] for general

quantum operations, and rewrite the quantum measurement statement in the form of

the conditional statement.

Definition 2.3 (Syntax). The following syntax defines the quantum while-programs

in [Yin12]:

(Stmts) 𝑆 ::= skip | 𝑞 := |0⟩ | 𝑞 := 𝑈 [𝑞] | 𝑞 := E[𝑞] | 𝑆1; 𝑆2

| if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi | while𝑀 [𝑞] = 1 do 𝑆 od

The statement skip denotes doing nothing. The statement 𝑞 := |0⟩ initializes a

qubit 𝑞 to the vector state |0⟩ and keeps other qubits untouched. Notice that there is

no analogy for classical initialization expression (i.e., 𝑥 := 𝑒) due to the no-cloning

theorem of quantum states. The statement 𝑞 := 𝑈 [𝑞] applies a unitary transformation

𝑈 on the quantum register 𝑞. Similarly, statement 𝑞 := E[𝑞] applies a superopertor E

on the quantum register 𝑞. The conditional statement if (□𝑚 · 𝑀 [𝑞] = 𝑚 → 𝑆𝑚) fi

performs a quantum measurement 𝑀 on the register 𝑞, and executes subprogram

𝑆𝑚 according to the measurement outcome 𝑚. Furthermore, the loop statement

while𝑀 [𝑞] = 1 do 𝑆 od performs a yes-no measurement with two possible outcomes

0 and 1, then terminates or executes 𝑆 and re-enters the loop correspondingly. It is

important to note that measurement has side effects on quantum states; therefore, the

branches/loop bodies will start with a collapsed state after measurement.
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We model the operational semantics by labeled transitions over program configu-

rations of the form ⟨𝑆, 𝜌⟩, where 𝑆 is the remaining code to be executed, and 𝜌 is the

current program state. The transition relation→ is a ternary relation of type

(Stmt × D(H)) × ((Stmt ∪ {↓}) × D(H))

, where ↓ denotes the termination of a program by convention. The operational se-

mantics [Yin12] of the quantum while-language are presented in Fig. 2.2a.

(Skip) ⟨skip, 𝜌⟩ → ⟨↓, 𝜌⟩ (In) ⟨𝑞 := |0⟩ , 𝜌⟩ → ⟨↓,∑𝑛 |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|⟩
(Ut) ⟨𝑞 := 𝑈𝑞, 𝜌⟩ → ⟨↓,𝑈 𝜌𝑈 †⟩ (Qo) ⟨𝑞 := E[𝑞], 𝜌⟩ → ⟨↓, E(𝜌)⟩

(Seq1)
⟨𝑆1, 𝜌⟩ → ⟨↓, 𝜌′⟩

⟨𝑆1; 𝑆2, 𝜌⟩ → ⟨𝑆2, 𝜌′⟩
(Seq2)

⟨𝑆1, 𝜌⟩ → ⟨𝑆′
1
, 𝜌′⟩

⟨𝑆1; 𝑆2, 𝜌⟩ → ⟨𝑆′
1
; 𝑆2, 𝜌

′⟩
(If) ⟨if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi, 𝜌⟩ → ⟨𝑆𝑚, 𝑀𝑚𝜌𝑀

†
𝑚⟩

(Lp1) ⟨while𝑀 [𝑞] = 1 od 𝑆 od, 𝜌⟩ → ⟨↓, 𝑀0𝜌𝑀
†
0
⟩

(Lp2) ⟨while𝑀 [𝑞] = 1 do 𝑆 od, 𝜌⟩ → ⟨𝑆 ;while𝑀 [𝑞] = 1 do 𝑆 od, 𝑀1𝜌𝑀
†
1
⟩

(a) Operational semantics

(Skip) ⟦skip⟧(𝜌) = 𝜌 (In) ⟦𝑞 := |0⟩⟧(𝜌) = ∑
𝑛 |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|

(Ut) ⟦𝑞 := 𝑈 [𝑞]⟧(𝜌) = 𝑈𝜌𝑈 † (Qo) ⟦𝑞 := E[𝑞]⟧(𝜌) = E(𝜌)
(Seq) ⟦𝑆1; 𝑆2⟧(𝜌) = ⟦𝑆2⟧ ◦ ⟦𝑆1⟧
(If) ⟦if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi⟧(𝜌) =

∑
𝑚M𝑚 ◦ 𝑆𝑚 =

∑
𝑚⟦𝑆𝑚⟧(𝑀𝑚𝜌𝑀

†
𝑚)

(Lp) ⟦while𝑀 [𝑞] = 1 od 𝑆 od⟧(𝜌) = ∑∞
𝑘=0

M0 ◦ (⟦𝑆⟧ ◦M1)𝑘

M𝑚 (𝜌) = 𝑀𝑚𝜌𝑀
†
𝑚 (R1 + R2)𝜌 = R1𝜌 + R2𝜌 R0𝜌 = 𝜌 R𝑛 = R𝑛−1 ◦ R

R2 ◦ R1 = {𝜌′′ | 𝜌′ = R1𝜌 ∧ 𝜌′′ = R2𝜌
′ ∧ 𝜌, 𝜌′, 𝜌′′ ∈ D(H)}

(b) Denotational semantics

Figure 2.2: Semantics of quantum while-language

Here we provide some necessary clarifications regarding statements that differ

from classical ones. The In statement initializes a variable 𝑞 in state 𝜌 to |0⟩⟨0| while

leaving other variables unchanged. The initialization can be characterized by a su-

peroperator E =
∑
𝑛 |0⟩𝑞 ⟨𝑛 | · ( |0⟩𝑞 ⟨𝑛 |)†, where |𝜓 ⟩𝑞 ⟨𝜑 | denote the outer product of
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the vector states |𝜓 ⟩ and |𝜑⟩ in H𝑞 . In the Ut statement, the unitary operation 𝑈

over the register 𝑞 performs the transition 𝜌 ↦→ 𝑈𝜌𝑈 †
for any state 𝜌 ∈ H𝑞 . If we

want to set a variable 𝑞 to an arbitrary pure state |𝜓 ⟩, we usually initialize 𝑞 to |0⟩

and then apply a proper unitary 𝑈 such that 𝑈 |0⟩ = |𝜓 ⟩. Quantum measurements

are necessary to set a variable to a mixed state. In the If statement, if the measure-

ment outcome is𝑚, the input state 𝜌 will collapse into 𝑀𝑚𝜌𝑀
†
𝑚/𝑝𝑚 with probability

𝑝𝑚 = Tr(𝑀𝑚𝜌𝑀
†
𝑚) and then executes subprogram 𝑆𝑚 . Here we absorb the probability

𝑝𝑚 into the collapse state, and 𝑀𝑚𝜌𝑀
†
𝑚 represents the corresponding measurement

output. Similar to the If statement, the Lp1 statement indicates the termination of the

loop when the measurement outcome is 0, and the Lp2 statement explains the case

when the measurement outcome is 1.

The denotational semantics [Yin12] of the quantum while-language are presented

in Fig. 2.2b. By convention, we use ⟦𝑆⟧ to denote the semantic function of a program

𝑆 . In the Lp rule, M0 ◦ (⟦𝑆⟧ ◦M1)𝑘 denotes the 𝑘-th unrolling of the loop statement

while𝑀 [𝑞] = 1 od 𝑆 od. The following lemma demonstrates the equivalence between

denotational semantics and operational semantics in Fig. 2.2. It is straightforward to

observe that the denotational semantics of program 𝑆 with input state 𝜌 equals the

statistical sum of all feasible output states.

Lemma 2.4 ([Yin12]). For any quantum program 𝑆 defined in Fig.2.2, we have

⟦𝑆⟧(𝜌) = ∑{|𝜌′ : ⟨𝑆, 𝜌⟩ → ⟨↓, 𝜌′⟩|}

where is →∗
the reflexive and transitive closure of →, and {| · |} denotes a multi-set.

Lemma 2.5 ([Yin12]). For any quantum while program 𝑆 defined in Fig.2.2, its deno-

tational semantics function ⟦𝑆⟧ : D(H) ↦→ D(H) is a superoperator.

2.3 Quantum Predicate

There are typically two kinds of quantum predicates in the literature. The one we

currently do not study is by D’Hondt and Panangaden [DP06b], where they proposed
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to use a positive Hermitian operator whose maximum eigenvalue is bounded by 1 to

serve as a quantum predicate. This constraint allows to establish a complete partial

order on the poset (P(H), ≤), whereP(H) denotes the set of all predicates onHilbert

spaceH . In contrast to the classical viewpoint, the satisfaction of a quantum predicate

𝑃 by the quantum state 𝜌 is now represented by an expectation value Tr(𝑃𝜌) that

lies within the range [0, 1]. From a classical point of view, such predicates are less

intuitive since they discuss the expectation instead of a yes/no answer about whether

a quantum state satisfies a predicate.

In this thesis, we follow the other class of quantum predicates proposed by [BN36],

that is, projections. Projections can be viewed as a trade-off between expressiveness

and practicability. As shown in applied quantum Hoare logic [ZYY19], run-time as-

sertions [LZY
+
20] and quantum relational logic [Unr19], projections are sufficient to

express important properties, and easy to work with because of its compact formalism

of assertions. The key benefits of using projective predicates are:

• Projections are easy to implement using existing quantum devices. Thus, in-

serting projections as assertions is logically meaningful and implementable for

dynamic checking.

• Satisfaction of a projection is a boolean function, which coincides with classical

predicates, making it easier to incorporate the idea of IL.

• Projection-based run-time assertions (projective measurements) do not affect

quantum states satisfying the predicates.

Although projections can not model all types of bugs, they have a relatively high

performance in capturing specific bugs that enlarge/shrink the subspaces of correct

states.

Before discussing projective quantum predicates formally, we introduce the sup-

port of positive semi-definite matrices (including density matrices) in Def. 2.6.



CHAPTER 2. PRELIMINARIES 24

Definition 2.6 (Support). If 𝐴 =
∑
𝑖 𝜆𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |, where |𝜓𝑖⟩s are unit vectors in H

and 𝜆𝑖 > 0, then the support of 𝐴 is the subspace spanned by {|𝜓𝑖⟩}. I.e., supp(𝐴) =

span{|𝜓𝑖⟩}.

In particular, the support of a projection 𝑃 is its corresponding subspace, so we

write 𝑃 as a shorthand of the subspace supp(𝑃) directly. Besides, we also use the

inclusion binary relation ⊆ to denote the partial order on the set of subspaces, and ∈

to represent the membership of subspaces.

Definition 2.7 (Satisfaction). A quantum state 𝜌 satisfies a projection 𝑃 , denoted by

𝜌 ⊨ 𝑃 , if supp(𝜌) ⊆ 𝑃 . Contrarily, 𝜌 ⊭ 𝑃 if supp(𝜌) ⊈ 𝑃 .

Formally, when using projections as predicates, a mixed quantum state 𝜌 =
∑
𝑝𝑖𝜌𝑖

satisfying the projection 𝑃 means that every 𝜌𝑖 satisfies the projection 𝑃 . On the con-

trary, for any quantum state 𝜌𝑖 satisfying the projection 𝑃 , any kind of ensemble of

{𝑞𝑖, 𝜌𝑖} also satisfies the projection 𝑃 . The identity operator, 𝐼 , is the largest projection,

corresponding to the entire state space H . The smallest projection is the 0-operator,

instead of the empty set. When interpreted as subspaces, any other projection 𝑃 on

H has 0 ⊆ 𝑃 ⊆ 𝐼 .

Logical operations on projections are different from their classical counterparts.

We list the definitions of ¬, ∧, and ∨ in Def. 2.8, where we use projections to denote

both the quantum predicates and their corresponding subspaces.

Definition 2.8. The logical operations for quantum predicates are defined as follows.

For any two quantum predicates 𝑃,𝑄 on H ,

¬𝑃 ::= 𝑃⊥, 𝑃 ∧𝑄 ::= 𝑃 ∩𝑄, 𝑃 ∨𝑄 ::= span(𝑃 ∪𝑄) = ¬(¬𝑃 ∧ ¬𝑄),

where 𝑃⊥ ::= 𝐼 − 𝑃 is the orthogonal complement of 𝑃 , and 𝑃⊥ is also a subspace.

The main difference from classical predicates lies in the negation: instead of set

complement as in classical logic, the negation of a projection 𝑃 is its orthogonal com-

plement 𝑃⊥, which is the projection 𝐼 − 𝑃 . Here the binary operator − between predi-
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cates subtracts linear operators instead of sets. This difference leads to different mean-

ings of disjunction operation: the disjunction of projections 𝑃 and 𝑄 is the subspace

spanned by all vectors in 𝑃 and 𝑄 , not merely the union of these two subspaces.
2

2.4 Quantum Program Example

A demonstrating quantum program example is given in this subsection for a better

understanding of basic concepts about quantum programs. We will revisit and reason

about this example in Chapter 5. We take a simple program implementing a repeat-

until-success [PS14, BRS15] (RUS) algorithm as an example. RUS algorithms offer

exact, fault-tolerant implementations of a large set of single-qubit unitary gates that

can be used to improve upon the approximate decomposition of single-qubit unitaries

significantly. Implementing the algorithm requires wrapping RUS circuits into a while

loop.

𝑞1 : |0⟩ 𝐻 𝑇 𝐻 𝑇 𝐻

𝑞2 : |𝜓 ⟩ 𝑉 |𝜓 ⟩

Figure 2.3: An RUS circuit implementing 𝑉 =
𝐼+𝑖

√
2𝑋√
3

.

Fig. 2.3 is the smallest RUS circuit for the loop body found in [PS14] that imple-

ments non-Clifford single-qubit unitaries. The qubit 𝑞1 is the auxiliary qubit, and 𝑞2

is the target qubit. Besides 𝐻 and CNOT gates, there is another basic unitary gate

𝑇 = cos (𝜋/8)𝐼 − 𝑖 sin (𝜋/8)𝑍 used in the circuit. The circuit aims to apply a unitary

operator 𝑉 = (𝐼 + 𝑖
√
2𝑋 )/

√
3 on the target qubit. The desired operation will have

been achieved when the measurement on the auxiliary qubit 𝑞1 returns 0. When that

happens, we can exit the program and return the result. Otherwise, we would have to

rerun the circuit. To rerun the circuit based on the measurement result, we wrap the

2
The intersection of two subspaces still forms a subspace, but not for the union operation.
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circuit into a while loop. Note that the auxiliary qubit serves as the control qubit of

the loop body and the auxiliary qubit for the RUS circuit simultaneously.

1 𝑞1 := |0⟩ ;𝑞1 := 𝑋 [𝑞1];
2 𝑞2 := |0⟩ ;𝑞2 :=𝑊 [𝑞2];
3 while𝑀 [𝑞1] = 1 do
4 𝑞1 := 𝑋 [𝑞1];𝑞1 := 𝐻 [𝑞1];𝑞1 := 𝑇 [𝑞1]; (𝑞1, 𝑞2) := CNOT[(𝑞1, 𝑞2)];
5 𝑞1 := 𝐻 [𝑞1]; (𝑞1, 𝑞2) := CNOT[(𝑞1, 𝑞2)];𝑞1 := 𝑇 [𝑞1];𝑞1 := 𝐻 [𝑞1];
6 od;

Figure 2.4: Example Program 𝑆𝑅𝑈𝑆 for RUS algorithm

We can encode the whole process into the quantum program 𝑆𝑅𝑈𝑆 defined in

Fig 2.4. To make sure the program enters the while-loop body, The auxiliary qubit

𝑞1 is set to |1⟩ using an𝑋 gate at line 1, and it restores to |0⟩ by an𝑋 gate again before

executing the RUS circuit in the loop body. The target qubit 𝑞2 is set to an initial state

|𝜓 ⟩ at line 2 by the unitary gate𝑊 such that𝑊 |0⟩ = |𝜓 ⟩. Now we verify how the pro-

gram 𝑆𝑅𝑈𝑆 simulates the unitary𝑉 on qubit 𝑞2. According to the semantics defined in

Fig. 2.2, we have the following transitions for the loop statement in program 𝑆𝑅𝑈𝑆 .

(1st iteration) ⟨while, |1⟩⟨1| ⊗ |𝜓 ⟩⟨𝜓 |⟩ → ⟨↓, |𝜑⟩⟨𝜑 |⟩

(k-th iteration) ⟨while,
1

4
𝑘−2 |𝜑⟩⟨𝜑 |⟩ →


⟨↓, 3

4
𝑘−1 |0⟩⟨0| ⊗ 𝑉 |𝜓 ⟩⟨𝜓 |𝑉 †⟩

⟨while, 1

4
𝑘−1 |𝜑⟩⟨𝜑 |⟩

Here the term while denotes the loop statement between lines 3-6 in Fig 2.4 for

short. The unitary 𝑈 = (𝑋 ⊗ 𝐼 − 𝑖
√
3𝐼 ⊗ 𝑉 )/2 characterizes the sequence of unitary

computations in Fig. 2.3 and |𝜑⟩ = 𝑈 |0⟩ ⊗ |𝜓 ⟩. It is direct to see that the state |𝜑⟩ is

invariant for the loop statement. The denotational semantics can be denoted as

⟦𝑆𝑅𝑈𝑆⟧(𝜌) =
∞∑︁
𝑘=2

3

4
𝑘−1 |0⟩⟨0| ⊗ 𝑉 |𝜓 ⟩⟨𝜓 |𝑉 † = |0⟩⟨0| ⊗ 𝑉 |𝜓 ⟩⟨𝜓 |𝑉 †

for any input 𝜌 on qubits 𝑞1 and 𝑞2. Therefore, the program 𝑆𝑅𝑈𝑆 outputs the desired

state 𝑉 |𝜓 ⟩ on qubit 𝑞2 as long as the measurement outcome on qubit 𝑞1 is 0.
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2.5 Ancillary Lemmas

We end this chapter with some necessay ancillary lemmas that would be used in our

further proof. This section can be safely skiped if readers are not interested.

Definition 2.9. For any subspace 𝑆 of finite-dimensional Hilbert spaceH , its orthog-

onal complement is 𝑆⊥ such that

𝑆⊥ = {|𝜑⟩ | ⟨𝜓 |𝜑⟩ = 0,∀ |𝜓 ⟩ ∈ 𝑆}

Lemma 2.10. For any subspace 𝑆 of the finite-dimensional HilbertH , we have 𝑆 = 𝑆⊥⊥
.

Moreover, we have 𝑆1 ⊆ 𝑆2 ⇔ 𝑆⊥
1
⊇ 𝑆⊥

2
.

Proof. Choose an orthonormal basis ofH , says {𝑒1, . . . , 𝑒𝑛} with {𝑒1, . . . , 𝑒𝑚} being an

orthonormal basis of subspace 𝑆 where 𝑛 ≥ 𝑚. We have

𝑆⊥ = span({𝑒1, · · · , 𝑒𝑚})⊥

= {𝑤 | ⟨𝑒𝑖 |𝑤⟩ = 0,∀𝑒𝑖 ∈ 𝑆,𝑤 ∈ H}

= {𝑤 | ∑𝑎 𝑗 ⟨𝑒𝑖 |𝑒 𝑗 ⟩ = 0,𝑤 =
∑
𝑎 𝑗𝑒 𝑗 ,∀𝑒𝑖 ∈ 𝑆, 𝑒 𝑗 ∈ H}

= {𝑤 | 𝑤 =
∑
𝑗>𝑚 𝑎 𝑗𝑒 𝑗 } = span({𝑒𝑚+1, · · · , 𝑒𝑛})

And we can also have span({𝑒𝑚+1, · · · , 𝑒𝑛})⊥ = 𝑆 in the same way, i.e., 𝑆 = 𝑆⊥⊥
.

If 𝑆1 ⊆ 𝑆2, then we assume an orthonormal basis of 𝑆1 to be {𝑒1, . . . , 𝑒𝑚}, and an

orthonormal basis of 𝑆2 to be {𝑒1, . . . , 𝑒𝑚, . . . , 𝑒𝑛} (𝑛 ≥ 𝑚). Let {𝑒′
1
, . . . , 𝑒′

𝑘
} be a basis

of the subspace 𝑆⊥
2
, then we have ⟨𝑒′𝑖 |𝑒 𝑗 ⟩ = 0 (1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛) by definition of

orthogonal complement. Then we also have that any |𝑒′𝑖 ⟩ must be in the subspace 𝑆⊥
1

since ⟨𝑒′𝑖 |𝑒 𝑗 ⟩ = 0 holds for all elements of the basis of 𝑆1, which means the basis of 𝑆⊥
1

includes the basis of 𝑆⊥
2
, i.e 𝑆⊥

1
⊇ 𝑆⊥

2
. ■

Lemma 2.11. For a positive semi-definite matrix 𝐴 in the finite-dimensional Hilbert

space H ,

supp(𝐴) = {|𝜓 ⟩ | ⟨𝜓 |𝐴|𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H}⊥.
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Proof. Let 𝐴 =
∑
𝜆𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | be the spectral decomposition with 𝜆𝑖 > 0. Then

supp(𝐴) = span{|𝜓𝑖⟩}

where {|𝜓𝑖⟩} is a basis of supp(𝐴). Assume {|𝜑𝑖⟩} is a basis of supp(𝐴)⊥, then we have

⟨𝜓𝑖 |𝜑 𝑗 ⟩ = 0 by Def 2.9. Then for any |𝜓 ⟩ ∈ H , we have |𝜓 ⟩ = ∑
𝑎𝑖 |𝜓𝑖⟩ +

∑
𝑏 𝑗 |𝜑 𝑗 ⟩.

{|𝜓 ⟩ | ⟨𝜓 |𝐴|𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H}

= {|𝜓 ⟩ | ∑𝑎𝑖 ⟨𝜓 |𝐴|𝜓𝑖⟩ = 0}

= {|𝜓 ⟩ | ∑𝑎𝑖𝜆𝑖 ⟨𝜓 |𝜓𝑖⟩ = 0, 𝜆𝑖 > 0}

= {|𝜓 ⟩ | ∑ |𝑎𝑖 |2𝜆𝑖 = 0, 𝜆𝑖 > 0}

= {|𝜓 ⟩ | |𝜓 ⟩ = ∑
𝑏 𝑗 |𝜑 𝑗 ⟩} (𝑎𝑖 = 0)

= supp(𝐴)⊥.

Then Lemma 2.10 implies

supp(𝐴) = {|𝜓 ⟩ | ⟨𝜓 |𝐴|𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H}⊥.

■

Lemma 2.12. For positive semi-definite matrices 𝐴,𝐵 in the finite-dimensional Hilbert

space H , we have

supp(𝐴) ⊇ supp(𝐵) iff ∃𝑟 > 0 s.t. 𝐴 ≥ 𝑟𝐵

In particular, for any 𝑝 > 0 and positive semi-definite matrices 𝐴,

supp(𝐴) = supp(𝑝𝐴)

Proof. Necessity: If there exists 𝑟 > 0 such that 𝐴 ≥ 𝑟𝐵 ≥ 0, we have

𝐴 ≥ 𝑟𝐵 ≥ 0

⇒∀ |𝜓 ⟩ ∈ H , ⟨𝜓 |𝐴|𝜓 ⟩ ≥ 𝑟 ⟨𝜓 |𝐵 |𝜓 ⟩ ≥ 0

⇒∀ |𝜓 ⟩ ∈ H , ⟨𝜓 |𝐴|𝜓 ⟩ = 0 ⇒ ⟨𝜓 |𝐵 |𝜓 ⟩ = 0
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⇒ {|𝜓 ⟩ | ⟨𝜓 |𝐴|𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H} ⊆ {|𝜓 ⟩ | ⟨𝜓 |𝐵 |𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H}

⇒ {|𝜓 ⟩ | ⟨𝜓 |𝐴|𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H}⊥ ⊇ {|𝜓 ⟩ | ⟨𝜓 |𝐵 |𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H}⊥ (Lemma 2.10)

⇒ supp(𝐴) ⊇ supp(𝐵) (Lemma 2.11)

Sufficiency: Assume the spectral decomposition of 𝐴 is 𝐴 =
∑
𝑖 𝜆𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | , 𝜆𝑖 > 0.

Let 𝑃𝐴 be the projection on the support of𝐴, and then we have 𝑃𝐴 =
∑
𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |. Then

there exits 𝑟1 > 0 and 𝑟2 > 0 such that 𝑟1𝑃𝐴 ≥ 𝐴 ≥ 𝑟2𝑃𝐴 if we choose 𝑟1 = max{𝜆𝑖}

and 𝑟2 = min{𝜆𝑖}.

Now assume there exits 𝑟𝐴 > 0 and 𝑟𝐵 > 0 such that 𝐴 ≥ 𝑟𝐴𝑃𝐴 and 𝑟𝐵𝑃𝐵 ≥ 𝐵,

where 𝑃𝐵 denotes the projection on the support of 𝐵. Thus we have,

supp(𝐴) ⊇ supp(𝐵) ⇒ 𝑃𝐴 ≥ 𝑃𝐵

⇒ 1

𝑟𝐴
𝐴 ≥ 𝑃𝐴 ≥ 𝑃𝐵 ≥ 1

𝑟𝐵
𝐵 ⇒ 𝐴 ≥ 𝑟𝐴

𝑟𝐵
𝐵

Particularly, we have supp(𝐴) ⊇ supp(𝑝𝐴) with 𝑟 = 1/𝑝 and supp(𝑝𝐴) ⊇ supp(𝐴)

with 𝑟 = 𝑝 , thus we have supp(𝐴) = supp(𝑝𝐴) for any 𝑝 > 0. ■

Lemma 2.13. For positive semi-definite matrices𝐴, 𝐵,𝐶 and𝐷 in the finite-dimensional

Hilbert space H , we have

supp(𝐴) ⊇ supp(𝐵), supp(𝐶) ⊇ supp(𝐷) ⇒ supp(𝐴 +𝐶) ⊇ supp(𝐵 + 𝐷)

Particularly, we have

supp(𝐴) = supp(𝐵), supp(𝐶) = supp(𝐷) ⇒ supp(𝐴 +𝐶) = supp(𝐵 + 𝐷)

Proof. By Lemma 2.12, there exits 𝑟1 > 0 and 𝑟2 > 0 such that 𝐴 ≥ 𝑟1𝐵 and 𝐶 ≥ 𝑟2𝐷 .

Let 𝑟 = min(𝑟1, 𝑟2) > 0, we have 𝐴 ≥ 𝑟1𝐵 ≥ 𝑟𝐵 and 𝐶 ≥ 𝑟2𝐷 ≥ 𝑟𝐷 . Thus we have

𝐴 + 𝐶 ≥ 𝑟 (𝐵 + 𝐷), i.e. supp(𝐴 + 𝐶) ⊇ supp(𝐵 + 𝐷) by Lemma 2.12. The particular

case is direct since supp(𝐴) = supp(𝐵) ⇔ (supp(𝐴) ⊇ supp(𝐵)) ∧ (supp(𝐴) ⊆

supp(𝐵)). ■
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Lemma 2.14. For any super-operator E and 𝜌, 𝜎 ∈ D(H), we have

supp(𝜌) ⊇ supp(𝜎) ⇒ supp(E(𝜌)) ⊇ supp(E(𝜎)) .

Particularly, we have

supp(𝜌) = supp(𝜎) ⇒ supp(E(𝜌)) = supp(E(𝜎))

Proof.

supp(𝜌) ⊇ supp(𝜎)

⇒ ∃𝑟 > 0. 𝜌 − 𝑟𝜎 ≥ 0 (Lemma 2.12)

⇒ ∃𝑟 > 0. 𝐸𝑖 (𝜌 − 𝑟𝜎)𝐸†𝑖 ≥ 0

⇒ ∃𝑟 > 0.
∑
𝐸𝑖 (𝜌 − 𝑟𝜎)𝐸†𝑖 ≥ 0

⇒ ∃𝑟 > 0.
∑
𝐸𝑖𝜌𝐸

†
𝑖
≥ 𝑟 ∑𝐸𝑖𝜎𝐸

†
𝑖

⇒ supp(∑𝐸𝑖𝜌𝐸
†
𝑖
) ⊇ supp(∑𝐸𝑖𝜎𝐸

†
𝑖
) (Lemma 2.12)

⇒ supp(E(𝜌)) ⊇ supp(E(𝜎))

The particular case is direct since supp(𝐴) = supp(𝐵) ⇔ (supp(𝐴) ⊇ supp(𝐵)) ∧

(supp(𝐴) ⊆ supp(𝐵)). ■

Lemma 2.15. For a projection 𝑃 and a matrix 𝐾 , we have

∀𝜎 ⊨ supp(𝐾𝑃𝐾†) ⇒ ∃𝜌 ⊨ 𝑃 . 𝜎 = 𝐾𝜌𝐾†

where 𝜌, 𝜎 ∈ D(H).

Proof. Assume an orthonormal basis of the support of projection 𝑃 is {|𝑒𝑖⟩}, then

{𝐾 |𝑒𝑖⟩} is also the basis of the support of matrix𝐾𝑃𝐾†
. Assume the spectral decompo-

sition of 𝜎 is 𝜎 =
∑
𝜆𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |, |𝜓𝑖⟩⟨𝜓𝑖 | ⊨ supp(𝐾𝑃𝐾†), then we have |𝜓𝑖⟩ =

∑
𝑎𝑖 𝑗𝐾 |𝑒 𝑗 ⟩.

Let

∑
𝑎𝑖 𝑗 |𝑒 𝑗 ⟩ = 𝜇𝑖 |𝜑𝑖⟩ with ⟨𝜑𝑖 |𝜑𝑖⟩ = 1. Then,

𝜎 =
∑
𝜆𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | =

∑
𝜆𝑖 |𝜇𝑖 |2𝐾 |𝜑𝑖⟩⟨𝜑𝑖 |𝐾†.
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It is clear that |𝜑𝑖⟩⟨𝜑𝑖 | ⊨ 𝑃 . We can set

𝜌 =
∑
𝜆𝑖 |𝜇𝑖 |2 |𝜑𝑖⟩⟨𝜑𝑖 | ⊨ 𝑃 .

■

Lemma 2.16. A composition of super-operators is also a super-operator.

Proof. Given any two super-operators E and F , we have

(F ◦ E)(𝜌) = F (E(𝜌)) = F (∑𝐸𝑖𝜌𝐸
†
𝑖
)

=
∑
𝐹 𝑗 (

∑
𝐸𝑖𝜌𝐸

†
𝑖
)𝐹 †
𝑗

=
∑(𝐹 𝑗𝐸𝑖)𝜌 (𝐹 𝑗𝐸𝑖)† =

∑
𝐾𝑖 𝑗𝜌𝐾

†
𝑖 𝑗
= K(𝜌)

where 𝐾𝑖 𝑗 = 𝐹 𝑗𝐸𝑖 , K = F ◦ E is a super-operator. Thus the composition of super-

operators is also a super-operator. ■

Lemma 2.17. For any two positive semi-definite matrices 𝐴 and 𝐵 in the finite-

dimensional Hilbert space H , we have

(supp(𝐴) ∨ supp(𝐵))⊥ = supp(𝐴)⊥ ∧ supp(𝐵)⊥

Proof. Let {|𝑒𝑖⟩} be the orthonormal basis of the Hilbert spaceH , thenwe can find two

orthonormal bases {|𝑎𝑖⟩} and {|𝑏𝑖⟩} of the support of matrices 𝐴 and 𝐵 respectively,

where {|𝑎𝑖⟩} ⊆ {|𝑒𝑖⟩} and {|𝑏𝑖⟩} ⊆ {|𝑒𝑖⟩}. By the definition of the operation ∧ and ∨

on the subspace, we have

supp(𝐴) ∨ supp(𝐵) = span({|𝑎𝑖⟩} ∪ {|𝑏𝑖⟩})

supp(𝐴) ∧ supp(𝐵) = span({|𝑎𝑖⟩} ∩ {|𝑏𝑖⟩})

Then we have

(supp(𝐴) ∨ supp(𝐵))⊥ = span({|𝑎𝑖⟩} ∪ {|𝑏𝑖⟩})⊥

= span({|𝑒𝑖⟩}\({|𝑎𝑖⟩} ∪ {|𝑏𝑖⟩}))
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= span(({|𝑒𝑖⟩}\{|𝑎𝑖⟩}) ∩ ({|𝑒𝑖⟩}\{|𝑏𝑖⟩}))

= span({|𝑒𝑖⟩}\{|𝑎𝑖⟩}) ∧ span({|𝑒𝑖⟩}\{|𝑏𝑖⟩})

= supp(𝐴)⊥ ∧ supp(𝐵)⊥

where we use the fact supp(𝐴)⊥ = span({|𝑒𝑖⟩}\{|𝑎𝑖⟩}) from the definition of support

and operation ⊥ on the subspace. ■

Lemma 2.18. For any two positive semi-definite matrices 𝐴 and 𝐵 in the finite-

dimensional Hilbert space H , we have

supp(𝐴) ∨ supp(𝐵) = supp(𝐴 + 𝐵)

Particularly, we have supp(𝐴) ∨ supp(𝐵) = supp(𝑟1𝐴 + 𝑟2𝐵) for any 𝑟1 > 0 and 𝑟2 > 0.

Proof.

(supp(𝐴) ∨ supp(𝐵))⊥ = supp(𝐴)⊥ ∧ supp(𝐵)⊥ (Lemma 2.17)

= {|𝜓 ⟩ | ⟨𝜓 |𝐴|𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H} ∧ {|𝜓 ⟩ | ⟨𝜓 |𝐵 |𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H}

= {|𝜓 ⟩ | ⟨𝜓 |𝐴|𝜓 ⟩ = 0 ∧ ⟨𝜓 |𝐵 |𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H}

= {|𝜓 ⟩ | ⟨𝜓 |𝐴 + 𝐵 |𝜓 ⟩ = 0, |𝜓 ⟩ ∈ H} = supp(𝐴 + 𝐵)⊥

where we use the fact that ⟨𝜓 |𝐴|𝜓 ⟩ = 0 ∧ ⟨𝜓 |𝐵 |𝜓 ⟩ = 0 ⇔ ⟨𝜓 |𝐴 + 𝐵 |𝜓 ⟩ = 0 since

⟨𝜓 |𝐴|𝜓 ⟩ ≥ 0 and ⟨𝜓 |𝐵 |𝜓 ⟩ ≥ 0 for any |𝜓 ⟩ ∈ H . Thus we have supp(𝐴) ∨ supp(𝐵) =

supp(𝐴 + 𝐵) by Lemma 2.10. The particular case is direct since supp(𝐴) = supp(𝑝𝐴)

for any 𝑝 > 0 by Lemma 2.12. ■

Lemma 2.19. For any density operator 𝜌𝑖 and projection 𝑃𝑖 in the finite-dimensional

Hilbert space H , if 𝜌𝑖 ⊨𝑃𝑖 holds for every 𝑖 ∈ Z+
, then we have

∑
𝜌𝑖 ⊨∨𝑃𝑖 .

Proof. By Lemma 2.18, we have ∨𝑃𝑖 = supp(∑𝑖 𝑃𝑖). And given it 𝜌𝑖 ⊨𝑃𝑖 for every 𝑖 , it

is direct to have supp(∑𝑖 𝜌𝑖) ⊇ supp(∑𝑖 𝑃𝑖) by Lemma 2.13, i.e.

∑
𝜌𝑖 ⊨∨𝑃𝑖 . ■
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Lemma 2.20. For any program 𝑆 defined in Fig. 3.2, there are super-operators E𝑖 such

that for any 𝜌 ∈ D(H𝑆 ),

⟦𝑆⟧𝜖 (𝜌) = {(E𝑖 (𝜌), 𝜆𝑖) | 𝑖 ∈ Z+}.

where each E𝑖 corresponds to any path of 𝑆 described by the transition ⟨𝑆, 𝜌⟩ 𝜖−→
∗

⟨↓

, E𝑖 (𝜌)⟩, and 𝜆𝑖 is the counting number of such paths.

Proof. We proceed by induction on the structure of 𝑆 and case study on 𝜖 .

(1) Case 𝑆 = error. We have E(𝜌) = 𝐼 𝜌𝐼 † for ⟦𝑆⟧𝑒𝑟 = {|(𝜌, 𝜌) |}, and E(𝜌) = 0𝜌0†

for ⟦𝑆⟧𝑜𝑘 = {|(𝜌, 0) |}.

(2) Case 𝑆 = skip. We have E(𝜌) = 𝐼 𝜌𝐼 † for ⟦𝑆⟧𝑜𝑘 = {|(𝜌, 𝜌) |}, and E(𝜌) = 0𝜌0†

for ⟦𝑆⟧𝑒𝑟 = {|(𝜌, 0) |}.

(3) Case 𝑆 = 𝑞 := |0⟩. We have E(𝜌) =
∑
𝐸𝑖𝜌𝐸

†
𝑖

for ⟦𝑆⟧𝑜𝑘 =

{|(𝜌,∑ |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|) |} with 𝐸𝑖 = |0⟩𝑞 ⟨𝑖 |, and E(𝜌) = 0𝜌0† for ⟦𝑆⟧𝑒𝑟 =

{|(𝜌, 0) |}.

(4) Case 𝑆 = 𝑞 := 𝑈𝑞. We have E(𝜌) = 𝑈𝜌𝑈 †
for ⟦𝑆⟧𝑜𝑘 = {|(𝜌,𝑈 𝜌𝑈 †) |}, and

E(𝜌) = 0𝜌0† for ⟦𝑆⟧𝑒𝑟 = {|(𝜌, 0) |}.

(5) Case 𝑆 = 𝑆1; 𝑆2. By the induction hypothesis on 𝑆1 and 𝑆2, we have

⟦𝑆1⟧𝜖 (𝜌) = {|(E𝑖 (𝜌), 𝑛𝑖) |} ⟦𝑆2⟧𝜖 (𝜌) = {|(F𝑗 (𝜌),𝑚 𝑗 ) |}

For the ⟦𝑆1⟧𝑜𝑘 case, by Fig. 2.2b we have

(⟦𝑆1⟧ok ◦ ⟦𝑆2⟧𝜖) (𝜌) = {(𝜌′′, 𝑛 ∗𝑚) | ((𝜌, 𝜌′), 𝑛) ∈ ⟦𝑆1⟧𝑜𝑘 and ((𝜌′, 𝜌′′),𝑚)

∈ ⟦𝑆2⟧𝜖}

= {((F𝑗 ◦ E𝑖) (𝜌), 𝑛𝑖 ∗𝑚 𝑗 ) | ∀𝑖 . ((𝜌, E𝑖 (𝜌)), 𝑛𝑖) ∈ ⟦𝑆1⟧𝑜𝑘 and ∀𝑗 . ((E𝑖 (𝜌),

(F𝑗 ◦ E𝑖) (𝜌)),𝑚 𝑗 ) ∈ ⟦𝑆2⟧𝜖}

= {((F𝑗 ◦ E𝑖) (𝜌), 𝑛𝑖 ∗𝑚 𝑗 ) | ∀𝑖, 𝑗 . ((𝜌, (F𝑗 ◦ E𝑖) (𝜌)), 𝑛𝑖 ∗𝑚 𝑗 ) ∈ ⟦𝑆1⟧ok ◦ ⟦𝑆2⟧𝜖}
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= {∀𝑖, 𝑗 . (K𝑖 𝑗 (𝜌), 𝑛𝑖 ∗𝑚 𝑗 )} (Lemma 2.16)

where K𝑖 𝑗 = F𝑗 ◦ E𝑖 is also a super-operator.

By Fig. 2.2b, we have shown ⟦𝑆⟧𝑜𝑘 and ⟦𝑆1⟧𝑜𝑘 ◦ ⟦𝑆2⟧𝑒𝑟 . For the er case,

⟦𝑆⟧𝑒𝑟 = ⟦𝑆1⟧𝑜𝑘 ◦ ⟦𝑆2⟧𝑒𝑟 ⊎ ⟦𝑆1⟧𝑒𝑟 ,

we only need to show the ⟦𝑆1⟧𝑒𝑟 case, that is

⟦𝑆⟧𝑒𝑟 (𝜌) = {(𝜌′, 𝑛𝑖) | ((𝜌, 𝜌′), 𝑛𝑖) ∈ ⟦𝑆1⟧𝑒𝑟 } = {(E𝑖 (𝜌1), 𝑛𝑖)}

(6) Case 𝑆 = if (□𝑚 · 𝑀 [𝑞] = 𝑚 → 𝑆𝑚) fi. By the induction hypothesis on 𝑆𝑚 , we

have

⟦𝑆𝑚⟧𝜖 (𝜌) = {(E𝑚𝑖
(𝜌), 𝜆𝑚𝑖

) | 𝑖,𝑚𝑖 ∈ Z+}

By Fig. 2.2b, we have ⟦𝑆⟧𝜖 = ⊎𝑚 (M𝑚 ◦ ⟦𝑆𝑚⟧𝜖), then

⟦𝑆⟧𝜖 (𝜌) = {(𝜌′, 𝜆𝑚𝑖
) | (𝜌, 𝜌𝑚) ∈ M𝑚 and ∀𝑚, 𝑖. ((𝜌𝑚, 𝜌′), 𝜆𝑚𝑖

) ∈ ⟦𝑆𝑚⟧𝜖}

= {(𝜌′, 𝜆𝑚𝑖
) | ∀𝑚, 𝑖. 𝜌𝑚 = 𝑀𝑚𝜌𝑀

†
𝑚, 𝜌

′ = E𝑚𝑖
(𝜌𝑚)}

= {∀𝑚, 𝑖. ((E𝑚𝑖
◦M𝑚) (𝜌), 𝜆𝑚𝑖

)} = {∀𝑚, 𝑖. (K𝑚𝑖
(𝜌), 𝜆𝑚𝑖

)} (Lemma 2.16)

where K𝑚𝑖
= E𝑚𝑖

◦M𝑚 is also a super-operator.

(7) Case 𝑆 = while𝑀 [𝑞] = 1 do 𝑆′ od. By the induction hypothesis on 𝑆′, we have

⟦𝑆′⟧𝑜𝑘 (𝜌) = {(E𝑖 (𝜌), 𝑙𝑖)} ⟦𝑆′⟧𝑒𝑟 (𝜌) = {(F𝑗 (𝜌),𝑚 𝑗 )}

To make it compact, we define

while
𝑛
𝑜𝑘 : = (M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M0

while
𝑛
𝑒𝑟 : = (M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M1 ◦ ⟦𝑆′⟧𝑒𝑟 .

For the 𝑜𝑘 case, by Fig. 2.2b we have ⟦𝑆⟧𝑜𝑘 =
⊎
𝑛∈Nwhile

𝑛
𝑜𝑘 , it suffices to show

that the lemma holds for while
𝑛
𝑜𝑘 for any 𝑛 ∈ N.

while
𝑛
𝑜𝑘 (𝜌) = ((M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦M0) (𝜌)
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= {(𝜌′𝑛,
∏𝑛
𝑘=1

𝑙𝑖𝑘 ) | ∀𝑖1 . . . 𝑖𝑛 . (𝜌0, 𝜌′0) ∈ M1. ((𝜌′0, 𝜌1), 𝑙𝑖1) ∈ ⟦𝑆′⟧𝑜𝑘 , · · · ,

((𝜌′𝑛−1, 𝜌𝑛), 𝑙𝑖𝑛 ) ∈ ⟦𝑆′⟧𝑜𝑘 , (𝜌𝑛, 𝜌′𝑛) ∈ M0}

= {(𝜌′𝑛,
∏𝑛
𝑘=1

𝑙𝑖𝑘 ) | ∀𝑖1 . . . 𝑖𝑛 . 𝜌′0 = 𝑀1𝜌0𝑀
†
1
, 𝜌1 = E𝑖1 (𝜌′0), · · · ,

𝜌𝑛 = E𝑖𝑛 (𝜌′𝑛−1), 𝜌′𝑛 = 𝑀0𝜌𝑛𝑀
†
0
}

= {∀𝑖1 . . . 𝑖𝑛 . ((M0 ◦ E𝑖𝑛 ◦M1 · · · E𝑖1 ◦M1) (𝜌0),
∏𝑛
𝑘=1

𝑙𝑖𝑘 )}

where M0 ◦ E𝑖𝑛 ◦M1 · · · E𝑖1 ◦M1 is also a super-operator.

For the 𝑒𝑟 case, by Fig. 2.2b we have ⟦𝑆⟧𝑒𝑟 =
⊎
𝑛∈Nwhile

𝑛
𝑒𝑟 . Similarly, it suffices

to show that the lemma holds for while
𝑛
𝑒𝑟 for any 𝑛 ∈ N.

while
𝑛
𝑒𝑟 (𝜌) = ((M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦ (M1 ◦ ⟦𝑆′⟧er)) (𝜌)

= {(𝜌0,𝑚 𝑗 ∗
∏𝑛
𝑘=1

𝑙𝑖𝑘 ) | ∀𝑖1 . . . 𝑖𝑛, 𝑗 . (𝜌0, 𝜌′0) ∈ M1, ((𝜌′0, 𝜌1), 𝑙𝑖1) ∈ ⟦𝑆′⟧ok, · · · ,

((𝜌′𝑛−1, 𝜌𝑛), 𝑙𝑖𝑛 )} ∈ ⟦𝑆′⟧𝑜𝑘 , (𝜌𝑛, 𝜌′𝑛) ∈ M1, ((𝜌′𝑛, 𝜌𝑛+1), 𝑙𝑚 𝑗
) ∈ ⟦𝑆′⟧er}

= {(𝜌0,𝑚 𝑗 ∗
∏𝑛
𝑘=1

𝑙𝑖𝑘 ) | ∀𝑖1 . . . 𝑖𝑛, 𝑗 . 𝜌′0 = 𝑀1𝜌0𝑀
†
1
, 𝜌1 = E𝑖1 (𝜌′0), · · · ,

𝜌′𝑛 = 𝑀1𝜌𝑛𝑀
†
1
, 𝜌𝑛+1 = F𝑗 (𝜌′𝑛)}

= {∀𝑖1 . . . 𝑖𝑛, 𝑗 . ((F𝑗 ◦M1 ◦ E𝑖𝑛 ◦M1 · · · E𝑖1 ◦M1) (𝜌0),𝑚 𝑗 ∗
∏𝑛
𝑘=1

𝑙𝑖𝑘 )}

where F𝑗 ◦M1 ◦ E𝑖𝑛 ◦M1 · · · E𝑖1 ◦M1 is also a super-operator.

