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Abstract

The emergence of collaborative robots (cobots) allows humans and robots to work in the

same space. By collaborating on a common task, the strengths of humans (e.g. perception

and decision-making) and robots (e.g. repeatability and accuracy) can be combined to

achieve better performance. Human co-workers could interact with a robot in various

ways and in various applications such as rehabilitation and materials handling. This

thesis focusses on physical Human-Robot Collaboration (pHRC). pHRC can be defined as

a human co-worker physically contacting or exchanging force continuously with a robot to

accomplish a shared goal in the same workspace.

Trust is the key to achieving successful Human-Robot Interaction (HRI). Trust in robotics

is defined by the degree to which humans are willing to utilize robots. Factors such

as a robot’s functionality, reliability, and features, along with the type of task and the

environment, can affect trust levels. Inappropriate trust levels can result in excessive or

insufficient reliance on robots, due to overly high or low trust, respectively, leading to

poor teamwork. As a result, this can increase both physical and cognitive workloads and

decrease overall task performance, including accuracy and completion time. In addition

to the human co-worker trusting the robot, the trust of the robot in its human co-worker

should also be considered.

In this Thesis, a computational model of a robot’s trust in its human co-worker for pHRC

is proposed. The trust model is a function of the human co-worker’s performance, which

can be characterised by factors including safety, robot singularity, smoothness, physical

performance, and cognitive performance. Safety performance is defined based on the pos-

sibility of collision between the robot and surrounding objects. Singularity performance is

proposed to quantify human performance in avoiding singular configurations. Smoothness

performance is used to quantify the degree of smoothness when the human co-worker moves

the robot during performing a pHRC task. Physical performance is based on an estimate

of the human co-worker to physically contribute to the task. Cognitive performance is

based on an estimate of cognitive capacity while performing a task. The proposed compu-

tational trust model provides a comprehensive evaluation of human co-worker performance



in pHRC. The model could be used to monitor human performance in real-time and adapt

the behaviour of a system to improve human-robot combined collaboration efficiency and

experience.

Moreover, role arbitration in human-robot collaboration (HRC) is a dynamically changing

process that is affected by many factors, such as physical workload, environmental changes,

and trust. To address this dynamic process, a trust-based role arbitration method is

studied in this thesis. A computational model of robot trust and self-confidence (TSC)

in pHRC is proposed. The proposed TSC model is defined as the difference between

robot-to-human trust and the robot’s self-confidence. The robot-to-human trust model is

established as previously mentioned. Then, a role arbitration method is proposed based

on the presented TSC model. The robot’s self-confidence is modelled based on whether

a human agrees with the control actions of the robot. The robot’s self-confidence is high

when a human agrees with robot control and vice versa. In addition, when the robot’s

trust in a human co-worker is much higher than the robot’s self-confidence, the control is

allocated to the human co-worker and vice versa. However, the way the control is allocated

when the robot’s trust in human co-workers and itself are both high or low becomes a

question. In this work, it is proposed that the history of robot self-confidence can be used.

If the robot’s self-confidence in history is high, it indicates that the robot control was

satisfied by the human in the past. Hence, the control will be biased toward the robot

and vice versa. Human-in-the-loop experiments with a collaborative robot are conducted

to verify the TSC-based role arbitration method. The results show that the proposed

method could achieve superior human-robot combined performance, reduce human co-

workers’ workload, and improve subjective preference.

Furthermore, the Rating Scale (RS) method has traditionally been the go-to approach for

assessing subjective experiences. Yet, its suitability for physical human-robot collaboration

(pHRC) research is questionable due to several inherent issues, such as response bias,

individual differences among participants, and the challenges posed by the scale’s level

of detail. Variabilities between individuals can significantly skew the results obtained by

rating scales. Scales with too many options might confuse participants, causing ambiguous

and potentially biased answers, whereas scales with too few options risk overlooking the

subtle complexities of human emotions. Moreover, getting indifferent replies can risk the

trustworthiness of the data collected.

In light of these obstacles, this thesis advocates the use of Pairwise Comparison (PC)

in pHRC research, which is a comparative survey method that pits items against each

other based on specific criteria. Inspired by the structure of the NASA Task Load In-

dex (NASA-TLX), both RS and PC surveys are crafted and employed in a sequence of

pHRC experiments. The results indicate that PC outperforms the rating scale in terms



of precision and stability. By offering straightforward questions and potentially shorten-

ing the duration of experiments, PC not only maintains participant engagement but also

ensures consistent accuracy and reliability across varying experimental designs. More ro-

bust measurement of interaction experience in pHRC could improve the design of pHRC

systems.
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Chapter 1

Introduction

1.1 Background

The ever-evolving landscape of technology, particularly in areas such as sensors and actu-

ators, has paved the way for a new era in human-robot interaction. This shift is marked

by the emergence of collaborative robots, or “cobots”, which are explicitly designed to

co-exist with humans in a shared workspace, as opposed to their conventional industrial

robot counterparts operating in isolation [9].

The collaboration between humans and robots aims to harness the unique strengths of

each party. Although robots often possess superior power, endurance, and payload capa-

bilities, humans exhibit exceptional cognitive abilities, including adaptability, dexterity,

and aptitude in handling complex and uncertain situations. This collaborative approach

is particularly beneficial in real-world environments characterised by unpredictability and

dynamism, where robots cannot perform tasks independently.

One of the primary goals of human-robot collaboration is to alleviate the burden on human

co-workers by reducing the physical and cognitive demands placed on them. In addition, it

strives to enhance the combined performance of human-robot teams, potentially exceeding

the capabilities of either party alone.

There are various ways in which humans could actively interact with cobots. Physical

human-robot interaction (pHRI) is one of the interactions. This thesis focusses on the

physical Human-Robot Collaboration (pHRC), a subset of pHRI. Collaboration can be

defined as “working jointly with others or together, especially in an intellectual endeavour”

[10]. Both parties in the human-robot dyad share knowledge of the goal of the pHRC task.

Therefore, pHRC defines a human co-worker as physical contacts or exchanging force

1
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Figure 1.1: A pHRC scenario, with a human co-worker physically controlling a robot
manipulator [1]

with a robot to accomplish a shared goal in the same workspace. The robot motions

are wholly or partially under control from the human co-worker through continuous force

exchange. An example of the pHRC scenario examined in this thesis is shown in Figure

1.1, in which a human co-worker operates the robot manipulator by physically moving

the handlebar mounted on the robot end effector. Admittance and Impedance control

are control paradigms commonly used in pHRC where the relationship between the force

exerted by the robot and the velocity of its end-effector is defined. For example, admittance

control uses external forces and torques as input signals and produces desired velocities as

output. This approach can achieve a safe and compliant interaction between the robot and

its environment, making it suitable for tasks that require physical contact or collaboration

with humans.

A human-robot dyad can use pHRC to help human co-workers perform demanding tasks by

leveraging the power and accuracy advantages of the robot, whilst maintaining the benefits

of the human co-worker’s superior cognitive, perception and decision-making abilities.

These characteristics can bring benefits to various applications, such as surgical robots

[11], rehabilitation [12–14], and material handling [1, 15].

1.2 Challenge and Motivation

1.2.1 Aging issue

Due to the constant improvement in technology and social welfare, the life expectancy as

shown in Figure 1.2a [16] of the population continues to increase. In the next 40 years,
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the number of people 65 years old will double and the number of 85 years old will triple in

Australia. According to the United Nations demographic statistical report, the percentage

of the population over 65 years of age is shown in Figure 1.2b [17]. From the figure, the

percentage of the population over 65 years old will increase from 10% to 16% (2050) to a

quarter of the population at the end of the century. It is clear an ageing population will

become an unavoidable and urgent issue that needs to be considered. A shrinking labour

force will become a serious problem that affects the economy and living standards.

Therefore, the development of robotic technology is essential in the future. pHRC can

help mitigate this issue by increasing worker productivity, allowing the elderly population

to remain in the workforce for longer, and improving healthcare.

(a) Life expectancy at birth for females and
males in Australia [16]

(b) Percentage of population aged 65 or over
in worldwide [17]

Figure 1.2: Statistical Evidence for aging issue worldwide and Australia: (a) Percentage
of population aged over 65 worldwide and (b) life expectancy at birth for females and males

in Australia.

1.2.2 Industrial Occupational Health

Work-related musculoskeletal disorders (WMSDs) have become a prevalent problem for in-

dustrial workers due to the long-term impact of heavy workload and repetitive tasks. The

construction industry is synonymous with occupational risks, particularly musculoskeletal

disorders (MSDs), which are an important problem that leads to loss of productivity, func-

tional impairments, and even permanent disability [18]. The risk of MSDs varies between

construction professions due to distinct biomechanical factors. Although primary preven-

tion efforts have reduced the biomechanical load in many roles, long-term studies reveal

that MSDs continue to be prevalent. A recent study found that more than half of active

construction workers experienced musculoskeletal complaints, which significantly impacts
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their career longevity, as shown in Figure 1.3a. In addition to the loss of productivity

from industry and construction workers, on average the loss of time a day is around 1.8

hours per day to 2.2 hours per day, as shown in Figure 1.3b. MSD could also result in a

significant reduction in life quality, increased disability, and reduced workers’ performance

[19–21]. This will result in a high medical burden on individuals or the country [22].

(a) Survey of the construction

worker (n = 5610) under work-

related musculoskeletal disorders

(b) Productivity loss at work

due to health problem among in-

dustrial workers and construction

workers.

Figure 1.3: Statistical Evidence for Work-related musculoskeletal disorders (WMSDs)
in Industry: (a) Survey of the construction worker (n = 5610) under work-related mus-
culoskeletal disorders, including 316 painters, 1030 plumbers, welders and fitters, 1072
electricians and assemblers, and other construction worker [23]. (b) Productivity loss at

work due to health problem among industrial workers and construction workers [24].
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To address this issue, pHRC is critical due to the strength and combined accuracy advan-

tage of the robot.

1.2.3 pHRC in Industrial Applications

A team from the University of Technology Sydney developed a new robotic system ANBOT

(Assistance as Needed roBOT) that addresses occupational health problems in the abrasive

blasting industry [1]. In conventional industrial blasting such as that shown in Figure 1.4a,

loads as large as 100N are constantly applied to the human co-worker, resulting in non-

ergonomic situations during practice. Furthermore, strong vibrations are another major

factor that causes WMSD in workers during abrasive blasting operations. The ANBOT

could handle most of the workload brought by the reaction forces imposed on the worker

during blasting. The worker only requires a small amount of effort to manipulate the

nozzle, as shown in Figure 1.4b, which has been validated in field tests for the worker who

has no experience working with the robot.

(a) Manual Abrasive

Blasting

(b) ANBOT with Hu-

man Co-worker on Site

Trial

Figure 1.4: (a) An typical manual industrial abrasive blasting task [1] (b) ANBOT with
a human co-worker in the site trial [2]

1.2.4 pHRC in Medicare Applications

Assistive Robotics are intelligent machines designed to work collaboratively with humans

in roles ranging from assistants to companions. A prime example of such innovation is the

‘Smart Hoist as shown in Figure 1.5, a patient lifting device equipped with sensors and

powered wheels [25]. While it functions as an advanced patient lifter, it significantly eases

operational effort, potentially reducing lower back injuries among caregivers. Preliminary
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evaluations of the IRT Woonona residential care facility suggest its ease of use and potential

to improve caregiver safety.

Figure 1.5: ‘Smart Hoist’: a patient lifting device equipped with sensors and powered
wheels. Although functioning as a advanced patient lifter, it significantly eases the oper-

ational effort, potentially reducing lower back injuries among caregivers.

The growing scarcity of therapists and caregivers to help people with physical disabilities

at home is expected to intensify, posing significant challenges in the near future due to

an ageing problem. There is also an increasing number of patients who require physical

rehabilitation of the upper extremities. Although recent studies highlight the promise of

robotic devices in addressing these concerns, their presence in clinical settings remains

minimal, indicating substantial opportunities for improvement. A study in [3] presents a

novel approach to robotic therapy, termed performance-based progressive robot therapy,

which initiates robot assistance according to specific criteria such as speed, time, or EMG

readings as shown in Figure 1.6a. Given the high incidence of stroke-related disabilities in

the US, the research focusses primarily on this group. Research, which includes extensive

clinical trials with more than 200 stroke patients, underscores the effectiveness of repetitive

robotic-assisted techniques in alleviating post-stroke arm problems. The study is also keen

to tailor therapy to individual needs, with significant exploration of an impedance control

algorithm driven by these specific criteria. Initial feedback from therapists has indicated

a considerable benefit of this method: a significant reduction in arm rigidity.

Lower limb rehabilitation, illustrated in Figure 1.6b, represents a prominent area of re-

search that has garnered significant attention among scholars. The primary goal in this

field is to reinstate walking abilities in individuals affected by brain and spinal cord in-

juries. A groundbreaking development in this arena is the electromechanical gait tool,

LokoHelp, engineered by Medburg Basel. This innovative device has been evaluated for

its effectiveness in training outcomes, as well as the comfort and exertion levels experienced

by both patients and therapists, as discussed in [4].
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(a) Stroke patient during robot-aided therapy (b) Spinal cord injuries for the purpose of
restoring the walking capability

Figure 1.6: Examples of pHRC in Medicare applications in rehabilitation robotics: (a)
Stroke patient during robot-aided therapy [3]. (b) LokoHelp: A rehabilitation robot for

brain and spinal cord injuries for the purpose of restoring walking capability [4].

1.3 Trust in HRC

Social Human-Robot Interaction (sHRI) encompasses the interdisciplinary study, design,

and assessment of robots designed to interact with humans in ways that are socially signif-

icant and meaningful. Within the realm of sHRI, a multitude of cognitive factors critically

shapes the nature and success of human-robot engagements. These include, but are not

limited to: situation awareness, attention and focus, decision-making processes, reliability,

and trust. These elements not only enrich the interaction dynamics but also significantly

determine the effectiveness and outcomes of these social exchanges [26].

Trust is a pivotal component of the human cognitive process. As defined in [27], trust

can be described as the belief that an entity, be it a machine or another individual, will

assist in accomplishing one’s goals, especially in contexts filled with ambiguity and risk.

Inappropriate levels of trust in a robot can lead to either disuse (under-reliance) or misuse

(over-reliance) as indicated in [28]. In human-human interactions (HHI), trust operates

bidirectionally. To mirror this in human-robot interactions (HRI), it is crucial to embed

cognitive functions within robots that not only include trust in humans but also embody

a form of robotic self-assurance. This implies that robots should extend beyond the basic

sense-plan-act paradigm and be instilled with human-like cognitive characteristics, like

a semblance of ‘self-awareness’, akin to the aforementioned trust and self-confidence as

shown in Figure 1.7.
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Trust in HRI has been the subject of thorough investigation. Subjective questionnaires are

a widely used method to assess trust from humans towards robots, provided by researchers

during experiments as noted in the work by Muir [29]. However, this approach allows for

the collection of questionnaire outcomes only post-experiment or necessitates pausing the

experiment for data collection, making it unsuitable for real-time computational modeling

and robot control. This limitation underscores the need for developing real-time computa-

tional trust models that enable robots to adjust their behavior dynamically based on trust

levels, aiming to enhance the joint performance of humans and robots and to alleviate the

physical and cognitive load on human coworkers.

The pioneering study on computational models of human trust in robots was conducted

by Lee and Moray [5], identifying faults and performance as key factors influencing trust

variability. They crafted a dynamic trust model using an autoregressive moving average

model that incorporates operators’ trust ratings, along with the performance and faults of

the automatic controller. Xu [6] introduced an online probabilistic trust model that uses

a dynamic Bayesian network to calculate trust based on the history of interactions.

Trust is a two-way street, involving both the human and the robot coworkers during

interactions. Research has also been done on models of robot trust in humans. For

instance, Rahman [7] adapted the human-to-robot trust model by Lee and Moray [5] for

tasks involving handovers, allowing robots to adjust their handover strategy based on their

trust in humans. Similarly, Tran [8] developed a model of robot-to-human confidence for

tasks like grit-blasting in pHRC, utilizing a fluid-stochastic Petri net model.

While human-to-robot trust models [5, 6] have relied on subjective questionnaires to define

their parameters, such a method is not viable for creating robot-to-human trust models,

given that robots lack an inherent sense of trust to be surveyed. In [7] and [8], these models

are informed by performance metrics, like the blasting angle or the variability in blasting

paths, though their application has been task-specific which is not comprehensive.

1.4 Role Arbitration in HRC

In many pHRC applications, the human primarily assumes the leadership role within the

system. However, autonomous systems excel in structured settings, such as logistics ware-

houses or automotive manufacturing, as shown in Figure 1.8. Here, they can efficiently

execute repetitive, high-volume tasks with minimal errors and impressive precision, thanks

to their advanced sense-plan-act mathematical model. However, autonomous systems face

challenges, including varying lighting conditions and occlusions. These challenges are ex-

acerbated in human-robot interaction scenarios, such as hospitals or industrial situations,
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Figure 1.7: Emulate Human-Human Interaction paradigm into human-robot interaction

where human involvement introduces complexity and uncertainty into the environment.

Given these complexities and the nuanced, evolved human sensory and cognitive capa-

bilities, a human-in-the-loop approach becomes crucial. Here, humans use their superior

sensing and decision-making abilities in complex scenarios, employing techniques such as

admittance/impedance control to guide the robot in pHRC. This raises a crucial research

question: How should control be distributed between humans and robots to maximise

synergistic performance?

Role arbitration in pHRC, as described by [30], delves into this control distribution, seeking

Figure 1.8: A role arbitration method to determine the control allocation between
human and robot based on robot trust in human and robot self-confidence.
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to merge the strengths of human and robot, improve performance, and minimise human

physical or cognitive strain. Role arbitration refers to how the control is allocated between

humans and robots for a task and allows combining the strengths of humans and robots

to improve combined performance and reduce human physical or cognitive effort [30].

The role arbitration method is generally categorised based on the communication modal-

ities. In pHRC, the use of Electroencephalograms (EEG)[31], Electromyography (EMG)

[32], and Motion capture systems (MCS) [33] as external sensors brings forth notable chal-

lenges in real-world industrial settings. These challenges primarily revolve around the high

cost of these sensors, making them less accessible for small enterprises and researchers.

Furthermore, the need for individuals to wear these sensors or specialized suits raises is-

sues of comfort and wearability, potentially hindering natural movement and impacting

the precision of data collection. EEG and EMG sensors, in particular, are prone to low

signal-to-noise ratios, diminishing measurement accuracy due to the noise generated by

muscle movements during pHRC activities. While force-torque sensors and encoders are

more commonly implemented in pHRC for their ability to capture physical interaction,

they fall short in fully capturing the comprehensive human performance in pHRC. There-

fore, a practical role arbitration method that is comprehensive enough to be applicable

across various applications presents a novel research topic worthy of investigation.

The willingness of a human to rely on the robot taking control during pHRC depends on

the difference between the human’s trust in the robot and the human’s trust in themselves

to perform the task [34]. The robot can take control when human trust in the robot is

higher than trusting themselves, otherwise, the human is in control. To the best of author

knowledge, the role arbitration based on robot-to-human trust and robot self-confidence

(TSC) is a novel research question which have not been investigated yet.

1.5 Questionaire-based Subjective Evaluation Method in

HRC

Understanding the preferences of human users is critical when developing pHRC systems.

