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ABSTRACT

Spatial-Temporal Representation Learning

for Traffic Forecasting

by

Changlu Chen

Traffic forecasting is the cornerstone of the Intelligent Transportation System

(ITS). Accurate traffic prediction can effectively promote traffic management and

urban planning. This task is challenging due to the dynamic and complex spatial-

temporal correlations in the time-evolving traffic network. Spatially, the traffic

conditions of nearby locations have a dynamic influence on each other. Temporally,

the traffic conditions exhibit elusive patterns due to various external factors such as

weather, rush hour, weekends, holidays, etc. With the development of deep learn-

ing, spatial-temporal representation learning has become the mainstream approach

to traffic forecasting tasks. This thesis investigates techniques for learning effective

spatial-temporal representation for traffic forecasting systems. The exploration is

motivated by the following challenges that could hinder the further development of

spatial-temporal representation learning for enhancing the final forecasting perfor-

mance.

1. The diverse complexity of spatial-temporal representation learning. The com-

plexity of diverse forecasting tasks is non-uniformly distributed across various

spatial locations (e.g. suburb vs. downtown) and temporal steps (e.g. rush

hour vs. off-peak).

2. The data scarcity and imbalance in traffic forecasting datasets. For example,

the temporal observations of traffic accidents exhibit ultra-rareness due to the

inherent properties of accident occurrences. This leads to the severe scarcity

of risk samples for comprehensive representation learning.



3. The under-exploration of frequency domain spatial-temporal representation

learning. The spectral features could provide potential compensation for the

time domain representation learning.

4. Distribution shift in the non-stationary traffic data. Despite the recent success

of deep neural networks in spatial-temporal forecasting, existing methods suffer

from distribution shifts between the training and test data, failing to address

the non-stationary and abrupt changes at test time.

To solve the above challenges, this thesis proposes four models for various traffic

forecasting applications, ranging from traffic flow, traffic accident, and traffic de-

mand forecasting. All of these methods aim to explore challenging spatial-temporal

representation learning for enhancing traffic forecasting performance. Specifically,

we first propose a Bidirectional Spatial-Temporal Adaptive Transformer (Bi-STAT)

for accurate traffic flow forecasting, which devises the recurrent mechanism with a

novel Dynamic Halting Module (DHM) to dynamically learn the spatial-temporal

representation in the traffic streams according to their complexities. Secondly, we

propose a contrastive learning approach with the multi-kernel networks, to learn

the traffic accident representation under temporal scarcity and imbalanced spatial

distribution. Then, we design a novel embedded 2D spectral learning framework to

explore the traffic features in the frequency domain. Lastly, we propose a novel test-

time training framework for spatial-temporal representation learning to alleviate the

distribution shift in traffic data.

We conduct comprehensive experiments with real-world traffic forecasting datasets

to corroborate the superiority of all the models over the state-of-the-art baselines,

and also with extensive ablation studies to demonstrate the effectiveness of the dif-

ferent modules.
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Chapter 1

Introduction

1.1 Background

1.1.1 Urban Traffic Forecasting

The rapid growth of urbanization and modernization has propelled us into the

era of smart cities, wherein Intelligent Transportation System (ITS) plays an in-

dispensable role. The advancement of mobile internet and position technology has

significantly increased the accessibility of extensive traffic data, making traffic fore-

casting an essential component of ITS [116].

Accurate traffic forecasting provides practical insights that are crucial to intelli-

gent urban planning and effective traffic management, with applications spanning a

diverse range of scenarios. For instance, foreseeing traffic flow in advance facilitates

seamless route planning, helping avoid heavy congestion during commuting. Ac-

curate traffic demand forecasting is paramount for car-sharing companies, enabling

them to allocate resources efficiently to high-demand areas and curbing potential

resource waste. Additionally, traffic accident forecasting plays a crucial role in pre-

venting possible disasters, safeguarding lives, and protecting properties. The explo-

ration and anticipation of future traffic conditions is of great significance not only

for public safety stakeholders but also for transportation administrators, individual

drivers, and travelers alike.

Traffic forecasting aims to predict traffic conditions (e.g. traffic flow, traffic

demand, traffic accident, etc) at the target spatial locations and future temporal

steps based on historical observations, which are recorded by both physical and
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Figure 1.1 : Traffic forecasting aims to predict future traffic conditions from histor-

ical observations.

virtual sensors spreading across the target areas. It is a very challenging task because

traffic data is spatial-temporal data consisting of spatial correlations from various

locations and temporal correlations from different time steps. The space and time

dimensions are intertwined with each other, leading to the complex and dynamic

spatial-temporal correlations, as shown in Figure 1.2.

Spatially, different locations have various dependencies with each other, where

the nearby regions might tend to have close relationships, while the geographically

distant regions might also have high correlations due to similar semantic function-

ality. For the same location pairs, the spatial correlations among them dynamically

change with time evolving. For example, the correlations between the working place

and the apartment are different in the morning and evening.

Temporally, traffic data have inherent periodicity and show diverse patterns ac-

cording to the peak or off-peak hours, holidays, etc. The short-term temporal cor-

relations from chronologically close time steps can have a strong influence on the

target future time step. Meanwhile, the long-term temporal correlations can also be

critical for future forecasting because of the time delay in some traffic states. For
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example, the impact of traffic accidents or congestion can last over a long range of

future time steps, which is an important factor for temporal correlation modeling.

Besides, the traffic conditions exhibit elusive patterns due to various external fac-

tors such as weather information, Point of Interests, road construction, etc. The

Locations

Spatial correlations

Temporal correlations

Ti
m

e

Figure 1.2 : The correlations between different locations and different time steps are

dynamic.

core assumption behind spatial-temporal traffic forecasting is that a location’s fu-

ture conditions are influenced by its historical conditions as well as its neighbors’

historical conditions. Thus, spatial-temporal representation learning is an essential

component in traffic forecasting.

In early studies, statistical models such as Historical Average (HA) [101], au-

toregressive integrated moving average (ARIMA) [102] and VAR [133] and their

variants [59, 69, 83] are proposed to perform the traffic forecasting task. However,

these traditional methods can not achieve competitive forecasting performance due

to the following factors:

• They make stationary and independent assumptions on traffic data, thus fail-

ing to capture the dynamic and inter-correlated relations in real-world traffic

data.



4

• They exploit limited features of accident data, ignoring various contextual

factors that contribute to the diverse traffic patterns.

• They mainly concentrate on univariate data processing, while in real-world

tasks, there are more spatial-temporal data with multiple input variables.

• They focus on short-term forecasting problems with most of them only dealing

with one-step forecasts, which can not perform the longer-term forecasting

with multi-horizon ahead of the present time step.

1.1.2 Spatial-Temporal Representation Learning

Spatial-temporal representation learning is of critical importance to traffic fore-

casting tasks. The emerging deep learning techniques provide a promising al-

ternative to urban traffic forecasting, due to its capability to extract discrimi-

native features and capture complicated dynamic correlations. Therefore, an as-

sortment of deep network architectures have been applied to learn the complex

spatial-temporal correlations in traffic sequences. Specifically, Convolutional Neu-

ral Networks (CNNs) [53] can capture the detailed and local spatial-temporal fea-

tures by processing and aggregating the context information from a small neigh-

borhood. However, the limited receptive field restrains them from capturing long-

range spatial-temporal dependencies. Graph Convolutional Networks (GCNs) [51]

have been pervasively applied to capturing the complex dependencies in multivari-

ate spatial-temporal data. However, they suffer from the inherently static graph

architecture, which prevents them from developing time-evolving dependencies in

traffic networks. Recurrent Neural Networks (RNNs) [20, 88] are naturally power-

ful for learning the sequential features in traffic data, but they suffer from error

propagation issues due to the reliance on the last hidden state. Furthermore, Trans-

formers [91] can effectively capture the long-range dependencies benefiting from

the self-attention mechanism, which dynamically attends to each position in the
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sequence and aggregates the most contributing features to generate the final repre-

sentation. Nonetheless, the blind similarity comparison has caused an unnecessary

computation burden, which is prohibitively expensive for long sequences.

1.2 Research Objectives

This thesis aims to promote spatial-temporal representation learning to enhance

the performance of urban traffic forecasting. The quality of spatial-temporal repre-

sentation plays a pivotal role in the performance of traffic forecasting. Specifically,

the spatial correlations among different locations in the traffic network, the temporal

correlations among multiple time steps of different ranges, as well as the intertwined

spatial-temporal dependencies that can be captured during the spatial-temporal rep-

resentation learning are the most contributing factors for future forecasting. This

thesis is motivated by the following challenges in spatial-temporal representation

learning, which hinder existing methods from becoming more efficient and accurate

traffic condition predictors:

• Firstly, the diverse complexity in spatial-temporal representation learning is

non-uniformly distributed across various spatial locations (e.g. suburb vs.

downtown) and temporal steps (e.g. rush hour vs. off-peak). For example,

spatially, traffic flow in urban areas witnesses higher values and more complex

patterns compared to that of rural areas, which shows simpler and smoother

patterns. Temporally, the rush hour flow, oscillating frequently, is harder to

predict than the off-peak traffic patterns with a stable and simple pattern. If

the tasks with diverse complexities are dealt with the same learning strategy,

the detailed and fluctuated patterns will not be fully captured, while the simple

ones might face the overfitting problem and excess computing resources, which

can hinder the further development of spatial-temporal forecasting learning.
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To address this challenge, we propose a Bidirectional Spatial-Temporal Adap-

tive Transformer (Bi-STAT) for accurate traffic forecasting. Bi-STAT adopts

an encoder-decoder architecture, where both the encoder and the decoder

maintain a spatial-adaptive Transformer and a temporal-adaptive Transformer

structure. A recurrent mechanism with a novel Dynamic Halting Module

(DHM) is proposed to incorporate into each Transformer to dynamically pro-

cess the traffic streams according to their task complexities. In this way, this

model can effectively enhance spatial-temporal representation learning by as-

signing more computation resources to more complex patterns and less to sim-

pler ones, which helps achieve a balance between performance and efficiency

in traffic forecasting tasks.

• Secondly, the data scarcity due to the infrequent occurrences of specific traffic

states such as traffic accidents brings a great challenge to spatial-temporal

representation learning. For example, the dominant number of zeros in traffic

accident data not only makes it difficult for the deep networks to be sufficiently

trained, but it can also easily lead the representation learning biased to the

non-accident forecasting result. Although some works have focused on dealing

with this challenge, most of them use prior knowledge to design the strategy

without incorporating it into spatial-temporal representation learning.

To solve this challenge, this thesis designs a novel contrastive learning ap-

proach, which leverages the periodic patterns to derive a tailored mixup strat-

egy for accident sample augmentation. This way, the contrastively learned fea-

tures can better represent the accident samples, thus capturing higher-quality

spatial-temporal representations for forecasting.

• Thirdly, although spatial-temporal representation learning has been exten-

sively investigated in the time domain, frequency domain representation learn-
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ing, which aims to learn the spectral features in the Fourier Transform data,

is far less explored in the traffic forecasting domain. This gap in research

may lead to an information loss, given that spatial-temporal data inherently

comprises a time sequence with multiple frequency components. For example,

the high-frequency component can represent the transient fluctuations while

low frequencies are the smooth trend of traffic patterns. Besides, the spectral

bias [7,78] in the deep neural networks makes the high-frequency components

of input variations underexplored.

To solve this challenge, we aim to design a model to explore the spatial-

temporal representation learning in both the time and frequency domain, to

make the spectral features complementary to the temporal features for better

exploration of traffic data. Specifically, we design an embedded 2D spectral

learning framework. Firstly, a well-devised spectral embedding function is

employed to encapsulate both the low-frequency and high-frequency signals

of the multivariate input. Secondly, we model the temporal variations and

multivariate feature interactions as two effective dimensions in the frequency

domain. The 2D Fourier transform is directly applied along both dimensions

followed by Fourier domain representation learning to extract more intrinsic

patterns for traffic forecasting.

• The final challenge is that, although extensive efforts are devoted to rep-

resentation learning during the training stage, existing methods suffer from

distribution shifts between the training and test data, failing to address the

non-stationary and abrupt changes at test time. The influence of the distri-

bution shifts in spatial-temporal representation learning is more severe due to

the natural gap between the training and testing data caused by the temporal

evolution.



8

To solve this challenge, we propose a novel test-time training framework for

spatial-temporal forecasting. Instead of employing a fixed trained model, we

adapt the trained model by learning directly from test data with potential

shifts, which could mitigate the gap between the spatial-temporal representa-

tion in training and testing data to promote the forecasting results. To im-

plement test-time training on spatial-temporal data, we devise a bidirectional

cycle-consistent architecture consisting of a forward and a backward cyclic net-

work. Each network has a shared encoder and two direction-aware decoders.

At the test time, two self-supervised auxiliary tasks (forward→backward and

backward→forward reconstruction) are proposed to adapt the trained model

without accessing the target labels. We only access the first sample in the test

data to avoid the information leak.

1.3 Contribution

The contributions of this thesis are summarized as follows:

• This is the first work to dynamically tackle the traffic forecasting problem

according to the unique spatial-temporal complexity, which is realized by the

proposed Bi-STAT method. We design a novel Dynamic Halting Module to

parsimoniously assign the essential computation load for each task. It dynami-

cally terminates the iterative running of the recurrent Transformer, thus being

flexible and parameter-efficient. In contrast to existing methods, we simulta-

neously recollect past traffic conditions and predict future traffic conditions.

This design is coherent with the brain mechanism and further improves the

traffic forecasting performance.

• We propose the first attempt to apply contrastive learning to the traffic ac-

cident forecasting problem. By utilizing intrinsic periodic patterns of acci-

dent data, we integrate the mixup algorithm into the contrastive framework
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seamlessly to address the temporal rareness challenge. We devise a delicate

Multi-kernel CNN structure to explicitly capture the multi-granularity spatial

correlations, thus addressing the spatial imbalance challenge.

• This is the first work to develop a 2D spectral learning model for multivariate

spatial-temporal prediction, which can leverage spectral information from not

only the temporal variations but also the multivariate feature interactions.

We devise a novel spectral embedding function to capture diverse frequency

components of the multivariate input data and thus alleviate the spectral bias

of deep networks. We formulate spatial correlation learning as an optimiza-

tion problem to exploit the global spatial correlations of the citywide traffic

network.

• To the best of our knowledge, this is the first test-time training framework for

spatial-temporal representation learning, which can adapt the trained model to

unseen test data with unexpected distribution shifts. We propose a novel bidi-

rectional cycle-consistent structure to perform test-time training. By enforcing

the cycle consistencies across the forward and backward cyclic networks, test-

time training is effectively conducted without accessing target labels. The

designed structure intertwines four relevant training tasks to jointly optimize

the model and bridge the training and test-time training stages.

• Extensive experiments and ablation studies are conducted on various real-

world traffic datasets, and state-of-the-art performance has been achieved to

verify the superiority and effectiveness of each component of the proposed

methods.

1.4 Thesis Organization

This thesis is organized as follows:
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• Chapter 2: This chapter presents a survey of spatial-temporal representation

learning consisting of CNNs, GCNs, RNNs, and the Transformer, as well as

the applications that apply these models to achieve urban traffic forecasting

tasks.

• Chapter 3: This chapter proposes a bidirectional Spatial-temporal adaptive

Transformer (Bi-STAT) for accurate traffic forecasting model, which aims to

automatically control the computation resources assigned according to differ-

ent complexity of spatial-temporal forecasting tasks.

• Chapter 4: This chapter presents RiskContra, a contrastive learning approach

with multi-kernel networks, to forecast the Risk of traffic accidents.

• Chapter 5: This chapter designs a novel embedded 2D spectral learning frame-

work for exploring spatial-temporal forecasting in the frequency domain.

• Chapter 6: This chapter proposes a novel test-time training framework for

spatial-temporal forecasting, which aims to mitigate the distribution shifts

widely spread in the time series data between the training and testing stage.

• Chapter 7: The final chapter provides a summary of the thesis, as well as the

potential future work in the spatial-temporal forecasting domain.
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Chapter 2

Literature Survey

2.1 Spatial-Temporal Representation Learning

Due to the limitations of the statistical methods in dealing with the complex

and non-linear spatial and temporal correlations in real-world traffic datasets, deep

learning has become the dominant approach to traffic forecasting tasks, which is

attributed to its powerful capabilities to represent hierarchical patterns and dis-

criminative features. Specifically, CNNs, GCNs, RNNs, and Transformers (Fig. 2.1)

are representative deep networks that have been widely adopted by most of the

existing spatial-temporal forecasting and traffic forecasting applications. The com-

bination of these models from spatial and temporal correlation modeling serves as

the building block for most existing spatial-temporal forecasting models. Thus, it

is fundamentally important to understand how these deep networks work from a

spatial-temporal modeling perspective.

2.1.1 Convolutional Neural Networks

CNNs have been one of the most popular models in the community of image pro-

cessing and computer vision [26, 29, 53], which were originally designed for dealing

with image datasets to extract inherent invariant local neighboring relationships.

Different from the regular-shaped image datasets, traffic data with spatial and tem-

poral dimensions can not be directly fed into the CNNs. Thus, the researchers con-

vert the traffic network at different time steps into regular-shaped maps and divide

them into multiple grids representing different regions. For example, [95, 118, 123]
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(b) GCNs

(c) RNNs (d) Transformers

(a) CNNs

Figure 2.1 : The representative spatial-temporal representation learning networks.

partitioned a target city into I ×J grids based on the longitude and latitude (I and

J are the lengths of the grid map). In this way, CNNs can be applied to capture

the spatial dependencies at a local level and learn representations that are shared

across different regions. They have been proven successful in leveraging the inherent

spatial structure of traffic data for accurate predictions and are widely used in the

field of traffic forecasting.

CNNs mainly consist of three different kinds of neural network layers, which are

the convolution layer, the pooling layer and the fully connected layer respectively.

We review quickly about the main task of each layer as follows:

• The convolution layer plays a crucial part in extracting the dominant features

from input data. Specifically, they employ a certain-sized kernel to the data

and perform the convolution on it, which is the sum of total element-wise

products.
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• The pooling operation is applied to reduce the size of data, which can ef-

ficiently speed up the learning and prevent possible overfitting issues. The

most commonly used versions of pooling are average pooling which computes

the mean value of data in the given window and max pooling which outputs

the max value instead.

• After the feature extraction through the convolutional layers, the outputs are

fed into the fully connected layers, also known as dense layers, to obtain the

final results. Notably, the data from the convolutional and pooling layers will

be flattened before entering into the fully connected layers.

Except for learning the spatial dependencies in grid traffic data, recent works

have demonstrated the effectiveness of applying specific convolutional techniques to

the temporal modeling problems [27]. Different from the 2-dimensional spatial con-

volution, temporal convolution is only operated through the time dimension to carry

out the non-linear transformation. Specifically, the causal convolution is commonly

adopted to deal with time series datasets [4,8,71], in which convolutional filters are

revised to adopt only the previous information with future steps masked for more

reasonable forecasting intuition.

A great challenge will emerge when directly applying the standard convolutional

networks to long-range time series datasets, which will cause a heavy computational

burden. The reason can be attributed to the limited receptive field of CNNs with

only the specific kernel size to be operated at one time, and this will hinder the

CNNs from capturing long-term temporal relationships. A solution is to adopt the

dilated convolutional layers in the CNN architectures to reduce the computation

cost [4,71]. By skipping values with a certain step while sliding over the input data,

it can exponentially enlarge the receptive field with the layer depth increasing.

Given a 1-dimensional data temporal input x ∈ RT and a convolution filter
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f ∈ RK , the dilated causal convolution can be represented as:

x ⋆ f(t) =
K−1∑
s=0

f(s)x(t− d× s) , (2.1)

where ⋆ is the convolution operator and d is the dilation factor to control the skipping

steps.

2.1.2 Graph Convolutional Networks

Although CNNs have proven highly effective for grid-structured data, they face

challenges in handling irregular graph-structured data, such as road networks, where

nodes (entities) can have varying degrees and non-uniform connections. Thus, the

application of CNNs to traffic forecasting is limited to modeling the correlations in

the Euclidean space, which leads to unsatisfying forecasting performance without

consideration of graph connections in the traffic network.

Aiming to extend the CNNs to the non-Euclidean space, GCNs provide a frame-

work to extend convolutional operations to graph-structured data. They enable

nodes in a graph to aggregate information from neighboring nodes, accommodating

variations in connectivity and degree.