■

Lemma 2.21. For any quantum program 𝑆1, 𝑆2 and any 𝜌 ∈ D(H𝑆 ), we have∑(⟦𝑆1⟧ok ◦ ⟦𝑆2⟧𝜖) (𝜌) =
∑⟦𝑆2⟧𝜖 (

∑⟦𝑆1⟧ok(𝜌))

Proof. Lemma 2.21 comes from the linearity of super-operator. We proceed to prove

the following fact first. Let 𝜌1, 𝜌2 ∈ D(H𝑆 ) and 𝜆1, 𝜆2 ≥ 0. If 𝜆1𝜌1 + 𝜆2𝜌2 ∈ D(H𝑆 ),

then for any program 𝑆 we have,

⟦𝑆⟧𝜖 (𝜆1𝜌1 + 𝜆2𝜌2) = {(𝜆1E𝑖 (𝜌1) + 𝜆2E𝑖 (𝜌2), 𝑛𝑖) | ((𝜌, E𝑖 (𝜌)), 𝑛𝑖) ∈ ⟦𝑆⟧𝜖, 𝜌 ∈ D(H𝑆 )}

For any super-operator E(𝜌) = ∑
𝑘 𝐸𝑘𝜌𝐸

†
𝑘
, it is direct to see

E(𝜆1𝜌1 + 𝜆2𝜌2) =
∑
𝑘 𝐸𝑘 (𝜆1𝜌1 + 𝜆2𝜌2)𝐸†𝑘 = 𝜆1

∑
𝑘 𝐸𝑘𝜌1𝐸

†
𝑘
+ 𝜆2

∑
𝑘 𝐸𝑘𝜌2𝐸

†
𝑘
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= 𝜆1E(𝜌1) + 𝜆2E(𝜌2)

Thus this fact is directly derivable from Lemma 2.20, where the whole operation on

the input state through any path of our quantum program can be viewed as a super-

operator. Thus we have∑⟦𝑆⟧𝜖 (𝜆1𝜌1 + 𝜆2𝜌2) =
∑
𝑖 𝑛𝑖 ∗ (𝜆1E𝑖 (𝜌1) + 𝜆2E𝑖 (𝜌2))

= 𝜆1
∑
𝑖 𝑛𝑖 ∗ E𝑖 (𝜌1) + 𝜆2

∑
𝑖 𝑛𝑖 ∗ E𝑖 (𝜌2) = 𝜆1

∑⟦𝑆⟧𝜖 (𝜌1) + 𝜆2
∑⟦𝑆⟧𝜖 (𝜌2)

Thus for ⟦𝑆1⟧ok ◦ ⟦𝑆2⟧𝜖 , we have

(⟦𝑆1⟧ok ◦ ⟦𝑆2⟧𝜖) (𝜌) = {(𝜌′′𝑖 𝑗 , 𝛼𝑖 ∗ 𝛽𝑖 𝑗 ) | ((𝜌, 𝜌′𝑖 ), 𝛼𝑖) ∈ ⟦𝑆1⟧ok, ((𝜌′𝑖 , 𝜌′′𝑖 𝑗 ), 𝛽𝑖 𝑗 ) ∈ ⟦𝑆2⟧𝜖 }

by our semantics, then apply

∑⟦𝑆⟧𝜖 (𝜆1𝜌1 + 𝜆2𝜌2) = 𝜆1
∑⟦𝑆⟧𝜖 (𝜌1) + 𝜆2

∑⟦𝑆⟧𝜖 (𝜌2) to

have∑⟦𝑆2⟧𝜖 (
∑⟦𝑆1⟧ok(𝜌)) =

∑⟦𝑆2⟧𝜖 (
∑
𝑖 𝛼𝑖𝜌

′
𝑖 ) =

∑
𝑖 𝛼𝑖 (

∑⟦𝑆2⟧𝜖 (𝜌′𝑖 )) =
∑
𝑖 𝛼𝑖 (

∑
𝑗 𝛽𝑖 𝑗𝜌

′′
𝑖 𝑗 )

=
∑
𝑖, 𝑗 𝛼𝑖𝛽𝑖 𝑗𝜌

′′
𝑖 𝑗 =

∑(⟦𝑆1⟧ok ◦ ⟦𝑆2⟧𝜖) (𝜌)

thus we have

∑(⟦𝑆1⟧ok ◦ ⟦𝑆2⟧𝜖) (𝜌) =
∑⟦𝑆2⟧𝜖 (

∑⟦𝑆1⟧ok(𝜌)). ■

Lemma 2.22. Let 𝜌 , 𝜎 ∈ D(H𝑆 ) and supp(𝜌) ⊇ supp(𝜎), then for any program 𝑆 , we

have supp(∑⟦𝑆⟧𝜖 (𝜌)) ⊇ supp(∑⟦𝑆⟧𝜖 (𝜎)). Particularly, we have supp(
∑⟦𝑆⟧𝜖 (𝜌)) =

supp(∑⟦𝑆⟧𝜖 (𝜎)) if supp(𝜌) = supp(𝜎).

Proof. By the Lemma 2.20, we have

⟦𝑆⟧𝜖 (𝜌) = {.(E𝑖 (𝜌), 𝜆𝑖) | 𝑖 ∈ Z+}.

where E𝑖 is a super-operator. Notice that we have supp(E𝑖 (𝜌)) ⊇ supp(E𝑖 (𝜎)) if

supp(𝜌) ⊇ supp(𝜎) by Lemma 2.14, then

supp(∑⟦𝑆⟧𝜖 (𝜌)) = supp(∑𝑖 𝜆𝑖E𝑖 (𝜌)) = ∨𝑖supp(E𝑖 (𝜌)) (Lemma 2.18)

⊇ ∨𝑖supp(E𝑖 (𝜎)) = supp(∑𝑖 E𝑖 (𝜎)) (Lemma 2.18)
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= supp(∑⟦𝑆⟧𝜖 (𝜎))

The particular case is direct since supp(𝜌) = supp(𝜎) ⇔ (supp(𝜌) ⊇ supp(𝜎)) ∧

(supp(𝜌) ⊆ supp(𝜎)). ■

Lemma 2.23. To be specific, for any statement defined in Fig. 3.2 and quantum predicate

𝑃 , we have

(1) 𝑝𝑜𝑠𝑡 (⟦skip⟧ok)𝑃 = 𝑃 𝑝𝑜𝑠𝑡 (⟦skip⟧er)𝑃 = 0

(2) 𝑝𝑜𝑠𝑡 (⟦error⟧ok)𝑃 = 0 𝑝𝑜𝑠𝑡 (⟦error⟧er)𝑃 = 𝑃

(3) 𝑝𝑜𝑠𝑡 (⟦𝑞 := 𝑈𝑞⟧ok)𝑃 = 𝑈𝑃𝑈 † 𝑝𝑜𝑠𝑡 (⟦𝑞 := 𝑈𝑞⟧er)𝑃 = 0

(4) 𝑝𝑜𝑠𝑡 (⟦𝑞 := |0⟩⟧ok)𝑃 = supp(∑𝑛 |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|) 𝑝𝑜𝑠𝑡 (⟦𝑞 := |0⟩⟧er)𝑃 =

0

(5) 𝑝𝑜𝑠𝑡 (⟦𝑆1; 𝑆2⟧ok)𝑃 = 𝑝𝑜𝑠𝑡 (⟦𝑆2⟧ok) (𝑝𝑜𝑠𝑡 (⟦𝑆1⟧ok)𝑃)

𝑝𝑜𝑠𝑡 (⟦𝑆1; 𝑆2⟧er)𝑃 = 𝑝𝑜𝑠𝑡 (⟦𝑆2⟧er) (𝑝𝑜𝑠𝑡 (⟦𝑆1⟧ok)𝑃) ∨ 𝑝𝑜𝑠𝑡 (⟦𝑆1⟧er)𝑃

(6) 𝑝𝑜𝑠𝑡 (⟦if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi⟧𝜖)𝑃 = ∨𝑚𝑝𝑜𝑠𝑡 (M𝑚 ◦ ⟦𝑆𝑚⟧𝜖)𝑃

(7) 𝑝𝑜𝑠𝑡 (⟦while𝑀 [𝑞] = 1 do 𝑆 od⟧ok)𝑃 = ∨𝑛𝑝𝑜𝑠𝑡 ((M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦M0)𝑃

𝑝𝑜𝑠𝑡 (⟦while𝑀 [𝑞] = 1 do 𝑆 od⟧er)𝑃 = ∨𝑛𝑝𝑜𝑠𝑡 ((M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦M1 ◦ ⟦𝑆′⟧er)𝑃

Proof. We prove the specific form of 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 by induction on the structure of 𝑆 .

(1) It is direct to check that the lemma holds for the error and skip.

(2) Case 𝑆 = 𝑞 := |0⟩. For the ok case, let 𝜌 = 𝑃/Tr(𝑃), then we have

supp(∑⟦𝑆⟧ok(𝜌)) = supp(∑𝑛 |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|) = supp(∑𝑛 |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|) by

Lemma 2.12 and 2.14, where supp(𝜌) = supp(𝑃). For the er case, it is direct to

have 𝑝𝑜𝑠𝑡 (⟦𝑆⟧er)𝑃 = 0.

(3) Case 𝑆 = 𝑞 := 𝑈𝑞. Similar to the case (2).
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(4) Case 𝑆 = 𝑆1; 𝑆2. We have 𝑝𝑜𝑠𝑡 (⟦𝑆𝑖⟧𝜖)𝑃 = supp(∑⟦𝑆𝑖⟧𝜖 (𝑃/Tr(𝑃))) from the

induction hypothesis for 𝑖 ∈ {1, 2}. Let 𝜌 = 𝑃/Tr(𝑃), 𝜌′ = ∑⟦𝑆1⟧ok(𝜌), thus we

have 𝑅 = supp(𝜌′) = 𝑝𝑜𝑠𝑡 (⟦𝑆1⟧ok)𝑃 .

For the ok case, we have

supp(∑⟦𝑆⟧ok(𝜌)) = supp(∑⟦𝑆2⟧ok(𝜌′)) (Lemma 2.21)

= supp(∑⟦𝑆2⟧ok(𝑅/Tr(𝑅))) (Lemma 2.22)

= 𝑝𝑜𝑠𝑡 (⟦𝑆2⟧ok)𝑅 (hypothesis on 𝑆2)

= 𝑝𝑜𝑠𝑡 (⟦𝑆2⟧ok) (𝑝𝑜𝑠𝑡 (⟦𝑆1⟧ok)𝑃)

For the er case, we have

supp(∑⟦𝑆⟧er(𝜌)) = supp(∑⟦𝑆2⟧er(𝜌′) +
∑⟦𝑆1⟧er(𝜌)) (Lemma 2.21)

= supp(∑⟦𝑆2⟧er(𝜌′)) ∨ supp(∑⟦𝑆1⟧er(𝜌)) (Lemma 2.18)

= supp(∑⟦𝑆2⟧er(𝑅/Tr(𝑅))) ∨ supp(∑⟦𝑆1⟧er(𝑃/Tr(𝑃))) (Lemma 2.22)

= 𝑝𝑜𝑠𝑡 (⟦𝑆2⟧er) (𝑝𝑜𝑠𝑡 (⟦𝑆1⟧ok)𝑃) ∨ 𝑝𝑜𝑠𝑡 (⟦𝑆1⟧er)𝑃 (hypothesis on 𝑆1 and 𝑆2)

(5) Case 𝑆 = if (□𝑚 · 𝑀 [𝑞] = 𝑚 → 𝑆𝑚) fi. We have 𝑝𝑜𝑠𝑡 (⟦𝑆𝑚⟧𝜖)𝑃 =

supp(∑⟦𝑆𝑚⟧𝜖 (𝑃/Tr(𝑃))) from the induction hypothesis for every 𝑚. Let 𝜌 =

𝑃/Tr(𝑃), then we have

supp(∑⟦𝑆⟧𝜖 (𝜌)) = supp(∑𝑚

∑(M𝑚 ◦ ⟦𝑆𝑚⟧𝜖) (𝜌))

= ∨𝑚supp(
∑(M𝑚 ◦ ⟦𝑆𝑚⟧𝜖) (𝜌)) (Lemma 2.18)

= ∨𝑚𝑝𝑜𝑠𝑡 (M𝑚 ◦ ⟦𝑆𝑚⟧𝜖)𝑃 (induction on the sequence)

(6) Case 𝑆 = while𝑀 [𝑞] = 1 do 𝑆′ od. To make it compact, we define

while𝑛
𝑜𝑘

: = (M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M0

while𝑛𝑒𝑟 : = (M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M1 ◦ ⟦𝑆′⟧𝑒𝑟

Let 𝜌 = 𝑃/Tr(𝑃), by our semantics, we have

supp(∑⟦𝑆⟧ok(𝜌)) = supp(∑𝑛

∑⟦while⟧𝑛
ok
(𝜌))
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= ∨𝑛supp(
∑((M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M0) (𝜌)) (Lemma 2.18)

= ∨𝑛𝑝𝑜𝑠𝑡 ((M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M0)𝑃 (induction on the sequence)

Similarly, we have supp(∑⟦𝑆⟧er(𝜌)) = ∨𝑛𝑝𝑜𝑠𝑡 ((M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M1 ◦ ⟦𝑆′⟧𝑒𝑟 )𝑃 .

■
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Chapter 3

Quantum Incorrectness Logic

Bug-catching is important for developing reliable programs. Motivated by O’Hearn’s

incorrectness logic (IL) [O’H19] for classical programs, this chapter proposes the quan-

tum incorrectness logic (QIL) [YJY22] towards a logical foundation for static bug-

catching in quantum programming. We consider only quantum programs with classi-

cal control, and bugs at the software level. We expect software-level bug-catching to

be important for both near-term and error-corrected quantum computing; because we

are not aware of any quantum algorithm that is robust to logical bugs (instead of noise

that arises in hardware). In this chapter, we propose an incorrectness logic towards a

logical foundation for static bug-catching in quantum programming. The validity of

formulas in this logic is dual to that of quantum Hoare logic. We justify the formu-

lation of validity by an intuitive explanation from a reachability point of view and a

comparison against several alternative formulations. Compared with existing works

focusing on dynamic analysis, our logic provides sound and complete arguments. We

further demonstrate the usefulness of the logic by reasoning several examples, in-

cluding quantum teleportation (5.1), Grover’s search (5.2), and a repeat-until-success

program (5.3). We also automate the reasoning procedure with a prototyped static

analyzer built on top of the logic rules.
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Organization of Chapter 3. In Sec. 3.1, we explain the motivations for character-

izing quantum errors using projections and extending the concept of reachability in

classical programs into quantum settings. In Sec. 3.2, we introduce the modified lan-

guage based on Ying’s work [Yin12] to characterize abnormal terminations andmatch

our incorrectness logic. We formally introduce the under-approximation relation, a

quantum version of incorrectness triple, and the duality between quantum correctness

and incorrectness triples in Sec. 3.3. In Sec. 3.4, a proof system for QIL triples is pre-

sented. In Sec. 3.5, we prove that our proof system is sound and complete. In Sec. 3.6,

we discuss the reasons for our choice by comparing our triple with other alternatives.

Examples are given in Chapter 5 for demonstrating the incorrectness reasoning by

QIL, namely Grover’s algorithm, quantum teleportation, and a repeat-until-success

program. In these examples, we introduce and reason about two types of bugs men-

tioned in Huang et al. [HM19b]. We also developed a prototyped static analyzer built

on top of our proof rules to automate the reasoning.

3.1 Motivations and Ideas

We choose to adopt the convention of using projection-based quantum predicates

from the quantum logic [BN36]. This approach has proven successful in reasoning

about the correctness [ZYY19] of quantum programs and designing dynamic asser-

tions [LZY
+
20]. Now we hope to extend the ideas of classical incorrectness logic into

the quantum settingswhile still using projection-based quantumpredicates. The triple

[presumption] code [result] of classical incorrectness logic [O’H19] can be interpreted

as

Every state in the result is reachable from some state in the presumption. (3.1)

There are some naturally arising problems if we want to apply this idea to the

quantum settings. The first problem is how to characterize an erroneous quantum

state using a projection. We can not use a projection to characterize erroneous states
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directly since it may lead to false positives, which must be avoided in bug-finding. The

next problem is how to explain the reachability of states in quantum settings. That is,

we need to figure out the meaning of reaching everything in (that is, achieving) the

result predicate in quantum settings. In this subsection, we explain our ideas for these

two problems in detail.

How to characterizing errors?

We first need to answer how to precisely characterize an erroneous state 𝜌 that does

not satisfy a quantum projective predicate 𝑃 . Here we use a simple example to demon-

strate that projection and satisfaction (Def. 2.7) cannot capture some erroneous states

without introducing false positives.

Let 𝑃𝑐 be the projection |0⟩⟨0| for characterizing correct states, and let 𝜌𝑒 =

1

2
( |0⟩⟨0|𝑐 + |1⟩⟨1|𝑒) is a probabilistic mixture of the correct state |0⟩⟨0|𝑐 ⊨ 𝑃𝑐 and the

erroneous state |1⟩⟨1|𝑒 ⊭ 𝑃𝑐 , which means that 𝜌𝑒 is also an erroneous state. Here

we use subscripts 𝑐 and 𝑒 to distinguish between correct and erroneous states or the

corresponding assertions. If we use satisfaction to specify the erroneous state 𝜌𝑒 , we

need to find a projection𝑄𝑒 such that 𝜌𝑒 ⊨ 𝑄𝑒 . Assume such a𝑄𝑒 exists, it means that

|0⟩⟨0|𝑐 ⊆ supp(𝜌𝑒) ⊆ 𝑄𝑒 .

That is, a correct state |0⟩⟨0|𝑐 also satisfies 𝑄𝑒 , which is a false positive.

The problem is that the support of an erroneous state 𝜌𝑒 ⊭ 𝑃 is not necessarily or-

thogonal to 𝑃 . Characterizing 𝜌𝑒 using satisfaction and projection may falsely capture

correct states. Notice that classical IL does not have this problem because any state

𝜎𝑒 ∉ 𝑝 can be precisely characterized by {𝜎𝑒} ⊆ ¬𝑝 .

Our solution is that we can replace the satisfaction relation with an under-

approximation relation for characterizing errors. We say state 𝜌 is under-approximated

by projection 𝑃 , denoted by 𝜌 ⊨𝑃 , if supp(𝜌) ⊇ 𝑃 . The under-approximation relation

is the inverted satisfaction. Intuitively, it means that 𝜌 can be a mixture of states that

contains |𝜓𝑖⟩ described by 𝑃 =
∑ |𝜓𝑖⟩⟨𝜓𝑖 |, and vector states in 𝑃 are the “100%” errors.
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With this relation, we can characterize 𝜌𝑒 =
1

2
( |0⟩⟨0| + |1⟩⟨1|) by 𝜌𝑒 ⊨|1⟩⟨1| without

introducing false positives.

How to interpret reachability?

In classical incorrectness logic, the triple requires the result predicate to be achieved,

which means every state 𝜎 satisfying result can be obtained after the execution. For

quantum programs, it is unreasonable to directly adopt this idea by replacing ⊨ with

⊨because it is commonly impossible to reach every 𝜌 in the set {𝜌 | 𝜌 ⊨𝑃}.

Here we also use a simple example to demonstrate the difficulty. Let us consider a

program measuring a single qubit 𝑞 with𝑀 = {|0⟩⟨0| , |1⟩⟨1|}:

if (𝑀 [𝑞] = true → skip □ false → skip) fi // achieve |0⟩⟨0|

The program has at most 2 possible output states |0⟩⟨0| and |1⟩⟨1| for any input state,

thus is unable to “achieve” a reasonable projection |0⟩⟨0|, which under-approximates

an infinite set of states, e.g., {𝜆 |0⟩⟨0| + (1 − 𝜆) |1⟩⟨1| | 𝜆 ∈ (0, 1]}. How should we

interpret “achieving” a projection in the quantum settings to make the reachability

analysis meaningful?

Actually, we can interpret achieving 𝑃 as “𝑃 under-approximates the probabilistic

mixture of all reachable states”. This interpretation is reasonable in the sense that

if the projection 𝑃 is “achieved”, then any pure state |𝜓 ⟩ ∈ 𝑃 can be obtained by

measuring the final state of some execution path, using the measurement {|𝜓 ⟩⟨𝜓 | , 𝐼 −

|𝜓 ⟩⟨𝜓 |}. With such an interpretation, we avoid reaching infinitely many states to

“achieve” a projection. In the above example, |0⟩⟨0| is the only non-trivial projection

that under-approximates the possible output state |0⟩. We “achieve” the projection

|0⟩⟨0| whenever it is possible to obtain the state |0⟩ via the false branch.

Now we can informally give the semantics of a QIL triple [𝑃]𝑆 [𝑄] that follows

directly from the new interpretation of “achieving”:

If a state achieves 𝑃 , the mixture of its reachable states after executing 𝑆 achieves 𝑄.
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This statement can be equivalently described as post(𝑆)𝑃 ⊇ 𝑄 , where post is the largest

achievable postcondition defined formally in Sec. 3.3. We list the key ingredients of

IL and QIL discussed above in Table 3.1 for comparison.

Table 3.1: Comparison of the key ingredients in IL and QIL. Here 𝜎 and 𝑝 are classical

state and predicate, 𝜌 and 𝑃 are quantum state and projection.

Key Ingredients IL QIL

Assertion 𝑝 (set of states) 𝑃 (linear subspace)

𝜎 or 𝜌 is erroneous 𝜎 ∈ ¬𝑝 𝜌 ⊨𝑄 for some 𝑄 ⊈ 𝑃

𝑝 or 𝑃 is achieved (⋃𝜎 reachable
{𝜎}) ⊇ 𝑝

(∑
𝜌 reachable

𝜌

)
⊨𝑃

3.2 Extended QuantumWhile Language

In this subsection, we introduce the extended quantum programming language with

classical controls to match our quantum incorrectness logic. We extend the quan-

tumwhile language [Yin12, Per08b, Per08a] by adding the error statement to capture

errors and encode the assert statement.

Syntax

The modified syntax of the extended program language is defined in Def. 3.1. Com-

pared with the syntax described in Def. 2.3, we add the error statement to capture

errors and ignore general quantum operations for simplicity. The newly introduced

error statement halts the execution and signals an error. One of the main applications

of error is to encode projection-based assertions [LZY
+
20] for quantum programs, to

test whether a property holds at a particular program point.

Definition 3.1 (Syntax). The extended quantum while-programs in [YJY22] is de-

fined as follows:

(Stmts) 𝑆 ::= skip | 𝑆1; 𝑆2 | 𝑞 := |0⟩ | 𝑞 := 𝑈𝑞 | if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi

| while𝑀 [𝑞] = 1 do 𝑆 od | error
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An assertion in classical programming languages typically tests whether a pred-

icate (a boolean-valued function over program states) holds at a particular program

point. If the test succeeds, the execution continues; otherwise, the program terminates

abnormally and may throw an exception. For quantum programs, such tests on quan-

tum states are not generally feasible because i) the only way to observe a quantum

state is by measuring the state, and ii) measurement has side effects over quantum

states in general.

To achieve a similar quantum counterpart of an assertion, we restrict the predicate

to be a projective measurement, following the approach of [LZY
+
20]. Concretely, we

encode the assert(𝑞, 𝑃) statement as follows,

assert(𝑞, 𝑃) ::= if (𝑀𝑃 [𝑞] = true → skip □ false → error) fi

where𝑀𝑃 = {𝑀true, 𝑀false}, 𝑀true = 𝑃,𝑀false = 𝐼 − 𝑃 .

where 𝑃 is a projection over spaceH𝑞 , indicating a certain property over 𝑞. Projective

measurement is suitable for encoding assertions because for a state 𝜌 ,

• if supp(𝜌) ⊆ 𝑃 , the outcome of 𝑀𝑃 [𝑞] over 𝜌 will be true for sure, and 𝜌 keeps

unchanged after measurement; thus assertions will not affect future executions,

• otherwise, there is a non-zero probability that the outcome of 𝑀𝑃 [𝑞] is false,

and an error would arise.

Compared with classical assertions, it is clear that quantum projective assertion

assert(𝑞, 𝑃) can not certainly assert the property of 𝜌 lying in the subspace 𝑃 for only

one test. An abnormal termination caused by assert(𝑞, 𝑃) can then be viewed as evi-

dence of a bug. Intuitively, it means some part in 𝜌 lies out of 𝑃 . Notice that projective

assertions will not bring any false positives, but they may suffer from false negatives

since an erroneous state that does not satisfy 𝑃 still has a probability of passing the

test. Generally speaking, false positives are not allowed due to the requirement of

soundness, while false negatives still turn up from time to time due to the lack of

completeness.
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Semantics

The semantics of the extended quantum while programs are standard, except for the

treatment of the newly introduced error statement. To distinguish abnormal termi-

nations caused by error from those normal terminations, we adopt the exit condition

𝜖 from the incorrectness logic [O’H19].

(ExitCond) 𝜖 ::= ok | er

The value of an exit condition 𝜖 can be either ok or er. Here ok is for normal termi-

nations, and er is for abnormal terminations caused by error statements. We call the

output of normal/abnormal terminations as normal/abnormal states, respectively.

Operational Semantics

Similarly, we model the operational semantics by labeled transitions over program

configurations of the form ⟨𝑆, 𝜌⟩. The transition relation → is a ternary relation of

type

(Stmt × D(H)) × ExitCond × ((Stmt ∪ {↓}) × D(H)),

where ↓ is used to denote the termination of a program by convention, and extra

"ExitCond" is added tomatch our syntax in Def. 3.1. A transition is denoted by ⟨𝑆, 𝜌⟩ 𝜖−→

⟨𝑆′, 𝜌′⟩, and the label 𝜖 ranges from {ok, er} to indicate a normal/abnormal transition.

The operational semantics of the extended quantum while-language is formalized in

Fig. 3.1, where transition relations labeled with er are included.

Transitions labeled by ok in Fig. 3.1 are essentially the same as the standard oper-

ational semantics in Fig. 2.2a of the quantum Hoare logic [Yin12]. We explain the two

transitions with the er label. The transition rule for error is intuitive. It terminates the

execution, raises an er label, and returns the quantum state untouched. The transition

rule for 𝑆1; 𝑆2 with the er label says that when the execution of 𝑆1 encounters an error,

then the execution of the entire program immediately terminates abnormally, discard-

ing the remaining code including 𝑆2. To describe multiple-step executions where only
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the label of final execution is interesting, we use the notation

𝜖−→
∗
, where 𝜖 is the exiting

condition, and 𝜖 = ok if no step is taken.

⟨skip, 𝜌⟩ ok−→ ⟨↓, 𝜌⟩ ⟨error, 𝜌⟩ er−→ ⟨↓, 𝜌⟩ ⟨𝑞 := 𝑈𝑞, 𝜌⟩ ok−→ ⟨↓,𝑈 𝜌𝑈 †⟩

⟨𝑞 := |0⟩ , 𝜌⟩ ok−→ ⟨↓,∑𝑛 |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|⟩

⟨if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi, 𝜌⟩
ok−→ ⟨𝑆𝑚, 𝑀𝑚𝜌𝑀

†
𝑚⟩

⟨𝑆1, 𝜌⟩
ok−→ ⟨↓, 𝜌 ′⟩

⟨𝑆1; 𝑆2, 𝜌⟩
ok−→ ⟨𝑆2, 𝜌 ′⟩

⟨𝑆1, 𝜌⟩
ok−→ ⟨𝑆 ′

1
, 𝜌 ′⟩

⟨𝑆1; 𝑆2, 𝜌⟩
ok−→ ⟨𝑆 ′

1
; 𝑆2, 𝜌

′⟩

⟨𝑆1, 𝜌⟩
er−→ ⟨↓, 𝜌 ′⟩

⟨𝑆1; 𝑆2, 𝜌⟩
er−→ ⟨↓, 𝜌 ′⟩

⟨while𝑀 [𝑞] = 1 od 𝑆 od, 𝜌⟩ ok−→ ⟨↓, 𝑀0𝜌𝑀
†
0
⟩

⟨while𝑀 [𝑞] = 1 do 𝑆 od, 𝜌⟩ ok−→ ⟨𝑆 ;while𝑀 [𝑞] = 1 do 𝑆 od, 𝑀1𝜌𝑀
†
1
⟩

Figure 3.1: Operational semantics for QIL

Denotational Semantics

The “mixture of all reachable states” mentioned in Sec. 3.1 is a critical component

of our incorrectness triple. The operational semantics in Fig. 3.1 characterizes one

possible execution path at a time, which is not convenient for formalizing the incor-

rectness triple. We introduce denotational semantics to collect those reachable states

from an input program state. The denotational semantics prove to be equivalent to

the standard operational semantics.

Similarly, we use ⟦𝑆⟧𝜖 to denote the semantic function of a program 𝑆 with exit

condition 𝜖 . The semantic function has the type below. Intuitively, ⟦𝑆⟧𝜖 maps a pro-

gram state to the collection of reachable final states with exit condition 𝜖 .

⟦𝑆⟧𝜖 : D(H) → Mset(D(H))
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HereMset(𝐴) is the type of multi-sets (sometimes called bags) over the universe 𝐴. A

multi-set is defined as a function of type𝐴 → N that maps an element to its multiplic-

ity. We use multi-sets instead of sets because the same final state might be obtained

from different execution paths.

⟦error⟧𝑜𝑘𝜌 = 0 ⟦error⟧𝑒𝑟𝜌 = 𝜌

⟦skip⟧𝑜𝑘𝜌 = 𝜌 ⟦skip⟧𝑒𝑟𝜌 = 0

⟦𝑞 := |0⟩⟧𝑜𝑘𝜌 =
∑ |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0| ⟦𝑞 := |0⟩⟧𝑒𝑟𝜌 = 0

⟦𝑞 := 𝑈𝑞⟧𝑜𝑘𝜌 = 𝑈𝜌𝑈 † ⟦𝑞 := 𝑈𝑞⟧𝑒𝑟𝜌 = 0

⟦𝑆1; 𝑆2⟧𝑜𝑘 = ⟦𝑆1⟧𝑜𝑘 ◦ ⟦𝑆2⟧𝑜𝑘 ⟦𝑆1; 𝑆2⟧𝑒𝑟 = (⟦𝑆1⟧𝑜𝑘 ◦ ⟦𝑆2⟧𝑒𝑟 ) ⊎ ⟦𝑆1⟧𝑒𝑟

⟦if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi⟧𝑜𝑘 =
⊎

𝑚 (M𝑚 ◦ ⟦𝑆𝑚⟧ok)

⟦if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi⟧𝑒𝑟 =
⊎

𝑚 (M𝑚 ◦ ⟦𝑆𝑚⟧er)

⟦while𝑀 [𝑞] = 1 do 𝑆 od⟧ok =
⊎

𝑛∈N((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦M0)

⟦while𝑀 [𝑞] = 1 do 𝑆 od⟧er =
⊎

𝑛∈N((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦ (M1 ◦ ⟦𝑆⟧er))

M𝑚𝜌 = 𝑀𝑚𝜌𝑀
†
𝑚 𝜈1 ⊎ 𝜈2 = {(𝜌, 𝜈1(𝜌) + 𝜈2(𝜌)) | 𝜌 ∈ D(H)}

(R1 ⊎ R2)𝜌 = R1𝜌 ⊎ R2𝜌 R0𝜌 = {(𝜌, 1)} R𝑛 = R𝑛−1 ◦ R

(R1 ◦ R2)𝜌 = {(𝜌 ′′, 𝑛1𝑛2) | 𝑛1 = R1𝜌𝜌
′ ∧ 𝑛2 = R2𝜌

′𝜌 ′′ ∧ 𝜌, 𝜌 ′, 𝜌 ′′ ∈ D(H)}

Figure 3.2: Denotational semantics for QIL.

Formally, we define the semantic function in Fig. 3.2, with auxiliary definitions

listed at the bottom. Most of the formulations explain themselves. We assign the

meaning of impossible executions like ⟦error⟧ok𝜌 with the 0-state, indicating this

is an impossible event. Among these auxiliary definitions, M𝑚 denotes the seman-

tic function of 𝑀𝑚 in the measurement 𝑀 [𝑞], and we use R for a function of type

D(H) → Mset(D(H)), R𝜌 is the multi-set obtained by applying R to 𝜌 , and R𝜌𝜌′ is

themultiplicity of 𝜌′ inR𝜌 . The operation𝜈1⊎𝜈2 is the union operation overmulti-sets

𝜈1 and 𝜈2, and in R1⊎R2, ⊎ is the pointwise lifted operation between multi-set valued

functions. By our denotational semantics, the probabilistic mixture of all reachable

states can be formulated by the sum of a multi-set 𝜈 of partial density matrices, de-
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noted by

∑⟦𝑆⟧. The sum ∑⟦𝑆⟧ converges [Sel04b, Yin12] and thus is well-defined.

Noticed that our denotational semantics for QIL is different from Fig. 2.2b. In Fig. 2.2b,

⟦𝑆⟧ is a direct mapping from D(H) to D(H), which is the sum of all outputs.

It is straightforward to prove that the denotational semantics is equivalent to the

operational semantics, as formulated in Theorem. 3.2.

Theorem 3.2. For any program 𝑆 , and 𝜌 ∈ D(H), the denotational semantics is equiv-

alent to the operational semantics modulo 0-states, that is,

(⟦𝑆⟧𝜖𝜌){0 { 0} = ({(𝜌′, 𝑛) | ⟨𝑆, 𝜌⟩ 𝜖−→
∗
𝑛 ⟨↓, 𝜌′⟩}){0 { 0}.

Here {0 { 0} means discarding 0-states from the multi-set. We discard 0-states because

the denotational semantics would introduce other multiplicities of 0-states when encoun-

tering impossible executions like skip with er exit condition. The notation ⟨𝑆, 𝜌⟩ 𝜖−→
∗
𝑛

⟨↓, 𝜌′⟩ means there are 𝑛 distinguished execution paths that terminates at 𝜌′ with exit

condition 𝜖 .

Proof. We proceed by induction on the structure of program 𝑆 and show the equiv-

alence between denotational semantics and operational semantics, i.e., ((𝜌, 𝜌′), 𝜆) ∈

⟦𝑆⟧𝜖 ⇔ ⟨𝑆, 𝜌⟩ 𝜖−→
∗
𝜆 ⟨↓, 𝜌′⟩ where 𝜌′ ≠ 0. Obviously, it is direct to have

⟨𝑆, 𝜌⟩ ok−→
∗
𝜆1

⟨𝑆′, 𝜌′⟩ 𝜖−→
∗
𝜆2

⟨𝑆′′, 𝜌′′⟩ ⇔ ⟨𝑆, 𝜌⟩ 𝜖−→
∗
𝜆1∗𝜆2 ⟨𝑆

′′, 𝜌′′⟩

by combination. In this proof, we view (⟦𝑆⟧𝜖𝜌){0 { 0} as the multi-set without any

member being 0 for convenience.

(1) It is direct to check that these two kinds of semantics are same for the basic

deterministic syntax such as error, skip, 𝑞 := |0⟩ and 𝑞 := 𝑈𝑞.

⟦error⟧er = {|(𝜌, 𝜌) |} ⇔ ⟨error, 𝜌⟩ er−→ ⟨↓, 𝜌⟩ for any 𝜌 ∈ D(H𝑆 )

⟦skip⟧ok = {|(𝜌, 𝜌) |} ⇔ ⟨skip, 𝜌⟩ ok−→ ⟨↓, 𝜌⟩ for any 𝜌 ∈ D(H𝑆 )

⟦𝑞 := |0⟩⟧ok = {|(𝜌, E(𝜌)) |} ⇔ ⟨𝑞 := |0⟩ , 𝜌⟩ ok−→ ⟨↓, E(𝜌)⟩ for any 𝜌 ∈ D(H𝑆 )

⟦𝑞 := 𝑈𝑞⟧ok = {|(𝜌,𝑈 𝜌𝑈 †) |} ⇔ ⟨𝑞 := 𝑈𝑞, 𝜌⟩ ok−→ ⟨↓,𝑈 𝜌𝑈 †⟩ for any 𝜌 ∈ D(H𝑆 )



CHAPTER 3. QUANTUM INCORRECTNESS LOGIC 50

where E(𝜌) = ∑ |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|.

(2) 𝑆 = 𝑆1; 𝑆2. We have ((𝜌, 𝜌′), 𝜆) ∈ ⟦𝑆⟧𝜖 ⇔ ⟨𝑆, 𝜌⟩ 𝜖−→
∗
𝜆 ⟨↓, 𝜌′⟩ for 𝑆1 and 𝑆2

respectively by inductive hypothesis, then we need to show this hypothesis also

holds for 𝑆1; 𝑆2. For the 𝑜𝑘 case, we have

⟦𝑆1; 𝑆2⟧ok = ⟦𝑆1⟧ok ◦ ⟦𝑆2⟧ok

= {((𝜌1, 𝜌3), 𝜆1 ∗ 𝜆2) | ((𝜌1, 𝜌2), 𝜆1) ∈ ⟦𝑆1⟧𝑜𝑘 and ((𝜌2, 𝜌3), 𝜆2) ∈ ⟦𝑆2⟧𝑜𝑘}

= {((𝜌1, 𝜌3), 𝜆1 ∗ 𝜆2) | ⟨𝑆1, 𝜌1⟩
ok−→

∗
𝜆1

⟨↓; 𝜌2⟩ and ⟨𝑆2; 𝜌2⟩
𝑜𝑘−−→

∗
𝜆2

⟨↓, 𝜌3⟩}

= {((𝜌1, 𝜌3), 𝜆1 ∗ 𝜆2) | ⟨𝑆1; 𝑆2, 𝜌1⟩
ok−→

∗
𝜆1

⟨𝑆2, 𝜌2⟩
𝑜𝑘−−→

∗
𝜆2

⟨↓, 𝜌3⟩}

= {((𝜌1, 𝜌3), 𝜆1 ∗ 𝜆2) | ⟨𝑆1; 𝑆2, 𝜌1⟩
ok−→

∗
𝜆1∗𝜆2 ⟨↓, 𝜌3⟩}

For the 𝑒𝑟 case,

⟦𝑆1; 𝑆2⟧𝑒𝑟 = ⟦𝑆1⟧𝑜𝑘 ◦ ⟦𝑆2⟧𝑒𝑟 ⊎ ⟦𝑆1⟧𝑒𝑟

= {((𝜌1, 𝜌3), 𝜆1 ∗ 𝜆2) | ((𝜌1, 𝜌2), 𝜆1) ∈ ⟦𝑆1⟧𝑜𝑘 and ((𝜌2, 𝜌3), 𝜆2) ∈ ⟦𝑆2⟧𝑒𝑟 }

⊎ {((𝜌1, 𝜌3), 𝜆3) | ((𝜌1, 𝜌3), 𝜆3) ∈ ⟦𝑆1⟧𝑒𝑟 }

= {((𝜌, 𝜌′), 𝜆1 ∗ 𝜆2 + 𝜆3) | ((𝜌, 𝜌′), 𝜆1 ∗ 𝜆2 + 𝜆3) ∈ ⟦𝑆1; 𝑆2⟧𝑒𝑟 }

= {((𝜌1, 𝜌3), 𝜆1 ∗ 𝜆2) | ⟨𝑆1; 𝑆2, 𝜌1⟩
𝑜𝑘−−→

∗
𝜆1

⟨𝑆2, 𝜌2⟩
𝑒𝑟−→

∗
𝜆2

⟨↓, 𝜌3⟩}

⊎ {((𝜌1, 𝜌3), 𝜆3) | ⟨𝑆1, 𝜌1⟩
𝑒𝑟−→

∗
𝜆3

⟨↓, 𝜌3⟩}

= {((𝜌, 𝜌′), 𝜆1 ∗ 𝜆2 + 𝜆3) | ⟨𝑆1; 𝑆2, 𝜌⟩
𝑒𝑟−→

∗
𝜆1∗𝜆2+𝜆3 ⟨↓, 𝜌

′⟩}

(3) 𝑆 = if (□𝑚 · 𝑀 [𝑞] = 𝑚 → 𝑆𝑚) fi. We have ((𝜌𝑚, 𝜌′), 𝜆𝑚) ∈ ⟦𝑆𝑚⟧𝜖 ⇔

⟨𝑆𝑚, 𝜌𝑚⟩
𝜖−→
∗
𝜆𝑚

⟨↓, 𝜌′⟩ for 𝑆𝑚 by inductive hypothesis.

⟦𝑆⟧𝜖 = ⊎𝑚M𝑚 ◦ ⟦𝑆𝑚⟧𝜖

= {((𝜌, 𝜌′), 𝜆𝑚) | ∀𝑚. (𝜌, 𝜌𝑚) ∈ M𝑚 and ((𝜌𝑚, 𝜌′), 𝜆𝑚) ∈ ⟦𝑆𝑚⟧𝜖}

= {((𝜌, 𝜌′), 𝜆𝑚) | ∀𝑚. ⟨𝑆, 𝜌⟩
ok−→ ⟨𝑆𝑚, 𝜌𝑚⟩

𝜖−→
∗
𝜆𝑚

⟨↓, 𝜌′⟩}

= {((𝜌, 𝜌′), 𝜆𝑚) | ∀𝑚. ⟨𝑆, 𝜌⟩
𝜖−→
∗
𝜆𝑚

⟨↓, 𝜌′⟩}
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(4) 𝑆 = while 𝑀 [𝑞] = 1 do 𝑆′ od = while. We have ((𝜌, 𝜌′), 𝜆) ∈ ⟦𝑆′⟧𝜖 ⇔

⟨𝑆′, 𝜌⟩ 𝜖−→
∗
𝜆 ⟨↓, 𝜌′⟩ for 𝑆′ by inductive hypothesis. To make it clear, we use

(𝜌𝑖, 𝜌′𝑖 ) ∈ M1 and ((𝜌′𝑖 , 𝜌𝑖+1), 𝜆𝑖) ∈ ⟦𝑆′⟧𝑜𝑘 to denote the transition of states

in the loop. we also define

while
𝑛
𝑜𝑘 : = (M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M0

while
𝑛
𝑒𝑟 : = (M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 ◦M1 ◦ ⟦𝑆′⟧𝑒𝑟 .

For the 𝑜𝑘 case, we have ⟦𝑆⟧𝑜𝑘 = ⊎𝑛∈N((M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦M0) = ⊎𝑛∈N while𝑛
𝑜𝑘
.

Thus it suffices to show ((𝜌, 𝜌′), 𝜆) ∈ while𝑛
𝑜𝑘

⇔ ⟨while𝑛
𝑜𝑘
, 𝜌⟩ 𝑜𝑘−−→

∗
𝜆 ⟨↓, 𝜌′⟩ for

any 𝑛 ∈ N. For any 𝑛 ∈ N, we have

while𝑛
𝑜𝑘

= (M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦M0 = {((𝜌, 𝜌′), 𝜆) | ((𝜌, 𝜌′), 𝜆) ∈ while𝑛
𝑜𝑘
}

= {((𝜌0, 𝜌′), 𝜆) | (𝜌0, 𝜌′0) ∈ M1 and ((𝜌′
0
, 𝜌′), 𝜆) ∈ ⟦𝑆′⟧𝑜𝑘 ◦ (M1 ◦ ⟦𝑆′⟧ok)𝑛−1 ◦M0}

= {((𝜌0, 𝜌′), 𝜆) | (𝜌0, 𝜌′0) ∈ M1 and ((𝜌′
0
, 𝜌1), 𝜆0) ∈ ⟦𝑆′⟧𝑜𝑘 and ((𝜌1, 𝜌′), 𝜆/𝜆0) ∈ while𝑛−1

𝑜𝑘
}

= {((𝜌0, 𝜌′), 𝜆) | ((𝜌0, 𝜌1), 𝜆0) ∈ M1 ◦ ⟦𝑆′⟧𝑜𝑘 and ((𝜌1, 𝜌′), 𝜆/𝜆0) ∈ while𝑛−1
𝑜𝑘

}

= {((𝜌0, 𝜌′), 𝜆) | ((𝜌0, 𝜌𝑛), 𝜆 =
∏𝑛−1
𝑖=0 𝜆𝑖) ∈ (M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛 and (𝜌𝑛, 𝜌′) ∈ M0}

= {((𝜌0, 𝜌′), 𝜆) | ((𝜌0, 𝜌′), 𝜆 =
∏𝑛−1
𝑖=0 𝜆𝑖) ∈ while𝑛

ok
}

= {((𝜌0, 𝜌′), 𝜆) | ⟨while𝑛
𝑜𝑘
, 𝜌0⟩

𝑜𝑘−−→ ⟨⟦𝑆′⟧𝑜𝑘 ◦while𝑛−1
𝑜𝑘
, 𝜌′

0
⟩ 𝑜𝑘−−→

∗
𝜆0

⟨while𝑛−1
𝑜𝑘
, 𝜌1⟩ and

((𝜌1, 𝜌′), 𝜆/𝜆0) ∈ while𝑛−1
𝑜𝑘

}

= {((𝜌0, 𝜌′), 𝜆) | ⟨while𝑛
𝑜𝑘
, 𝜌0⟩

𝑜𝑘−−→
∗
𝜆0

⟨while𝑛−1
𝑜𝑘
, 𝜌1⟩ and ((𝜌1, 𝜌′), 𝜆/𝜆0) ∈ while𝑛−1

𝑜𝑘
}

= {((𝜌0, 𝜌′), 𝜆) | ⟨while𝑛
𝑜𝑘
, 𝜌0⟩

𝑜𝑘−−→
∗
𝜆=

∏𝑛−1
𝑖=0 𝜆𝑖

⟨while0
𝑜𝑘
, 𝜌𝑛⟩ and (𝜌𝑛, 𝜌′) ∈ while0

𝑜𝑘
= M0}

= {((𝜌0, 𝜌′), 𝜆) | ⟨while𝑛
𝑜𝑘
, 𝜌0⟩

𝑜𝑘−−→
∗
𝜆 ⟨↓, 𝜌′⟩, 𝜆 =

∏𝑛−1
𝑖=0 𝜆𝑖}

For the 𝑒𝑟 case, similarly, we have ⟦𝑆⟧𝑒𝑟 = ⊎𝑛∈N((M1◦⟦𝑆′⟧ok)𝑛◦(M1◦⟦𝑆′⟧er)) =

⊎𝑛∈N while𝑛𝑒𝑟 . It suffices to show ((𝜌, 𝜌′), 𝜆) ∈ while𝑛𝑒𝑟 ⇔ ⟨while𝑛𝑒𝑟 , 𝜌⟩
𝑒𝑟−→

∗
𝜆 ⟨↓

, 𝜌′⟩ holds for any 𝑛 ∈ N. For any 𝑛 ∈ N, we have

while𝑛𝑒𝑟 = (M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦ (M1 ◦ ⟦𝑆′⟧er) = {((𝜌, 𝜌′), 𝜆) | ((𝜌, 𝜌′), 𝜆) ∈ while𝑛𝑒𝑟 }

= {((𝜌0, 𝜌′), 𝜆) | ((𝜌0, 𝜌𝑛), 𝜆/𝜆𝑛 =
∏𝑛−1
𝑖=0 𝜆𝑖) ∈ (M1 ◦ ⟦𝑆′⟧𝑜𝑘)𝑛, (𝜌𝑛, 𝜌′𝑛) ∈ M1,
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((𝜌′𝑛, 𝜌′), 𝜆𝑛) ∈ ⟦𝑆′⟧𝑒𝑟 }

= {((𝜌0, 𝜌′), 𝜆) | ((𝜌0, 𝜌′), 𝜆 =
∏𝑛
𝑖=0 𝜆𝑖) ∈ while𝑛𝑒𝑟 }

= {((𝜌0, 𝜌′), 𝜆) | ⟨while𝑛𝑒𝑟 , 𝜌0⟩
𝑜𝑘−−→

∗
𝜆/𝜆𝑛 =

∏𝑛−1
𝑖=0 𝜆𝑖

⟨M1 ◦ ⟦𝑆′⟧er, 𝜌𝑛⟩
𝑜𝑘−−→

⟨⟦𝑆′⟧er, 𝜌′𝑛⟩
𝑒𝑟−→

∗
𝜆𝑛

⟨↓, 𝜌′⟩}

= {((𝜌0, 𝜌′), 𝜆) | ⟨while𝑛𝑒𝑟 , 𝜌0⟩
𝑜𝑘−−→

∗
𝜆/𝜆𝑛 =

∏𝑛−1
𝑖=0 𝜆𝑖

⟨⟦𝑆′⟧er, 𝜌′𝑛⟩
𝑒𝑟−→

∗
𝜆𝑛

⟨↓, 𝜌′⟩}

= {((𝜌0, 𝜌′), 𝜆) | ⟨while𝑛𝑒𝑟 , 𝜌0⟩
𝑒𝑟−→

∗
𝜆 ⟨↓, 𝜌′⟩, 𝜆 =

∏𝑛
𝑖=0 𝜆𝑖}

where ((𝜌′𝑖 , 𝜌𝑖+1), 𝜆𝑖) ∈ ⟦𝑆′⟧𝑜𝑘 holds for 𝑖 < 𝑛 and ((𝜌′𝑛, 𝜌′), 𝜆𝑛) ∈ ⟦𝑆′⟧𝑒𝑟 .