Rating Scale (RS) methods, for example the NASA Task Load Index (NASA-TLX) Likert

scale, is widely used to evaluate the user impressions of robotic systems [35–37]. It is

simple to implement as it just requires participants to provide scores against some defined

attributes or criteria on a given scale.
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However, criticism of this method in relation to its limitations has been persistently sug-

gested. Kieruj [38] has discovered that the length of response scales influences the re-

sponses. It is also addressed that the cultural factor results in differences in scale comple-

tion rates and familiarity with scales [39, 40]. Another challenge associated with Rating

Scale is the risk of careless or disengaged responses. Participants who are not fond of the

survey or find it tedious might rush through the questions, leading to haphazard results

with diminished reliability and validity [41]. All of these limitations of the Rating Scale

method lead to bias and noise in its results. The study of an alternative method instead

of RS for pHRC is a novel research topic to be investigated.

1.6 Research Question

Figure 1.9: An abstract figure for the research. A computational model of robot trust
in human co-worker which takes consider of safety, singularity, smoothness, physical and
cognitive - Q1. A computational model of robot self-confidence which takes consider of
human co-worker and the autonomous control’s intention - Q2. And a role arbitration
method which input is robot trust in human co-worker and self-confidence - Q3. And a

new pairwise comparison subjective evaluation method - Q4.

On the cusp of a technological revolution, the symbiotic relationship between humans and

robots is becoming more intricate than ever before. As these machines transition from

mere tools to collaborative partners, it is no longer just about the tasks they perform,

but also the dynamic they share with their human counterparts. A deep understanding of

the trust, confidence, and arbitration mechanisms within the framework of pHRC is not

just a scientific endeavour, but a social imperative. With the future poised to be shaped
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Figure 1.10: Control diagram of robot trust and self-confidence based role arbitration
method for physical human-robot collaboration.

by this partnership, this thesis aims to address the pressing issue: How do we precisely

model, measure, and enhance the intricate interplay in pHRC, specifically focussing on

the nuances of robot trust in humans, robot self-awareness, and the resulting collaborative

roles? Delving into this will not only optimise performance outcomes, but also pave the

way for more harmonious and productive human-robot synergies in the future. Based on

the motivation mentioned above, the research question is formulated as:

Q: How can trust and self-confidence be used to create effective arbitration in pHRC?

The abstract figure and control diagram are shown in Figure 1.9 and 1.10, respectively.

1.6.1 Research Sub-questions and Methodology

To elucidate the main research question, the following subquestions have been formulated:

Q1: What are the effective metrics for measuring robot trust in human collaborators within

pHRC?

Q2: How can robot self-confidence be measured in pHRC?

Q3: How might we arbitrate roles based on a robot’s trust in human co-workers and its

self-confidence?



Chapter 1. Introduction 13

Q4: Which techniques are most effective and efficient to assess human subjectivity in

pHRC?

1.6.1.1 Computational Model for Gauging Robot’s Trust in Human Collabo-

rators

Trust between individuals is mutual in human-human interactions. To mirror this in a

human-robot pair, we introduce a computational model representing a robot’s trust in

its human counterpart, particularly in the realm of pHRC. This trust model is corre-

lated with the performance metrics of human collaborators. Factors that encapsulate this

performance in pHRC include safety considerations, robot singularity, task smoothness,

physical ability, and cognitive state. Validation of this trust model is achieved through

three experiments employing a collaborative robot. A pivotal contribution of this study is

crafting an intricate, objective, and holistic computational model to gauge a robot’s trust

in human collaborators within the sphere of pHRC.

1.6.1.2 Computational Model of Robot’s Self-Confidence

A robot’s sense of self-confidence is sculpted by human acknowledgement and endorsement

of its control decisions. When human partners concur with robot control, the robot’s self-

confidence surges, and the opposite holds true. This framework is adept at navigating

challenges in unstructured environments or tasks, be it alterations in a task by a human

collaborator, interference from sensor noise, or unforeseen hindrances, leading the robot to

either falter in completing a predefined task or deviate from anticipated behaviour. The

robot’s self-confidence tends to wane in unpredictable settings, especially when there is a

chasm between human intent and the robot’s misguided directives.

1.6.1.3 Role Arbitration Informed by Robot Trust and Self-Confidence

The proclivity of human collaborators to lean on robot autonomy depends on juxtaposing

their trust in the robot against their own self-confidence. Should a human collaborator have

trust in a robot’s competence to autonomously complete a task, they will be more inclined

to delegate the task to the robot. In contrast, a stronger self-belief makes humans lean

more on their own capabilities, overriding robot autonomy. Thus, the extent of human

reliance on robot autonomy is tied to the balance of trust they place in the robot and

their self-assuredness. Within the human-robot role arbitration paradigm, humans and

autonomous systems collaboratively steer robot actions during tasks, amalgamating the

strengths of both entities to bolster combined efficiency and alleviate human strain, be it
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physical or cognitive. This arbitration in human-robot collaboration is dynamic, influenced

by numerous factors, including physical exertion, environmental changes, and trust levels.

To address this fluidity, this research takes a trust-centric arbitration approach. This

thesis proposes a computational model that encapsulates both trust and self-confidence,

termed the TSC, within pHRC. A consequent arbitration method grounded in the TSC

model is introduced. Empirical “human-in-the-loop” experiments with a collaborative

robot validate the efficacy of this TSC-informed arbitration approach. Preliminary findings

illuminate that our method not only accentuates synergistic human-robot performance,

but also curtails the workload on human collaborators, whilst enhancing their subjective

experience.

1.6.1.4 Effective Techniques for Gauging Human Subjectivity in pHRC

In pHRC research, qualitative tools, such as questionnaires, are widely used to capture

subjective human evaluations of robotic counterparts. The likert scale assessment has

garnered favour not only in pHRC but also in a wide range of HRI domains. However,

singular ratings assigned to experimental conditions can inadvertently induce biases and

noise. When pairs of different experimental conditions are compared rather than individ-

ually, it is possible to mitigate these negative effects, thus increasing the reliability and

accuracy of the results. This has led us to postulate that PC might be a more streamlined

method for pHRC studies over conventional lkert scale assessment. The PC technique

ranks multiple alternatives through a succession of binary comparisons. In this discourse,

we juxtapose the results from the widely recognised NASA TLX against the PC approach

in two distinct pHRC trials with identical experimental conditions and a collaborative

robot. One distinguishing factor is the comprehensive versus partial conditions presented

to the participants. Drawing comparisons using the ANOVA, the PC technique emerges

as both resilient and precise, registering a reduction 44% in experimental timelines.

1.7 Thesis Outline

This thesis undertakes a comprehensive examination of human-robot collaboration, with

a specific emphasis on trust, self-confidence, and the role arbitration method. To ensure

clarity and methodical progression, the study is organised into distinct chapters, each

dedicated to a particular aspect of the central research theme. Subsequently, the structure

of the thesis is delineated.
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1.7.1 Chapter 2

This chapter is a review of related work and foundational knowledge, introducing the

reader to the context and significance of pHRC. Here, this thesis explores the relevant

literature on trust in HRI, delves into role arbitration methodologies, and examines the

varied techniques employed to gauge subjectivity in pHRC.

1.7.2 Chapter 3

In Chapter 3, the focus shifts to the process of creating a computational model to capture a

robot’s trust in its human collaborator within the realm of pHRC. The development of this

model is evaluated using empirical data from three experiments involving a collaborative

robot to validate the proposed trust model.

1.7.3 Chapter 4

The fourth chapter expands on the trust model of Chapter 3 by introducing the TSC. This

comprehensive model integrates the concepts from Chapter 3 with a new layer: the robot’s

self-confidence. This is incorporated into a role arbitration method grounded in the TSC

framework. The validity of this method is examined through human-centric experiments

with a collaborative robot.

1.7.4 Chapter 5

Chapter 5 pioneers a novel methodological approach to subjective measurement. Here,

this chapter evaluates the use of pairwise comparison for pHRC experiments, juxtaposing

it with traditional rating scales, exemplified by tools like NASA-TLX.

1.7.5 Chapter 6

This chapter presents an extensive experimental evaluation of the role arbitration method

that is based on robot trust and self-confidence. A rigorous statistical analysis is used

to draw on objective and subjective evaluation criteria. Additionally, the physical and

cognitive performance models, initially presented in Chapter 3, are revisited and validated

within real-world pHRC scenarios.
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1.7.6 Chapter 7

This concluding chapter consolidates the findings and insights derived from the study.

The implications of the research are examined, leading to definitive conclusions. Looking

ahead, potential directions for future research in this domain are suggested.

1.8 Publication

The work presented in this thesis has been presented in the publications listed below. Qiao

Wang is the primary contributor and the first author in these publications.
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2023
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Chapter 2

Review of Related Work

HRI is related to the multidisciplinary study of the dynamics, design, and evaluation

of robot systems intended for human use or collaboration [42]. Central to HRI is the

notion of interaction, which inherently demands a communicative nexus between humans

and robots. The nature of this communication is significantly dependent on the spatial

proximity between the interacting parties. Consequently, the interactions can be broadly

classified into:

1. Remote interaction: The human and the robot are not in the same location and

can be distant in terms of space or time [42].

2. Proximate interaction: The human and the robot are in the same location in

terms of space or time [42].

In the realm of remote interactions, several applications can be delineated. Telemanipu-

lation is exemplified by systems like the Da Vinci robot (Figure 2.1b), while supervisory

control (Figure 2.1a) can be seen in scenarios such as the remote operation of the Mars

Rover, which involves spatial and temporal separations. For proximate interactions, the

spectrum encompasses physical human-robot collaboration, as previously elaborated, and

extends to social interactions. In these instances, robots and humans engage on a peer-like

level, epitomised by platforms such as Nao, which fosters emotional and social exchanges

with humans (Figure 2.1c).

This chapter reviews previous work related to the contribution of this thesis. Section 2.1

provides a general overview of the state-of-the-art in pHRC and collaborative robotics.

Section 2.2 provides a general overview of trust in HRI. Section 2.3 provides a general

overview of the role arbitration method in the HRI. Section 2.4 provides a general overview

of the subjective evaluation method in the HRI.

17
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(a) Example of remote in-
teraction: supervisory con-

trol (Mars Rover)

(b) Example of remote
interaction: telemanipu-
lation (Da vinci surgical

robot)

(c) Example of proximate
interaction: social interac-

tion (Nao robot)

Figure 2.1: Applications and examples of remote and proximate interactions: (a) Su-
pervisory control (Mars Rover) (b) Telemanipulation (Da vinci surgical robot) (c) Social

interaction (Nao robot)

2.1 Physical Human-Robot Collaboration

2.1.1 Physical Human-Robot Interaction

pHRI refers to scenarios in which humans and robots are in direct contact or share a

workspace, requiring physical interactions [43]. It emphasises the importance of safety,

intuitiveness, and efficiency when humans and robots collaborate in a physical manner

[44]. pHRI encompasses the development of robotic systems that are sensitive to human

presence, can adjust their actions in real-time based on human movement or input, and

are designed to operate in shared environments without causing harm or discomfort to

humans [45]. This field addresses both the technical challenges of robot design, sensing,

and control, as well as aspects of human factors, such as user trust, understanding, and

acceptance of robotic systems [46]. In this section, the classification of pHRI will be

introduced. Classification depends mainly on the frequency of physical interaction and

the level of autonomy of the robot, and can be classified into three types: supportive,

cooperative and collaborative [47].

1. Supportive Interactions: In this category, the robot acts more as an assistant,

enhancing the human’s performance rather than being essential to the task itself.

Such interactions usually involve the robot offering tools, information, or materials to

humans. Examples include shopping assistants [48] for the elderly, where the robot

carries a basket for the elderly as shown in Figure 2.2a. Safety is paramount, with an

eye on avoiding unwanted contacts or collisions. Physical interactions are rare and

often brief. Effective human-robot communication, especially bilateral gesture cues,
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is critical for tasks like turn-taking and close-proximity activities instead of frequent

physical contact.

2. Cooperative Interactions: Here, both humans and robots actively participate in

the task, dividing labour based on their respective strengths such as handover of a

bottle by human and robot [49] as shown in Figure 2.2b [49]. They interact more

often, either by passing parts/tools or through haptic cues that switch the robot’s

behaviour. Humans handle tasks that require dexterity or decision-making, while

robots handle repetitive tasks or those that require precision. Although physical

space is shared more than supportive interactions, physical exchanges are still mostly

transactional.

3. Collaborative Interactions: This level of interaction involves more direct and

continuous physical collaboration between the human and the robot. In the two

preceding interaction types, the robot assumes a more passive role. However, in col-

laborative mode, the robot adopts a more active and independent stance, equipped

with self-intelligence. This shift underscores the robot’s capability to engage more

dynamically and autonomously in the collaborative process. In this level of interac-

tion, the robot can work in direct or indirect contact with humans, either through

physical touch or through a shared object. These interactions cover tasks such as

cooperative lifting, kinaesthetic teaching, handling flexible materials, and rehabili-

tation therapy [3] (Figure 2.2c).

(a) Example of Supportive

Interaction: shopping as-

sistant robots for aiding se-

niors [48]

(b) Example of Cooper-

ative Interaction: human

and robot hand-over a bot-

tle. [49]

(c) Example of Collabora-

tive Interaction: rehabili-

tation robot for stroke pa-

tient [3].

Figure 2.2: Examples of classification of physical human-robot interaction (a) Support-
ive Interaction (b) Cooperative Interaction (c) Collaborative Interaction.

In essence, the categories range from robots providing supportive roles to more direct,

shared-task engagements, each with increasing degrees of physical interaction and collabo-

ration. However, in current research, the supportive and cooperative types of interactions
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are well-researched. With advances in autonomous technology, robots can now function

as independent entities. This has paved the way for a collaborative paradigm between

humans and robots. Given this promising trajectory, the primary focus of this thesis is on

physical human-robot collaboration.

2.1.2 Collaborative Robot

Cobots are the technological embodiment designed for pHRC scenarios. Although pHRC

describes the nature and dynamics of the interaction, cobots are the tools that facilitate

this interaction. In the context of pHRC, cobots are developed to be inherently safe,

making it possible for humans and robots to collaborate and share tasks seamlessly in a

physical workspace. In summary, cobots serve as the primary enablers of effective and safe

pHRC in various applications, from manufacturing to healthcare.

Traditional industrial robots are generally operated behind fences and away from humans

due to the potential concern for safety and perform repetitive and labour intensive tasks

[50], as shown in Figure 2.3a. With the advancement of robotics research (such as hard-

ware and software), especially collaborative robots [9], cobots can now actively and safely

interact with human co-workers in the same workspace. Examples of general purpose

cobots, shown in Figures 2.3(b-d) include; KUKA Robots (KUKA LBR iiwa) [51], Uni-

versal Robots (UR 10) [52], and Rethink Robotics (Sawyer) [53]. Examples of cobots for

specific applications include; the ANBOT for industrial applications (Figure 1.4), smart

hoist robot (Figure 1.5) and rehabilitation robots (Figure 1.2.4) in medicare applications.

(a) Traditional In-
dustrial Robots

(b) KUKA LBR
iiwa

(c) Universal
Robot 10

(d) Rethink
Robotics Sawyer

Figure 2.3: Examples of traditional industrial robot (a) and collaborative robots
(b)(c)(d)

There are many considerations when it comes to designing cobots that coexist with human

co-workers safely [54], which need to satisfy the ISO/TS 15066 standards for cobots [55]:

1. Compliant actuators:
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(a) Series Elastic Actuators [56]: In the realm of advanced actuation systems, Series

Elastic Actuators (SEAs) have emerged as a notable innovation. Characterised

by the integration of an elastic component, typically a spring, in series between

the actuator’s output and the load, SEAs offer multifaceted benefits. Not only

do they enable precise force measurements through the deflection of the elas-

tic element, but they also enhance shock tolerance and safety, particularly in

human-robot interactions. The inherent compliance of SEAs protects against

abrupt impacts, while simultaneously expanding control possibilities. Their in-

troduction represents a significant step towards creating more adaptable and

safe robotic systems, especially in dynamic environments.

(b) Series Damper Actuators (SDA) [57]: A standard SDA setup encompasses a

control module paired with two core hardware modules: a motor, which may or

may not incorporate a gear transmission, and a strategically integrated viscous

damper. This configuration is meticulously crafted to exercise precise control

over the relative velocity within the damper, subsequently achieving the in-

tended force based on the designated damping coefficient.

When contrasted against the Series Elastic Actuator (SEA) system, which re-

lies primarily on an elastic element, the SDA distinguishes itself by employing

a series damping component. This key alteration paves the way for a system

order reduction of one. The practical implications of this are quite profound:

the SDA might possess a wider operational bandwidth compared to its SEA

counterpart. A notable merit of the SDA framework lies in its inherent flexi-

bility. By leveraging a suitable damper design, the damping coefficient can be

dynamically modulated in alignment with changing environmental conditions.

Such adaptability finds practical applications in scenarios necessitating variable

forces. For example, the system can seamlessly adjust the damping coefficient

in response to varying force magnitudes, thus optimising the relative velocities

within the damper. This feature ensures that the SDA delivers unparalleled

force fidelity across a spectrum of force ranges.

Another commendable characteristic of the SDA is its intrinsic ability to absorb

impacts. Due to the energy dissipation properties of the series damper, the

system is well-equipped to protect walking robots, haptic interfaces, and robotic

manipulators from potential damage upon external impact exposure.

Yet, no system is devoid of challenges. The very attribute that equips the

SDA with impact absorption, its energy dissipation property, simultaneously

curtails its operational efficiency. In a comparative context, the SEA, with its

energy-conserving elastic element, has the potential to offer superior efficiency.
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However, questions persist about the real-world efficacy of this energy conser-

vation, especially when SEAs are integrated into complex robotic systems like

legged robots.

(c) Variable Impedance Actuators [58]: Variable Impedance Actuators (VIA) have

gained the attention of researchers due to their suitability for dynamic inter-

actions with unpredictable environments, including human involvement, where

traditional stiff actuators fall short. Variable impedance actuators (VIAs) are a

type of actuator system designed to adjust their mechanical impedance, which

encompasses both stiffness and damping properties. Unlike traditional actua-

tors, which typically have fixed or “stiff” impedance characteristics, VIAs can

modulate their impedance based on specific requirements or environmental con-

ditions.

2. Speed and Separation Monitoring: The Speed and Separation Monitoring (SSM)

technique is used to prevent collisions by constantly monitoring human movement

within the robot workspace [59]. This approach calculates the space needed to bring

a robot to a safe state, such as stopping, ensuring a minimal protective distance that

aligns with its deceleration or slowing pace.

3. Power and Force Limitation (PFL) [60]: The “Power and Force Limitation (PFL)”

method is designed to minimise the adverse effects of unintended impacts, ensuring

they don’t cause harm. Although the foundational principle of safe human-robot

interaction posits that a user should never sustain an injury, sporadic accidental

contacts might result in a sensation akin to minor pain experienced in daily activities.

Regulatory guidelines for the PFL technique establish criteria to ensure that all

contacts remain within such boundaries, based on research on the impacts on the

human body. Importantly, these studies never induce serious injury. In collaborative

robotics, the goal is to assess levels of physical interaction far from causing injury, in

line with the objective of increasing human-robot interactions in shared spaces. A

vital metric for PFL, although challenging to measure and validate, is the pressure

exerted on the human body. It is essential to assess the force’s magnitude and

duration from a robot system on the body’s impacted surface and consider strategies

to reduce it or control actions when there is potential significant risk.