The core component of a GCN is the graph convolutional layer, which is defined

as follows [51]:

f(H(l), A) = σ(D̂− 1
2 ÂD̂− 1

2H(l)W (l)) , (2.2)

where A is the adjacency matrix, Â = A+ I with I being the identity matrix and D̂

is the diagonal node degree matrix of Â, W (l) is a weight matrix for the l-th neural

network layer, H(l) is the hidden representation learned from the l−th layer of GCN,

and σ(·) is a non-linear activation function such as the ReLU.

In this way, traffic forecasting can be conditioned on the traffic network and

the convolution can learn the correlations among regions in the non-Eulidean space.

Formally, a traffic network is represented by a graph G = (V , E , A), where V is the
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set of nodes representing the traffic locations, |V| = N is the number of sensors, E

is the set of edges reflecting the correlations among different regions and A ∈ RN×N

is the adjacent matrix of the graph to measure the proximity between nodes (i.e.

spatial correlations).

The adjacency matrix of the graph is usually computed from the distances among

the nodes in the traffic network by the thresholded Gaussian kernel as follows:

Aij =


exp(−dist(vi,vj)

2

δ2
), i ̸= j and dist(vi, vj) ≤ ϵ

0, otherwise.

(2.3)

where Aij represents the edge weight between the node pair vi and vj, dist(vi, vj)

represents their distance in the traffic network. δ and ϵ are thresholds parameters.

Although GCNs are widely applied in traffic forecasting tasks, the graph struc-

ture is static, which violates the dynamic spatial correlation in time-varying traffic

networks, Arguing that the graph structure in spatial-temporal forecasting should

not be static, Thus, some more recent literature proposed the self-adaptive adja-

cency matrix, which does not rely on prior structural knowledge and is learned

end-to-end in the forecasting model. Specifically, two randomly initialized node em-

bedding matrices are multiplied to infer the spatial dependencies between each pair

of nodes:

Âadapt = Softmax(ReLU(E1E2
T ) . (2.4)

where E1 and E2 respectively represent the node embedding to be learned in the

model.

2.1.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are specifically proposed to model sequen-

tial data, such as the sequences of words in natural language processing (NLP)

tasks, the audio data in speech recognition problems, and time series in forecasting
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problems. All of these problems share a common property that they have temporal

dependencies with time evolving. RNN-based models have the natural superiority to

capture this kind of dynamic correlation over variable periods, which the traditional

feed-forward neural networks cannot take into account.

Generally, the core component of an RNN cell is a central memory state that

integrates the past information into a compact summary. Then, this memory state

receives the newly observed input at each current time step to update its information

recursively.

Different from CNNs which need to specify the explicit window to look back

at neighboring time steps, RNNs process signals in a sequential fashion, and this

significantly increases the receptive field of the model. Although having made a lot

of achievements in the sequence learning domain, conventional RNNs have a noto-

riously limited capacity to be trained on long sequences on account of the gradient

vanishing and exploding problem. Specifically, as the number of layers increases, the

gradient becomes null in practice, which heavily hinders the back-propagation mech-

anism during the learning process of the neural network. This is why these standard

RNNs can only perform well on the short-term sequences and fail to achieve good

results on the long sequences which need to be memorized about the information at

all the time steps.

LSTM

The emergence of long short-term memory recurrent neural networks (LSTMs) [88]

sheds light on tackling the gradient vanishment challenge, which revises the architec-

ture of the original recurrent neural network by employing three functional gates to

selectively memorize the important relevant information and simultaneously aban-

don the useless information. To be specific, these gates are referred to as the forget

gate Gf , the update gate Gu, and the output gate Go respectively, according to their
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different functionality. As names imply, the forget gate is used to control whether

the information should be neglected or kept for further use. Concretely, if the value

from the forget gate is close to 0, then the corresponding past information should be

forgotten while a value of approximately 1 is a signal for important information to

remain. Besides, the update gate is devised to decide whether to update the central

memory state according to the new information. Note that the central memory is

refreshed by activating both the forget and update gates. The output gate controls

the final input to the next hidden cell considering all the given conditions.

The information from historical hidden states and present inputs are fed into

the sigmoid function to obtain all of the gate values and into the tanh function to

attain the new information for the update step. We formulate all these procedures

in the following equations to formalize the definition of LSTM:

zt = tanh(W [ht−1, xt] + b) , (2.5)

ct = zf × ct−1 + zu × zt , (2.6)

ht = zo × tanh(ct) , (2.7)

zf = σ(Wf [ht−1, xt] + bf ) , (2.8)

zu = σ(Wu[ht−1, xt] + bu) , (2.9)

zo = σ(Wo[ht−1, xt] + bo) , (2.10)

where Wf , Wu, Wo Wc, bu, br, bo, and bc are respectively the weights and bias for

the forget gate, update gate, output gate, and memory cell.

GRU

The Gated Recurrent Unit (GRU) is an improved version of LSTMs for efficiently

dealing with long-term memory sequence learning in recurrent neural networks. It

was first proposed in [20] and referred to as a simplification of LSTMs to make up

for its deficiency of high computational burden. GRU is widely applied to various
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fields and has proven to be more robust and useful than other variants of RNNs.

The major difference between the GRU and LSTM exists in the way they apply

the gate, which is the key to success for the GRU to effectively capture long-range

dependencies. Specifically, the GRU owns two gates compared to the three gates

in LSTMs, which leads to the major differences between the two RNN variants,

more powerful and effective for the LSTM and simpler and more computationally

efficient for the GRU. The two gates are the relevance gate zr and update gate zu.

Similarly to the gates in LSTM, the update gate decides for the ct central memory

about whether to be updated by the candidate memory state z and the zr gate

measures the relevance between the last and current memory state to compute the

next candidate for memory state. Formally, GRU is defined in the following:

zu = σ(Wu[ct−1, xt] + bu) , (2.11)

zr = σ(Wr[ct−1, xt] + br) , (2.12)

zt = tanh(Wc[zr × ct−1, xt] + bc) , (2.13)

ht = ct = zu × zt + (1 − zu) × ct−1 , (2.14)

where Wu, Wr, bu, br, Wc, and bc are respectively the weights and biases for the

reset gate, update gate, and memory state.

2.1.4 Transformer

The development of attention mechanism [91] provides a promising way for mod-

eling the long sequences, which was originally devised in the NLP domain to enrich

the embedding of each word with the surrounding context in a sentence. The atten-

tion mechanism dynamically builds the relation according to the similarity between

each word and all of the remaining words in the same sentence. Then it gathers

the information from the most relevant context to extract better meaning from each

word for the subsequent tasks.
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The Transformer model is the successful employment of the self-attention mech-

anism as a non-local operation in an encoder-decoder architecture to process a se-

quence of data. It is widely applied to various domains including NLP, image classifi-

cation, and video representation. The main reason for the Transformer’s dominance

and widespread popularity across various domains is its capability to attend to crit-

ical context information. In contrast to the RNN-based methods, the Transformer

has a larger receptive field which enables it to access any distant part of histori-

cal information, which endows it with great capability to capture the complex and

dynamic dependencies in the long-range sequences.

Conceptually, multi-head attention in the Transformer model is a key-value

lookup based on a given query, which takes the following form:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO , (2.15)

headi = Attention(QWQ
i , KWK

i , V W V
i ) , (2.16)

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V , (2.17)

where WO, WQ
i , WK

i and W V
i are the weight parameters, h is the number of head,

and dk is the dimension of key.

Due to the similarity of sequential language data and the time series data, the

attention mechanism can be naturally applied to the time series forecasting tasks

with significant improvement [24, 47, 57, 128]. By dynamically allocating weights

to different time steps, the attention mechanism allows time steps in a sequence

to be aware of its important historical context, which significantly promotes fore-

casting performance. Furthermore, by applying the attention mechanism to both

the spatial and temporal dimensions respectively in traffic data, Transformer-based

traffic forecasting models have been successfully developed [9, 12, 33, 62, 107, 127].

These methods provide a significant gain in forecasting performance over the other

deep neural networks such as convolutional networks and recurrent networks-based
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forecasters, which can account for the advantage of the attention mechanism to selec-

tively attend more to important parts and capture more useful latent representations

in the historical data for better forecasting performance.

2.2 Applications in Urban Traffic Forecasting

In the early stage, statistical models such as Historical Average (HA) [101], au-

toregressive integrated moving average (ARIMA) [102] and VAR [133] were proposed

to perform the traffic forecasting task. However, these traditional methods strug-

gle to capture the complex nonlinear spatial-temporal correlations hidden in the

large-scale traffic streams.

Recently, the development of deep learning [53] provides a promising direction to

solve this problem because of its capability to extract discriminative features and the

ability to capture complicated spatial-temporal correlations [44,75,120]. Therefore,

an assortment of deep neural networks are applied to the traffic forecasting problem,

such as RNNs [88,108], GCNs [16,51], CNNs [53], attention and Transformers [91].

RNNs [88] have a natural superiority in modeling sequential dependencies and thus

have been widely applied to traffic prediction problem [3,60,63,73,117,119].

2.2.1 Recurrent Neural Networks

In particular, LSTM and GRU are two popular RNN variants that have been

adopted to learn the temporal dependencies of the traffic streams, which are incor-

porated in an encoder-decoder architecture where spatial correlations are learned

by GCNs, CNNs, or attention. For example, [119] utilizes the ConvLSTM structure

to model long-term trends and short-term variations of the mobile traffic volumes.

ST-MetaNet [73] employs GRU as a concrete example of RNNs in their method

to encode the temporal dynamics of urban traffic. [118] designs different ConvL-

STM modules for different regions to simulate the spatial heterogeneity of traffic
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accidents. [131] adopts a multi-task learning scheme that employs traffic volume

prediction as an auxiliary task for minute-level traffic accident forecasting. [95] de-

signs a CNN-GRU module to capture the geographical spatial-temporal correlations

and a GCN-GRU module to explore the semantic spatial-temporal correlations. [113]

decomposes spatial demand into multiple bases and integrates them by a heteroge-

neous recurrent model to achieve joint prediction.

2.2.2 Convolutional Neural Networks

CNNs have also been recently applied to time-series prediction problems, such

as temporal convolution networks. Compared with RNNs, CNNs can be easily com-

bined with GCNs to jointly model the spatial and temporal patterns, which is more

suitable for traffic forecasting. For example, GraphWaveNet [106] develops an adap-

tive dependency matrix to complement the potential dependency that may be lost in

a fixed graph matrix. And they also employ the dilated causal convolution to capture

long-range temporal sequences. STGCN [115] is the first study to apply convolu-

tional structures to capture both spatial and temporal patterns. It is designed to be

a multi-convolutional block architecture that employs the graph convolutional layers

and convolutional sequence layers to model the spatial and temporal dependencies,

respectively.

2.2.3 Graph Convolutional Networks

Traffic forecasting is not a simple time-series prediction problem, it also involves

a complicated spatial traffic network. The traffic network is constructed by all the

locations in the target city, which have irregular and elusive inter-dependencies. To

effectively model the spatial correlations among roads, GCNs [51] have been in-

troduced in traffic forecasting [2, 3, 17, 56, 60, 86, 105, 106, 111, 115]. For example,

DCRNN [60] re-formulates the spatial dependency in traffic forecasting as a diffu-

sion process on a directed graph, which is specifically achieved by the bidirectional
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random walks on the graph.

To break the constraints of the pre-defined static graph, AGCRN [3] devises two

adaptive modules and incorporates them into a GRU model to form a unified traffic

forecasting model. Therefore, it can capture node-specific spatial and temporal cor-

relations in the traffic streams. [23] aims to localize spatial-temporal graph models

by sparsitying spatial graph adjacency matrices in the adaptive spatial-temporal

GNN models to achieve full localization. It can effectively reduce the computa-

tion burden on large-scale spatial-temporal data and thus enable the distributed

deployment of adaptive spatial-temporal GNNs. [35] proposes a spatial-temporal

GNN model that fuses positional, topological, and temporal information into rich

inductive node representations through a combination of gated Lipschitz embed-

dings with LSTMs, which proves more expressive than message-aggregation-based

spatial-temporal GNNs. Instead of following the assumption that the spatial correla-

tions among regions are static, [58] targets time-aware spatial dependency learning.

They propose a spatially evolving graph convolution module to perform location

representation learning by time-aware self-supervised learning with evolving con-

straints. [45] proposes a Meta-Graph Learning scheme for spatial-temporal graph

learning, which is incorporated into a Graph Convolutional Recurrent Network to ex-

plicitly address the heterogeneity and non-stationarity problems in traffic data. [42]

also targets the spatial-temporal heterogeneity caused by the time-varying traffic

distributions. It proposes a Spatial-Temporal Self-Supervised Learning framework

for traffic prediction, which is built based on temporal and spatial convolutions,

with the attribute- and structure-level graph data augmentation designed for con-

ducting two self-supervised auxiliary tasks. [97] designs a channel-wise CNN and

multi-view GCN to capture both the local geographic and global semantic depen-

dencies for traffic accident forecasting. [2] conducts multi-step passenger demand

forecasting by stacking GCNs in a hierarchical way to extract spatial correlations
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and employing a temporal attention mechanism to capture the dynamic influence of

historical features. [31] proposes to model the spatial-temporal dependencies of bike

flows by a sparse representation with graph regularization to preserve the common

structure of inputs. [114] proposes a GCN-based architecture with a different self-

learned adjacency matrix incorporated into each layer of the model, and the hidden

spatial states are integrated into an RNN model to capture the dynamic spatial and

temporal correlations.

2.2.4 Transformer

Transformer [91] has been widely used in various spatial and temporal applica-

tions. The core building block of the Transformer is the attention mechanism, which

is able to dynamically learn the adaptive correlations between the input features and

gather the auxiliary information from the most contributing ones for output fea-

tures. Compared with RNNs, Transformer enjoys more efficient computation due

to the parallelization-in-time mechanism, while RNNs require iterative computation

along time steps. This way, Transformer can better handle the long sequence mod-

eling than RNNs and avoid the gradient exploding and vanishing problems. Due

to the prominent sequence modeling ability, Transformer has been applied to the

traffic forecasting problem recently [9, 12, 33, 62, 107, 127]. These works either de-

sign task-specific attention modules similar to Transformer or directly utilize the

Transformer architecture. Specifically, ASTGCN [33] employs a spatial-temporal

attention mechanism to learn the dynamic spatial-temporal correlations of traffic

data. [40] leverages the heterogeneous contextual knowledge and utilizes the atten-

tion mechanism to capture the temporal correlations for traffic accident forecast-

ing. STTNs [107] proposes a spatial transformer to dynamically model directed

spatial dependencies and a temporal transformer to capture the long-range tempo-

ral dependencies over time. To model the periodicity inherent in the time series,
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Traffic Transformer [9] proposes a deep learning model to capture the continuity

and periodicity in the time series, where the spatial dependencies are captured by

the GCN model and Transformer is leveraged to model the temporal dependencies.

GeoMAN [62] proposes a multi-level attention mechanism based on an encoder-

decoder architecture. The encoder consists of two different spatial attentions to

model the local and global relations, while the decoder consists of a temporal at-

tention to model the dynamic temporal correlation between different time intervals.

GMAN [127] proposes a graph multi-attention network for traffic prediction, which

follows the encoder-encoder architecture in the transformer and applies it to both

the spatial and temporal dimensions to capture the dynamical dependencies. To

avoid the large accumulative errors brought by the autoregressive decoding of the

canonical Transformer model, NAST [12] proposes a query generation block mod-

ule between the encoder and decoder to generate queries for the spatial-temporal

Transformer decoder. TrafFormer [46] integrates the spatial and temporal features

into a Transformer model. It designs a spatial-temporal correlation matrix to allow

each time step to interact with each other in just one step to capture the complex

inter-dependencies in traffic data. PDformer [43] applies self-attention with two

graph masking matrices designs to highlight the short-term and long-term dynamic

spatial dependencies. Besides, a traffic delay-aware feature transformation module

is proposed to solve the time delay during the propagation of traffic states between

different locations. Besides capturing the spatial and temporal correlations, [126]

proposes a Transformer model to capture the cross-dimensional correlations among

different features in multivariate time series.
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Chapter 3

Bidirectional Spatial-Temporal Adaptive

Transformer for Urban Traffic Flow Forecasting

3.1 Introduction

Due to the complicated and dynamic spatial-temporal correlations, traffic fore-

casting is modeled as a spatial-temporal graph modeling problem [100, 106], where

all sensors on the roads constitute a spatial-temporal graph to represent the evolv-

ing traffic conditions. In order to predict the future traffic condition of each node,

recent studies on spatial-temporal graph modeling mainly integrate graph convolu-

tion networks (GCNs) [51] with different time-series models, i.e., recurrent neural

networks (RNNs) [3,60], convolution neural networks (CNNs) [66,106,115,122,123],

and Transformer [12,33,62,107,127]. Both the graph structure and the present traffic

condition are incorporated for future condition prediction. While existing methods

show the effectiveness of modeling the spatial-temporal dependency, two intrinsic

properties of the traffic forecasting problem are overlooked, which hinders existing

methods from becoming more efficient and accurate traffic condition predictors.

First, the complexities of diverse forecasting tasks are imbalanced with respect

to both spaces (e.g. suburb vs. downtown) and times (e.g. rush hour vs. off

peak). As shown in Figure 3.1, the traffic flow of road 1 (in downtown) exhibits

higher values and more complex patterns compared with those of road 3 (in suburb).

Meanwhile, for a specific road, the rush hour flow, oscillating frequently, is harder

to predict than the off peak flow, which shows a stable and simple pattern. As a

result, the imbalanced task complexity poses considerable difficulties for accurate
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Figure 3.1 : The traffic forecasting tasks exhibit imbalanced complexities across

varying spaces and times. (1) Downtown (e.g. road 1) shows higher values and

more complex patterns than suburb (e.g. road 3). (2) The rush hour oscillates

wildly while the off peak shows a stable and simple pattern.

traffic forecasting. However, existing methods allocate equal computation load to

all tasks regardless of their spatial-temporal complexities. Consequently, important

details are neglected for complex tasks due to limited computation while excessive

computation loads are wasted for simple tasks. Thus, a dynamic and adaptive

computation model is required to address the aforementioned issues.

Second, the recollection of past traffic conditions plays an important role in the

prediction of future traffic conditions. Recent neuroscience studies [70,81] find that

remembering the past and predicting the future are intimately linked in a common

brain network. This intuition is also verified and incorporated in various practi-

cal fields, such as Natural Language Processing (NLP) [21], and video representa-

tion [132]. However, in traffic forecasting, existing methods only focus on the future

prediction task, ignoring the effect of past recollection. Since the traffic forecasting

model is usually trained in one period and tested in another period, only consider-

ing the future prediction will cause the model to overfit the training period. This

issue can be alleviated by the incorporation of the past recollection task, which will

26
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prevent the model from aggressively fitting the future prediction and bring extra

context information for consistent prediction.

Motivated by the two properties, this chapter proposes a Bidirectional Spatial-

Temporal Adaptive Transformer (Bi-STAT) for accurate traffic forecasting. Specif-

ically, Bi-STAT targets at the traffic flow forecasting problem, which exhibits the

dynamic varying spatial-temporal patterns of the traffic flow information shown

in Figure 3.1. Bi-STAT is designed to be an encoder-decoder architecture. Each

encoder (decoder) maintains a spatial-adaptive Transformer to model the spatial

dependency and a temporal-adaptive Transformer to capture the temporal pattern,

which are then entangled to explore the spatial-temporal correlation. To address

the first property, each Transformer is devised to dynamically process the traffic

streams according to the varying task complexity. Specifically, we first utilize the

recurrent inductive bias of RNNs to perform iterative computation with shared pa-

rameters. Then a novel Dynamic Halting Module (DHM) is devised to estimate the

required computation for each task and terminate the computation when necessary.

The recurrent design is parameter-efficient, while the DHM is flexible and efficient

by parsimoniously assigning the essential computation load for each task. To cope

with the second property, at training time, we employ two independent decoders to

perform the present→past recollection task and the present→future prediction task,

respectively. The recollection task provides extra context information and serves

as a regularizer to prevent the prediction task from excessively fitting the future

stream. It is notable that we remove the DHM module in our recollection decoder.

The reason is that we count on this DHM in the future prediction decoder to dy-

namically allocate the computation resources for better learning the future traffic

representation. By contrast, we only need the past recollection decoder to serve as

a simple regularizer by learning the historical traffic representation. The different

mission of the two decoders lead to the difference in architecture design, which al-
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lows our model to focus more on the target future prediction task and achieve better

performance gains.