■

A Simple Program Example

// assume span{|00⟩}
𝐻 (𝑞0); CNOT(𝑞0, 𝑞1);
if ( 𝑀 [𝑞0] = true → skip

□ false → skip ) fi;
if ( 𝑀 [𝑞1] = true → skip

□ false → skip ) fi;
// ensures span{|00⟩ , |11⟩}

(a) the program,𝑀 = {|0⟩⟨0| , |1⟩⟨1|}.

|00⟩

(|00⟩ + |11⟩)/
√
2

|11⟩ |00⟩

|11⟩ – – |00⟩

1

0.5 0.5

1 0 0 1

𝐻,CNOT

𝑀 [𝑞0 ]

𝑀 [𝑞1 ]

(b) the transitions of quantum states, labels on

arrows are probabilities of the transition.

Figure 3.3: A simple example that prepares and measures a Bell state.

Here we present a simple program in Fig. 3.3a to explain our semantics. After per-

forming two unitary gates 𝐻 and 𝐶𝑁𝑂𝑇 on quantum state |00⟩, we obtain the Bell

state ( |00⟩ + |11⟩)/
√
2. Note that the Bell state is pure, a superposition of unit vectors

|00⟩ and |11⟩, which encodes the two qubits having the same classical bit-value. Then

quantum measurement serves as the guard of a branching statement: after the mea-

surement, the quantum program jumps to the branch corresponding to the outcome

of the measurement. In particular, the measurements in Fig. 3.3 are projective. The

first quantum measurement collapses the Bell state into |11⟩ or |00⟩ with probability

1/2, while the second quantum measurement leaves the state unchanged since the
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input state satisfies the predicates |0⟩⟨0| or |1⟩⟨1| for sure. Let 𝑆Bell be the program in

Fig. 3.3a, the denotational semantics can be expressed as

⟦𝑆Bell⟧ok |00⟩⟨00| = {| 1

2
|11⟩⟨11| , 0, 0, 1

2
|00⟩⟨00| |}

where the two 0-states correspond to the two impossible branches. The multi-set

notation {| · |} wraps the elements and repeats them with their corresponding multi-

plicities. Since we have already absorbed the probability
1
of its corresponding execu-

tion into the partial density matrix, the probabilistic mixture of all reachable states is

obtained by summing up the multi-set directly:∑⟦𝑆Bell⟧ok |00⟩⟨00| = 1

2
|11⟩⟨11| + 1

2
|00⟩⟨00| .

3.3 Specification Formula

In this section, we develop the quantum incorrectness triple of the form [𝑃]𝑆 [𝜖 :𝑄]

based on the ideas in Sec. 3.1. Intuitively, if 𝑃 under-approximates the initial state, then

𝑄 under-approximates the probabilistic mixture of reachable final states with exit con-

dition 𝜖 . Here 𝑃 and 𝑄 are projection-based quantum predicates treated semantically

using their corresponding matrices.

Under-Approximating Quantum States

In the context of bug-catching, the triple [𝑃]𝑆 [𝜖 :𝑄] first needs to characterize erro-

neous states using a predicate. In the classical settings, characterizing an erroneous

state 𝜎 w.r.t. a predicate 𝑝 is straightforward by using satisfaction and negation of the

predicate:

𝜎 ⊭ 𝑝 ⇔ 𝜎 ⊨ ¬𝑝. (3.2)

However, satisfaction is not suitable for characterizing incorrectness in the quan-

tum settings: given an assertion 𝑃𝑐 and an erroneous state 𝜌𝑒 ⊭ 𝑃𝑐 , sometimes we

1
The probability of certain branch is the trace of the corresponding output state (partial density

matrix).
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cannot find an appropriate 𝑄𝑒 such that 𝜌𝑒 ⊨ 𝑄𝑒 and 𝑄𝑒 excludes correct states,

i.e., any 𝜌𝑐 ⊨ 𝑃𝑐 does not satisfy 𝑄𝑒 . More concretely, let 0 ⊂ 𝑃𝑐 ⊂ 𝐼 , and let

𝜌𝑒 = 𝐼/Tr(𝐼 ) ⊭ 𝑃𝑐 , then any 𝑄𝑒 that has 𝜌𝑒 ⊨ 𝑄𝑒 would falsely capture any state

𝜌𝑐 ⊨ 𝑃𝑐 , because supp(𝜌𝑐) ⊆ 𝐼 = supp(𝜌𝑒) ⊆ 𝑄𝑒 .

To capture incorrect quantum states, we need a quantum version of equation (3.2).

We achieve this goal by introducing the under-approximation relation.

Definition 3.3 (Under-approximation). Aprojection 𝑃 under-approximates a quan-

tum state 𝜌 ∈ D(H), denoted by 𝜌 ⊨𝑃 , if supp(𝜌) ⊇ 𝑃 .

As we can see, under-approximation relation can precisely characterize errors:

𝜌𝑒 ⊭ 𝑃𝑐 =⇒ ∃𝑄𝑒 ≠ 0. (𝜌𝑒 ⊨𝑄𝑒) ∧ (∀𝜌′𝑒 ⊨𝑄𝑒 . 𝜌′𝑒 ⊭ 𝑃𝑐).

That is, for any erroneous state 𝜌𝑒 violating 𝑃𝑐 , it can be under-approximated by some

non-trivial projection 𝑄𝑒 , and this under-approximation will not falsely capture cor-

rect states. Under-approximation relation is also crucial for interpreting “achieving”

a predicate, which we will explain later.

The under-approximation relation is the inverted satisfaction. Logical connec-

tions under the under-approximation relation are sometimes counterintuitive com-

pared with those under the satisfaction, for example:

𝜌 ⊨ 𝑃1 ∧ 𝜌 ⊨ 𝑃2 ⇔ 𝜌 ⊨ 𝑃1 ∧ 𝑃2

𝜌 ⊨𝑃1 ∧ 𝜌 ⊨𝑃2 ⇔ 𝜌 ⊨𝑃1 ∨ 𝑃2.

Incorrectness Triple for Quantum Programs

Based on the under-approximation relation, we generalize the incorrectness triple by

O’Hearn to the quantum settings and obtain the validity defined below. In this defini-

tion, “achieving” a projection 𝑄 is interpreted as 𝑄 under-approximating the mixture

of reachable states.
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Definition 3.4 (Strong Validity). A QIL triple is strongly valid (or valid for short),

denoted by ⊨ [𝑃]𝑆 [𝜖 :𝑄] if for any 𝜌 ∈ D(H) we have

𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖𝜌 ⊨𝑄 .

We use the term strong validity to distinguish this formulation from those alterna-

tives discussed in Sec. 3.6. This definition says that if a state is under-approximated by

𝑃 , the mixture of its reachable states with exit condition 𝜖 is under-approximated by

𝑄 . We argue that this interpretation of “achieving” is reasonable from a reachability

point of view: given ⊨ [𝑃]𝑆 [𝜖 :𝑄], starting from an initial state under-approximated

by 𝑃 , it is possible (with non-zero probability) to obtain any pure state |𝜓 ⟩ ∈ 𝑄

by measuring some reachable state (with exit condition 𝜖) using the measurement

𝑀 = {|𝜓 ⟩⟨𝜓 | , 𝐼 − |𝜓 ⟩⟨𝜓 |}.

Introducing the mixture of reachable states instead of discussing single execution

paths is crucial for efficient reasoning. It allows us to have the disjunction rule, with-

out which the number of postconditions grows exponentially with respect to the num-

ber of sequenced branches. Alternative formulations based on a single execution path

(classical and strict validities) can be found in Sec 3.6, where we discuss in more detail

why the disjunction rule does not hold for these formulations and the consequences

of not having such a rule.

Although the formulation compares 𝑄 with the mixture of the reachable states of

all execution paths, it is safe to find smaller 𝑄 corresponding to some executions to

construct a valid triple. This coincides with the remark by O’Hearn [O’H19]:

“For correctness reasoning, you get to forget information as you go along

a path, but you must remember all the paths. For incorrectness reasoning,

you must remember information as you go along a path, but you get to

forget some of the paths.”

The validity of an incorrectness triple sets the theoretical foundation for static

bug-catching with projection-based assertions [LZY
+
20]. It is straightforward from
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Def. 3.4 that for the assert(𝑞, 𝑅) statement and any presumption 𝑃 , we have ⊨ [𝑃]

assert(𝑞, 𝑅) [er :supp(𝑅⊥𝑃𝑅⊥)].2 While the correctness triple ⊨ {𝑅}assert(𝑞, 𝑅){𝑅}

of the applied quantum Hoare logic [ZYY19] guarantees that we can safely ignore

the assert statement in the reasoning when the assertion is satisfied, an incorrect-

ness triple ⊨ [𝑃]assert(𝑞, 𝑅) [er :supp(𝑅⊥𝑃𝑅⊥)] with 𝑅⊥𝑃𝑅⊥ ≠ 0 ensures the assertion

would raise an er with non-zero probability for some state 𝜌 ⊨𝑃 . More discussions

about the validity of incorrectness triples are given in Sec 3.6 if readers are interested

in why we choose such a kind of formulation.

Duality between Correctness and Incorrectness Triples

Validity of triples in QIL and the applied quantum Hoare logic [ZYY19] are two sides

of the same coin when interpreted with predicate transformers.

Definition 3.5. For any quantum program 𝑆 defined in Fig. 3.2 and quantum predicate

𝑃 , we define the post image of program 𝑆 with respect to 𝑃 as follows

𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 = supp(∑⟦𝑆⟧𝜖 (𝜌)) where 𝜌 =


𝑃/𝑇𝑟 (𝑃) if 𝑃 ≠ 0

0 otherwise

Note that the choice of 𝜌 is not unique: any 𝜌 that has supp(𝜌) = 𝑃 would result

in an equivalent definition.
3
Based on the operator 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖), we give an equivalent

formulation for the validity of incorrectness triple in Lemma 3.6.

Lemma 3.6. For a quantum program 𝑆 and a quantum predicate 𝑃 , we have

⊨ [𝑃]𝑆 [𝜖 :𝑄] iff 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 ⊇ 𝑄

Proof. Give a precondition 𝑃 and program 𝑆 , for any valid triple ⊨ [𝑃]𝑆 [𝜖 :𝑄], we have

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖 (𝜌) ⊨𝑄
2
We write result assertions in red for abnormal termination.

3
The predicate 𝑃 in this context represents a matrix that may not be 1-dimensional, and it needs

to be divided by Tr(𝑃 ) for normalization.
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If 𝑃 = 0, let 𝜌 = 0, then we have

∑⟦𝑆⟧𝜖 (𝜌) = 0 ⊨𝑄 , i.e. 𝑄 = 0. And 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 =

supp(∑⟦𝑆⟧𝜖 (0)) = 0 = 𝑄 . For the “only if” part, let 𝜌 = 𝑃/Tr(P) such that supp(𝜌) =

𝑃 , then we have

𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 = supp(∑⟦𝑆⟧𝜖 (𝜌)) = supp(∑⟦𝑆⟧𝜖 (𝑃/Tr(𝑃))) ⊇ 𝑄

For the “if” part, by the Lemma 2.22, we have

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖 (𝜌) ⊇ supp(∑⟦𝑆⟧𝜖 (𝑃/Tr(𝑃))) = 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 ⊇ 𝑄

i.e. ⊨ [𝑃]𝑆 [𝜖 :𝑄]. ■

The operator 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖) reveals the connection between the applied quantum

Hoare logic [ZYY19] and QIL. It is straightforward that when 𝑆 does not contain

the error statement, 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 ⊆ 𝑄 is exactly the partial correctness validity

⊨a
par

{𝑃}𝑆{𝑄} in the applied quantum Hoare logic. The duality is then obvious, as

shown below.

⊨a
par

{𝑃}𝑆{𝑄} iff 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 ⊆ 𝑄

⊨ [𝑃]𝑆 [𝜖 :𝑄] iff 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 ⊇ 𝑄

Specifically, we prove that the projection 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 is the strongest over-

approximate post for applied Hoare logic and the weakest under-approximate post

for QIL, as shown in Lemma 3.7.

Lemma 3.7. When 𝑆 does not contain the error statement, for any projection 𝑃 we have

𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 = ∧{𝑄 |⊨a
par

{𝑃}𝑆{𝑄}}

𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 = ∨{𝑄 |⊨ [𝑃]𝑆 [𝜖 :𝑄]}

Proof. Recall the definition of validity of applied projective Hoare triple {𝑃}𝑆{𝑄} in

the sense of partial correctness,

⊨𝑎𝑝𝑎𝑟 {𝑃}𝑆{𝑄} if ∀𝜌 ⊨ 𝑃 ⇒ ∑⟦𝑆⟧ok(𝜌) ⊨ 𝑄 (HL)
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Note that the subscript 𝜖 is limited to ok since the error transition is not defined in

the semantics in [ZYY19]. It is direct to see such a definition is exactly dual to Def. 3.4

when 𝜖 = ok,

⊨ [𝑃]𝑆 [𝜖 :𝑄] if ∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖 (𝜌) ⊨𝑄

and 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 is the post predicate where these two kinds of triples reach their lim-

its respectively. By Lemma 3.6, we have 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 ⊇ 𝑄 for any valid ⊨ [𝑃]𝑆 [𝜖 :𝑄].

Let 𝑄 = 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 , it is direct to see that 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 is also a valid postcondition

for ⊨ [𝑃]𝑆 [𝜖 :𝑄] by Lemma 3.6, i.e.

𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 ⊆ ∨{𝑄 |⊨ [𝑃]𝑆 [𝜖 :𝑄]}

On the other hand, we also have

𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 = ∨𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 ⊇ ∨{𝑄 |⊨ [𝑃]𝑆 [𝜖 :𝑄]}

since 𝑃 ∨ 𝑃 = 𝑃 , Lemma 2.13 and 2.18. Thus we have 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 = ∨{𝑄 |⊨

[𝑃]𝑆 [𝜖 :𝑄]}.

Similarly, we just need to show the following equivalence for Hoare triple.

⊨𝑎𝑝𝑎𝑟 {𝑃}𝑆{𝑄} iff 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 ⊆ 𝑄

For the special case when 𝑃 = 0, ⊨ {𝑃}𝑆{𝑄} holds for any 𝑄 since 𝑄 ⊇

𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 = 0 by Eq. (HL). For the “only if” part, let 𝜌 = 𝑃/Tr(P) such that

supp(𝜌) = 𝑃 , by Eq. (HL), then we have

𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 = supp(∑⟦𝑆⟧ok(𝜌)) = supp(∑⟦𝑆⟧ok(𝑃/Tr(𝑃))) ⊆ 𝑄

For the “if” part, by the Lemma 2.22, we have

∀𝜌 ⊨ 𝑃 ⇒ ∑⟦𝑆⟧ok(𝜌) ⊆ supp(∑⟦𝑆⟧ok(𝑃/Tr(𝑃))) = 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 ⊆ 𝑄

i.e. ⊨𝑎𝑝𝑎𝑟 {𝑃}𝑆{𝑄}. Thus we have 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 = ∧{𝑄 |⊨𝑎𝑝𝑎𝑟 {𝑃}𝑆{𝑄}} in a similar

way to the incorrectness triple. ■
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Since the weakest under-approximate post is the disjunction of all quantum

post predicates satisfying [𝑃]𝑆 [𝜖 :𝑄], Lemma 3.7 gives a starting point for under-

approximating program analysis and guarantees that incorrectness reasoning is sound

when shrinking the postcondition.

Why not directly replace all quantum behavior with non-determinism for pure

reachability analysis? Here we discuss why we do not choose the set of quantum

states as predicates, and apply classical incorrectness logic directly. One is that sets

are less compact compared with projections. For example, given a set of the form

{|𝜓 ⟩ | |𝜓 ⟩ = cos(𝑥𝑖) |00⟩ + sin(𝑥𝑖) |11⟩}, where 𝑥𝑖 is the 𝑖-th number in the sequence

of Collatz conjecture for a random integer 𝑛. It is hard to specify the elements in

the set neatly (basically a record of the sequence), but it can be easily regulated by a

projection |00⟩⟨00| + |11⟩⟨11|.

Another reason is that, when used as loop invariants/variants, sets may converge

much slower than projections. Take Grover’s algorithm as an example. The state

within the loop body keeps rotating in a 2-dimensional subspace, which means the

corresponding projection converges within 3 loop unrolling (constant time!). If we

use sets instead, since the resulting states after each iteration are very likely to be

different from each other (e.g., by choosing 𝑁 = 5 and 𝑀 = 1), we will have to keep

unrolling the while-loop until the program terminates (depending on the number of

iterations).

3.4 Proof System

In this section, we develop the proof system for QIL based on the strong validity

in Def. 3.4. The proof rules of quantum incorrectness logic are shown in Fig. 3.4.

Following O’Hearn [O’H19], we use ⊢ [𝑃]𝑆 [ok :𝑄1] [er :𝑄2] as an abbreviation for

⊢ [𝑃]𝑆 [ok :𝑄1] and ⊢ [𝑃]𝑆 [er :𝑄2]. We write result assertions for normal termina-

tion in green and abnormal in red.
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Empty

⊢ [𝑃]𝑆 [𝜖 :0]
Error

⊢ [𝑃]error[ok :0] [er :𝑃]
Skip

⊢ [𝑃]skip[ok :𝑃] [er :0]

Unitary

⊢ [𝑃]𝑞 := 𝑈 [𝑞] [ok :𝑈𝑃𝑈 †] [er :0]
Init

⊢ [𝑃]𝑞 := |0⟩ [ok :supp(
∑︁
𝑛

|0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|)] [er :0]

Seq1

⊢ [𝑃]𝑆1 [ok :𝑅] ⊢ [𝑅]𝑆2 [𝜖 :𝑄]
⊢ [𝑃]𝑆1; 𝑆2 [𝜖 :𝑄]

Seq2

⊢ [𝑃]𝑆1 [er :𝑄]
⊢ [𝑃]𝑆1; 𝑆2 [er :𝑄]

Order

𝑃 ⊇ 𝑃 ′ ⊢ [𝑃 ′]𝑆 [𝜖 :𝑄 ′] 𝑄 ′ ⊇ 𝑄
⊢ [𝑃]𝑆 [𝜖 :𝑄]

Disjunction

⊢ [𝑃1]𝑆 [𝜖 :𝑄1] ⊢ [𝑃2]𝑆 [𝜖 :𝑄2]
⊢ [𝑃1 ∨ 𝑃2]𝑆 [𝜖 :𝑄1 ∨𝑄2]

If

⊢ [supp(𝑀𝑚𝑃𝑀
†
𝑚)]𝑆𝑚 [𝜖 :𝑄]

⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :𝑄]

While1

∀𝑛. ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[ok : supp(𝑀0𝑃𝑁𝑀
†
0
)]

While2

∀𝑛. ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

⊢ [supp(𝑀1𝑃𝑁𝑀
†
1
)]𝑆 [er :𝑄]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[er :𝑄]

Figure 3.4: Proof rules for QIL.

The first three rules have similar forms as their classical counterparts. The Empty

rule is a direct generalization of its classical counterpart, where 0 is a trivial valid

post predicate that contains no meaningful state, a quantum extension to the classical

false assertion (the empty set). The Error and Skip rules are straightforward from

their semantics since they do not modify the program state along er and ok paths,

respectively.

The Unitary and Init rules characterize how these two statements alter the sup-

port of quantum states. Note that in the Init rule,

∑
𝑛 |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0| is not necessar-

ily a projection, we need to lift it to its support before assigning as a postcondition.

The Seq rules are of the same form as in classical settings, where Seq1 is for normal

sequencing, and Seq2 is for short-circuiting when 𝑆1 raises an er.
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The Order rule is the quantum version of the classical consequence rule. By in-

terpreting the subset relation as implication ⇒, the rule has the same form as the

consequence rule below.

𝑃 ⇐ 𝑃 ′ ⊢ [𝑃 ′]𝑆 [𝜖 :𝑄′] 𝑄′ ⇐ 𝑄

⊢ [𝑃]𝑆 [𝜖 :𝑄]

Rules for dropping conjunctions/disjunctions can be derived from the Order rule by

noticing the fact that 𝑃𝑖 ⊇ 𝑃1 ∧ 𝑃2 and 𝑄1 ∨𝑄2 ⊇ 𝑄𝑖 for 𝑖 ∈ {1, 2}, as shown below.

⊢ [𝑃1 ∧ 𝑃2]𝑆 [𝜖 :𝑄]
⊢ [𝑃𝑖]𝑆 [𝜖 :𝑄]

⊢ [𝑃]𝑆 [𝜖 :𝑄1 ∨𝑄2]
⊢ [𝑃]𝑆 [𝜖 :𝑄𝑖]

Note that the ability to shrink the postcondition soundly is a hallmark of under-

approximation, which allows us to control the reasoning scale.

The Disjunction rule is also a quantum version of its classical counterpart. It al-

lows us to merge the reasoning for multiple branches, which is crucial to the efficiency

of reasoning.

The If rule is the quantum analogy of the Choice rule in IL. The difference lies

in the premise of the rule, where we require ⊢ [supp(𝑀𝑚𝑃𝑀
†
𝑚)]𝑆 [𝜖 :𝑄] instead of

⊢ [𝑃]𝑆 [𝜖 :𝑄] because measurement has a side effect on the quantum state.

TheWhile rules can be interpreted as a finite sequential composition of the If rule

and Seq rules after unrolling the loop body for finite times, where 𝑃𝑛 represents the

result predicate for the 𝑛-fold sequential composition of measurement and the loop

body. Recall that incorrectness logic is for the reasoning about reachability; these rules

do not require the termination of all executions but only guarantee some execution

paths that reach the result predicate.

We list several other derived rules in Fig. 3.5. The If rule combined with the Skip

and Error rules derive the proof rule for the assert statement. We also use the Dis-

junction rule to derive new practical rules for if andwhile statements, which merge

the reasoning results of multiple branches. Note that in the Derived While rule, we

made the bound 𝑁 for 𝑛 explicitly for finite loop unrolling. It can be derived from

While1 rule by letting 𝑃𝑛 = 0 for 𝑛 ≥ 𝑁 .
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Assert

𝑄ok = supp(𝑅𝑃𝑅†) 𝑄er = supp(𝑅⊥𝑃𝑅⊥†)
[𝑃]assert(𝑞, 𝑅) [ok :𝑄ok] [er :𝑄er]

Derived If

⊢ [supp(𝑀𝑚𝑃𝑀
†
𝑚)]𝑆𝑚 [𝜖 :𝑄𝑚] for all𝑚

⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :∨𝑄𝑚]
Derived While

∀𝑛 < 𝑁 . ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[ok :∨𝑁
𝑖=0 supp(𝑀0𝑃𝑖𝑀

†
0
)]

Figure 3.5: Useful derived rules.

3.5 Soundness & Completeness Theorem

Our logic is both sound and complete, as formulated by the following theorem.

Theorem 3.8. [Soundness & Completeness] For any program 𝑆 , exit condition 𝜖 ,

projections 𝑃 and 𝑄 , we have,

⊢ [𝑃]𝑆 [𝜖 :𝑄] ⇔ ⊨ [𝑃]𝑆 [𝜖 :𝑄]

Proof. The soundness is proved by showing the validity of axioms and inference rules

in Figure 3.4 with respect to Def. 3.4 by the induction on the proof structural of ⊢

[𝑃]𝑆 [𝜖 :𝑄]. To make it compact, the partial density operators mentioned in the proof

are all in D(H𝑆 ).

(Empty) It is clear that the trivial triple [𝑃]𝑆 [𝜖 :0] always holds since 𝜌 ⊨0 for any

partial density operators 𝜌 .

(Error) Since ⟦error⟧𝑜𝑘 = {|(𝜌, 0) |} and ⟦error⟧𝑒𝑟 = {|(𝜌, 𝜌) |} by Fig. 2.2b, then

for any predicate 𝑃 we have

∀𝜌 ⊨𝑃 ⇒ ∑⟦error⟧ok(𝜌) = 0 ⊨0

∀𝜌 ⊨𝑃 ⇒ ∑⟦error⟧er(𝜌) = 𝜌 ⊨𝑃

Thus we have shown the validity of rule Error ⊨ [𝑃]error[ok :0] [er :𝑃].
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(Skip) Since ⟦skip⟧𝑜𝑘 = {|(𝜌, 𝜌) |} and ⟦skip⟧𝑒𝑟 = {|(𝜌, 0) |} by Fig. 2.2b, then for

any predicate 𝑃 we have

∀𝜌 ⊨𝑃 ⇒ ∑⟦skip⟧ok(𝜌) = 𝜌 ⊨𝑃

∀𝜌 ⊨𝑃 ⇒ ∑⟦skip⟧er(𝜌) = 0 ⊨0

Thus we have shown the validity of rule Skip ⊨ [𝑃]skip[ok :𝑃] [er :0].

(Unitary) First we need to show the validity of ⊨ [𝑃]𝑞 := 𝑈 [𝑞] [ok :𝑈𝑃𝑈 †]. Let

𝑆 = 𝑞 := 𝑈 [𝑞], we have ⟦𝑆⟧𝑜𝑘 = {|(𝜌, 𝜌′) |} = {|(𝜌,𝑈 𝜌𝑈 †) |} by Fig. 2.2b. Now it

suffices to show

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝑜𝑘 (𝜌) = 𝑈𝜌𝑈 † ⊨𝑈𝑃𝑈 †

by Def. 3.4. The proof for trivial case 𝑃 = 0 is direct since
∑⟦𝑆⟧𝑜𝑘 (𝜌) ⊨0 always holds.

It is directly provable from Lemma 2.14 by setting 𝜎 = 𝑃/Tr(𝑃) and E(𝜌) = 𝑈𝜌𝑈 †
,

thus we have ⊨ [𝑃]𝑞 := 𝑈 [𝑞] [ok :𝑈𝑃𝑈 †]. On the other hand, the validity of ⊨ [𝑃]𝑞 :=

𝑈 [𝑞] [er :0] just derives from the rule Empty. Now we have proved the validity of rule

Unitary ⊨ [𝑃]𝑞 := 𝑈 [𝑞] [ok :𝑈𝑃𝑈 †] [er :0].

(Init) First we need to show the validity of ⊨ [𝑃]𝑞 := |0⟩ [ok :∑ |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|].

Let 𝑆 = 𝑞 := |0⟩, then we have ⟦𝑆⟧𝑜𝑘 = {|(𝜌,∑ |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|) |} by Fig. 2.2b. Now it

suffices to show

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧ok(𝜌) ⊨
∑ |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|

by Def. 3.4. The proof for trivial case 𝑃 = 0 is direct since
∑⟦𝑆⟧𝑜𝑘 (𝜌) ⊨0 always holds.

The initialization can be written as

∑⟦𝑆⟧ok(𝜌) = 𝜌′ =
∑
𝑛 𝐸𝑛𝜌𝐸

†
𝑛 with 𝐸𝑛 = |0⟩𝑞 ⟨𝑛 |,

where

∑
𝑛 𝐸𝑛𝐸

†
𝑛 = 𝐼 . Applying Lemma 2.14 with 𝜌 = 𝑃/Tr(𝑃), we have

𝜌 ⊨𝑃 ⇒ 𝜌′ ⊨supp(∑𝐸𝑛𝑃𝐸
†
𝑛)

Thus we have ⊨ [𝑃]𝑞 := |0⟩ [ok :∑ |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|]. On the other hand, the validity

of ⊨ [𝑃]𝑞 := |0⟩ [er :0] just derives from the rule Empty. Now we have proved the

validity of rule Init [𝑃]𝑞 := |0⟩ [ok :∑ |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|] [er :0].



CHAPTER 3. QUANTUM INCORRECTNESS LOGIC 64

(Seq1) We have ⊨ [𝑃]𝑆1 [ok :𝑅] and ⊨ [𝑅]𝑆2 [𝜖 :𝑄] by the induction hypothesis on

𝑆1 and 𝑆2, that is

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆1⟧ok(𝜌) ⊨𝑅 ∀𝜎 ⊨𝑅 ⇒ ∑⟦𝑆2⟧𝜖 (𝜎) ⊨𝑄

by Def. 3.4, and we need to show ⊨ [𝑃]𝑆1; 𝑆2 [𝜖 :𝑄]. If 𝑃 = 0, we can have
∑⟦𝑆1⟧ok(0) =

0 ⊨𝑅, i.e. 𝑅 = 0. Similarly, we can also have 𝑄 = 0 since

∑⟦𝑆2⟧𝜖 (0) = 0 ⊨𝑄 . Thus

⊨ [𝑃]𝑆1; 𝑆2 [𝜖 :𝑄] is directly provable if 𝑃 = 0 or 𝑅 = 0 since it always has 𝑄 = 0.

Then we consider the nontrivial case 𝑃 ≠ 0 and 𝑅 ≠ 0. Let 𝜌 = 𝑃/Tr(𝑃) and

𝜎 = 𝑅/Tr(𝑅), we have

supp(∑⟦𝑆1⟧ok(𝑃/Tr(𝑃))) ⊇ 𝑅 supp(∑⟦𝑆2⟧𝜖 (𝑅/Tr(𝑅))) ⊇ 𝑄

By Lemma 2.22, we have

supp(∑⟦𝑆2⟧𝜖 (
∑⟦𝑆1⟧ok(𝑃/Tr(𝑃)))) ⊇ supp(∑⟦𝑆2⟧𝜖 (𝑅/Tr(𝑅))) ⊇ 𝑄

Case 𝜖 = ok. Then we have ⟦𝑆⟧ok(𝜌) =
∑⟦𝑆2⟧ok(

∑⟦𝑆1⟧ok(𝜌)) by Lemma 2.21.

Combine the hypothesis and Lemma 2.23 to have

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝑜𝑘 (𝜌) ⊨supp(∑⟦𝑆2⟧ok(
∑⟦𝑆1⟧ok(𝑃/Tr(𝑃)))) ⊇ 𝑄

thus we have ⊨ [𝑃]𝑆1; 𝑆2 [ok :𝑄] by Def. 3.4.

Case 𝜖 = er. Then we have ⟦𝑆⟧er(𝜌) =
∑⟦𝑆2⟧er(

∑⟦𝑆1⟧ok(𝜌)) +
∑⟦𝑆1⟧er(𝜌) by

Lemma 2.21. Combine the hypothesis and Lemma 2.23 and 2.18 to have

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧er(𝜌) ⊨supp(∑⟦𝑆2⟧er(
∑⟦𝑆1⟧ok(𝑃/Tr(𝑃))) +

∑⟦𝑆1⟧er(𝑃/Tr(𝑃)))

⇒ ∑⟦𝑆⟧er(𝜌) ⊨supp(∑⟦𝑆2⟧er(
∑⟦𝑆1⟧ok(𝑃/Tr(𝑃))))

∨ supp(∑⟦𝑆1⟧er(𝑃/Tr(𝑃))) ⊇ 𝑄

thus we have ⊨ [𝑃]𝑆1; 𝑆2 [er :𝑄] by Def. 3.4.

(Seq2) Similar to the proof of rule Seq1, we have ⊨ [𝑃]𝑆1 [er :𝑄] by the induction

hypothesis on 𝑆1, that is,

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆1⟧er(𝜌) ⊨𝑄
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by Def. 3.4, and we need to show ⊨ [𝑃]𝑆1; 𝑆2 [er :𝑄]. If 𝑃 = 0, we can have 𝑄 = 0 and

thus ⊨ [𝑃]𝑆1; 𝑆2 [er :𝑄] always holds. Otherwise, let 𝜌 = 𝑃/Tr(𝑃), we have

supp(∑⟦𝑆1⟧er(𝑃/Tr(𝑃))) ⊇ 𝑄

Similarly, Combine the hypothesis and Lemma 2.23 to have,

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧er(𝜌) ⊨supp(∑⟦𝑆2⟧er(
∑⟦𝑆1⟧ok(𝑃/Tr(𝑃))))

∨ supp(∑⟦𝑆1⟧er(𝑃/Tr(𝑃))) ⊇ 𝑄

thus we have ⊨ [𝑃]𝑆1; 𝑆2 [er :𝑄] by Def. 3.4.

(Order) We have ⊨ [𝑃 ′]𝑆 [𝜖 :𝑄′] by the induction hypothesis on 𝑆 , and two

premises 𝑃 ⊇ 𝑃 ′ and 𝑄′ ⊇ 𝑄 , then we need to show ⊨ [𝑃]𝑆 [𝜖 :𝑄].

𝑃 ⊇ 𝑃 ′ ⇒ ∀𝜌 ⊨𝑃 ⇒ 𝜌 ⊨𝑃 ′

⇒ ∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖 (𝜌) ⊨𝑄′ (⊨ [𝑃 ′]𝑆 [𝜖 :𝑄′])

⇒ ∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖 (𝜌) ⊨𝑄 (𝑄′ ⊇ 𝑄)

⇒ ⊨ [𝑃]𝑆 [𝜖 :𝑄]

thus we show the validity of triple ⊨ [𝑃]𝑆 [𝜖 :𝑄].

(Disjunction) We have two premise ⊨ [𝑃1]𝑆 [𝜖 :𝑄1] and ⊨ [𝑃2]𝑆 [𝜖 :𝑄2] given by

the induction hypothesis on 𝑆 says,

∀𝜌1 ⊨𝑃1 ⇒ ∑⟦𝑆⟧𝜖 (𝜌1) ⊨𝑄1

∀𝜌2 ⊨𝑃2 ⇒ ∑⟦𝑆⟧𝜖 (𝜌2) ⊨𝑄2

and we need to show ⊨ [𝑃1 ∨ 𝑃2]𝑆 [𝜖 :𝑄1 ∨𝑄2]. If 𝑃1 = 0, then we will have 𝑄1 = 0

since ⟦𝑆⟧𝜖 (0) = 0 ⊨𝑄1, thus [𝑃1 ∨ 𝑃2]𝑆 [𝜖 :𝑄1 ∨𝑄2] = [𝑃2]𝑆 [𝜖 :𝑄2] holds directly

from the premise ⊨ [𝑃2]𝑆 [𝜖 :𝑄2]. The same goes for the case 𝑃2 = 0. Now we discuss

the general case 𝑃1 ≠ 0 and 𝑃2 ≠ 0. Let 𝜌1 = 𝑃1/Tr(𝑃1), 𝜌2 = 𝑃2/Tr(𝑃2) to have

supp(∑⟦𝑆⟧𝜖 (𝑃1/Tr(𝑃1))) ⊇ 𝑄1 supp(∑⟦𝑆⟧𝜖 (𝑃2/Tr(𝑃2))) ⊇ 𝑄2
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Thus we can apply these two premises to have

∀𝜌 ⊨𝑃1 ∨ 𝑃2 = supp((𝑃1 + 𝑃2)/Tr(𝑃1 + 𝑃2)) (Lemma 2.18)

⇒ supp(∑⟦𝑆⟧𝜖 (𝜌)) ⊇ supp(∑⟦𝑆⟧𝜖 ((𝑃1 + 𝑃2)/Tr(𝑃1 + 𝑃2))) (Lemma 2.22)

⇒ supp(∑⟦𝑆⟧𝜖 (𝜌)) ⊇ supp(∑⟦𝑆⟧𝜖 (𝑃1/Tr(𝑃1 + 𝑃2))+∑⟦𝑆⟧𝜖 (𝑃2/Tr(𝑃1 + 𝑃2))) (Lemma 2.21)

⇒ supp(∑⟦𝑆⟧𝜖 (𝜌)) ⊇ supp(∑⟦𝑆⟧𝜖 (𝑃1/Tr(𝑃1 + 𝑃2)))∨

supp(∑⟦𝑆⟧𝜖 (𝑃2/Tr(𝑃1 + 𝑃2))) (Lemma 2.18)

⇒ supp(∑⟦𝑆⟧𝜖 (𝜌)) ⊇ supp(∑⟦𝑆⟧𝜖 (𝑃1/Tr(𝑃1)))∨

supp(∑⟦𝑆⟧𝜖 (𝑃2/Tr(𝑃2))) (Lemma 2.22)

⇒ supp(∑⟦𝑆⟧𝜖 (𝜌)) ⊇ 𝑄1 ∨𝑄2

⇒ ⊨ [𝑃1 ∨ 𝑃2]𝑆 [𝜖 :𝑄1 ∨𝑄2]

(If) 𝑆 = if (□𝑚 · 𝑀 [𝑞] = 𝑚 → 𝑆𝑚) fi. By Def. 3.4, the triple ⊨ [𝑀𝑚𝑃𝑀
†
𝑚]𝑆𝑚 [𝜖 :𝑄]

given by the induction hypothesis on 𝑆𝑚 says,

∃𝑚.∀𝜌𝑚 ⊨supp(𝑀𝑚𝑃𝑀
†
𝑚) ⇒ ∑⟦𝑆𝑚⟧𝜖 (𝜌𝑚) ⊨𝑄

and we need to show ⊨ [𝑃]𝑆 [𝜖 :𝑄]. By Lemma 2.23, we also have ⊨

[𝑃]M𝑚 [ok :𝑀𝑚𝑃𝑀
†
𝑚]. Then we have

∃𝑚.∀𝜌 ⊨𝑃 ⇒ 𝑀𝑚𝜌𝑀
†
𝑚 ⊨supp(𝑀𝑚𝑃𝑀

†
𝑚) ⇒ ∑⟦𝑆𝑚⟧𝜖 (𝑀𝑚𝜌𝑀

†
𝑚) ⊨𝑄

If 𝑃 = 0, we can also have𝑄 = 0 and thus ⊨ [𝑃]𝑆 [𝜖 :𝑄] always holds. Otherwise, let 𝜌 =

𝑃/Tr(𝑃), then we have 𝑄𝑚 = supp(∑⟦𝑆𝑚⟧𝜖 (𝑀𝑚𝑃𝑀
†
𝑚/Tr(𝑃))) ⊇ 𝑄 . By Lemma 2.23

and Lemma 2.18, we have

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖 (𝜌) ⊨supp(∑𝑚

∑⟦𝑆𝑚⟧𝜖 (𝑀𝑚𝑃𝑀
†
𝑚/Tr(𝑃))) = ∨𝑚𝑄𝑚 ⊇ 𝑄𝑚 ⊇ 𝑄

Thus we show the validity of triple ⊨ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :𝑄].

(While1) By Fig. 2.2b, we have ⟦while⟧ok =
⊎
𝑛∈N (M1 ◦⟦𝑆⟧ok)𝑛 ◦M0. To make it

compact, we denote 𝜌𝑘 =
∑(M1◦⟦𝑆⟧ok)𝑘 (𝜌0) and 𝑃𝑚𝑖 = supp(𝑀𝑚𝑃𝑖𝑀

†
𝑚). We have the
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premise ⊨ [𝑃1𝑛]𝑆 [ok :𝑃𝑛+1] holds for all integer 𝑛 (0 ≤ 𝑛) by the induction hypothesis

on 𝑆 , which says

∀𝜌 ⊨𝑃1𝑛 ⇒ ∑⟦𝑆⟧ok(𝜌) ⊨𝑃𝑛+1

Just like the proof of Seq1, by the induction hypothesis, we have 𝑃𝑛+1 = 0 if any 𝑃1𝑛 = 0

(0 ≤ 𝑛 ≤ 𝑁 ), thus ⊨ [𝑃0]while[ok :supp(𝑀0𝑃𝑁𝑀
†
0
)] always holds for any integer 𝑁 .

For the nontrivial case, let 𝜌 = 𝑃1𝑛/Tr(𝑃1𝑛), we have supp(
∑⟦𝑆⟧ok(𝑃1𝑛/Tr(𝑃1𝑛))) ⊇ 𝑃𝑛+1.

By Lemma 2.23, we have ⊨ [𝑃]M0 [ok :𝑀0𝑃𝑀
†
0
] and ⊨ [𝑃]M1 [ok :𝑀1𝑃𝑀

†
1
]. Then for

any 𝑁 ∈ N, we have

∀𝜌0 ⊨𝑃0 ⇒ 𝑀1𝜌0𝑀
†
1

⊨𝑃1
0

(Lemma 2.23)

⇒ 𝜌1 =
∑⟦𝑆⟧ok(𝑀1𝜌0𝑀

†
1
) ⊨supp(∑⟦𝑆⟧ok(𝑃10/Tr(𝑃10 ))) ⊇ 𝑃1 (Lemma 2.23)

⇒ 𝜌𝑁 ⊨𝑃𝑁 (apply last two steps N times)

⇒ 𝑀0𝜌𝑁𝑀
†
0

⊨𝑃0𝑁 (Lemma 2.23)

⇒ supp(∑((M1 ◦ ⟦𝑆⟧ok)𝑁 ◦M0) (𝜌0)) ⊇ 𝑃0
𝑁

⇒ supp(∑⟦while⟧𝑜𝑘 (𝜌0)) = supp(∑+∞
𝑛=0((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦M0) (𝜌0))

⊇ ∨𝑁𝑛=0supp(
∑((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦M0) (𝜌0)) ⊇ 𝑃0

𝑁

⇒ ⊨ [𝑃0]while[ok :𝑃0𝑁 ]

(While2) By Fig. 2.2b, we have ⟦while⟧er =
⊎
𝑛∈N((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦ (M1 ◦ ⟦𝑆⟧er)).

The triple ⊨ [supp(𝑀1𝑃𝑁𝑀
†
1
)]𝑆 [er :𝑄] given by the induction hypothesis on 𝑆 says,

∀𝜌 ⊨𝑃1𝑁 ⇒ ∑⟦𝑆⟧er(𝜌) ⊨𝑄

and the triple ⊨ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1] for all integer 𝑛 (0 ≤ 𝑛 ≤ 𝑁 ) says,

∀𝜌 ⊨𝑃1𝑛 ⇒ ∑⟦𝑆⟧ok(𝜌) ⊨𝑃𝑛+1

Similarly, by the induction hypothesis, we have𝑄 = 0 if any 𝑃1𝑛 = 0 (0 ≤ 𝑛 ≤ 𝑁 ), thus ⊨

[𝑃0]while[er :𝑄] always holds. Otherwise, let 𝜌 = 𝑃1𝑛/Tr(𝑃1𝑛), we have supp(
∑⟦𝑆⟧ok(
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𝑃1𝑛/Tr(𝑃1𝑛))) ⊇ 𝑃𝑛+1 and supp(∑⟦𝑆⟧er(𝑃1𝑁 / Tr(𝑃
1

𝑁
))) ⊇ 𝑄 by the premises. Then for

any 𝑁 ∈ N, we have

∀𝜌0 ⊨𝑃0 ⇒ 𝑀1𝜌0𝑀
†
1

⊨𝑃1
0

(Lemma 2.23)

⇒ 𝜌𝑁 ⊨𝑃𝑁 (same as the proof of rule While1)

⇒ 𝑀1𝜌𝑁𝑀
†
1

⊨𝑃1𝑁 (Lemma 2.23)

⇒ ∑⟦𝑆⟧er(𝑀1𝜌𝑁𝑀
†
1
) ⊨supp(∑⟦𝑆⟧er(𝑃1𝑁 /Tr(𝑃

1

𝑁
))) ⊇ 𝑄

(Lemma 2.23 and ⊨ [𝑃1𝑁 ]𝑆 [er :𝑄])

⇒ supp(∑((M1 ◦ ⟦𝑆⟧ok)𝑁 ◦M0 ◦ ⟦𝑆⟧er) (𝜌0)) ⊇ 𝑄

⇒ supp(∑⟦while⟧er(𝜌)) = supp(∑+∞
𝑛=0((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦M0 ◦ ⟦𝑆⟧er) (𝜌0))

⊇ ∨𝑁𝑛=0supp(
∑((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦M0 ◦ ⟦𝑆⟧er) (𝜌0)) ⊇ 𝑄

⇒ ⊨ [𝑃0]while[er :𝑄]

The completeness can be directly derived from the proof of Theorem 3.9 since the

While rules in Fig. 3.4 consist of infinite rules for all 𝑛 ∈ N and include their bounded

versions. These boundedWhile rules form a minimal set of rules which are sufficient

for reasoning about loop structure. ■

Automating the inferencewith finite loop unrolling Although onemay use the

DerivedWhile rule and a fixed bound 𝑁 to make the reasoning sound and terminate

within finite steps (loop unrolling), such a bound usually means dropping informa-

tion and making the reasoning incomplete. Stronger reasoning like the While1 rule

is needed in general. However, it is unclear how to automatically infer a backward

variant {𝑃𝑛} even for finite-dimensional quantum systems because the state space

and possible projections are uncountably infinite.

Instead of inferring 𝑃𝑛 , we find the post predicate in the Derived While does not

change when 𝑁 is large enough. We prove a stronger completeness result, which

indicates finite loop unrolling is sufficient for complete reasoning.
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Theorem 3.9 (Completeness with boundedWhile rules). Replacing theWhile1

and While2 rule with the following bounded While rules results in another sound and

complete proof system. Here dim(H) is the dimension of the state space of the quantum

system.

Bounded While1

∀𝑛 < dim(H) . ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

𝑁 ≤ dim(H)

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[ok : supp(𝑀0𝑃𝑁𝑀
†
0
)]

Bounded While2

∀𝑛 < dim(H) . ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

𝑁 ≤ dim(H) ⊢ [supp(𝑀1𝑃𝑁𝑀
†
1
)]𝑆 [er :𝑄]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[er :𝑄]

Proof. Similarly, the soundness can be directly derived from the proof of Theorem 3.8

since theWhile rules in Fig. 3.4 consist of infinite rules for all 𝑛 ∈ N and include their

bounded versions.

The completeness of the proof systemmeans any valid incorrectness triple is deriv-

able from the proof rules. Assume ⊨ [𝑃]𝑆 [𝜖 :𝑄], i.e.,

∀𝜌. 𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖 (𝜌) ⊨𝑄

we prove ⊢ [𝑃]𝑆 [𝜖 :𝑄] by induction on 𝑆 . To make it concise, density operators men-

tioned in the proof are all in D(H𝑆 ).

(1) 𝑆 = error. We prove by case studying 𝜖 .

a) Case 𝜖 = ok. By Fig. 2.2b, ⟦error⟧ok = {|(𝜌, 0) |}. The triple ⊨

[𝑃]error[ok :𝑄] implies ∀𝜌 ⊨𝑃 ⇒ 0 ⊨𝑄 , which implies 𝑄 = 0. It

suffices to prove ⊢ [𝑃]error[ok :0] exactly by the rule Error.

b) Case 𝜖 = er. By Fig. 2.2b, ⟦error⟧er = {|(𝜌, 𝜌) |}. We have∀𝜌 ⊨𝑃 ⇒ 𝜌 ⊨𝑄 ,

which implies 𝑃 ⊇ 𝑄 . The triple is then derivable from rule Error and
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Order:

⊢ [𝑃]error[er :𝑃] 𝑃 ⊇ 𝑄
⊢ [𝑃]error[er :𝑄]

(2) 𝑆 = skip.

a) Case 𝜖 = ok. We have ⟦skip⟧ok = {|(𝜌, 𝜌) |} by Fig. 2.2b. The triple ⊨

[𝑃]skip[ok :𝑄] implies ∀𝜌 ⊨𝑃 ⇒ 𝜌 ⊨𝑄 , which implies 𝑃 ⊇ 𝑄 . The triple

is derivable from rule Skip and Order:

⊢ [𝑃]skip[ok :𝑃] 𝑃 ⊇ 𝑄
⊢ [𝑃]skip[ok :𝑄]

b) Case 𝜖 = er. We have ⟦skip⟧er = {|(𝜌, 0) |} by Fig. 2.2b. The triple ⊨

[𝑃]skip[er :𝑄] implies ∀𝜌 ⊨𝑃 ⇒ 0 ⊨𝑄 , which implies 𝑄 = 0. It suffices

to prove ⊢ [𝑃]skip[er :0] exactly by the rule Skip.