2.2 Trust in Human-Robot Interaction

Social Human-Robot Interaction (sHRI) refers to the study and practice of designing, im-

plementing, and evaluating robots that are capable of engaging with humans in socially

meaningful ways. This field encompasses the development of robotic systems that can
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understand and adhere to social norms and cues, communicate effectively through both

verbal and non-verbal means, and adapt to the complex dynamics of human social envi-

ronments. Social HRI aims to create robots that can participate in a variety of roles, from

companions and assistants to collaborators and autonomous agents, in settings ranging

from homes and workplaces to public spaces and educational environments. The goal is

to enhance human experiences, improve task efficiency, and foster positive relationships

between humans and robots by ensuring that interactions are intuitive, natural, and sat-

isfying for the human participants [26].

In sHRI, numerous variables influence the dynamics and outcomes of interactions, such as

Robot Design and Appearance, Behavior and Autonomy, Reliability and Trust [26].

Robots and advanced autonomous systems promise significant advantages by helping hu-

mans perform various tasks. However, the full potential of these advantages is occasionally

not realised because of inappropriate human interactions. In interactions with automation,

humans sometimes neglect beneficial system features. This phenomenon, termed “disuse”

or “under-reliance” [61], indicates a reluctance to employ automation even when it is bene-

ficial. Furthermore, there are instances in which individuals improperly oversee automated

systems, such as removing alarms or blindly following their directives even if inappropriate

[62]. A related concern is “automation bias” [63], where users allocate undue credibility to

automated recommendations over other inputs, including human judgment. When these

automated suggestions fail, the results can be disastrous [64], leading to neglect of crucial

situations or misguided actions.

Both inexperienced and experienced users exhibit these inclinations. For example, in

[65], even experts in the domain displayed excessive trust in diagnostic systems [65]. The

Aviation Safety Reporting System has numerous accounts from pilots attributed to over-

sight errors to overreliance on automated systems such as autopilots[66]. On the contrary,

when organisational rules enforce distrusted automation, operators might circumvent it,

essentially leading to its disuse [66].

Research [67] highlights the impact of trust on automation reliance; people are inclined

to depend on automation they trust and abandon what they distrust. Trust plays a

pivotal role in decisions about automation supervision and utilisation [68]. A recurring

theme in the automation trust literature associates complacency with over-reliance, in-

sufficient monitoring, and reduced alertness to automation [68]. Optimal performance

in human-automation collaboration requires calibrated trust. Both under-utilisation and

misappropriation of automation, resulting from miscalibrated trust, have been linked to

mishaps [69].
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Trust is a multifaceted concept that has attracted attention from researchers across nu-

merous disciplines, ranging from social psychology and human factors to industrial organ-

isation. The breadth of this attention has been both a boon and a challenge; while it has

enriched our understanding of trust from various perspectives, it has also resulted in many

definitions, theories, and applications [70].

Given the myriad contexts in which trust is examined, its definition has been adapted

to fit diverse situations. In some studies, trust is delineated as an attitude, while others

perceive it as an intention or a behaviour. This variety in conceptualisation has inhibited

the establishment of a universally accepted definition, even within specific domains such

as interpersonal relations and human-automation interactions [71]. However, a consensus

has emerged that perceives trust as a multidimensional psychological position, which en-

compasses beliefs and anticipations about the trustworthiness of a trustee. This position

is forged from experiences and engagements with the trustee, particularly in scenarios

typified by uncertainty and potential risk [72].

Deeper analysis of trust reveals that it has both cognitive and affective elements. Within

interpersonal dynamics, the affective dimension of trust is evident, as it requires perceiving

others as intrinsically driven by care and consideration to protect the interests of the

person who places trust [73]. When it comes to automation, the cognitive dimension

takes precedence. Here, trustworthiness revolves primarily around the anticipation that

automation will perform its designed function [74].

2.2.1 Trust Modelling in Human-Robot Interaction

Trust is key to achieving a successful HRI [27]. From [27], trust can be defined as “attitude

that an agent (automation or another person) will help achieve an individual’s goals in a

situation characterised by uncertainty and vulnerability”. The human may disuse (under-

reliance), or misuse (over-reliance) the robot without an appropriate level of trust [28].

Figure 2.4a shows the factors that affect trust in HRI, including human-related, robot-

related, and environmental-related [75]. Since pHRC falls within the broader scope of HRI,

the factors that influence trust in HRI similarly impact trust in pHRC. which is shown in

Figure 2.4b. The highest correlation has been shown between robot performance (such as

dependability, reliability, and failure rates) and the evolution of trust [75], [76]. Therefore,

computational trust models based on robot performance have been well-researched by

several research groups, which will be introduced in detail in the following section.
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(a) Meta analysis of the factors Affecting Trust in

Human-Robot Interaction [75]

(b) Meta analysis of the factors Af-

fecting Trust in physical Human-

Robot collaboration [76].

Figure 2.4: Meta analysis of the factors Affecting Trust in (a) Human-Robot Interaction
(b) Physical Human-Robot Collaboration.

Trust in HRI has been extensively researched. A common method for measuring human-

to-robot trust is through subjective questionnaires, which researchers provide during the

experiment [29]. However, researchers can only acquire the questionnaire results after

the experiment is completed, or interrupt the experiment to obtain the results while the

experiment is being performed. The results can therefore not be directly used for real-time

computational modelling and controlling the robot. Therefore, real-time computational

trust models must be developed so that robots could adapt their behaviour in real-time

based on trust to improve human-robot joint performance and reduce human co-worker

physical and cognitive efforts.

The first research on the computational trust model of human trust in robots comes from

Lee and Moray [5]. This research found that the occurrence of faults and performance

are the two most significant factors affecting the variation of trust. After each trial, the

Likert questions with a maximum possible score of 10, meaning complete trust in the

robot, used to evaluate the human co-worker trust in the robot is shown as: “To what

extent can the system’s behaviour be predicted from moment to moment?”, “To what

extent can you count on the system to do its job?”, “What degree of faith do you have

that the system will be able to cope with all system states in the future?” and “Overall,

how much do you trust the system?” as shown in Figure 2.5a. The researchers developed

a dynamical trust model which employs an autoregressive moving average model based
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on operator’s subjective rating scales of trust mentioned above, the current and previous

automatic controller’s performances, and faults.

Xu [6] proposed an online probabilistic trust inference model which employs a dynamic

Bayesian network to estimate trust based on the history of interactive experience. This

trust model could maintain belief distributions for these performance centric trust mea-

sures, based on various factors of the interaction experience. This probabilistic represen-

tation is useful for inferring the human expected trust state at a given time, as well as

the amount of uncertainty of each such estimate. The subjective trust questionaire is

obtained to train the trust model and evaluate the prediction accuracy. The post session

trust feedback questionaire is shown as Degree of Trust: “What is your degree of trust

in the robot right now” as shown in Figure 2.5b, the scale is listed as a modified Visual

Analog Scale (VAS) full distrust, amateur, proficient, advanced and expert.

For existing human-to-robot trust models [5, 6], subjective questionnaires about trust are

used to determine the parameters used in the model. However, this approach cannot be

performed for the development of robot-to-human trust models, as robots do not have an

intrinsic model of trust to be queried. Instead, a model of trust needs to be developed

based on other measures.

(a) Post-session trust questionnaire [5] (b) Post-session trust questionnaire [6].

Figure 2.5: Post-session trust questionnaire (a) autoregressive moving average model
[5] (b) online probabilistic trust inference model. [6]

Trust is inherently bidirectional between the human co-worker and the robot co-worker

during the interaction. In addition to models of human trust in robots, models of robot

trust in humans were also studied by several researchers. Rahman [7] proposed a robot-

to-human trust model based on for handover motion planning tasks. The robot adapts

its handover configuration and motion by exploiting kinematic redundancy, depending on

robot trust in humans. The real time trust measurement is modelled as a function of

human performance. The human performance modelling is based on normalized values

for human hand speed for part manipulation, and part gripping and releasing for manual

manipulation and part attachment during assembly. The speed is measured through IMU.
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Also, the human fault modelling is based on the measurement of orientation of assembled

parts. A Kinect camera is used to identify the orientation of parts through the OpenCV

library.

Tran [8] proposed a robot-to-human confidence model based on the fluid-stochastic Petri

net model for grit-blasting tasks in pHRC. The confidence model is a function of human

performance, which is a function of application-specific measures including blasting angle,

variation in blasting path and blasting angle.

(a) Robot to human trust model for assembly

task [7]

(b) Robot to human trust model for grit-

blasting task [8].

Figure 2.6: (a) Collaborative assembly in hybrid cell and handover configuration and
the axes of end-effector [7] (b) ANBOT equipped with nozzle and hose mounted for

cooperative grit-blasting [8]

It is notable that existing robot-to-human trust models [7, 8, 77] have utilised performance

measurements for their development. However, these have been restricted to measurements

specific to the particular task of interest.

The proposed approach in this thesis directly aims to address the aforementioned limitation

by using performance measures that are less specific to the task. The robot-to-human

trust model takes into account many pHRC factors, including safety, robot singularity,

smoothness, physical performance, and cognitive performance, which evaluates human

co-worker performance more comprehensively.
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2.3 Role Arbitration Method in physical Human-Robot Col-

laboration

Historically, robots were designed to passively adhere to human directives, using the cogni-

tive supremacy of humans. In the realm of pHRC, robots are designed to respond passively

and compliantly to human-induced interaction forces, often through mechanisms such as

admittance or impedance control [78]. As advances in robotics burgeoned, particularly

with the incorporation of sophisticated sensors and intricate control systems, robots be-

gan to manifest increased intelligence. Consequently, this bolstered the robot’s level of

autonomy, enabling it to assume more proactive roles in tasks and potentially alleviate

the cognitive and physical strains on the human collaborator. Such enhancements not only

empower robots to spearhead certain tasks but also enable them to negotiate intentions

or instigate role alterations with their human counterparts.

Yet, the extent of robot ‘intelligence’ remains constrained, often faltering in the face of

limited data about the task or environment or other unforeseen scenarios. Such instances

necessitate human intervention, especially when confronting unstructured challenges that

remain outside the robot’s pre-programmed purview. As a result, discerning the appro-

priate moments to transition between leadership and followership roles for humans and

robots becomes a critical research question.

In the context of human-robot role arbitration, control over a robotic task is bifurcated

between a human collaborator and an autonomous controller. The dichotomy of the leader

and follower roles emerges as a prevalent paradigm in this scenario [30]. The underlying

rationale for human-robot role arbitration hinges on amalgamating the unique capabilities

of both entities: the strategic planning and cognitive prowess of the human collaborator

juxtaposed against the robot’s endurance and strength capabilities. This synergy aims

to optimise the joint performance of human-robot while simultaneously attenuating the

cognitive and physical demands on the human participant [79]. Such arbitration finds

relevance in diverse domains, from robotic rehabilitation [80] to teleoperation [81].

Figure 2.7 shows a conceptual depiction that elucidates the dynamics of role arbitration in

the context of pHRC, as introduced by Losey et al. [30]. Central to this framework is the

principle of arbitration, which essentially determines the proportion of control apportioned

to either the human collaborator or the robot, contingent upon the prevailing intents

emanating from either entity. As shown in Figure 2.7, as the transition from left to right,

the leftmost segment illustrates human intent, denoted as uh. This is typically interpreted

as either a velocity or force control command derived from the principles of admittance

or impedance control. Centrally, we have the robot’s intent, represented as ur, which

is translated as the velocity and position control commands directed towards the robotic
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manipulator. These commands are governed by the autonomous system’s motion planning

and control mechanisms. The rightmost section illustrates the resultant control command,

u, which emerges as a synthesis of human and autonomous inputs, achieved through the

role arbitration methodology.

Figure 2.7: Conceptualised framework of the role arbitration method in physical human-
robot collaboration [30].

The role arbitration method is generally categorized based on the communication modal-

ities. Those are the common sensors and information used in decision-making for the

dynamic of role arbitration:

1. Force-Torque Sensor: Due to the constant physical couplings between humans

and robots during pHRC, the force-torque sensor is a critical sensor used in the ap-

plications of pHRC. The time-varying force or torque information obtained through

a force-torque sensor can be interpreted as the intention and capability of the human

being. Pehlivan [82] identifies the ability of the stroke partient in real-time through

force-torque information and provides assistance as needed through an upper limb

rehabilitation robot, as shown in Figure 2.8a.

2. Electroencephalogram (EEG): EEG could help identify the desired movement

through motor imagery or cognitive information, such as cognitive conflict or cogni-

tive workload [83, 85]. The method has been implemented into the singularity avoid-

ance method to optimise the predictability of the human co-worker during pHRC as

shown in Figure 2.8b [31].

3. Electromyography (EMG): Due to constant physical engagement during pHRC,

muscle fatigue is an important factor to consider. Therefore, EMG is a popular

choice for determining fatigue level and deciding the arbitration role. Peternel [32]

applies EMG to measure fatigue level during the co-manipulation of the sawing task.

When the fatigue level drops to a certain threshold, the robot takes control as shown

in Figure 2.8c.

4. Kinematic Information of Human Body (Motion Capture System): Carmichael

[33] proposed a method to estimate the physical assistance needed by using a muscu-

loskeletal model using the motion capture system (MCS). When the task demanded
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(a) Force-torque sensor
[82].

(b) Electroencephalogram
(EEG) [83].

(c) Electromyography
(EMG) [32].

(d) Kinematic Information
of Human Body (Motion

Capture System) [84].

(e) Kinematic Information
of Robot (Encoder)

Figure 2.8: The role arbitration method is generally categorised based on the com-
munication modalities. (a) Force torque sensor (b) Electroencephalogram (EEG).
(c)Electromyography (EMG). (d) Kinematic Information of the Human Body (Motion

Capture System). (e) Kinematic information of the robot (encoder).

force is lower than the available physical strength, assistance as needed will be pro-

vided to the human co-worker in the rehabilitation robot application. The proposed

model has been validated through admission control [84], as shown in Figure 2.8d.

5. Kinematic Information of Robot (Encoder): Kinematic information from the

robotic system, such as end-effector position, velocity, acceleration, and joint posi-

tion, velocity, acceleration, can be important information for inferring human state

or intentions due to coordinated motor movement between human and robot. In the

study in [86], a control structure is presented paired with a method to recognise user

intent, to facilitate real-time supervision control of a powered lower limb prosthe-

sis. The methodology discerns user actions such as standing, sitting, or walking by

analysing patterns discerned from sensor data from the prosthesis, notably without
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requiring instrumentation of the unaffected leg. The intention detection mechanism

employs temporal features derived from prosthesis signals, which are then dimension-

ally reduced to improve computational efficiency. Subsequent to this reduction, these

signals inform the training of models that classify identified patterns into distinct

actions such as standing, sitting, or walking as shown in Figure 2.8e.

EEG, EMG, and MCS, as external sensors employed during physical human-robot collab-

oration, present significant challenges in real industrial applications. Drawbacks of these

sensors include their cost, which can be prohibitive for small businesses and researchers,

and issues of wearability and comfort. Systems that necessitate wearing sensors or suits can

be intrusive and uncomfortable over extended periods, potentially affecting the wearer’s

natural movement and, consequently, the accuracy of the data collected. Additionally,

EEG and EMG sensors suffer from low sensor-noise levels, leading to poor measurement

accuracy, especially during physical human-robot collaboration where muscle movement

constantly introduces noise into the signals. While force-torque sensors and encoders are

commonly used in physical human-robot collaboration, their limited measurement dimen-

sions fail to comprehensively represent human performance modeling. The robot-to-human

trust model considers various pHRC factors, including safety, robot singularity, smooth-

ness, physical performance, and cognitive performance, offering a more comprehensive

evaluation of human coworker performance.

2.4 Method in measuring subjective impression during Phys-

ical Human-Robot Collaboration

In HRI, subjective evaluation is a critical factor to consider. Because the human will de-

grade the performance and is likely not to use the robot when the subjective impression is

too low [27] when using the robot. In terms of human-centred robotic design, the question-

naire is the most common and recognisable method for evaluating subjective impression

during HRI. The questionnaires consist of a set of questions given to participants to assess

the participant’s subjective outcomes of an HRI experiment.

2.4.1 Rating Scale Method

Rating scale assessment is widely used by robotic researchers to explore the views of par-

ticipants regarding robots’ appearance, interaction experience, and overall satisfaction[87].

Commonly used rating scale questionnaires include NASA Task Load Index (TLX) [88],

Negative Attitude toward Robot Scale (NARS) [89], and Godspeed Questionnaire [90]. All



32 Chapter 2. Review of Related Work

of these questionnaires are based on a rating scale that requires participants to provide

ratings against the defined criteria.

2.4.2 Types of Questionaires

2.4.2.1 Negative Attitude towards Robot Scale (NARS)

NARS is a method that reveals any pre-existing negative feelings toward robots [91] by

asking participants to provide a grade between 1 and 5 for 18 items. A typical Likert

scale was used and has the meanings of; 1 - I strongly disagree, 2 - I disagree, 3 - It is

not decidable, 4 - I agree, 5 - I strongly agree. The total score reflects how much anxiety

or negative feelings a human user has against robots [89], with a higher score reflecting

negative feedback.

2.4.2.2 Godspeed Questionnaire

The Godspeed Questionnaire is a similar tool to NARS that assesses the participant’s pre-

existing attitude towards a robot. Participant’s perceived anthropomorphism, animation,

likeability, intelligence, and safety of a robot are assessed on a 5 point scale where 1 means

Strong and 5 means Weak [90].

2.4.2.3 NASA-TLX

In this thesis, NASA-TLX is the questionnaire used to evaluate the subjective impression

of the participant when operating the robot. NASA-TLX evaluates subjective workload

from six dimensions: Mental Demand, Physical Demand, Temporal Demand, Performance,

Effort and Frustration. A 21-point scale is used, where 0 means Very Low (workload) and

21 means Very High (workload). By calculating the weighted average of the ratings on

these six subscales, the overall workload of the task can be derived [88]. NASA TLX

was applied in [36] and [92] where in the former the cognitive workload during a heavy

object manipulation task and the user’s satisfaction with the proposed control schemes was

evaluated. In the latter, ratings of human performance, robot performance, rushedness,

and calmness levels during exercising were evaluated for a rehabilitation robot. Other

aforementioned Rating Scale questionnaires have also had applications in pHRC studies

[89, 91].
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The aforementioned questionnaire employ rating scale methods have served as the pri-

mary tool to gauge subjective human experiences. However, with a deeper exploration of

understanding human perceptions, it becomes clear that these methods present challenges.

A primary concern is the issue of response bias [93]. Individual rating habits and incli-

nations introduce variability. There are individuals who naturally assign higher ratings,

while others tend toward conservatism, frequently giving lower scores. Additionally, the

influence of culture cannot be overlooked. In certain cultures, there is a tendency to

avoid extreme scores, whereas in others, participants may gravitate more freely towards

the poles of the scale [38]. The discourse around individualism and collectivism within

cross-cultural research has been a focal point for understanding the nuances of cultural

identities. The construct of individualism-collectivism, as explored through decades of

scholarly work, serves as a prism through which cultural variations are examined. Oyser-

man et al.’s comprehensive meta-analysis brought forth nuanced insights into this domain,

suggesting that the construct is not monolithic but rather encompasses multiple facets that

could lead to varying magnitudes of cultural differences [94]. Significantly, their analysis

challenged the conventional dichotomy that portrays East Asians, particularly Japanese,

as collectivists and North Americans as individualists. The discourse on the contrasting

tendencies between Japanese participants, who typically shy away from extreme ratings,

and American participants, who are more likely to use the entire spectrum of the rating

scale, addresses concerns over methodological issues in cross-cultural studies employing

Likert scales. These concerns were particularly noted in response to the outcomes of

Oyserman et al.’s meta-analysis, which brought to light the potential for methodological

biases in survey research that utilizes these scales [94].