3.2 Method

3.2.1 Problem Formulation

We target at the multi-step traffic flow forecasting problem, i.e. predicting the

future traffic flow conditions of multiple time steps simultaneously.

Different from time-series prediction tasks, traffic forecasting is conditioned on

the traffic network. Formally, a traffic network is represented by a graph G =

(V , E , A), where V is the set of nodes representing the traffic sensors, |V| = N is the

number of sensors, E is the set of edges, and A ∈ RN×N is the adjacent matrix of

the graph to measure the proximity between nodes (i.e. spatial correlations).

Based on the traffic network, we can define the traffic flow forecasting prob-

lem for all N sensors. At first, different from existing traffic forecasting models

which only utilize the present traffic data to predict the future traffic conditions,

we adopt both the historical traffic sequences XH = (X1, X2, . . . , XH) ∈ RH×N×d

and the present traffic sequences X P = (XH+1, XH+2, . . . , XH+P ) ∈ RP×N×d. Here,

H and P stand for the historical and present time steps respectively, d denotes

the number of features in traffic conditions (e.g. traffic flow, traffic speed, etc.),

which is 1 in our method to only represent traffic flow. Based on XH and X P ,

our goal is to predict the conditions of future F time steps, denoted as X F =

(XH+P+1, XH+P+2, . . . , XH+P+F ) ∈ RF×N×d. To achieve this goal, we train a model

f parameterized by θ to predict an approximation of X F as follows:

X̂ F = fθ(XH ,X P ;G) . (3.1)

To be consistent with existing methods, at testing time, we only utilize X P and

G for prediction. The effect of XH is to regularize the model f and provide extra
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context information at training time.

Figure 3.2 : The framework of the Bidirectional Spatial-Temporal Adaptive Trans-

former (Bi-STAT). Bi-STAT consists of an encoder, a prediction decoder, and a

recollection decoder. In both the encoder and prediction decoder, we realize the

task-adaptive computation (spatially and temporally) by the recurrent mechanism

with a novel Dynamic Halting Module (DHM). The recollection decoder performs

the past reconstruction task to provide extra context information and regularize the

future prediction model.

3.2.2 Framework Overview

The overview of the Bidirectional Spatial-Temporal Adaptive Transformer (Bi-

STAT) framework is shown in Figure 3.2.

There are three sources of inputs in our traffic forecasting problem: the traffic

network (spatial context), the time feature (temporal context), and the present

L ×

Recurrent Updating
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traffic streams (input feature), which we will elaborate in the next subsection.

After pre-processing and feature embedding, we input embeddings to the encoder.

The encoder contains multiple layers with each layer maintaining a spatial-adaptive

Transformer, a temporal-adaptive Transformer, and a Dynamic Halting Module

(DHM) architecture. In the encoder, the task-adaptive computation is realized by

the recurrent Transformer computation with the DHM to dynamically control the

number of computation steps and integrate the weighted sum of the output from the

Transformer. After that, the spatial and temporal features are entangled to capture

the inter-dependencies among the traffic nodes at different times.

Bi-STAT contains two decoders. The prediction decoder shares the same archi-

tecture with the encoder and is used for future traffic condition prediction. The

recollection decoder has a simpler structure without the DHM and serves as the

regularizer to prevent the prediction decoder from aggressively fitting the future

traffic conditions. Between the encoder and decoder, we design the cross-attention

module, which models the direct relationship between each future (past) time step

and all the present time steps. This design disconnects the links among different

future (past) time steps, which has a potential effect of mitigating the notorious

error propagation issue in the traffic forecasting problem.

3.2.3 Pre-processing and Input Embedding

In this subsection, we describe the three kinds of inputs mentioned in 3.2.2 in

detail. The utilization of the spatial and temporal context information enables

our model to be aware of the spatial-temporal surroundings of the prediction task.

Moreover, these contexts offer important clues for the spatial-temporal complexity

of the prediction task, which can be captured by our model to dynamically assign

the computation load based on task complexity.
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Spatial Context

We first construct the traffic network G. Specifically, we calculate all the pair-

wise Euclidean distances among all the traffic sensors in the traffic network. These

distances then form the adjacent matrix A of the graph. To convert the graph nodes

(i.e. traffic sensors) to feature embeddings, we adopt the widely-used node2vec [30]

approach. With node2vec, the graph nodes are represented by the spatial embedding

SE. Since SE is static, we feed it into a two-layer fully-connected neural network

to obtain the learnable spatial embeddings SE ∈ RN×D.

Temporal Context

To build the temporal context, we employ two important temporal signals: hour

in a day and day in a week. These two signals offer both short-term and long-term

context information for the traffic prediction task. For example, the rush hour and

weekend are strong signals to influence the short-term and long-term temporal evo-

lution. In particular, a day is divided into TD time steps and a week is divided into

7 days. They are then encoded as one-hot vectors of dimension RTD and R7, respec-

tively, which are concatenated as RTD+7 and fed into a two-layer fully-connected

neural network. For different traffic sequences XH ,X P , and X F , we get the corre-

sponding temporal embedding as TEH ∈ RH×D, TEP ∈ RP×D, and TEF ∈ RF×D

respectively.

Input Feature

It is the original present traffic sequence X P ∈ RP×N×d. We also utilize a two-

layer fully-connected neural network to align the dimension with the spatial and

temporal embeddings SE and TEP . After that, we get X P
1 ∈ RP×N×D.

With all the spatial embedding SE, temporal embedding TEP , and input feature
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Figure 3.3 : The Spatial-Temporal Adaptive Transformer Architecture

X P
1 at hand, we can obtain the final input embeddings E ∈ RP×N×2D as follows:

E[i, j, :] = Concat(X P
1 [i, j, :] , SE[j, :] + TEP [i, :]) , (3.2)

3.2.4 Spatial-Temporal Adaptive Transformer

To effectively capture the spatial-temporal correlation and patterns from the

traffic sequences, we propose a Spatial-Temporal Adaptive Transformer (STAT) as

shown in Figure 3.3. Specifically, we devise a spatial Transformer and a temporal

Transformer to process the spatial input and temporal input, respectively. Before

the spatial (temporal) input are fed into the spatial (temporal) Transformer, the

position embedding and recurrent embedding are incorporated to provide the con-

text information (e.g. sensor identity, time step, recurrent step). Specifically, the

Transformer is composed of the Multi-Head Attention, layer Normalization with

residual design and Transition Function. After the spatial Transformer and tem-

poral Transformer processing, we further design an Entangle module to model the

inter-correlations between the spatial and temporal sequences.

Before describing the Transformer details, we first discuss the design choice for

dynamic computation. A straightforward design for dynamic computation is to first

expand multiple sequential Transformer layers and then dynamically control the

number of layers according to the task complexity. However, this design has two
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disadvantages. First, directly expanding the Transformer layers will linearly increase

the parameter number. If a large computation load is required, the Transformer will

be inefficient in terms of parameter number and become unaffordable. Second, with

dynamic computation, the deeper layers will receive less training data than the

shallower layers, being less effective. To address these issues, we propose a different

design in this chapter. Specifically, we utilize the recurrent inductive bias of the

RNNs, which performs recurrent Transformer updating with shared parameters. For

dynamic computation, we devise a Dynamic Halting Module (DHM) to control the

number of recurrent updating steps (which will be described in the next subsection).

This design enjoys the efficiency of the recurrent parameter-sharing mechanism and

the flexibility of the dynamic computation by the DHM.

In the following, we first describe how to adapt the existing position embedding

of Transformer to handle the recurrent Transformer updating. Then, we describe the

architecture of Spatial Transformer, Temporal Transformer, and Entangle module,

respectively.

Position Embedding and Recurrent Embedding

In the original design of Transformer, position embedding is devised to contain

the relative position information of the sequence. Formally, the position embedding

is computed as follows:

PE(p, 2i) = sin(p/100002i/D) , (3.3)

PE(p, 2i + 1) = cos(p/100002i/D) , (3.4)

where p is the position index and i is the dimension of the embedding. In order to

incorporate the recurrent step information into the Transformer, we devise a two-

dimensional (position, step) coordinate embedding. For the positions 1 ≤ p ≤ T
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and recurrent steps 1 ≤ m ≤ M , the coordinate embedding is computed as follows:

PEm
p,2i = sin(p/100002i/D) + sin(m/100002i/D) , (3.5)

PEm
p,2i+1 = cos(p/100002i/D) + cos(m/100002i/D) . (3.6)

In Eq. 3.5 and Eq. 3.6, the first sin / cos calculates the position embedding, while the

second sin / cos computes the recurrent embedding indicating the recurrent compu-

tation step.

Temporal-adaptive Transformer

Attention is the core component of Transformer. In this chapter, we use the

scaled dot-product attention. Formally, the attention function combines queries Q,

keys K and values V as follows:

Attention(Q,K, V ) = Softmax
(QKT

√
D

)
V , (3.7)

where D is the number of columns of Q, K and V . A widely-used variant of attention

in Transformer is the multi-head attention with k heads, i.e.

MultiHeadAttention(Hm) = Concat(head1, . . . , headK)WO (3.8)

where headi = Attention(HmWQ
i , HmWK

i , HmW V
i ) . (3.9)

Here, Hm stands for current state features with m denoting the recurrent computa-

tion step, WQ
i ∈ RD×D/k,WK

i ∈ RD×D/k, and W V
i ∈ RD×D/k.∗

To include the recurrent inductive bias of RNNs into Transformer, we perform

recurrent updating for the Transformer state Hm. Specifically, at recurrent step m,

we update the state Hm as follows:

Hm = LayerNorm(Am + Transition(Am)) (3.10)

where Am = LayerNorm((Hm−1 + PEm)+

MultiHeadAttention(Hm−1 + PEm)) , (3.11)

∗The input layer weight dimensions are R2D×D/k since E ∈ RP×N×2D.
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where LayerNorm(·) [1] is the layer normalization adopted to accelerate the training

of model, Transition(·) is the transition function that consists of two affine transfor-

mations with a ReLU activation between them.

Spatial-adaptive Transformer

The spatial-adaptive Transformer owns a similar structure as the temporal-

adaptive Transformer, but has two differences in order to capture the spatial de-

pendencies among traffic sensors.

First, the position embedding is different. In temporal-adaptive Transformer,

the position embedding represents the time steps of the traffic sequences so that p

ranges from 1 to T , 1 ≤ p ≤ T (e.g. T = P for the present sequence X P ). For

spatial-adaptive transformer, we utilize position embedding to encode the sensor

identities, i.e. 1 ≤ p ≤ N .

Second, the effective self-attention dimension in Transformer is different. For

temporal-adaptive Transformer, we reshape X P to RN×P×D where N is the batch

dimension, P is the self-attention dimension for the temporal correlation. While

for spatial-adaptive Transformer, X P is reshaped to RP×N×D, where P is the batch

dimension and N is the self-attention dimension for the spatial correlation.

Entangle Module

The spatial-adaptive Transformer and the temporal-adaptive Transformer re-

spectively capture the spatial dependencies and temporal patterns in their own

models. However, due to the complexity of the traffic forecasting problem, the

spatial dependencies and the temporal patterns are usually entangled to exhibit

complicated spatial-temporal correlations. For example, the rush hour of a down-

town road will show the common patterns of both the downtown area spatially and

the rush hour temporally.
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Let HS and HT denote the features after the spatial Transformer and temporal

Transformer, respectively. We first utilize a linear model with sigmoid activation to

obtain the entangle gate g as follows:

g = σ(HSWS + HTWT + bg) , (3.12)

where WS ∈ RD×D,WT ∈ RD×D and b ∈ RD are learnable parameters, and σ(·)

is the sigmoid activation. Then, the spatial features and temporal features are

combined as

H = g ⊙HS + (1 − g) ⊙HT , (3.13)

where ⊙ denotes the element-wise product.

3.2.5 Dynamic Halting Module (DHM)

As described above, we utilize the recurrent updating for Transformer layers to

realize the parameter-sharing recurrent computation. The recurrent mechanism in-

creases the computation load to solve difficult and complex prediction tasks while it

also keeps the parameter number unchanged, thus being parameter-efficient. How-

ever, the disadvantage is that the large computation load will be a waste for simple

prediction task. To solve this issue, we propose a Dynamic Halting Module (DHM)

to parsimoniously assign the necessary computation load according to the task com-

plexity.

To be aware of the spatial-temporal task complexity, the initial input of DHM

requires to contain the spatial context, the temporal context and the input feature,

which coincides with the input embeddings E obtained in section 3.2.3. Moreover,

since the DHM is applied to control the recurrent computation of Transformer, we

should also include the position embedding and recurrent embedding to inform the

DHM the current status of the recurrent computation. Through this analysis, we

find that the Transformer state at a specific recurrent step, Hm, contains all the
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aforementioned context information to evaluate the spatial-temporal task complex-

ity. Thus we directly utilize Hm for the DHM.

Note that spatial and temporal Transformer own different DHMs. Here, we take

the DHM attached to temporal Transformer as an example. Specifically, at each

recurrent step m, given Hm, we first calculate the halting probability pm as follows:

pm = σ(HmWh + bh) , (3.14)

where Wh ∈ RD, bh ∈ R1, and pm ∈ RP indicates the halting unit for all the P

present sequences. Let pmi stand for the i-th sequence in particular. To determine if

the computation step for the i-th sequence should be stopped to save the resource,

we accumulate the halting probability over the m′ recurrent steps as
∑m′

m=1 p
m
i . The

stopping criteria is defined as follows:
stop for sequence i, if m = M or

m′∑
m=1

pmi >= 1 − ϵ

continue, otherwise

(3.15)

where M is the maximum number of recurrent steps used to rigidly limit the com-

putation costs, ϵ is a small constant to allow halting after a single recurrent step if

p1i >= 1 − ϵ.

With Eq. 3.15, we can define the real computation steps for each sequence i and

the remainder value R(i) as follows:

N(i) = min{M,min{m′ :
m′∑

m=1

pmi ≥ 1 − ϵ}} , (3.16)

R(i) = 1 −
N(i)−1∑
i=1

pmi . (3.17)

From Eq. 3.16, we see that the expected recurrent steps will be probably smaller

than M .

To make full use of the halting probability, we utilize the weighted state features
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to represent Hm

HT [i] =

N(i)∑
i=1

pmi H
m[i] . (3.18)

According to this weighted state representation, the halting probability not only

controls the dynamic computation, but also re-weights the feature learning proce-

dure.

3.2.6 Cross Attention Module

In sequence prediction tasks, a common strategy is to chronologically predict

the sequence step by step and employ the prediction result from the previous step

as the input of prediction for the next step. This manner, however, will cause the

notorious error propagation effect between different prediction steps in the long term

prediction, which has been observed in previous traffic forecasting work [3, 91, 107,

127]. To address this issue, we propose a Future-Present Cross-attention module

between the encoder and the prediction decoder, as well as a Past-Present Cross-

attention module between the encoder and the recollection decoder, respectively.

The cross attention module directly models the relationship between each future

(past) time step and all the present time steps. Due to space constraint, we only

take the future-present module as an example and the formulation for the past-

present module is similar. Formally, given the present time steps Pi (Pi = 1, . . . , P ),

the future time steps Fi (Fi = 1, . . . , F ) and a sensor si, the spatial-temporal context

for step Pi and step Fi is SE[si, :]+TEP [Pi, :] and SE[si, :]+TEF [Fi, :], respectively.

We then model the correlation between future step Fi and present step Pi as

EP = SE[si, :] + TEP [Pi, :]

EF = SE[si, :] + TEF [Fi, :]

λsi
Fi,Pi

=
⟨EF , EP ⟩√

D

λsi
Fi,Pi

=
exp(λsi

Fi,Pi
)∑P

Pj=1 exp(λsi
Fj ,Pi

)
, (3.19)
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where f is a fully-connected layer followed by the ReLU activation. With the

correlation, we can recalculate the input to the decoder HD ∈ RF×N×D as

HD[Fi, si, :] =
P∑

Pi=1

λsi
Fi,Pi

H[Pi, si, :] . (3.20)

3.2.7 Decoders and Loss Function

Prediction Decoder

As shown in Figure 3.2, the prediction decoder shares the same structure as the

encoder, with details described in section 3.2.4. The input to the prediction decoder

is the encoded future representation from the Future-Present Cross-attention Mod-

ule, where the correlations among the future time steps are isolated and each future

time step independently correlates to all the present time steps. This way, the error

propagation issue is alleviated.

Recollection Decoder

Previous traffic forecasting methods only employ the prediction decoder at train-

ing time. Due to the special property of the traffic forecasting problem, we can only

utilize data from the previous and present duration for model training and receive

data from the non-overlapping future duration for testing. This training and test-

ing inconsistency makes the prediction decoder easily overfit the training duration

and hard to generalize. On the other hand, according to recent neuroscience stud-

ies [70, 81], remembering the past plays an important role in the prediction of the

future.

According to above analysis, we propose a recollection decoder to endue our

model the ability to simultaneously predict the future and reconstruct the past. For

the architecture design, a straightforward design is to directly copy the prediction

decoder. However, this design has two potential issues. First, while the aim of the
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recollection decoder is to alleviate the overfitting issue of the prediction decoder, di-

rectly adopting the design of the complex predictor decoder will increase the overall

model parameters and further increase the overfitting. Second, if the recollection

decoder is as powerful as the prediction decoder, then the model will try to perform

the prediction and reconstruction task with the same efforts. This potential compe-

tition will interfere the future prediction task. Taking these into consideration, we

devise the recollection decoder to be a simple structure: spatial Transformer and

temporal Transformer without the DHM.

Loss Function

At training time, the overall losses include the historical reconstruction loss LH ,

the future prediction loss LF and the penalty loss LDHM from the DHM.

For LH and LF , we utilize the mean absolute error (MAE) between the ground

truth and the prediction (reconstruction) as follows:

LH =
1

H

H∑
t=1

|XH − X̂H | , (3.21)

LF =
1

F

F∑
t=1

|X F − X̂ F | , (3.22)

where X̂H and X̂ F denote the estimated reconstruction and the prediction made by

our model respectively.

For LDHM , it is utilized to balance the required computation load and the model

efficiency

LDHM = N(i) + R(i) . (3.23)

Since N(i) is an integer value ranging from 1 to M , it is not differentiable. In

practice we treat N(i) as constant and minimize R(i) instead.
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Table 3.1 : Dataset Statistics.

Dataset # of sensors Time duration

PeMSD3 358 09/01/2018 - 11/30/2018

PeMSD4 307 01/01/2018 - 02/28/2018

PeMSD7 883 05/01/2017 - 08/31/2017

PeMSD8 170 07/01/2016 - 08/31/2016

Finally, we can combine all the losses as

L = LF + αLH + βLDHM , (3.24)

where α, β are two regularization terms to control the effect of the recollection

decoder and the DHM.

3.3 Experiments

3.3.1 Datasets and Evaluation Metrics

Dataset Details. To demonstrate the effectiveness of our method, we conduct

experiments on four large-scale real-world traffic forecasting datasets: PeMSD3,

PeMSD4, PeMSD7, and PeMSD8. These datasets were collected by The California

Department of Transportation (Caltrans) through its freeway Performance Measure

System (PeMS) [11]. The detailed statistics of the four datasets are shown in Ta-

ble 3.1. Due to their scale, diversity, and rich traffic conditions, these datasets are

the most widely-used benchmarks for traffic forecasting problem [3,17,33,56,86,115].

Pre-processing and Data Splitting. Following recent methods [3, 17, 106, 127],

all the four datasets are aggregated into 5-minute windows to generate 12 data

points (time steps) per hour, and consequently 288 data points per day. Z-score

normalization is applied to the traffic data for more stable training. To make fair
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comparisons with existing methods, we chronologically allocate 70% of the data for

training set, 10% for validation set, and 20% for testing set. Note that the training,

validation and testing splits have no overlap in time duration.

Evaluation Metrics. We employ three commonly-used metrics [3,17,127]: Mean

Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute

Percentage Error (MAPE) to measure the performance of the prediction models.

3.3.2 Baselines

We compare the proposed Bi-STAT with the following baselines:

• DCRNN [60], which incorporates the diffusion convolution into the GRU mod-

ule for multi-step traffic forecasting.

• STGCN [115], which employs the graph convolutional layers and convolutional

sequence layers.

• ASTGCN [33], which employs the attention mechanism to capture the spatio-

temporal dynamic correlations.

• GraphWaveNet [106], which is constructed by the graph convolution layer

(GCN) and the gated temporal convolution layer (Gated TCN).