(3) 𝑆 = 𝑞 := 𝑈 [𝑞].

a) Case 𝜖 = ok. Using rule Unitary and rule Order, the triple is derivable

assuming𝑈𝑃𝑈 † ⊇ 𝑄 :

⊢ [𝑃]𝑞 := 𝑈 [𝑞] [ok :𝑈𝑃𝑈 †] 𝑈𝑃𝑈 † ⊇ 𝑄
⊢ [𝑃]𝑆 [ok :𝑄]

It suffices to prove 𝑈𝑃𝑈 † ⊇ 𝑄 from ⊨ [𝑃]𝑆 [𝜖 :𝑄]. Since ⟦𝑞 := 𝑈 [𝑞]⟧ok =

{|(𝜌,𝑈 𝜌𝑈 †) |} by Fig. 2.2b, we have ∀𝜌 ⊨𝑃 ⇒ 𝑈𝜌𝑈 † ⊨𝑄 . Let 𝜌 =

𝑃/Tr(𝑃), we have supp(𝑈𝜌𝑈 †) = 𝑈𝑃𝑈 † ⊇ 𝑄 .

b) Case 𝜖 = er. Since ⟦𝑞 := 𝑈 [𝑞]⟧𝑒𝑟 = {|(𝜌, 0) |} by Fig. 2.2b, we have ∀𝜌 ⊨

𝑃 ⇒ 0 ⊨𝑄 , which implies 𝑄 = 0. Thus the triple is directly derivable

from the rule Unitary ⊢ [𝑃]𝑞 := 𝑈 [𝑞] [er :0].

(4) 𝑆 = 𝑞 := |0⟩.

a) Case 𝜖 = ok. By Fig. 2.2b, ⟦𝑞 := |0⟩⟧ok = {|(𝜌,∑ |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|) |}. Let

𝜌 = 𝑃/Tr(𝑃), then by ⊨ [𝑃]𝑆 [ok :𝑄] we have supp(∑ |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|) ⊇ 𝑄 .
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The triple is derivable using rule Init and rule Oder:

[𝑃] ⊢ 𝑞 := |0⟩ [ok :supp(∑ |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|)]

supp(∑ |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|) ⊇ 𝑄
⊢ [𝑃]𝑆 [ok :𝑄]

b) Case 𝜖 = er. By Fig. 2.2b, ⟦𝑞 := |0⟩⟧𝑒𝑟 = {|(𝜌, 0) |}. By ⊨ [𝑃]𝑆 [ok :𝑄] we

have ∀𝜌 ⊨𝑃 ⇒ 0 ⊨𝑄 , which implies 𝑄 = 0. Thus the triple is directly

derivable from the rule Init ⊢ [𝑃]𝑞 := |0⟩ [er :0].

(5) 𝑆 = 𝑆1; 𝑆2. By Lemma 3.4, ⊨ [𝑃]𝑆1; 𝑆2 [𝜖 :𝑄] means that ∀𝜌 ⊨ 𝑃 ⇒∑⟦𝑆1; 𝑆2⟧𝜖 (𝜌) ⊨𝑄 . For the trivial case 𝑃 = 0, we can derive 𝑄 = 0 since∑⟦𝑆1; 𝑆2⟧𝜖 (0) = 0 ⊨𝑄 . Thus ⊢ [𝑃]𝑆1; 𝑆2 [𝜖 :𝑄] is directly derivable by the rule

Empty.

a) Case 𝜖 = ok, i.e. ⟦𝑆⟧ok = ⟦𝑆1⟧𝑜𝑘 ◦ ⟦𝑆2⟧ok. By Lemma 2.23 applied on

program 𝑆1, 𝑆2, we have

⊨ [𝑃]𝑆1 [ok :𝑅] ⊨ [𝑅]𝑆2 [ok :𝑇 ]

where 𝑅 = supp(∑⟦𝑆1⟧ok(𝑃/Tr(𝑃))) and 𝑇 = supp(∑⟦𝑆2⟧ok(𝑅/Tr(𝑅))).

By induction hypothesis on program 𝑆1, 𝑆2, we have ⊢ [𝑃]𝑆1 [ok :𝑅] and

⊢ [𝑅]𝑆2 [ok :𝑇 ]. Then applying the rule Seq1 to have

⊢ [𝑃]𝑆1 [ok :𝑅] ⊢ [𝑅]𝑆2 [ok :𝑇 ]
⊢ [𝑃]𝑆1; 𝑆2 [ok :𝑇 ]

Combined with the rule Order, the triple is derivable assuming that 𝑇 ⊇

𝑄 .
⊢ [𝑃]𝑆1; 𝑆2 [ok :𝑇 ] 𝑇 ⊇ 𝑄

⊢ [𝑃]𝑆1; 𝑆2 [ok :𝑄]

Then it suffices to prove 𝑇 ⊇ 𝑄 . We have

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆2⟧ok(
∑⟦𝑆1⟧ok(𝜌)) ⊨𝑄
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from ⊨ [𝑃]𝑆1; 𝑆2 [ok :𝑄]. Let 𝜌 = 𝑃/Tr(𝑃), by Lemma 2.22, we have

supp(∑⟦𝑆2⟧ok(
∑⟦𝑆1⟧ok(𝑃/Tr(𝑃)))) = 𝑇 ⊇ 𝑄

.

b) Case 𝜖 = er, i.e. ⟦𝑆⟧𝑒𝑟 = ⟦𝑆1⟧ok ◦⟦𝑆2⟧er⊎⟦𝑆1⟧𝑒𝑟 . Similarly, by Lemma 2.23

and induction hypothesis on program 𝑆1, 𝑆2, we have

⊢ [𝑃]𝑆1 [ok :𝑅] ⊢ [𝑅]𝑆2 [er :𝑅′] ⊢ [𝑃]𝑆1 [er :𝑇 ]

where 𝑅 = supp(∑⟦𝑆1⟧ok(𝑃/Tr(𝑃))), 𝑅′ = supp(∑⟦𝑆1⟧er(𝑃/Tr(𝑃))), and

𝑇 = supp(∑⟦𝑆2⟧er (𝑅/Tr(𝑅))). Then apply the rule Seq1 and Seq2 to have

⊢ [𝑃]𝑆1 [ok :𝑅] ⊢ [𝑅𝑖]𝑆2 [er :𝑇 ]
⊢ [𝑃]𝑆1; 𝑆2 [er :𝑇 ]

⊢ [𝑃]𝑆1 [er :𝑅′]
⊢ [𝑃]𝑆1; 𝑆2 [er :𝑅′]

Then apply the rule Disjunction to have

⊢ [𝑃]𝑆1; 𝑆2 [er :𝑇 ] ⊢ [𝑃]𝑆1; 𝑆2 [er :𝑅′]
⊢ [𝑃]𝑆1; 𝑆2 [er :𝑇 ∨ 𝑅′]

Combined with the rule Order, the triple is derivable assuming that 𝑇 ∨

𝑅′ ⊇ 𝑄 .
⊢ [𝑃]𝑆1; 𝑆2 [er :𝑇 ∨ 𝑅′] 𝑇 ∨ 𝑅′ ⊇ 𝑄

⊢ [𝑃]𝑆1; 𝑆2 [er :𝑄]

Then it suffices to prove 𝑇 ∨ 𝑅′ ⊇ 𝑄 . We have

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆2⟧er(
∑⟦𝑆1⟧ok(𝜌)) +

∑⟦𝑆1⟧er(𝜌) ⊨𝑄

from ⊨ [𝑃]𝑆1; 𝑆2 [er :𝑄]. Let 𝜌 = 𝑃/Tr(𝑃), by Lemma 2.18 and Lemma 2.22,

then we have

supp(∑⟦𝑆2⟧er(
∑⟦𝑆1⟧ok(𝑃/Tr(𝑃))) +

∑⟦𝑆1⟧er(𝑃/Tr(𝑃))) = 𝑇 ∨ 𝑅′ ⊇ 𝑄

(6) 𝑆 = if (□𝑚 · 𝑀 [𝑞] = 𝑚 → 𝑆𝑚) fi. By Lemma 3.4, ⊨ [𝑃]𝑆 [𝜖 :𝑄] means

∀𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖 (𝜌) ⊨𝑄 . Here we can reason two cases together and have
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∀𝜌 ⊨𝑃 ⇒ ∑
𝑚⟦𝑆𝑚⟧𝜖 (𝑀𝑚𝜌𝑀

†
𝑚) ⊨𝑄 . Similarly, for the trivial case 𝑃 = 0,

⊢ [𝑃]𝑆 [𝜖 :𝑄] is directly derivable by the rule Empty since we have 𝑄 = 0 from∑⟦𝑆⟧𝜖 (0) = 0 ⊨𝑄 . By Lemma 2.23 and induction hypothesis on 𝑆𝑚 , we have

⊢ [𝑀𝑚𝑃𝑀
†
𝑚]𝑆𝑚 [𝜖 :𝑄𝑚], where 𝑄𝑚 = supp(∑⟦𝑆𝑚⟧𝜖 (𝑀𝑚𝑃𝑀

†
𝑚/Tr(𝑀𝑚𝑃𝑀

†
𝑚))).

Then for each𝑚, apply the rule If to have

⊢ [𝑀𝑚𝑃𝑀
†
𝑚]𝑆𝑚 [𝜖 :𝑄𝑚]

⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :𝑄𝑚]

Then apply the rule Disjunction to have,

⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :𝑄𝑚]
⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :∨𝑚𝑄𝑚]

Combined with the ruleOrder, the triple is derivable assuming that∨𝑚𝑄𝑚 ⊇ 𝑄 .

⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :∨𝑚𝑄𝑚] ∨𝑚 𝑄𝑚 ⊇ 𝑄
⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :𝑄]

Then it suffices to prove ∨𝑚𝑄𝑚 ⊇ 𝑄 . we have ∀𝜌 ⊨ 𝑃 ⇒∑
𝑚 (

∑⟦𝑆𝑚⟧𝜖 (𝑀𝑚𝜌𝑀
†
𝑚)) ⊨ 𝑄 from ⊨ [𝑃]𝑆 [𝜖 :𝑄]. Let 𝜌 = 𝑃/Tr(𝑃), by

Lemma 2.18, then we have supp(∑𝑚 (
∑⟦𝑆𝑚⟧𝜖 (𝑀𝑚𝑃𝑀

†
𝑚/ Tr(𝑀𝑚𝑃𝑀

†
𝑚)))) =

∨𝑚𝑄𝑚 ⊇ 𝑄

(7) 𝑆 = while 𝑀 [𝑞] = 1 do 𝑆′ od. Again, for the trivial case 𝑃 = 0, ⊢ [𝑃]𝑆 [𝜖 :𝑄] is

directly derivable by the rule Empty since we have 𝑄 = 0.

a) Case 𝜖 = ok. By ⊨ [𝑃]𝑆 [ok :𝑄] and Fig. 2.2b, we have

∀𝜌 ⊨𝑃 ⇒ ∑
𝑛 (
∑((M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦M0) (𝜌)) ⊨𝑄

By Lemma 2.23 and induction hypothesis on 𝑆′, we have

⊢ [𝑀1𝑃𝑛𝑀
†
1
]𝑆′[ok :𝑃𝑛+1]

where 𝑃𝑛 = supp(∑(M1 ◦ ⟦𝑆′⟧ok)𝑛 (𝑃/Tr(𝑃))) and 𝑃0 = 𝑃 . Now we first

prove that it is sufficient to unroll the loop structure finite times to derive
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⊢ [𝑃]𝑆 [𝜖 :𝑄]. To bemore specific, the upper bound of𝑁 is the dimension of

Hilbert spaceH described by program 𝑆 . Notice that in our paper we only

reason about quantum program in finite Hilbert space, i.e the dimension

of any projection 𝑄𝑛 is also finite. If we have 𝑃𝑁+1 ⊆ ∨𝑁𝑛=0𝑃𝑛 , then

𝑃𝑁+2 = 𝑝𝑜𝑠𝑡 (⟦𝑆′⟧ok) (supp(𝑀1𝑃𝑁+1𝑀
†
1
))

⊆ 𝑝𝑜𝑠𝑡 (⟦𝑆′⟧ok) (∨𝑁𝑛=0supp(𝑀1𝑃𝑛𝑀
†
1
))

⊆ ∨𝑁𝑛=0𝑝𝑜𝑠𝑡 (⟦𝑆′⟧ok) (supp(𝑀1𝑃𝑛𝑀
†
1
))

= ∨𝑁𝑛=0𝑃𝑛+1 ⊆ ∨𝑁+1
𝑛=0 𝑃𝑛 = (∨𝑁𝑛=0𝑃𝑛) ∨ 𝑃𝑁+1 = ∨𝑁𝑛=0𝑃𝑛

Thus we have ∨𝑁𝑛=0𝑃𝑛 = ∨+∞
𝑛=0𝑃𝑛 if 𝑃𝑁+1 ⊆ ∨𝑁𝑛=0𝑃𝑛 for any 𝑁 ∈ N. Notice

that the dimension of any 𝑃𝑛 is not bigger than dim(H), i.e. dim(∨+∞
𝑛=0𝑃𝑛) ≤

dim(H), and dim(∨𝑘𝑛=0𝑃𝑛) ≤ dim(∨𝑘+1𝑛=0𝑃𝑛) for any 𝑘 ∈ N, then it takes at

most dim(H) unrolling to have 𝑃𝑁+1 ⊆ ∨𝑁𝑛=0𝑃𝑛 . Thus there exists 𝑁 ≤

dim(H) such that ∨𝑁𝑛=0𝑃𝑛 = ∨+∞
𝑛=0𝑃𝑛 .

Now we apply the rule Bounded While1 to have

∀𝑛 < dim(H) . ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆′[ok :𝑃𝑛+1]

𝑁 ≤ dim(H)

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆′ od[ok : supp(𝑀0𝑃𝑁𝑀
†
0
)]

Then apply the rule Disjunction by induction to have

⊢ [𝑃]while𝑀 [𝑞] = 1 do 𝑆′ od[ok : supp(𝑀0𝑃𝑛𝑀
†
0
)]

⊢ [𝑃]while𝑀 [𝑞] = 1 do 𝑆′ od[ok :∨𝑁𝑛=0supp(𝑀0𝑃𝑛𝑀
†
0
)]

Finally the triple is derivable by the rule Order assuming that

∨𝑁𝑛=0supp(𝑀0𝑃𝑛𝑀
†
0
) ⊇ 𝑄 .

⊢ [𝑃]while𝑀 [𝑞] = 1 do 𝑆′ od[ok :∨𝑁𝑛=0supp(𝑀0𝑃𝑛𝑀
†
0
)]

∨𝑁𝑛=0supp(𝑀0𝑃𝑛𝑀
†
0
) ⊇ 𝑄

⊢ [𝑃]while𝑀 [𝑞] = 1 do 𝑆′ od[ok :𝑄]
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It suffices to prove ∨𝑁𝑛=0supp(𝑀0𝑃𝑛𝑀
†
0
) ⊇ 𝑄 by ⊨ [𝑃]𝑆 [ok :𝑄]. Let 𝜌 =

𝑃/Tr(𝑃), by Lemma 2.18, we have

∀𝜌 ⊨𝑃 ⇒ ∑+∞
𝑛=0(

∑((M1◦⟦𝑆′⟧ok)𝑛◦M0) (𝑃/Tr(P))) = ∨𝑁𝑛=0supp(𝑀0𝑃𝑛𝑀
†
0
) ⊇ 𝑄

b) Case 𝜖 = er. Similarly, by ⊨ [𝑃]𝑆 [er :𝑄] and Fig. 2.2b, we have

∀𝜌 ⊨𝑃 ⇒ ∑
𝑛 (
∑((M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦M1 ◦ ⟦𝑆′⟧er) (𝜌)) ⊨𝑄

where the support of the trivial state 0 has no effect. Just like the case

𝜖 = ok, by Lemma 2.23 and induction hypothesis on program 𝑆′, we have

⊢ [𝑀1𝑃𝑛𝑀
†
1
]𝑆′[ok :𝑃𝑛+1] ⊢ [𝑀1𝑃𝑛𝑀

†
1
]𝑆′[er :𝑃 ′𝑛]

where 𝑃𝑛 = supp(∑(M1 ◦ ⟦𝑆′⟧ok)𝑛 (𝑃/Tr(𝑃))), 𝑃0 = 𝑃 , and 𝑃 ′𝑛 =

supp(∑⟦𝑆′⟧er(𝑀1𝑃𝑛𝑀
†
1
/Tr (𝑀1𝑃𝑛𝑀

†
1
))). By Lemma 2.21 and Lemma 2.22,

we have

supp(∑((M1 ◦ ⟦𝑆′⟧ok)𝑛 ◦M0 ◦ ⟦𝑆′⟧er) (𝑃/Tr(𝑃))) = 𝑃 ′𝑛

Again, the proof for the upper bound of 𝑁 is similar to case 𝜖 = ok. If we

have 𝑃𝑁+1 ⊆ ∨𝑁𝑛=0𝑃𝑛 , then

𝑃 ′𝑁+1 = 𝑝𝑜𝑠𝑡 (⟦𝑆′⟧er) (supp(𝑀1𝑃𝑁+1𝑀
†
1
)) ⊆ 𝑝𝑜𝑠𝑡 (⟦𝑆′⟧er) (∨𝑁𝑛=0supp(𝑀1𝑃𝑛𝑀

†
1
))

⊆ ∨𝑁𝑛=0𝑝𝑜𝑠𝑡 (⟦𝑆′⟧er) (supp(𝑀1𝑃𝑛𝑀
†
1
)) = ∨𝑁𝑛=0𝑃 ′𝑛

Thus we also have ∨𝑁𝑛=0𝑃 ′𝑛 = ∨+∞
𝑛=0𝑃

′
𝑛 if 𝑃𝑁+1 ⊆ ∨𝑁𝑛=0𝑃𝑛 for any 𝑁 ∈ N.

Notice that dim(∨+∞
𝑛=0𝑃

′
𝑛) ≤ dim(H) and dim(∨𝑘𝑛=0𝑃 ′𝑛) ≤ dim(∨𝑘+1𝑛=0𝑃

′
𝑛) for

any 𝑘 ∈ N, then there also exists 𝑁 ≤ dim(H) such that ∨𝑁𝑛=0𝑃 ′𝑛 = ∨+∞
𝑛=0𝑃

′
𝑛 .

Now we apply the rule Bounded While2 to have

∀𝑛 < dim(H) . ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆′[ok :𝑃𝑛+1]

∀𝑚 ≤ 𝑁 . ⊢ [supp(𝑀1𝑃𝑚𝑀
†
1
)]𝑆′[er :𝑃 ′𝑚]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆′ od[er :𝑃 ′𝑚]
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Then apply the rule Disjunction by induction to have

∀𝑛 ≤ 𝑁 . ⊢ [𝑃]while𝑀 [𝑞] = 1 do 𝑆′ od[er :𝑃 ′𝑛]
⊢ [𝑃]while𝑀 [𝑞] = 1 do 𝑆′ od[er :∨𝑁𝑛=0𝑃 ′𝑛]

Finally the triple is derivable by the ruleOrder assuming that∨𝑁𝑛=0𝑃 ′𝑛 ⊇ 𝑄 .

⊢ [𝑃]while𝑀 [𝑞] = 1 do 𝑆′ od[er :∨𝑁𝑛=0𝑄′
𝑛] ∨𝑁𝑛=0 𝑃 ′𝑛 ⊇ 𝑄

⊢ [𝑃]while𝑀 [𝑞] = 1 do 𝑆′ od[er :𝑄]

It suffices to prove ∨𝑁𝑛=0𝑃 ′𝑛 ⊇ 𝑄 by ⊨ [𝑃]𝑆 [er :𝑄]. Let 𝜌 = 𝑃/Tr(𝑃), by

Lemma 2.18, we have

∀𝜌 ⊨𝑃 ⇒ ∑+∞
𝑛=0(

∑((M1◦⟦𝑆′⟧ok)𝑛◦M1◦⟦𝑆′⟧er) (𝑃/Tr(𝑃))) = ∨𝑁𝑛=0𝑃 ′𝑛 ⊇ 𝑄

■

The intuition is that the rank of ∨𝑖<𝑁𝑃𝑖 is bounded by dim(H), and once

∨𝑖≤𝑁−1𝑃𝑖 = ∨𝑖≤𝑁𝑃𝑖 , the sequence stops increasing, thus must converge before 𝑁

reaches dim(H) + 1. The theorem indicates that our logic is decidable and has an

upper bound for the time complexity of inference. The upper bound is only relevant

to the dimension of the quantum system and the number of nested while-loops. In

practice, the dimension dim(H) can still be impractically large (e.g., for an 𝑛-qubit

system, dim(H) = 2
𝑛
), in which case we need to balance between efficiency and com-

pleteness by employing While rules with a smaller bound.

Just like the classical incorrectness logic, our logic system avoids false positives by

definition; that is, the postcondition is achievable. Theorem 3.9 further shows that our

proof system does not miss erroneous states regulated by projections. However, due

to the limited expressiveness of projections, our proof system does miss erroneous

states, violating quantitative properties that cannot be captured by projections, i.e.,

when correct and erroneous states share the same support. For example, mixed states

0.2 |0⟩⟨0| +0.8 |1⟩⟨1| and 0.5 |0⟩⟨0| +0.5 |1⟩⟨1| are indistinguishable with respect to any

projection.
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3.6 Alternative Validity Formulations

In this section, we discuss other possible characterization of errors and validity for-

mulations that we have come up with during the development of QIL, from which we

found that Def. 3.4 is the best in expressiveness and efficiency. We use different sub-

scripts of ⊨· to distinguish between different definitions of validity. All these triples are

only discussed in this section to avoid confusion, readers not interested in alternative

validities may safely skip this section.

A Naive Generalization of IL Validity Formulation

We start with the following naive formulation.

Definition 3.10 (Classical validity). A triple is classically valid, denoted by ⊨𝑐

[𝑃]𝑆 [𝜖 :𝑄], if

∀𝜌′ ⊨ 𝑄. ∃𝜌 ⊨ 𝑃 . 𝜌′ ∈ ⟦𝑆⟧𝜖𝜌.

This validity formulation is called “classical” because it is a naive generalization

of O’Hearn’s incorrectness triple (3.1) by simply replacing classical states, predicates,

and satisfaction with their quantum counterparts. It says that every state 𝜌′ satisfying

the projection 𝑃 is reachable from some state 𝜌 in the projection 𝑄 .

Requiring every 𝜌′ ⊨ 𝑄 being reached is rather restrictive and makes the classical

validity too strong to have meaningful triples for initialization statements. For ex-

ample, starting from a Bell state 𝛽00 = ( |00⟩ + |11⟩)/
√
2, initializing one qubit with

𝑞0 ≔ |0⟩ obtains a mixed state |0⟩⟨0| ⊗ 1

2
𝐼 . Let the presumption 𝑃 = 𝛽00𝛽

†
00
, the only

classically valid triple we can have is a trivial [𝑃]𝑞0 ≔ |0⟩ [𝜖 :0] because any non-

trivial postcondition 𝑄 can be satisfied by some unreachable pure state.

It should be noted that the unsuitability of the classical predicate for our projective

predicate does not imply that classical predicates are infeasible in quantum reason-

ing. As shown in [CCL
+
23], they adopt to use a classical predicate that maps a pure

state to either 0 or 1. Tree automata serve as a concise representation of these pred-
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icates, wherein the semantics of disjunction (conjunction) correspond to the union

(intersection) of the tree automata. Implication among tree automata is subsequently

determined through language inclusion tests.

AWeak Validity Based on Observable Relation

The second validity formulation is based on the observable relation, a dual to satis-

faction relation for characterizing erroneous states.

Definition 3.11 (Observable relation). Given a quantum state 𝜌 ∈ D(H), a unit

vector |𝜓 ⟩ is observable within 𝜌 , denoted by 𝜌 ≻ |𝜓 ⟩, if ⟨𝜓 |𝜌 |𝜓 ⟩ > 0. A quantum

predicate 𝑃 is observable within 𝜌 , denoted by 𝜌 ≻ 𝑃 , if Tr(𝑃𝜌) > 0.

Equivalently, 𝜌 ≻ 𝑃 if there is some |𝜓 ⟩ ∈ 𝑃 such that ⟨𝜓 |𝜌 |𝜓 ⟩ > 0. It means

it is possible to observe some |𝜓 ⟩ ∈ 𝑃 in the following sense: when measuring the

state 𝜌 with the measurement 𝑀 = {|𝜓 ⟩⟨𝜓 | , 𝐼 − |𝜓 ⟩⟨𝜓 |}, we are able to obtain |𝜓 ⟩⟨𝜓 |

with a non-zero probability ⟨𝜓 |𝜌 |𝜓 ⟩. The observable relation is dual to the satisfaction

relation:

𝜌 ⊭ 𝑃 ⇔ 𝜌 ≻ ¬𝑃 . (3.3)

The equation (3.3) is a generalization of its classical counterpart (3.2) by observing

𝜎 ⊨ ¬𝑝 iff Tr((¬𝑝)𝜎) > 0,

where the set ¬𝑝 is interpreted as to its corresponding boolean-valued characteri-

zation function, for unit vectors, the observable relation 𝜌 ≻ |𝜓 ⟩ degenerates into

equality if we replace 𝜌 and |𝜓 ⟩ with classical states. The relation between observable

relation and under-approximation is stated in Lemma 3.12.

Lemma 3.12 (Relation between observable and under-approximation). For any

projection 𝑃 and quantum state 𝜌 ∈ D(H), we have

𝜌 ⊨𝑃 =⇒ ∀ |𝜓 ⟩ ∈ 𝑃 . 𝜌 ≻ |𝜓 ⟩ and 𝜌 ≻ 𝑃 =⇒ ∃𝑃 ′. 𝜌 ⊨𝑃 ′ ∧ Tr(𝑃𝑃 ′) > 0
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Proof. • “𝜌 ⊨𝑃 =⇒ ∀ |𝜓 ⟩ ∈ 𝑃 . 𝜌 ≻ |𝜓 ⟩”:

By definition of 𝜌 ⊨𝑃 , |𝜓 ⟩ ∈ 𝑃 implies |𝜓 ⟩ ∈ supp(𝜌).

Let 𝜌 =
∑
𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | where 𝑝𝑖 > 0, it implies 0 < 1 = ⟨𝜓 | supp(𝜌) |𝜓 ⟩ =∑

𝑖 | ⟨𝜓 |𝜓𝑖⟩ |2. Thus ⟨𝜓 | 𝜌 |𝜓 ⟩ =
∑
𝑖 𝑝𝑖 | ⟨𝜓 |𝜓𝑖⟩ |2 > 0.

• “𝜌 ≻ 𝑃 =⇒ ∃𝑃 ′. 𝜌 ⊨𝑃 ′ ∧ Tr(𝑃𝑃 ′) > 0”:

Let 𝜌 =
∑
𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |, 𝑃 =

∑
𝑗 |𝜙 𝑗 ⟩⟨𝜙 𝑗 | where 𝑝𝑖 > 0.

By 𝜌 ≻ 𝑃 we have 0 < Tr(𝑃𝜌) = ∑
𝑖 𝑗 𝑝𝑖 | ⟨𝜓𝑖 |𝜙 𝑗 ⟩ |2, thus ∃𝑖, 𝑗, | ⟨𝜓𝑖 |𝜙 𝑗 ⟩ |2 > 0.

Let 𝑃 ′ = |𝜓𝑖⟩⟨𝜓𝑖 | we have Tr(𝑃𝑃 ′) > 0 and obviously 𝑃 ′ ⊆ supp(𝜌).

■

On top of the observable relation, we give another generalization of the classical

incorrectness triple that is better than Def. 3.10.

Definition 3.13 (Weak validity). A QIL triple is weakly valid, denoted by ⊨𝑤

[𝑃]𝑆 [𝜖 :𝑄], if

∀ |𝜓 ′⟩ ∈ 𝑄. ∃ |𝜓 ⟩ ∈ 𝑃, 𝜌′ ≻ |𝜓 ′⟩ . ⟨𝑆, |𝜓 ⟩⟨𝜓 |⟩ 𝜖−→
∗
⟨↓, 𝜌′⟩.

The formula ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄] means every |𝜓 ′⟩ ∈ 𝑄 is observable from some reach-

able state 𝜌′ that comes from some pure state |𝜓 ⟩ ∈ 𝑃 . One nice thing about this

validity is that it may degenerate to classical settings. Recall that the classical states

correspond to the computational basis of a Hilbert space. When |𝜓 ′⟩ and 𝜌′ are re-

stricted to classical states, the observable relation 𝜌′ ≻ |𝜓 ′⟩ degenerates into equality

𝜌′ = |𝜓 ′⟩⟨𝜓 ′|, and this validity degenerates to that of IL triples. The connection be-

tween strong and weak validities is characterized by Lemma 3.14.

Lemma 3.14 (Connection betweenweak and strong validities). For any quantum

program 𝑆 , projections 𝑃 , 𝑄 and exit condition 𝜖 ,

⊨ [𝑃]𝑆 [𝜖 :𝑄] =⇒ ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄] .

Conversely, given 𝑃 and 𝑆 , we have
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(∃𝑄 ≠ 0. ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄]) =⇒ (∃𝑄′ ≠ 0. ⊨ [𝑃]𝑆 [𝜖 :𝑄′] ∧ Tr(𝑄𝑄′) > 0) .

Proof. The first implication is straightforward by applying Lemma 2.18, 3.12 and The-

orem 3.2. For the second implication, given 𝑄 ≠ 0, there is some |𝜓 ′⟩ ∈ 𝑄 .

By definition of ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄] and Theorem 3.2, we have |𝜓 ⟩ ∈ 𝑃 and 𝜌′ ∈

⟦𝑆⟧𝜖 ( |𝜓 ⟩⟨𝜓 |) such that 𝜌′ ≻ |𝜓 ′⟩.

By Lemma 3.12, there is 𝑄′ ≠ 0 such that 𝜌′ ⊨𝑄′
and 0 < Tr(𝑄′ |𝜓 ′⟩⟨𝜓 ′|) ≤

Tr(𝑄𝑄′).

By Lemma 2.18, for any 𝜌 ⊨ 𝑃 , supp(∑⟦𝑆⟧𝜖𝜌) ⊇ supp(∑⟦𝑆⟧𝜖 ( |𝜓 ⟩⟨𝜓 |)) ⊇

supp(𝜌′) ⊇ 𝑄′
. ■

This lemma implies that when we can observe an er/ok exit condition with the

weak validity, we can find a more proper non-trivial post predicate that satisfies the

strong validity. It means if we only care about whether an er would occur, the weak

validity and strong validity are equivalent, so we call Lemma 3.14 a weak equivalence

between the strong and weak validities.

The main drawback of this validity formulation is that it is too weak to re-

ject useless triples. Recall the program 𝑆Bell in Fig. 3.3a, the weak validity accept

[|00⟩⟨00|]𝑆Bell [ok : span{(𝛼 |00⟩ + 𝛽 |11⟩)}] for any 𝛼2 + 𝛽2 = 1, which is not infor-

mative. This validity formulation is weak because the observable relation is strictly

weaker than the under-approximation relation, and 𝜌 ≻ 𝑃 is not accurate enough if 𝑃

has elements out of supp(𝜌), i.e., 𝑃 ⊈ supp(𝜌).

A Strict Validity Based on Under-Approximation

Based on the under-approximation relation, we obtain another validity formulation

that is weaker than the classical validity and stronger than the weak validity.

Definition 3.15 (Strict validity). A triple is strictly valid, denoted by ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄],

if

∀𝜌 ⊨𝑃 . ∃𝜌′. 𝜌′ ∈ ⟦𝑆⟧𝜖𝜌 ∧ 𝜌′ ⊨𝑄
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The meaning of this validity is straightforward: for any 𝜌 under-approximated by

𝑃 , there exits an execution path of 𝑆 starting from 𝜌 and terminating in 𝜌′ with exit

condition 𝜖 such that 𝑄 under-approximates 𝜌′. In other words, it says if a state is

under-approximated by 𝑃 , then there is a reachable state under-approximated by 𝑄 .

With the strict validity, we can give meaningful triples for initialization state-

ments that classical validity can not handle and avoid accepting useless, weakly valid

triples. For example, we have ⊨𝑠 [𝛽00𝛽†
00
]𝑞0 ≔ |0⟩ [ok : |0⟩⟨0| 𝐼 ⊗ 𝐼 ] for the initial-

ization on a Bell state 𝛽00. For 𝑆Bell, we have only two non-trivial meaningful triples

⊨𝑠 [|00⟩⟨00|]𝑆Bell [ok : |00⟩⟨00|] and ⊨𝑠 [|00⟩⟨00|]𝑆Bell [ok : |11⟩⟨11|] for the program 𝑆Bell

in Fig. 3.3a.

The main drawback of the strict validity is too restrictive to preserve the disjunc-

tion rule below, thus not being efficiently reasoned about.

[𝑃]𝑆 [𝜖 :𝑄1] [𝑃]𝑆 [𝜖 :𝑄2]
[𝑃]𝑆 [𝜖 :𝑄1 ∨𝑄2] .

A simple counter example would be letting 𝑃 = 1

2
( |0⟩ + |1⟩)(|0⟩ + |1⟩)† and 𝑆 being

the program if (𝑀 [𝑞]) = true → skip □ false → skip) fi. We have two strictly valid

triples [𝑃]𝑆 [ok : |0⟩⟨0|] and [𝑃]𝑆 [ok : |1⟩⟨1|] for this example. The disjunction of post-

conditions |0⟩⟨0| and |1⟩⟨1| is 𝐼 , and a state 𝜌′ ⊨𝐼 must be a mixed state, which is

impossible to reach via a single execution path starting with the input state 𝑃 (also a

density matrix). For the same season, the classical validity does not have the disjunc-

tion either.

The disjunction rule is crucial for efficient incorrectness reasoning. Without the

disjunction rule, one will have to remember the post predicates of all paths when

reasoning about a program or information about some paths. Since the number of

paths grows exponentially with increasing sequenced if statements, the disjunction

rule is highly desirable to make the reasoning efficient and thorough (covering as

many paths as possible). As we have seen in Sec. 3.4, the strong validity in Def. 3.4

supports the disjunction rule and thus is more efficient compared with other triples.



CHAPTER 3. QUANTUM INCORRECTNESS LOGIC 82

At the end of this section, we characterize the relationship between these validity

formulations in the lemma 3.17, where ⊨ [𝑃]𝑆 [𝜖 :𝑄] and ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄] are strictly

weaker than the others, thus the most expressive. The ancillary lemma 3.16 is intro-

duced to prove lemma 3.17.

Lemma 3.16. An incorrectness triple ⊨𝑠 [𝑆]𝑃 [𝜖 :𝑄] holds if and only if

∃(𝜌, 𝜌′) ∈ ⟦𝑆⟧𝜖 . supp(𝜌) = 𝑃 ∧ 𝜌′ ⊨𝑄

Proof. The “only if” part is straightforward from the Def. 3.15. For the “if” part, by

the Lemma 2.20, there exists a super-operator E such that 𝜌′ = E(𝜌) for a given pair

(𝜌, 𝜌′) ∈ ⟦𝑆⟧er. Thus we have

∃(𝜌, 𝜌′) ∈ ⟦𝑆⟧er. supp(𝜌) = 𝑃 ∧ 𝜌′ ⊨𝑄

⇒ ∃𝜌, E . supp(𝜌) = 𝑃 ∧ E(𝜌) ⊨𝑄 (Lemma 2.20)

⇒ ∃𝜌, E .∀𝜎. supp(𝜎) ⊇ supp(𝜌) = 𝑃 . supp(E(𝜎)) ⊇ supp(E(𝜌)) ⊨𝑄 (Lemma 2.14)

⇒ ∀𝜎 ⊨𝑃 . ∃E . (𝜎, E(𝜎)) ∈ ⟦𝑆⟧𝜖 . E(𝜎) ⊨𝑄

⇒ ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄] (Def. 3.15)

■

Lemma 3.17. For arbitrary program 𝑆 , we have

⊨𝑐 [𝑃]𝑆 [𝜖 :𝑄] ⇒ ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄] ⇒ ⊨ [𝑃]𝑆 [𝜖 :𝑄] ≈ ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄],

where ≈ means the weak equivalence described by Lemma 3.14. In particular, if 𝑆 does

not contain initialization statements 𝑞 ≔ |0⟩, we have

⊨𝑐 [𝑃]𝑆 [𝜖 :𝑄] ⇔ ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄],

but these two validities are still strictly stronger than ⊨ [𝑃]𝑆 [𝜖 :𝑄].

Proof. To see ⊨𝑐 [𝑃]𝑆 [𝜖 :𝑄] ⇒ ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄], we have

⊨𝑐 [𝑃]𝑆 [𝜖 :𝑄]



CHAPTER 3. QUANTUM INCORRECTNESS LOGIC 83

⇒ ∀𝜌′ ⊨ 𝑄. ∃(𝜌, 𝜌′) ∈ ⟦𝑆⟧𝜖 . 𝜌 ⊨ 𝑃 (Def. 3.10)

⇒ ∃(𝜌, 𝜌′) ∈ ⟦𝑆⟧𝜖 . 𝜌 ⊨ 𝑃 . supp(𝜌′) = 𝑄

⇒ ∃𝜌, E . (𝜌, E(𝜌)) ∈ ⟦𝑆⟧𝜖 . 𝜌 ⊨ 𝑃 . supp(E(𝜌)) = 𝑄 (Lemma 2.20)

⇒ ∃𝜌, 𝜎, E . 𝑃 = supp(𝜎) ⊇ supp(𝜌). supp(E(𝜎)) ⊇ supp(E(𝜌)) = 𝑄 (Lemma 2.14)

⇒ ∃𝜎, E . (𝜎, E(𝜎)) ∈ ⟦𝑆⟧𝜖 . supp(𝜎) = 𝑃 . E(𝜎) ⊨𝑄

⇒ ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄] (Lemma 3.16)

It is direct to see ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄] ⇒ ⊨ [𝑃]𝑆 [𝜖 :𝑄] by Def. 3.4 and Def. 3.15.

⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄]

⇒ ∀𝜌 ⊨𝑃 ⇒ ∃𝜌′. (𝜌, 𝜌′) ∈ ⟦𝑆⟧𝜖 ∧ 𝜌′ ⊨𝑄 (Def. 3.15)

⇒ ∀𝜌 ⊨𝑃 ⇒ supp(∑⟦𝑆⟧𝜖 (𝜌)) ⊇ supp(𝜌′) ⊨𝑄 (Lemma 2.18)

⇒ ⊨ [𝑃]𝑆 [𝜖 :𝑄] (Def. 3.4)

⊨ [𝑃]𝑆 [𝜖 :𝑄] ≈ ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄] has been described by Lemma 3.14.

On the other hand, if 𝑆 does not contain initialization statements, i.e. ⟦𝑆⟧𝜖 (𝜌) =

{(𝐾𝑖𝜌𝐾†
𝑖
, 𝜆𝑖) | 𝑖 ∈ Z+}, we can get tighter relations as follows,

⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄] ⇒ ∀𝜌 ⊨𝑃 . ∃(𝜌, 𝜌′) ∈ ⟦𝑆⟧𝜖 . 𝜌′ ⊨𝑄 (Def. 3.15)

⇒ ∃𝐾𝑖, 𝜌 = 𝑃/Tr(𝑃). supp(𝜌) = 𝑃 . 𝜌′ = 𝐾𝑖𝜌𝐾†
𝑖

⊨𝑄

⇒ ∃𝐾𝑖 . supp(𝐾𝑖𝑃𝐾†
𝑖
) ⊇ 𝑄

⇒ ∃𝐾𝑖 .∀𝜎′ ⊨ 𝑄. 𝜎′ ⊨ supp(𝐾𝑖𝑃𝐾†
𝑖
)

⇒ ∃𝜎, 𝐾𝑖 . 𝜎 ⊨ 𝑃 . 𝜎′ = 𝐾𝑖𝜎𝐾
†
𝑖

(Lemma 2.15)

⇒ ∀𝜎′ ⊨ 𝑄. ∃(𝜎, 𝜎′) ∈ ⟦𝑆⟧𝜖 . 𝜎 ⊨ 𝑃

⇔ ⊨𝑐 [𝑃]𝑆 [𝜖 :𝑄] (Def. 3.10)

■
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Chapter 4

Approximate Quantum Relational

Hoare logic

Quantum computation is inevitably subject to imperfections in its implementation.

The imperfection of the implementation is inevitable and arises from various sources

in quantum computation. From the hardware aspect, the imperfection can come from

modeling the hardware level of environment noise. From the software level, quantum

algorithm designers may introduce noisy implementation in the flavor of lower-depth

computation and other features. The relational logic provides significant advantages

in program reasoning and the importance of assessing the robustness of quantum pro-

grams between their ideal specifications and imperfect implementations. However,

the exploration of approximate relational properties, vital for assessing the robust-

ness of quantum programs between their ideal specifications and imperfect imple-

mentations, is rarely studied from the perspective of program logic. In this chapter,

we design a proof system to verify the approximate relational properties of quantum

programs. We demonstrate the effectiveness of our approach by providing the first

formal verification of the renowned low-depth approximation of the quantum Fourier

transform (5.6). Furthermore, we validate the correctness of bit flip code (5.4) and the

algorithm for the approximation of unitary (5.5). From the technical point of view, we
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develop approximate quantum coupling as a fundamental tool to study approximate

relational reasoning for quantum programs, a novel generalization of the widely used

approximate probabilistic coupling in probabilistic programs, answering a previously

posed open question for projective predicates.

Organization of Chapter 4. This chapter is organized as follows. Sec. 4.1 outlines

the syntax and semantics of the quantum while language under investigation, and

presents the concepts of quantum approximate couplings and lifting. We formally

define of our aqRHL judgments and introduce the concept of approximate measure-

ment conditions in Sec. 4.2. Sec. 4.3 presents the corresponding proof system based

on the specification of aqRHL judgments. In Sec. 4.4, we prove that our proof system

is sound. We give some discussions on aqRHL judgments and separability problem in

Sec. 4.5. The case studies of low-depth approximation quantum Fourier transform, bit

flip code, and repeat until success can be found in Chapter 5.

4.1 Quantum Approximate Coupling and Lifting

This section begins with a review of trace and diamond norms, followed by our pro-

posal of the approximate quantum couplings and liftings used in our aqRHL.

Trace distance & Diamond Norm

In this subsection, we review the quantum generalization of the classical trace dis-

tance, a commonly used metric for quantifying the difference between two quantum

states. The definition is presented below, where we extend it directly to partial density

operators.

Definition 4.1 (trace distance). The trace distance of any two partial density oper-

ators 𝜌 and 𝜎 is defined as follows:

𝐷 (𝜌, 𝜎) ≡ 1

2

Tr |𝜌 − 𝜎 |
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where |𝐴| =
√
𝐴†𝐴 for any operator 𝐴, i.e. the positive square root of 𝐴†𝐴.

Here are some important properties of trace distance that will aid in understanding

the proposed approximate quantum couplings later on.

Lemma 4.2. Properties of trace distance.

(1) Trace distance is a metric on the space of partial density operators. To be specific,

𝐷 (𝜌, 𝜎) = 0 if and only if 𝜌 = 𝜎 ; 𝐷 (𝜌, 𝜎) = 𝐷 (𝜎, 𝜌); 𝐷 (𝜌1, 𝜌3) ≤ 𝐷 (𝜌1, 𝜌2) +

𝐷 (𝜌2, 𝜌3). Also, we have 0 ≤ 𝐷 (𝜌, 𝜎) ≤ 1.

(2) Let E be a superoperator, 𝜌 and 𝜎 be two partial density operators, then 𝐷 (E(𝜌),

E(𝜎)) ≤ 𝐷 (𝜌, 𝜎).

(3) (Convexity) Let {𝑝𝑖} and {𝑞𝑖} be two arbitrary probability distributions, and 𝜌𝑖

and 𝜎𝑖 be partial density operators over the same index set. Then, 𝐷 (∑𝑖 𝑝𝑖𝜌𝑖,∑
𝑖 𝑞𝑖𝜎𝑖) ≤ 𝐷 (𝑝𝑖, 𝑞𝑖) +

∑
𝑖 𝑝𝑖𝐷 (𝜌𝑖, 𝜎𝑖). A special case is 𝐷 (∑𝑖 𝑝𝑖𝜌𝑖,

∑
𝑖 𝑝𝑖𝜎𝑖) ≤∑

𝑖 𝑝𝑖𝐷 (𝜌𝑖, 𝜎𝑖) when {𝑝𝑖} and {𝑞𝑖} are of the same distribution.

(4) Let E1 and E2 be two superoperators. If 𝐷 (𝜌1, 𝜌2) ≤ 𝛿 and 𝐷 (E1(𝜌), E2(𝜌)) ≤ 𝛿′

hold for any 𝜌 , then we have 𝐷 (E1(𝜌1), E2(𝜌2)) ≤ 𝛿 + 𝛿′.

The trace distance is a usefulmeasurablemetric to distinguish two quantum states

directly, but more is needed for comparing two superoperators E1 and E2. An intu-

itive but inadequate way is to find an optimal input state 𝜌 that maximizes the trace

distance between E1(𝜌) and E2(𝜌) because this does not take entanglement into ac-

count. It is known that quantum entanglement is useful for channel discrimination

[PW09]. To address this issue, Kitaev proposed the diamond norm [AKN98a] to distin-

guish between two superoperators sufficiently with the help of the power of quantum

entanglement by introducing auxiliary qubits.
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Definition 4.3 (Diamond Norm). Let 𝐴 be a linear operator over Hilbert space H ,

the diamond norm of 𝐴 is defined as

∥𝐴∥⋄ ≡ max

𝜌∈D(H⊗H ′)

1

2

Tr | (𝐴 ⊗ 𝐼H ′)𝜌 | (4.1)

where H ′
denotes any auxiliary subspace that can be assumed to be a copy of H

without loss of generality. The factor 1/2 is added to keep consistent with trace dis-

tance.

Consequently, the distance between superoperators E1 and E2 overH is given as

∥E1 − E2∥⋄ ≡ max

𝜌∈D(H⊗H ′)
𝐷 ((E1 ⊗ 𝐼H ′) (𝜌), (E2 ⊗ 𝐼H ′) (𝜌)) (4.2)

It is straightforward to verify that 𝐷 (E1(𝜎), E2(𝜎)) ≤ ∥E1 − E2∥⋄ for any 𝜎 ∈ D(H)

by choosing 𝜌 = 𝜎 ⊗ 𝐼H ′ . Therefore, we can use the diamond norm as an upper bound

for the trace distance between quantum states. Compared with directly calculating

𝐷 (E1(𝜎), E2(𝜎)), the diamond norm allows us to take advantage of quantum entan-

glement in 𝜌 ∈ D(H ⊗ 𝐼H ′) to better distinguish between E1 and E2.

The distance between two superoperators can be computed efficiently by convert-

ing it into a semidefinite programming problem [Wat13]. In the case where two super-

operators E1 = 𝑈1 ·𝑈 †
1
and E2 = 𝑈2 ·𝑈 †

2
are unitaries overH , there is no need to intro-

duce any auxiliary system for optimal discrimination [Wat18]. The numerical range

of an operator 𝐴 over H is defined as the set N(𝐴) = {⟨𝜓 |𝐴|𝜓 ⟩ : |𝜓 ⟩ ∈ H , |𝜓 ⟩ ≠ 0}

which is compact and convex. Since𝑈
†
1
𝑈2 is normal,N(𝑈 †

1
𝑈2) is directly equal to the

convex hull of the eigenvalues of 𝑈
†
1
𝑈2. Consequently, we can express the distance

between𝑈1 and𝑈2 as

∥𝑈1 ·𝑈 †
1
−𝑈2 ·𝑈 †

2
∥⋄ =


sin𝛼/2 𝛼 < 𝜋

1 𝛼 ≥ 𝜋

where 𝛼 is the smallest arc containing the spectrum of𝑈
†
1
𝑈2 [NPPŻ18]. To be specific,

let {𝜆𝑖}(|𝜆𝑖 | = 1) be the eigenvalues of the unitary𝑈 †
1
𝑈2. We arrange these eigenvalues
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along the unit circle in the complex plane, and 𝛼 is the smallest arc on the unit circle

that contains all of these eigenvalues.
1
We present some important properties of the

diamond norm below.