Extreme responding refers to a pattern where survey participants consistently choose the

most extreme options available, such as consistently rating items with the highest or low-

est possible score on a Likert scale, or exclusively selecting “strongly agree” or “strongly

disagree” in surveys designed with such response options. This tendency can be influenced

by various factors. Cultural background is one significant driver, with evidence suggesting

that individuals from certain regions, like the Middle East and Latin America, are more in-

clined towards extreme responses compared to those from East Asia and Western Europe.

Educational background also plays a role, with indications that those with lower levels

of educational achievement or intelligence are more susceptible to this bias [95]. Further-

more, the specific phrasing of survey questions can elicit extreme responses, particularly

if the questions touch on subjects closely aligned with the respondent’s personal beliefs or

motivations [95]. Conversely, there is a contrasting bias where respondents preferentially

select neutral or moderate options, avoiding any extreme positions. This behaviour repre-

sents the opposite end of response bias, where participants gravitate towards the middle

of the scale, avoiding more definitive options at either end.
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The granularity of rating scales introduces a significant challenge. A high-resolution scale,

offering numerous choices, can overwhelm participants as they strive to discern minor

differences between options. This overabundance of choices can introduce extraneous

variability into the data, as responses may be swayed by factors irrelevant to the study’s

core aims, thereby increasing bias. Additionally, when the range of options does not fully

encapsulate participants’ preferences, frustration can ensue due to the lack of accurately

representative choices. Conversely, a scale with too few options fails to adequately reflect

the subtleties of participants’ emotions and experiences. This reduction in scale complexity

risks yielding homogeneous outcomes, concealing important variations and intricacies in

the data, and thus, could lead to an oversimplified or distorted portrayal of participants’

genuine feelings. The simplification in distinguishing between categories poses its own set

of issues, including increased difficulty in making selections and the potential trivialization

of response categories. This situation may tax participants’ cognitive resources, prompt

impatience, and amplify the influence of cognitive biases, further compromising the scale’s

effectiveness and accuracy [96].

Another challenge is also prevalent: the risk of careless or disengaged responses. Partici-

pants who are not fond of surveys or find them tedious might rush through the questions,

leading to potentially skewed or non-representative results. This haphazard response can

reduce the reliability and validity of the data [40, 41].

The RS method could bring inaccurate measurement of subjective impression during pHRC

experiment which will affect the evaluation of the control method or pHRC design expe-

cially when the differences in what is being measures are small and nuanced. This mo-

tivates work exploring how suitable Likert style methods are in pHRC research, and if

alternatives are preferred.

2.5 Concluding Remarks

In this chapter, the fundamental concepts and classifications pertaining to HRI and, more

specifically, pHRI are presented. The nature and role of collaborative robots are explored,

along with the intricate dynamics of trust within pHRC. Methods of role arbitration and

measuring subjective impressions in pHRC contexts are also reviewed. The subsequent

chapter will delve into a detailed examination of robot trust in their human co-workers.



Chapter 3

Computational Model of Robot

Trust in Human Co-worker

3.1 Introduction

Building on the foundational concepts presented in the previous chapters, this chapter

delves deeper into a pivotal aspect of HRI to address research sub-question 1: the com-

putational modelling of robot trust in its human co-workers. While the importance of

human trust in robots is widely recognised, there is a compelling case to be made for the

reciprocal - the robot’s trust in humans. This dimension is especially pertinent in contexts

such as pHRC.

Trust is the key to achieving successful HRI. Besides the trust of the human co-worker

in the robot, which has been well researched, as detailed in Section 2.2.1, the trust of

the robot in its human co-worker should also be considered. A computational model of a

robot’s trust in its human co-worker for pHRC is proposed. The trust model is a function

of the human co-worker’s performance which can be characterised by factors including

safety, robot singularity, smoothness, physical performance, and cognitive performance.

Experiments are conducted with a collaborative robot to verify the trust model developed.

The organisation of this chapter is as follows. The computational model of robot trust in a

human co-worker is described in Section 3.2. The human co-worker performance modelling

is presented in Section 3.3. An experimental testbed and the design of the experiments

are presented in Section 3.4. The results and discussion are shown in Section 3.5 and the

conclusion in Section 3.6.

35
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3.2 Computational Trust Model

The trust of humans in robots is dynamic and highly depends on robot performance [75].

Similarly, the dynamics of the trust of robots in humans could mimic the trust of humans

in robots. We introduce a real-time computational robot-to-human trust model:

T [n] =

∑N
k=0 β

kp[n− k]∑N
k=0 β

k
(3.1)

This model is based on the rationale that more recent performance has a greater impact

on the level of trust [5]. In the model, T ∈ [0, 1] is the trust of the robot in the human

co-worker. T = 0 represents no trust in the human co-worker, whereas T = 1 represents

complete trust. p ∈ [0, 1] is the human co-worker performance calculated in Equation 3.3.

A discount factor β ∈ [0, 1] is introduced that represents the effect of past performance

(p[n− 1], p[n− 2]...p[n−N ]) on trust T . βk is the weighting of p at the time step n− k.

When k is larger, βk is smaller. N is the length of the moving time window and n is

the current time step. β and N determine the sensitivity of T to past performance. This

model allows past performance to have less effect on T if β and N are small.

3.3 Human Co-worker Performance Modelling

To evaluate human co-worker performance p in the context of pHRC in Equation 3.1,

factors that affect human co-worker performance in pHRC need to be identified and quan-

tified. In this research, the human co-worker performance is characterised by the following

measures:

• Safety Performance pS ∈ [0, 1]

• Singularity Performance pSP ∈ [0, 1]

• Smoothness Performance pSM ∈ [0, 1]

• Physical Performance pPW ∈ [0, 1]

• Cognitive Performance pCP ∈ [0, 1]

Detailed explanation on why these factors should be considered is provided in the following

sections. All these factors are defined as normalised non-dimensional numbers in the
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interval [0,1]. The method proposed by Tran [77] is used to incorporate the different

performance factors into a single measure of user performance p:

p[n] =

Nc∏
A=1

pcA[n](C + (1− C)×
Nnc∑
A=1

γAp
nc
A [n]) (3.2)

where pcA and pncA are the critical and non-critical performance factors, respectively. Critical

factors pcA are strongly relevant to the continuation of a task, the safety of the human co-

worker and the robot. Non-critical factors pncA are used to assess the performance of human

co-worker that is not essential to the task and safety of the human co-worker and the robot,

but are still influential when determining trust. Nc and Nnc are the number of critical and

non-critical performance factors. γA is the weighting coefficient and represents the relative

importance of each pncA , with
∑Nnc

A=1 γA = 1. The parameter C represents the maximum

contribution of pcA to the overall performance measure.

In this thesis, the Safety Performance pS and the singularity performance pSP are related

to safety. Therefore, pS and pSP are regarded as pcA (critical). The other three performance

factors (smoothness performance pSM , physical performance pPW , and cognitive perfor-

mance pCP ) are not related to safety and are regarded pncA (non-critical). Consequently,

based on Equation 3.2, the human co-worker performance is modelled as:

p[n] = pS [n] · pSP [n](C + (1− C)(γSM · pSM [n] + γPW · pPW [n] + γCP · pCP [n])) (3.3)

Weighting coefficients γSM + γPW + γCP = 1 are positive constants that could be ad-

justed based on the relative importance of the corresponding pncA according to specific task

requirements. Methods for determining these parameters are discussed in later sections.

3.3.1 Safety Performance

In order to achieve safe pHRC, collisions between the robot, human and surrounding

objects need to be avoided to prevent potential damage and physical injury. As a result, a

safety performance measure pS is defined based on the possibility of collision between the

robot and surrounding objects. The possibility of collision increases from low (pS = 1) to

high (pS = 0). Therefore, an interpolation method is employed to acquire a smooth curve

of pS [97]:
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f(c, x−, x+, y−, y+) =


y− if c ≤ x−

y+ if c ≥ x+

fp(c, x
−, x+, y−, y+) otherwise

(3.4)

where fp(c, x
−, x+, y−, y+) is a fifth-order polynomial with null first and second derivatives

at x− and x+ and the value of f is bounded in the range between y− and y+. Based on

Equation 3.4, the Safety Performance pS is calculated as:

pS [n] = f(a[n], a−, a+, 1, 0) (3.5)

a[n] =
v2[n]− v20[n]

2∆s[n]
(3.6)

The value a[n] is the magnitude of the constant deceleration required to stop the robot

when it reaches the position to collide with an object which is based on the kinematic

equation 3.6. The parameter a− is the threshold deceleration at which pS starts to reduce,

as shown in Figure 3.1, and the parameter a+ is the maximum deceleration allowed. The

value v0[n] is the current robot velocity towards the object. The value v[n] is the velocity

of the robot when it reaches the position to collide with an object, which is assumed to be

zero (v = 0m/s) to nullify the impact. ∆s[n] is the distance between the robot and the

object.

Employing a takes into account both the robot velocity toward an object v0 and the

distance between the robot and an object ∆s. When ∆s is small or v0 is large, a is large,

indicating that the possibility of collision is high. These characteristics make a a useful

measure to encapsulate the performance of the human user with respect to safety.

Figure 3.1 shows the use of Equation 3.4 to smoothly calculate Safety Performance with

deceleration a. The measure pS starts to reduce once a > a− as the possibility of collision

increases. The measure pS reaches the minimum value (pS = 0) once a ≥ a+. pS is

bounded in the range between 0 (y+ = 0) and 1 (y− = 1).
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Figure 3.1: Example of the safety performance pS used to normalize the value of decel-
eration a which is shown in Equation 3.4. x− = a− = 0, x+ = a+ = 25, y− = 1, y+ = 0

The safety performance measure pS needs to be evaluated for each surrounding object i

using Algorithm 1, where Nobj is the total number of surrounding objects.

Algorithm 1 Safety Performance Calculation

for i ← 1 to Nobj do
�di = �si − �srobot {Vector from position of robot �srobot to position of object i �si}
�vi = 0 {The velocity toward object i}
{If the angle between vector of robot velocity �vrobot and di is less than or equal to 90

degree, calculate the velocity toward the object i}
if �vrobot · �di ≥ 0 then

�vi = proj�di�vrobot

end if

ai =
02−‖�vi‖2

2×‖�di‖
{Deceleration for object i based on Equation 3.6.}

piS = f(|ai|, a−, a+, 1, 0) {Safety Performance for object i based on Equation 3.5.}
end for

pS = min(piS), ∀i ∈ 1, 2, 3...Nobj {Safety Performance pS is defined as the smallest safety

performance among all the surrounding objects}

3.3.2 Singularity Performance

Figure 3.2 demonstrates a example of the manipulator entering a singular configuration

when a human co-worker holds the robot through a handlebar and moves around to com-

plete a task. It is assumed that when this form of pHRC is applied to performing tasks,
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for example, in a workplace setting, the human co-worker’s focus is primarily on how to

get the task done quickly with expected quality. With their focus being on moving the

end effector to perform the task, and not on the robot itself, the human is likely to move

the robot to its maximum reach without notice. Therefore, the robot manipulator is likely

to move to singular configurations.

Figure 3.2: Example of the manipulator entering a singular configuration [2].

When the manipulator is close to a singular configuration, small motions of the end-effector

can cause the joint velocities to be large, causing the robot behaviour to be unpredictable

and dangerous. As a result, monitoring whether the manipulator configuration is ap-

proaching singularity is a key to maintaining the safety of human co-workers.

It is reasonable to assume that users with enough experience can operate the robot through

much of the workspace while keeping the robot away from singularity, even with their

attention being primarily on the task at the end effector. Based on this, Singularity

performance pSP ∈ [0, 1] is proposed to quantify the human performance in avoiding

singular configurations. When pSP = 1 (or pSP = 0), the possibility of problems occurring

due to proximity to a singular configuration is extremely low (or high).

The performance measure pSP is defined as a function of the smallest singular value σmin.

σmin can be calculated by singular values decomposition (SVD) of the Jacobian matrix

(J). Inspired by [2], an exponentially shaped function was introduced to scale the singular

value.

pSP [n] =

1− φ
σmin[n]−σ−

σ+−σ− σmin[n] > σ−

0 otherwise
(3.7)
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Figure 3.3: Example of singularity performance pSP versus the smallest singular value
σmin which is shown in Equation 3.7. σ+ = 0.25, σ− = 0.1 and γ = 0.02.

The parameter σ+ is the smallest singular value threshold at which pSP starts to reduce

as shown in Figure 3.3. Alternatively, σ− is the minimum value allowed for the smallest

singular value (σ+ > σ− > 0). The difference between σ+ and σ− should not be too small

to ensure a smooth transition of pSP with respect to σmin. ϕ determines the smoothness

of the transition between σ− and σ+ (1 >> ϕ > 0). ϕ = 0.02 should be tuned to ensure

a smooth transition and pSP (σ
+) ≈ 1.

From Figure 3.3, when σmin > σ+, pSP ≈ 1, which indicates that the possibility of

problems due to the proximity to a singular configuration is low. When σmin < σ−,

pSP = 0, which indicates that the possibility of problems due to proximity to a singular

configuration is high.

In addition, whether the manipulator is approaching or leaving a singular configuration

is also another important factor to be considered when calculating the Singularity Perfor-

mance pSP . pSP should be higher when the manipulator is heading away from a singular

configuration because the possibility of entering a singular configuration is lower compared

with heading toward a singular configuration. Based on [2], if the desired velocity of the

end effector of the robot in Cartesian space xd causes a decrease in the smallest singular

value σmin, it indicates that the manipulator is approaching a singular configuration and

vice versa. Therefore, the approximate joint positions q[n + 1] at the next time step are

defined as:

q[n+ 1] = q[n] + δJ−1xd, for small δ (3.8)

δ is the length of time looking ahead into the future to linearly extrapolate the future

configuration of the manipulator. Readers are directed toward [2] to acquire a more

detailed explanation of Equation 3.8.
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The Jacobian matrix J [n+1] in the next time step is calculated based on q[n+1]. σmin[n+1]

is calculated on the basis of J [n + 1] through SVD. Therefore, σ+ = σ+
AW and σ− = σ−

AW

when the manipulator is leaving a singular configuration (σmin[n+1] ≥ σmin[n]) and σ+ =

σ+
AP and σ− = σ−

AP when approaching a singular configuration (σmin[n + 1] < σmin[n]):

σ+, σ− =

σ+
AW , σ−

AW if σmin[n + 1] ≥ σmin[n]

σ+
AP , σ

−
AP if σmin[n + 1] < σmin[n]

(3.9)

The parameters in Equation 3.9 should be tuned such that σ+
AP > σ+

AW > 0 and σ−
AP >

σ−
AW > 0 to ensure pSP (σmin|σ+

AW , σ−
AW ) > pSP (σmin|σ+

AP , σ
−
AP ). This is to reflect that

heading towards a singular configuration is considered an indicator of lower human per-

formance, and vice versa.

3.3.3 Smoothness Performance

Balasubramanian [98] proposed that smoothness can be used to assess the control ability

of a human co-worker in pHRC. An experienced human co-worker normally operates the

robot with smoother movements compared to novice users [98]. Consequently, the smooth-

ness of robot motion is one of the factors for evaluating the human co-worker performance

during pHRC. One way to measure smoothness is to use jerk, the first derivative of accel-

eration [99]. There is evidence to suggest that human motion involves the minimisation

of the jerk. Therefore, jerk is an effective measurement of smoothness [100]. As a result,

jerkiness jk can be calculated by [101]:

jk[n] = ∥¨⃗v[n]∥ (3.10)

where v⃗[n] is the vector of the linear velocity of the end effector of the robot in Cartesian

space.

Smoothness performance pSM ∈ [0, 1] is used to quantify the degree of smoothness when

the human co-worker moves the robot during performing a pHRC task. pSM = 0 is defined

as an extremely unsmooth movement. pSM = 1 corresponds to when the smoothness of

human co-worker’s movement is within an acceptable range. The interpolation function

in Equation 3.4 is used to generate pSM :

pSM [n] = f(jk[n], jk−, jk+, 1, 0) (3.11)
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where jk− is the threshold jerkiness at which pSM begins to reduce from 1, and jk+ is the

maximum smoothness allowed, as shown in Figure 3.4.
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 jk - = 0.1  jk +  = 0.9

Figure 3.4: Example of the Smoothness Performance pSM used to normalize the value
of jerkiness jk which is shown in Equation 3.11. x− = jk− = 0.1, x+ = jk+ = 0.9,

p−SM = 1, p+SM = 0

3.3.4 Physical Performance

The human co-worker’s performance is also affected by the physical workload the human

co-worker has to take during a period of time. The high workload causes muscle fatigue

and therefore affects performance. Human physical performance is an important element

in pHRC as a result of continuous force exchange between the human and the robot.

Sadrfaridpour [102] proposed a model of human physical performance for collaborative

manufacturing. In pHRC, the interaction between humans and robots is mostly based on

force exchange. Hence, Sadrfaridpour’s model can be used for pHRC because the force

applied by the human co-worker could be measured through a force-torque sensor in real

time.

Based on the model of [102], the human physical performance, pPW , is calculated by

Equation 3.12:

pPW [n] =
Fmax,iso[n]− Fth

MVC − Fth
(3.12)

where Fth is the equilibrium point at which fatigue and recovery balance out. Maximum

Voluntary Contraction (MVC) is the maximum isometric force with zero fatigue level.

Assume that the co-worker starts without fatigue, then Fmax,iso[0] = MVC. Fmax,iso[n] is
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the maximum isometric force which will reduce when a human co-worker’s muscle applies

a force for some time due to the level of fatigue increasing. Therefore, the physical per-

formance pPW degrades correspondingly when Fmax,iso decreases, as shown in Equation

3.12. Fmax,iso is calculated as [102]:

Fmax,iso[n+ 1] = Fmax,iso[n]− CfFmax,iso[n]
‖F [n]‖
MVC

+Cr(MVC − Fmax,iso[n])

(3.13)

where Cf and Cr are the fatigue and recovery coefficients which are individual-dependent.

‖F [n]‖ is the magnitude of force applied by the human co-worker. Fth is defined as:

Fth = MVC
Cr

2Cf
(−1 +

√
1 +

4Cf

Cr
) (3.14)

The calculated maximum isometric force Fmax,iso, and human physical performance mea-

sure pPW , are shown in Figure 3.5. It is noted that human physical performance is ex-

tremely complex, and the physical performance model used in this work is a simplified

representation. More complex strength or fatigue models can refer to [33].