• STSGCN [86], which captures the localized spatial and temporal correlations

individually.

• STFGCN [56], which constructs spatial and temporal graphs and combines

them with a spatial-temporal fusion model.

• AGCRN [3], which designs two adaptive modules and incorporates them to a

unified GRU model.
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• Z-GCNET [17], which is a time-aware zigzag persistence based graph convo-

lutional networks.

• GMAN [127], which adopts an encoder-decoder structure to include multiple

spatial-temporal attention blocks.

• STTN [107], which incorporates spatial-temporal dependencies into the block

of spatial and temporal transformer to achieve more accurate traffic forecast-

ing.

• Traffic Transformer [9], which designs an encode-decoder architecture to con-

sistently model the spatial and temporal dependencies in the traffic time-series

by GCN and transformer respectively.

3.3.3 Experimental Setups

As described in Section 3.3.1, we pre-process the datasets to generate 12 data

points (time steps) per hour. At training time, we utilize the historical one-hour and

present one-hour traffic sequences as input and predict the future one-hour traffic

sequences. To be consistent with previous methods, at testing time, only the present

one-hour sequences are utilized for prediction. Specifically, we set all time steps to

12, i.e. H = 12, P = 12, and F = 12.

In our framework, the recollection decoder is mainly used for regularization and

providing auxiliary information, so its structure is relatively simple compared to the

encoder and the prediction decoder. In particular, the structure parameters involve

the number of Transformer layers L, the number of heads K in multi-head attention,

and the Transformer dimension D. For the recollection decoder, we set L = 1, K =

3, D = 8 on all the four datasets. For the encoder and the prediction decoder, we

set L = 2, K = 3, D = 8 on PeMSD4 and PeMSD8, and L = 1, K = 3, D = 8 on

PeMSD3 and PeMSD7. Moreover, we set a small loss weight α for the recollection
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decoder loss, i.e. α = 0.001 for PeMSD3 and PeMSD8, α = 0.01 for PeMSD4 and

PeMSD7.

For the Dynamic Halting Module (DHM), we have several parameters to adap-

tively adjust the computation steps, i.e. maximum recurrent steps M , the stopping

threshold ϵ, the penalty weight β for DHM loss. We empirically set these parameters

according to the validation set to balance the computation load and the accuracy.

In particular, M = 6 in all experiments (unless stated otherwise), ϵ = 0.001 for

PeMSD3 and 0.0001 for other three datasets, β = 0.001 for all datasets. Note that

our method does not rely on exhaustively tuning these parameters. Instead, they

are used to obtain a desired computation-accuracy balance. We will demonstrate

this in the following.

Our model is trained by the Adam optimizer with a learning rate of 0.001 for 100

epochs. The best model checkpoint is selected by the performance on the validation

set.

Table 3.2 : Comparison with the State-of-the-Art methods on four datasets regard-

ing three metrics (the smaller the better)

Model Backbone
PeMSD3 PeMSD4 PeMSD7 PeMSD8

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

STGCN [115] GCN 17.49 30.12 17.15 22.70 35.55 14.59 25.38 38.78 11.08 18.02 27.83 11.40

ASTGCN [33] GCN 17.69 29.66 19.40 22.93 35.22 16.56 28.05 42.57 13.92 18.61 28.16 13.08

STSGCN [86] GCN 17.48 29.21 16.78 21.19 33.65 13.90 24.26 39.03 10.21 17.13 26.80 10.96

STFGNN [56] GCN 16.77 28.34 16.30 19.83 31.88 13.02 22.07 35.80 9.21 16.64 26.22 10.60

Z-GCNETs [17] GCN - - - 19.50 31.61 12.78 - - - 15.76 25.11 10.01

GraphWaveNet [106] GCN 19.85 32.94 19.31 25.45 39.7 17.29 26.85 42.78 12.12 19.13 31.05 12.68

DCRNN [60] RNN 18.18 30.31 18.91 24.70 38.12 17.12 25.30 38.58 11.66 17.86 27.83 11.45

AGCRN [3] RNN 16.75 28.60 16.23 19.83 32.26 12.97 21.10 34.99 8.93 15.95 25.22 10.09

GMAN [127] Transformer 16.49 26.48 17.13 19.36 31.06 13.55 21.48 34.55 9.01 14.51 23.68 9.45

STTN [107] Transformer 16.11 27.87 16.19 19.32 30.79 13.15 21.05 33.77 8.94 15.28 24.25 9.98

Traffic-Transformer [9] Transformer 16.39 27.87 15.84 19.16 30.57 13.70 23.90 36.85 10.90 15.37 24.21 10.09

Bi-STAT (Ours) Transformer 15.30 25.80 15.46 18.53 29.96 12.37 20.28 33.24 8.50 13.58 23.08 9.21
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3.3.4 Comparison with the State-of-the-Art Methods

For a specific time step, the prediction can be generated from any previous one-

hour training sequences with an interval (a.k.a horizon) ranging from 1 to 12 steps.

The small interval (horizon) is nearer to the training sequences, thus

leading to a more accurate prediction. To be consistent with other methods,

we average the performance of all 12 intervals (horizons).

The overall comparison with nine state-of-the-art methods are shown in Ta-

ble 3.2. It is obvious that the proposed Bi-STAT outperforms all other baselines

with a large margin on all four datasets and three metrics. Among all the baselines,

AGCRN [3] and GMAN [127] perform relatively well. To be specific, AGCRN de-

signs two adaptive modules to learn the dynamic node-specific correlations and uti-

lizes RNNs for sequence prediction, while GMAN employs several spatial-temporal

attention blocks similar to Transformer. Our Bi-STAT beats both AGCRN and

GMAN with a large margin, corroborating the effectiveness against both RNNs-

based and Transformer-based strong competitors.

Table 3.3 : The effectiveness of the proposed Dynamic Halting Module (DHM) and

the recollection decoder regarding various horizons. Horizon stands for the interval

between training and testing sequences, e.g. horizon=3 means 15 minutes.

Model
Horizon=3 (15min) Horizon=6 (30min) Horizon=12 (60min) Average

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

Transformer 18.44 29.67 12.84 19.22 30.94 13.40 21.08 33.54 14.89 19.36 31.06 13.55

Transformer+Recollect 18.19 29.34 12.31 18.89 30.51 12.76 20.40 32.71 13.87 18.99 30.58 12.93

Transformer+DHM 17.87 28.96 12.19 18.55 30.08 12.67 19.91 31.95 13.89 18.62 30.10 12.78

Bi-STAT (Ours) 17.81 28.82 11.80 18.46 29.93 12.30 19.79 31.83 13.39 18.53 29.96 12.37
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3.3.5 Ablation Study

Effectiveness of the designed model components

We first investigate the effectiveness of the proposed Dynamic Halting Mod-

ule (DHM) and the recollection decoder. To begin with, a simple baseline is con-

structed by removing both the DHM and the recollection decoder from our Bi-STAT

model. We call this baseline model “Transformer” since only naive Transform-

ers are utilized here. Then we add the DHM into the baseline model and call it

“Transformer+DHM ”. Another variant model is the baseline model combined

with the recollection decoder, called “Transformer+Recollect”. Our model “Bi-

STAT” incorporates all the proposed components.

We conduct experiments on the PeMSD4 dataset and the results are shown in

Table 3.3. We can see that after introducing the recollection decoder (i.e. Trans-

former+Recollect), the performance is improved for all horizons and the average,

showing the effectiveness of the recollection decoder. This also verifies the regular-

ization effect of the recollection decoder to encourage the prediction model for better

generalization. Besides, incorporating the DHM into the Transformer (i.e. Trans-

former+DHM ) leads to large performance gains for all horizons and the average.

The result demonstrates the effectiveness of DHM which assigns adaptive compu-

tation loads according to task complexities. Our complete model, combining both

the recollection decoder and DHM, further improves the performance against each

single model, showing the complementary effect of the two devised components.

In-depth Analysis of the Dynamic Halting Module

We further perform an in-depth analysis into the Dynamic Halting Module

(DHM). At first, we study whether the performance improvements come from the

increased computation or from the adaptive computation mechanism. To ver-

ify this, we construct a baseline with fixed recurrent computation steps, called



47

Table 3.4 : The performance and efficiency comparison between DHM and the fixed

recurrent computation.

# Layers Model MAE RMSE MAPE (%) StepsS StepsT

L = 1

Transformer 19.48 31.01 13.48 1.0 1.0

Transformer+Recurrent 19.17 30.77 12.99 6.0 6.0

Bi-STAT (Ours) 18.62 30.13 12.82 1.1 4.1

L = 2

Transformer 19.36 31.06 13.55 1.0 1.0

Transformer+Recurrent 19.04 30.64 12.78 6.0 6.0

Bi-STAT (Ours) 18.53 29.96 12.37 2.4 2.8

“Transformer+Recurrent”. In contrast, our model “Bi-STAT” adopts the

DHM mechanism to adaptively stop the computation, resulting in fewer computa-

tion steps. Here, we calculate the average computation steps for the spatial Trans-

former and temporal Transformer, denoted by StepsS and StepsT. Also, we take

the number of Transformer layers into account, i.e. L = 1 and L = 2. The re-

sults on the PeMSD4 dataset are shown in Table 3.4. With 6 computation steps,

Transformer+Recurrent only slightly increases the performance. Our Bi-STAT em-

ploys fewer computation steps both spatially and temporally, but achieves much

better performance. This demonstrates that our method does not rely on the in-

creased computation to boost the performance. Instead, the adaptive computation

mechanism is the key to our success.

From Table 3.4, we also observe that the average spatial steps and temporal

steps are different. So we insert DHM into different positions of our model, i.e.

spatial Transformer of the encoder (EncoderS), temporal Transformer of the encoder

(EncoderT), and the prediction decoder (Decoder). The results on the PeMSD4

dataset are shown in Table 3.5. We can find that both the spatial and temporal

Transformer of the encoder are benefited from the DHM, verifying the effectiveness
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Table 3.5 : The effect of the DHM inserted into different positions of our model, e.g.

spatial Transformer of the encoder (EncoderS).

# Layers EncoderS EncoderT Decoder MAE RMSE MAPE (%) StepsS StepsT

L = 1

19.48 31.01 13.48 1.0 1.0

� 19.07 30.65 13.06 1.6 1.0

� 19.17 30.78 12.88 1.0 2.0

� � 18.97 30.44 12.74 1.6 2.1

� � � 18.76 30.16 12.91 1.2 3.7

L = 2

19.36 31.06 13.55 1.0 1.0

� 18.92 30.56 12.71 1.6 1.0

� 18.74 30.25 12.55 1.0 2.1

� � 18.70 30.15 12.40 1.2 4.0

� � � 18.62 30.10 12.78 2.5 2.8

of our model in coping with dynamic spatial-temporal task complexities. The DHM

also benefits the decoder, which means the adaptive computation is also important

for the accurate sequence reasoning. As to computation steps, our best model only

employs 2.6 steps by average, while the performance is much better than the naive

Transformer.

(a) MAE (b) RMSE (c) MAPE

Figure 3.4 : The performance comparison among different methods with varying

horizons on PeMSD4 dataset w.r.t three metrics.
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(a) Max recurrent steps (b) Loss weight for the recol-

lection decoder

(c) Penalty weight for the

DHM

Figure 3.5 : The influence of three parameters w.r.t two metrics.

Parameter Analysis

To further investigate the robustness and effectiveness of our Bi-STAT method,

we analyse the performance in terms of several related parameters.

Prediction performance w.r.t varying horizons. We compare with two competi-

tive methods, GMAN and AGCRN, by varying the horizon from 1 to 12, and show

the results in Figure 3.4. It can be observed that our method always outperforms

the other two methods with a large margin. This demonstrates our method can

generate accurate predictions for both the short-term streams (small horizon) and

long-term streams (big horizon).

The robustness to hyper-parameters. We study the influence of three parameters,

i.e max recurrent steps M , loss weight α for the recollection decoder, and penalty

weight β for the DHM.M and β control the maximum computation load available to

assgin to different tasks. α controls the regularization strength. From Figure 3.5, we

can observe that our method is stable to the parameter changes. For each parameter,

we choose the one that best reflects the performance-computation balance, e.g. M =

6, α = 0.01, β = 0.001.
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3.3.6 Visualization Results

In this subsection, we show some visualization results to provide a deep under-

standing of the mechanism of our method.

Figure 3.6 : The dynamic recurrent computation steps in different times (hours) of

a day and the corresponding ground truth flow.

Dynamic computation w.r.t different spaces and times

We first record all the recurrent computation steps of the spatial-adaptive Trans-

former and the temporal-adaptive Transformer during the testing process on the

PeMSD8 dataset. Then, we post-process these recurrent steps for a better visual-

ization. Temporally, we aggregate the recurrent steps of the temporal Transformer

by hour for 24 hours in a specific day (i.e. Aug 20th, 2016). The recurrent steps are

averaged for each hour and shown in the bar plot of Figure 3.6. Meantime, the cor-

responding ground truth flow is shown in the curve plot of Figure 3.6. It can be seen

that the dynamic recurrent steps assigned to each hour maintains a high degree of

consistency with the patterns of the ground truth flow (e.g. rush hour vs. off peak).

The rush hours with more complex traffic patterns are assigned with more recurrent

steps, while the off peaks with simple patterns are allocated with fewer recurrent

steps. This indicates that our Dynamic Halting Module (DHM) indeed learns an

effective model to adaptively assign the computation loads w.r.t the temporal task

complexities.

Similarly, we also aggregate the recurrent steps of the spatial Transformer corre-
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sponding to all sensors and the recurrent steps of some iconic sensors are shown in

Figure 3.7 (a). It can be observed that most sensors have a relatively small recurrent

steps (e.g. sensors 3 and 14). But there are also several sensors owing large recur-

rent steps (e.g. sensors 7 and 11). To further study the differences, we also plot the

traffic flow of four representative sensors. Form the Figure 3.7 (b), we can observe

that the oscillating patterns of sensor 7 and sensor 11 are much more complex than

those of sensor 3 and sensor 14. In this sense, it is reasonable for sensor 7 and sensor

11 to obtain large computation loads. This visualization verifies the effectiveness of

our model to assign dynamic spatial computation loads for different sensors.

(b) Traffic Flow Truth

Figure 3.7 : Different number of computation steps for different sensors at the same

time step and traffic flow truth for different sensors.

(a) Computation Steps
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(b) 60min

Figure 3.8 : The predicted traffic flow visualization on PeMSD4 for different predic-

tion intervals (a.k.a horizon).

Visualization for both short-term and long-term prediction

We show the visualization results of the predicted traffic flow on PeMSD4 dataset

for different prediction intervals in Figure 3.8. For both the short-term prediction

(5min) and the long-term prediction (60 min), our method can accurately gener-

ate the prediction sequences. The visualization is consistent with our quantitative

results in Table 3.2.

3.3.7 Computation Time

Finally, we compare the computation time of Bi-STAT with AGCRN, DCRNN

and GMAN on the PeMSD4 dataset. For the comparison methods, we use their

official code implementations. All methods are run on a server with Intel(R) Xeon(R)

E-2288G CPU and a NVIDIA Corporation TU102GL GPU. It can be observed that

AGCRN and DCRNN cost more computation time for both training and inference,

(a) 5min
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Table 3.6 : The computation time on the PeMSD4 dataset.

Model Training (s/epoch) Inference (s)

AGCRN 254.85 61.42

DCRNN 394.67 27.09

GMAN 230.55 11.41

Bi-STAT 239.21 13.33

due to the time-consuming process of the RNNs. In contrast, the transformer-based

methods, i.e. GMAN and Bi-STAT (ours) show the substantially improved efficiency

owning to the parallel and acceleration of the transformer architecture. Although

Bi-STAT costs slightly longer time than GMAN, it endows the model with the

adaptive and dynamic computation capability (by the well-devised DHM module).

Therefore, Bi-STAT yields more accurate predictions than GMAN, e.g. 29.96 vs

31.06 (RMSE).

3.4 Conclusion

In this chapter, we propose a Bidirectional Spatial-Temporal Adaptive Trans-

former (Bi-STAT) for the spatial-temporal representation learning to deal with the

urban traffic forecasting problem. Specifically, the model design is motivated by

two intrinsic properties of the problem that are overlooked by existing methods.

First, the imbalanced complexities of diverse forecasting problems require an adap-

tive computation model. Thus, we adopt the recurrent mechanism with a novel

Dynamic Halting Module (DHM) to parsimoniously assign the essential computa-

tion load for each task. Second, the recollection of past traffic conditions plays an

important role in the prediction of future traffic conditions. Therefore, we devise a

recollection decoder to reconstruct the past traffic streams, which can provide extra

context information for the future prediction task and serve as a regularizer to pre-
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vent the future prediction task from fitting aggressively. All the designed modules

are well incorporated to our Bi-STAT model. The experiments demonstrate the

effectiveness of each model component and our Bi-STAT model outperforms all the

state-of-the-arts with a large margin.
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Chapter 4

RiskContra: A Contrastive Approach to Forecast

Traffic Risks with Multi-Kernel Networks

4.1 Introduction

Traffic accidents have posed a serious threat to public safety due to the severe

destructiveness and negative impact. The casualty from traffic accidents all over

the world has amounted to over 1.3 million according to the World Health Organi-

zation (WHO) [72]. Thus, it is of vital importance to establish more effective traffic

accident forecasting systems, which could significantly protect lives and properties

from potential risks.

Traffic accident forecasting aims to predict the risk value of the latent traffic

accident that may occur in a target region (spatial) at future time steps (temporal)

given the historical traffic accident observations. Early works employ the statistical

or linear machine learning models such as SVM or ARIMA [102] to explore the traffic

accident patterns. However, they can hardly capture the complex and non-linear

spatial-temporal correlations in the traffic accident data. Thus, recent works [68,

95, 97, 131] resort to deep learning models to promote the forecasting performance

by taking advantage of the hierarchically deep and non-linear architectures, which

have achieved significant progress. Despite the effectiveness of these deep forecasting

methods, two challenges have greatly impeded the further improvement of existing

traffic accident forecasting models.

The first challenge is the ultra-rareness of the accidents distributed across the

temporal domain, i.e. the majority of the accidental risk value are zero due to the
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(a) Ultra-rare temporal distribution

Accident spot

(b) Imbalanced spatial distribution

Figure 4.1 : Two intrinsic challenges of traffic accident forecasting.

infrequency of an accident (Fig. 4.1(a)). This hinders the effective training of deep

neural networks, which requires sufficient examples to explore the data distribution

and fit the model parameters. Moreover, since the number of non-risk samples is

much larger than that of risk samples, the forecasting of traffic accidents will be

easily biased to non-risks rather than potential risks. This temporal rareness is-

sue, however, has not been well solved in previous works. To tackle this challenge,

we devise a novel contrastive learning approach, which customizes the mixup [121]

strategy to generate sufficient augmented risk samples for traffic accident forecast-

ing. Our customized mixup strategy leverages the periodic patterns inherent in

accident data. Specifically, we generate data augmentations by mixing two tem-

poral samples with the same daily stamp from a fixed interval (e.g. one week). If

either temporal sample is a risk sample, the generated sample will be labelled as risk

with a mixing score. With these augmented risk samples, the ratio gap between the

non-risk and risk samples is significantly reduced. Then, we utilize the generated
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risk/non-risk samples to construct the positive and negative pairs, on which the su-

pervised contrastive learning [50] is conducted. Equipped with contrastive learning,

the feature embeddings of risk samples will be more distinguishable from those of

non-risk samples, thus facilitating the accident forecasting performance.

The second challenge lies in the imbalanced spatial distribution of traffic acci-

dents, which exhibits diverse patterns of multiple granularities from region to re-

gion, as shown in Fig. 4.1(b). For example, an urban area with crowded traffic flows

may bear a higher risk compared to a rural counterpart with fewer vehicles, and a

district with underdeveloped traffic management systems may experience more acci-

dents than those equipped with advanced traffic monitoring systems. This challenge

is not well addressed by existing works. GSNet [95] used the Convolution Neural

Networks (CNNs) with a fixed kernel size to model the spatial correlation, which

only captured the local and single-granularity features due to the limited receptive

field. HeteroLSTM [118] modeled each region with a different ConvLSTM and adopt

an ensemble strategy to generate the final results, which is infexible and parameter

in-efficient. Different from these attempts, we design a delicate Multi-kernel CNNs

architecture to capture the multi-granularity spatial correlations for traffic accident

forecasting. In this architecture, the local, global, and point-wise convolution layers

are elegantly arranged in a unified model (Fig. 4.2). The local convolution layer

targets at regions with densely-distributed accidents, while the global convolution

layer focuses on regions with sparsely-distributed accidents. Moreover, the point-

wise convolution can conduct the dimension reduction to alleviate the computation

burden caused by the feature aggregation, thus guaranteeing the efficiency of the

multi-kernel networks.