Lemma 4.4. Properties of the diamond norm.

(1) Diamond norm is a metric over superoperators.

(2) For any superoperators E and partial density operator 𝜌 , we have

∥E(𝜌)∥⋄ ≤ ∥E∥⋄ · Tr(𝜌)

(3) For any superoperators E1, E′
1
, E2 and E′

2
over H , we have

∥E2 ◦ E1 − E′
2
◦ E′

1
∥⋄ ≤ ∥E1 − E′

1
∥⋄ + ∥E2 − E′

2
∥⋄

(4) For any superoperators E1 and E′
1
over H1, E2 and E′

2
over H2, we have

∥E1 ⊗ E2 − E′
1
⊗ E′

2
∥⋄ ≤ ∥E1 − E′

1
∥⋄ + ∥E2 − E′

2
∥⋄

Approximate Quantum Couplings

The exact quantum coupling between two quantum states, defined in the paper

[BHY
+
19], is a natural generalization of the classical coupling between two discrete

distributions. In the classical setting, two discrete distributions 𝜇1 and 𝜇2 over sets 𝐴1

and 𝐴2 are coupled by a distribution 𝜇 over 𝐴1 ×𝐴2 if and only if the first and second

marginals of 𝜇 are exactly 𝜇1 and 𝜇2, respectively. In the quantum world, we have

a natural association between the density matrix and probability distribution, where

the partial trace over a quantum state corresponds to the marginalizing over a prob-

ability distribution. We review the definition of exact quantum coupling in [BHY
+
19]

as follows.

1
Readers may refer to [NPPŻ18] for a graphical representation of 𝛼 .
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Definition 4.5 (Exact Quantum Coupling). Let 𝜌1 ∈ D(H1) and 𝜌2 ∈ D(H2),

then 𝜌 ∈ D(H1 ⊗ H2) is a coupling for ⟨𝜌1, 𝜌2⟩ if Tr1(𝜌) = 𝜌2 and Tr2(𝜌) = 𝜌1.

The partial trace operation is not a one-to-one function, so the exact quantum

coupling for a given pair of density matrices 𝜌1 and 𝜌2 may not be unique. Therefore,

the exact quantum coupling can be seen as a weak reverse process of the partial trace

operation. For any pair of density matrices 𝜌1 and 𝜌2 with equal trace, we can always

find a trivial coupling where the two subsystems are independent of each other, which

is 𝜌1 ⊗ 𝜌2/Tr(𝜌1). A key feature of the exact quantum coupling 𝜌 for a given pair

⟨𝜌1, 𝜌2⟩ is that its trace is equal to the trace of both 𝜌1 and 𝜌2, i.e., Tr(𝜌) = Tr(𝜌1) =

Tr(𝜌2). However, this constraint can be relaxed in the approximate version.

In the paper [BKOZB13], Barthe et al. proposed the approximate classical coupling

for reasoning about differential privacy. They designed a parameterized 𝛼-distance

between sub-distributions to serve as an upper bound for the approximation. Inspired

by their work, we use trace distance to measure the approximation without loss of

generality. The approximate quantum coupling degenerates into its counterpart in

[BHY
+
19] if 𝛿 = 0. The deviation 𝛿 is introduced to quantify the distance between the

exact and approximate coupling of 𝜌1 and 𝜌2, rather than a direct comparison between

𝜌1 and 𝜌2.

Definition 4.6 (Approximate Quantum Coupling). Let 𝜌1 ∈ D(H1) and 𝜌2 ∈

D(H2), then 𝜌 ∈ D(H1 ⊗ H2) is an 𝛿-coupling for ⟨𝜌1, 𝜌2⟩ if

𝐷 (𝜌1,Tr2(𝜌)) ≤ 𝛿 𝐷 (𝜌2,Tr1(𝜌)) ≤ 𝛿

Approximate Quantum Liftings

To formulate our judgments, we introduce projections as relations between partial

density operators. Similar to the classical case, a valid approximate quantum lifting

implies the existence of an approximate quantum coupling that satisfies a quantum

predicate.
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Definition 4.7 (Approximate Quantum Lifting). Let 𝜌1 ∈ D(H1) and 𝜌2 ∈

D(H2), let 𝑃 be a projection onto a closed subspace ofH1⊗H2, then 𝜌 ∈ 𝐷 (H1⊗H2)

is called an witness of the 𝛿-lifting 𝜌1 ∼𝛿𝑃 𝜌2 if,

(1) 𝜌 is a 𝛿-coupling for ⟨𝜌1, 𝜌2⟩;

(2) supp(𝜌) ⊆ 𝑃 .

where 𝛿 is the deviation from the exact quantum lifting.

A valid approximate quantum lifting implies the existence of an approximate

quantum coupling that satisfies a quantum predicate. The approximate lifting 𝜌1 ∼𝛿
𝑃

𝜌2 degenerates into the exact lifting 𝜌1 ∼𝑃 𝜌2 when 𝛿 = 0. We usually select a “closest"

witness with a smallest deviation 𝛿 for the approximate quantum coupling 𝜌1 ∼ 𝜌2.

However, if we want to compare them under a specific condition 𝑃 , that’s where ap-

proximate liftings come into play. For example, give two distinct states 𝜌1 = |+⟩⟨+|

and 𝜌2 = |−⟩⟨−|, an exact witness |+−⟩⟨+−| is suitable to exactly describe the pair

⟨𝜌1, 𝜌2⟩ with 𝛿 = 0. How about the witness of these two states under the compu-

tational basis measurement {𝑃𝑖 𝑗 = |𝑖 𝑗⟩⟨𝑖 𝑗 |}(𝑖, 𝑗 ∈ {0, 1})? For any 𝑃𝑖 𝑗 , the closeset

witness for the lifting 𝜌1 ∼𝑃𝑖 𝑗 𝜌2 is always the trivial state 0 with 𝛿 = 1/2. The trivial

wintess with the same non-zero 𝛿 implies that the computational basis measurement

cannot distinguish the pair ⟨𝜌1, 𝜌2⟩ at all.

We list the basic properties of approximate quantum listings below.

Lemma 4.8. In the following, 𝜌1, 𝜌2, 𝛼𝜌1, 𝛼𝜌2, 𝜌1 + 𝜌3 and 𝜌2 + 𝜌4 are partial density

matrices.

(1) (Scalability) If 𝜌1 ∼𝛿𝑃 𝜌2 and 0 ≤ 𝛼 , then we have (𝛼𝜌1) ∼𝛼𝛿𝑃 (𝛼𝜌2).

(2) (Linearity) If 𝜌1 ∼𝛿1𝑃 𝜌2 and 𝜌3 ∼𝛿2𝑃 𝜌4, then we have (𝜌1 + 𝜌3) ∼𝛿1+𝛿2𝑃
(𝜌2 + 𝜌4).

(3) (Monotonicity) If 𝛿 ≤ 𝛿′ and 𝑃 ⊆ 𝑃 ′, we have 𝜌1 ∼𝛿𝑃 𝜌2 ⇒ 𝜌1 ∼𝛿
′

𝑃 ′ 𝜌2.



CHAPTER 4. APPROXIMATE QUANTUM RELATIONAL HOARE LOGIC 91

Proof. (1) It is direct from the fact 𝐷 (𝛼𝜌, 𝛼𝜎) = 𝛼𝐷 (𝜌, 𝜎) for any partial density

matrices 𝜌 , 𝛼𝜌 , 𝜎 , 𝛼𝜎 . Therefore, if 𝜌 is a witness of 𝜌1 ∼𝛿
𝑃
𝜌2, then 𝛼𝜌 is the

witness of (𝛼𝜌1) ∼𝛼𝛿𝑃 (𝛼𝜌2).

(2) Let 𝜎1 and 𝜎2 be the witness of the lifting 𝜌1 ∼𝛿1𝑃 𝜌2 and 𝜌3 ∼𝛿1𝑃 𝜌4 respectively,

then 𝜎1 + 𝜎2 is also the witness of the lifting (𝜌1 + 𝜌3) ∼𝛿1+𝛿2
𝑃

(𝜌2 + 𝜌4) by the

convexity of trace distance. That is, 𝜎1 + 𝜎2 ⊨ 𝑃 , and we also have

𝐷 (Tr2(𝜎1 + 𝜎2), 𝜌1 + 𝜌3) ≤ 𝐷 (Tr2(𝜎1), 𝜌1) + 𝐷 (Tr2(𝜎2), 𝜌3) ≤ 𝛿1 + 𝛿2

and the same goes for 𝐷 (Tr1(𝜎1 + 𝜎2), 𝜌2 + 𝜌4) ≤ 𝛿1 + 𝛿2.

(3) Let 𝜌 be the witness of the lifting 𝜌1 ∼𝛿𝑃 𝜌2, then it is direct to check supp(𝜌) ⊆

𝑃 ⊆ 𝑃 ′, 𝐷 (Tr2(𝜌), 𝜌1) ≤ 𝛿 ≤ 𝛿′ and 𝐷 (Tr1(𝜌), 𝜌2) ≤ 𝛿 ≤ 𝛿′, thus 𝜌 is also the

witness of the lifting 𝜌1 ∼𝛿𝑃 𝜌2 ⇒ 𝜌1 ∼𝛿
′

𝑃 ′ 𝜌2.

■

Quantum Equivalence

One of the most important quantum predicates is the equivalence relation between

two registers. Let 𝜌 ∈ D(H) be a partial density operator with the spectral decompo-

sition 𝜌 =
∑
𝑖 𝜆𝑖 |𝑖⟩⟨𝑖 |, where {|𝑖⟩} is an orthonormal basis of H . It is straightforward

to verify that

∑
𝑖 𝜆𝑖 |𝑖𝑖⟩⟨𝑖𝑖 | ∈ H ⊗ H is a witness of the exact lifting 𝜌 ∼≡ 𝜌 , where ≡

represents the quantum equivalence(or identity relation), as formally defined below

[BHY
+
19].

Definition 4.9. Let register 𝑝 and 𝑞 are two disjoint registers of the same size. The

quantum equivalence predicate over (𝑝, 𝑞), denoted by ≡(𝑝,𝑞) , is the projection

(𝐼𝑝 ⊗ 𝐼𝑞 + SWAP)/2

over subspace H𝑝 ⊗ H𝑞 . SWAP is the swap operator defined on (𝑝, 𝑞) such that by

SWAP |𝜓 ⟩ |𝜑⟩ = |𝜑⟩ |𝜓 ⟩ for any |𝜓 ⟩ ∈ H𝑝 and |𝜑⟩ ∈ H𝑞 .
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The quantum equivalence predicate in Def 4.9 directly comes from a natural ob-

servation. In the probabilistic world, if two probability distributions 𝜇1 and 𝜇1 over 𝑋

are the same, then there exists a coupling 𝜇 whose support lives in the identity rela-

tion {(𝑎, 𝑎) | 𝑎 ∈ 𝑋 }. In quantum settings, this is not true due to superposition. For

example, the exact coupling of the state |+⟩ = ( |0⟩ + |1⟩)/
√
2 and itself is |+⟩ ⊗ |+⟩,

which is not in the space spanned by |0⟩ ⊗ |0⟩ and |1⟩ ⊗ |1⟩. Instead, we need to use the

projection (𝐼 +SWAP)/2 to represent the corresponding symmetric space. By doing so,

we have (𝐼 + SWAP) ( |+⟩ ⊗ |+⟩)/2 = |+⟩ ⊗ |+⟩,that is, supp( |+⟩ ⊗ |+⟩) ⊆ (𝐼 + SWAP)/2.

Here we have an approximate version of the lemma for the identity relation in

[BHY
+
19], where the approximate lifting for the identity relation has the same expres-

siveness as trace distance. This lemma implies that we can use approximate quantum

liftings for the identity relation to reason about the approximate equivalence of quan-

tum states.

Lemma 4.10. For any 𝜌1, 𝜌2, we have

𝜌1 ∼𝛿≡ 𝜌2 ⇔ 𝐷 (𝜌1, 𝜌2) ≤ 2𝛿

Particularly, if 𝛿 = 0, we have

𝜌1 ∼≡ 𝜌2 ⇔ 𝜌1 = 𝜌2

Proof. From the left to right side, let 𝜌 be the witness of the lifting 𝜌1 ∼𝛿≡ 𝜌2, we have

supp(𝜌) ⊆ ≡ 𝐷 (𝜌1,Tr2(𝜌)) ≤ 𝛿 𝐷 (Tr1(𝜌), 𝜌2) ≤ 𝛿

Notice that Tr1(𝜌) = Tr2(𝜌) from supp(𝜌) ⊆ ≡. Then we have

𝐷 (𝜌1, 𝜌2) ≤ 𝐷 (𝜌1,Tr1(𝜌)) + 𝐷 (Tr1(𝜌), 𝜌2)

= 𝐷 (𝜌1,Tr2(𝜌)) + 𝐷 (Tr1(𝜌), 𝜌2) = 𝛿 + 𝛿 = 2𝛿

From the right to left side, let 𝜎 = (𝜌1 + 𝜌2)/2, the eigen-decomposition of 𝜎 is

𝜎 =
∑
𝑖 𝜆𝑖 |𝜓 ⟩⟨𝜓 |. We need to check 𝜌 =

∑
𝑖 𝜆𝑖 |𝜓 ⟩⟨𝜓 | ⊗ |𝜓 ⟩⟨𝜓 | is a witness of the lifting
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𝜌1 ∼𝛿≡ 𝜌2. It is direct to check supp(𝜌) ⊆ ≡. Furthermore, we have

𝐷 (Tr1(𝜌), 𝜌2) = 𝐷 (𝜎, 𝜌2) = 𝐷 ((𝜌1 + 𝜌2)/2, 𝜌2) = 𝐷 (𝜌1, 𝜌2)/2 ≤ 𝛿,

where Tr1(𝜌) = Tr2(𝜌) = 𝜎 , and the same goes for 𝐷 (Tr2(𝜌), 𝜌1) ≤ 𝛿 . Thus 𝜌1 ∼𝛿≡ 𝜌2
holds. The particular case is straightforward since 𝜌1 = 𝜌2 if and only if 𝐷 (𝜌1, 𝜌2) =

0. ■

Notice that the trace distance provides a natural explanation for state discrimi-

nation, as presented in the lemma 4.11. Together with lemma 4.10, the approximate

lifting 𝜌1 ∼𝛿≡ 𝜌2 also demonstrates the extent to which two states can be effectively

distinguished through POVM measurements.

Lemma 4.11. [NC11] Let {𝐸𝑚} be a POVM, with 𝑝𝑚 = Tr(𝐸𝑚𝜌1) and 𝑞𝑚 = Tr(𝐸𝑚𝜌2)

as the probabilities of obtaining a measurement outcome labeled by𝑚. Then we have

𝐷 (𝜌1, 𝜌2) = max

{𝐸𝑚}
𝐷 (𝑝𝑚, 𝑞𝑚),

where the maximization is over all POVMs {𝐸𝑚}. 𝐷 (𝑝𝑚, 𝑞𝑚) denotes the 𝐿1 distance

between distributions, i.e., 𝐷 (𝑝𝑚, 𝑞𝑚) = 1

2

∑
𝑚 |𝑝𝑚 − 𝑞𝑚 |.

Upper Bound of Approximation

The approximation usually arises in a scenario whenwe use a desired postcondition to

approximate an exact postcondition. Formally, let (𝐴, 𝐵) be the pair of two projections

𝐴 and 𝐵 over Hilbert space H1 ⊗ H2, the inference

∀𝜌1, 𝜌2, 𝜌1 ∼𝐴 𝜌2 ⇒ 𝜌1 ∼𝛿𝐵 𝜌2 (4.3)

demonstrates a general way of introducing approximate reasoning. That is, given a

witness of the exact lifting 𝜌1 ∼𝐴 𝜌2, does there exist a witness 𝜎 of the approximate

lifting 𝜌1 ∼𝛿
𝐵
𝜌2? The optimal deviation 𝛿 in Eq. 4.3 is equivalent to the following

quantity,

𝛿 = 𝑑 (𝐴, 𝐵) = sup

𝜌⊨𝐴
inf

𝜎⊨𝐵
max{𝐷 (Tr1(𝜌),Tr1(𝜎)), 𝐷 (Tr2(𝜌),Tr2(𝜎))} (4.4)
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where 𝑑 (𝐴, 𝐵) can be upper bounded by sup

𝜌⊨𝐴
inf

𝜎⊨𝐵
𝐷 (𝜌, 𝜎) introduced in [ZYY19].

Here we discuss a simple but important instance of Eq. 4.3 with 𝐴 = (𝑈1 ⊗

𝑈2)𝐵(𝑈1 ⊗ 𝑈2)† and 𝐵 being the quantum equivalence predicate ≡. Then Eq. 4.3 can

be represented as follows,

∀𝜌1, 𝜌2, 𝜌1 ∼≡ 𝜌2 ⇒ 𝑈1𝜌1𝑈
†
1
∼𝐴 𝑈2𝜌2𝑈

†
2

⇒ 𝑈1𝜌1𝑈
†
1
∼𝛿≡ 𝑈2𝜌2𝑈

†
2

where 𝛿 can be upper bounded by ∥𝑈1 ·𝑈 †
1
−𝑈2 ·𝑈 †

2
∥⋄. The diamond norm ∥·∥⋄ proposed

by Kitaev [AKN98a] can better distinguish between two superoperators with the help

of the power of quantum entanglement by introducing auxiliary qubits.

4.2 Specification Formula

Judgment and Validity

Our logic, called aqRHL, “approximates" the quantum relational Hoare logic described

in [BHY
+
19]. The judgments in aqRHL take the following form 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵,

where 𝑆1 and 𝑆2 are quantum programs, 𝐴 and 𝐵 are projections over subspaces of

H𝑞1 ⊗H𝑞2 such that 𝑞𝑖 contains all free variables of 𝑆𝑖 , 𝛿 ∈ [0, 1/2] is referred to as the

deviation from the exact quantum lifting, respectively. Registers 𝑞1 and 𝑞2 are often

omitted since they rarely change along our reasoning and are often clear from the

context.

Definition 4.12 (Validity). The judgement 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 is valid, written as

⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 (4.5)

if and only if

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ ⟦𝑆1⟧(𝜌1) ∼𝛿𝐵 ⟦𝑆2⟧(𝜌2)

where 𝐴 and 𝐵 are projections. If the deviation 𝛿 equals zero, it will be omitted for

simplicity.
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In Def 4.12, we choose projective predicates [BN36] over the joint system of two

programs because such predicates are the quantum analog of binary relations, the

predicates used in pRHL [BKOZB13]. Moreover, this definition will become a judg-

ment of [BHY
+
19] if 𝛿 = 0. One of the most important applications of relational

Hoare logic is to verify the equivalence between programs, as presented in the fol-

lowing lemma. Naturally, the approximate equivalence between programs can also be

reasoned by judgment 4.5, where 𝛿 characterizes the deviation of approximation. We

choose the set of projective predicates because it is the quantum generalization of the

binary relation in approximate relational Hoare logic.

Lemma 4.13 (Program Equivalence). Program 𝑆1 is equivalent to program 𝑆2,
2
if

and only if ⊨ 𝑆1 ∼ 𝑆2 : ≡ ⇒ ≡.

Proof. It is direct form Def. 4.12 and lemma 4.10. From the left to the right side, let

𝜎 = ⟦𝑆1⟧(𝜌) = ⟦𝑆2⟧(𝜌) for any 𝜌 . The eigen-decompositions of 𝜌 and 𝜎 are 𝜌 =∑
𝑖 𝛼𝑖 |𝜓 ⟩⟨𝜓 | and 𝜎 =

∑
𝑖 𝛽𝑖 |𝜑⟩⟨𝜑 |. It is direct to see that

∑
𝑖 𝛼𝑖 |𝜓 ⟩⟨𝜓 | ⊗ |𝜓 ⟩⟨𝜓 | and∑

𝑖 𝛽𝑖 |𝜑⟩⟨𝜑 | ⊗ |𝜑⟩⟨𝜑 | are witnesses for liftings 𝜌 ∼≡ 𝜌 and ⟦𝑆1⟧(𝜌) ∼≡ ⟦𝑆2⟧(𝜌). Thus,

we have ⊨ 𝑆1 ∼ 𝑆2 : ≡ ⇒ ≡ by Def. 4.12. From the right to the left side, given ⊨ 𝑆1 ∼

𝑆2 : ≡ ⇒ ≡, we have 𝜌1 ∼≡ 𝜌2 ⇒ ⟦𝑆1⟧(𝜌1) ∼≡ ⟦𝑆2⟧(𝜌2) for any 𝜌 . Then we have

𝜌1 = 𝜌2 and 𝐷 (⟦𝑆1⟧(𝜌1), ⟦𝑆2⟧(𝜌2)) = 0 by lemma 4.10, that is ⟦𝑆1⟧(𝜌) = ⟦𝑆2⟧(𝜌). ■

The program equivalence can be expressed concisely by judgment 4.5 with pred-

icates being the equivalence relation instead of checking whether two quantum pro-

grams perform uniformly by enumeration of an infinite number of states in Hilbert

space. The following simple example shows that quantum program equivalence is

more complex than its classical counterpart due to the superposition of quantum

states.

Example 4.14. Let 𝑆1 and 𝑆2 be two programs defined on a single bit or qubit. For

classical programs, the state space for programs 𝑆1 and 𝑆2 is the set {|0⟩ , |1⟩}. Let Ψ and

2
That is, ⟦𝑆1⟧(𝜌) = ⟦𝑆2⟧(𝜌) holds for any partial density operator 𝜌 .
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Φ be the equivalence relation, the relational judgment

𝑆1 ∼ 𝑆2 : Ψ ⇒ Φ

holds for classical programs 𝑆1 and 𝑆2 if

⟦𝑆1⟧(|0⟩⟨0|) = ⟦𝑆2⟧(|0⟩⟨0|) ⟦𝑆1⟧(|1⟩⟨1|) = ⟦𝑆2⟧(|1⟩⟨1|) (4.6)

However, this conclusion no longer holds in quantum programs since the input state could

be a superposition of |0⟩ and |1⟩. For example, let

𝑆1 ::= skip 𝑆2 ::= 𝑞 := 𝑍 [𝑞]

it is clear that 𝑆1 and 𝑆2 are not equivalent
3
although Eq. 4.6 still holds. To check quantum

program equivalence, we need to verify the validity of ⟦𝑆1⟧(𝜌) = ⟦𝑆2⟧(𝜌) for all 𝜌 in the

Hilbert space span{|0⟩ , |1⟩} rather than the set {|0⟩ , |1⟩}, which involves enumerations

of an infinite set.

Measurement Conditions

Additional constraints must be imposed on the programs to establish feasible rela-

tional proof rules for programs with complex structures, such as if and loop state-

ments. In the classical pRHL approach in [BGZB09], the precondition𝑚1Ψ𝑚2 satisfied

by the initial memories𝑚1 and𝑚2 requires the guards 𝑒1 and 𝑒2 in the if or loop state-

ments must be equal. Things get more complex in quantum programs since quantum

mechanics are naturally probabilistic, and it is generally impossible to require two

if statements to give the same measurement or with the same probability distribu-

tions. In [BHY
+
19], the term “synchronous execution” in quantum programs means

that two quantum measurements M1 = {𝑀𝑚
1
} and M2 = {𝑀𝑚

2
} should produce the

same distribution over branches for input 𝜌1 and 𝜌2, that is,

Tr(𝑀𝑚
1
𝜌1𝑀

𝑚
1

†) = Tr(𝑀𝑚
2
𝜌2𝑀

𝑚
2

†).
3⟦𝑆1⟧(|𝜓 ⟩⟨𝜓 |) ≠ ⟦𝑆2⟧(|𝜓 ⟩⟨𝜓 |) for any superposition |𝜓 ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, 0 < |𝑎 |2 + |𝑏 |2 ≤ 1.
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To study more general programs, we propose the approximate measurement con-

ditions, which establish appropriate upper bounds for the deviations in our judgments.

Definition 4.15 (Approximate Measurement Condition). Let M1 = {𝑀𝑚
1
} and

M2 = {𝑀𝑚
2
} be two measurements in H1 and H2 that share the same set {𝑚} of

measurement outcomes, respectively. The measurement condition

M1 ≈{𝛿𝑚} M2 : 𝐴 ⇒ {(𝑝𝑚, 𝐵𝑚)} (4.7)

means that for every measurement outcome𝑚, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒

𝑀𝑚

1
𝜌1𝑀

𝑚
1

† ∼𝛿𝑚
𝐵𝑚
𝑀𝑚

2
𝜌2𝑀

𝑚
2

†

max{Tr(𝑀𝑚
1
𝜌1𝑀

𝑚
1

†),Tr(𝑀𝑚
2
𝜌2𝑀

𝑚
2

†)} ≤ 𝑝𝑚

where 𝑝𝑚 ∈ [0, 1]. Deviations 𝛿𝑚 in the measurement condition can be ignored if they

equal zero. We write predicate {(𝑝𝑚, 𝐵𝑚)} as {𝐵𝑚} for short if all 𝑝𝑚 = 1.

Our approximate measurement condition extends its counterpart in [BHY
+
19] to

an approximate version that no longer requires two measurementsM1 andM2 must

produce the same distribution. Instead, it employs information to bound the prob-

ability of entering the branches of index 𝑚, making approximate reasoning about

branches possible. It is worth noting that the deviations in Def. 4.15 slightly differ

from those in Def. 4.12. In Def. 4.12, programs 𝑆1 and 𝑆2 are trace-preserving if they

can terminate. However, it is generally not the case that Tr(𝑀𝑚
𝑖 𝜌𝑖𝑀

𝑚
𝑖
†) = Tr(𝜌𝑖) for

𝑖 ∈ {1, 2}. Only the whole process of quantum measurement is trace-preserving, i.e.,∑
𝑚 Tr(𝑀𝑚

𝑖 𝜌𝑖𝑀
𝑚
𝑖
†) = Tr(𝜌𝑖). As a result, 𝛿𝑚 specified in Definition 4.15 needs to work

with 𝑝𝑚 to establish bounds on the approximate reasoning.

Let 𝑄1 = while M1 [𝑞] = 1 do 𝑆1 od and 𝑄2 = while M2 [𝑞] = 1 do 𝑆2 od be two

loop statements. In [BHY
+
19], the measurement condition requires that 𝑄1 and 𝑄2

should produce the same distribution over measurement outcomes during the itera-

tions, that is,

Tr((⟦𝑆1⟧ ◦M1

1
)𝑘 (𝜌1)) = Tr((⟦𝑆2⟧ ◦M1

2
)𝑘 (𝜌2))
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holds for any integer 0 ≤ 𝑘 . Such a condition limits the applications since it is gener-

ally not true.

Instead, we use the approximate measurement condition in loop statements. As

shown in the rule (LP) in the next subsection, we introduce an “approximate invariant”

𝐴 related to the approximate measurement condition. The approximate measurement

condition indicates that loop statements have the following property,

∀0 ≤ 𝑘. 𝜌 ∼𝐴 𝜎 ⇒ ∃𝛾𝑘 𝑠 .𝑡 .

𝛾𝑘 is a witness of 𝜌𝑘 ∼𝑑𝑘𝐴 𝜎𝑘

Tr(𝛾𝑘) ≤ 𝑝𝑘
1

where 𝑑𝑘 =
1−𝑝𝑘

1

1−𝑝1 𝛿1 +
𝑝1−𝑝𝑘+1

1

1−𝑝1 𝛿 , 𝜌𝑘 = (⟦𝑆1⟧ ◦ M1

1
)𝑘 (𝜌1), 𝜎𝑘 = (⟦𝑆2⟧ ◦ M1

2
)𝑘 (𝜌2), 𝑖 ∈

{1, 2}. Since the measurement condition performs approximate liftings based on the

approximate output of the last iteration, the deviation accumulated in each iteration is

scaled down by 𝑝1. Notice that themeasurement condition in rule (LP) puts limitations

on the witness 𝛾𝑘 rather than actual program states 𝜌𝑘 and 𝜎𝑘 . It usually can not give

valid upper bounds on Tr(𝜌𝑘) and Tr(𝜎𝑘). An exceptional case is the exact reasoning,

where we have Tr(𝜌𝑘) = Tr(𝜎𝑘) = Tr(𝛾𝑘) ≤ 𝑝𝑘
1
with 𝛿1 = 𝛿 = 0.

How about the case when finding a proper “approximate invariant” is not easy?

In practice, the approximate reasoning usually stops after unrolling the loops deep

enough, and the minor remaining parts are ignored. The loop statement can be ap-

proximated as a finite-length sequence of quantum measurement and loop body, and

proper approximate measurement conditions can be set to terminate the loop some-

where and provide bounds on the approximation of the truncation. As shown in the

rule (LP*), we usually need a bunch of approximate measurement conditions param-

eterized by the number of iterations,

M1 ≈{𝛼𝑘 ,𝛽𝑘 } M2 : 𝐴𝑘 ⇒ {(𝑞𝑘 ,𝐶), (𝑝𝑘 , 𝐵𝑘)}

to work with the premises ⊢ 𝑆1 ∼𝛿𝑘 𝑆2 : 𝐵𝑘 ⇒ 𝐴𝑘+1 related to the loop bodies. If

compared loop statements could terminate within 𝑁 -iterations, then the approximate
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measurement condition

M1 ≈{𝛼𝑁 ,0} M2 : 𝐴𝑁 ⇒ {(1,𝐶), (0, 𝐼 )}

is unnecessary. Otherwise, an upper bound 𝑁 on the unrolling of loops is needed, and

the above approximate measurement condition is used to approximate the truncation.

4.3 Proof System

This section will present a set of proof rules for reasoning about the validity of aqRHL

judgments. These rules include construct-specific rules (two-sided and one-sided) and

structural ones, as is typical in classical relational Hoare logic.

Two-side Rules

(Skip) ⊢ skip ∼ skip : 𝐴 ⇒ 𝐴

(Init) ⊢ 𝑞1 := |0⟩ ∼ 𝑞2 := |0⟩ : 𝐴 ⇒ |0⟩𝑞1 ⟨0| ⊗ |0⟩𝑞2 ⟨0| ⊗ proj(Tr(𝑞1,𝑞2 ) (𝐴))
(Ut) ⊢ 𝑞1 := 𝑈1 [𝑞1] ∼ 𝑞2 := 𝑈2 [𝑞2] : 𝐴 ⇒ (𝑈1 ⊗ 𝑈2)𝐴(𝑈 †

1
⊗ 𝑈 †

2
)

(Qo) ⊢ 𝑞1 := E1 [𝑞1] ∼ 𝑞2 := E2 [𝑞2] : 𝐴 ⇒ proj((E1 ⊗ E2) (𝐴))

(Seq)
⊢ 𝑆1 ∼𝛿1 𝑆2 : 𝐴 ⇒ 𝑅 ⊢ 𝑆 ′

1
∼𝛿2 𝑆

′
2
: 𝑅 ⇒ 𝐵

⊢ 𝑆1; 𝑆 ′1 ∼𝛿1+𝛿2 𝑆2; 𝑆
′
2
: 𝐴 ⇒ 𝐵

(IF)
M1 ≈{𝛿𝑚 } M2 : 𝐴 ⇒ {(𝑝𝑚, 𝐵𝑚)} ⊢ 𝑆1𝑚 ∼𝛿 ′𝑚 𝑆2𝑚 : 𝐵𝑚 ⇒ 𝐶

⊢ if (□𝑚 · M1 [𝑞] =𝑚 → 𝑆1𝑚) fi ∼∑
𝑚 𝛿𝑚+𝑝𝑚 ·𝛿 ′𝑚 if (□𝑚 · M2 [𝑞] =𝑚 → 𝑆2𝑚) fi : 𝐴 ⇒ 𝐶

(LP)
M1 ≈{𝛿0,𝛿1} M2 : 𝐴 ⇒ {(𝑝0, 𝐵0), (𝑝1, 𝐵1)} ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐵1 ⇒ 𝐴

⊢ while M1 [𝑞] = 1 do 𝑆1 od ∼𝛿
0
+𝛿

1
+𝑝

1
𝛿

1−𝑝
1

whileM2 [𝑞] = 1 do 𝑆2 od : 𝐴 ⇒ 𝐵0

(LP*)

∀0 ≤ 𝑘 < 𝑁 .M1 ≈{𝛼𝑘 ,𝛽𝑘 } M2 : 𝐴𝑘 ⇒ {(𝑞𝑘 ,𝐶), (𝑝𝑘 , 𝐵𝑘 )}
M1 ≈{𝛼𝑁 ,0} M2 : 𝐴𝑁 ⇒ {(1,𝐶), (0, 𝐼 )} ⊢ 𝑆1 ∼𝛿𝑘 𝑆2 : 𝐵𝑘 ⇒ 𝐴𝑘+1

⊢ while M1 [𝑞] = 1 do 𝑆1 od ∼𝑓 (𝛼𝑘 ,𝛽𝑘 ,𝑝𝑘 ) whileM2 [𝑞] = 1 do 𝑆2 od : 𝐴0 ⇒ 𝐶

Figure 4.1: Two-sided aqRHL rules. The deviation of the LP* rule is given by

𝑓 (𝛼𝑘 , 𝛽𝑘 , 𝑝𝑘) = (𝛼0+
∑𝑁−1
𝑛=0 𝜆𝑛𝛼𝑛+1)+(𝑁𝛽0+

∑𝑁−2
𝑛=0 (𝑁−𝑛−1)𝜆𝑛𝛽𝑛+1)+(

∑𝑁−1
𝑛=0 (𝑁−𝑛)𝜆𝑛𝛿𝑛)

with 𝜆𝑛 =
∏𝑛
𝑘=0

𝑝𝑘 .
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Fig. 4.1 includes the two-sided proof rules when comparing programs with the

same structure. The basic rules, namely (Skip), (Init), (Ut) and (Qo) are similar to

their counterparts in [BHY
+
19] with 𝛿 = 0, where they are presented in the forward

variant. Here we use proj(𝐴) to lift non-projection 𝐴 to its support before assigning

it as a predicate. Notice that the rule (Ut) gives the strongest postcondition, which

means the reverse ⊢ 𝑞1 := 𝑈 −1
1

[𝑞1] ∼ 𝑞2 := 𝑈 −1
2

[𝑞2] : (𝑈1 ⊗ 𝑈2)𝐴(𝑈 †
1
⊗ 𝑈 †

2
) ⇒ 𝐴 still

holds. The rule (Seq) demonstrates that the deviation grows linearly along with the

sequences, which directly comes from the triangle inequality of trace distance.

The rule (IF) requires the measurement condition in the premises to provide a

bound on the whole approximation, where the deviation 𝛿′𝑚 of the branch body is

scaled down by 𝑝𝑚 . The rule (LP) does not require the synchronous execution of loop

guards [BKOZB13, BHY
+
19] or the speed bound at which loops converge [HHZ

+
19].

Instead, the measurement condition only employs an upper bound 𝑝1 on the proba-

bilities of entering loop bodies for the first iteration. Rule (LP) requires 𝑝1 ∈ [0, 1) and

provides better deviation if 𝑝1 is smaller. If 𝑝1 equals 1 at the beginning, we can unroll

loop statements several times to make 𝑝1 less than 1.

We derive rule (LP*) as an alternative of rule (LP) by incorporating more specific

measurement conditions for the iterations of loops whenwe can not find a good preid-

cate𝐴 for rule (LP). When doing approximate reasoning about loops, setting an upper

bound 𝑁 on the number of iterations is typical. Notice that the factor 𝜆𝑛 is not an up-

per bound on the probability of entering (𝑛 + 1)-th iteration except for 𝑛 = 0. Overall,

rule (LP*) is a direct application of rule (Seq) on a finite number of iterations, where

measurement conditions are used to scale the deviations.

One-side Rules

One-sided relational proof rules are listed in Fig. 4.2. These rules are necessary when

two programs do not share the same structure. We have only listed the one-side rules

for the left side, and similar rules apply to the right side symmetrically. Since we
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can always make the skip statement share the same probability distribution with any

if and while statement, thus the measurement conditions in rules (IF-L), (LP-L), and

(LP*-L) are more straightforward.

(Init-L) ⊢ 𝑞1 := |0⟩ ∼ skip : 𝐴 ⇒ |0⟩𝑞1 ⟨0| ⊗ proj(TrH�̄�
1

(𝐴))
(Ut-L) ⊢ 𝑞1 := 𝑈1 [𝑞1] ∼ skip : 𝐴 ⇒ (𝑈1 ⊗ 𝐼2)𝐴(𝑈 †

1
⊗ 𝐼2)

(IF-L)
M1 ≈ 𝐼2 : 𝐴 ⇒ {(𝑝𝑚, 𝐵𝑚)} ⊢ 𝑆1𝑚 ∼𝛿𝑚 skip : 𝐵𝑚 ⇒ 𝐶

⊢ if (□𝑚 · M1 [𝑞] =𝑚 → 𝑆1𝑚) fi ∼∑
𝑚 𝑝𝑚𝛿𝑚 skip : 𝐴 ⇒ 𝐶

(LP-L)
M1 ≈ 𝐼2 : 𝐴 ⇒ {(𝑝0, 𝐵0), (𝑝1, 𝐵1)} ⊢ 𝑆1 ∼𝛿 skip : 𝐵1 ⇒ 𝐴

⊢ whileM1 [𝑞] = 1 do 𝑆1 od ∼𝑝1𝛿/(1−𝑝1 ) skip : 𝐴 ⇒ 𝐵0

(LP*-L)

∀0 ≤ 𝑘 < 𝑁 .M1 ≈ 𝐼2 : 𝐴𝑘 ⇒ {(𝑞𝑘 ,𝐶), (𝑝𝑘 , 𝐵𝑘 )} 𝜆𝑛 =
∏𝑛

𝑘=0
𝑝𝑘

M1 ≈{𝛿𝑁 ,0} 𝐼2 : 𝐴𝑁 ⇒ {(1,𝐶), (0, 𝐼 )} ⊢ 𝑆1 ∼𝛿𝑘 skip : 𝐵𝑘 ⇒ 𝐴𝑘+1

⊢ while M1 [𝑞] = 1 do 𝑆1 od ∼𝜆𝑁 −1𝛿𝑁 +∑𝑁 −1
𝑛=0 (𝑁−𝑛)𝜆𝑛𝛿𝑛 ) skip : 𝐴0 ⇒ 𝐶

Figure 4.2: One-sided aqRHL rules.

Structural Rules

Unlike classical programs, the potential quantum entanglement between subsystems

brings a unique challenge in constructing a general frame rule for quantum programs

[BHY
+
19, Unr19, ZBH

+
21]. We derive a simple frame rule (Frame) to specify a par-

ticular instance that the predicate 𝐶 on additional independent system (𝑟1, 𝑟2) is one-

dimensional. The subscripts related to registers are displayed explicitly to avoid con-

fusion. Rule (Order) adds an order relation ≤ over deviations. In addition, a side

condition is introduced in rule (Approx) to allow switching postconditions at the cost

of bringing approximation.

Rules for Equivalence Relation

We address a scenario regarding the rules (Ut), where the precondition and postcon-

dition are equivalence relations. We use diamond norm to bound the deviation in rule
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(Frame)
⊢(𝑞1,𝑞2 ) 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 (𝑟1, 𝑟2) ∩ 𝑣𝑎𝑟 (𝑆1, 𝑆2) = 0 𝐷𝑖𝑚(𝐶 (𝑟1,𝑟2 ) ) = 1

⊢(𝑞1,𝑟1 ),(𝑞2,𝑟2 ) 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⊗ 𝐶 (𝑟1,𝑟2 ) ⇒ 𝐵 ⊗ 𝐶 (𝑟1,𝑟2 )

(Order)
⊢ 𝑆1 ∼𝛿 ′ 𝑆2 : 𝐴

′ ⇒ 𝐵′ 𝐴 ⊆ 𝐴′ 𝐵′ ⊆ 𝐵 𝛿 ′ ≤ 𝛿
⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵

(Approx)
⊢ 𝑆1 ∼ 𝑆2 : 𝐴 ⇒ 𝐵 ∀𝜌1, 𝜌2. 𝜌1 ∼𝐵 𝜌2 ⇒ 𝜌1 ∼𝛿

𝐶 𝜌2

⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐶

Figure 4.3: Structural aqRHL rules.

(Ut-id), where𝑈 ·𝑈 †
denotes the Kraus representation [NC11] of unitary𝑈 . The rule

(Comp) permits reasoning equivalence between programs by introducing intermedi-

ate programs.

(Ut-id) ⊢ 𝑞1 := 𝑈1 [𝑞1] ∼∥𝑈1 ·𝑈 †
1
−𝑈2 ·𝑈 †

2
∥⋄/2 𝑞2 := 𝑈2 [𝑞2] : ≡ ⇒ ≡

(Comp)

⊢ 𝑆1 ∼𝛿1 𝑆2 : ≡ ⇒ ≡ ⊢ 𝑆2 ∼𝛿2 𝑆3 : ≡ ⇒ ≡
⊢ 𝑆1 ∼𝛿1+𝛿2 𝑆3 : ≡ ⇒ ≡

Figure 4.4: Rules for Equivalence Relation

4.4 Soundness Theorem

All these proof rules in Fig. 4.1, 4.2, 4.3 and 4.4 are proved to be sound concerning

the validity of judgments defined in Def. 4.12. Our logic has no relative completeness

due to its foundation in the quantum extension of probabilistic coupling, which is

insufficient for demonstrating the convergence of Markov chains. Ancillary lemmas

4.17, 4.18 and 4.19 are introduced to prove theorem 4.16.

Theorem 4.16. [Soundness] For any program 𝑆1, 𝑆2, projections 𝐴 and 𝐵, deviation 𝛿 ,

we have,

⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 ⇒ ⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵
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Proof. The soundness is proved by showing the validity of axioms and inference rules

in Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4 concerning Def. 4.12 by the induction on the

proof structural of ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵. 𝐴 and 𝐵 are projections over subspaces of

H𝑞1⊗H𝑞2 such that𝑞𝑖 contains all free variables of 𝑆𝑖 . 𝑂1 and𝑂2 to represent operators

over H𝑞1 and H𝑞2 . Tr2(𝜌) and Tr1(𝜌) to denote the reduced density matrix over H𝑞1

andH𝑞2 , respectively.

(1) (Skip). It is straight from Def. 4.12.

(2) (Ut). For any 𝜌1 and 𝜌2 such that there exist a witness 𝜌 of the lifting 𝜌1 ∼𝐴 𝜌2,

then we have

supp(𝜌) ⊆ 𝐴 Tr2(𝜌) = 𝜌1 Tr1(𝜌) = 𝜌2

Let 𝜎 = (𝑈1 ⊗𝑈2)𝜌 (𝑈 †
1
⊗𝑈 †

2
) and 𝐵 = (𝑈1 ⊗𝑈2)𝐴(𝑈 †

1
⊗𝑈 †

2
), then it is direct to

check that 𝜎 is a witness of the lifting𝑈1𝜌1𝑈
†
1
∼𝐵 𝑈2𝜌2𝑈

†
2
,

supp(𝜎) = supp((𝑈1 ⊗ 𝑈2)𝜌 (𝑈 †
1
⊗ 𝑈 †

2
)) ⊆ (𝑈1 ⊗ 𝑈2)𝐴(𝑈 †

1
⊗ 𝑈 †

2
) = 𝐵

Tr2(𝜎) = 𝑈1𝜌1𝑈
†
1

Tr1(𝜎) = 𝑈2𝜌2𝑈
†
2

Thus the lifting𝑈1𝜌1𝑈1 ∼𝐵 𝑈2𝜌2𝑈
†
2
holds, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ 𝑈1𝜌1𝑈
†
1
∼𝐵 𝑈2𝜌2𝑈

†
2

i.e. ⊨ 𝑞1 := 𝑈1 [𝑞1] ∼ 𝑞2 := 𝑈2 [𝑞2] : 𝐴 ⇒ (𝑈1 ⊗𝑈2)𝐴(𝑈 †
1
⊗𝑈 †

2
) by the semantics.

(3) (Qo). Here we first prove the rule for any two superoperators E1 and E2,

⊨ 𝑞1 := E1 [𝑞1] ∼ 𝑞2 := E2 [𝑞2] : 𝐴 ⇒ proj((E1 ⊗ E2) (𝐴))

For any 𝜌1 and 𝜌2 such that there exist a witness 𝜌 of the lifting 𝜌1 ∼𝐴 𝜌2, then

we have

supp(𝜌) ⊆ 𝐴 Tr2(𝜌) = 𝜌1 Tr1(𝜌) = 𝜌2
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Let 𝜎 = (E1 ⊗ E2) (𝜌) and 𝐵 = proj((E1 ⊗ E2) (𝐴)), then it is direct to check that

𝜎 is a witness of lifting E1(𝜌1) ∼𝐵 E2(𝜌2),

supp(𝜎) = supp((E1 ⊗ E2) (𝜌)) ⊆ proj((E1 ⊗ E2) (𝐴)) = 𝐵

Tr2(𝜎) = E1(Tr2(𝜌)) = E1(𝜌1) Tr1(𝜎) = E2(Tr1(𝜌)) = E2(𝜌2)

Thus the lifting E1(𝜌1) ∼𝐵 E2(𝜌2) holds, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ E1(𝜌1) ∼𝐵 E2(𝜌2)

i.e. ⊨ 𝑞1 := E1 [𝑞1] ∼ 𝑞2 := E2 [𝑞2] : 𝐴 ⇒ proj((E1 ⊗ E2) (𝐴)).

(4) (Init). The Init rule is an instance of the above rule with E1 =∑
𝑛 |0⟩𝑞1 ⟨𝑛 |𝜌 |𝑛⟩𝑞1 ⟨0| and E2 =

∑
𝑛 |0⟩𝑞2 ⟨𝑛 |𝜌 |𝑛⟩𝑞2 ⟨0|.

(5) (Seq) By the first assumption ⊢ 𝑆1 ∼𝛿1 𝑆2 : 𝐴 ⇒ 𝑅, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ ⟦𝑆1⟧(𝜌1) ∼𝛿1𝑅 ⟦𝑆2⟧(𝜌2)

then there exits a witness 𝜌 of the lifting ⟦𝑆1⟧(𝜌1) ∼𝛿1
𝑅

⟦𝑆2⟧(𝜌2). Given the

second assumption ⊢ 𝑆′
1
∼𝛿2 𝑆′2 : 𝑅 ⇒ 𝐵, we apply Lemma 4.19 to have

⟦𝑆1⟧(𝜌1) ∼𝛿1𝑅 ⟦𝑆2⟧(𝜌2) ⇒ ⟦𝑆′
1
⟧(⟦𝑆1⟧(𝜌1)) ∼𝛿1+𝛿2𝐵

⟦𝑆′
2
⟧(⟦𝑆2⟧)(𝜌2)

Combine the first assumption and the semantics of sequence, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ ⟦𝑆1; 𝑆′1⟧(𝜌1) ∼
𝛿1+𝛿2
𝐵

⟦𝑆2; 𝑆′2⟧(𝜌2)

i.e. ⊨ 𝑆1; 𝑆′1 ∼𝛿1+𝛿2 𝑆2; 𝑆′2 : 𝐴 ⇒ 𝐵.

(6) (IF). Let𝑄1 = if (□𝑚 ·M1 [𝑞] =𝑚 → 𝑆1𝑚) fi,𝑄2 = if (□𝑚 ·M2 [𝑞] =𝑚 → 𝑆2𝑚) fi.