0 5000 10000 15000
150

200

0 5000 10000 15000
0.6

0.8

1

Figure 3.5: (a) Example of the maximum isometric force Fmax,iso versus time step n
(Equation 3.13). (b) Example of physical performance pPW versus time step n (Equation
3.12). MVC = 200, Cf = 10−4, Cr = 2.4× 10−4 and Fth = 151.9 with constant applied

force ‖F [n]‖ = 50N .
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3.3.5 Cognitive Performance

Cognitive workload is a measure of mental work when performing a task. Therefore, it

is believed to have an effect on human performance [103]. Sadrfaridpour [102] proposed

using Yerkes-Dodson (YD) law to describe the cognitive performance of the human co-

worker. YD law [104] stated that when the level of arousal increases, the human cognitive

performance increases accordingly. However, this increase in cognitive performance will

only occur before the level of arousal increases up to the point known as the optimal

level of arousal (OLA). After this point, human cognitive performance reduces as the level

of arousal increases. Bertrand [105] proposed that task difficulty affects the relationship

between arousal and cognitive performance. The OLA value is smaller for a more difficult

task. Saeidi [106] proposed a dynamic model, which describes the relationship between

human arousal, task difficulty, and performance based on the YD law.

pCP [n] = (p+CP − p−CP )(
r[n]

βCP
)βCP (

1− r[n]

1− βCP
)1−βCP + p−CP (3.15)

where r[n] ∈ [0, 1] is the utilisation ratio of the human co-worker, which represents the

amount of time that the human co-worker has been controlling the robot. p+CP and p−CP

are the upper and lower limits of cognitive performance pCP that are individual-specific.

The value of βCP is determined by the difficulty of the task. A larger βCP represents a

less difficult task. The most difficult task is when βCP = 0. Figure 3.6 shows the human

performance compared to different task difficulty βCP . When the utilisation ratio r[n]

gradually increases, pCP increases to the highest point (OLA point), then decreases. In

addition, the OLA point shifts to the right when the task becomes easier (βCP → 1).

r[n + 1] = arr[n] + brM [n]

ar = 1− 1

τ
∈ (0, 1) br =

1

τ
∈ (0, 1)

(3.16)

where τ is the time constant that defines the sensitivity of the next time step utilisation

ratio r[n+ 1] to the current utilisation ratio r[n]. The larger τ causes less variation in the

utilisation ratio r. M [n] is the control mode, where M [n] = 1 refers to the manual control

mode, and M [n] = 0 represents the autonomous control mode [106]. In manual control

mode, the human co-worker’s utilisation of the robot continuously increases. Alternatively,

in autonomous control mode, the human co-worker’s utilisation of the robot continuously

decreases.
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Figure 3.6: Examples of the Cognitive Performance pCP versus utilization ratio r with
different levels of task difficulty βCP (Equation 3.15).

3.4 Experiments

This section details the design and results of three experiments to verify the proposed

robot-to-human trust model by using a human-robot collaborative system. In these exper-

iments, the smoothness, singularity, safety, physical, and cognitive performance measures

are individually evaluated.

3.4.1 Experimental Testbed

The experiment testbed is called ANBOT [1] (Figure 3.7a) which is a collaborative robotic

system for the collaborative operation of humans and robots. Besides a sensor package

for perception and operational and environmental awareness, it also consists of a sophisti-

cated software package for user intention recognition, safe physical interaction and control.

ANBOT consists of a UR10 arm from Universal Robots and a six-axis force-torque sensor

mounted between the robot end-effector and the robotic arm to measure the interaction

forces applied by the human co-worker.

The human co-worker constantly holds the handlebar mounted on the robot end effector,

as shown in Figure 3.7b. In front of the human and robot is a monitor on to which the

direction of the end-effector is projected, shown graphically as a dot. Also shown on the

monitor is a trajectory that the human co-worker is expected to follow by controlling the

motions of the robot. The movement of the robot is restricted to two dimensions to reduce
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the complexity of the experiment. Hence, the human co-worker can only move the robot

in vertical and horizontal directions, which are parallel to the monitor.

(a) (b)

Figure 3.7: (a) Experimental Testbed - ANBOT. (b) The human co-worker is operating
the ANBOT to follow a desired trajectory.

3.4.2 Design of Experiments

Three experiments are designed for verifying the proposed computational trust model.

Figure 3.8a shows the trajectory that the robot end-effector needs to track in Experiments

1 and 2. Figure 3.8b shows the trajectory for Experiment 3. The big filled red circles

represent objects (or obstacles) located on the trajectory. The white line is the desired

trajectory that needs to be followed. Each of the experiments starts and ends at the

bottom left corner of the rectangle with clockwise movement.
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(a) (b)

Figure 3.8: (a) Trajectory tracking path for Experiments 1 and 2. (b) Trajectory
tracking path for Experiment 3.

Experiment 1: This experiment is designed to verify the smoothness performance model

in Section 3.3.3 and the Singularity Performance model in Section 3.3.2. In this experiment,

the human subject is asked to move the robot end effector to follow the path (shown in

Figure 3.8a) as accurate and smooth as possible to avoid a significant change of velocity.

There is no limitation in time to complete the entire path. During the path following,

the robot manipulator will approach and leave singular configurations. Therefore, the

Singularity Performance model can be verified.

Experiment 2: This experiment is to verify the physical performance model in Section

3.3.4 and the cognitive performance model in Section 3.3.5. Physical performance pPW and

cognitive performance pCP are mainly affected by the duration of operation of the robot.

pPW is also affected by the magnitude of the interaction force. Therefore, the human

subject is asked to move along the path (Figure 3.8a), which is similar to Experiment 1,

but as quickly as possible to ensure that the human subject exerts a large force during

the execution of the task. Additionally, the human subject is asked to continuously move

around the path for five loops to ensure that the duration of Experiment 2 is long enough

to cause fatigue.

Experiment 3: This experiment is designed to verify the safety performance model in

Section 3.3.1 by introducing two objects/obstacles on the same path in Experiments 1 and

2. In addition to avoiding objects, the requirement for the human subject is the same as

in experiment 1. However, the human subject is required to move as fast as possible from

the top right corner of the path towards the top left corner to demonstrate the effect of

the velocity component of Equation 3.6 on Safety Performance pS . This experiment is also

conducted to verify the combined models of human co-worker performance in Section 3.3

and the computational trust model in Section 3.2 because the variation of all performance

factors can be observed.
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This experiment follows the procedure approved by the UTS Ethics Committee with ap-

proval number ETH21-6346. Results from a single subject are analysed since these exper-

iments aim to verify that the models work as designed. Validation in terms of their use

for human-robot role arbitration is performed in subsequent chapters.

3.5 Results and Discussion

3.5.1 Experiment 1 – verifying the Smoothness Performance model and

the Singularity Performance model

3.5.1.1 Singularity Performance
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Figure 3.9: (a) The smallest singular value σmin. (b) Singularity performance pSP . TS
is the prediction on whether the robot is heading towards a singular configuration based
on Equations 3.8 and 3.9. TS = 1 (or TS = 0) refers to heading towards (or Away) a
singular configuration. Note that TS = 1 when σmin[n+ 1] < σmin[n] and TS = 0 when

σmin[n+ 1] ≥ σmin[n].

The values of the parameters in the Singularity Performance model are σ+
AW = 0.25,

σ−
AW = 0.15, σ+

AP = 0.35, σ−
AP = 0.25, [107]. ϕ = 0.02 and δ = 0.1 are suggested [2].

Figure 3.9 shows the smallest singular value σmin and the singularity performance pSP

in Experiment 1. Before 8.5s, σmin is larger than σ+
AP = 0.35, hence pSP ≈ 1 (Equation
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3.7). At around 8.5s, pSP starts to decrease because σmin < σ+
AP until pSP = 0 due

to σmin < σ−
AP at around 14.5s. After this time, the robot starts to head away from

a singular configuration (TS = 1 → 0) which can be seen that σmin starts to increase,

then pSP increases up to 1 instantaneously due to σmin > σ+
AW . Equations 3.8 and 3.9

successfully predict whether the manipulator is heading toward a singular configuration.

3.5.1.2 Smoothness Performance

The smoothness jk in Equation 3.10 is calculated by fitting the second time derivative of

the second degree polynomial curve of the velocity using the least-squares method with a

time window of 1 second for noise reduction.

Figure 3.11 shows that jk is much higher at the beginning of the experiment and at the

turning points (corners) of the desired path (Figure 3.10). The human co-worker needs

to decelerate before a turning point and accelerate after passing the turning point, which

causes the unsmooth movement. jk is high at the beginning of the experiment because

the human co-worker starts to move from rest. In order to show the details of Figure 3.11,

jk is bounded between [0, 1]m/s3.

The lower and upper thresholds of jerkiness jk− and jk+ depend on the smoothness

requirement. jk− and jk+ should be set to small when the requirement is high. In

this experiment, the requirement for smoothness of human co-worker’s movement is high.

Therefore, jk− = 0.1m/s3 and jk+ = 0.9m/s3 (Equation 3.11). In Figure 3.11, the

Smoothness Performance pSM decreases correspondingly when jk increases as long as

jk > jk−. It can also be seen that pSM = 0 when jk >= jk+ at the beginning of the

experiment.

Figure 3.10: The blue line corresponds to the actual robot end-effector Trajectory. The
labelled time corresponds to the time when the human co-worker changes the directions

on the corners of the trajectory.
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Figure 3.11: (a) Jerkiness jk.(b) Smoothness Performance pSM . The green vertical
lines correspond to the time when human co-worker changes the directions at the corners

of the trajectory.

3.5.2 Experiment 2 – verifying the Physical Performance model and the

Cognitive Performance model

3.5.2.1 Physical Performance

The values of parameters in the physical performance model are set MVC = 200, Fth =

151.9, Cf = 10−4 and Cr = 2.4 × 10−4 which are similar to the literature [102]. How-

ever, the parameters are individual-dependent. The detailed method for measuring those

parameters can be found in [108].

Figure 3.12 shows that the magnitude of interaction force ‖F‖, the maximum isometric

force Fmax,iso and physical performance pPW versus time in Experiments 1, 2 and 3. In

Experiment 2, the human subject applied much larger force and executed the task for

the longest time (around 40.6s) because the human subject is required to move along

the trajectory as fast as possible for five loops. It can be seen that Fmax,iso = 196.16N

and pPW = 0.92 are the lowest at the end of experiments which represent the highest

level of fatigue. The results demonstrate that the Physical Performance model captures

the behavour of reducing physical performance over time due to fatique from prolonged

interaction with the robot.

Figure 3.12 also shows that the value of maximum isometric force Fmax,iso starts to reduce

from maximum voluntary contraction (MVC = 200) at the beginning of the experiments.

At the end of the experiments, Fmax,iso = 198.97N, 196.16N, 198.88N in Experiments 1,
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Figure 3.12: (a) Magnitude of interaction force ∥F∥ applied by human co-worker and
measured by force-torque sensor. (b) The maximum isometric force Fmax,iso. (c) Physical

Performance pPW .

2 and 3 and those values are close to 200 because the duration of all the experiments

are short (28.6s, 40.6s, 20.4s), which indicates that the fatigue level of human co-worker

increases slightly.

3.5.2.2 Cognitive Performance

The parameters in the cognitive performance model are subject-dependent and task-

dependent. Details on how to select the parameters can be found in [106]. Based on

[106], the parameter values used in this experiment are p−CP = 0.391, p+CP = 0.4602,

βCP = 0.74 and ar = 0.9991. The parameter ar depends on the system sampling rate,

which in [106] is 10Hz. The sampling rate for this experiment is 125Hz, which corresponds

to the value ar = 0.999928. Because the human subject constantly moves the robot during

the experiment, the control mode is always 1, i.e. M = 1 in Equation 3.16.

As shown in Figure 3.13, the utilisation ratio r starts to increase from 0 when the human

subject starts to operate the robot. r constantly increases during the experiment because

r represents the amount of time that the human co-worker has operated the robot. At

the end of the experiments, r ≈ 0.3 in Experiment 2 is the highest because the time the

human subject has controlled the robot is the longest (around 40.6 seconds). Cognitive
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performance pCP starts to increase correspondingly from the lower threshold of cognitive

performance p−CP = 0.391. The reason why pCP continuously increases during the experi-

ment is that r is lower than the optimal level of arousal (OLA), which is when βCP = 0.74.

The reason why r and pCP are the same between 0s and 20.4s for the three experiments is

that all cognitive performance parameters are the same (ar, p
−
CP , p

+
CP , βCP ) and the human

subject constantly operates the robot (M = 1 in Equation 3.16).

It is noted that the results obtained in Figure 3.13 are similar to the result in [106].

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40
0.38

0.4

0.42

0.44

Figure 3.13: (a) Utilization ratio r versus time and (b) Cognitive performance pCP in
Experiments 1, 2 and 3.

The effect of task difficulty βCP on pCP was previously shown in Figure 3.6. The effect of

M on r and pCP has not been investigated because the human subject constantly operates

the robot during the experiment (M = 1). Hence, a simulation is conducted with the same

parameters of the cognitive performance model used in this experiment by switching the

control mode between manual M = 1 and autonomous M = 0 during an experiment. The

results are shown in Figure 3.14. At 60s, M = 1 → 0, r decreases indicating the amount

of time the human co-worker operates the robot decreases. Consequently, pCP decreases

accordingly. At 180 s, M = 0→ 1, r, and pCP start to increase again.

Another simulation was run that shows the effects of a longer interaction between the

human and the robot. This is to demonstrate the situation where over-utilisation of the

robot, that is, r is greater than the OLA point, leads to decreased cognitive performance,

as shown in Figure 3.6.
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Figure 3.14: Simulation results: (a) Utilization ratio r and (b) Cognitive Performance
pCP with varying control model M when p−CP = 0.391, p+CP = 0.4602, βCP = 0.74 and
ar = 0.999928. M = 1 refers to manual control mode and M = 0 refers to autonomous

control mode.

3.5.3 Experiment 3 – verifying the Safety Performance model, Human

Co-worker Performance and the Computational Trust Model

3.5.3.1 Safety Performance

In Figure 3.15a, the green section indicates the period in which the movement of a human

co-worker is regarded as unsafe. The blue section is regarded as a safe movement. The

period of unsafe movement for approaching Object 2 (0.18s) is much shorter than that for

Object 1 (2.47 s) because the velocity toward Object 1 is much larger than that of Object

2, as shown in Figure 3.15b. It can also be seen in Figure 3.15a that the length of the

robot velocity vector is much longer in the green section when approaching Object 1.

Movement is identified as unsafe only when the robot is very close to Object 2 (1.15cm).

Therefore, when the velocity is low, the distance to the objects will be the main factor

determining the safety of movement.

Another essential factor for determining the safety movement is the direction of motion

of the robot. At around 15.62s, the robot is heading away from Object 1 as shown by

the yellow arrow in Figure 3.15a. Movement is regarded safe even though the distance

between the robot and Object 1 is small (0.22cm) as shown in Figure 3.15b.
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(a) The actual robot end-effector trajectory along the designed trajectory

0 2 4 6 8 10 12 14 16 18 20
0

50

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

(b)

0 2 4 6 8 10 12 14 16 18 20
0

10

0 2 4 6 8 10 12 14 16 18 20

0.5

1

(c)

Figure 3.15: (a) The actual robot end-effector trajectory along the designed trajectory.
The blue trajectory refers to the safe movement (max(a1, a2) ≤ a−) and the green trajec-
tory refers to the unsafe movement (max(a1, a2) > a−) which corresponds to the shaded
green regions in Figures 3.15b and 3.15c. The yellow vectors are the robot velocity vec-
tors. (b) Top: Distance between the robot and Object 1 ‖�d1‖ (Object 2 ‖�d2‖). Bottom:
the velocity of the robot towards Object 1 ‖�v1‖ (Object 2 ‖�v2‖). (c) Top: The magnitude
of the constant deceleration required to stop the robot when it reaches the position to
collide with Object 1 a1 (Object 2 a2). Bottom: The safety performance for Object 1 p1S

(Object 2 p2S).

The parameter values used are a− = 5cm/s2 and a+ = 25cm/s2 (Equation 3.5). These pa-

rameters can be tuned to smaller values when the requirement on safety is higher. Smaller

values are recommended to increase the robustness of Safety Performance measurement

when there are measurement errors of positions of surrounding Objects introduced by

the sensors. In Figure 3.15c, the safety performance piS decreases correspondingly when

ai > a−, indicating that the possibility of a collision starts to increase. It is hard to observe

the decrease in p2S because a2 is a little over a−.
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3.5.3.2 The combined Human Co-worker’s Performance

The values of γSM , γPW and γCP in Equation 4.6 are determined by the relative importance

of the non-critical performance factors pncA . For this experiment, the requirement on the

smoothness of movement is high. In addition, the duration of the experiment is short,

resulting in the variation of pPW and pCP being subtle. Hence, we set γSM = 0.8, γPW =

0.1 and γCP = 0.1. pncA is important due to the smoothness requirement of human co-

worker is high, therefore, C = 0.

Figure 3.16 shows that the human performance (p) is low at the beginning of the ex-

periment because of poor smoothness performance (pSM = 0), and smoothness is highly

weighted (γSM = 0.8). It is also seen that p decreases immediately when pS (Figure 3.15c)

or pSP reduces, because they are both critical performance factors (Equation 4.6). The per-

formance is p < 1 at all time due to pCP having bounds within the interval [0.391, 0.4602]

during the experiment, as shown in Figure 3.13. The effect of pPW on p is minimal because

the variation of pPW is small (Figure 3.12) and γPW = 0.1.
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Figure 3.16: (a) Singularity Performance pSP . (b) Smoothness Performance pSM . (b)
The combined Human co-worker performance p

3.5.3.3 The Computational Trust Model

The robot-to-human trust T is based on the measure of human performance, with pa-

rameter β weighing the importance of recent performance levels during a window of N
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performance measures (Equation 3.1). The trust with different values of β and N is

simulated as shown in Figure 3.17 based on the combined human co-worker performance

(Figure 3.16). The time interval of p is bounded into [10 14]s to show the comparisons

more clearly.

A pattern can be observed that smaller values of β and N will result in robot-to-human

trust T being more responsive to the variation of p. This provides system developers with

the ability to tune the responsiveness of the trust model based on the needs and risks

of the pHRC task, with β and N being smaller when the risk level is higher. Readers

are directed to Table 5.1 in [77] to determine the risk level of the corresponding pHRC

application. Moreover, larger values of β and N will result in T becoming smoother. A

good choice of values for β and N should balance the smoothness and responsiveness of T

to p.

If the past performance is not important for evaluating T , β can be designed small so that

T ≈ p. In this case, the value of N will not affect T . If βk ≈ 0, N should be adjusted

to ensure N < k because it will be computationally expensive to calculate the historical

performance terms with weightings close to zero βk ≈ 0.
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Figure 3.17: (a) Trust plots for different values of time window size N when β = 0.999.
(b) Trust plots for different values of β when N = 125.
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3.6 Conclusion

A computational model of robot trust in a human co-worker was proposed. This model

takes into account many factors in physical human-robot collaboration, including robot

safety, robot singularity, smoothness of robot motion, and human physical and cognitive

performance. Three experiments were conducted to verify all the factors in the model.

The rationale behind the different performance measures was presented, and the desired

behaviour was described. Each performance measure was then individually verified, con-

firming that the performance models produced the expected output during a real human-

robot physical task. Furthermore, the performance measures were combined into a single

trust model.

Although each component of the robot-to-human trust model was verified, fitting the

model to the human co-worker, or using the resulting trust value to influence the human-

robot interaction was not yet performed. However, trust, though crucial, represents only

one dimension of this intricate relationship. As the discussion progresses, it becomes clear

that trust alone does not govern the dynamics of HRI. An equally significant facet is robot

self-confidence – an internal assessment of a robot’s perception of its own capabilities.