58

4.2 Related Work

Contrastive Learning. Contrastive learning has shown remarkable successes in

various domains [14, 15, 37]. It aims to distinguish the semantically similar sam-

ples (positive pairs) from the semantically dissimilar samples (negative pairs) in the

latent space. Typically, SimCLR [14] employs data augmentations such as crop-

ping, color distortion and blurring to generate different views of image as positives.

MoCO [37] maintains the negative samples in a queue and employs the momentum

encoder to ensure the consistency of the queue. SimSiam [15] explores a stop-

gradient strategy to prevent contrastive learning from collapsing. Mixup [121] has

proved to be an effective data augmentation strategy in supervised learning, which

generates new samples by the convex interpolation of two different samples in both

the data and label space. Albeit simple, mixup has been adopted as an effective

regularization to mitigate the overfitting and improve the robustness of deep neural

networks [48, 92, 93]. However, this effective strategy has not been studied in the

context of traffic accident forecasting, which greatly suffers from the data lacking

and overfitting issues. Motivated by this, we devise a customized mixup strategy

to serve as an effective augmentation function in the proposed contrastive learning

approach.

4.3 Methodology

4.3.1 Problem Definition

In the traffic accident forecasting task, we are given the historical traffic accident

features {X1, X2, · · · , XT}, where Xt ∈ RW×H×D represents D-dimensional traffic

accident related features including accident risk, temporal features, POIs informa-

tion, taxi order, and weather information at time step t in all regions (which are

partitioned from grid map of the city under study with width W and height H).
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In addition, temporal features ET+1 (hour in a day, day in a week, and holiday) of

the future time step T + 1 is given. The aim is to predict the future accidental risk

values for all regions at time step T + 1:

YT+1 = Fθ({X1, X2, · · · , XT}, ET+1) , (4.1)

where θ is the model parameter, and YT+1 ∈ RW×H denotes the predicted risk values

for all regions.

4.3.2 Spatial-Temporal Accident Forecasting
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Figure 4.2 : The framework of RiskContra.

Multi-kernel Networks. Existing works employ CNNs, GCNs or Transformer to

capture the spatial correlations in spatial-temporal tasks [34,40,95,98,130]. However,

CNNs and GCN can only handle the local spatial proximity with a limited receptive

filed, and Transformer is inefficient to model large number of elements. Taking

both the model capacity and computation efficiency into account, we thus propose

the Multi-kernel networks that can capture the hierarchical spatial correlations to

address the spatial imbalance issue.
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We define a single-layer convolution module as follows:

f(X;W, b) = ReLU(W ∗ X + b) , (4.2)

where ∗ is the convolution operation, ReLU is the activation function, and W and b

are the parameters. Our Multi-kernel networks are composed of diverse convolution

modules targeting at regions with different spatial granularities (Fig. 4.2). We omit

the layer index l ∈ {1, 2, . . . , L} for simplicity.

First, we adopt the Point-wise CNN fP(·) to capture the intra-region spatial

representation. Besides, for the areas where risk is densely distributed across regions,

the geographical proximity is a contributing factor of traffic accidents. For example,

two spatially close roads in the busy commercial center tend to gain higher risks of

traffic accidents. To capture local correlations among the adjacent regions such as

road intersections and crowded streets, we design the Local CNN module fL(·)

with a small kernel size to explore their spatial proximity.

Moreover, geographically faraway regions may share similar accident patterns

due to similar POI distributions and temporal conditions. These semantic correla-

tions are critical for analyzing accidents caused by external factors, which can sig-

nificantly promote the forecasting performance. Thus, for these areas with sparsely

distributed risks, a Global CNN module fG(·) with a large kernel size is devised

in parallel to capture the spatial correlations among distant regions.

Except for the above parametric convolution modules, we also propose a non-

parametric Pooling-based module fpool(·), which has the potential to avoid the

overfitting issue of the parameterized modules.

To handle diverse regions, the concatenation operation Concat[·] is adopted to

fuse the output from different CNN modules to obtain a comprehensive feature

representation. However, the concatenation operation would increase the feature

dimension, thus inducing excessive computation burden especially for the CNN with
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a large kernel size. To overcome this drawback, we employ another set of point-wise

convolutions fP(·) to conduct the dimension reduction for computation efficiency.

At last, the output of the Multi-kernel Networks is represented as:

H = Concat
[
fP(X); fL(fP(X)); fG(fP(X)); fP(fpool(X))

]
. (4.3)

Temporal Transformer and Cross-Attention. The traffic accident condition is

tightly correlated to the historical observations. Both chronologically near (short-

term) and periodically distant (long-term) time intervals have a significant impact

on the target time step. Thus, we devise a Temporal Transformer module to dy-

namically capture both the long-term and short-term temporal correlations in traffic

accident. Specifically, the multi-head self-attention [91] is adopted, followed by the

dropout, layer normalization and a transition function (2-layer feed-forward net-

work) to obtain a more powerful representation.

To predict the risk of a future time step based on the historical spatial-temporal

features, we devise a cross-attention module to establish the correlation between

future and historical sequences. Specifically, we employ temporal features ET+1

(time of a day, day of a week, and holiday) of the target time step T + 1 as the

query to explore its correlation with the spatial-temporal features H from Eq. 4.3

at each historical time step. The attention score between T + 1 and each historical

time step t ∈ {1, 2, . . . , T} is computed:

att = Softmax (ReLU (WHH + WEET+1 + b)) , (4.4)

where WH ∈ R1×DH ,WE ∈ RT×DT , and b ∈ RT are weight and bias parameters.

Then the future representation aggregates the most relevant historical features ac-

cording to the attention score:

HT+1 =
T∑
t=1

attt ·Ht . (4.5)
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Prediction. For risk prediction, HT+1 is fed into a two-layer prediction head (Pred-

Head) to generate the final forecasting results: ŶT+1 = PredHead(HT+1).

4.3.3 Contrastive Learning with Mixup

Mixup as the Augmentation Function. To mitigate the ultra-rareness issue of

the risk samples, we design a customized mixup strategy as the augmentation

function to generate sufficient augmented risk samples. Inspired by the periodic

temporal pattern that exists in traffic accident data, we generate the augmented

samples through the convex combination of temporal samples xi and xj (with the

same daily time stamp) from a fixed time interval ∆ for both the features and labels

as follows:

Xmix = {λxi + (1 − λ)xj | ti − tj = ∆} , (4.6)

Ymix = {λyi + (1 − λ)yj | ti − tj = ∆} , (4.7)

where λ is the mixing coefficient to control the impact of two data sources. ∆

reflects the periodic patterns, e.g. ∆ = 1 denotes daily pattern and ∆ = 7 denotes

weekly pattern. If either xi or xj is a risk sample, then the generated sample will

be labelled as a risk sample. The mixed data could: (1) inherit the specific pattern

from the original accident data, with the mixed label simulating diverse risk values

of the future occurrence of potential accidents; (2) maintain the temporal schemes

such as hour of day and day of week in the original dataset, which is an important

factor in the traffic forecasting task; (3) significantly bridge the ratio gap between

the risk and non-risk samples to facilitate the risk representation in the following

contrastive learning.

RiskContra. After setting up the effective mixup augmentation function, we devise

a novel RiskContra approach that employs the augmented samples to tackle the

temporal rareness challenge.
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Firstly, we group the generated risk/non-risk samples into two disjoint positive

and negative sets according to their mixed risk values. Specifically, the samples with

the risk value larger than 0 are combined into the positive set, while those with the

risk value equal to 0 are combined into the negative set.

Then, both the positive and negative sets are fed into an encoder f(·) composed

of the Multi-kernel networks and the Temporal Transformer, and followed by a

projection head g(·) to obtain the latent embedding. Formally, the embeddings of

the positive and negative sets are produced as follows:

Zpos = {g(f(xi)) |xi ∈ Xmix,yi > 0} , (4.8)

Zneg = {g(f(xi)) |xi ∈ Xmix,yi = 0} . (4.9)

Finally, supervised contrastive learning is conducted in the latent embedding

space to encourage the similarity of all positive pairs from risk embeddings while to

discourage the similarity of all negative pairs:

LC = −
∑

zi∈Zpos

log

∑
zj∈Zpos

exp(sim(zi, zj)/τ)∑
zk∈Zpos∪Zneg

exp(sim(zi, zk)/τ)
, (4.10)

where sim(·) is instantiated by the cosine similarity, and τ is the temperature.

Benefiting from the mixup strategy, more augmented risk samples could be uti-

lized to prevent the contrastive learning from trivially overfitting the non-risk sam-

ples, which could significantly facilitate the accident forecasting performance by

learning better risk representation.

4.3.4 Loss Function

At training time, the overall loss includes the accident prediction loss LF and the

contrastive loss LC . Specifically, LF is computed as the mean square error between

prediction results and the ground truth:

LF =
1

W

1

H

W∑
w=1

H∑
h=1

(
Y [w, h] − Ŷ [w, h]

)2
, (4.11)
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where Y and Ŷ respectively denote the true traffic accident risk and the predicted

accident risk accident at target time T + 1, and W and H are the width and height

of the grid map covering all regions. The final loss is a combination of the two losses

with a regularization parameter α to control the impact of contrastive learning:

L = LF + αLC .

4.4 Experiments

Datasets and Evaluation Metrics. We employ two widely-used datasets for

traffic accident forecasting, i.e. New York City (NYC) and Chicago [95]. We evaluate

the proposed RiskContra by employing three commonly used metrics: Root Mean

Square Error (RMSE ), Recall and Mean Average Precision (MAP).

Baselines. To verify the effectiveness of the proposed RiskContra, we compare

with 2 statistical methods: Historical Average (HA) and XGBoost [13], and 7

deep learning methods: MLP, GRU [20], SDCAE [10], ConvLSTM [84], Hetero-

ConvLSTM [118], Graph WaveNet [106] and GSNet [95].

Implementation Details: For the Multi-kernel CNNs, the kernel-sizes (k) for

point-wise, local, and global convolution module are set to 1 × 1, 3 × 3, and 5 × 5

respectively, which capture spatial correlations of multiple granularities to solve the

spatial imbalance issue. The number of network layers L is set to 2.

In the mixup strategy, we set the interval ∆ = 7 to represent weekly patterns in

accident occurance, weight λ = 0.1 to generate the augmented risk samples. As to

the contrastive learning module, we set the temperature τ to be 0.4 for NYC and

0.8 for Chicago respectively, which can reflect the different accident conditions of

the dataset. The weight α of the contrastive loss is set to 1e−5 and 1e−3 for NYC

and Chicago respectively. The model and hyper-parameters are chosen according to

the best performance on the validation set.
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4.4.1 Comparison with the State-of-the-Art

Table 4.1 : Comparison with the state-of-the-art methods.

Model

NYC Chicago

All Hours Rush Hours All Hours Rush Hours

RMSE Recall (%) MAP RMSE Recall (%) MAP RMSE Recall (%) MAP RMSE Recall (%) MAP

HA 10.3243 24.42 0.1049 9.4994 26.94 0.1258 14.9581 13.80 0.0572 10.2564 15.89 0.0644

XGBoost 11.0165 23.14 0.1008 10.173 25.22 0.1119 15.6946 12.58 0.0545 10.3685 15.22 0.0614

MLP 8.4289 27.28 0.1196 7.6379 29.51 0.1338 12.5116 17.53 0.0631 8.9500 18.93 0.0748

GRU 8.3375 28.09 0.1228 7.3546 30.76 0.1301 12.6482 17.83 0.0664 9.0421 18.66 0.0758

SDCAE 7.9774 30.81 0.1594 7.2806 31.22 0.1536 11.3382 18.78 0.0753 8.7543 20.58 0.1002

ConvLSTM 7.9505 30.99 0.1526 7.2554 32.61 0.1557 11.1309 18.84 0.0789 8.5254 20.30 0.0925

Hetero-ConvLSTM 7.9731 30.42 0.1454 7.275 31.43 0.1498 11.3033 18.43 0.0716 8.5437 18.93 0.0770

GraphWaveNet 7.7358 31.78 0.1623 7.0958 33.04 0.1647 11.0835 18.95 0.0805 8.4484 20.42 0.0933

GSNet∗ 7.6722 33.41 0.1856 6.8406 34.50 0.1797 10.8229 20.27 0.0976 8.2822 21.26 0.1204

RiskContra 7.3994 34.48 0.19746.7103 35.54 0.192410.3784 22.30 0.1079 7.8663 23.87 0.1373

The results are reported on two settings: (1) “All Hours” that measures the

risk w.r.t all time intervals ranging from 0:00 to 24:00; (2) “Rush Hours” that

considers the time intervals in 7:00-9:00 and 16:00-19:00, which are supposed to be

the high-risk hours in a day.

The overall comparison is presented in Table 4.1. The proposed RiskContra

outperforms all existing state-of-the-art models in terms of all metrics and datasets,

demonstrating the better accident forecasting capability. Among all three metrics,

RiskContra shows especially superior performance in terms of Recall and MAP. For

example, the relative MAP improvement over the second best (i.e. GSNet) is 6.8%

for “Rush Hours” on NYC. The relative Recall improvement for “All Hours” and

“Rush Hours” on Chicago is 10.0% and 12.3%.

Notably, for all settings, the performance of “Rush Hours” is more superior than

that of the “All Hours”, which indicates that the higher ratio of risk samples in

“Rush Hours” can substantially facilitate the model training. This is consistent
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with our motivation to augment the risk samples for better contrastive learning.

4.4.2 Ablation Study and Visualization

Table 4.2 : Ablation study for Multi-kernel CNNs and Contrastive learning.

Model
All Hours Rush Hours

RMSE Recall (%) MAP RMSE Recall (%) MAP

CNN+TT 7.6044 33.16 0.1864 6.7569 33.62 0.1704

MKCNN+TT 7.5279 33.76 0.1912 6.7559 34.53 0.1861

CNN+TT+Contra 7.5424 34.02 0.1899 6.7201 34.08 0.1769

RiskContra 7.3994 34.48 0.1974 6.7103 35.54 0.1924

Ablation Study. To evaluate the effectiveness of our devised modules, we first con-

struct a baseline by removing both the Multi-kernel CNNs and mixup contrastive

modules from RiskContra, dubbed as “CNN+TT” (kernel size k = 3, TT stands

for Temporal Transformer). Then, we add the Multi-kernel CNNs to the baseline

and obtain the “MKCNN+TT” model. Similarly, “CNN+TT+Contra” stands for

adding the mixup contrastive module to the baseline. RiskContra is our final model

with both modules.

Ablation experiments are conducted on NYC dataset (Table 4.2). “MKCNN+TT”

achieves significant improvements over the baseline “CNN+TT”, corroborating the

effectiveness of the Multi-kernel networks in capturing the multi-granular spatial cor-

relations. “CNN+TT+Contra” also outperforms the baseline in all settings, which

indicates that the augmented risk samples can facilitate the contrastive feature learn-

ing to improve accident forecasting performance. By combining all modules, the fi-

nal model (RiskContra) achieves the best performance, showing the complementary

effect of the two devised modules.

∗Result obtained by running the official code with default parameter setting.
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Table 4.3 : The impact of kernel size in the convolution layer.

Model
All Hours Rush Hours

RMSE Recall(%) MAP RMSE Recall(%) MAP

CNN 1×1 7.8586 33.55 0.1866 7.0871 34.67 0.1856

CNN 3×3 7.5424 34.02 0.1899 6.7201 34.08 0.1769

CNN 5×5 7.5790 33.17 0.1775 6.7975 34.39 0.1736

CNN 7×7 7.7378 31.38 0.1668 6.8653 31.95 0.1545

RiskContra 7.3994 34.48 0.1974 6.7103 35.54 0.1924

Table 4.4 : Comparisons of various mixup constractive variants.

Model Mixup Contra Supervise
All Hours Rush Hours

RMSE Recall(%) MAP RMSE Recall(%) MAP

A ✗ ✓ ✓ 7.5837 34.24 0.1885 6.8012 34.64 0.1777

B ✓ ✗ ✓ 7.4852 32.87 0.1854 6.7366 33.90 0.1754

C ✓ ✓ ✗ 7.6113 34.00 0.1879 6.7679 34.78 0.1836

RiskContra∆1 ✓ ✓ ✓ 7.4082 33.87 0.1909 6.6443 34.39 0.1809

RiskContra∆7 ✓ ✓ ✓ 7.3994 34.48 0.1974 6.7103 35.54 0.1924

Model Variants. To further investigate each component in our RiskContra respec-

tively, we implement various variants to analyse the specific module design.

To study the impact of kernel size in convolution layers, we construct several

model variants each with a different fixed kernel size (from {1×1, 3×3, 5×5, 7×7})

, namely CNN1×1, . . . , CNN7×7. From Table 4.3, we can conclude that no single

kernel size can obtain better performance than Multi-kernel CNNs. This verifies the

necessity of Multi-kernel CNNs in tackling the spatial imbalance.

To show the rationale of our mixup contrastive framework, we construct several

mixup and contrastive variants in Table 4.4. Model A applies contrastive learning

on original data from two consecutive weeks without the mixup augmentation. The

inferior performance compared with RiskContra implies that the contrastive learn-

ing alone can hardly improve the accident forecasting, which is due to the lack of
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risk samples in contrastive pair construction. Model B utilizes the mixup data to

compute a prediction loss instead of contrastive loss. The worse results show the

advantage of contrastive mechanism over the redundant prediction task. Model C

applies contrastive learning on the mixed data and the original data in an unsuper-

vised manner without using the mixed label. The degraded performance verifies the

importance of the virtual labels created by the mixup strategy to provide prior cues

about risk/non-risk samples. Finally, RiskContra utilizes both the Mixup and

Supervised Contrastive modules. To further verify the influence of the periodicity

when performing the mixup strategy, we report the settings of both ∆ = 1 and

∆ = 7, representing daily and weekly periodicity, respectively. The results show

that weekly mixup (∆ = 7) achieves better performance compared to the daily

counterpart in risk forecasting, which is consistent with the risk occurrence pattern

in real life.

(a) Loss weight α

(b) Mix weight λ

Figure 4.3 : The influence of two important parameters w.r.t two metrics.
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Parameter Analysis. We examine the impact of two important hyper-parameters,

i.e. the loss weight α and the mixup weight λ. It can be observed from Fig. 4.3 that

our model exhibits the robust performances with parameters varying in a reasonable

range.
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Figure 4.4 : The visualization of prediction results compared to the ground truth.

Visualization. To understand the effectiveness of RiskContra from a more intuitive

perspective, we conduct a visualization of one-hour prediction results on the NYC

dataset at different time. The heatmaps in Fig. 4.4 demonstrate the risk values at

different regions with different colors, which are masked by the high risk region map

to reflect more significant prediction results. It can be observed that the visualization

results are generally consistent between the predicted traffic accident risks and the

ground truth, which indicates the capability of our model to accurately forecast the

future traffic risks.
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4.5 Conclusion

This chapter proposes to tackle two intrinsic challenges in spatial-temporal

representation learning for the traffic accident forecasting task. To deal with the

spatial imbalance, we design the Multi-kernel Networks to capture the hierarchical

spatial correlations among disparate regions. To address the temporal rareness, we

devise a customized mixup strategy to generate sufficient augmented risk samples

for effective contrastive learning. All proposed modules are incorporated into a

novel contrastive learning approach with extensive experiments corroborating its

effectiveness.
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Chapter 5

Multivariate Traffic Demand Prediction via 2D

Spectral Learning and Global Spatial

Optimization

5.1 Introduction

Traffic demand prediction [2, 110, 112–114] is a critical component in the devel-

opment of Intelligent Transportation System (ITS). The accurate prediction could

help the traffic management system pre-allocate transportation resources to meet

various traffic demands, which can significantly contribute to better commuting and

travel services.

Traffic demand forecasting aims to forecast demand variables across multiple

traffic stations in the city using historical records. These variables include pick-up

and drop-off values for transportation requests such as taxi orders and shared bikes.

It is a complex multivariate forecasting task that involves analyzing spatial-temporal

patterns for each variable and the correlation among variables.