By the assumption M1 ≈{𝛿𝑚} M2 : 𝐴 ⇒ {(𝑝𝑚, 𝐵𝑚)}, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ 𝜎1𝑚 ∼𝛿𝑚
𝐵𝑚
𝜎2𝑚
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for all 𝑚, where 𝜎1𝑚 = 𝑀𝑚
1
𝜌1𝑀

𝑚
1

†
, 𝜎2𝑚 = 𝑀𝑚

2
𝜌2𝑀

𝑚
2

†
, Tr(𝜎1𝑚) ≤ 𝑝𝑚 and

Tr(𝜎2𝑚) ≤ 𝑝𝑚 . Together with the assumption ⊢ 𝑆1𝑚 ∼𝛿 ′𝑚 𝑆2𝑚 : 𝐵𝑚 ⇒ 𝐶 , we

have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2

⇒ 𝜎1𝑚 ∼𝛿𝑚
𝐵𝑚
𝜎2𝑚

⇒ 𝜎1𝑚/𝑝𝑚 ∼𝛿𝑚/𝑝𝑚
𝐵𝑚

𝜎2𝑚/𝑝𝑚 (Scalability in 4.8)

⇒ ⟦𝑆1𝑚⟧(𝜎1𝑚/𝑝𝑚) ∼𝛿𝑚/𝑝𝑚+𝛿 ′𝑚
𝐶

⟦𝑆2𝑚⟧(𝜎2𝑚/𝑝𝑚) (Lemma 4.19)

⇒ ⟦𝑆1𝑚⟧(𝜎1𝑚) ∼𝛿𝑚+𝑝𝑚𝛿 ′𝑚
𝐶

⟦𝑆2𝑚⟧(𝜎2𝑚) (Scalability in 4.8)

⇒ ∑
𝑚⟦𝑆1𝑚⟧(𝜎1𝑚) ∼

∑
𝑚 𝛿𝑚+𝑝𝑚𝛿 ′𝑚

𝐶

∑
𝑚⟦𝑆2𝑚⟧(𝜎2𝑚) (Linearity in 4.8)

⇒ ⟦𝑄1⟧(𝜌1) ∼
∑

𝑚 𝛿𝑚+𝑝𝑚𝛿 ′𝑚
𝐶

⟦𝑄2⟧(𝜌2) (Fig. 2.2)

for all𝑚. Thus we have ⊨ 𝑄1 ∼∑
𝑚 𝛿𝑚+𝑝𝑚𝛿 ′𝑚 𝑄2 : 𝐴 ⇒ 𝐶 .

(7) (LP). Let 𝑄𝑖 = while M𝑖 [𝑞] = 1 do 𝑆𝑖 od, E𝑖 (𝜌) = ⟦𝑆𝑖⟧(𝑀1

𝑖 𝜌𝑀
1

𝑖

†) for 𝑖 ∈ {1, 2}.

We combine M1 ≈{𝛿0,𝛿1} M2 : 𝐴 ⇒ {(𝑝0, 𝐵0), (𝑝1, 𝐵1)} and ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐵1 ⇒ 𝐴

to have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ 𝑀0

1
𝜌1𝑀

0

1

† ∼𝛿0
𝐵0
𝑀0

2
𝜌2𝑀

0

2

†

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ 𝑀1

1
𝜌1𝑀

1

1

† ∼𝛿1
𝐵1
𝑀1

2
𝜌2𝑀

1

2

† ⇒ E1(𝜌1) ∼𝛿1+𝑝1𝛿𝐴
E2(𝜌2)

with Tr(E𝑖 (𝜌𝑖)) ≤ Tr(𝑀1

𝑖 𝜌𝑖𝑀
1

𝑖

†) ≤ 𝑝1 for 𝑖 ∈ {1, 2}. Now we prove our rule by

induction. Let𝑄𝑘𝑖 be the loop𝑄𝑖 must terminate at most 𝑘 iterations, ⟦𝑄0

𝑖 ⟧(𝜌) =

𝑀0

𝑖 𝜌𝑀
0

𝑖

†
, then we have

⟦𝑄𝑘+1𝑖 ⟧(𝜌) = 𝑀0

𝑖 𝜌𝑀
0

𝑖

† + ⟦𝑄𝑘𝑖 ⟧(E𝑖 (𝜌))

by the semantics of the loop statement in Fig. 2.2. Assume we have ⊨ 𝑄𝑘
1
∼𝑑𝑘

𝑄𝑘
2
: 𝐴 ⇒ 𝐵0 for 𝑘 ∈ N. For 𝑘 = 0, it is straightforward to check 𝑑0 = 𝛿0 by the

measurement condition. Then we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ E1(𝜌1) ∼𝛿1+𝑝1𝛿𝐴
E2(𝜌2)
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⇒ ⟦𝑄𝑘
1
⟧(E1(𝜌1)) ∼𝛿1+𝑝1 (𝛿+𝑑𝑘 )𝐵0

⟦𝑄𝑘
2
⟧(E2(𝜌2)) (⊢ 𝑄𝑘

1
∼𝑑𝑘 𝑄𝑘2 : 𝐴 ⇒ 𝐵0)

⇒ ⟦𝑄𝑘+1
1

⟧(𝜌1) ∼𝛿0+𝛿1+𝑝1 (𝛿+𝑑𝑘 )𝐵0
⟦𝑄𝑘+1

2
⟧(𝜌2) (Linearity in 4.8)

Therefore, we have 𝑑𝑘+1 = 𝛿0+𝛿1+𝑝1(𝛿 +𝑑𝑘) =
∑𝑘+1
𝑖=0 𝑝

𝑖
1
𝛿0+

∑𝑘
𝑖=0 𝑝

𝑖
1
𝛿1+

∑𝑘+1
𝑖=1 𝑝

𝑖
1
𝛿 .

Since lim𝑘→∞𝑄
𝑘
𝑖 converges to 𝑄𝑖 , thus we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ ⇒ ⟦𝑄1⟧(𝜌1) ∼Δ
𝐵0

⟦𝑄2⟧(𝜌2)

where lim𝑘→∞ 𝑑𝑘 ≤ 1

1−𝑝1 (𝛿0 + 𝛿1) +
𝑝1

1−𝑝1𝛿 = Δ. Thus we have ⊨ 𝑄1 ∼Δ 𝑄2 : 𝐴 ⇒

𝐵0.

(8) (LP*). Let 𝑄𝑖 = while M𝑖 [𝑞] = 1 do 𝑆𝑖 od, E𝑖 (𝜌) = ⟦𝑆𝑖⟧(𝑀1

𝑖 𝜌𝑀
1

𝑖

†), ⟦𝑄𝑘𝑖 ⟧(𝜌) =

𝑀0

𝑖 E𝑘𝑖 (𝜌)𝑀0

𝑖

†
for 𝑖 ∈ {1, 2}, then we have 𝑄𝑖 =

∑∞
𝑘=0

𝑄𝑘𝑖 . By the measurement

condition

M1 ≈{𝛼𝑘 ,𝛽𝑘 } M2 : 𝐴𝑘 ⇒ {(𝑞𝑘 ,𝐶), (𝑝𝑘 , 𝐵𝑘)}

we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴𝑘
𝜌2 ⇒


𝑀0

1
𝜌1𝑀

0

1

† ∼𝛼𝑘
𝐶
𝑀0

2
𝜌1𝑀

0

2

†
𝑀1

1
𝜌2𝑀

1

1

† ∼𝛽𝑘
𝐵𝑘
𝑀1

2
𝜌2𝑀

1

2

†

Tr(𝑀0

𝑖 𝜌1𝑀
0

𝑖

†) ≤ 𝑞𝑘 Tr(𝑀1

𝑖 𝜌2𝑀
1

𝑖

†) ≤ 𝑝𝑘

for 0 ≤ 𝑘 < 𝑁 . Together with the assumption ⊢ 𝑆1 ∼𝛿𝑘 𝑆2 : 𝐵𝑘 ⇒ 𝐴𝑘+1, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴0
𝜌2 ⇒ 𝑀1

1
𝜌1𝑀

1

1

† ∼𝛽0
𝐵0
𝑀1

2
𝜌2𝑀

1

2

†

⇒ 𝑀1

1
𝜌1𝑀

1

1

†/𝑝0 ∼𝛽0/𝑝0𝐵1
𝑀1

2
𝜌2𝑀

1

2

†/𝑝0 (Scalability in 4.8)

⇒ E1(𝜌1/𝑝1) ∼𝛽0/𝑝0+𝛿0𝐴1

E2(𝜌2/𝑝1) (Lemma 4.19)

⇒ E1(𝜌1) ∼𝛽0+𝑝0𝛿0𝐴1

E2(𝜌2) (Scalability in 4.8)

where Tr(E𝑖 (𝜌𝑖)) ≤ Tr(𝜌𝑖) · 𝑝0. Similarly, we also have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴𝑘
𝜌2 ⇒ E1(𝜌1) ∼𝛽𝑘+𝑝𝑘𝛿𝑘𝐴𝑘+1

E2(𝜌2)

where Tr(E𝑖 (𝜌𝑖)) ≤ Tr(𝜌𝑖) ·𝑝𝑘 . By Lemma 4.18, we combine the above equations

to have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴0
𝜌2 ⇒ E𝑛

1
(𝜌1) ∼

(𝛽0+
∑𝑛−2

𝑖=0 𝜆𝑖𝛽𝑖+1)+(
∑𝑛−1

𝑖=0 𝜆𝑖𝛿𝑖 )
𝐴𝑛

E𝑛
2
(𝜌2)
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⇒ ⟦𝑄𝑛
1
⟧(𝜌1) ∼𝑑𝑛𝐶 ⟦𝑄𝑛

2
⟧(𝜌2)

for 2 ≤ 𝑛 ≤ 𝑁 , where 𝜆𝑛 =
∏𝑛
𝑘=0

𝑝𝑘 , 𝑑𝑛 = 𝜆𝑛−1𝛼𝑛+(𝛽0+
∑𝑛−2
𝑖=0 𝜆𝑖𝛽𝑖+1)+(

∑𝑛−1
𝑖=0 𝜆𝑖𝛿𝑖).

Particularly, we have 𝑑0 = 𝛼0 and 𝑑1 = 𝑝0𝛼0+𝛽0+𝑝0𝛿0. By another measurement

condition M1 ≈{𝛼𝑁 ,0} M2 : 𝐴𝑁 ⇒ {(1,𝐶), (0, 𝐼 )}, the loops would terminate at

most 𝑁 iterations, that is, 𝑄𝑖 =
∑𝑁
𝑘=0

⟦𝑄𝑘𝑖 ⟧. Next, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ ⟦𝑄𝑛
1
⟧(𝜌1) ∼𝑑𝑛𝐶 ⟦𝑄𝑛

2
⟧(𝜌2)

⇒ ∑𝑁
𝑛=0⟦𝑄𝑛1⟧(𝜌1) ∼

∑𝑁
𝑛=0 𝑑𝑛

𝐶

∑𝑁
𝑛=0⟦𝑄𝑛2⟧(𝜌2) (Linearity in 4.8)

⇒ ⟦𝑄1⟧(𝜌1) ∼𝑓 (𝛼𝑘 ,𝛽𝑘 ,𝑝𝑘 )𝐶
⟦𝑄2⟧(𝜌2)

where we 𝑓 (𝛼𝑘 , 𝛽𝑘 , 𝑝𝑘) =
∑𝑁
𝑖=0 𝑑𝑖 = (𝛼0 +

∑𝑁−1
𝑛=0 𝜆𝑛𝛼𝑛+1) + (𝑁𝛽0 +

∑𝑁−2
𝑛=0 (𝑁 − 𝑛 −

1)𝜆𝑛𝛽𝑛+1) + (∑𝑁−1
𝑛=0 (𝑁 − 𝑛)𝜆𝑛𝛿𝑛). Thus, we have ⊨ 𝑄1 ∼𝑓 (𝛼𝑘 ,𝛽𝑘 ,𝑝𝑘 ) 𝑄2 : 𝐴0 ⇒ 𝐶 .

(9) (Init-L) A instance of rule (Init) with

∑
𝑛 |0⟩𝑞2 ⟨𝑛 |𝜌 |𝑛⟩𝑞2 ⟨0| on 𝑞2 being 𝐼 .

(10) (Ut-L) A instance of rule (Ut) with𝑈2 = 𝐼 .

(11) (If-L) Let 𝑄 = if (□𝑚 · M1 [𝑞] = 𝑚 → 𝑆1𝑚) fi. By the assumption M1 ≈ 𝐼2 :

𝐴 ⇒ {(𝑝𝑚, 𝐵𝑚)}, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ 𝜎1𝑚 ∼𝐵𝑚 𝜎2𝑚

for all𝑚, where 𝜎1𝑚 = 𝑀𝑚
1
𝜌1𝑀

𝑚
1

†
,

∑
𝑚 𝜎2𝑚 = 𝜌2, Tr(𝜎1𝑚) ≤ 𝑝𝑚 and Tr(𝜎2𝑚) ≤

𝑝𝑚 . Together with the assumption ⊢ 𝑆1𝑚 ∼𝛿𝑚 skip : 𝐵𝑚 ⇒ 𝐶 , we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2

⇒ 𝜎1𝑚 ∼𝐵𝑚 𝜎2𝑚

⇒ 𝜎1𝑚/𝑝𝑚 ∼𝐵𝑚 𝜎2𝑚/𝑝𝑚 (Scalability in 4.8)

⇒ ⟦𝑆1𝑚⟧(𝜎1𝑚/𝑝𝑚) ∼𝛿𝑚𝐶 𝜎2𝑚/𝑝𝑚 (Lemma 4.19)

⇒ ⟦𝑆1𝑚⟧(𝜎1𝑚) ∼𝑝𝑚𝛿𝑚𝐶
𝜎2𝑚 (Scalability in 4.8)

⇒ ∑
𝑚⟦𝑆1𝑚⟧(𝜎1𝑚) ∼

∑
𝑚 𝑝𝑚𝛿𝑚

𝐶
𝜌2 (Linearity in 4.8)
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⇒ ⟦𝑄⟧(𝜌1) ∼
∑

𝑚 𝑝𝑚𝛿𝑚
𝐶

⟦skip⟧(𝜌2) (Fig. 2.2)

for all𝑚. Thus we have ⊨ 𝑄 ∼∑
𝑚 𝑝𝑚𝛿𝑚

skip : 𝐴 ⇒ 𝐶 .

(12) (Lp-L) Let𝑄 = whileM1 [𝑞] = 1 do 𝑆1 od, E(𝜌) = ⟦𝑆1⟧(𝑀1

1
𝜌𝑀1

1

†). We combine

M1 ≈ 𝐼2 : 𝐴 ⇒ {(𝑝0, 𝐵0), (𝑝1, 𝐵1)} and ⊢ 𝑆1 ∼𝛿 skip : 𝐵1 ⇒ 𝐴 to have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ 𝑀0

1
𝜌1𝑀

0

1

† ∼𝐵0 𝜎0

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ 𝑀1

1
𝜌1𝑀

1

1

† ∼𝐵1 𝜎1 ⇒ E(𝜌1) ∼𝑝1𝛿𝐴 𝜎1

with 𝜎0 + 𝜎1 = 𝜌2, Tr(𝑀𝑖
1
𝜌1𝑀

𝑖
1

†) ≤ 𝑝𝑖 , Tr(𝜎𝑖) ≤ 𝑝𝑖 for 𝑖 ∈ {0, 1}. Now we prove

our rule by induction. Let 𝑄𝑘 be the loop 𝑄 must terminate at most 𝑘 itera-

tions, and 𝑃𝑘 be the corresponding statement that shares the same probability

distribution with program 𝑄𝑘 . That is,

⟦𝑄𝑘+1⟧(𝜌1) = 𝑀0

1
𝜌1𝑀

0

1

† + ⟦𝑄𝑘⟧(E(𝜌1))

⟦𝑃𝑘+1⟧(𝜌2) = 𝜎0 + ⟦𝑃𝑘⟧(𝜎1)

where ⟦𝑄0⟧(𝜌) = 𝑀0

1
𝜌𝑀0

1

†
, ⟦𝑃0⟧(𝜌2) = 𝜎0, lim𝑘→∞𝑄

𝑘
converges to 𝑄 , Since

lim𝑘→∞ 𝑃
𝑘
converges to skip.

Assumewe have ⊨ 𝑄𝑘 ∼𝑑𝑘 𝑃𝑘 : 𝐴 ⇒ 𝐵0 for𝑘 ∈ N. For𝑘 = 0, it is straightforward

to check 𝑑0 = 0 by the measurement condition. Then we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ E(𝜌1) ∼𝑝1𝛿𝐴 𝜎1

⇒ ⟦𝑄𝑘⟧(E(𝜌1)) ∼𝑝1 (𝛿+𝑑𝑘 )𝐵0
⟦𝑃𝑘⟧(𝜎1) (⊢ 𝑄𝑘 ∼𝑑𝑘 𝑃𝑘 : 𝐴 ⇒ 𝐵0)

⇒ ⟦𝑄𝑘+1⟧(𝜌1) ∼𝑝1 (𝛿+𝑑𝑘 )𝐵0
⟦𝑃𝑘+1⟧(𝜌2) (Linearity in 4.8)

Therefore, we have 𝑑𝑘+1 = 𝑝1(𝛿 + 𝑑𝑘) =
∑𝑘+1
𝑖=1 𝑝

𝑖
1
𝛿 . Thus we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ ⟦𝑄⟧(𝜌1) ∼Δ
𝐵0

⟦skip⟧(𝜌2)

where lim𝑘→∞ 𝑑𝑘 ≤ 𝑝1
1−𝑝1𝛿 = Δ. Thus we have ⊨ 𝑄 ∼Δ skip : 𝐴 ⇒ 𝐵0.
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(13) (Lp*-L) Let 𝑄 = while M1 [𝑞] = 1 do 𝑆1 od, E(𝜌) = ⟦𝑆1⟧(𝑀1

1
𝜌𝑀1

1

†), ⟦𝑄𝑘⟧(𝜌) =

𝑀0

1
E𝑘 (𝜌)𝑀0

1

†
, then we have 𝑄 =

∑∞
𝑘=0

𝑄𝑘 . By the measurement condition

M1 ≈ 𝐼2 : 𝐴𝑘 ⇒ {(𝑞𝑘 ,𝐶), (𝑝𝑘 , 𝐵𝑘)}

we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴𝑘
𝜌2 ⇒


𝑀0

1
𝜌1𝑀

0

1

† ∼𝐶 𝜎0,𝑘 𝑀1

1
𝜌1𝑀

1

1

† ∼𝐵𝑘 𝜎1,𝑘
Tr(𝑀0

1
𝜌1𝑀

0

1

†) ≤ 𝑞𝑘 Tr(𝑀1

1
𝜌2𝑀

1

1

†) ≤ 𝑝𝑘

for 0 ≤ 𝑘 < 𝑁 , 𝜎0,𝑘 + 𝜎1,𝑘 = 𝜌2. Together with the assumption ⊢ 𝑆1 ∼𝛿𝑘 skip :

𝐵𝑘 ⇒ 𝐴𝑘+1, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴𝑘
𝜌2 ⇒ E(𝜌1) ∼𝑝𝑘𝛿𝑘𝐴𝑘+1

𝜎1,𝑘

where Tr(E(𝜌1)) ≤ Tr(𝜌1) ·𝑝𝑘 . By Lemma 4.18, we combine the above equations

to have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴0
𝜌2 ⇒ E𝑛 (𝜌1) ∼𝑑𝑛𝐴𝑛

𝜎1,𝑛−1 ⇒ ⟦𝑄𝑛
1
⟧(𝜌1) ∼𝑑𝑛𝐶 𝜎0,𝑛

for 1 ≤ 𝑛 ≤ 𝑁 − 1, where 𝜎1,𝑛−1 = 𝜎0,𝑛 + 𝜎1,𝑛 , 𝜆𝑛 =
∏𝑛
𝑘=0

𝑝𝑘 , 𝑑𝑛 =
∑𝑛−1
𝑖=0 𝜆𝑖𝛿𝑖 .

Particularly, we have 𝑑0 = 0. By another measurement condition M1 ≈{𝛼𝑁 ,0}

M2 : 𝐴𝑁 ⇒ {(1,𝐶), (0, 𝐼 )}, the loops would terminate at most 𝑁 iterations, that

is, 𝑄𝑖 =
∑𝑁
𝑘=0

⟦𝑄𝑘𝑖 ⟧. Next, we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴0
𝜌2 ⇒ ⟦𝑄𝑛

1
⟧(𝜌1) ∼𝑑𝑛𝐶 𝜎0,𝑛

⇒ ∑𝑁
𝑛=0⟦𝑄𝑛1⟧(𝜌1) ∼Δ

𝐶

∑𝑁
𝑛=0 𝜎0,𝑛 (Linearity in 4.8)

⇒ ⟦𝑄1⟧(𝜌1) ∼Δ
𝐶 skip

where 𝜎1,𝑁−1 = 𝜎0,𝑁 ,
∑𝑁
𝑛=0 𝜎0,𝑛 = 𝜌2, Δ = 𝜆𝑁−1𝛼𝑁 + ∑𝑁

𝑛=0 𝑑𝑛 . Thus, we have

⊨ 𝑄1 ∼Δ skip : 𝐴0 ⇒ 𝐶 .

(14) (Order). By the assumptions ⊢ 𝑆1 ∼𝛿 ′ 𝑆2 : 𝐴′ ⇒ 𝐵′, 𝐴 ≤ 𝐴′
, 𝐵′ ≤ 𝐵, 𝛿′ ≤ 𝛿 , we

have

∀𝜌. 𝜌 ⊨ 𝐴 ⇒ 𝜌 ⊨ 𝐴′ ((Monotonicity in 4.8))
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⇒ ⟦𝑆1⟧(Tr2(𝜌)) ∼𝛿
′

𝐵′ ⟦𝑆2⟧(Tr1(𝜌)) (⊢ 𝑆1 ∼𝛿 ′ 𝑆2 : 𝐴′ ⇒ 𝐵′)

⇒ ⟦𝑆1⟧(Tr2(𝜌)) ∼𝛿𝐵 ⟦𝑆2⟧(Tr1(𝜌)) ((Monotonicity in 4.8))

i.e. Γ ⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵.

(15) (Approx). It is direct from Def. 4.12. By the assumptions ⊢ 𝑆1 ∼ 𝑆2 : 𝐴 ⇒ 𝐵,

∀𝜌1, 𝜌2. 𝜌1 ∼𝐴 𝜌2 ⇒ ⟦𝑆1⟧(𝜌1) ∼𝐵 ⟦𝑆2⟧(𝜌2) ⇒ ⟦𝑆1⟧(𝜌1) ∼𝛿𝐶 ⟦𝑆2⟧(𝜌2)

Thus we have ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐶 .

(16) (Frame). Let 𝐶(𝑟1,𝑟2) = |𝜓 ⟩⟨𝜓 |. Next, we have

∀𝜌′
1
, 𝜌′

2
. 𝜌′

1
∼𝐴⊗𝐶 (𝑟

1
,𝑟
2
) 𝜌

′
2

⇒ 𝜌′ ⊨ 𝐴 ⊗ 𝐶(𝑟1,𝑟2), 𝜌
′
1
= Tr𝑟1,𝑞2,𝑟2 𝜌

′ 𝜌′
2
= Tr𝑟1,𝑞1,𝑟2 𝜌

′

⇒ 𝜌′ = 𝜌 ⊗ |𝜓 ⟩⟨𝜓 | , 𝜌 ⊨ 𝐴

⇒ 𝜌′
1
= Tr𝑞2 𝜌 ⊗ Tr𝑟2 |𝜓 ⟩⟨𝜓 | 𝜌′2 = Tr𝑞1 𝜌 ⊗ Tr𝑟1 |𝜓 ⟩⟨𝜓 |

⇒ Tr𝑞2 𝜌 ∼𝐴 Tr𝑞1 𝜌, Tr𝑟2 |𝜓 ⟩⟨𝜓 | ∼|𝜓 ⟩⟨𝜓 | Tr𝑟1 |𝜓 ⟩⟨𝜓 |

⇒ ⟦𝑆1⟧(Tr𝑞2 𝜌) ∼𝛿𝐵 ⟦𝑆2⟧(Tr𝑞1 𝜌)

⇒ ⟦𝑆1⟧(Tr𝑞2 𝜌 ⊗ Tr𝑟2 |𝜓 ⟩⟨𝜓 |) ∼𝛿𝐵⊗𝐶 (𝑟
1
,𝑟
2
)
⟦𝑆2⟧(Tr𝑞1 𝜌 ⊗ Tr𝑟1 |𝜓 ⟩⟨𝜓 |)

⇒ ⟦𝑆1⟧(𝜌′1) ∼𝛿𝐵⊗𝐶 (𝑟
1
,𝑟
2
)
⟦𝑆2⟧(𝜌′2)

where in the fifth ⇒, we use the assumption ⊢(𝑞1,𝑞2) 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵, we have

∀𝜌′
1
, 𝜌′

2
. 𝜌1 ∼𝐴⊗𝐶 (𝑟

1
,𝑟
2
) 𝜌2 ⇒ ⟦𝑆1⟧(𝜌′1) ∼𝛿𝐵⊗𝐶 (𝑟

1
,𝑟
2
)
⟦𝑆2⟧(𝜌′2)

Thus, we have ⊨(𝑞1,𝑟1),(𝑞2,𝑟2) 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⊗ 𝐶(𝑟1,𝑟2) ⇒ 𝐵 ⊗ 𝐶(𝑟1,𝑟2) .

(17) (Ut-id). For any 𝜌1, 𝜌2 such that 𝜌1 ∼≡ 𝜌2, we have 𝜌1 = 𝜌2 = 𝜌 by

lemma 4.10. Let 𝜎 = (𝑈1𝜌𝑈
†
1
+ 𝑈2𝜌𝑈

†
2
)/2, the eigen-decomposition of 𝜎 is

𝜎 =
∑
𝑖 𝜆𝑖 |𝜓 ⟩⟨𝜓 |. We need to check 𝛾 =

∑
𝑖 𝜆𝑖 |𝜓 ⟩⟨𝜓 | ⊗ |𝜓 ⟩⟨𝜓 | is a witness of

the lifting 𝑈1𝜌𝑈
†
1

∼∥𝑈1·𝑈 †
1
−𝑈2·𝑈 †

2
∥⋄/2

≡ 𝑈2𝜌𝑈
†
2
. It is direct to check supp(𝛾) ⊆ ≡.

Besides,

Tr(𝛾) = Tr(𝜎) = (Tr(𝑈1𝜌𝑈
†
1
)+Tr(𝑈2𝜌𝑈

†
2
))/2 = Tr(𝜌) = Tr(𝑈1𝜌𝑈

†
1
) = Tr(𝑈2𝜌𝑈

†
2
)
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And we also have

𝐷 (𝑈1𝜌𝑈
†
1
,Tr2(𝛾)) = 𝐷 (𝑈1𝜌𝑈

†
1
, 𝜎) = 1

2

𝐷 (𝑈1𝜌𝑈
†
1
,𝑈2𝜌𝑈

†
2
)

By Def. 4.3 of diamond norm we have

𝐷 (𝑈1𝜌𝑈
†
1
,𝑈2𝜌𝑈

†
2
) ≤ ∥𝑈1 ·𝑈 †

1
−𝑈2 ·𝑈 †

2
∥⋄

for any 𝜌 . Thus, we have 𝐷 (𝑈1𝜌𝑈
†
1
,Tr2(𝛾)) ≤ ∥𝑈1 · 𝑈 †

1
− 𝑈2 · 𝑈 †

2
∥⋄/2, and

the same goes for 𝐷 (𝑈2𝜌𝑈
†
2
,Tr1(𝛾)) ≤ ∥𝑈1 · 𝑈 †

1
− 𝑈2 · 𝑈 †

2
∥⋄/2. Thus we have

⊨ 𝑞1 := 𝑈1 [𝑞1] ∼∥𝑈1·𝑈 †
1
−𝑈2·𝑈 †

2
∥⋄/2 𝑞2 := 𝑈2 [𝑞2] : ≡ ⇒ ≡.

(18) (Comp). This rule is direct from lemma 4.10 and the triangle inequality of trace

distance. Given ⊢ 𝑆1 ∼𝛿1 𝑆2 : ≡ ⇒ ≡ and ⊢ 𝑆2 ∼𝛿2 𝑆3 : ≡ ⇒ ≡, we have

∀𝜌1, 𝜌2. 𝜌1 ≡ 𝜌2 ⇒ ⟦𝑆1⟧(𝜌1) ∼𝛿1≡ ⟦𝑆2⟧(𝜌2)

∀𝜌2, 𝜌3. 𝜌2 ≡ 𝜌3 ⇒ ⟦𝑆2⟧(𝜌2) ∼𝛿2≡ ⟦𝑆3⟧(𝜌3)

By lemma 4.10, we have

𝜌1 = 𝜌2 = 𝜌3 = 𝜌

𝐷 (⟦𝑆1⟧(𝜌1), ⟦𝑆2⟧(𝜌2)) ≤ 2𝛿1

𝐷 (⟦𝑆2⟧(𝜌2), ⟦𝑆3⟧(𝜌3)) ≤ 2𝛿2

Thus we have

𝐷 (⟦𝑆1⟧(𝜌1), ⟦𝑆3⟧(𝜌3)) ≤ 𝐷 (⟦𝑆1⟧(𝜌1), ⟦𝑆2⟧(𝜌2)) + 𝐷 (⟦𝑆2⟧(𝜌2), ⟦𝑆3⟧(𝜌3))

= 2(𝛿1 + 𝛿2)

Then we apply lemma 4.10 again to have

∀𝜌1, 𝜌3. 𝜌1 ≡ 𝜌3 ⇒ ⟦𝑆1⟧(𝜌1) ∼𝛿1+𝛿2≡ ⟦𝑆3⟧(𝜌3)

Thus we have ⊢ 𝑆1 ∼𝛿1+𝛿2 𝑆3 : ≡ ⇒ ≡.
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■

Lemma 4.17. Let 𝑆 be a quantum program defined in Fig. 2.2, 𝜌 and 𝜎 are arbitrary

partial density matrices.

(1) Tr(⟦𝑆⟧(𝜌)) ≤ Tr(𝜌). The equality holds when 𝑆 could terminate.

(2) 𝐷 (⟦𝑆⟧(𝜌), ⟦𝑆⟧(𝜎)) ≤ 𝐷 (𝜌, 𝜎).

Proof. Notice that 𝑆 can always be represented by a non-trace-increasing superoper-

ator E, and these proprieties directly hold for E. ■

Lemma 4.18. If ⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵, then we have

∀𝜌 ⊨ 𝐴. Tr(𝜌) ≤ 𝛼 ⇒ ⟦𝑆1⟧(Tr2(𝜌)) ∼𝛼𝛿𝐵 ⟦𝑆2⟧(Tr1(𝜌))

for any 0 ≤ 𝛼 ≤ 1.

Proof. It is direct from the scalability 4.8 of quantum approximate liftings. ■

Lemma 4.19. If ⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵, then we have

∀𝜌1, 𝜌2. 𝜌1 ∼𝛿
′

𝐴 𝜌2 ⇒ ⟦𝑆1⟧(𝜌1) ∼𝛿+𝛿
′

𝐵 ⟦𝑆2⟧(𝜌2)

for any 0 ≤ 𝛿′.

Proof. Let 𝜌 be a witness of 𝜌1 ∼𝛿
′

𝐴
𝜌2 for any 𝜌1 and 𝜌2, 𝜎1 = Tr2(𝜌) and 𝜎2 = Tr1(𝜌),

then we have

supp(𝜌) ⊆ 𝐴 𝐷 (𝜎1, 𝜌1) ≤ 𝛿′ 𝐷 (𝜎2, 𝜌2) ≤ 𝛿′

By the prerequisite ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵, we have

𝜎1 ∼𝐴 𝜎2 ⇒ ⟦𝑆1⟧(𝜎1) ∼𝛿𝐵 ⟦𝑆2⟧(𝜎2)

then there exits a witness 𝜎 of the lifting ⟦𝑆1⟧(𝜎1) ∼𝛿𝐵 ⟦𝑆2⟧(𝜎2) such that

supp(𝜎) ⊆ 𝐵 𝐷 (Tr2(𝜎), ⟦𝑆1⟧(𝜎1)) ≤ 𝛿 𝐷 (Tr1(𝜎), ⟦𝑆2⟧(𝜎2)) ≤ 𝛿
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Now we just need to check that 𝜎 is also a witness of the lifting ⟦𝑆1⟧(𝜌1) ∼𝛿+𝛿 ′
𝐵

⟦𝑆2⟧(𝜌2). supp(𝜎) ⊆ 𝐵 already holds. Besides, we also have

𝐷 (Tr2(𝜎), ⟦𝑆1⟧(𝜌1)) ≤ 𝐷 (Tr2(𝜎), ⟦𝑆1⟧(𝜎1)) + 𝐷 (⟦𝑆1⟧(𝜎1), ⟦𝑆1⟧(𝜌1))

≤ 𝛿 + 𝐷 (𝜎1, 𝜌1) ≤ 𝛿 + 𝛿′

by property(3) in 4.17. Similarly, we also have 𝐷 (Tr1(𝜎), ⟦𝑆2⟧(𝜌2)) ≤ 𝛿 + 𝛿′. Thus

⟦𝑆1⟧(𝜌1) ∼𝛿+𝛿
′

𝐵
⟦𝑆2⟧(𝜌2) holds. ■

4.5 Discussions

In this section, we give another characterization of the validity of relational judg-

ments based on approximate predicate. Besides, we add some comments about sep-

aration conditions and structural rules. All these definitions, notations, and rules in

this section are independent of the main text, and readers can safely skip if they are

uninterested.

Approximate Predicate

We first give some necessary definitions related to “approximate predicates”, which is

a binary relation over the Cartesian product of sets of quantum states.

Definition 4.20. For any projection 𝑃 ∈ H𝑆1 ⊗ H𝑆2 and a real deviation 0 ≤ 𝛿 , we

define

(1) The approximate predicate 𝑃𝛿 :

𝑃𝛿 = {(𝜌1, 𝜌2) | 𝜌1 ∼𝛿𝑃 𝜌2 for 𝜌1 ∈ H𝑆1, 𝜌2 ∈ H𝑆2}

(2) The distance Δ(𝑎, 𝑏) between elements 𝑎 = (𝑎[1], 𝑎[2]), 𝑏 = (𝑏 [1], 𝑏 [2]) in ap-

proximate predicates:

Δ(𝑎, 𝑏) = max{D(𝑎[1], 𝑏 [1]),D(𝑎[2], 𝑏 [2])}
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(3) The post-image of program pair ⟨𝑆1, 𝑆2⟩ with respect to approximate predicate

𝑃𝛿 :

𝑝𝑜𝑠𝑡 (𝑆1, 𝑆2)𝑃𝛿 = {(𝜎1, 𝜎2) | ∃(𝜌1, 𝜌2) ∈ 𝑃𝛿 . 𝜎1 = ⟦𝑆1⟧(𝜌1), 𝜎2 = ⟦𝑆2⟧(𝜌2)}

The approximate predicates can also form partial orders ≤ concerning projections

and deviations. That is, we have 𝐴𝛿 ⊆ 𝐵𝛿 if 𝐴 ≤ 𝐵 or 𝐴𝛿1 ⊆ 𝐴𝛿2 if 𝛿1 ≤ 𝛿2. It is

straightforward to see that

∀𝑎 ∈ 𝐴𝛿 , ∃𝑏 ∈ 𝐴0 s.t. Δ(𝑎, 𝑏) ≤ 𝛿

from the definition of approximate predicate. In other words, the deviation 𝛿 char-

acterizes the distance from the approximate predicate 𝐴𝛿 to the exact predicate 𝐴0.

Naturally, we can use the approximate predicate to describe the validity of approxi-

mate judgment in Eq. 4.5 as follows

⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 ⇔ 𝑝𝑜𝑠𝑡 (𝑆1, 𝑆2)𝐴 ⊆ 𝐵𝛿

This characterization works like a Hoare-type triple. That is, the post-assertion 𝐵

over-approximates the expected assertion 𝑝𝑜𝑠𝑡 (𝑆1, 𝑆2)𝐴.

We do not adopt it in our main text because the approximate predicate is not a

tractable structure. A major problem is the logical operations on approximate predi-

cates are not well-defined. Review the definition of fundamental logical operations ¬,

∧, and∨ on projections in Def. 2.8. These basic operations over two approximate pred-

icates usually can not generate another approximate predicate. For example, we can

only have the following weak set inclusion relations rather than equivalence relations

𝐴𝛿 ∩ 𝐵𝛿 ⊇ (𝐴 ∧ 𝐵)𝛿 𝐴𝛿 ∪ 𝐵𝛿 ⊆ (𝐴 ∨ 𝐵)𝛿 ¬(𝐴𝛿 ) ⊇ (¬𝐴)𝛿 (4.8)

As discussed later, these weak relations lead to the failure of structural rules in Fig. 4.6.

In addition, it is not direct to check the inclusion relation between two approximate

predicates. It is also difficult to characterize how quantum operations affect approxi-

mate predicates.
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Separability Condition

Unlike classical programs, quantum programs exhibit quantum entanglement be-

tween subsystems, which brings unique challenges in constructing a valid quantum

frame rule. In Sec. 4.3, we only introduce the simple frame rule (Frame) since the

separability problem is not our major concern. We clarify the separability conditions

from [BHY
+
19] to address this problem.

Definition 4.21 (Separability Condition). Let 𝑆1 and 𝑆2 be two quantum programs,

and Γ = [𝑞1, 𝑞2, . . . , 𝑞𝑡 ] is a separability condition which is a partition of registers such

that

𝑣𝑎𝑟 (𝑞𝑖) ∩ 𝑣𝑎𝑟 (𝑞 𝑗 ) = ∅(𝑖 ≠ 𝑗) 𝑣𝑎𝑟 (𝑆1) ∪ 𝑣𝑎𝑟 (𝑆2) ⊆ ∪𝑡𝑖=1𝑣𝑎𝑟 (𝑞𝑖)

where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑡}. Then we say that a state 𝜌 ∈ D(H𝑆1 ⊗ H𝑆2) satisfies the

separability condition Γ, written 𝜌 ⊨ Γ, if 𝜌 is separable between subspaces H𝑞𝑖 .

In Def .4.21, a partial density operator 𝜌 ∈ ⊗𝑛𝑖=1H𝑞𝑖 is separable between subspaces

H𝑞𝑖 if there exist partial density operators 𝜌𝑖 𝑗 ∈ D(H𝑞𝑖 ) such that 𝜌 =
∑
𝑗 (⊗𝑛𝑖=1𝜌𝑖 𝑗 ).

The separability condition Γ = [𝑞1, 𝑞2, . . . , 𝑞𝑡 ] indicates that there is no quantum en-

tanglement between all registers 𝑞𝑖 , that is, any quantum operation on register 𝑞𝑖

would not affect another register 𝑞 𝑗 (𝑖 ≠ 𝑗 ). Besides, we use the general logic sym-

bols to denote the relations between separability conditions based on Def. 4.21. For

example, we have [𝑞1, 𝑞2] ∧ [𝑞2, 𝑞3] ≡ [𝑞1, 𝑞2, 𝑞3], [𝑞1, 𝑞2, 𝑞3] ⇒ Γ ⇒ ∅.

Now we incorporate the separability condition into our judgments in Def. 4.12,

formally defined as follows. Statically verifying the non-existence of quantum entan-

glement between subsystems is usually challenging, which makes quantum structural

rules more subtle and restricted.

Definition 4.22 (General Validity). The judgement Γ ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 is valid,

written as

Γ ⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵
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if and only if for all 𝜌 ∈ D(H𝑆1 ⊗ H𝑆2),

𝜌 ⊨ Γ ∧ 𝜌 ⊨ 𝐴 ⇒ ⟦𝑆1⟧(Tr2(𝜌)) ∼𝛿𝐵 ⟦𝑆2⟧(Tr1(𝜌))

where 𝐴 and 𝐵 are projections, Γ is a separability condition. In particular, if Γ = ∅,

then Γ ⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 collapsed into ⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 naturally.

(Frame*)
Γ ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵

Γ ∧ [𝑞, 𝑣𝑎𝑟 (𝑆1, 𝑆2)] ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⊗ 𝐶𝑞 ⇒ 𝐵 ⊗ 𝐶𝑞

(Order*)
Γ′ ⊢ 𝑆1 ∼𝛿 ′ 𝑆2 : 𝐴

′ ⇒ 𝐵′ 𝐴 ⊆ 𝐴′ 𝐵′ ⊆ 𝐵 𝛿 ′ ≤ 𝛿 Γ ⇒ Γ′

Γ ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵

(Par*)
Γ ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 Γ′ ⊢ 𝑆 ′

1
∼𝛿 ′ 𝑆

′
2
: 𝐶 ⇒ 𝐷 𝑣𝑎𝑟 (𝑆1) ∩ 𝑣𝑎𝑟 (𝑆2) = ∅

Γ ∧ Γ′ ∧ [𝑣𝑎𝑟 (𝑆1), 𝑣𝑎𝑟 (𝑆2)] ⊢ 𝑆1; 𝑆 ′1 ∼𝛿+𝛿 ′ 𝑆2; 𝑆
′
2
: 𝐴 ⊗ 𝐶 ⇒ 𝐵 ⊗ 𝐷

(Seq*)
Γ ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 Δ ⊢ 𝑆 ′

1
∼𝛿 ′ 𝑆

′
2
: 𝐵 ⇒ 𝐶 Γ ⇒𝛿

(𝑆1,𝑆2 ) Δ

Γ ⊢ 𝑆1; 𝑆 ′1 ∼𝛿+𝛿 ′ 𝑆2; 𝑆
′
2
: 𝐴 ⇒ 𝐶

Figure 4.5: Structural aqRHL rules with separation condition.

The additional structural rules are presented in Fig. 4.5, which are the approximate

versions of their counterpart in [BHY
+
19]. The rule (Frame*) not only requires that

two programs 𝑆1 and 𝑆2 cannot modify the free variables in 𝑞 but also there is no

entanglement between register 𝑞 and register 𝑣𝑎𝑟 (𝑆1, 𝑆2). The separability condition

[𝑞, 𝑣𝑎𝑟 (𝑆1, 𝑆2)] can degenerate into 𝑣𝑎𝑟 (𝑞) ∩ 𝑣𝑎𝑟 (𝑆1, 𝑆2) = ∅ if subspace 𝐶𝑞 is one-

dimensional. Rule (Order*) is almost the same as its counterpart in [BHY
+
19], where

order relation over deviations is included. Rule (Par*) demonstrates how to combine

two independent judgments via separability condition, which is necessary for parallel

computing. Rule (Seq*) is the extension of rule (Seq) in Fig. 4.1 which shows how to

combine separability conditions in sequential composition. The entailment between

separability conditions used in Rule (Seq*) is a direct extension from its counterpart

in [BHY
+
19], which is formally defined below.

Definition 4.23. Let Γ and Δ be two sets of measurement or separability conditions,

𝑆1 and 𝑆2 be two quantum programs. Δ is couple-entailed by Γ with respect to (𝑆1, 𝑆2),
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written as

Γ ⇒𝛿
(𝑆1,𝑆2) Δ

if for any 𝜌 ⊨ Γ, whenever 𝜎 is an 𝛿-coupling for ⟨⟦𝑆1⟧(Tr2(𝜌)), ⟦𝑆2⟧(Tr1(𝜌))⟩, then

𝜎 ⊨ Δ.

Invalid structural rules

(Dis)
⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴

′ ⇒ 𝐵′

⊬ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ∨𝐴′ ⇒ 𝐵 ∨ 𝐵′

(Con)
⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴

′ ⇒ 𝐵′

⊬ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ∧𝐴′ ⇒ 𝐵 ∧ 𝐵′

(Case)
⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ∧𝐶 ⇒ 𝐵 ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ∧𝐶⊥ ⇒ 𝐵

⊬ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵

(Compo)
⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 ⊢ 𝑆2 ∼𝛿 ′ 𝑆3 : 𝐶 ⇒ 𝐷

⊬ 𝑆1 ∼𝛿+𝛿 ′ 𝑆3 : 𝐴 ◦𝐶 ⇒ 𝐵 ◦ 𝐷

Figure 4.6: Invalid structural aqRHL rules.

Fig. 4.6 presents some invalid structural rules that hold in classical RHL and pRHL.

These rules also do not hold in the exact quantum relational Hoare logic [BHY
+
19].

The reason for invalidity lies in the specialty of quantum states and the selection of

subspaces as quantum predicates. In addition, there is no quantum counterpart to

the classical composition rule. Unlike the natural composition of binary relations, the

composition 𝐴 ◦ 𝐵 of two projections 𝐴 and 𝐵 cannot be well defined in the quantum

context. The invalidity of these structural rules highlights that the relational reasoning

of quantum programs differs significantly from that of classical probabilistic programs

and poses unique challenges due to superposition and entanglement. Readers can find

more discussion in Sec. 4.5 if they are interested in the failure of rules in Fig. 4.6.

We use approximate predicates and some concrete examples to explain these dif-

ficulties straightforwardly. Assume 𝑆 = 𝑆1 = 𝑆2 = if (□𝑚 ·M[𝑞] =𝑚 → skip) fi with

M = {|0⟩⟨0| , |1⟩⟨1|}, then we have ⟦𝑆⟧(|+⟩⟨+|) = 𝐼/2. Let |𝛽0⟩ = ( |00⟩ + |11⟩)/
√
2,
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|𝛽1⟩ = ( |00⟩ − |11⟩)/
√
2, 𝐴 = |++⟩⟨++| , 𝐵 = |𝛽0⟩⟨𝛽0 |, 𝐵′ = |𝛽1⟩⟨𝛽1 |, We can observe

that

⊨ 𝑆1 ∼ 𝑆2 : 𝐴 ⇒ 𝐵 ⊨ 𝑆1 ∼ 𝑆2 : 𝐴 ⇒ 𝐵′

However, there is no coupling 𝐼/2 ∼0 𝐼/2. Hence, we can not infer ⊢ 𝑆1 ∼ 𝑆2 : 𝐴 ⇒

𝐵 ∧ 𝐵′ from the invalid rule (Con), where 𝐵 ∧ 𝐵′ = 0. We only have

⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 ⊢ 𝑆1 ∼𝛿 𝑆2 : 𝐴′ ⇒ 𝐵′

𝑝𝑜𝑠𝑡 (𝑆1, 𝑆2)𝐴 ∩ 𝑝𝑜𝑠𝑡 (𝑆1, 𝑆2)𝐴 ⇒ 𝐵𝛿 ∩ 𝐵′𝛿 ⇏ (𝐵 ∧ 𝐵′)𝛿

where 𝑝𝑜𝑠𝑡 (𝑆1, 𝑆2)𝐴 ∩ 𝑝𝑜𝑠𝑡 (𝑆1, 𝑆2)𝐴 and 𝐵𝛿 ∩ 𝐵𝛿 may not even be approximate predi-

cates. The same problem also arises for rule (Compo), that is, 𝐴𝛿 ◦𝐵𝛿 generally do not

form an approximate predicate 𝐶′
𝛿
such that 𝐶′

𝛿
= 𝐴𝛿 ◦ 𝐵𝛿 .

Here is another example for rule (Dis). Assume 𝑆1 = skip and 𝑆2 = if (□𝑚 ·M[𝑞] =

𝑚 → skip) fiwithM = {|0⟩⟨0| , |1⟩⟨1|}, thenwe have ⟦𝑆1⟧(𝜌) = 𝜌 and ⟦𝑆2⟧(|+⟩⟨+|) =

⟦𝑆2⟧(|−⟩⟨−|) = 𝐼/2. Let 𝐴 = |0+⟩⟨0+|, 𝐴′ = |0−⟩⟨0−|, 𝐵 = |00⟩⟨00|, we can observe

that

⊨ 𝑆1 ∼1/4 𝑆2 : 𝐴 ⇒ 𝐵 ⊨ 𝑆1 ∼1/4 𝑆2 : 𝐴
′ ⇒ 𝐵

Once again, the invalidity of rule (Dis) means that we cannot infer ⊢ 𝑆1 ∼1/4 𝑆2 :

𝐴 ∨𝐴′ ⇒ 𝐵 since |0⟩⟨0| ∼𝐴∨𝐴′ |1⟩⟨1| ⇏ ⟦𝑆1⟧(|0⟩⟨0|) ∼1/4
𝐵

⟦𝑆2⟧(|1⟩⟨1|). Similarly, the

direct quantum analog (Case) of classical case rule is also invalid.
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Chapter 5

Applications

In this chapter, we demonstrate how to use our logic to reason about the correctness

of quantum programs. To be specific, we use QIL to verify the correctness and exis-

tence of bugs in examples of quantum teleportation 5.1, Grover’s algorithm 5.2 and

RUS algorithm 5.3. In addition, in examples of bit flip code 5.4, approximation of uni-

tary gates 5.5 and approximate Quantum Fourier Transform 5.6, aqRHL is applied to

reason about the approximate equivalence between quantum programs for verifying

correctness indirectly.