Alongside this, there is a necessity to highlight how the intertwined concepts of trust

and self-confidence guide the essential process of role arbitration in pHRC. This alignment

extends beyond understanding individual parameters; it is about discerning their collective

influence on dynamic interactions during real-time collaboration. In transitioning into the

next chapters of the thesis, the focus will shift to this intriguing intersection.



Chapter 4

Role Arbitration using Robot

Trust and Self-Confidence

4.1 Introduction

Building on the foundational understanding of a robot’s trust in its human co-worker as

established in the previous chapter, this chapter delves deeper into the dynamic interplay

between robot trust, self-confidence, and their collective influence on role arbitration within

pHRC. As has been discerned, trust alone does not dictate the equilibrium of control;

instead, a robot’s intrinsic self-confidence plays a pivotal role in these decision-making

processes.

In scenarios where trust in the human is paramount but coupled with a robot’s diminished

self-confidence, the collaborative dynamics naturally skew towards human dominance. In

contrast, when a robot exhibits heightened self-assurance or confidence, it assumes a more

assertive stance, taking the reins of control. Balance, or perhaps tug of war, between trust

and self-confidence is crucial to shaping the future of pHRC as shown in Figure 4.1.

Role arbitration, therefore, extends beyond the mere allocation of responsibilities; it is a

constantly evolving relationship influenced by trust in the partner, trust in one’s self (i.e.

self-confidence), and real-time evaluations of performance and capability. This chapter

seeks to unravel this complex interaction, leading to a solution for achieving a harmonious,

efficient, and fluid human-robot partnership.

In this chapter, sub-research questions Q2 and Q3 are being addressed. Role arbitration

in pHRC refers to how control is allocated between humans and robots for a task and

59
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Figure 4.1: A robot trust and self-confidence role arbitration method for physical col-
laboration with human co-workers. This approach hinges on the principle that when a
robot’s trust in its human co-worker exceeds its own self-confidence, the human partner
assumes greater control of the task. Conversely, if the robot’s self-confidence surpasses

its trust in the human, then the robot takes on a more dominant role in the control.

allows combining the strengths of humans and robots to improve combined performance

and reduce human physical or cognitive effort [30].

The willingness of a human to rely on the robot taking control during pHRC depends

on the difference between human trust in the robot and the human’s trust in themselves

to perform the task [34]. The robot can take control when human trust in the robot is

higher than trusting themselves; otherwise, the human would remain in control. Saeidi

[109] proposed a human trust in robots and self-confidence model and a control switching

method for (semi)autonomous mobile robotic systems. Saeidi [110] also proposed a mixed-

initiative method based on human trust in robots.

The human co-worker interaction experience with robots is one of the critical aspects of

pHRC due to the constant physical contact between the human and the robot [111]. The

aforementioned trust-based role allocation strategies are based on human-to-robot trust

[109, 110]. In Chapter 3 a computational model for robot trust in human co-workers in

pHRC was proposed and verified. To emulate the human control allocation process, we

want the robot to act as an active partner, i.e. a peer. Therefore, in this chapter we

develop a human-preferred role arbitration method based on TSC.

The proposed TSC model is defined as the difference between robot-to-human trust and

the robot’s self-confidence. In this thesis, the robot-to-human trust model, developed in

Chapter 3 and published in [112], is used. This trust model takes into account safety, robot
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singularity, smoothness, physical performance, and cognitive performance. The robot’s

self-confidence is modelled based on whether a human co-worker agrees with the control

actions of the robot. The robot’s self-confidence is high when a human agrees with robot

control, and vice versa. In addition, when the robot’s trust in a human co-worker is much

higher than the robot’s self-confidence, the control is allocated to the human co-worker

and vice versa. However, the way the control is allocated when the robot’s trust in human

co-workers and itself are both high or low becomes a question. In this case, the history

of robot self-confidence can be used. If the robot’s self-confidence in history is high, it

indicates that the robot control was satisfied by the human in the past. Hence, the control

will be biased toward the robot and vice versa.

Therefore, a TSC-based role arbitration method is proposed and evaluated with the aim

of showing through experimental analysis that this method can achieve superior combined

human-robot performance, reduce the workload of human co-workers and improve sub-

jective preference. The control system for role arbitration method is presented in Section

4.2. The computational TSC model is described in Section 4.3. The TSC-based role ar-

bitration method is shown in Section 4.4. An experimental testbed and the design of the

experiments are presented in Section 4.5. The results and discussion are shown in Section

4.6, and the conclusions are given in Section 4.7.

4.2 Control System

Evrard [113] proposed a system that could continuously switch between two different

behaviours (follower and leader) for the robot in pHRC. Based on this concept, a control

scheme is proposed that consists of both follower and leader roles of the robot as shown in

Equation 4.1. The roles (follower and leader) of the robot is adapted by a role arbitration

parameter α ∈ [0, 1] which will be explained in Section 4.4. Humans act in a leader role

(that is, in control) and robots as followers when α = 0. Inversely, the robot acts as a

leader and the human as a follower when α = 1.

ẋ = ẋH + αẋR (4.1)

The term ẋ is the velocity command sent to the robot manipulator. ẋH is the human

control and ẋR is the robot control. It is noted that when α = 0 only the human control

signal is enacted; however, when α = 1 both the human and robot control signals are

combined. This means that the human control signal is always considered when computing

the velocity command, which was a deliberate design decision based on human safety.
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The follower role of the robot is achieved through an admittance control such that the

movements of the robot end-effector are based on the force, FH , applied by the human

co-worker when the human is in control (the leader, α = 0) which is shown as:

MdẍH + DdẋH = FH (4.2)

Md and Dd are the desired robot inertia and damping matrix. FH is the external force

applied to the robot end effector by a human co-worker. When the robot is leader (α = 1),

a bounded impedance control model inspired by [2] is employed:

ẋR = min(ẋmax, ẋmax
d

dth
) (4.3)

d is the distance between the desired task-dependent position and the current position of

the end effector. ẋmax is the maximum robot velocity. dth is the threshold distance when

the robot control ẋR reaches ẋmax, i.e. d = dth. The bounded ẋR helps to improve the

safety of human co-workers and interaction experiences during pHRC due to the physical

couplings of the human-robot system [2]. Hence, ẋmax should be designed to ensure safety

and an acceptable interaction experience. In addition, ẋmax should be large enough to

ensure that the robot acts as a leader when α = 1.

4.3 Robot Trust in human co-worker

and Robot Self-Confidence (TSC) Model

The willingness of a human to rely on the robot taking control depends on the difference

between human-to-robot trust and human self-confidence to perform the task themselves

[34]. Hence, a similar control allocation process, but from the perspective of the robot,

is proposed. The robot’s reliance on a human co-worker taking control depends on the

difference between robot-to-human trust and the robot’s self-confidence. The robot-to-

human trust reflects the capability, from the robot’s perspective, of human co-workers to

take control during pHRC. The self-confidence of the robot reflects the ability of the robot

to take control. Therefore, a real-time computational model of the difference between

robot-to-human trust T ∈ [0, 1] and robot self-confidence SC ∈ [0, 1] at time step n can

be simply defined as:

TSC[n] = T [n]− SC[n] (4.4)
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where TSC ∈ [−1, 1]. T and SC will be introduced in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Robot Trust in Human Co-worker (T )

In the previous chapter a model for the robot’s trust in the human co-worker was developed.

This model is summarised here for convenience. The trust is computed as:

T [n] =

∑N1
k=0 β

k
1pH [n− k]∑N1
k=0 β

k
1

(4.5)

where T ∈ [0, 1] is the robot’s trust in a human co-worker. T = 0 (or T = 1) represents no

trust (or full trust) in the human co-worker. pH ∈ [0, 1] is a normalised measure of human

performance. A discount factor β1 ∈ [0, 1] was introduced to reduce the sensitivity to

historical performance, as the most recent performance has a greater impact on trust [5].

βk
1 is the weighting of pH at the time step n−k. N1 is the length of the moving time window

and n is the current time step. pH is modelled by important pHRC factors, including safety

pS , singularity pSP , smoothness pSM , physical pPW and cognitive performance pCW [112].

pH [n] = pSpSP (C + (1− C)(γSMpSM + γPW pPW + γCP pCP )) (4.6)

The weighting coefficients γSM + γPW + γCP = 1 are positive constants that could be

adjusted based on the relative importance of the corresponding factors according to the

specific requirements of the task. 1 − C represents the maximum contribution of pSM ,

pPW , and pCW .

4.3.2 Robot Self-Confidence (SC)

Robot self-confidence SC ∈ [0, 1] is defined as the robot’s trust in itself. Similar to

Equation 4.5, the robot self-confidence is defined as:

SC[n] =

∑N2
k=0 β

k
2pR[n− k]∑N2
k=0 β

k
2

(4.7)

β2 and N2 are similar to β1 and N1 which have been explained in Section 4.3.1.

The rationale behind using human-robot agreement as a measure of self-confidence is based

on the idea that assuming the human is probably in a better position than the robot to

make the ultimate decision about who should lead due to its superior cognitive advantage.
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The robot performance pR is defined as the level of the agreement of the human co-worker

on the control action of the robot ẋR. There are scenarios, such as a human co-worker

changing a task plan, accumulation of sensor noise, or unexpected obstacles that will result

in the robot not accomplishing the pre-programmed task by itself or does not behave as

the human co-worker expected. This will result in the level of agreement on ẋR being low,

which leads to pR being low and vice versa.

pR is modelled as a function of the difference between human control ẋH and robot control

ẋR as shown in Equation 4.8. When the difference between those two controls is too signif-

icant, and the two control directions are opposite, it indicates that the level of agreement

with ẋR is low. If those two controls are in the same direction, it indicates that the human

co-worker agrees with the ẋR. Therefore, the difference between those two controls, VD,

is shown as:

VD[n] =

|ẋH − ẋR| if sign(ẋH) ̸= sign(ẋR)

0 Otherwise
(4.8)

When the human and robot are in agreement, VD[n] is small, and when in disagreement,

VD[n] is large. The value of VD at any given time step may not represent the actual human

co-worker intention to agree or disagree with the robot because human co-workers may

unintentionally apply a force in the opposite direction or a large force due to uncertainty

of human motor movement. Therefore, the moving averaged method is employed as shown

in Equation 4.9. Hence, the averaged difference MVD
is calculated by:

MVD
[n] =

1

Wr

n∑
i=n−wr+1

VD[i] (4.9)

Wr is the time window that determines the sensitivity of MVD
on VD. If Wr is small, MVD

may be sensitive to the random movement of a human co-worker. If Wr is large, a human

co-worker needs to apply additional force (Equation 4.2) to signal the disagreement. Robot

performance pR is then defined as:

pR =


1 MVD

≤M−
VD

M+
VD

−MVD

M+
VD

−M−
VD

M−
VD

< MVD
< M+

VD

0 MVD
≥M+

VD

(4.10)

M+
VD

and M−
VD

are the two thresholds of MVD
. When MVD

≤M−
VD

, MVD
is small indicating

the human co-worker agrees with ẋR so that pR is high (pR = 1) and vice versa. When

the values of M+
VD

and M−
VD

are large, the human co-worker will be required to put more

physical effort in order to take control of the robot. The advantage is that the robot
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control will not be easily affected by accidental human movement. Furthermore, when

those values are small, the control is easily shifted toward the human co-worker. However,

robot control can be easily affected by unintentional human movement.

4.4 A Robot Trust and self-confidence based Role Arbitra-

tion Method (α)

Saedi [110] proposed a TSC-based control allocation method for mobile robot. However,

a step-like arbitration function was proposed, which is not appropriate in pHRC because

human comfort will be significantly affected when the control authority is shifted suddenly

[85].

A novel smooth role arbitration function α(TSC) is proposed. A fifth-order polynomial

equation (Figure 4.2) is proposed with null first and second derivatives at the TSC−, and

TSC+, which is inspired by [97]. Hence, the role arbitration function α(TSC) is defined

as a function of TSC:

dα(TSC) =


1 TSC ≤ TSC−

0 TSC ≥ TSC+

aTSC5 + bTSC4 + cTSC3 + dTSC2 + eTSC + f Otherwise

(4.11)

α(TSC) is a fifth-order polynomial with null first and second derivatives at TSC− and

TSC+. TSC− and TSC+ are the thresholds determining whether the robot is acting as

a leader (α = 1 when TSC <= TSC−) or follower (α = 0 when TSC >= TSC+). When

the robot trust in human is much larger than trust in itself (T >> SC), TSC is large

(TSC >= TSC+ based on Equation 4.4). The robot’s reliance on the human is high and

as a result is acts as a follower (α = 0), and vice versa.

A dilemma arises when robot trust in human co-worker and robot trust in itself are both

high or low (When both T and SC approach 1 or 0) resulting in the difference between

them approaches 0 (TSC −→ 0) from Equation 4.4. The role allocation has not been

addressed yet by the scientific community.

Hence, a method is proposed to address this problem. As can be seen from the exam-

ple shown in Figure 4.2, with TSC− = −0.5 and TSC+ = 0.5 defined, the arbitration

α(TSC = 0) = 0.5. If TSC− and TSC+ are made smaller, the control is more biased

toward human co-workers (α is smaller) across the interval TSC ∈ [−1, 1].
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Figure 4.2: Examples of the arbitration function α (Equation 4.11) TSC− = −0.5,
TSC+ = 0.5, a = −6, b = 0, c = 5, d = 0, e = −1.875 and f = 0.5.

Therefore, instead of estimating a fixed value of TSC− and TSC+ heuristically, dynamic

equations (Equation 4.12) are developed for adapting TSC+ ∈ [0, 1] and TSC− ∈ [−1, 0]

based on the history of human agreement with the robot control ẋR to address different

levels of robot’s capability in accomplishing the task by itself. If ẋR consistently mismatch

human intention (SC is low from Equation 4.10), this represents that the robot cannot

accomplish the task by itself. As a result, TSC+ and TSC− will converge to 0 and -

1, α → 0 when TSC is close to 0 to ensure the human leader role. If ẋR consistently

matches human intention (SC is high), the robot should take the leader role to maximize

the combined performance and reduce human co-worker workload due to the robot’s in-

herent advantage in speed, accuracy, and power. Correspondingly, TSC+ and TSC− will

gradually increase and converge to 1 and 0 so that α → 1 when TSC ≈ 0.




˙TSC+ = 1
τ (SC − TSC+)

˙TSC− = 1
τ (SC − TSC−)

TSC− = TSC− − 1

(4.12)

τ is the time constant which determines the sensitivity of ˙TSC+ and ˙TSC− to SC. When

τ is larger, the variation of TSC+ and TSC− will be smaller and vice versa.

Based on the trials on the actual robot, it was found that control authority shifts from

robot to human (α : 1 −→ 0) instantaneously which is desirable and intuitive for a human

co-worker when the human and robot disagree. If the control authority is shifted too slowly,
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the human co-worker will likely feel that the robot is uncontrollable. However, smooth and

continuous control shifting is desirable from the human co-worker to the robot (α : 0 −→ 1).

Abrupt control shifting will significantly affect the human’s perception [85]. Hence, α is

constrained as:

α[n] =

α[n− 1] + 1
fS×τr

α[n]− α[n− 1] > 1
fS×τr

α[n] otherwise
(4.13)

fS is the sampling rate of the system. τr is the minimum time taken for role arbitration

between α = 1 and α = 0 which is individual-dependent. τr is suggested to be greater

than 0.48 seconds because it is the fastest human response time [114].

4.5 Experimental Evaluation

4.5.1 Experiment Testbed

The experiment testbed is the same as in Section 3.4.1.

4.5.2 Design of Experiments

A moving target (Red filled circle) tracking experiment is designed for verifying the pro-

posed TSC-based role arbitration method as shown in Figure 4.3. In this experiment, a

human co-worker is asked to move the robot end-effector to track the moving target and at

the same time avoid collisions with the obstacles (Green filled circles) that are placed on

the trajectory of the moving target. The experiment is considered a failure when the robot

collides with obstacles. The moving target’s position is known, but the obstacle’s position

is unknown to the robot. The purpose of this experiment design is to replicate a scenario

where the human co-worker has superior perceptive and decision making capabilities.

Considering safety, any movement of the end-effector that positions it outside the desired

range of the moving target is regarded as unsafe. Therefore, in this experiment, pS is

defined as the possibility of tracking with the desired moving target. As a result, when the

possibility of tracking is high, pS is high. a− = 5cm/s2, a+ = 10cm/s2 based on the expert

trials and specific parameter selection method is similar as Section 6.3.1. Smoothness

pSM , physical pPW and cognitive performance pCW are not considered important in this

experiment design, therefore, C = 1 in Equation 4.6. Also, the robot movement will always

need to be in non-singular configurations during the experiment, so that pSP = 1.
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Figure 4.3: The target (red-filled circle) starts from the top left corner (L1) and moves
around the rectangle path (yellow line) in a clockwise direction with constant speed (L1 →
L2 → L3 → L4). When the moving target returns to the starting position (L1), it is
regarded as completing one experiment. The big filled green circles are the obstacles. The
white line is the actual trajectory of the robot end-effector. L1, L2, L3 and L4 are the

timestep when the moving target reaches four corners of the rectangle path.

4.5.3 Three Control Strategies and Evaluations

For comparison of results, three control strategies are implemented in the experiments:

1. HL - Human Leading : Human in control α = 0 (Equation 4.1)

2. RL - Robot Leading : Robot in control α = 1 (Equation 4.1)

3. RA - Role Arbitration : Robot Trust and Self-Confidence Based Role Arbitration

Method α(TSC) (Equation 4.11)

To evaluate the effectiveness of the proposed method, the following metrics are used:

1. Average Magnitude of Human Force Over the Whole Trajectory : 1
Nc

∑Nc
0 ( 1

tN−t1

∑tN
t1
||FH(t)||).

Nc is the total number of experiments for the corresponding control strategies. t1

is the initial timestep of the experiment. tN is the final timestep. ||FH(t)|| is the

magnitude of human force at each timestep.

2. Average Tracking Error Over the Whole Trajectory : 1
Nc

∑Nc
0 ( 1

tN−t1

∑tN
t1
||e(t)||).

||e(t)|| is the tracking error which is the distance between the position of the end-

effector and the moving target at each timestep.
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3. Average Magnitude of Human Force at each timestep: 1
Nc

∑Nc
0 ||FH(t)||.

4. Average Tracking Error at each timestep: 1
Nc

∑Nc
0 ||e(t)||.

5. Failure Rate: FR = number of Failed experiments
Total number of experiments . Failure experiments refer to the situ-

ation when the robot collides with obstacles.

6. NASA TLX : Post-experiment questionnaires for measuring the perceived workload

of the participants.

4.5.4 Participants and Testing Procedure

Fifteen subjects participated in the experiment. Ten participants are from the UTS

Robotics Institute and five participants are from the general public. The ages of the

participants range between 20 and 40. After completing the consent form, each partici-

pant learns how to operate the collaborative robot system as shown in Figure 3.7a until

they are familiar with the task. This is to reduce the learning effect. After these steps,

each participant will undertake five trials for each control strategy in a random order to

reduce the order effect. The participants are required to answer the questionnaires once

they finish the experiments. This experiment follows the procedure approved by the UTS

Ethical Committee with approval number ETH21-6346.

4.6 Results and Discussion

Figure 4.4 shows the mean and standard deviation of the human co-worker’s average

tracking error and magnitude of force (Metrics (1) and (2) in Section 6.2.3) for each

control strategy (HL, RA and RL) from all the fifteen participants.