Recently, deep learning has become the mainstream approach for spatial-

temporal traffic forecasting, due to its capability of modeling complex and non-linear

spatial-temporal correlations in traffic data. Specifically, CNNs can model the reg-

ular spatial relations in partitioned traffic grids [95]. RNNs are capable of learning

evolving patterns [114]. GCNs regard the traffic network as a graph to model the

non-Euclidean correlations [3]. Transformer uses the self-attention mechanism to

selectively extract the most informative features in the traffic context [127]. Despite

these successes, recent studies [7, 78] find the spectral bias of deep networks: deep
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networks tend to learn low-frequency functions that vary globally with fewer local

variations. In the traffic forecasting context, low-frequency components represent

the smooth trend of traffic patterns, while high-frequency ones reflect the transient

events such as acute demand caused by accidents. Thus, traffic demand prediction

will be hindered without sufficiently exploring the high-frequency traffic patterns.

In this chapter, we propose a novel embedded 2D Fourier learning framework to

overcome the spectral bias issue in the deep learning-based traffic forecasting task. In

our model, both low-frequency and high-frequency signals are effectively embedded

and processed to capture comprehensive traffic patterns for accurate prediction.

Firstly, we devise a spectral embedding function to transform the input variables

to a higher dimensional space. Specifically, we adopt a series of sine and cosine

functions to capture diverse frequency components of the multivariate traffic data.

The amplitude of signals is adjusted by multiplying a matrix sampled from the

Gaussian distribution. The spectral embedding function induces a well-behaved

stationery (shift-invariant) kernel space, which preserves the distance properties of

the original data. It also explicitly exposes both the low- and high-frequency variates

of input to the model by regulating the band of the frequency in the sine and cosine

functions. This can enable the deep neural networks to learn not only the basic

trend but also the detailed variations of traffic patterns. Moreover, the embedded

variables are endowed with rich spectral information to be readily leveraged in the

subsequent Fourier processing.

Secondly, we model the temporal and multivariate interactions (e.g., the

correlation among different traffic demand features) independently and develop the

2D spectral representation learning along the two different dimensions. Sev-

eral existing time-series methods directly apply 1D Fourier transformation on the

temporal sequence [103, 124, 125, 129]. This is straightforward because traffic se-

quences naturally contain periodic patterns for Fourier analysis in the temporal
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dimension. However, due to the implicit and in-direct multi-variable correlations,

no existing method applies 2D Fourier analysis for simultaneous temporal and mul-

tivariate correlation modeling. In our framework, the spectral embedding function

maps the multivariate features into diverse frequency components, which makes 2D

spectral analysis a well-suited model. Therefore, the Fourier operations can be ap-

plied to the two dimensions, followed by the frequency domain representation learn-

ing to capture temporal patterns as well as multivariate correlations for accurate

prediction.

Another important aspect of multivariate traffic demand prediction is spatial

correlation modeling. The demand for specific transportation is distributed across

the targeted city, with the data at each traffic station closely intertwined with each

other. Therefore, it is a citywide task that should take into account the global

structure and mutual constraints of the traffic network. Existing methods such as

CNNs [53] and GCNs [51] model the spatial correlations through the local neighbor-

ing aggregation. However, the limited receptive field failed to capture the correlation

from the globally similar tokens in the traffic network. Although the Transformer

based methods [91] could dynamically attend to every token regardless of the relative

distance, they can only conduct the pair-wise similarity computation individually

without considering the mutual constraints from other pairs of correlation. All of

these methods can not leverage the intrinsic global structure of the whole traffic

network, which leads to inferior forecasting performance.

In this chapter, we formulate spatial correlation learning as an opti-

mal transport problem . Instead of directly utilizing the pairwise similarities,

we optimize the objective function by maximizing the total spatial correlations in

the citywide traffic network. To further avoid the possible trivial solutions, we im-

pose a row and column sum constraint on the objective to induce a more balanced

correlation map. In this way, the performance of prediction could be promoted by
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exploiting the globally optimal spatial correlations.

5.2 Related Work

Spectral Representation Learning Fourier transform is a commonly effective

technique for digital signal processing. Recently, discrete Fourier Transform (DFT)

has been actively applied to deep neural networks to conduct spectral representa-

tion learning, with successful applications in various fields such as computer vision

and natural language processing. Motivated by the spectral transform theory, [18]

designed a Fourier Unit to perform convolution in the frequency domain, which

leveraged both spatial and spectral information to enlarge the receptive field. [80]

proposed global filters to learn the frequency domain features by depthwise global

convolution. [32] learned to mix the feature tokens in the frequency domain. Apart

from convolution, the parameter-free DFT operation has become a competitive al-

ternative to self-attention in capturing correlations among different tokens. For

example, [54] proposes to replace the self-attention mechanism with the Fourier

Transform, which achieved comparable performance with much faster computation

speed. Besides, there is also work intending to refine the underlying structure and

optimization of frequency domain models. [74] proposes to perform only a single

Fourier transform and optimize the approximation function directly in the frequency

domain, which significantly streamlines the redundant forward and inverse Fourier

transform in each layer of the model.

In the domain of time series forecasting, the learnable Fourier layers have also

been incorporated to explore periodic patterns from the frequency perspective.

Specifically, FEDformer [129] formulated time series as a sparse representation

of Fourier transforms and developed the frequency domain self-attention mecha-

nism. [103] designed a contrastive loss in the frequency domain to encourage dis-

criminative seasonal representation. [125] proposed to enforce the time-frequency
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consistency by encouraging the similarity between the time and frequency domain

representation. [19] leveraged random Fourier features as an approximation of soft-

max kernel to linearize self-attention. [104] proposed an auto-correlation mechanism

motivated by the time series periodicity and calculated the time-delay similarities by

using a fast Fourier transform. [124] incorporated the frequency components into

each hidden state of the recurrent neural networks to learn multi-frequency trading

patterns in the stock sequences.

Although having achieved remarkable successes, the research on Fourier domain

time series forecasting is limited to the temporal dimension, leaving the interactions

among multivariate features unexplored. In this chapter, we propose a 2D Fourier

model to explore the spectral interactions from both multiple time steps and variates.

We also incorporate a spectral embedding function to promote the ability of deep

neural networks to learn the high-frequency components of traffic inputs.

5.3 Methodology

5.3.1 Problem Definition

This chapter targets the multi-horizon and multivariate traffic demand forecast-

ing task based on the overall traffic network, where the horizon represents the time

step in traffic sequences. Specifically, we are given the historical traffic demand

sequence X ∈ RP×N×d, which is collected from N stations of the past P horizons

and contains d-dimensional multivariate features. Besides, we also have the spatial

encoding SE and temporal encoding TE to serve as the external input. Specifically,

SE is constructed from the similarity graph by the node2vec [127]. TE concatenates

the time-of-day vector and day-of-week vector which contains the specific normalized

values indicating the 24 hours in a day and the 7 days in a week.
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Figure 5.1 : The framework of our method. It follows an encoder-decoder architec-

ture, where both the encoder and decoder consist of a 2D spectral representation

learning and global spatial optimization module, with spectral embedding applied

to enable the learning of both low-frequency and high-frequency components of the

input.

The aim is to predict the traffic demand of the future Q horizons Y ∈ RQ×N×d:

Y = Fθ(X;SE, TE) , (5.1)

where F is the learnable model with parameter θ.

5.3.2 Embedded 2D Spectral Learning

Discrete Fourier Transform

Discrete Fourier Transform (DFT) is the building block of our model for Fourier

learning. Specifically, given a sequence {xn}N−1
n=0 in the time domain, DFT converts

it to the frequency domain as follows:

Xk =
N−1∑
n=0

xne
−j( 2π

N
)kn , (5.2)
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where j is the imaginary symbol, and Xk represents the k-th spectral component

in the frequency domain with the frequency ωk = 2πk/N . Similarly, inverse DFT

converts a sequence in the frequency domain back to the time domain:

xn =
1

N

N−1∑
k=0

Xke
j( 2π

N
)kn . (5.3)

In practice, Fast Fourier Transform (FFT) algorithm is usually employed to perform

DFT efficiently.

Spectral Embedding Function

Spatial-temporal methods typically adopt MLP layers to project the input vari-

able to a higher dimension, before feeding it to the prediction model. However,

recent studies found the spectral bias issue [7,78], i.e., neural networks tend to learn

a low-frequency function and ignore the high-frequency components. Therefore, the

detailed variations of the input sequence cannot be easily captured by these models

for accurate prediction.

To overcome this issue, we design an effective spectral embedding function to

encapsulate both the low-frequency and high-frequency components of the original

signal. The embedding function uses the sine and cosine functions to extract multiple

frequency components of the multivariate input data. Given x ∈ Rd, a function γ

maps it to the R2dL feature space as follows:

γsin(x) = [sin(20πx), . . . , sin(2L−1πx)] ∈ RdL , (5.4)

γcos(x) = [cos(20πx), . . . , cos(2L−1πx)] ∈ RdL , (5.5)

γ(x) = A[γsin(x), γcos(x)] ∈ R2dL , (5.6)

A ∼ N (µ, σ2) . (5.7)

Here, L is the embedding length to regulate the range of frequency. The introduction

of the matrix A is motivated by random Fourier features [79]. A can be used as a

scaling coefficient to adjust the amplitude of embedded Fourier features.
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Proposition 1. Using the embedding function γ(x), a stationary (shift-invariant)

kernel K can be constructed as follows:

K(x1,x2) = γ(x1)
⊤γ(x2)

= Tr(A⊤A)

(
d∑

i=1

L∑
ℓ=1

cos
(

2ℓπ(x
(i)
1 − x

(i)
2 )
))

.

Proposition 1 demonstrates that our embedding function preserves the good

distance property of the original data, which can be fully utilized to explore the

spatial-temporal correlation for accurate prediction. More importantly, it extracts

all frequencies (low, medium and high) of the input data, alleviating the spectral

bias issue of deep networks.

Besides traffic demand sequences, the temporal context information (e.g., time of

day and day of week) is an important prior for the prediction task. For example, rush

hours tend to have higher demands. Previous works usually embed this information

with a one-hot vector, followed by an MLP projection. However, as mentioned

before, this strategy suffers from spectral bias and is inconsistent with our Fourier

features. So, we embed the temporal encoding (TE) in a similar way to x with a

different embedding length M :

TEembed = [γsin(TE), γcos(TE)] , (5.8)

A is omitted here because the temporal context has a fixed range of values indicating

the relative time in a day and a week.

Finally, the features from the traffic sequence and the temporal encoding are

combined to produce the final spectral features:

HT = f(γ(x)||TEembed) ∈ RT×N×D , (5.9)

where T and D are the temporal and the hidden dimension respectively, || denotes

the concatenation operation, and f(·) is a multi-layer feed-forward network to fuse

the two sources of feature embeddings.
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2D Spectral Learning

After obtaining the embedded features HT , a straightforward approach is to

directly apply 1D-FFT on the time dimension for spectral representation learn-

ing [129]. However, the prediction of each variable relies on not only historical

records temporally but also other variables in the multivariate prediction task. The

cross-dimension correlations of multiple feature variables also evolve over time, which

makes it possible for the spectral learning to extract these dynamic patterns. Thus,

we regard the multiple variables as a sequential signal to explore the spectral inter-

actions among different variates.

With the explicit temporal correlations and implicit variable interactions, we

devise a 2D-FFT based method to perform frequency domain representation learn-

ing. Specifically, we borrow the idea from the multi-head attention to conduct

multi-spectrum learning in the frequency domain. Firstly, we divide the spectral

embedding HT ∈ RT×N×D into K blocks along the feature dimension, with each

block Hk
T ∈ RT×N×D

K representing the diverse subspaces of the spectral embedding.

Then, we apply the 2D-FFT to each block to independently map the features from

the time domain to the frequency domain:

Hk
F = FT (FD(Hk

T )) , (5.10)

where F represents the FFT transformation with the subscript denoting the specific

transformation dimension (i.e., feature dimension D and time dimension T ).

Then, in each embedding block, we construct a Fourier learning layer to extract

the distinctive features in the frequency domain:

Hk
F = σ(abs(W k

FH
k
F)) , (5.11)

where σ(·) denotes the non-linear activation function, and abs represents the real

component of the complex frequency features, which is motivated by [54] to avoid
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the modifications of the feed-forward layers. The Fourier learning layers modulate

the amplitude and phase components of spectral features through training multiple

complex weights W k
F to obtain a desired representation in the inverse time domain

for better forecasting performance.

After the Fourier learning, an inverse 2D-FFT is applied to transform the mod-

ulated frequency domain features back to the time domain:

Hk
T = F−1

T (F−1
D (Hk

F)) , (5.12)

where F−1 is the inverse FFT.

Finally, the inversely transformed feature blocks are concatenated together and

fed into a time domain feed-forward network g(·) to complete the alternating time

and frequency learning:

HT = g(Concat(H0
T , . . . , H

K−1
T )) . (5.13)

Compared to conventional time-domain models such as CNN, RNN, and Trans-

former which have difficulties learning the high-frequency patterns [78], the proposed

spectral learning method benefit from directly operating on the frequency domain

to capture both low-frequency and high-frequency patterns for accurate prediction.

5.3.3 Global Spatial Optimization

In the traffic demand prediction task, the future passenger demand in a specific

region not only depends on the historical records but also correlates with other

regions sharing similar properties, such as the distribution of Points of Interest

(POI) and the semantic function of the region. Existing works model this spatial

correlation with CNN, GCN, or Transformer. We argue that these methods can only

calculate the local or pairwise correlations and are uninformed of the potential global

structure of the traffic network. Thus, they can not leverage the mutual constraint

in the traffic network to help achieve the globally optimal forecasting performance.
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In this chapter, we consider the citywide traffic network and formulate spatial

correlation learning as a global optimal transport problem. Firstly, we follow the

pairwise matching mechanism in self-attention to extract all possible spatial rela-

tionships in the traffic network by obtaining a similarity matrix S. Specifically, we

concatenate demand features X, the spatial-temporal encoding STE (which is con-

structed from SE and TE) to serve as input. Then, three different MLP layers are

applied respectively to obtain the query Xq, key Xk, and value Xv. The matrix S

is calculated as:

S =
Xq ·XT

k

∥Xq∥∥Xk∥
. (5.14)

In previous methods, S is directly used as the spatial correlation to conduct the

representation learning, such as in Spatial Transformer [127]. However, this strategy

is suboptimal for two reasons: (1) the individual elements in S do not take into

account the overall structure and the mutual constraints in the traffic system, (2)

the noisy and weak correlations will harm the future prediction by occupying the

intrinsically important correlations.

To overcome these disadvantages, we propose an optimal transport objective

function based on S to obtain an optimized global spatial correlation instead of di-

rectly applying it. First, we define a matrix T to represent the probability of the

correlation between the query and key. Then, we formulate the following optimiza-

tion function aiming to maximize the total correlations from all pairs of connections

in the whole traffic network. Specifically, the optimization problem is defined as:

T⋆ = arg max
∑
ij

TijSij ,

s.t. T1 = µ1 ,T
⊤1 = µ2 . (5.15)

Here, the row and column sum constraints are imposed on T , and µ1 and µ2 are two

distribution probability vectors to avoid trivial solutions such as all values being

0 except for the maximum. We set the values of µ1 and µ2 as 1
N

, assuming the
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balanced correlation assignment.

We find that our global optimization function can be easily converted to a stan-

dard optimal transport problem [94] introduced above by defining the cost matrix

C = 1−S as the dissimilarity of the traffic network. Solving problem (5.15) is time-

consuming, we follow the general practice to solve an entropy regularized problem

using the Sinkhorn-Knopp algorithm [22] as follows:

T⋆ = arg min
∑
ij

TijCij + αH(T) ,

s.t. T1 = µ1 ,T
⊤1 = µ2 , (5.16)

where C = 1−S, H(T) =
∑

ij Tij(logTij − 1) is the negative entropy, and α is the

regularization parameter.

Finally, we employ T⋆ as the attention matrix to selectively obtain the spatial

output according to the importance of globally optimal correlations:

HS = T⋆Xv . (5.17)

By considering the global structure and the mutual constraints of the overall

traffic network to obtain an optimal correlation matrix T⋆, our model can take

full advantage of the spatially similar regions to promote the performance of traffic

demand prediction.

5.3.4 Overall Architecture and Loss Function

The overall framework is shown in Figure 5.1, which integrates both the fre-

quency representation learning and global spatial optimization modules in an

encoder-decoder architecture. A cross-attention module is designed to bridge the

encoder and decoder, which maps the historical traffic features to predict future

demands. Each layer of the encoder and decoder shares the same structure of the

spatial-temporal modules, the outputs of which are fused at the end of the layer to
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capture the entangled spatial-temporal correlations. Multiple encoder and decoder

layers are stacked to learn more powerful feature representations.

The loss function is defined as the Root Mean Square Error (RMSE) between

the predicted and true traffic demand values among the N traffic stations and Q

future horizons:

L =

√√√√ 1

N

1

Q

N∑
n=1

Q∑
t=1

(Y[n,t] − Ŷ[n,t])2 . (5.18)

5.4 Experiment

5.4.1 Datasets

To demonstrate the effectiveness of our method, we conduct experiments on

two real-world traffic datasets collected by NYC OpenData∗. The two datasets

record the pick-up and drop-off traffic order information of taxis and bikes in NYC

respectively. Detailed information is as follows:

• NYC-Bike: it collects demand for sharing bikes at 250 stations according to

the daily use in NYC. The time span is chosen from April 1st, 2016 to June

30th, 2016.

• NYC-Taxi: it contains taxi demand information collected from 266 traffic

stations with time spanning from April 1st, 2016 to June 30th, 2016.

5.4.2 Baseline Methods

We compare our method with the following baselines, including both statistical

and deep learning based models:

• HA: Historical Average, which takes the average of the historical traffic de-

mand values as the forecasting result.

∗https://opendata.cityofnewyork.us/
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• XGBoost [13]: which is an efficient tree boosting based system with broad

applications in machine learning.

• FC-LSTM [38]: which is the Long Short Term Memory combined with the

fully connected network for sequence prediction.

• DCRNN [60]: which incorporates the diffusion convolution into the Gated

Recurrent Unit (GRU) in an auto-encoder architecture.

• STGCN [115]: which employs the graph convolutional and causal convolu-

tional layers to model the spatial temporal interdependencies.

• STG2Seq [2]: which designs a hierarchical GCN structure to learn the spatial

correlations and an attention mechanism to learn from historical features.

• GraphWaveNet [106]: which is constructed by the GCN and the gated tem-

poral convolution network (Gated TCN) to model the spatial-temporal graph

information.

• MTGNN [105]: which learns an adjacency matrix to capture the spatial rela-

tionships among time series.

• STSGCN [86]: which synchronously capture the localized spatial-temporal

correlations using the graph convolutional module.

• AGCRN [3]: which can capture node-specific spatial and temporal correlations

in the traffic series.

• GMAN [127]: which constructs multiple layers of spatial-temporal attention

blocks in an encoder-decoder architecture to extract the spatial-temporal cor-

relations.
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• STTN [107]: which proposes Spatial-Temporal Transformer Networks to

jointly capture the spatial-temporal dependencies for long-term traffic fore-

casting.

• Traffic Transformer [9], which employs GCN and transformer respectively to

capture the spatial-temporal dependencies in traffic data.

• CCRNN [114]: which incorporates different self-learned adjacency matrices

into each layer of the GCN model.

• ESG [112]: which learns the evolving and multi-scale interdependencies in time

series by constructing different adjacency matrices in the GRU model.

5.4.3 Evaluation Metrics

To evaluate the performance of the baselines and our method, three commonly-

used metrics are adopted, i.e., Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and Pearson Correlation Coefficient (PCC) [114]. Specifically, they

are defined in the following:

RMSE =

√√√√ 1

N

1

T

N∑
n=1

T∑
t=1

(Y[n,t] − Ŷ[n,t])2 , (5.19)

MAE =
1

N

1

T

N∑
n=1

T∑
t=1

|Y[n,t] − Ŷ[n,t]| , (5.20)

PCC =
1

N

N∑
n=1

∑T
t=1(Y[n,t] − Ȳ[n])(Ŷ[n,t] − ¯̂

Y[n])√∑T
t=1(Y[n,t] − Ȳ[n])2

√∑T
t=1(Ŷ[n,t] − ¯̂

Y[n])2
, (5.21)

where N is the number of traffic stations, T is the number of time steps (horizons),

Y is the ground truth value (Ȳ is the mean), Ŷ is the predicted value (
¯̂
Y is the

mean). The first two metrics measure the error between the prediction and the

ground truth, with a lower value representing better performance. The last metric

is used to measure the linear correlation between the predicted and ground truth

sequences, with a larger value representing better performance.
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Table 5.1 : Traffic demand forecasting results on two datasets. The best performance

in each column is highlighted in boldface.