5.1 Quantum Teleportation

𝑞0 |𝜓 ⟩ 𝐻

𝑞1
𝛽00

𝑞2 𝑋 𝑍 |𝜓 ⟩

Figure 5.1: Circuit for teleportation.

Quantum teleportation is a technique that transports quantum states through clas-

sical communication. As shown in the Fig. 5.1, when a Bell state 𝛽00 is shared between
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qubits𝑞1 and𝑞2, to teleport the state of𝑞0 to𝑞2wemay apply𝐻 gate on𝑞0 andmeasure

𝑞0 and 𝑞1 with 𝑀 = {|0⟩⟨0| , |1⟩⟨1|}, then apply 𝑋 or 𝑍 gate to 𝑞2 if the measurement

outcome of 𝑞0 or 𝑞1 is 1, respectively. The output state of 𝑞2 will always be the same as

the input state of 𝑞0 for all possible measurement outcomes. Thus, two parties sharing

a Bell state may teleport the state of 𝑞0 to 𝑞2 via communicating with measurement

outcomes in a classical channel.

Figure. 5.2a shows the corresponding program of quantum teleportation circuit

and its proof sketch, where we add an assertion at the end to check whether the quan-

tum state of 𝑞0 (described by projection 𝑅) is teleported to 𝑞2. If we mismatch the

controlled gates on the qubit 𝑞2 in lines 3 and 4, as shown in the Figure. 5.2b, we

introduce a bug of type “incorrect operations” according to [HM19b]. The correct

and erroneous programs can be easily reasoned about with the proof sketch and our

proof rules, where the non-zero post of the erroneous program provides evidence of a

bug. Note that after lines 3 and 4, we merge the result predicates of if branches using

the Disjunction rule, thus avoiding reasoning about exponentially many execution

paths.

5.2 Grover’s Algorithm

Grover’s algorithm [Gro96] searches and finds the unique input to a black box func-

tion that produces a particular output value and provides quadratic speedup over its

classical counterparts. The implementation and corresponding proof sketch are listed

in Fig. 5.3, where we put the aQHL and QIL predicates together to show their connec-

tion.

Suppose we hope to find one of the 𝑀 solutions {𝑠1, . . . , 𝑠𝑀 } of equation 𝑓 (𝑥) = 1

from the domain of size 𝑁 = 2
𝑑
, where 𝑓 : {0, 1}𝑑 → {0, 1}. The Grover’s algorithm

prepares a uniform superposition
1√
2
𝑑

∑
𝑥∈{0,1}𝑑 |𝑥⟩ on the 𝑑 qubits 𝑞 (line 1), performs

the “Grover iteration” for 𝑅 times (line 2-8) before measuring the qubits 𝑞 (line 9),

and guarantees the resulting state in 𝑞 encodes a solution for a high probability. The



CHAPTER 5. APPLICATIONS 121

[𝑅 ⊗ 𝛽00𝛽†
00
]

1 : (𝑞0, 𝑞1) := CNOT(𝑞0, 𝑞1);
2 : 𝑞0 := 𝐻𝑞0;

[ok : |𝜑⟩⟨𝜑 |]
3 : if (𝑀 [𝑞1] = 1 → 𝑞2 := 𝑋𝑞2) fi;

[ok :𝑄1 ∨𝑄2]
4 : if (𝑀 [𝑞0] = 1 → 𝑞2 := 𝑍𝑞2) fi;

[ok : 𝐼 ⊗ 𝑅]
5 : assert(𝑞2, 𝑅)

[er :0]
(a) Correct program

[𝑅 ⊗ 𝛽00𝛽†
00
]

1 : (𝑞0, 𝑞1) := CNOT(𝑞0, 𝑞1);
2 : 𝑞0 := 𝐻𝑞0;

[ok : |𝜑⟩⟨𝜑 |]
3 : if (𝑀 [𝑞1] = 1 → 𝑞2 := 𝑍𝑞2) fi;

[ok :𝑄1 ∨𝑄3]
4 : if (𝑀 [𝑞0] = 1 → 𝑞2 := 𝑋𝑞2) fi;

[ok :𝑃= ⊗ 𝑅 + 𝑃⊥= ⊗ 𝑋𝑍𝑅𝑍𝑋 ]
5 : assert(𝑞2, 𝑅)

[er :𝑃⊥= ⊗ supp(𝑅⊥𝑋𝑍𝑅𝑍𝑋𝑅⊥)]
(b) Erroneous program

𝑀 = {𝑀0, 𝑀1} = {|0⟩⟨0| , |1⟩⟨1|} 𝑃= = |00⟩⟨00| + |11⟩⟨11|
|𝜑⟩ = |00⟩ |𝜓 ⟩ + |01⟩𝑋 |𝜓 ⟩ + |10⟩ 𝑍 |𝜓 ⟩ + |11⟩𝑋𝑍 |𝜓 ⟩
𝑄1 = |00⟩⟨00| ⊗ 𝑅 + |00⟩⟨10| ⊗ 𝑅𝑍 + |10⟩⟨00| ⊗ 𝑍𝑅 + |10⟩⟨10| ⊗ 𝑍𝑅𝑍
𝑄2 = |01⟩⟨01| ⊗ 𝑅 + |01⟩⟨11| ⊗ 𝑅𝑍 + |11⟩⟨01| ⊗ 𝑍𝑅 + |11⟩⟨11| ⊗ 𝑍𝑅𝑍
𝑄3 = |01⟩⟨01| ⊗ 𝑋𝑍𝑅𝑍𝑋 + |01⟩⟨11| ⊗ 𝑋𝑍𝑅𝑋 + |11⟩⟨01| ⊗ 𝑋𝑅𝑍𝑋 + |11⟩⟨11| ⊗ 𝑋𝑅𝑋

Figure 5.2: Reasoning the quantum teleportation program by QIL.

Grover iteration contains an oracle𝑈𝜔 that acts as𝑈𝜔 |𝑥⟩ = (−1) 𝑓 (𝑥) |𝑥⟩, and a condi-

tional phase shift operator 𝑃ℎ that acts as 𝑃ℎ |𝑥⟩ = −(−1)𝑥=0 |𝑥⟩. The quantum register

𝑟 is a counter for thewhile-loop, every time at the end of the loop body it is increased

using the operator 𝑈+ that acts as 𝑈+ |𝑛⟩ = |𝑛 + 1 mod 2
|𝑟 |⟩. Finally, line 10 tests if

the output state in 𝑞 is a solution.

Tomake it easier to understand how to insert assertions in the loop body in Fig. 5.3,

it would be better to give a more intuitive explanation for Grover iteration from a

geometric point of view. We define two special state |𝛼⟩ and |𝛽⟩

|𝛼⟩ = 1

√
𝑁 −𝑀

∑︁
𝑥𝑡

|𝑥𝑡 ⟩ |𝛽⟩ = 1

√
𝑀

∑︁
𝑥𝑠

|𝑥𝑠⟩

where

∑
𝑥𝑠

(

∑
𝑥𝑡
) indicates a sum over all states |𝑥⟩ which are (not) solutions to the

search problems. Let the initial state be |0⟩⊗𝑑 and we have the equal superposition
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[|0⟩𝑞 ⟨0| ⊗ |0⟩𝑟 ⟨0|] {|0⟩𝑞 ⟨0| ⊗ |0⟩𝑟 ⟨0|}
1 : 𝑞 := 𝐻⊗𝑑𝑞;

[ok :𝑃0 ⊗ |0⟩𝑟 ⟨0|] {𝑃0 ⊗ |0⟩𝑟 ⟨0|}
2 : while𝑀 [𝑟 ] = 1 do

[ok :𝑃𝑛 ⊗ |𝑛⟩𝑟 ⟨𝑛 |] {∑𝑅−1
𝑛=0 (𝑃𝑛 ⊗ |𝑛⟩𝑟 ⟨𝑛 |)}

3 : 𝑞 := 𝑈𝜔𝑞;

4 : 𝑞 := 𝐻⊗𝑑𝑞;
5 : 𝑞 := 𝑃ℎ𝑞;

6 : 𝑞 := 𝐻⊗𝑑𝑞;
[ok :𝑃𝑛+1 ⊗ |𝑛⟩𝑟 ⟨𝑛 |] {∑𝑅−1

𝑛=0 (𝑃𝑛+1 ⊗ |𝑛⟩𝑟 ⟨𝑛 |)}
7 : 𝑟 := 𝑈+𝑟 ;

[ok :𝑃𝑛+1 ⊗ |𝑛 + 1⟩𝑟 ⟨𝑛 + 1|] {∑𝑅
𝑛=0(𝑃𝑛 ⊗ |𝑛⟩𝑟 ⟨𝑛 |)}

8 : od;
[ok :𝑃𝑅 ⊗ |𝑅⟩𝑟 ⟨𝑅 |] {𝑃𝑅 ⊗ |𝑅⟩𝑟 ⟨𝑅 |}

9 : if (□𝑚 · 𝑁 [𝑞] =𝑚 → skip) fi;
[ok :∑𝑖 |𝑠𝑖⟩𝑞 ⟨𝑠𝑖 | ⊗ |𝑅⟩𝑟 ⟨𝑅 |] {∑𝑖 |𝑠𝑖⟩𝑞 ⟨𝑠𝑖 | ⊗ |𝑅⟩𝑟 ⟨𝑅 |}

10 : assert(𝑞,∑𝑖 |𝑠𝑖⟩𝑞 ⟨𝑠𝑖 |);
[ok :∑𝑖 |𝑠𝑖⟩𝑞 ⟨𝑠𝑖 | ⊗ |𝑅⟩𝑟 ⟨𝑅 |] [er :0]

𝑃0 = |𝜓 ⟩⟨𝜓 | |𝜓 ⟩ = 1√
2
𝑑

∑
𝑥∈{0,1}𝑑 |𝑥⟩

𝑃𝑛 = 𝐺
𝑛𝑃0𝐺

𝑛† 𝐺 = (2 |𝜓 ⟩⟨𝜓 | − 𝐼 )𝑈𝜔
𝑀 = {𝑀0, 𝑀1} 𝑀0 = |𝑅⟩𝑟 ⟨𝑅 | , 𝑀1 = 𝑀

⊥
0

𝑁 = {𝑁𝑚 | 𝑚 ∈ {0, 1}𝑑} 𝑁𝑚 = |𝑚⟩⟨𝑚 |

Figure 5.3: Reasoning Grover’s algorithm by QIL.

state |𝜓 ⟩ before entering the while loop:

|𝜓 ⟩ = 1

√
𝑁

𝑁−1∑︁
𝑥=0

|𝑥⟩ =
√︂
𝑁 −𝑀
𝑁

|𝛼⟩ +
√︂
𝑀

𝑁
|𝛽⟩

The whole of line 3-6 performs the Grover operator 𝐺 = 𝐻⊗𝑑𝑃ℎ𝐻⊗𝑑𝑈𝜔 = (2 |𝜓 ⟩⟨𝜓 | −

𝐼 )𝑈𝜔 on state |𝜓 ⟩ = cos (𝜃/2) |𝛼⟩ + sin (𝜃/2) |𝛽⟩

𝐺 |𝜓 ⟩ = cos

3𝜃

2

|𝛼⟩ + sin

3𝜃

2

|𝛽⟩ (cos𝜃/2 =
√︁
(𝑁 −𝑀)/𝑁 )

which turns out to be a rotation of 𝜃 radians on the vector |𝜓 ⟩ in the 2-dimensional

subspace |𝛼⟩⟨𝛼 |+ |𝛽⟩⟨𝛽 | spanned by |𝛼⟩ and |𝛽⟩. Generally, we canmake the algorithm

succeed with a high probability, i.e., to make the rotation end up with a position that
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is as close to the solution |𝛽⟩ as possible. The number of the Grover iterations is

upper-bounded by 𝑅 = 𝑂 (
√︁
𝑁 /𝑀).

In Fig. 5.3, we choose𝑀 , 𝑁 , 𝑅 appropriately such that the program succeeds with

probability 1. We insert predicates before or after a line of code and obtain the proof

sketches. Predicates in [−] are for QIL, and predicates in {−} are for aQHL. It is not

surprising to find the proof sketches for QIL and aQHL being mostly identical, since

the proof sketches always use the largest/strongest post-conditions, and the two proof

systems are connected by post(⟦𝑆⟧𝜖). The difference lies in the while-loop: while

QIL concerns about every single execution of the loop body using the loop variant

𝑃𝑛 ⊗ |𝑛⟩𝑟 ⟨𝑛 |, aQHL merges the reasoning of these executions using a loop invariant

which is essentially the disjunction of the loop variants.

For general cases where the choice of 𝑀 and 𝑁 does not guarantee success with

the probability being 1, we may instead insert an assertion assert(𝑞, |𝛼⟩⟨𝛼 | + |𝛽⟩⟨𝛽 |) at

the end of the loop body. Using this assertion, we would miss erroneous implements

such as a wrong loop guard 𝑅′ that does not affect the subspace |𝛼⟩⟨𝛼 | + |𝛽⟩⟨𝛽 |. 1 But

we can still capture any kind of errors that makes state𝐺𝑖 |𝜓 ⟩ (0 ≤ 𝑖 ≤ 𝑅) end up not

lying in the subspace |𝛼⟩⟨𝛼 | + |𝛽⟩⟨𝛽 |, e.g., an erroneous implementation of 𝑃ℎ.

5.3 Repeat Until Success Algorithm

We take a simple program implementing a repeat-until-success [PS14, BRS15] (RUS)

algorithm as another example. RUS algorithms offer exact, fault-tolerant implemen-

tations of a large set of single-qubit unitary gates that can improve the approximate

decomposition of single-qubit unitaries significantly. Implementing the algorithm re-

quires wrapping RUS circuits into while-loops, which can be easily erroneous. Recall

the smallest circuit for the loop body found in [PS14] in Fig. 2.3.

In this subsection, we demonstrate how to use QIL to reason about the correctness

and existence of bugs in the implementation of the RUS algorithm. Fig. 5.4a and 5.4b

1
A bad 𝑅 would reduce the success rate of Grover’s algorithm.
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[|0⟩⟨0| ⊗ 𝑅]
0 : 𝑞1 := 𝑋𝑞1;

[ok : |1⟩⟨1| ⊗ 𝑅]
1 : while𝑀 [𝑞1] = 1 do

[ok : |1⟩⟨1| ⊗ 𝑅]
2 : 𝑞1 := 𝑋𝑞1;

[ok : |0⟩⟨0| ⊗ 𝑅]
3 : 𝑞1 := 𝐻𝑞1;

4 : 𝑞1 := 𝑇𝑞1;

5 : (𝑞1, 𝑞2) := CNOT(𝑞1, 𝑞2);
6 : 𝑞1 := 𝐻𝑞1;

7 : (𝑞1, 𝑞2) := CNOT(𝑞1, 𝑞2);
8 : 𝑞1 := 𝑇𝑞1;

9 : 𝑞1 := 𝐻𝑞1
[ok :𝑈 ( |0⟩⟨0| ⊗ 𝑅)𝑈 †]

10 : od;
[ok : |0⟩⟨0| ⊗ 𝑉𝑅𝑉 †]

11 : assert(𝑞2,𝑉𝑅𝑉 †)
[er :0]

(a) RUS program

[|0⟩⟨0| ⊗ 𝑅]
0 : 𝑞1 := 𝑋𝑞1;

[ok : |1⟩⟨1| ⊗ 𝑅]
1 : while𝑀 [𝑞1] = 1 do

[ok : |1⟩⟨1| ⊗ 𝑄𝑛]
2 : 𝑞1 := 𝑋𝑞1;

[ok : |1⟩⟨1| ⊗ 𝑄𝑛]
3 : 𝑞1 := 𝐻𝑞1;

4 : 𝑞1 := 𝑇𝑞1;

5 : (𝑞1, 𝑞2) := CNOT(𝑞1, 𝑞2);
6 : 𝑞1 := 𝐻𝑞1;

7 : (𝑞1, 𝑞2) := CNOT(𝑞1, 𝑞2);
8 : 𝑞1 := 𝑇𝑞1;

9 : 𝑞1 := 𝐻𝑞1
[ok :𝑃𝑛+1]

10 : od;
[ok : |0⟩⟨0| ⊗ 𝑄𝑁 ]

11 : assert(𝑞2,𝑉𝑅𝑉 †)
[er : |0⟩⟨0| ⊗ (𝐼 −𝑉𝑅𝑉 †)𝑄𝑁 (𝐼 −𝑉𝑅𝑉 †)]

(b) Erroneous program

𝑀 = {𝑀0, 𝑀1} , where𝑀0 = |0⟩⟨0| , 𝑀1 = |1⟩⟨1| 𝑉 = (𝐼 + 𝑖
√
2𝑋 )/

√
3

𝑈 = (𝑋 ⊗ 𝐼 − 𝑖
√
3𝐼 ⊗ 𝑉 )/2 𝑊 = (𝑋 ⊗ 𝐼 − 𝑖

√
3𝐼 ⊗ 𝑉 †)/2

𝑄𝑛 = 𝑉
†𝑛𝑅𝑉 𝑛 𝑃0 = |1⟩⟨1| ⊗ 𝑅 𝑃𝑛+1 =𝑊 ( |1⟩⟨1| ⊗ 𝑄𝑛)𝑊 †

Figure 5.4: Reasoning an RUS program by QIL

are the correct and erroneous implementations of the RUS procedure corresponding to

Fig. 5.4 along with the proof sketch, respectively. Assume 𝑞2 is of the state 𝑅 = |𝜓 ⟩⟨𝜓 |

at the beginning, we add an assertion at line 11 to check whether the program imple-

ments the unitary gate 𝑉 on 𝑞2. The erroneous implementation contains a mistake at

line 2: forgetting to restore the auxiliary qubit 𝑞1 before entering the RUS circuit (lines

3-9). The seemingly artificial implementation error corresponds to a bug type “incor-

rect quantum initial values" as reported in [HM19b]: the initial value of the auxiliary

qubit 𝑞1 should be |0⟩ instead of |1⟩ before executing line 3-9, the RUS circuit.
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We briefly describe how to reason about the erroneous programwith our logic. Let

the presumption of this erroneous program be |0⟩⟨0| ⊗𝑅 for projection 𝑅 = |𝜓 ⟩⟨𝜓 |, we

have [ok : |1⟩⟨1| ⊗ 𝑅] by the Unitary rule after line 0 before the while-loop. To apply

theWhile1 rule, it suffices to find a series of 𝑃𝑛 such that

𝑃0 = |1⟩⟨1| ⊗ 𝑅 ∧ ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆3−9 [ok :𝑃𝑛+1]

where 𝑆3−9 is the erroneous loop body from line 3 to line 9. Since the 𝑆3−9 is a sequence

of unitary statements, by rule Seq1 and Unitary, we have

⊢ [|1⟩⟨1| ⊗ 𝑄]𝑆3−9 [ok :𝑊 ( |1⟩⟨1| ⊗ 𝑄)𝑊 †]

for an arbitrary projection 𝑄 , where𝑊 = 1

2
(𝑋 ⊗ 𝐼 − 𝑖

√
3𝐼 ⊗ 𝑉 †). After a little bit

more calculating we have a non-trivial series of 𝑃𝑛 and 𝑄𝑛 , as shown at the bottom

of Fig. 5.4, such that supp(𝑀1𝑃𝑛𝑀
†
1
) = |1⟩⟨1| ⊗ 𝑄𝑛 and 𝑃𝑛+1 = 𝑊 ( |1⟩⟨1| ⊗ 𝑄𝑛)𝑊 †

.

It implies that the premise of the While1 rule holds for 𝑃𝑛 . Finally, by the derived

assert rule, we have the result after line 11. Evidence of bug can be obtained by, e.g.,

choosing 𝑁 = 2 and 𝑅 = |0⟩⟨0| such that the result predicate is not 0.

In our experiments using the static analyzer, we found the bound 𝑁 = dim(H) are

merely reached when applying the boundedwhile-rule. With RUS circuits consisting

of more than four qubits, the post predicate of the while loop converges after at most

two unrolling steps when random Pauli-operations are inserted into the loop body.

One may notice that inserting assertions in the while loop would be more effective

in finding bugs. For example, adding assert(𝑞1, |0⟩⟨0|) after line 2 would immediately

capture the bug in Fig. 5.4b with postcondition [er : |1⟩⟨1| ⊗ 𝑄0], indicating an incor-

rect initial value of the RUS circuit.

5.4 Bit Flip Code

Quantum error correction is crucial for reliable information processing in the presence

of noise, as large quantum logical gates and circuits remain challenging to construct
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with high reliability. In this example, we employ our logic to demonstrate how the

bit flip code can resist the noisy bit flip channel. The complete quantum circuit for

single-bit flip error correction is shown in Fig. 5.5.

The entire process can be divided into four parts by dashed lines. Assuming we

have a single-qubit state |� 〉 = � |0〉 +� |1〉 in qubit �3, we introduce auxiliary qubits �1
and �2 to construct the three-qubit bit flip code of |� 〉 by employing two���� gates.

All qubits pass through a noisy channel described by the gate E. The subsequent

part involves error detection and correction achieved via quantummeasurementM =

{�0, �1, �2, �3},

�0 = |000〉〈000| + |111〉〈111| �1 = |100〉〈100| + |011〉〈011|

�2 = |010〉〈010| + |101〉〈101| �3 = |001〉〈001| + |110〉〈110|

and controlled-� gates based on measurement outcomes. The last part is the inverse

of the encoder that decodes the recovered state. The qubit �3 would output the desired

state |� 〉 while auxiliary qubits �1 and �2 would be reset to the default state |0〉.

�1 : |0〉

E M

� |0〉

�2 : |0〉 � |0〉

�3 : |� 〉 � |� 〉

 � � �

Figure 5.5: Circuit of Bit Flip Code.

The circuit in Fig. 5.5 can be represented as the program �BFC ≡ ; E;�;� , defined

as follows,

 ≡ (�3, �1) := ���� (�3, �1); (�3, �2) := ���� (�3, �2);

� ≡ if M[�1, �2, �3] = 0 → skip �1 → �1 := � [�1] �2 → �2 := � [�2] �3 → �3 := � [�3] fi;

� ≡ (�3, �2) := ���� (�3, �2); (�3, �1) := ���� (�3, �1);
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Correctness of BFC Let the gate E denote a theoretical noise model such that a

one-bit flip can occur at most once,

E(𝜌) = 𝑝𝜌 + (1 − 𝑝)/3∑𝑖 𝑋𝑖𝜌𝑋𝑖 (𝑖 ∈ {1, 2, 3})

for any 𝜌 over register (𝑞1, 𝑞2, 𝑞3), where 𝑝 ∈ [0, 1] denotes the probability that no

error occurs, 𝑋𝑖 denotes 𝑋 gate on qubit 𝑞𝑖 . We want to show that program 𝑆BFC can

resist errors caused by noise E, which can be described by the following judgment,

⊢ 𝑆BFC ∼ skip : |0⟩⟨0| (𝑞1,𝑞2) ⊗ ≡(𝑞3,𝑞4) ⇒ |0⟩⟨0| (𝑞1,𝑞2) ⊗ ≡(𝑞3,𝑞4) (5.1)

where skip statement is defined on qubit 𝑞4. Now we show how to use our proof

system to derive Eq. 5.1. Let 𝑃0 = |0⟩⟨0| (𝑞1,𝑞2) ⊗ ≡(𝑞3,𝑞4) , then we apply rule (Ut-L) to

have

⊢ 𝐸 ∼ skip : 𝑃0 ⇒ 𝑃1

⊢ 𝐷 ∼ skip : 𝑃1 ⇒ 𝑃0

⊢ E ∼ skip : 𝑃1 ⇒ 𝑃2

(5.2)

where 𝑈 (𝑞1, 𝑞2, 𝑞3) = 𝐶𝑁𝑂𝑇 (𝑞3, 𝑞2)𝐶𝑁𝑂𝑇 (𝑞3, 𝑞1), 𝑃1 = (𝑈 ⊗ 𝐼𝑞4)𝑃0(𝑈 † ⊗ 𝐼𝑞4), 𝑃2 =

𝑃1 +
∑

3

𝑖=0𝑋𝑖𝑃1𝑋𝑖 . We can verify the validity of the following measurement condition,

M ≈ 𝐼 : 𝑃2 ⇒ {(𝑞𝑖, 𝑋𝑖𝑃1𝑋𝑖)} (𝑖 ∈ {0, 1, 2, 3}) (5.3)

such that

∑
𝑞𝑖 = 1, where 𝑋0 denotes 𝐼 particularly. For the bodies of 𝐶 , we have

⊢ 𝑞𝑖 := 𝑋 [𝑞𝑖] ∼ skip : 𝑋𝑖𝑃1𝑋𝑖 ⇒ 𝑃1 (𝑖 ∈ {0, 1, 2, 3}) (5.4)

by rule (Ut-L). We use (IF-L) to combine Eq. 5.3 and 5.4 to obtain

⊢ 𝐶 ∼ skip : 𝑃2 ⇒ 𝑃1 (5.5)

Finally, we can apply rule (Seq) to combine Eq. 5.2 and 5.5 to get Eq. 5.1.
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Multiple bit flip errors What would happen to the circuit in Fig. 5.5 if the bit flip

error in gate E can occur on any qubit independently? Such a noise model can be

characterized as

E′(𝜌) = 𝑝𝜌 + (1 − 3

√
𝑝) 3

√
𝑝
2(𝑋1𝜌𝑋1 + 𝑋2𝜌𝑋2 + 𝑋3𝜌𝑋3) + (1 − 3

√
𝑝)2 3

√
𝑝 (𝑋1𝑋2𝜌𝑋1𝑋2+

𝑋1𝑋3𝜌𝑋1𝑋3 + 𝑋2𝑋3𝜌𝑋2𝑋3) + (1 − 3

√
𝑝)3𝑋1𝑋2𝑋3𝜌𝑋1𝑋2𝑋3

for any 𝜌 over register (𝑞′
1
, 𝑞′

2
, 𝑞′

3
), where 𝑝 ∈ [0, 1] still denotes the probability that no

error occurs. Let 𝑆′
BFC

≡ 𝐸; E′
;𝐶;𝐷 be the corresponding program defined on register

(𝑞′
1
, 𝑞′

2
, 𝑞′

3
). The difference between programs 𝑆BFC and 𝑆′

BFC
can be characterized by

the judgement

⊢ 𝑆BFC ∼𝛿 𝑆′BFC : |0⟩⟨0| (𝑞1,𝑞2,𝑞′
1
,𝑞′
2
) ⊗ ≡(𝑞3,𝑞′

3
) ⇒ |0⟩⟨0| (𝑞1,𝑞2,𝑞′

1
,𝑞′
2
) ⊗ ≡(𝑞3,𝑞′

3
) (5.6)

with 𝛿 = (1−𝑝−3(1− 3

√
𝑝) 3

√
𝑝
2)/2. It is direct to see that 𝛿 = 0when 𝑝 = 1, and 𝛿 = 1/2

when 𝑝 = 0, which indicates that bit flip code can not deal with multiple errors.

The proof of the above judgment is similar to Eq. 5.1. Let 𝑄0 =

|0⟩⟨0| (𝑞1,𝑞2,𝑞′
1
,𝑞′
2
) ⊗ ≡(𝑞3,𝑞′

3
) , then we apply rule (Ut-L) to have

⊢ 𝐸 ∼ 𝐸 : 𝑄0 ⇒ 𝑄1

⊢ 𝐷 ∼ 𝐷 : 𝑄1 ⇒ 𝑄0

(5.7)

where𝑅(𝑞1, 𝑞2, 𝑞3, 𝑞′1, 𝑞′2, 𝑞′3) = 𝐶𝑁𝑂𝑇 (𝑞3, 𝑞2)𝐶𝑁𝑂𝑇 (𝑞3, 𝑞1)𝐶𝑁𝑂𝑇 (𝑞′3, 𝑞′2)𝐶𝑁𝑂𝑇 (𝑞′3, 𝑞′1),

𝑄1 = 𝑅𝑄0𝑅
†
. Besides, we also have

⊢ E ∼𝛿 E′
: 𝑄1 ⇒ 𝑄2 (5.8)

where 𝛿 = ∥E − E′∥⋄/2 ≤ (1 − 𝑝 − 3(1 − 3

√
𝑝) 3

√
𝑝
2)/2, 𝑄2 = 𝑄1 +

∑
𝑖 𝑋𝑖𝑋

′
𝑖𝑄1𝑋𝑖𝑋

′
𝑖 . Here

𝑋𝑖 and 𝑋
′
𝑖 denote 𝑋 gates on qubits 𝑞𝑖 and 𝑞

′
𝑖 respectively. We can verify the validity

of the following measurement condition,

M ≈ M : 𝑄2 ⇒ {(𝑞𝑖, 𝑋𝑖𝑋 ′
𝑖𝑄1𝑋𝑖𝑋

′
𝑖 )} (𝑖 ∈ {0, 1, 2, 3}) (5.9)
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such that

∑
3

𝑖=0 𝑞𝑖 = 1, where 𝑋0 and 𝑋
′
0
denotes 𝐼 particularly. For the bodies of 𝐶 , we

have

⊢ 𝑞𝑖 := 𝑋 [𝑞𝑖] ∼ 𝑞′𝑖 := 𝑋 [𝑞′𝑖] : 𝑋𝑖𝑋 ′
𝑖𝑄1𝑋𝑖𝑋

′
𝑖 ⇒ 𝑄1 (𝑖 ∈ {0, 1, 2, 3}) (5.10)

by rule (Ut-L), where 𝑖 ∈ {0, 1, 2, 3}. We use (IF-L) to combine Eq. 5.9 and 5.10 to

obtain

⊢ 𝐶 ∼ 𝐶 : 𝑄2 ⇒ 𝑄1 (5.11)

Finally, we can apply rule (Seq) to combine Eq. 5.7, Eq. 5.8 and 5.11 to get Eq. 5.6.

5.5 Approximation of Unitary Gates

It is well-known that we can decompose arbitrary unitary operators into gates from

a universal gate set [NC11]. One of the most important universal gate sets is the

Clifford+𝑇 gates. For instance, we want to use the set of Clifford+𝑇 gates to approxi-

mate the following unitary 𝑉 = (𝐼 + 𝑖
√
2𝑋 )/

√
3 defined on qubit 𝑞0,

𝑆1 ≡ 𝑞0 := 𝑉 [𝑞0];

We will reason about the approximate equivalence between the following two

approaches of approximating 𝑉 . In subsection 5.5, unitary 𝑉 is decomposed as

𝑉 = 𝐻𝑅𝑧 (𝜃 )𝐻 , where the single-qubit 𝑅𝑧 (𝜃 ) gate can be directly approximated by

ancilla-free Clifford+𝑇 gates using the algorithm in [RS16]. In subsection 5.5, we dis-

cuss the repeat until success [PS14] circuit to stimulate 𝑉 exactly or approximately.

Approximation of 𝑧-rotation by direct decomposition

The approximation of an arbitrary single-qubit 𝑧-rotation gate

𝑅𝑧 (𝜃 ) = 𝑒−𝑖𝜃𝑍/2 = ©«
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2
ª®¬

by Clifford+𝑇 circuits is an important problem since it lays the foundation for the ap-

proximate decomposition of arbitrary multi-qubit gates. Assume the basic 𝑧-rotation
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gate 𝑅𝑧 (𝜃 ) is approximated by a single-qubit gate 𝑈 that can be decomposed as a se-

quence of Clifford+𝑇 gates, the corresponding program 𝑆2 is defined as

𝑆2 ≡ 𝑞′0 := 𝐻 [𝑞′
0
];𝑞′

0
= 𝑈 [𝑞′

0
];𝑞′

0
:= 𝐻 [𝑞′

0
]; (5.12)

We adopt the algorithm from [RS16] to find the appropriate decomposition of 𝑈 .

Given 𝜃 = − arctan(
√
2) and 𝜖 = 10

−2
, we have

𝑈 = 𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆

𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝑆𝐻𝑇𝐻𝑇𝐻𝑆𝑆𝑆𝑊𝑊𝑊

where𝑊 denotes the scalar 𝑒𝑖𝜋/4. The precision 𝜖 of the approximation is defined

as ∥𝑅𝑧 (𝜃 ) − 𝑈 ∥ ≤ 𝜖 , where ∥𝐴∥ denotes the operator norm of the matrix 𝐴, i.e. the

largest eigenvalue of

√
𝐴†𝐴. The following judgment characterizes the approximate

equivalence between 𝑆1 and 𝑆2.

⊨ 𝑆1 ∼0.002 𝑆2 : ≡(𝑞0,𝑞′
0
) ⇒ ≡(𝑞0,𝑞′

0
) (5.13)

We prove this by employing rule (Ut-id), where the deviation 𝛿 = ∥𝑈 · 𝑈 † − 𝑅𝑧 (𝜃 ) ·

𝑅𝑧 (𝜃 )†∥⋄/2 ≈ 0.002.

Approximation of unitary gate by RUS algorithm

As we mentioned before, the repeat until success (RUS) circuit proposed by Paetznick

et al. in [BRS15, PS14] is a powerful decomposition technique to approximate single-

qubit unitaries. The RUS circuit introduces ancilla qubits with a small number of

non-Clifford gates to manipulate the target qubits based on the measurement results

from the ancilla qubits. Recall the aim of Fig. 2.3 is to apply the unitary operator 𝑉 =

(𝐼 + 𝑖
√
2𝑋 )/

√
3 to the target qubit 𝑞2. The program terminates when the measurement

of 𝑞1 returns 0. The entire process can be viewed as a quantum loop, with qubit 𝑞1

simultaneously serving as the loop body’s control qubit and the auxiliary qubit for the

RUS circuit. The whole process can be denoted by program 𝑆3,

𝑆3 ≡ 𝑞1 := |0⟩ ;𝑞1 := 𝑋 [𝑞1];𝑅;while M[𝑞1] = 1 do 𝑅 od; (5.14)
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where we add some statements before the while-loop to ensure the circuit in Fig. 2.3

at least runs once. The loop body 𝑅,

𝑅 ≡ 𝑞1 := 𝑋 [𝑞1]; 𝑞1 := 𝐻 [𝑞1]; 𝑞1 := 𝑇 [𝑞1]; (𝑞1, 𝑞2) := CNOT[(𝑞1, 𝑞2)];

𝑞1 := 𝐻 [𝑞1]; (𝑞1, 𝑞2) := CNOT[(𝑞1, 𝑞2)]; 𝑞1 := 𝑇 [𝑞1]; 𝑞1 := 𝐻 [𝑞1];

can be characterized as a composite unitary, that is, (𝑞1, 𝑞2) := 𝑈𝑅 [(𝑞1, 𝑞2)], where

𝑈𝑅 = (𝐼 ⊗ 𝐼 − 𝑖
√
3𝑋 ⊗ 𝑉 )/2. To align with the measurement M = {𝑀0 = |0⟩⟨0| , 𝑀1 =

|1⟩⟨1|} in the loop, we add a 𝑋 gate in qubit 𝑞1 at the beginning of the loop body 𝑅.

In the following, we first reason the exact correctness of the RUS program and

then use that fact to prove the approximate correctness of the bounded RUS program.

Correctness of RUS. The following judgment describes the correctness of the RUS

algorithm, that is, the equivalence between programs 𝑆1 and 𝑆3 on the working qubit.

⊨ 𝑆1 ∼ 𝑆3 : 𝐼𝑞1⊗ ≡(𝑞2,𝑞0) ⇒ |0⟩⟨0|𝑞1 ⊗ ≡(𝑞2,𝑞0) (5.15)

We explain using our proof rules to get the judgment 5.15. First, we can infer

⊢ 𝑞1 := |0⟩ ∼ skip : 𝐼𝑞1⊗ ≡(𝑞2,𝑞0) ⇒ |0⟩⟨0|𝑞1 ⊗ ≡(𝑞2,𝑞0)

⊢ 𝑞1 := 𝑋 [𝑞1] ∼ skip : |0⟩⟨0|𝑞1 ⊗ ≡(𝑞2,𝑞0) ⇒ 𝐴

⊢ 𝑅 ∼ skip : 𝐴 ⇒ 𝐵

(5.16)

by rules (Init-L) and (Ut-L) , where we define 𝐴 = |1⟩⟨1|𝑞1 ⊗ ≡(𝑞2,𝑞0) and 𝐵 = (𝑈𝑅 ⊗

𝐼𝑞0)𝐴(𝑈
†
𝑅
⊗ 𝐼𝑞0). Let |𝜓 ⟩ be an arbitrary single-qubit vector state; then we can find that

|𝜑⟩⟨𝜑 | is exactly the invariant of the loop statement in 𝑆3, i.e.,

|𝜑⟩⟨𝜑 | M−−→

3

4
|𝜑0⟩⟨𝜑0 | (𝑚 = 0)

1

4
|𝜑1⟩⟨𝜑1 |

𝑈𝑅−−→ 1

4
|𝜑⟩⟨𝜑 | (𝑚 = 1)

(5.17)

where |𝜑0⟩ = |0⟩ ⊗ 𝑉 |𝜓 ⟩, |𝜑1⟩ = |1⟩ ⊗ |𝜓 ⟩, |𝜑⟩ = 𝑈𝑅 |𝜑1⟩. Thus the measurement

condition

M ≈ 𝐼 : 𝐵 ⇒ {(3/4,𝐶), (1/4, 𝐴)} (5.18)
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holds from Eq. 5.17, where𝐶 = |0⟩⟨0|𝑞1 ⊗ ((𝐼𝑞2 ⊗𝑉 †) ≡(𝑞2,𝑞0) (𝐼𝑞2 ⊗𝑉 )). Then we apply

rule (LP-L) to have

⊢ while M[𝑞1] = 1 do 𝑅 od ∼ skip : 𝐵 ⇒ 𝐶 (5.19)

from the last equation in 5.16 and Eq. 5.18. Next, we apply the right version of rule

(Ut-L) to have

⊢ skip ∼ 𝑞0 := 𝑉 [𝑞0] : 𝐶 ⇒ |0⟩⟨0|𝑞1 ⊗ ≡(𝑞2,𝑞0) (5.20)

Finally, we apply rule (Seq) to combine Eq. 5.16, 5.19 and 5.20 to get Eq. 5.15, together

with the soundness of our logic.

Approximate RUS by a bounded loop. In practice, we usually set bounds for

loop statements to avoid infinite unrolling. The approximate RUS can be implemented

directly via a bounded loop. We add register 𝑟 as a counter for the while-loop. The

counter is increased during each iteration by applying operator 𝑈+ which performs

𝑈+ |𝑛⟩ = |𝑛 + 1 mod 2
|𝑟 |⟩. The yes-no measurementM′ = {𝑀′

0
, 𝑀′

1
}

𝑀′
1
=
∑𝑁−2
𝑖=0 |𝑖⟩⟨𝑖 | 𝑀′

0
= 𝐼 −𝑀′

1

on register 𝑟 checks whether the number of iterations exceeds the upper bound 𝑁 ,

where 𝑁 ≤ 2
|𝑟 | − 1. If measurement M′

gives a no answer, an initiation statement

would be applied to qubit 𝑞1 to ensure the loop’s termination. The corresponding

bounded program 𝑆′
3
is defined on register (𝑞1, 𝑞2, 𝑟 ) as follows,

𝑆′
3
≡ 𝑞1 := |0⟩ ;𝑞1 := 𝑋 [𝑞1];𝑅;while M[𝑞1] = 1 do 𝑅′ od; (5.21)

where the loop body 𝑅′ becomes

𝑅′ ≡ 𝑅; if M′[𝑟 ] = 0 → 𝑞1 := |0⟩ □1 → skip fi; 𝑟 := 𝑈+𝑟 ;

The approximate equivalence between program 𝑆1 and 𝑆
′
3
can be characterized by

the following judgment.

⊨ 𝑆1 ∼1/(2·4𝑁 ) 𝑆
′
3
: |0⟩⟨0|𝑟 ⊗ 𝐼𝑞1⊗ ≡(𝑞2,𝑞0) ⇒ 𝑀′

1
⊗ |0⟩⟨0|𝑞1 ⊗ ≡(𝑞2,𝑞0) (5.22)
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As expected, the deviation should decrease exponentially with respect to 𝑁 .

The proof of Eq. 5.22 works as follows. First, we apply rules (Seq) and (Frame) to

Eq. 5.16 to have

⊢ 𝑞1 := |0⟩ ;𝑞1 := 𝑋 [𝑞1];𝑅;∼ skip : |0⟩⟨0|𝑟 ⊗ 𝐼𝑞1⊗ ≡(𝑞2,𝑞0) ⇒ |0⟩⟨0|𝑟 ⊗ 𝐵 (5.23)

where register 𝑟 is not used in the left program, and the dimension of predicate |0⟩⟨0|𝑟
is 1. For any 0 ≤ 𝑘 < 𝑁 , let 𝑃𝑘 = |𝑘⟩⟨𝑘 |𝑟 ⊗ 𝐵, 𝑄𝑘 = |𝑘⟩⟨𝑘 |𝑟 ⊗ 𝐴, 𝑃𝑁 = |𝑁 ⟩⟨𝑁 |𝑟 ⊗

|0⟩⟨0|𝑞1 ⊗ proj(Tr𝑞1 (𝐵)). Then we have the following judgments

⊢ 𝑅 ∼ skip : 𝑄𝑘 ⇒ 𝑃𝑘

⊢ if M′[𝑟 ] = 0 → 𝑞1 := |0⟩ □1 → skip fi ∼ skip : 𝑃𝑘 ⇒ 𝑃𝑘

⊢ 𝑟 := 𝑈+𝑟 ∼ skip : 𝑃𝑘 ⇒ 𝑃𝑘+1

by rule (Frame) on the last equation in 5.16, rules (IF-L) and (Ut-L), respectively. We

combine above judgments by rule (Seq) to obtain

⊢ 𝑅′ ∼ skip : 𝑄𝑘 ⇒ 𝑃𝑘+1 (5.24)

for the loop body 𝑅′. Similarly, we obtain the following measurement conditions

M ≈ 𝐼 : 𝑃𝑘 ⇒ {(3/4, 𝑀′
1
⊗ 𝐶), (1/4, 𝑄𝑘)}

M ≈{1/2,0} 𝐼 : 𝑃𝑁 ⇒ {(1, 𝑀′
1
⊗ 𝐶), (0, 𝐼 )}

(5.25)

by Eq. 5.17. The above last measurement condition is trivial since the deviation for

𝑀′
1
⊗ 𝐶 is set to the maximum value 1/2. Then we apply rule (LP*-L) to combine

Eq. 5.24 and 5.25 to have

⊢ while M[𝑞1] = 1 do 𝑅′ od ∼𝛿 skip : |0⟩⟨0|𝑟 ⊗ 𝐵 ⇒ 𝑀′
1
⊗ 𝐶 (5.26)

where 𝑞𝑘 = 3/4, 𝑝𝑘 = 1/4, 𝛿𝑘 = 0, 𝛿𝑁 = 1/2 and 𝛿 = 𝛿𝑁 ·∏𝑁−1
𝑘=0

𝑝𝑘 = 1/(2 · 4𝑁 ). Next,

we apply rule (Ut-L) to have

⊢ skip ∼ 𝑞0 := 𝑉 [𝑞0] : 𝑀′
1
⊗ 𝐶 ⇒ 𝑀′

1
⊗ |0⟩⟨0|𝑞1 ⊗ ≡(𝑞2,𝑞0) (5.27)

Finally, we apply rule (Seq) to combine Eq. 5.23, 5.26 and 5.27 to obtain Eq. 5.22, to-

gether with the soundness of our logic.
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Conclusion

We use rule (Comp) to combine judgments 5.13 and 5.22 to have

𝑆2 ∼0.002+1/(2·4𝑁 ) 𝑆
′
3
: |0⟩⟨0|𝑟 ⊗ 𝐼𝑞1⊗ ≡(𝑞2,𝑞′

0
) ⇒ 𝑀′

1
⊗ |0⟩⟨0|𝑞1 ⊗ ≡(𝑞2,𝑞′

0
) (5.28)

Therefore, we have proved the approximate equivalence between the approximation

of unitary 𝑉 via the RUS algorithm or the approximate 𝑅𝑧 (𝜃 ) gate.

Approximate RUS by case statement We can also unroll the loop statement in

program 𝑆3 into a 𝑁 -depth branching structure composed of case statements. The

corresponding approximate program 𝑆′′
3
defined on qubits (𝑞1, 𝑞2) can be given as fol-

lows,

𝑆′′
3
≡ 𝑞1 := |0⟩ ;𝑞1 := 𝑋 [𝑞1];𝑅; 𝐹𝑁 ; (5.29)

where 𝐹𝑁 is a finite recursion of if statements

𝐹𝑁 ≡ if M[𝑞1] = 0 → skip □1 → 𝑅; 𝐹𝑁−1;fi;

with 𝐹0 ≡ skip. Similarly, the approximate equivalence between program 𝑆1 and 𝑆
′′
3

can be characterized by the following judgment

⊨ 𝑆1 ∼1/(2·4𝑁 ) 𝑆
′′
3
: 𝐼𝑞1⊗ ≡(𝑞2,𝑞0) ⇒ |0⟩⟨0|𝑞1 ⊗ ≡(𝑞2,𝑞0) (5.30)

with the same deviation. We first start with reasoning the difference between 𝐹𝑁 with

skip. We apply rule (Skip*) to program 𝐹0 to have

⊢ 𝐹0 ∼1/2 skip : 𝐵 ⇒ 𝐶

where the deviation is trivially set to its maximum value 1/2. Similarly, we apply rule

(Seq) and (IF-L) to obtain

⊢ 𝐹1 ∼1/8 skip : 𝐵 ⇒ 𝐶

from the last equation in 5.16 and 5.18. We can repeat the above reasoning 𝑁 times

to the case statement 𝐹𝑖 (𝑖 ∈ [1 .. 𝑁 ]]) in sequence, thus we have

⊢ 𝐹𝑁 ∼
1/(2·4𝑁 ) skip : 𝐵 ⇒ 𝐶 (5.31)
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Finally, we apply (Seq) to combine Eq. 5.16, 5.31 and 5.20 to have Eq. 5.30, together

with the soundness of our logic.

5.6 Approximate Quantum Fourier Transform

Objective. As a quantum analog of the classical discrete Fourier transform, quan-

tum Fourier transform (QFT) [Cop02] performs a linear transformation on quantum

states and extracts the periodicity of the amplitudes of quantum states. Due to the im-

perfectness of quantum gates, the approximate quantum Fourier transform (AQFT) is

proposed to improve the circuit depth of QFT for efficiency. [Cop02] proposes a direct

AQFT based on ignoring gates related to high-order terms. Cleve andWatrous [CW00]

parallelized the phase estimation procedure to performAQFTwith lower circuit depth.

This section uses aqRHL to reason about how well AQFT approximates QFT. For-

mally, let 𝑆QFT and 𝑆AQFT be the corresponding quantum programs for QFT and AQFT,

respectively. We study the following judgment

⊨ 𝑆QFT ∼𝛿 𝑆AQFT : ≡ ⇒ ≡ (5.32)

that characterize the approximate equivalence between 𝑆QFT and 𝑆AQFT. We discuss

[Cop02] and [CW00] in turn.