Figure 4.4 (a) and (b) present the resultant human force and tracking error over the Whole

trajectory, i.e. from L1, L2, L3, L4 to L1. Figure 4.4 (c) and (d) present the resultant

human force and tracking error over the first half of the trajectory with obstacles, i.e. from

L1, L2 to L3. Figure 4.4 (e) and (f) present the resultant human force and tracking error

over the second half of the trajectory without obstacles, i.e. from L3, L4 to L1.

Figure 4.5 shows the average human force and tracking error of the fifteen participants at

each timestep during the experiment (Metrics (3) and (4) in Section 6.2.3).
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4.6.1 Average Magnitude of Human Force

1. Over the Whole Trajectory: Figure 4.4(a) shows that the RA control strategy

can reduce the magnitude of human force by 44.9% and 40.6% compared to strategies

of HL and RL, respectively.

2. With obstacles (over the trajectory from L1, L2 to L3): Figure 4.4(c) shows

that RA reduces the magnitude of human force by 44.1% and 51.6% compared to

HL and RL, respectively.

3. Without obstacles (over the trajectory from L3, L4 to L1): Figure 4.4(e)

shows that RA reduces the magnitude of human force by 45.6% and 10.3% compared

to HL and RL, respectively.

4.6.2 Average Tracking Error

1. Over the Whole Trajectory: Figure 4.4(b) shows that RA reduces the tracking

error by 18.4% compared to HL and increases 10.3% compared to RL.

2. With obstacles (over the trajectory from L1, L2 to L3): Figure 4.4(d) shows

that RA reduces the tracking error by 9.60% compared to HL and increases 4.44%

compared to RL.

3. Without obstacles (over the trajectory from L3, L4 to L1): Figure 4.4(f)

shows that RA reduces the tracking error by 39.7% compared to HL and increases

by 38.5% compared to RL.

4.6.2.1 Discussion of Human Force and Tracking Error

It was realized that the force applied by humans under the RL control strategy is signifi-

cantly higher than that of RA and HL over the segment of the trajectory with obstacles

(i.e. from L1, L2 to L3). This may be related to the human trying to take control to avoid

the obstacles, which can be observed in Figure 4.5.

The tracking error from RL is the smallest because the robot is in control during the

experiment and the position of the moving target is known to the robot. However, the

obstacles positions are not known to the robot. Therefore, the robot will be likely to move

toward the obstacles. This has been shown in table 4.1 that RL has the highest failure

rate, among the three control strategies, of 46.5%. It can be seen in Figure 4.5(a), that

the variation of the human force in RL is largest compared to HL and RA because the
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Figure 4.4: Evaluations of the three control strategies from the fifteen participants:
(a) Human Force (Overall) (b) Tracking Error (Overall) (c) Human Force (Obstacle) (d)
Tracking Error (Obstacle) (e) Human Force (Non-obstacles) (f) Tracking Error (Non-
obstacle). Obstacles: First half of the trajectory with obstacles, i.e. from L1, L2 to L3.
Non-obstacle: Second half of the trajectory without obstacles, i.e. from L3, L4 to L1.

human co-worker needs to apply extraordinary force to take control when closing to the

obstacles. Therefore, the gradient of interaction force may be an indicator of whether the

human co-worker wants to be in control or signals a low interaction experience.

An interesting observation from the study is the highest standard deviation (std) of mag-

nitude of force observed during RL implementations, as detailed in Figure 4.4(a)(c)(e).

This variation highlights the inconsistent reliability of autonomous control across different

individuals, suggesting a correlation between an individual’s inclination towards trusting

autonomous systems and their resultant magnitude of force to show intention of taking
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control. Specifically, participants with a higher degree of trust in autonomous control had

a lower of magnitude of force applied. It can be hypothesized that such variability is

largely attributable to differing levels of trust and dependence on the autonomous system

among participants.

Furthermore, when examining tracking errors, the standard deviation associated with HL

is noted to be the highest as shown in Figure 4.4(b)(d)(f). This outcome is anticipated,

given the absence of autonomous guidance in influencing the robot’s movements, thereby

introducing variability directly tied to the participants’ diverse skill levels. This is exem-

plified by the tracking error standard deviations for the RI-cohort (proficient group) at

2.22cm and for the Non-RI-cohort (non-proficient group) at 4.14cm, further underscoring

the impact of individual participant skill on performance outcomes.

0 5 10 15 20
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20

40

0 5 10 15 20
0

2

4

6

Figure 4.5: (a) Averaged Human Force (b) Averaged Tracking Error of the fifteen
participants over the experiment at each timestep. The three pink dotted vertical lines

are the time step referring to L2, L3 and L4 in Figure 4.3.
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Table 4.1: Failure rate for the three control strategies

Control Strategies HL RA RL
Failure Rate (%) (FR) 5.3 12.7 46.5

4.6.3 Failure Rate

Table 4.1 shows the failure rate of the three control strategies. It was realised that the

failure rate of RA is similar to HL due to the participant may not pay full attention to

the task. And the participants do not become familiar with robots at the beginning and

may collide with the obstacles accidentally. When familiarity increases, the failure rate

decreases. Moreover, RL has the highest failure rate among the three control strategies.

4.6.4 NASA TLX

Figures 4.6 and 4.7 show the results of the questionnaire based on both the rating scale (RS)

and pairwise comparison (PC) methodologies, measuring participants’ perceived workload

through the NASA TLX framework. NASA TLX is used for participants to provide their

feedback. It has six dimensions, including mental demand, physical demand, temporal

demand, performance, effort, and frustration. Low scores represent low demand on the

user, and are therefore preferred.

The alignment between the RS and PC results can be attributed to the marked disparities

among RA, RL, and HL, a finding consistent with the conclusions drawn in Chapter

5. In particular, Figures 6.19 and 6.20 underscore RA’s superior performance over RL

and HL, the discrepancy being particularly pronounced for RL (RL >> HL > RA).

It can be seen that RA is the lowest (best performance) and RL is the highest (worst

performance) in the six dimensions among all control strategies as shown in Figure 4.6. It

can also be seen that RA is the highest (best performance) and RL is the lowest (worst

performance) in the six dimensions among all control strategies as shown in 4.7. The

significant difference between RA and RL is caused by the robot being misled when closing

on obstacles, which are reported by the participants. Therefore, the interaction experience

is significantly reduced due to the considerable conflict between humans and robots when

close to obstacles. An interesting result is that the perceived physical demand is the largest

in the RL as shown in Figure 4.6(b). However, the human forces of HL are the highest

(Figure 4.4(a)). Consequently, perceived physical demand is not only affected by the

objective physical demand applied to the robot, but may also be mental and frustration

levels. When frustration and mental demand are high, perceived physical demand may

also increase correspondingly. This can be an interesting research direction that can be

further investigated in the future.
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Figure 4.6: Normalized subjective results from NASA-TLX with rating scale method
(Mental demand, physical demand, temporal demand, overall performance, effort, and
frustration level) from the fifteen participants. 0 - good performance, 100 - bad perfor-

mance.
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Figure 4.7: Subjective results from NASA-TLX with pairwise comparison method (Men-
tal demand, physical demand, temporal demand, overall performance, effort, and frustra-

tion level) from the fifteen participants.

4.7 CONCLUSION

A TSC-based role arbitration method was proposed and experimentally validated with the

human subjects’ experiment. The results show that the RA control strategy can reduce

the magnitude of human force by 44.9% and 40.6% compared to the HL and RL strategies,
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respectively. Furthermore, RA reduces the tracking error by 18.4% compared to HL and

increases by 10.3% compared to RL. However, RL has the highest failure rate, among the

three control strategies, at 46.5%. In terms of subjective evaluation, RA reduces 67.3% and

79.8% compared to HL and RL, respectively. In conclusion, the proposed role arbitration

method has been shown to achieve superior combined human-robot performance, reduce

the workload of human colleagues and improve subjective preference.

In exploring the computational intricacies of robot trust, self-confidence, and their respec-

tive roles in decision arbitration, one underlying objective emerges as critical: approxi-

mating human-human interaction. The closer robots can emulate and align with human

behaviours and expectations, the more fluid and natural their collaborative interactions

will become. Thus, the foundation of this collaboration rests on understanding the human

side of the interaction equation. When striving for more human-like interactions, gauging

the subtleties of human perception and experience is essential. Although robots’ arbitra-

tion methods, blending trust and self-confidence, showcase technical sophistication, the

ultimate measure of their success lies in the quality of interaction they deliver. With this

perspective, the discussion transitions to the next chapter, emphasising the qualitative

aspects of these interactions.



Chapter 5

Measuring Subjective Impression

during Physical Human-Robot

Collaboration Using a Pairwise

Comparison Method

5.1 Introduction

In earlier discussions, the foundational principles of robot trust in humans, robot self-

confidence, and the role arbitration method were highlighted, all centred around a core

objective: making human-robot interactions feel akin to human-human interactions. Al-

though these technical and theoretical advancements are important, human experience

remains paramount.

This realisation prompted the following exploration of alternative methods. In this chapter,

the focus is on pairwise comparison (PC) method, a novel survey approach designed to

address the aforementioned challenges to address sub-research question 4. The pairwise

method offers a more intuitive approach. Instead of asking participants to rate items on an

abstract scale, this method asks them to compare two items directly. Such a comparative

framework can often feel more engaging and straightforward. Participants can access and

articulate their feelings more easily when comparing two tangible options, which makes it

less likely for them to respond carelessly. Thus, this direct comparison can capture more

genuine and accurate subjective impressions. The pairwise method has not really been

used before as a method of evaluating user preferences in pHRI. Through this method, we

77
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aim to capture human subjective impressions with enhanced precision, offering a clearer

window into the nuanced world of human-robot interactions.

To compare the proposed pairwise method with the more traditional rating scale method,

a series of pHRC experiments is conducted that compare the results of these two methods

to the ground truth. This thesis chose the NASA TLX as the Likert scale assessment

tool because of its simplicity, popularity, and validated accuracy. The PC questionnaire is

designed by modifying the questions in the NASA TLX. This thesis employed the one-way

analysis of variance (ANOVA). Moreover, Tukey’s HSD multiple comparison test was also

applied to allow us to determine specifically between which groups the differences existed.

Through the results, it is concluded that the PC method is more robust, efficient, and

reliable than the Likert scale method in determining user’s impressions in pHRC studies,

especially when the difference between two comparing group’s subjective impression is

subtle regardless of the variations in experimental procedure designs. The experimental

results have been promising, highlighting a reduction in the experimental time 44%. Even

within this shortened timeframe, the pairwise method proved to be more adept at captur-

ing genuine subjective impressions, remedying many of the issues we previously faced with

traditional rating scales. Furthermore, participants reported that they found the question-

naire process easier and more pleasant, marking a significant step forward towards bridge

theory and lived experience in human-robot collaboration studies.

The remainder of this chapter is structured as follows: Section 5.2 presents the exper-

imental protocol. In Section 5.3 the experimental results are presented and extensive

analysis is provided. Finally, the discussion and conclusion are presented in Section 5.4

and Section 5.5 respectively.

5.2 Experiment Protocol

5.2.1 The Clock Game

The Clock Game is shown in Fig. 5.1. The position of the cobot end effector is projected

onto the TV through coordinate frame transformation and is represented by the white

dot. The red dot is the moving target. It starts from the top left corner of the yellow

rectangular trajectory and moves in a clockwise direction at constant speed. The task of

the experiment is to control the white dot to follow the red moving target as closely as

possible. To ensure the participation and focus of the participants during the experiment,

a competitive element is added to the task. A circular boundary is designed to move

synchronously with the target dot along the trajectory. The experimental subjects are

asked to keep the white dot within the radius of the circular boundary as its size shrinks
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over time, making the task more challenging and requiring higher concentration. Based

on how long the participant maintains the white dot within the boundary, the Score is

calculated in real time at a rate of 45Hz and displayed to the participant. At each time

step, while the white dot is kept within the boundary, a point is assigned to the Score.

On the contrary, the Score will be penalised by 10 points if it is outside the limit at each

time step.

Figure 5.1: The experimental task requires participants to follow the red target dot
with the white dot while remaining within the red circular boundary. The task becomes
more intense as the radius of the boundary reduces with time. A Score is calculated
based on the time that the participant could stay within the boundary. It increases if the

participant is able to remain within the boundary. Otherwise, it reduces.

5.2.2 Collaborative Robot (Cobot) Setup

The cobot used in this experiment is the ANBOT which is a robot system of physical

collaboration designed for industrial abrasive blasting [115]. This platform was used in

Chapters 3 and 4 during the development and verification of the trust model and TSC-

based arbitration models.

The ANBOT consists of the 6-DoF Universal Robot UR10 manipulator with a custom-

made handle at its end effector that incorporates a 6-DoF force/torque sensor. The

ANBOT is controlled by a mass-damping admittance controller [116] as shown in (5.1).

Md ∈ R6×6 and Dd ∈ R6×6 are the virtual inertia and damping matrix respectively;

ẋ ∈ R6×1 is the desired velocity of the end effector in the Cartesian space and ẍ ∈ R6×1

is the desired acceleration; F ∈ R6×1 is the collaborative wrench applied to the cobot

end-effector by the human operator, it is measured directly by the force/torque sensor.

Mdẍ + Ddẋ = F + τ (5.1)
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The term τ ∈ R6×1 is the artificial noise deliberately injected into the admittance controller

to influence the perception of the human operator in a predicable manner. Details are

provided in the next subsection.

Figure 5.2: A participant conducting the experiment using the custom-made handle
attached at the end-effector of ANBOT. The safety switch is used to allow the participant

to activate ANBOT and control the start of the experiment.

Considering the Clock Game task introduced in the section above, the ANBOT is restricted

to planar motions. For F and τ , only the elements that contribute to the planar motion

are used by the admittance control law (5.1).

5.2.3 Artificial Noise Design

In Equation 5.1, the artificial noise τ is used to establish the ground truth for the experi-

ment based on the hypothesis that noise added to F will deteriorate the user experience:

the larger the noise is, the worse the experience should be.
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τ is randomly generated every 0.5s and injected into a random quadrant of the plane of

allowable movement. The magnitude of τ is randomized following the Gaussian distribu-

tion between the lower limit L and the upper limit U . Four noise levels are determined

through a pilot study based on the principle that the difference between two successive

noise levels is so subtle that a pHRC expert cannot distinguish them based on trials.

• τ1: L=0N , U=0N . No disturbance.

• τ2: L=1N , U=2N . Little disturbance.

• τ3: L=3N , U=4N . Medium disturbance.

• τ4: L=5N , U=6N . Large disturbance.

Throughout the entire experience, the noise levels used are kept unknown to participants.

5.2.4 Questionnaires Design

The NASA TLX questionnaire is used. With considerations of the experiment length and

the relevancy of the original NASA TLX questions to our experiment design, the following

two questions and the standard 21-point scale [88] are used in the experiment:

• RS Q1: How physically demanding was the task?

• RS Q2: How frustrated were you? For example, were you insecure, discouraged,

irritated, stressed or annoyed?

For the PC questionnaire, we created the following questions by referring to the NASA

TLX questionnaire but adapting them into a pairwise comparison format.

• PC Q1: Which mode required less physical demand?

• PC Q2: Which mode was less frustrating to use?

Participants are asked to compare the two noise levels given to them on a 5-point scale

and points are assigned to the noise levels accordingly:

• A≫B: The performance of A is much better than that of B. 2 points for A, 0 points

for B.
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• A>B: The performance of A is a little better than that of B. 1 point for A, 0 point

for B.

• A=B: Performance of A and B is about the same. 0 points for both A and B.

• A<B: B performance is slightly better than A. 0 point for A, 1 point for B.

• A≪B: B performance is much better than A. 0 points for A, 2 points for B.

The first noise level given to the participant is marked as A and the subsequent one is

marked as B.

5.2.5 Experimental Procedure

Two experimental procedures are designed which correspond to conducting all the experi-

mental conditions (Experimental procedures 1 and 2). Both the RS and PC questionnaires

are carried out in the following experiments.

5.2.5.1 Experimental Procedure 1

For the first experimental procedure, participants need to complete the task for all combi-

nations of noise level comparisons, that is: τ1&τ2, τ1&τ3, τ1&τ4, τ2&τ3, τ2&τ4 and τ3&τ4

with single-order matchups (e.g, A versus B and no B versus A). Using a balanced Latin

square [117], six distinctive sequences of conducting the comparisons are generated to

reduce the order effect.

For the NASA TLX questionnaire, participants take trials of the noise levels in the sequence

generated by the balanced Latin square above and give scores after every trial.

From this experimental procedure, twelve NASA TLX results and six pairwise comparison

results are collected from each participant. The order in which the questionnaires are

completed is also alternated. For example, if the previous participant completes the NASA

TLX questionnaire first, the subsequent participant will receive the PC questionnaire first.

5.2.5.2 Experimental Procedure 2

In the second experimental procedure, the experimental sequence generated in Experimen-

tal Procedure 1 is used likewise. Except, participants are only required to conduct the

experiment 4 times for either questionnaire instead of 12. As a result, only 2 PC question-

naire results and 4 NASA TLX results are collected. The order in which to complete the

questionnaires is also altered.



Chapter 5. Measuring Subjective Impression during Physical Human-Robot Collaboration
Using a Pairwise Comparison Method 83

5.2.6 Hypothesis

It is reasonable to anticipate that participants’ subjective sensations for physical demand

and frustration will be ranked from the best to the worst in line with the magnitude of

the noise: τ1 should result in the least physical demand and frustration, followed by τ2,

τ3 and τ4 in sequence. Based on this presumption, the following hypotheses are made for

different experimental procedures:

• Hypothesis 1 : For Experimental Procedure 1, both questionnaire methods should

return the correct result that matches the anticipation. NASA TLX results should

show that τ1 has the lowest scores for physical effort demand and frustration, with

the scores increasing sequentially for τ2, τ3, and τ4. For the PC results, τ1 should

receive the most points, followed by τ2, τ3 and τ4 in descending order.

• Hypothesis 2 : For Experimental Procedure 2, it is hypothesised that only the PC

results will match the anticipation. NASA TLX will fail to rate the noise levels

correctly because of inter-rater variations and insufficient data from each participant.

5.2.7 Participant Recruitment:

The experiment was carried out with the approval of the Human Research Ethics Commit-

tee of the University of Technology Sydney (UTS) ETH18-3029. Participants are recruited

through personal connections and incidental engagements. Participants are given more de-

tails about the experimental task through an information sheet and verbal explanation.

A demonstration of the experiment is also provided. After this, participants are given the

consent form to read and sign. Before starting the experiment, the questionnaire ques-

tions are shown to the participants and they will practice with robot under τ1 (no artificial

noise) until the score reaches 500 as shown in Figure 5.1 to guarantee the same level of

proficiency in starting the experiment to reduce the learning effect between individuals.

5.3 Results

The experiment was carried out on the UTS Open Day (OD) and Orientation Week (OW)

with an age group between 16 and 40 years. During these events, a cohort of 36 inex-

perienced volunteers (16 women and 20 men) who had no prior experience with pHRC

was recruited. Nine of them followed Experimental Procedure 1 and the rest performed

Experimental Procedure 2. Furthermore, 18 volunteers with pHRC experience (2 women

and 16 men) were recruited at the UTS Robotics Institute (RI) in the weeks following and
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were split into half for the experimental procedures. For the 18 participants who com-

pleted Experimental Procedure 1, their first 8 experimental runs and the corresponding

questionnaire results are extracted and combined with the results of Experimental Proce-

dure 2. For either experimental procedure, the balanced Latin square was completed in

full 3 times.