Method

NYC-Taxi NYC-Bike

RMSE MAE PCC RMSE MAE PCC

HA 29.7806 16.1509 0.6339 5.2003 3.4671 0.1669

XGBoost [13] 21.1994 11.6806 0.8007 4.0494 2.4690 0.4861

FC-LSTM [38] 18.0708 10.2200 0.8645 3.8139 2.3026 0.5675

DCRNN [60] 14.7926 8.4274 0.9122 3.2094 1.8954 0.7227

STGCN [115] 22.6489 18.4551 0.9156 3.6042 2.7605 0.7316

STG2Seq [2] 18.0450 9.9415 0.8650 3.9843 2.4976 0.5152

Graph WaveNet [106] 13.0729 8.1037 0.9322 3.2943 1.9911 0.7003

MTGNN [105] 10.6842 5.6174 0.9550 2.7586 1.6347 0.8159

STSGCN [86] 10.0524 5.9302 0.9601 2.7973 1.7760 0.7937

AGCRN [3] 9.5107 5.3496 0.9659 2.8928 1.7793 0.7844

GMAN [127] 8.8448 5.2899 0.9695 2.6658 1.7044 0.8142

STTN [107] 9.1016 5.2710 0.9678 2.8485 1.7760 0.7871

Traffic-Transformer [9] 9.3527 5.4277 0.9656 2.7164 1.6715 0.8125

CCRNN [114] 9.5631 5.4979 0.9648 2.8382 1.7404 0.7934

ESG [112] 8.9063 5.0160 0.9696 2.7356 1.6342 0.8150

Ours 8.2063 4.8872 0.9737 2.4852 1.5619 0.8422
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5.4.4 Implementation Details

Both datasets are aggregated into 30-minute interval with both historical and

future horizons set to 12. This means predicting the future 6 hours of traffic demand

based on the observations of the past 6 hours. Z-score normalization is applied to

guarantee more stable training. The whole dataset is divided chronologically, with

the last month’s data equally partitioned into a validation and a test set.

The number of encoder/decoder layers is 3 for both datasets. For the spectral

embedding function, the embedding length L for the X is 2 for both datasets, the

embedding length M for the TE is set to 6 for the NYC-Bike and 10 for the NYC-

Taxi dataset, respectively. For the parameters of Gaussian distribution in the matrix

A, µ and σ are set to be the mean and variance of each dataset. In the 2D-FFT,

the number of blocks K is set to 8, the depth of the Fourier learning layer is 2, and

the feed-forward network f(·) and g(·) in the time domain is designed as a two-layer

MLP with ReLU as the activation function. For the spatial global optimization,

the regularization parameter α is set to be 1 and 2 for the NYC-Bike and NYC-

Taxi datasets, respectively. We adopt the Adam optimizer with a learning rate of

0.005 and 0.0015 for the NYC-Bike and NYC-Taxi datasets, respectively. All the

hyperparameters are chosen based on the best performance on the validation set.

The experiments are performed with PyTorch 1.11.0 on a Linux server equipped

with NVIDIA Corporation TU102GL GPU.

5.4.5 Comparison with the State-of-the-Art

The prediction results averaged over 12 horizons are presented in Table 5.1.

Compared to all the baselines, we can make the following observations: (1) Com-

pared with the NYC-Taxi dataset, NYC-Bike has lower RMSE and MSE values,

which is consistent with the lower demand for bikes compared to that of taxis in a

metropolitan city like NYC. (2) The deep learning models outperform the statis-
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tical methods in an overwhelming manner, which verifies their superiority in cap-

turing the complex spatial-temporal correlations in traffic sequences. (3) GCN is

the most frequently employed spatial learning module, but the GCN-based meth-

ods such as [2, 60, 105, 106, 115] obtain inferior performance because they struggle

to explicitly capture the long-range correlations due to the local information propa-

gation. Besides, Transformer-based methods such as [9, 107, 127] have a significant

improvement by adopting the attention mechanism to enlarge the receptive field

of correlation modeling. In contrast, our method can optimize the global spatial

correlations in the traffic network, which outperforms both the local and pairwise

models to promote forecasting performance further. (4) Our method is the only

model to apply the frequency analysis along both the temporal and multivariate

dimensions to leverage the rich spectral information and capture more intrinsic traf-

fic patterns. (5) Our method consistently achieves the best performance on both

datasets regarding all metrics.

Table 5.2 : Ablation Study of model components.

Method NYC-Taxi NYC-Bike

Spatial Temporal RMSE MAE PCC RMSE MAE PCC

A Self-Attention Self-Attention 8.7953 5.1593 0.9703 2.6175 1.6597 0.8215

B Global Optimization Self-Attention 8.2893 4.8546 0.9730 2.4942 1.5675 0.8412

C Craph Convolution Self-Attention 9.2718 5.2714 0.9665 2.6493 1.6927 0.8161

D Self-Attention 1D-FFT 8.4717 4.9975 0.9721 2.5928 1.6166 0.8291

E Self-Attention 2D-FFT 8.3610 4.9037 0.9728 2.5658 1.6054 0.8335

F Self-Attention Embedded 2D-FFT 8.2638 4.7814 0.9736 2.4955 1.5636 0.8409

G Global Optimization Embedded 2D-FFT 8.2063 4.8872 0.9737 2.4852 1.5619 0.8422
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5.4.6 Ablation Study

We conduct detailed ablation studies on both datasets to demonstrate the effec-

tiveness of each devised module in our method. To begin with, a simple baseline is

constructed by adopting the self-attention mechanism to serve as both the spatial

and temporal module for forecasting, which is denoted as ‘A’ in Table 5.2.

In this basic structure, the spatial correlations can only be captured by pairwise

similarity computation, and temporal correlations can only be analyzed and learned

in the time domain. Then, we replace the spatial attention with our global opti-

mization module to generate the variant ‘B ’. The improved performance of ‘B ’ on

both datasets indicates the superiority of globally optimizing the spatial correlations

in the citywide traffic network. Besides the pairwise matching mechanism, we also

employ the local aggregation method GCN as the spatial learning module in ‘C ’,

and the severely degraded performance on both datasets indicates the insufficiency

of its ability to capture the global correlations in the traffic network.

In the subsequent variants, we adopt spectral analysis as a substitute for tem-

poral attention. We first apply 1D-FFT to only the temporal dimension of traffic

inputs, which is represented as ‘D ’ in Table 5.2. Then, a 2D-FFT is applied to

both temporal and multivariate dimensions to generate the variant ‘E ’. We observe

different extents of performance gain obtained on two datasets from introducing fre-

quency domain learning, which is caused by distinctive traffic demand for bikes and

taxis. This verifies the power of spectral analysis to help capture complex traffic

patterns which are hard to obtain in the time domain. Besides, the performance is

further improved by extending the spectral analysis from only the temporal dimen-

sion to the multivariate feature dimension, indicating the importance of interactions

among multiple variates in traffic sequences. Furthermore, we incorporate the spec-

tral embedding function into the 2D-FFT model, i.e., ‘F ’. This operation further
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Figure 5.2 : Multi-horizon forecasting performance. Our method outperforms the

baselines on all horizons (both short- and long-term) for all metrics.

promotes forecasting performance, which demonstrates that enforcing the deep neu-

ral network to fit the high-frequency components in traffic data could capture more

potentially useful traffic patterns. Finally, we integrate the embedded 2D-FFT and

global optimization module into a unified framework ‘G ’ to prove the complemen-

tary effect of each devised component, which achieves the best result on two of three

metrics on the NYC-Taxi dataset and all metrics on the NYC-Bike dataset.

5.4.7 Multi-Horizon Forecasting Comparison

The comparison of multi-horizon forecasting results on the NYC-Bike dataset

among four recently proposed state-of-the-art models and our method is presented

in Fig. 5.2. We can see that our method outperforms other methods on three metrics

over all 12 horizons, which verifies its superiority in both short-term (small horizon)

and long-term (large horizon) forecasting tasks.

5.4.8 Frequency Component Visualization

We visualize the change of the frequency components reflected by the correspond-

ing amplitude on the NYC-Bike dataset. Specifically, the 2D-FFT is conducted

with/without applying the spectral embedding. Due to the conjugate symmetry
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Figure 5.3 : The Amplitude variations of high-frequency components.

of the FFT operation, there are only (T
2
+ 1) frequency components preserved in

the time dimension to avoid redundant frequencies (T is the length of the horizon

in a batch of traffic data). From the visualization in Fig. 5.3, we can clearly ob-

serve that amplitudes of the high-frequency components are significantly promoted

in terms of both temporal and multivariate dimensions by adopting the embedding

function. This indicates the improved capability of deep neural networks to model

the high-frequency variates of the input data.

5.4.9 The Global Optimization Visualization

We provide a visualization of the spatial correlation map learned by our global

optimization module. From Fig. 5.4, we can observe a clear structural distribution
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Figure 5.4 : The learned correlation map from the global optimization module.

from our globally optimized correlation map, which indicates the importance of

considering the overall traffic network in the traffic forecasting task. Besides, the

unimportant correlations are discarded during the optimization to promote spatial

feature learning for more accurate forecasting.

5.4.10 Prediction Visualization

We present the visualization of the predicted traffic sequences and ground truth

over one week, with multiple horizons averaged to represent the whole forecasting

result. In Fig. 5.5, the visualization is consistent with former quantitative results,

which verifies that our method can achieve outstanding forecasting performance.

5.4.11 Parameter Analysis

We study the influence of three important parameters on the NYC-Bike dataset,

i.e., the regularization parameter α (Eq. (5.16)) in the global spatial optimization,

the embedding length L (Eq. (5.6)) and M (Eq. (5.8)) for X and TE respectively.

From Fig. 5.6, we can observe that our method is stable under two evaluation met-

rics, with all parameters varying in a reasonable range.
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Figure 5.5 : Comparison of the predicted traffic demand (Ours) and the ground

truth (GT).
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Figure 5.6 : The influence of three parameters w.r.t. two metrics. When the pa-

rameters vary in a reasonable range, the performance of our method is stable.

5.5 Conclusion

In this chapter, we propose a novel traffic demand forecasting method to

promote both temporal and spatial representation learning. For temporal learning,

we introduce the embedded 2D spectral learning framework to explore the spectral

correlations in the frequency domain. The framework comprises two well-devised

modules: a spectral embedding function to explicitly extract both the low- and

high-frequency components of the data, and a 2D spectral learning module to

simultaneously explore the temporal and multivariate interactions in the frequency

domain. For spatial learning, we design an optimal transport objective function

to globally optimize the overall spatial correlations in the citywide traffic network
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instead of the individual similarity calculation. Extensive experiments demonstrate

the effectiveness of each designed module, and our method achieved state-of-the-art

performance on two benchmarks.
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Chapter 6

Test-Time Training for Spatial-Temporal

Forecasting

6.1 Introduction

Recent years have witnessed the success of deep neural networks in addressing

the spatial-temporal forecasting task [60, 86, 95, 105, 112, 114, 127]. However, deep

neural networks are notoriously vulnerable to the challenge of distribution shifts

between training and test data [52]. This challenge becomes more severe for spatial-

temporal forecasting, where training and testing data are divided chronologically.

Specifically, the inherent temporal evolution makes the spatial-temporal data stream

non-stationary, creating a natural gap between training and testing. Moreover,

abrupt and unexpected factors will cause short-term data shifts that cannot be

learned from the training data. For example, traffic accidents or meteorological

conditions can cause rapid data shifts to traffic streams. As a result, these shifts

can severely impede the trained forecasting model from generalizing to the unseen

test data, leading to a noticeable performance drop.

To tackle the distribution shift, Test-Time Training (TTT) [87] has been pro-

posed and gained increasing interest in different domains, such as image [49,87,96],

video [25], and text [5]. Specifically, TTT adapts the trained model to the unknown

distribution at test time by training auxiliary tasks (e.g., image rotation prediction)

on only one single test example without accessing the test label. By design, TTT has

the potential to address the test-time spatial-temporal shifts, but it is under-explored

in spatial-temporal forecasting due to the lack of auxiliary tasks. In this chapter,
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Figure 6.1 : (a) Existing methods directly apply the trained model to test data,

which may suffer from distribution shifts. (b) Our method proposes a new test-

time training framework, which can effectively adapt the trained model to test data

before testing.

we propose a novel test-time training framework to tackle the non-stationary shifts

in time-evolving spatial-temporal data. The framework is designed to learn directly

from the test data, enabling it to adapt to unknown data shifts before making the

final prediction. As shown in Figure 6.1, our design can effectively break the limi-

tation of existing methods, whose models remain fixed after the training stage. In

contrast, our model can further adapt the trained model to test data.

Unlike other domains, such as image and text, which have only one example

for test-time training, the inherent data structure of the spatial-temporal task is

well-suited for test-time training. Specifically, at the test stage, spatial-temporal

forecasting simultaneously predicts the values of future time steps for all geographi-

cal locations (several hundred), providing an effective batch size for test-time train-

ing. This way, the spatial-temporal distribution of test data is explored for accurate

forecasting. Furthermore, the effective batch size mitigates the overfitting risk of

test-time adaptation.

Since the test-time training should not access the target label, it cannot be read-
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ily applied to a supervised forecasting model. This presents a significant hurdle

when attempting to implement adaptation during test time. In response to this

issue, we introduce a novel bidirectional cycle-consistent architecture for spatial-

temporal forecasting, enabling the implementation of the test-time training strat-

egy. The architecture consists of a forward and a backward cyclic network, each of

which encapsulates the supervised and self-supervised learning to conduct predic-

tion and reconstruction tasks in both directions (forward and backward) simulta-

neously. Specifically, a shared encoder is designed for both networks to extract the

spatial-temporal correlations of the input streams. Two direction-aware decoders are

proposed to conduct forward prediction and backward recollection tasks separately,

where supervised losses are applied. By carefully assembling the modules, two auxil-

iary tasks are conducted: forward→backward reconstruction and backward→forward

reconstruction, where self-supervised losses are applied. During training, both su-

pervised and self-supervised losses are utilized. However, at the test-time training

stage, only the self-supervised losses are used to adapt the trained model without

accessing the target labels.

Besides benefiting the test-time training stage, this bi-cyclic structure can also

bring advantages for our main forecasting task at the training stage. During train-

ing, the shared encoder of the forward and backward cyclic networks is optimized

by four tasks: the supervised prediction, recollection tasks, and two self-supervised

cyclic reconstruction tasks. All four tasks are intertwined to learn better spatial-

temporal encoding by enforcing consistency among the cyclic networks. Similarly,

the forward decoder enjoys joint training of four tasks to promote the final forecast-

ing performance. The two self-supervised tasks co-exist at both the training and

test stages, bridging the model gap between training and test-time training.
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6.2 Related Work

Test Time Adaptation Domain adaptation [39, 65] is one of the promising

paradigms to tackle the distribution shift, which aims to learn a cross-domain rep-

resentation by employing the unlabeled data from the target domain besides the

training data from the source domain. However, it can only anticipate the specific

distributions where the data is prepared in advance. This pitfall has motivated

the emerging test-time adaptation to adapt the trained model to unseen domains

on the fly, without accessing the training data or the labels of target data. It has

been successfully applied to various domains, such as image classification [87, 96],

reinforcement learning [36], natural language processing [5] and video tracking [25].

Typically, test-time training (TTT) [87] adapts the trained model for each individual

test sample via self-supervised learning. During the training, the model is optimized

by both the main task (e.g., image classification) and the proxy task (e.g., image

rotation prediction). Then, at the test stage, the model is further adapted to each

single test example with the proxy task to reflect the test distribution.

Following this, several works are proposed under different assumptions. For ex-

ample, TENT [96] deals with the source-free domain adaptation where only the

model and target data are available. It discards the model’s training on the source

data and proposes to adapt the model during test time by minimizing the en-

tropy of the prediction outputs. [61] exploits the information maximization and

self-supervised pseudo-labeling to align the representations from the target domains

to the source domain. TTT++ [64] is a modified version of TTT that proposes a

feature alignment strategy to encourage the closer relationship of the training and

testing feature distributions with access to an entire dataset. [28] successfully ap-

plies masked autoencoders (MAE) to the test-time training framework and achieves

outstanding performance on the object recognition task.
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Figure 6.2 : The proposed bidirectional cycle-consistent architecture. Each network

consists of a shared encoder and two direction-aware decoders. During training,

we jointly optimize the prediction (LPred), recollection LRecollect and reconstruction

(LReconF
,LReconB

) tasks from different directions. During the test-time training, the

model is further adapted to the test data by minimizing the reconstruction losses

(LReconF
,LReconB

) on one example or a mini-batch, which can deal with the shifted

distribution before making the final prediction.

Despite their effectiveness, the test-time adaptation to the spatial-temporal data

has never been explored. In this chapter, we design a test-time training frame-

work equipped with a bidirectional cycle-consistent structure, which employs self-

supervised reconstruction tasks to adapt the model to unseen test data shifts before

making the final forecasting result.
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6.3 Method

6.3.1 Problem Formulation

This chapter aims at multi-horizon spatial-temporal forecasting, which predicts

future spatial-temporal conditions of multiple time steps based on the observed data.

Specifically, the spatial distribution is represented by a graph G = (V , E , A),

where V is the set of spatial nodes, |V| = N is the cardinality, E is the edge reflecting

the spatial correlations. We construct the spatial embedding from this graph and

temporal embedding from the specific hourly, daily and weekly temporal features of

the data to represent the spatial-temporal embedding (STE), which is concatenated

to the input before fed into the model.

To construct the bidirectional cycle-consistent structure, we divide the spatial-

temporal data into three consecutive segments chronologically. Specifically, we adopt

the data from both the historical and present time segments represented by XH ∈

RH×N×d, XP ∈ RP×N×d, where the H and P stands for the horizon of the historical

and present time, d is the feature dimension of the spatial-temporal data. The aim is

to predict the data XF ∈ RF×N×d in the future F horizons based on both the input

data from the historical and present time and the spatial-temporal embeddings from

all times. Therefore, we train a model f parameterized by parameters θ to predict

an estimation of XF :

X̂F = fθ(X
H , XP ) . (6.1)

6.3.2 Preliminary

Spatial-Temporal Attention

To dynamically capture the spatial-temporal correlations within data, we employ

spatial-temporal attention as the fundamental module for our shared encoder and

direction-aware decoders. Specifically, Spatial Attention and Temporal Attention
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perform multi-head attention along the spatial and temporal dimensions in data,

respectively. Typically, the attention is calculated as the scaled dot-product:

Attention(Q,K, V ) = Softmax
(QKT

√
D

)
V , (6.2)

where Q, K and V respectively denote the query, key and value of input data, and

D is the hidden dimension of input.

Normally, the Multi-head self-attention is applied to extract features from dif-

ferent subspaces of input data:

MHA(X) = Concat(head1, . . . , headk)WO , (6.3)

headi = Attention(XWQ
i , XWK

i , XW V
i ) , (6.4)

where k is the number of heads , WQ
i ∈ RD×D/k,WK

i ∈ RD×D/k, W V
i ∈ RD×D/k and

WO ∈ RD×D are the weight parameters.

Besides the self-attention, we also adopt the cross-attention between each encoder

and decoder to build the connection between two consecutive temporal segments,

which takes the spatial-temporal embeddings from corresponding time as query and

key, and the output of the encoder as value to conduct the multi-head attention.

6.3.3 Bidirectional Cycle-Consistent Structure

In this chapter, we design a bidirectional cyclic spatial-temporal network, which

effectively leverages the encoder and decoders to establish learning cycles in both the

forward and backward directions. The architecture of the proposed cycle-consistent

network is shown in Figure 6.2.

To make the model direction-aware, we design a bidirectional encoder-decoder

structure based on the three consecutive temporal segments in chronological order.

Specifically, the encoder is shared in both directions to extract the spatial-temporal

patterns from the input. Benefitting from the cross-attention to establish the corre-

lations between two different segments, the forward decoder could learn to predict
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from the present to the future, while the backward decoder can learn to recollect

from the present to the past. This pictorially is like a ‘T’-structure to have the

shared encoder at the bottom and two branches as forward and backward decoders,

respectively:

X̂F = DecF (Enc(XP )) , (6.5)

X̂H = DecB(Enc(XP )) , (6.6)

where Enc(·), DecF (·) and DecB(·) denote the shared encoder and for-

ward/backward decoder (with cross-attention included), respectively.