Notations. For an 𝑛 qubit system, QFT on a computational basis state |𝑥⟩ =

|𝑥1𝑥2 . . . 𝑥𝑛⟩ is defined as the linear operation𝑈 such that

𝑈 |𝑥⟩ = |𝜓𝑥⟩ = 1√
2
𝑛

∑𝑁−1
𝑦=0 (𝑒2𝜋𝑖/𝑁 )𝑥 ·𝑦 |𝑦⟩ (5.33)

where 𝑁 = 2
𝑛
, |𝜓𝑥⟩ is called a Fourier basis state with respect to computational basis

state |𝑥⟩, 𝑥 · 𝑦 denotes the multiplication between the binary representation of 𝑥 and

𝑦. |𝜓𝑥⟩ can be given in the following useful tensor product representation

|𝜓𝑥⟩ =
1

√
2
𝑛
( |0⟩ + 𝑒2𝜋𝑖 (0.𝑥𝑛) |1⟩)(|0⟩ + 𝑒2𝜋𝑖 (0.𝑥𝑛−1𝑥𝑛) |1⟩) · · · ( |0⟩ + 𝑒2𝜋𝑖 (0.𝑥1 ...𝑥𝑛) |1⟩) (5.34)
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where 0.𝑥𝑖 . . . 𝑥 𝑗 denotes the binary fraction 𝑥𝑖/2 + 𝑥𝑖+1/4 + · · · + 𝑥 𝑗/2 𝑗−𝑖+1. For conve-

nience, we define |𝜇𝜃 ⟩ = ( |0⟩ + 𝑒2𝜋𝑖𝜃 |1⟩)/
√
2 to denote the terms in Eq. 5.34. State |𝜇𝜃 ⟩

can be obtained by applying the phase shift gate 𝑃 (2𝜋𝜃 ) (mentioned in Chapter 2) on

state |+⟩ = ( |0⟩ + |1⟩)/
√
2. The phase shift gate 𝑃 (2𝜋𝜃 ) can be decomposed as the

sequence of gates 𝑅𝑚

𝑅𝑚 = 𝑃 (2𝜋/2𝑚) = ©«
1 0

0 𝑒2𝜋𝑖/2
𝑚

ª®¬
since 𝑃 (𝜃1)𝑃 (𝜃2) = 𝑃 (𝜃1 + 𝜃2). The controlled 𝑅𝑚 gate is denoted by 𝐶𝑅𝑚 [(𝑞1, 𝑞2)],

which is the 𝑐-𝑃 (𝜃 ) gate with 𝜃 = 2𝜋/2𝑚 .

AQFT Circuit proposed by CopperSmith

An direct circuit implementation of QFT from [NC11, p. 219] is shown in Fig. 5.6.

Given a computational basis |𝑥⟩ on qubits {𝑞1, . . . , 𝑞𝑛}, the output of QFT circuit in

Fig. 5.6 is the Fourier basis state |𝜓𝑥⟩ = ⊗𝑛𝑖=1 |𝜇0.𝑥𝑛−𝑖+1 ...𝑥𝑛⟩. Let 𝑘 be the number of

significant phase shift gates remaining in AQFT [Cop02]. As shown in Fig. 5.6, the

AQFT circuit is the remaining circuit where all 𝐶𝑅𝑚 (𝑘 < 𝑚) gates in the shadow

boxes are excluded. Consequently, the output of the AQFT circuit would be

|𝜓 ′
𝑥⟩ = (⊗𝑘𝑖=1 |𝜇0.𝑥𝑛−𝑖+1 ...𝑥𝑛⟩) ⊗ (⊗𝑛

𝑖=𝑘+1 |𝜇0.𝑥𝑛−𝑖+1 ...𝑥𝑛−𝑖+𝑘 ⟩)

where |𝜇0.𝑥𝑛−𝑖+ ...𝑥𝑛⟩ is approximated by |𝜇0.𝑥𝑛−𝑖+1 ...𝑥𝑛−𝑖+𝑘 ⟩ when 𝑘 < 𝑖 .

The programs for the circuits of QFT and AQFT are shown in Fig. 5.7, where [𝑎, 𝑏]

denotes the closed interval of integers between 𝑎 and 𝑏. Subprogram 𝑆𝑖 denotes the

block labeled by 𝑖 in Fig. 5.6, 𝑇𝑖 denotes the shadow boxes in the block 𝑆𝑖 , and 𝑆
′
𝑖

denotes the remaining program that excludes 𝑇𝑖 from 𝑆𝑖 . We show how to use our

logic to obtain the judgment 5.32.

For the shared program 𝑆𝑖 , we have

⊢ 𝑆𝑖 ∼ 𝑆′𝑖 : ≡ ⇒ ≡ 𝑖 ∈ [𝑛 − 𝑘 + 1, 𝑛] (5.35)
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. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

|	1〉 � |�0.	1 ...	�〉

|	2〉 �2 � |�0.	2 ...	�〉

|	3〉 �3 �2 |�0.	3 ...	�〉
...

...

|	�〉 �� ��−1 |�0.	� ...	�〉

|	�+1〉 ��+1 �� |�0.	�+1 ...	�〉

|	�+2〉 ��+2 ��+1 |�0.	�+2 ...	�〉
...

...

|	�−�〉 ��−� ��−�−1 � |�0.	�−� ...	�〉

|	�−�+1〉 ��−�+1 ��−� �2 � |�0.	�−�+1 ...	�〉

|	�−�+2〉 ��−�+2 ��−�+1 �3 �2 |�0.	�−�+2 ...	�〉
...

...
...

...

|	�−1〉 ��−1 ��−2 �� ��−1 � |�0.	�−1	�〉

|	�〉 �� ��−1 ��+1 �� �2 � |�0.	�〉

�1 �2 ��−� ��−�+1 ��−1 ��

Figure 5.6: QFT circuit in [NC11]. To save space, we put multiple controlled gates

��� that share the same control qubit in one column.

�QFT := �1; �2; . . . ; ��−� ; ��−�+1; . . . ; �� ;

�AQFT := � ′
1
; � ′

2
; . . . ; � ′

�−� ; ��−�+1; . . . ; �� ;

� ′� :=

{
�� = � [��]; (�� , ��+1) = ��2 [(�� , ��+1)]; . . . ; (�� , ��+�−1) = ��� [(�� , ��+�−1)]; � ∈ [1, � − �]
�� = � [��]; (�� , ��+1) = ��2 [(�� , ��+1)]; . . . ; (�� , ��) = ���−�+1 [(�� , ��)]; � ∈ [� − � + 1, �]

�� :=

{
� ′� ;�� � ∈ [1, � − �]
� ′� � ∈ [� − � + 1, �]

�� := (�� , ��+� ) = ���+1 [(�� , ��+� )]; . . . ; (�� , ��) = ���−�+1 [(�� , ��)]; � ∈ [1, � − �]

Figure 5.7: Quantum Programs �QFT and �AQFT

according to our rule (Ut) and the fact that ≡ equals (� ⊗ � ) ≡ (� ⊗ � )† for any

unitary� .

For the approximate subprogram �� , we use rule (Ut-id) to have


 �� ∼�� skip : ≡ ⇒ ≡ � ∈ [1, � − �] (5.36)
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where 𝛿𝑖 = ∥𝐼 − 𝐶𝑅𝑘+1 [(𝑞𝑖, 𝑞𝑖+𝑘)] . . .𝐶𝑅𝑛−𝑖+1 [(𝑞𝑖, 𝑞𝑛)] ∥⋄/2 = 1

2
sin𝜋 (2−𝑘 − 2

𝑖−𝑛−1).

Then we use rule (Seq) to combine Eq. 5.36 to have

⊢ 𝑆𝑖 ∼𝛿𝑖 𝑆′𝑖 : ≡ ⇒ ≡ (1 ≤ 𝑖 ≤ 𝑛 − 𝑘) (5.37)

Finally, we combine Eq. 5.35 and Eq. 5.37 to have Eq. 5.32, where 𝛿 =
∑𝑛−𝑘
𝑖=1 𝛿𝑖 ≤

𝜋
2
(𝑛−𝑘−1

2
𝑘 + 1

2
𝑛 ) ≤ 𝑛𝜋/2𝑘+1. If there is no approximation (𝑘 = 𝑛) in program 𝑆AQFT, then

we have 𝛿 = 0 and the equivalence relation holds exactly.

0 512 1,024 1,536 2,048
10

1

10
2

10
3

10
4

10
5

10
6

10
7

𝑛

AQFT: 𝛿 = 10
−2

AQFT: 𝛿 = 10
−10

QFT

Figure 5.8: Number of𝐶𝑅𝑚 gates.

We have 𝐷 (⟦𝑆QFT⟧(𝜌), ⟦𝑆AQFT⟧(𝜌)) ≤ 2𝛿 ≤

𝑛𝜋/2𝑘 for any 𝜌 by lemma 4.10. To achieve

the precision 𝛿 , we need to set parameter 𝑘 =

log(𝑛𝜋/𝛿) − 1, which is consistent with [CW00].

Notice that the deviation 𝛿 is an exponential de-

cay with respect to 𝑘 , and the number of 𝐶𝑅𝑚

gates reduces from (𝑛2−𝑛)/2 to (2𝑛−𝑘) (𝑘−1)/2,

as shown in Fig. 5.8. It is well-known that QFT

plays a key role in factoring big numbers [Sho94]. For example, factoring n-bit RSA

integers [GE21] needs at least 3𝑛 + 0.002𝑛lg𝑛 logical qubits; a reliable AQFT would

significantly improve the cracking of RSA.

AQFT Circuit proposed by Watrous

A more advanced approach to approximate QFT was proposed by Cleve and Wa-

trous [CW00] that parallelized the phase estimation procedure [Kit96] to achieve

a lower AQFT circuit depth 𝑂 (log𝑛). The alternative method of implementing QFT

is shown in Fig. 5.9. The unitary 𝑉 generates the Fourier basis state |𝜓𝑥⟩ defined in

Eq. 5.34 without erasing the input computational basis |𝑥⟩. The unitary 𝐴𝑑𝑑 intro-

duces additional (𝑘 − 1)𝑛 qubits to create 𝑘 − 1 replicas of Fourier basis state |𝜓𝑥⟩. The

unitary oracle 𝑇 introduces additional 𝑛 qubits to compute the corresponding phase

parameter |𝑥⟩ of the Fourier basis state |𝜓𝑥⟩ without erasing |𝜓𝑥⟩. Note that these

oracles require additional auxiliary qubits to enable parallel execution. Still, these
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auxiliary qubits are not depicted in Fig. 5.9 since they are reset back to |0⟩ after the

computation. We encode the circuit in Fig. 5.9 as program 𝑆QFT.

𝑛

(𝑘−1)𝑛

𝑛

𝑛

𝑞3 : |0⟩⊗𝑛

𝑇 𝑇 †

|0⟩⊗𝑛

𝑞2 : |0⟩⊗𝑛

𝐴𝑑𝑑 𝐴𝑑𝑑†
|0⟩⊗𝑛

𝑞1 : |0⟩⊗𝑛
𝑉

|0⟩⊗𝑛

𝑞0 : |𝑥⟩ |𝜓𝑥 ⟩

Figure 5.9: QFT circuit in [CW00]. Given a computational basis state |𝑥⟩ and corre-

sponding Fourier basis state |𝜓𝑥⟩, unitary 𝑉 performs mapping |𝑥⟩ |0⟩⊗𝑛 ↦→ |𝑥⟩ |𝜓𝑥⟩,
unitary𝐴𝑑𝑑 performs mapping |𝜓𝑥⟩ |0⟩⊗𝑛 · · · |0⟩⊗𝑛 ↦→ |𝜓𝑥⟩ |𝜓𝑥⟩ · · · |𝜓𝑥⟩, and unitary𝑇
performs mapping |𝜓𝑥⟩ · · · |𝜓𝑥⟩ |0⟩⊗𝑛 ↦→ |𝜓𝑥⟩ · · · |𝜓𝑥⟩ |𝑥⟩.

We can perform approximate computations for oracles𝑉 and𝑇 to achieve a lower

circuit depth. Oracle𝑉 can be approximated by ignoring𝐶𝑅𝑚 gates of larger𝑚. Oracle

𝑇 can be approximated by performing quantum measurements followed by classical

post-processing on measurement outcomes [KSV02]. Let unitary 𝑉 ′
and 𝑇 ′

be the

approximation of 𝑉 and 𝑇 respectively, the corresponding program 𝑆AQFT is almost

the same as 𝑆QFT but with oracles 𝑉 and 𝑇 replaced by 𝑉 ′
and 𝑇 ′

respectively. Next,

we use our logic to reason the approximate equivalence between programs 𝑆QFT and

𝑆AQFT. The Eq. 5.32 now becomes

𝑆QFT ∼𝛿1+2𝛿2 𝑆AQFT : ≡(𝑞0,𝑞′
0
) ⊗ |0⟩⟨0|𝑎𝑢𝑥 ⇒ ≡(𝑞0,𝑞′

0
) ⊗ |0⟩⟨0|𝑎𝑢𝑥 (5.38)

where 𝛿 = 𝑛𝜋2−𝑘−1 + 2𝑛𝑒−𝑘/8, |0⟩⟨0|𝑎𝑢𝑥 denotes the tensor product of constant pro-

jections |0⟩⟨0| over all qubits in other registers except 𝑞0 and 𝑞
′
0
. The main steps are

shown in Fig. 5.10, and detailed explanations follow.

Create the Fourier basis state

The computation of unitary oracle 𝑈 in Eq. 5.33 can be parallelized by individually

preparing every |𝜇𝜃 ⟩ in Eq. 5.34 by the following unitary

𝑄𝑡,𝑖 : |0⟩⊗𝑡 |𝑥1 . . . 𝑥𝑛⟩ ↦→ |𝜇0.𝑥𝑖 ...𝑥𝑖+𝑡−1⟩ |0⟩⊗𝑡−1 |𝑥1 . . . 𝑥𝑛⟩
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{
≡(𝑞0,𝑞′

0
) ⊗ |0⟩⟨0| (𝑞1,𝑞2,𝑞3,𝑞′

1
,𝑞′

2
,𝑞′

3
,𝑟 )

}
//𝑃0

(𝑞0, 𝑞1) := 𝑉 [(𝑞0, 𝑞1)]; ∼𝛿1 (𝑞′
0
, 𝑞′

1
) := 𝑉 ′ [(𝑞′

0
, 𝑞′

1
)];{

(𝑉 ⊗ 𝑉 )𝑃0(𝑉 † ⊗ 𝑉 †)
}
//𝑃1

(𝑞1, 𝑞2) := 𝐴𝑑𝑑 [(𝑞1, 𝑞2)]; ∼ (𝑞′
1
, 𝑞′

2
) := 𝐴𝑑𝑑 [(𝑞′

1
, 𝑞′

2
)];{

(𝐴𝑑𝑑 ⊗ 𝐴𝑑𝑑)𝑃1(𝐴𝑑𝑑† ⊗ 𝐴𝑑𝑑†)
}
//𝑃2

(𝑞1, 𝑞2, 𝑞3) = 𝑇 [(𝑞1, 𝑞2, 𝑞3)]; ∼𝛿2 (𝑞′
1
, 𝑞′

2
, 𝑞′

3
) = 𝑇 ′ [(𝑞′

1
, 𝑞′

2
, 𝑞′

3
)];{

(𝑇 ⊗ 𝑇 )𝑃2(𝑇 † ⊗ 𝑇 †)
}
//𝑃3

(𝑞3, 𝑞0) := 𝐶𝑁𝑂𝑇 (𝑞3, 𝑞0); ∼ (𝑞3, 𝑞0) := 𝐶𝑁𝑂𝑇 (𝑞′3, 𝑞′0);{
(𝐶𝑁𝑂𝑇 ⊗ 𝐶𝑁𝑂𝑇 )𝑃3(𝐶𝑁𝑂𝑇 ⊗ 𝐶𝑁𝑂𝑇 )†

}
//𝑃4

(𝑞1, 𝑞2, 𝑞3) := 𝑇 † [(𝑞1, 𝑞2, 𝑞3)]; ∼𝛿2 (𝑞′
1
, 𝑞′

2
, 𝑞′

3
, 𝑟 ) := 𝑇 † [(𝑞′

1
, 𝑞′

2
, 𝑞′

3
, 𝑟 )];{

(𝑇 † ⊗ 𝑇 †)𝑃4(𝑇 ⊗ 𝑇 )
}
//𝑃5

(𝑞1, 𝑞2) := 𝐴𝑑𝑑† [(𝑞1, 𝑞2)]; ∼ (𝑞′
1
, 𝑞′

2
) := 𝐴𝑑𝑑† [(𝑞′

1
, 𝑞′

2
)];{

(𝐴𝑑𝑑† ⊗ 𝐴𝑑𝑑†)𝑃5(𝐴𝑑𝑑 ⊗ 𝐴𝑑𝑑)
}
//𝑃6

(𝑞0, 𝑞1) := SWAP(𝑞0, 𝑞1); ∼ (𝑞′
0
, 𝑞′

1
) := SWAP(𝑞′

0
, 𝑞′

1
);{

(SWAP ⊗ SWAP)𝑃6(SWAP
† ⊗ SWAP

†)
}
//𝑃7 = 𝑃0

Figure 5.10: Proof sketch for programs 𝑆QFT and 𝑆AQFT. To easily refer to predicates,

we label each assertion a name //𝑃𝑖 on its right.

in [CW00], where 𝑖 + 𝑡 −1 ≤ 𝑛, qubits 𝑥1 . . . 𝑥𝑖−1 and 𝑥𝑖+𝑡 . . . 𝑥𝑛 in |𝑥⟩ are not used. The

unitary 𝑄𝑡,𝑖 acting on register (𝑞, 𝑝) can be denoted by a sequence of unitaries,

𝑈𝐺𝐻𝑍 [𝑞];𝐶𝑅1 [(𝑝 [𝑖], 𝑞 [1])]; . . . ;𝐶𝑅𝑡 [(𝑝 [𝑖 + 𝑡 − 1], 𝑞 [𝑡])];𝑈 †
𝐺𝐻𝑍

[𝑞];𝐻 [𝑞 [1]]

where 𝑈𝐺𝐻𝑍 denotes the unitary that generates a GHZ state, that is, 𝑈𝐺𝐻𝑍 |0⟩⊗𝑡 =

( |0⟩⊗𝑡 + |1⟩⊗𝑡 )/
√
2. Registers 𝑞 and 𝑝 are of size 𝑡 and 𝑛, respectively. 𝑞 [𝑖] denotes

the 𝑖-th qubit in register 𝑞. For example, Fig. 5.11 in [CW00] represents the circuit of

unitary 𝑄4,𝑖 on |𝑥⟩.

Similar to the approximation in [Cop02], unitary 𝑄𝑡,𝑖 can be approximated by

ignoring 𝐶𝑅𝑚 gates of large 𝑚. That is, we could use 𝑄𝑡,𝑖 to approximate 𝑄𝑡 ′,𝑖 if
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|0〉 � �1 |�0.	� ...	�+3〉

|0〉 �2 |0〉

|0〉 �3 |0〉

|0〉 �4 |0〉
|	�〉 |	�〉

|	�+1〉 |	�+1〉
|	�+2〉 |	�+2〉
|	�+3〉 |	�+3〉

Figure 5.11: Circuit for oracle�4,� on state |	1 . . . 	�〉. Qubits 	1 . . . 	�−1 and 	�+4 . . . 	�
are not used and ignored.

1 ≤ � < � ′ ≤ �. The approximation can be modeled by the following judgment


 (�̄, �̄) = ��,� [(�̄, �̄)] ∼� (�,� ′) (�̄′, �̄′) = �� ′,� [(�̄′, �̄′)] :

|0〉〈0| (�̄,�̄′) ⊗ ≡(�̄,�̄′) ⇒ ≡(�̄ [1],�̄′ [1]) ⊗ |0〉〈0| (�̄ [2,�],�̄′ [2,�]) ⊗ ≡(�̄,�̄′)

(5.39)

with � (�, � ′) = 1

2
sin� (2−� − 2

−� ′ ). ��̄ denotes a projection � over the register �̄. Par-

ticularly, |� 〉〈� |�̄ denotes the tensor product of |� 〉〈� | over all qubits in register �̄.

�

�

�

�̄1 [1] : |0〉
�1,�

|�0.�� 〉

�̄0 : |	〉

� �†

|	〉

. . .

�̄1 [�] : |0〉
��,�−�+1

|�0.��−�+1 ...�� 〉

�̄�−1 : |0〉⊗� |0〉⊗�

. . .

�̄1 [�] : |0〉
��,1

|�0.�1 ...�� 〉

�̄�−1 : |0〉⊗� |0〉⊗�

Figure 5.12: Circuit for oracle � . Given a computational basis state |	〉 = |	1 . . . 	�〉,
unitary� performs the mapping |	〉 |0〉⊗� · · · |0〉⊗� ↦→ |	〉⊗�

, and unitary��,� performs

the mapping |0〉 |	〉 ↦→ |�0.	� ...	�+�−1〉 |	〉.

Fig. 5.12 illustrates the circuit of the oracle � . To prepare each |�� 〉 in |�	〉 indi-

vidually, we need to prepare � copies of state |	〉 beforehand, which is achieved by
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the unitary𝐶 . The unitary𝐶 can be implemented by𝐶𝑁𝑂𝑇 gates in a binary tree ar-

chitecture to achieve a circuit depth of log𝑛. To make it concise, the auxiliary qubits

𝑞 [2, 𝑛] in oracle 𝑄𝑡,𝑖 (𝑞, 𝑝) that reset back to |0⟩ are ignored in Fig. 5.12 and the input

of 𝑄𝑡,𝑖 is set as |0⟩ |𝑥⟩. The circuit for oracle 𝑉 ′
is almost the same as Fig. 5.12 except

that 𝑄𝑡,𝑖 is approximated by 𝑄𝑘,𝑖 , where 𝑘 (0 < 𝑘 < 𝑡 ≤ 𝑛) still denotes the number of

significant phase shift gates mentioned in Fig. 5.6. Specifically, oracles 𝑉 and 𝑉 ′
can

be represented as the following sequence of gates,

𝑉 [(𝑞0, 𝑟 , 𝑞1)] = 𝐶 [(𝑞0, 𝑟 )];𝑄1,𝑛 [(𝑞1 [1], 𝑞0)];𝑄2,𝑛−1 [(𝑞1 [2], 𝑟1)]; . . . ;

𝑄𝑛,1 [(𝑞1 [𝑛], 𝑟𝑛−1)];𝐶† [(𝑞0, 𝑟 )]

𝑉 ′[(𝑞′
0
, 𝑟 ′, 𝑞′

1
)] = 𝐶 [(𝑞′

0
, 𝑟 ′)];𝑄1,𝑛 [(𝑞′1 [1], 𝑞′0)];𝑄2,𝑛−1 [(𝑞′1 [2], 𝑟 ′1)]; . . . ;𝑄𝑘,𝑛−𝑘+1 [(𝑞′1 [𝑘],

𝑟 ′
𝑘−1)];𝑄𝑘,𝑛−𝑘+1 [(𝑞

′
1
[𝑘 + 1], 𝑟 ′

𝑘
)]; . . . ;𝑄𝑘,𝑛−𝑘+1 [(𝑞′1 [𝑛], 𝑟 ′𝑛−1)];𝐶† [(𝑞′

0
, 𝑟 ′)]

where auxiliary register 𝑟 = {𝑟1, . . . , 𝑟𝑛−1} contains 𝑛−1 registers 𝑟𝑖 that are initialized

with |0⟩⊗𝑛

.

Based on judgement 5.39, we have the following judgment

⊢ (𝑞0, 𝑞1) = 𝑉 [(𝑞0, 𝑞1)] ∼𝛿1 (𝑞′0, 𝑞′1) = 𝑉 ′[(𝑞′
0
, 𝑞′

1
] : 𝑃0 ⇒ 𝑃1 (5.40)

where 𝛿1 =
∑𝑛
𝑖=𝑘+1 𝛿 (𝑘, 𝑖) = 1

2

∑𝑛
𝑖=𝑘+1 sin𝜋 (2−𝑘 − 2

−𝑖) ≤ 𝑛𝜋2−𝑘−1. Notice that every

register 𝑟𝑖 in Fig. 5.12 is reset back to |0⟩, thus the predicate |0⟩⟨0| (𝑟,𝑟 ′) on register

(𝑟, 𝑟 ′) can be ignored.

Replicate & Erase the Fourier basis state

We provide a brief overview of the functionality of the oracle 𝐴𝑑𝑑 as described in

[CW00]. We begin with the state |𝜓𝑥⟩ |0⟩⊗
𝑛 · · · |0⟩⊗𝑛

and apply Hadamard gates 𝐻⊗𝑛

to each |0⟩⊗𝑛

, resulting in |𝜓𝑥⟩ |𝜓0⟩ · · · |𝜓0⟩. Then, we apply telescoping subtraction

|𝑥1⟩ |𝑥2⟩ · · · |𝑥𝑘⟩ → |𝑥1⟩ |𝑥2 − 𝑥1⟩ · · · |𝑥𝑘 − 𝑥𝑘−1⟩

to obtain |𝜓𝑥⟩ |𝜓𝑥⟩ . . . |𝜓𝑥⟩. Reversely, we can use prefix addition

|𝑥1⟩ |𝑥2⟩ · · · |𝑥𝑘⟩ → |𝑥1⟩ |𝑥1 + 𝑥2⟩ · · · |𝑥1 + 𝑥2 + · · · + 𝑥𝑘⟩
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to eliminate the duplicates of the Fourier basis state. A log(𝑘)-depth tree of 3-2 adders

can generate two encoded numbers, followed by a quantum carry-lookahead adder of

log(𝑛)-depth to add the encoded numbers. Since programs 𝑆AFT and 𝑆QAFT share the

same procedure to replicate and erase Fourier basis states, we simplify replicating and

erasing procedures by treating them as quantum oracles 𝐴𝑑𝑑 and 𝐴𝑑𝑑† respectively.

Then we have the following judgment

⊢ (𝑞1, 𝑞2) := 𝐴𝑑𝑑 [(𝑞1, 𝑞2)] ∼ (𝑞′
1
, 𝑞′

2
) := 𝐴𝑑𝑑 [(𝑞′

1
, 𝑞′

2
)] : 𝑃1 ⇒ 𝑃2 (5.41)

⊢ (𝑞1, 𝑞2) := 𝐴𝑑𝑑† [(𝑞1, 𝑞2)] ∼ (𝑞′
1
, 𝑞′

2
) := 𝐴𝑑𝑑† [(𝑞′

1
, 𝑞′

2
)] : 𝑃5 ⇒ 𝑃6 (5.42)

by rule (Ut).

Estimate the phase of a Fourier state

The key to this step is based on the idea [AKN98b] that quantum measurement can

be simulated by unitaries with the help of ancillary qubits.

As shown in Fig 5.9, the oracle 𝑇 generates the phase |𝑥⟩ in register 𝑞3 of the

Fourier state |𝜓𝑥⟩, then the Fourier basis state |𝑥⟩ in register 𝑞0 can be erased by the

following𝐶𝑁𝑂𝑇 gate (𝐶𝑁𝑂𝑇 |𝑥⟩ |𝑥⟩ = |𝑥⟩ |0⟩). The gate𝑇 †
, the reverse of𝑇 , is applied

subsequently to restore the state to the duplicates of |𝜓𝑥⟩. Given the input |𝑥⟩ in

register 𝑞0, the whole process of erasing |𝑥⟩ works as follows,

|𝑥⟩ |𝜓𝑥⟩ · · · |𝜓𝑥⟩ |0⟩⊗
𝑛 𝑇−→ |𝑥⟩ |𝜓𝑥⟩ · · · |𝜓𝑥⟩ |𝑥⟩

𝐶𝑁𝑂𝑇−−−−−→ |0⟩⊗𝑛 |𝜓𝑥⟩ · · · |𝜓𝑥⟩ |𝑥⟩
𝑇 †
−−→ |0⟩⊗𝑛 |𝜓𝑥⟩ · · · |𝜓𝑥⟩ |0⟩⊗

𝑛

where the auxiliary register 𝑞3 is initialized with |0⟩⊗𝑛

and reset back to |0⟩⊗𝑛

.

In order to reduce the circuit depth of oracle 𝑇 , [CW00] parallelized the phase

estimation procedure proposed by [Kit96]. Given 𝑘 copies of each |𝜇𝑥2−𝑖 ⟩, we perform

two single-qubit measurements

M1 = {𝑀0

1
= |𝜇0⟩⟨𝜇0 | , 𝑀1

1
= |𝜇 1

2

⟩⟨𝜇 1

2

|} M2 = {𝑀0

2
= |𝜇 1

4

⟩⟨𝜇 1

4

| , 𝑀1

2
= |𝜇 3

4

⟩⟨𝜇 3

4

|}
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on 𝑘/2 of the copies independently, where {|𝜇0⟩ , |𝜇 1

2

⟩} and {|𝜇 1

4

⟩ , |𝜇 3

4

⟩} are the eigen-

vectors of Pauli operators 𝑋 and 𝑌 respectively. These measurements on copies of

|𝜓𝑥⟩ would generate a distribution {𝑝 (𝑥,𝑖)} over a 𝑛𝑘-bit string |𝑚(𝑥,𝑖)⟩ of measure-

ment outcomes. Then a reversible classical processing 𝑓 is applied to infer 𝑥′𝑖 based

on measurement outcome |𝑚(𝑥,𝑖)⟩,

|𝑚(𝑥,𝑖)⟩ |0⟩
𝑓
−→ |𝑚(𝑥,𝑖)⟩ |𝑥′𝑖 ⟩

where the probability 𝑝 (𝑥,𝑖) is close to 1 if |𝑥′𝑖 ⟩ = |𝑥⟩, and a properly estimated |𝑥′𝑖 ⟩ can

be used to erase the phase |𝑥⟩ on register 𝑞0. The following lemma is proved using

Chernoff bound.

Lemma 5.1. [CW00] Given any computational basis |𝑥⟩, measuring observables 𝑋 and

𝑌 randomly generates a distribution {𝑝 (𝑥,𝑖)} over {|𝑚(𝑥,𝑖)⟩}, followed by a classical pro-

cessing that generates phase |𝑥′𝑖 ⟩ from |𝑚(𝑥,𝑖)⟩. We have 𝑃𝑟 ( |𝑥′𝑖 ⟩ = |𝑥⟩) = 𝑝 (𝑥,𝑖) >

1 − 4𝑛𝑒−𝑘/8.

We can convert the above whole process into a unitary operation𝑇 ′
without actual

measurements that can operate on data in superposition. First, the following unitary

𝑈𝑀 ( [𝑞1, 𝑞2, 𝑟 ]),

𝑈𝑀 ( [𝑞1, 𝑞2, 𝑟 ]) := ⊗𝑛𝑖=1(⊗
𝑘/2
𝑗=1
𝑈𝑋 [(𝑟 [𝑖𝑘+ 𝑗], 𝑝 [𝑖𝑘+ 𝑗])])⊗(⊗𝑘𝑗=1+𝑘/2𝑈𝑌 [(𝑟 [𝑖𝑘+ 𝑗], 𝑝 [𝑖𝑘+ 𝑗])])

is applied to simulate measurements on copies of |𝜓𝑥⟩, where register 𝑝 = {𝑞1, 𝑞2} and

auxiliary register 𝑟 is initialized with |0⟩. Unitaries𝑈𝑋 and𝑈𝑌

𝑈𝑋 [(𝑞1, 𝑞2)] := (𝐻 [𝑞1] ⊗ 𝐼 [𝑞2])𝐶𝑁𝑂𝑇 [(𝑞1, 𝑞2)] (𝐻 [𝑞1] ⊗ 𝐼 [𝑞2]);

𝑈𝑌 [(𝑞1, 𝑞2)] := (𝐻 [𝑞1] ⊗ 𝐼 [𝑞2])𝐶𝑌 [(𝑞1, 𝑞2)] (𝐻 [𝑞1] ⊗ 𝐼 [𝑞2])

introduce auxiliary qubit 𝑞1 initialized with |0⟩ to simulate single-qubit measurements

M1 and M2 on |𝜇𝑥2−𝑖 ⟩ in qubit 𝑞2.

|0⟩ |𝜇𝑥2−𝑖 ⟩
𝑈𝑋−−→ ⟨𝜇0 |𝜇𝑥2−𝑖 ⟩ · |0⟩ |𝜇0⟩ + ⟨𝜇 1

2

|𝜇𝑥2−𝑖 ⟩ · |1⟩ |𝜇 1

2

⟩
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|0⟩ |𝜇𝑥2−𝑖 ⟩
𝑈𝑌−−→ ⟨𝜇 1

4

|𝜇𝑥2−𝑖 ⟩ · |0⟩ |𝜇 1

4

⟩ + ⟨𝜇 3

4

|𝜇𝑥2−𝑖 ⟩ · |1⟩ |𝜇 3

4

⟩

where 𝐶𝑌 [(𝑞1, 𝑞2)] denotes the controlled Pauli 𝑌 gate. Next, we set the outputs of

auxiliary register 𝑟 of𝑈𝑀 to be the input of oracle 𝑂 [(𝑟, 𝑞3)] such that

𝑈𝑀 |𝜇𝑥2−𝑖 ⟩ ⊗ |0⟩ 𝑂−→ ∑
𝑖

√
𝑝 (𝑥,𝑖) |𝜑⟩ ⊗ |𝑥′𝑖 ⟩

where oracle𝑂 denotes the corresponding quantum circuit of the classical processing

𝑓 on measurement outcomes. Thus, the oracle 𝑇 ′
can achieved by 𝑈𝑀 [(𝑞1, 𝑞2, 𝑟 )] and

𝑂 [(𝑟, 𝑞3)] sequentially. By lemma 5.1, we would have

⊢ (𝑞1, 𝑞2, 𝑞3) = 𝑇 [(𝑞1, 𝑞2, 𝑞3)] ∼𝛿2 (𝑞′1, 𝑞′2, 𝑞′3, 𝑟 ) = 𝑇 ′[(𝑞′
1
, 𝑞′

2
, 𝑞′

3
, 𝑟 )] : 𝑃2 ⇒ 𝑃3

⊢ (𝑞1, 𝑞2, 𝑞3) = 𝑇 † [(𝑞1, 𝑞2, 𝑞3)] ∼𝛿2 (𝑞′1, 𝑞′2, 𝑞′3, 𝑟 ) = 𝑇 ′† [(𝑞′
1
, 𝑞′

2
, 𝑞′

3
, 𝑟 )] : 𝑃4 ⇒ 𝑃5

(5.43)

where 𝛿2 = 2𝑛𝑒−𝑘/8.

Conclusion

We can use rule (Seq) to sum up all judgments in Fig. 5.10 to get Eq. 5.38,

𝑆QFT ∼𝛿1+2𝛿2 𝑆AQFT : ≡(𝑞0,𝑞′
0
) ⊗ |0⟩⟨0|𝑎𝑢𝑥 ⇒ ≡(𝑞0,𝑞′

0
) ⊗ |0⟩⟨0|𝑎𝑢𝑥 (5.44)

where 𝛿 = 𝛿1 + 𝛿2 = 𝑛𝜋2−𝑘−1 + 2𝑛𝑒−𝑘/8.
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Chapter 6

Summary

Numerous works have delved into the formal verification of quantum programs since

the emergence of quantum programming languages. This thesis addresses the correct-

ness of quantum programs from two distinct perspectives. The first approach concen-

trates on bug detection as a means to enhance correctness. It involves an extension of

the classical incorrectness logic [O’H19], marking an initial step towards formulating

an incorrectness logic designed for quantum programs. The incorrectness triple for

quantum programs is constructed by introducing novel concepts of underapproxima-

tion and reachability analysis. We establish a sound and complete proof system for

bug detection in quantum programs. In another approach, relational reasoning is em-

ployed to improve the correctness of quantum programs. We introduce approximate

quantum coupling as a fundamental tool for exploring approximate relational prop-

erties between quantum programs, addressing the open question from [BHY
+
19] for

robust reasoning. The efficacy of both approaches is demonstrated through a series of

case studies in Chapter 5. To conclude this thesis, we review pertinent related work

and outline prospective directions for future studies.
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Related Work

Quantum Incorrectness Logic

Projection-based quantum program logic. Recently, projections were used as

predicates to develop quantum Hoare logic for reasoning about the correctness

of quantum programs in [ZYY19, LZY
+
20, YP21], and quantum relational Hoare

logics (qRHL) for reasoning about equivalence between two quantum programs

[BHY
+
19, Unr19]. Compared with other quantum predicates such as observables

[DP06b, Yin12], subspaces can significantly simplify the verification of quantum pro-

grams and are much more convenient when debugging and testing.

Despite the purpose of the logic, one difference between our logic and the previ-

ous results can be explained by quoting from [O’H19] “Incorrectness logic uses Floyd’s

forward-running assignment axiom rather than Hoare’s backward-running one.” The

underlying concepts also differ: while correctness logics use satisfaction to rule out

bugs, we use a quantum version of under-approximation to capture bugs. Another

difference lies in the reasoning ofwhile-loops: inference of loop variants can be auto-

mated in our logic, but it is not apparent how to infer the loop invariants in quantum

correctness logics.

Incorrectness logic and debugging quantumprograms. The incorrectness logic

[O’H19] for classical programs mainly inspires our work. We integrate the spirit of

classical incorrectness logic of [O’H19] and generalize to the quantum settings. This

result is partly inspired by the use of projections as assertions for testing and de-

bugging quantum programs [LZY
+
20]. There are other practical debugging tools for

quantum programs, such as the one employing assertions based on statistical tests on

classical observations [HM19b]. These works are designed for debugging at run-time,

while our logic enables static analysis. In addition, our logic is sound and complete,

but few if any of the earlier works on debugging quantum programs are accompanied

by sound arguments, let alone completeness.
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Approximate Quantum Relational Hoare logic

Quantitative robustness reasoning One work [HHZ
+
19] develops semantics for

erroneous quantum while programs and logic to prove quantum robustness between

an ideal program and a noisy one. They define that a noisy program 𝑆′ is 𝜖-robust

with respect to (𝑄, 𝜆) if any input state 𝜌 satisfies the quantum predicate 𝑄 to degree

𝜆, the distance between the ideal program 𝑆 and the noisy program 𝑆′ is bounded by

𝜖 . They extend the diamond norm to the so-called (𝑄, 𝜆)-diamond norm to precisely

describe the distance between program 𝑆 and 𝑆′ when input states satisfy a quantum

predicate𝑄 to degree 𝜖 . Another work [ZYY19] derives applied quantum Hoare logic

by employing projection as predicates and reasons about the robustness of quantum

programs, i.e., error bounds of outputs. The approximate satisfaction in [ZYY19] is

based on introducing a convex set (𝑃, 𝜖) of any state 𝜌 such that there exits state

𝜎 ⊨ 𝑃 satisfying Tr(𝜌) = Tr(𝜎) and 𝐷 (𝜌, 𝜎) ≤ 𝜖 , which shares similar characteristics

with our approxiamte predicate discussed in Sec. 4.5.

These two works consider single-program executions, while our work studies re-

lational reasoning. In particular, the major differences are as follows. a). Different

formula: In the logic formula of [HHZ
+
19, ZYY19], the predicate lives in the space of

the principle program. The predicate of our logic lives in the joint space of the two

programs. b). Different scope of applications: The proof systems of [HHZ
+
19, ZYY19]

focus on studying the robustness of quantum programs, i.e., equivalence or closeness.

In particular, the Hilbert spaces of the compared programs in these two works must

have the same dimension. Our choice of the relational Hoare logic can reason about

general relations beyond equivalence or closeness. We can reason relational prop-

erties between programs with different numbers of qubits. c). Different proof rules:

The proof rules of [HHZ
+
19, ZYY19] discuss programs with the same syntax state-

ment. Our one-side rules can track relational properties for different statements, for

instance, a unitary statement and a while statement, in repeat until success.
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Quantum relational Hoare logics. Our work is most inspired by the quantum

relational Hoare logics recently proposed by [Unr19, BHY
+
19, LU21]. In particular,

[BHY
+
19] suggests that casting approximate reasoning into the general framework of

relational quantum Hoare logic remains open. Generally, two quantum programs do

not share the same probabilities for taking different paths or outcomes during exe-

cution. Under those circumstances, one can not even find exact quantum couplings

since quantum coupling exists only for partial density operators with the same trace.

This mathematical condition significantly restricts the flexibility of the exact quantum

relational Hoare logic. Our work provides a promising solution to this open question.

In particular, by introducing approximate quantum coupling, our logic system offers

a more general scope of applications. Our logic, aqRHL, is a quantum counterpart to

apRHL [BKOZB13], even from a technical point of view: aqRHL employs projective

predicates [BN36] over the joint systems of the programs, a natural quantum coun-

terpart of binary relations, the predicates used in apRHL.

Future Work

Quantum Incorrectness Logic

Assertion language for quantum predicates. Currently, we treat the predicates

in our logic semantically, i.e., writing matrices explicitly. It is possible to introduce

an assertion language for predicates to capture the properties of a practical subset of

quantum applications to help simplify the representation of predicates. A syntactical

predicate may also expose more mathematical structures, which may help automate

the inference procedure using logic. Similar to classical incorrectness logic, when pre-

sented with a quantum incorrectness triple [𝑃]𝑆 [𝑄], the problem is whether the set

𝑃 of input quantum states is included in the set 𝑄 of the output state of program 𝑆 .

It is interesting to explore the creation of a representation that succinctly character-

izes sets of quantum states and the corresponding transformers for depicting quantum
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operations on this representation. For example, a very recent work [CCL
+
23] intro-

duced a novel approach using tree automata to craft an assertion checker. Its algebraic

representation of quantum states proves effective in sidestepping the inaccuracies as-

sociated with working with floating-point numbers.

Supporting quantum abstraction or local reasoning. Readers may notice that

the Unitary rule has no advantage over the direct multiplication of density matrix,

which is the strongest postcondition computation and requires matrices of size expo-

nential in the number of qubits. To avoid direct full-blown quantum simulation, it is

possible to apply quantum abstraction or local reasoning to improve the effectiveness

of our logic. On the one hand, we may develop a similar abstract operation [YP21]

that preserved the general Galois connection to shrink the size of matrix multiplica-

tion at the cost of losing some information. On the other hand, a promising idea is

to combine the recently developed quantum separation logic [ZBH
+
21] and incorrect-

ness separation logic [RBD
+
20] for classical programs, that is to determine the extent

to which local reasoning is feasible for quantum programs from the incorrect point of

view. Compared with classical local reasoning, the main challenge is how to deal with

the entanglement between subsystems, which is a unique phenomenon in quantum

programs. Under certain conditions, one possibility is a frame rule below.

⊢ [𝑃]𝑆 [𝜖 :𝑄]
⊢ [𝑃 ⊗ 𝑅]𝑆 [𝜖 :𝑄 ⊗ 𝑅]

Supporting quantum noise and quantum control We do not mention the quan-

tum noise in our modified language (Def. 3.1). It would be more practical to incorpo-

rate noise estimation such as Gleipnir [TSY
+
21] and [HHZ

+
19] into the incorrectness

logic. Another limitation is that we consider quantum programs with classical con-

trols rather than quantum controls. The semantics for quantum controls would be

more complex and fuzzy, and we need to build a new explanation of semantics and

quantum predicates to establish any practical proof rules.
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Approximate Quantum Relational Hoare logic

Quantum predicates as observables. Projections have been initially utilized as

predicates to establish quantum Hoare logic for reasoning about the correctness of

quantum programs in [ZYY19]. They were also adopted in the quantum relational

Hoare logics [BHY
+
19, Unr19] to justify equivalence between two quantum programs.

In our robust relational reasoning, we also employ projective predicates instead of

observables [DP06b]. Generally speaking, projective predicates are less expressive

than observables, but they are more user-friendly for the analyzer to provide suitable

propositions. Projective predicates simplify the verification of judgments by trans-

forming them into boolean inferences. Our work needs to investigate whether observ-

ables may better characterize approximate reasoning. We may expand the judgment

defined in 4.12 in the following manner.

Definition 6.1 (General Validity). The judgement ⊨ 𝑆1 ∼𝛿 𝑆2 : 𝐴 ⇒ 𝐵 holds if

for any lifting 𝜌1 ∼𝐴 𝜌2 with 𝜌 being the corresponding witness, then there exits an

witness 𝜎 for lifting ⟦𝑆1⟧(𝜌1) ∼𝛿𝐵 ⟦𝑆2⟧(𝜌2) such that

Tr(𝐴𝜌) ≤ Tr(𝐵𝜎) + Tr(𝜌) − Tr(𝜎)

where 𝐴 and 𝐵 are observables.

Quantum differential privacy. In our earlier discussions, we mentioned that our

work is an extension of the relational Hoare logic [BHY
+
19] to an approximate version

inspired by reasoning for differential privacy [DMNS06, BKOZB13]. To capture the

exponential and Laplacian mechanisms of differential privacy, a skew-parameterized

𝛼-distance

Δ𝛼 (𝜇1, 𝜇2) = max

𝑓 :𝐴→[0,1]
Δ𝛼 (𝜇1𝑓 , 𝜇2𝑓 )

is introduced to measure the distance between two distributions 𝜇1 and 𝜇2 inD(𝐴). In

contrast, our work uses the standard trace distance to measure the difference between

quantum states in a general setting. In [HRF22], Hirche et al. [SW13] introduced the
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quantum hockey-stick divergence 𝐸𝑟 (𝜌, 𝜎)

𝐸𝑟 (𝜌, 𝜎) = D(𝜌, 𝛼𝜎) + 1

2

(1 − 𝛼)

to reason about quantum differential privacy introduced in [ZY17]. It might be possi-

ble to design a specific relational logic for quantum differential privacy by introducing

a symmetric 𝛼 distance

Δ𝛼 (𝜌, 𝜎) = max

0≤𝑃≤𝐼
{Tr(𝑃 (𝜌 − 𝛼𝜎)),Tr(𝑃 (𝜎 − 𝛼𝜌)), 0}

based on the hockey-stick divergence. Similarly, we canmaintain the triangle inequal-

ity

Δ𝛼𝛼 ′ (𝜌1, 𝜌3) ≤ Δ𝛼 ′ (𝜌2, 𝜌3) + 𝛼′Δ𝛼 (𝜌1, 𝜌2)

Δ𝛼𝛼 ′ (𝜌1, 𝜌3) ≤ Δ𝛼 (𝜌1, 𝜌2) + 𝛼Δ𝛼 ′ (𝜌2, 𝜌3)

and contractility

Δ𝛼 (E(𝜌1), E(𝜌2)) ≤ Δ𝛼 (𝜌1, 𝜌2)

for any trace-preserving quantum operations E, which are essential for designing

useful relational proof rules.

Applications for hybrid system. Our logic could be more useful if we extend

our theory to the hybrid system, i.e., programs with quantum and classical variables.

Quantum-classical hybrid systems allow for the exploitation of quantum advantages

while leveraging the existing classical computing infrastructure. A unified language

of both quantum and classical effects may bring advantages in hybrid program anal-

ysis [VLRH23]. Particularly, we are interested in applying it to the construction and

verification of quantum cryptographic proofs and ensuring the correctness of opti-

mized quantum compilers specifically designed for NISQ (Noisy Intermediate-Scale

Quantum) devices. Last but not least, it is interesting to incorporate recently de-

veloped tools such as quantum abstract interpretation [YP21] and quantum separa-

tion logic [ZBH
+
21] to design over-approximation techniques [Yan07]. Another in-

teresting technique is the Context-Free-Language Ordered Binary Decision Diagrams
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[SCR23], which may serve as a backend representation and manipulation technique

in studying quantum Hoare logics.
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