For these two tasks, the objective is to minimize the mean absolute error between

the prediction output and the future ground truth, as well as the recollection result

and historical ground truth:

LPred = ∥X̂F −XF∥ , (6.7)

LRecollect = ∥X̂H −XH∥ , (6.8)

where XF and XH are the labels for the future and historical data.

However, in this ‘T’-shaped structure, the outputs of both decoders are indepen-

dent of each other because the forward and backward decoders are not optimized

for a consistent target. Inspired by the successful application of cycle-consistency

in the community of visual correspondence learning [41, 89, 99], we further design

a bidirectional-cyclic structure by reconstructing the input data through a cyclic

learning manner from two directions. Specifically, in the forward cycle, the encoder

and the backward decoder are applied to the predicted output to reconstruct the

input from what the forward decoder predicted. Similarly, for the backward direc-

tion, the encoder and forward decoder are also applied to reconstruct the same input



103

based on what the backward decoder recollected from the past:

X̂P
F = DecF (Enc(X̂H)) , (6.9)

X̂P
B = DecB(Enc(X̂F )) . (6.10)

The objective is then designed for the model to reconstruct the input by minimiz-

ing the mean absolute error between the reconstruction and input in both forward

and backward directions:

LReconF
= ∥X̂P

F −XP∥ , (6.11)

LReconB
= ∥X̂P

B −XP∥ . (6.12)

In this bidirectional-cyclic-consistent structure, the forward and backward net-

works encapsulating both the supervised forecasting and self-supervised reconstruc-

tion tasks are jointly optimized by minimizing the total loss as follows:

Ltrain = LPred + α(LRecollect + LReconF
+ LReconB

) .

As the main task of our method is to predict the future, the losses from other tasks

are regarded as the regularization with α being the regularization parameter.

The forward decoder is optimized to generate accurate predictions in the forward

cycle, while it is also optimized to generate the reconstruction of the input data in

the backward cycle. Direct access to the label in each decoder can further benefit

the other decoder by providing more informative input for the reconstruction task.

In this cyclic way, the targets of the forward and backward networks are intertwined

with each other. Thus, the shared encoder and forward decoder can be jointly

optimized for better forecasting performance.

6.3.4 Test-Time Training for Spatial-Temporal Forecasting

For existing methods, the model optimized on the training stage is fixed when

conducting the forecasting task on test data, which makes it hard to generalize the
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possible distribution shift widely existing in the evolving spatial-temporal data.

To deal with this challenge, we propose a test-time training strategy for the

spatial-temporal forecasting task, which dynamically adapts the model learned from

the training stage to fit each unseen test data in a self-supervised manner. Our

proposal is motivated by the increasing popularity of test-time adaptation methods

with wide application in image classification tasks [28, 64, 87, 96]. Different from

image data with an independent input and discrete label space, which can only

provide one example during the test-time training, our spatial-temporal data share

the temporally continuous space for the input and output, which has strong spatial-

temporal correlations among the consecutive time steps and spatial nodes. This

special data structure can provide an effective batch size for test-time training to

capture the spatial-temporal distribution without overfitting to a single time stream.

However, employing the test data without labels requires self-supervised learning

regarding our spatial-temporal forecasting task to support the model adaptation

in the test time. Rather than having to introduce the extra proxy task, such as

predicting the rotation angle of the image [87] or minimizing the entropy of the

output [96], we can benefit directly from our bidirectional cycle-consistent network.

The forward reconstructing from the recollected historical output as well as the

backward reconstructing from the predicted output, which both use the original

input as the supervision, can be directly employed as the self-supervised task for

the test-time training.

Specifically, we first load the model from the end of the training and get the

reconstruction of the input data from both directions as follows:

X̂P
F = DecF (Enc(DecB(Enc(XP )))) , (6.13)

X̂P
B = DecB(Enc(DecF (Enc(XP )))) . (6.14)

Then the model is optimized by minimizing the reconstruction error from the
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two cyclic networks weighted by a regularization parameter β:

LTTT = ∥X̂P
F −XP∥ + β∥X̂P

B −XP∥ . (6.15)

During the test-time optimization, the parameters of the model are adjusted exclu-

sively for only one or a mini-batch of test examples before making the final forecast-

ing on it (them). In this way, the capability limitations of the fixed model are broken

by dynamically adapting to each test data according to the specific spatial-temporal

distributions with potential shifts.

Our model can also be easily applied to the online learning setting, where the

model is continuously updated without re-initializing the original parameters for

each test data.

6.4 Experiments

6.4.1 Datasets

To verify the effectiveness of our model in spatial-temporal forecasting task, we

conduct experiments on two real-world traffic datasets collected by NYC Opend-

Data∗. The two datasets represent the traffic demand in terms of taxi and bike

respectively by recording the pick-up and drop-off order information in NYC. The

detailed information is presented as follows:

• NYC-Bike: It collects daily user orders for sharing bikes at 250 stations in

NYC. The time spans from April 1st, 2016 to June 30th, 2016.

• NYC-Taxi: It contains taxi demand data collected from 266 traffic stations

with time spanning from April 1st, 2016 to June 30th, 2016.

∗https://opendata.cityofnewyork.us/
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6.4.2 Baselines

We compare our method with several baselines that can be divided into two

categories: statistical models and deep learning-based models. The first category

includes XGBoost [13]. The second category consists of DCRNN [60], STGCN [115],

STG2Seq [2], STSGCN [86], MTGNN [105], Traffic Transformer [9], GMAN [127],

CCRNN [114], GTS [82] and ESG [112].

6.4.3 Evaluation Metrics

We adopt three widely-used metrics in spatial-temporal forecasting tasks to eval-

uate the performance of our model compared with all baselines, i.e., Root Mean

Squared Error (RMSE), Mean Absolute Error (MAE) and Empirical Correlation

Coefficient (CORR) [112]. The first two metrics measure the difference between

the prediction and the label; the lower, the better. The last metric measures the

linear correlation between the predicted and ground truth sequences; the larger, the

better.

The detailed information on baselines and metrics can be found in the Supple-

mentary.

6.4.4 Implementation Details

Both datasets are aggregated by 30-minute intervals, and all the horizons for

historical (H), present (P) and future (F) are set to 12, which forms three 6-hour

temporal segments. Z-score normalization is applied to the input data for more

stable training. The entire dataset is chronologically divided, with the data from

the last month evenly split into both a validation and a test set.

For the attention module in the encoder and decoders, the number of the head

k is set to 8, and the hidden dimension D is 64. The stacking layers for the shared

encoder, forward and backward decoders are set to 3. During the training stage, we
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Table 6.1 : Comparison with the state-of-the-art methods on two datasets w.r.t.

three metrics across various horizon settings (the best performance is highlighted in

bold).

Dataset Method
Horizon 3 Horizon 6 Horizon 12 All

RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR

NYC-Bike

XGBoost 3.7048 2.2167 0.5232 4.1747 2.5511 0.3614 4.3925 2.7091 0.2894 4.0494 2.4689 0.4107

DCRNN 3.0172 1.7917 0.6967 3.2369 1.9078 0.6609 3.5100 2.0325 0.6196 3.2274 1.8973 0.6601

STGCN 2.6256 1.6456 0.7539 3.8368 2.2827 0.6282 4.3713 2.6052 0.4521 3.7829 2.2076 0.5933

STG2Seq 3.4669 2.0409 0.5999 3.9145 2.2630 0.5079 4.2373 2.5163 0.4443 3.7843 2.2055 0.5413

STSGCN 2.7328 1.6973 0.7386 2.8861 1.7416 0.7179 3.0548 1.8224 0.6903 2.8846 1.7538 0.7126

MTGNN 2.5962 1.5668 0.7626 2.7588 1.6525 0.7447 3.3068 1.7892 0.6931 2.7791 1.6595 0.7353

Traffic-Trans 2.5931 1.6116 0.7579 2.7131 1.6841 0.7391 2.8750 1.7496 0.7071 2.7140 1.6715 0.7374

GMAN 2.5974 1.6665 0.7432 2.6744 1.7073 0.7297 2.7635 1.7584 0.7142 2.6658 1.7044 0.7302

CCRNN 2.6538 1.6565 0.7534 2.7561 1.7061 0.7411 2.9436 1.8040 0.7029 2.7674 1.7133 0.7333

GTS 2.7628 1.7159 0.7248 2.9287 1.7769 0.7007 3.1649 1.8905 0.6622 2.9258 1.7798 0.6985

ESG 2.5529 1.5483 0.7638 2.6484 1.6026 0.7511 2.8778 1.7173 0.7152 2.6727 1.6129 0.7449

Ours 2.3734 1.5199 0.7783 2.4483 1.5498 0.7687 2.5282 1.5896 0.7589 2.4476 1.5511 0.7690

NYC-Taxi

XGBoost 15.0372 8.4121 0.6862 21.3395 11.8491 0.4433 26.7073 15.7165 0.0452 21.1994 11.6806 0.4416

DCRNN 12.3223 7.0655 0.7591 15.1599 8.6639 0.6634 17.8194 10.5095 0.5395 14.8318 8.4835 0.6671

STGCN 11.2175 6.1441 0.8090 14.0360 7.6797 0.7470 18.7168 10.2211 0.5922 14.6473 7.8435 0.7257

STG2Seq 14.0756 7.7274 0.7258 19.1757 10.5066 0.5429 24.5691 14.3603 0.2855 19.2077 10.4925 0.5389

STSGCN 10.5381 5.6448 0.8370 10.8444 5.7634 0.8302 11.9443 6.3185 0.7988 10.9692 5.8299 0.8242

MTGNN 10.3394 5.6775 0.8374 10.7534 5.8168 0.8312 12.5164 6.5285 0.7972 10.9472 5.9192 0.8249

Traffic-Trans 8.5293 5.0112 0.8587 9.0698 5.2171 0.8518 9.9286 5.6392 0.8319 9.0040 5.2098 0.8501

GMAN 8.4650 5.0852 0.8455 8.8780 5.2776 0.8331 9.3772 5.6314 0.8128 8.8448 5.2899 0.8325

CCRNN 9.1983 5.3573 0.8575 9.4547 5.4093 0.8509 10.2733 5.7789 0.8380 9.4849 5.4396 0.8506

GTS 10.7796 6.2337 0.7974 13.0215 7.3251 0.7299 14.9906 8.5328 0.6524 12.7511 7.2095 0.7348

ESG 8.5745 4.8750 0.8656 9.0125 5.0500 0.8592 9.7857 5.4019 0.8450 8.9759 5.0344 0.8592

Ours 7.3605 4.5073 0.8746 8.0176 4.7217 0.8657 8.6849 5.0690 0.8527 7.9896 4.7368 0.8652

adopt the Adam optimizer with a learning rate of 0.005 and 0.0015 for the NYC-Bike

and NYC-Taxi datasets, respectively, and the batch size is 16 for both datasets. All

the hyperparameters are chosen based on the best performance on the validation

set. The regularization parameter α is set to be 0.01 for both datasets. During the

test-time training, the learning rate has to be set to a smaller value to alleviate the

overfitting. Thus, we set it to be 7e-5 for the NYC-Taxi and 4e-5 for the NYC-

Bike dataset. In this stage, only the reconstruction losses (Eq. (6.15)) are employed

to adapt the model to test data without the target labels, and the regularization
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parameter β is set to 4.0 and 1.0 respectively for NYC-Taxi and NYC-Bike. Different

from the image classification task, where the aim of the self-supervised task differs

from that of the main task, benefitting from our bi-cyclic structure, our model can

enjoy minibatch training during the test time, and the batch size is set to 8 in both

datasets for better performance. Noticeably, for the first batch of data, we can only

access the first sample to avoid the information leak in the future. Thus, the other

seven samples are from the validation set, which can be achieved by the cached data

in the real-world application. For the online version, the learning rate is set to 1e-5

and 2e-5 for the NYC-Taxi and BYC-Bike, and the regularization parameter β is

1.0 for both datasets.

6.4.5 Results and Analysis

The performance of all methods at the specific horizon and the average result

over all 12 horizons are presented in Table 6.1, from which we can make the following

observations:

• The deep learning-based spatial-temporal forecasting models consistently out-

perform their statistical counterparts by a large margin, which is attributed

to their capability to capture the hierarchical features and complex spatial-

temporal correlations in traffic data.

• Among these baselines, our test-time training spatial-temporal forecasting

model is the only method to deal with the distribution shift in spatial-temporal

data by learning directly from the test data. In contrast, other models are

fixed at the end of training before conducting forecasting, which constrains

their forecasting performance because of the lack of capability to generalize to

the shifted spatial-temporal distributions in test data.

• Our model achieves the best performance on both datasets over all the metrics.
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Table 6.2 : Ablation Study of Model Components.

Variant
NYC-Taxi NYC-Bike

RMSE MAE CORR RMSE MAE CORR

Base 8.8448 5.2899 0.8325 2.6658 1.7044 0.7302

+Bi-Cycle 8.4238 4.8941 0.8596 2.5235 1.5889 0.7631

+TTT (B-1) 8.2258 4.8037 0.8638 2.4752 1.5573 0.7672

Online Learning 8.0996 4.7674 0.8654 2.4605 1.5583 0.7680

+TTT (B-8) 7.9896 4.7368 0.8652 2.4476 1.5511 0.7690

This demonstrates the effectiveness of our test-time training spatial-temporal

forecasting model equipped with the bidirectional cycle-consistent structure.

6.4.6 Ablation Study

We conduct detailed ablation studies on both datasets to demonstrate the effec-

tiveness of the bidirectional cycle-consistent structure and test-time training strategy

in our spatial-temporal forecasting model. Firstly, a simple baseline is constructed

by adopting the self-attention-based encoder-decoder architecture, which is opti-

mized only on the training data through the supervised forward forecasting task.

We denote it as ‘Base’ in Table 6.2.

Then, we extend the base model by constructing the forward and backward

learning cycle with the shared encoder and bi-directional decoders, which can simul-

taneously conduct the predicting (recollecting) and reconstructing tasks from both

directions. We denote this setting as ‘+Bi-Cycle’ in Table 6.2. After joint learning

of all tasks, the performance can achieve obvious promotion over the basic single-

direction learning. By encouraging consistency among the two cyclic networks, the

shared encoder and the forward decoder are optimized in a cyclic manner back and

forth, which significantly consolidates their capability to generate a more accurate
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Table 6.3 : Variants of Bi-Cyclic Structure.

Variant
NYC-Taxi NYC-Bike

RMSE MAE CORR RMSE MAE CORR

w/ all tasks 8.4238 4.8941 0.8596 2.5235 1.5889 0.7631

w/o recollection 8.6890 5.0502 0.8567 2.6126 1.5941 0.7575

w/o forward recons. 8.5098 4.9703 0.8545 2.6165 1.6152 0.7512

w/o backward recons. 8.5546 4.9592 0.8573 2.5586 1.5989 0.7567

and reliable representation for future forecasting.

Lastly, we employ the reconstruction error (Eq. (6.15)) as the self-supervision to

adapt the model to the test data without accessing their labels, which is referred to

as the ‘+TTT’ (with different batch sizes) in Table 6.2. The results show that this

strategy leads to further improvements over the fixed model solely optimized during

the training stage. This corroborates the importance of test-time training. By ad-

justing its parameters according to the specific distribution of different test samples,

the model can learn to fit the unexpected spatial-temporal shift in the unseen data,

which can directly extend the capability of forecasting test data. Moreover, our

model can enjoy the mini-batch strategy during the test-time training. By feeding

a reasonable amount of data to the model, the problem of overfitting can also be

alleviated, which is also validated by the improvement from using batch size as 1

(‘B-1’) to batch size as 8 (‘B-8’).

Our model can also be easily scaled to the online learning setting, where the

model is continuously optimized by each sequentially coming data. From the table,

we can see that our method also achieves outstanding forecasting performance under

continuous learning.

We also verify the importance of each different task in the bi-cyclic structure in

Table 6.3 on both datasets, which is implemented without test-time training. As
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seen from the results, the absence of each loss from the corresponding task can lead

to a performance drop to a different extent, which indicates the critical function of

each component in the bi-cyclic network. This can be explained by the intertwined

target of each task, where the joint optimization of all forward and backward learning

can consistently promote the representation learning for the final forecasting.
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Figure 6.3 : Multi-horizon forecasting performance on NYC-Bike in terms of three

metrics. Our method outperforms all state-of-the-art on all horizons.
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Figure 6.4 : Comparison between the predictions by our method (Ours) and the

ground truth values (GT).

6.4.7 Multi-horizon Forecasting

In Figure 6.3, we provide the multi-horizon forecasting comparison on the NYC-

Bike dataset between four recently proposed state-of-the-art models and our method.

We can see that our model exhibits a consistent superiority to all other methods
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on three metrics over all horizons, which verifies its powerful capability in both

short-term (small horizon) and long-term (large horizon) forecasting.

6.4.8 Visualization Results

In this subsection, we visualize the predicted traffic sequence and ground truth

over one week on both datasets, with multiple horizons averaged to represent the

forecasting result. The visualization in Figure 6.4 is consistent with quantitative re-

sults in Table 6.1, which verifies that our method can achieve outstanding forecasting

performance.

6.5 Conclusion

In this chapter, we propose a test-time training strategy for the spatial-temporal

forecasting task, which is incorporated into a well-designed bidirectional cycle-

consistent structure. Specifically, benefiting from the test-time training design, our

model can learn from different test examples to adapt itself to the unknown spatial-

temporal distributions shifted from the training data. By designing the bi-cyclic

structure, the test-time training for the spatial-temporal data can be implemented

by directly employing the reconstruction tasks as self-supervision. The joint opti-

mization of multiple tasks for shared modules can also benefit the spatial-temporal

representation capability for the final forecasting task. The extensive experiments

on the spatial-temporal traffic forecasting task demonstrate the effectiveness of each

component in our model.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis targets traffic forecasting tasks by enhancing spatial-temporal repre-

sentation learning to capture the complicated dynamic spatial-temporal correlations

in traffic data. We propose four different spatial-temporal representation learning

models in correspondence to the four challenges that are under-explored in the cur-

rent traffic forecasting applications. Firstly, motivated by the imbalanced complexity

of traffic forecasting tasks in terms of spatial and temporal distribution, we propose

a Dynamic Halting Mechanism for the Transformer to balance the computation re-

source for the tasks according to the diverse complexity, which ensures the efficiency

and the performance of the traffic flow forecasting. Secondly, we aim to address

risk sample scarcity and imbalance challenges in the traffic accident datasets. We

design a novel multi-kernel CNN structure to assign diverse receptive fields for re-

gions with different spatial granularities to capture the hierarchical spatial repre-

sentation. For the temporal representation, we design a novel contrastive learning

approach with a mixup strategy for risk sample augmentation to contrastively learn

the risk representation. In the third model, we build a frequency domain Trans-

former, which can conduct spatial-temporal representation learning from both the

time and spectral domain. Specifically, we propose 2D spectral learning to solve

the spectral bias challenge in deep neural networks. Finally, we propose a test-time

training for spatial-temporal representation learning, which can effectively alleviate

the distribution shift between the training and testing data in the traffic forecast-
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ing tasks. All the methods in this thesis have achieved state-of-the-art forecasting

performance, which is demonstrated through extensive experiments conducted on

various real-world traffic datasets.

7.2 Future Work

Large languagemodels (LLMs) and foundational models have recently gained

explosive surge in popularity and are witnessing rapid development across a wide

range of domains, such as natural language processing (NLP) [21,76,77], computer

vision (CV) [6,55,90], and other research communities [67,85]. The core of LLMs lies

in the pre-training of a large language model from a large number of text corpora

and billions of model parameters to facilitate the fine-tuning of the downstream

tasks. One significant advantage of LLMs is that, in contrast to the conventional

deep learning models, which need to be designed specifically for different tasks and

data, they can be applied to a diverse range of tasks with a unified framework.

Although having achieved remarkable success, the applications of LLMs to

spatial-temporal representation learning are still limited. The only attempt at ap-

plying the pre-trained LLM to traffic forecasting is [109], which generates prompts

by converting the numerical temporal sequences into natural language sentences.

This approach allows the direct processing of prompts by pre-trained LLMs for

downstream forecasting tasks, providing insightful guidance on the application of

pre-trained language models. However, there is a need for further exploration in

future work to address how to generate more informative prompts for LLMs to

enhance their effectiveness in downstream tasks. Additionally, the exploration of

techniques to leverage current LLMs for capturing spatial correlations remains an

unexplored avenue.
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