For NASA TLX results, the mean and standard deviation of each noise level are calcu-

lated from the participant-rated scores directly, and the results are presented in Fig.5.3a

and Fig.5.4a for Experimental Procedure 1 and Experimental Procedure 2, respectively.

From the results of the PC questionnaire, the noise levels points are obtained from the

comparison results as per Section 5.2.4. The mean and standard deviation of the points

are calculated, and the results are shown in Fig. 5.3b and Fig. 5.4b for two experimental

procedures, respectively.

A ANOVA is performed to test whether there was a statistically significant difference

in the means between different noise level scores. The p-value tests whether the true

difference of means for two noise levels is equal to zero, in other words, whether two noise

levels resulted in similar levels of physical demands and frustration in our experiment.

Typically, a p-value < 0.05 indicates a significant difference between the means of two

groups [118]. The results are shown in Table 5.1.

5.3.1 Hypothesis 1: Both RS and PC will return agreeing and statisti-

cally significant results in Experimental Procedure 1

Fig. 5.3 shows the results of Experimental Procedure 1 and is used to test Hypothesis 1.

RS mean scores are presented in Fig.5.3a. For both Physical Demand and Frustration,

RS returned a result that agreed with our anticipation. The average scores are rated the

lowest for τ1 and start to climb for τ2, τ3 and τ4. This indicates that participants found

τ1 the least physically demanding and resulted in the least frustration, followed by τ2, τ3

and τ4 in sequence. From the second and fourth columns of Table 5.1, the p-values for τ1

vs τ3, τ1 vs τ4, τ2 vs τ3 and τ2 vs τ4 can be viewed as less than 0.05, indicating that RS

showed statistically significant differences between these noise levels in the categories of

physical demand and frustration. However, the p-values for τ1 vs τ2 and τ3 vs τ4 are all

greater than 0.05 (cells highlighted in yellow) which are statistically insignificant, implying

that within these pairs, participants found these noise levels resulted in similar levels of

physical demand and frustration.

As can be seen in Fig. 5.3b, PC has returned perfectly agreeing results for Physical De-

mand and Frustration. The average points obtained by τ1 for the two tested criteria are
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substantially higher than τ2 by 25.6% and 23.9%, respectively. The average points ob-

tained by τ3 are much lower compared to τ1 and τ2, and they are approaching 0 for τ4.

These reviews that participants found τ1 resulted in the least physical demand and frus-

tration, followed by τ2, τ3, and τ4 in sequence. To test the statistical significance of the

PC results, p-values in the third and fifth columns of Table 5.1 should be studied. As can

be seen, all the p-values in these columns are all lower than the standard significance level.

For the noise level pairs where RS failed to differentiate (τ1 vs τ2 and τ3 vs τ4), PC has

successfully shown the statistically significant differences between them (cells highlighted

in green).

These results provide evidence to reject the null hypothesis 1: The RS results agree with

our anticipation shown in Figure 5.3a. However, it is not statistically significant. However,

PC was capable of returning statistically significant results that matched our anticipation.

5.3.2 Hypothesis 2: PC can return statistically significant and agreeing

results under Experimental Procedure 2 and RS will fail

The Experimental Procedure 2 results are shown in Fig. 5.4 and they are used to test

Hypothesis 2. From Fig. 5.4a, it can be observed that RS has performed poorly for both the

physical demand and the frustration categories. For the first, the error occurred between

τ1 and τ2, the RS average scores show that the participants found τ1 more physically

demanding than τ2. For frustration, noise levels were rated from the best performance

to the worst performance on the order of τ2, τ1, τ4 and τ3. These results violate the

results of Experimental Procedure 1 and our anticipation. Furthermore, the sixth and

eighth columns of Table 5.1 show statistical significance. Similarly to the results of the

Experimental Procedure 1, the mean values are tested to be statistically insignificant for

τ1 vs τ2 and τ3 vs τ4.

However, as shown in Fig.5.4b, PC persisted in relating participants’ perceptions with noise

levels correctly. The smallest noise level achieved the highest average point; as larger and

larger noises were used, lower and lower points were obtained by them. Furthermore, the

PC results are validated to be statistically significant according to columns 7 and 9 of

Table 5.1. All the p-values are less than the standard significance level, including the

noise levels with subtle differences (τ1 vs τ2 and τ3 vs τ4 as highlighted in green).

Experimental Procedure 2 shows that RS fails to return the correct and statistically sig-

nificant results when the number of repetitions for the experiment is limited for each

participant. At the same time, the PC accuracy lasts. Therefore, Hypothesis 2 should be

accepted.
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Figure 5.3: Experimental Procedure 1 results for (a) Rating Scale Questionnaire (b)
Pairwise Comparison Questionnaire

5.3.3 Experimental Duration

In Experimental Procedure 1, participants spent an average of 25 minutes to complete all

the NASA TLX questionnaires. It should be noted that this length included 3 repetitions

of the noise levels. The average completion time of the PC questionnaire is 14 minutes.
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Figure 5.4: Experimental Procedure 2 results for (a) Rating Scale Questionnaire (b)
Pairwise Comparison Questionnaire

Table 5.1: Comparison of rating scale and pairwise comparison method by employing
the p-value from the one-way ANOVA followed by Tukey’s HSD multiple comparison tests

for experimental procedures 1 and 2.

Noise
Level

Experimental Procedure 1
Physical Demand

Experimental Procedure 1
Frustration

Experimental Procedure 2
Physical Demand

Experimental Procedure 2
Frustration

RS PC RS PC RS PC RS PC

τ1 vs τ2 0.822166 0.037120 0.872085 0.027475 0.575070 0.007382 0.972555 0.001132
τ1 vs τ3 0.000503 0.000000 0.000304 0.000000 0.002536 0.000000 0.000531 0.000000
τ1 vs τ4 0.000000 0.000000 0.000000 0.000000 0.000063 0.000000 0.000955 0.000000
τ2 vs τ3 0.013759 0.007265 0.006597 0.000000 0.000014 0.019474 0.000112 0.030415
τ2 vs τ4 0.000001 0.000000 0.000001 0.000000 0.000000 0.000000 0.000202 0.000000

τ3 vs τ4 0.113456 0.007265 0.179922 0.016261 0.862868 0.008956 0.993072 0.036399
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5.4 Discussion

In this thesis, the use of the pairwise comparison approach was used in pHRC studies

and a preliminary study was conducted to compare PC results with the more popular RS

method. Through testing our hypotheses, the following key advantages of PC over RS can

be identified:

1. When the tested characteristics are repeated multiple times, both RS and PC mean

values provide accurate measurements of participants’ subjective impressions. How-

ever, only PC results are statistically significant in determining differences for char-

acteristics with subtle differences. RS results are not statistically significant.

2. When the duration of the experiment is reduced, the PC mean values accurately

rate human subjective feelings and are statistically significant. RS mean values are

noisy and fail to reflect human’s true subjective perceptions.

A potential cause of the poor RS results may be the absence of a mutual understanding

of the rating system between participants. The individual participant must establish their

own rating standards by retrospectively comparing the current result with their previous

responses when conducting any rating scale questionnaire [119]. When the number of rep-

etitions of the experiment is limited, as in Experimental Procedure 2, the experimental

subjects do not establish the rating standard. Therefore, they provided noisy and inaccu-

rate results using RS. Furthermore, cultural influences [39] [40], the length of the RS scale

[38] and careless responses may have also contributed to the poor RS results.

A limitation associated with PC is the complexity of the experiment design. To compare

the characteristics n, PC requires a total of (n − 1)2/2 + (n − 1)/2 comparisons for a

single order match-up comparison while RS requires only a minimum of n experiments.

However, as validated in Experimental Procedure 2, the accuracy of PC does not depend

on individual participants completing all comparisons. Robustness is particularly useful for

pHRC studies because the experimental task is often repetitive and experimental subjects

will become fatigued both mentally and physically after many repetitions. PC reduces the

workload of the experimental subjects more effectively than RS. However, the increased

number of experiments required by PC leads to higher recruitment costs because more

experimental subjects are needed.
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Table 5.2: Comparison between Rating Scale and Pairwise Comparison methods

Rating Scale Pairwise Comparison

Effectiveness
with repetition (Experiment 1)

No Yes

Effectiveness without
repetition (Experiment 2)

No Yes

Averaged Experimental
length

25 minutes 14 minutes

Robustness Low High

The level of satisfaction in answering questions Low High

The level of satisfaction
in conducting the experiments

Low High

Recruitment
cost

Low High

5.5 Conclusion

In this thesis, a novel comparison is conducted between two subjective impression evalua-

tion methods. The classic NASA-TLX questionnaire was used as a template to create the

Rating Scale and Pairwise Comparison questionnaires, respectively. Through two exper-

imental procedures of different lengths, the effectiveness of RS and PC was statistically

compared. The experimental results show statistically significant results for both RS and

PC when the difference between the comparing groups is large. However, when the true

difference is small, PC is more robust and accurate than RS regardless of the experimental

procedure. Furthermore, compared to RS, PC also reduced the duration of the experi-

ment by 44%, resulting in a more enjoyable experimental experience and lower cognitive

workloads.

A summarised comparison between the Rating Scale and the Pairwise Comparison is

shown in Table 5.2. Even though the cost of recruitment is higher for PC, it still offers

a more time-efficient, accurate, and robust alternative method to pHRC researchers who

are interested in capturing nuances in human perceptions during pHRC studies.

The subsequent chapter delves into a comprehensive experimental analysis using the TSC

role arbitration method to validate these dimensions in human-robot collaboration. The

PC method validated in this chapter will be used in the next chapter to determine the

user impressions of the TSC role arbitration method.





Chapter 6

Experimental Evaluation of Role

Arbitration Method for Physical

Human-Robot Interaction

6.1 Introduction

While the previous chapters laid the foundation for understanding human-robot collabo-

ration through the TSC-based role arbitration method, the previous empirical endeavours

have provided just a glimpse into its full potential. This chapter builds upon the work

presented in earlier sections, amalgamating the methods of the TSC-based role arbitration

and evaluating the system with a series of experiments involving human participants.

Figure 1.10 shows the framework of the TSC-based role arbitration method based on the

theoretical contribution from Chapters 3 and 4. Previous explorations, as outlined in

Chapter 4, centred exclusively on the safety aspect of the computational model of robot

trust in humans. The current chapter broadens this scope, integrating components of the

computational robot trust model into the TSC role arbitration framework and emphasis-

ing three critical performance factors: smoothness, physical, and cognitive. Singularity,

although crucial, is left aside for this evaluation, given the extensive research conducted by

Carmichael [2, 111] on combined performance and subjective impressions during pHRC.

Safety, singularity, and smoothness have been identified as factors that affect human per-

formance in pHRC [2, 99, 111, 120]. Yet, comprehensive evaluations regarding physical

and cognitive performance in the domain remain limited. This chapter addresses this

research gap.

91



92
Chapter 6. Experimental Evaluation of Role Arbitration Method for Physical

Human-Robot Interaction

Subsequent sections investigate the validation of Physical and Cognitive Performance,

followed by the design and execution of experiments assessing the efficacy of the TSC-

based role arbitration method. Later sections introduce evaluation metrics that include

the magnitude of force, tracking error, and subjective impressions, comparing them with

human- or robot-centric control.

Furthermore, this chapter also embarks on a comparative study between the pairwise

and rating scale methods for all the performance factors, including smoothness, physical,

and cognitive, leaning on the NASA-TLX questionnaires as previously discussed. This

juxtaposition helps capture the subtle intricacies of subjective impressions on robots during

pHRC.

The findings in this chapter highlight the effectiveness of the TSC-based role arbitration

method. The proposed method not only accentuates the combined performance of humans

and robots but also significantly decreases the physical and cognitive workloads on the

human counterpart. In tandem, the subjective impressions of humans towards robots in

a collaborative setting are enhanced, underscoring the tangible impact of this theoretical

concept.

6.2 Experimental Evaluation

6.2.1 Experiment Testbed

For the work presented in this chapter, the same experiment testbed will be used as

previously presented in Section 3.4.1 in Chapter 3.

6.2.2 Design of Experiment

Physical human-robot collaboration can take advantage of human and robot strength,

human decision making, and robot accuracy and strength because the autonomous system

is not capable of performing all tasks, especially in unstructured environments. In a

structured environment, the autonomous system can be more capable than human co-

worker due to its inherent nature of accuracy and power. However, in an unstructured

environment, human intervention is often necessary to address the flaws of an autonomous

system. One of the flaws in the autonomous system is the perception system. Due to sensor

noise, surrounding light, occlusions, or dusty industrial environment, the autonomous

system may often not be able to perform the desired task. Therefore, an experiment

similar to that described in Section 3.4.2 but based on this scenario is designed.
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A red-filled-circle moving target (RMT) tracking experiment is designed to verify the

proposed TSC-based role arbitration method as shown in Figure 6.1. In this experiment,

a human co-worker is asked to move the robot end-effector to track the RMT. To simulate

a realistic and challenging industrial application, noise is added to the pose of the tracking

target (noise is generated according to Equation 6.1). This noise represents the inability

of the robot to accurately determine the true location of the RMT, replicating a scenario

such as a system with poor perception due to sensor error. In this work we refer to

this scenario as an unstructured environment. Therefore, the position of RMT will be

perceived differently between humans and robots (pRMT and pNRMT ) from L1-L2 and L2-

L3 as shown in Figure 6.1. From L3-L4 and L4-L1, the environment is structured without

this disturbance, therefore, there is no sensor noise. Consequently, the pose of RMT is the

same from the perspective of the human and robot (pRMT and pRMT ).

In order to investigate how each performance component (Smoothness, Physical, and Cog-

nitive) affects the performance role arbitration method, the task requirement (i.e., high

tracking accuracy), state of RMT (i.e., position, and speed of RMT) are manipulated in

the following experiments.

pNRMT = pRMT +N (0, σ2) (6.1)

The parameter σ is the standard deviation of the noise. pNRMT is the pose of RMT with

noise, with a new noise value computed every 1 second. pRMT is the pose without noise.

Figure 6.1: Experiment Scenario: The red-filled-circle moving target (RMT) starts from
the top left corner (L1) and moves around the rectangle path (yellow line) in a clockwise
direction with constant speed. The green-filled circle is the current end-effector position.
When the moving target returns to the starting position (L1 −→ L2 −→ L3 −→ L4 −→ L1),
it is regarded as completing one loop. The white line is the actual trajectory of the robot
end-effector. L1, L2, L3 and L4 are the timestep when the RMT reaches four corners of

the rectangle path.
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6.2.3 Three Control Strategies and Evaluations

For comparison, three arbitration control strategies are implemented in the experiments:

1. HL - Human Leading : Human in control α = 0 (Equation 4.1)

2. RL - Robot Leading : Robot in control α = 1 (Equation 4.1)

3. RA - Role Arbitration : Robot Trust and Self-Confidence Based Role Arbitration

Method α(TSC) (Equation 4.11)

To evaluate the effectiveness of the proposed arbitration method (RA) compared to fixed

arbitration (HL and RL), the following metrics are used:

1. Average Magnitude of Human Force Over the Whole Trajectory : 1
Nc

∑Nc
0 ( 1

tN−t1

∑tN
t1
||FH(t)||).

Nc is the total number of experiments for the corresponding control strategies. t1

is the initial timestep of the experiment. tN is the final timestep. ||FH(t)|| is the

magnitude of human force at each timestep.

2. Average Tracking Error Over the Whole Trajectory : 1
Nc

∑Nc
0 ( 1

tN−t1

∑tN
t1
||e(t)||).

||e(t)|| is the tracking error which is the distance between the position of the end-

effector and the moving target at each timestep.

3. Average Magnitude of Human Force at each timestep: 1
Nc

∑Nc
0 ||FH(t)||.

4. Average Tracking Error at each timestep: 1
Nc

∑Nc
0 ||e(t)||.

5. Failure Rate: FR = number of Failed experiments
Total number of experiments . Failure experiments refer to the situa-

tion when the tracking error is more than a threshold value (The threshold value is

different based on different experiment design which will be discussed in each results

and discussion Sections).

6. NASA TLX : Post-experiment questionnaires for measuring the perceived workload

of the participants, which includes mental demand, physical demand, temporal de-

mand, performance, effort, and frustration.

6.2.4 Participants and Testing Procedure

Fifteen subjects participated in the experiment. Ten participants are from the UTS

Robotics Institute and five participants are from the general public. The ages of the

participants range between 20 and 40. After completing the consent form, each partici-

pant learns to operate the robot (shown in Figure 3.7a) until they are familiar with the
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task. This is to reduce the learning effect. After these steps, each participant will perform

five tests for each control strategy in a random order to reduce the effect of order. Partic-

ipants are asked to answer the questionnaires once they have completed the experiments.

This experiment follows the procedure approved by the Ethics Committee of the UTS with

approval number ETH21-6346.

6.3 Experiment 1 - Smoothness Performance

6.3.1 Pre-experiment Parameter Identification

sm− and sm+ are task-dependent parameters for Equation 3.11, which are used to specify a

level of smoothness in the operator’s movements that is consistent with good performance.

For a task that requires high accuracy, such as a surgical task, both sm− and sm+ are

set to small values. For speed-demanding tasks, such as speed-demanding pick and place

tasks where smoothness may not be critical, sm− and sm+ can be set large.

A quantitative way to obtain these parameters is to determine them from data collected

from experts performing the task. Expert data (sm[1 : T ]) is collected from an expert

conducting the experiment.

sm− = max(sm[1 : T ])

sm+ = γ ×max(sm[1 : T ])
(6.2)

γ is determined by how strict the smoothness requirement is. If the task has a strict

smoothness requirement, then γ should be set to smaller (γ −→ 1).

6.3.2 Experiment Design

In order to investigate how smoothness performance affects the performance of the role

arbitration method, the tracking accuracy requirement is expected to be high for partici-

pants.

Based on Equations 6.2, γ = 2, sm− = 1.5, and sm+ = 3. This was determined from data

collected from 5 experts. Experts are from the UTS Robotics Institute, which has a long

period of experience in using the ANBOT. Each taking 5 trials of the defined task. The

table below shows the experimental parameters for experiment 1.
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Table 6.1: Smoothness Experimental Parameters

Experiment Parameter Value

High Tracking Accuracy Yes

Speed of RMT (cm/s) 7.5

Random movement of RMT (cm) a = 0, b = 0

Number of Loops 1

6.3.3 Results and Discussion - Experiment 1 Smoothness Performance

Figure 6.2 shows the mean and standard deviation of the human co-worker’s average

tracking error and magnitude of force (Metrics (1) and (2)) for each control strategy (HL,

RA and RL) from all fifteen participants. Figures 6.2 (a) and (b) present the resultant

human force and tracking error on the whole trajectory, that is, from L1, L2, L3, L4 to L1.

Figures 6.2 (c) and (d) present the resulting human force and tracking error in the first

half of the trajectory, which has sensor noise on the desired red moving target in Figure

6.1, that is, from L1, L2 to L3. Figures 6.2 (e) and (f) present the resulting human force

and the tracking error over the second half of the trajectory without sensor noise, i.e. from

L3, L4 to L1.

Figure 6.3 shows the averaged magnitude of the force and the tracking error at each

timestep as shown in Figure 6.3(a) and (b) (Metric (3),(4)).

Table 6.2 shows the failure rate of HL, RA and RL based on the criteria that when the

tracking error exceeds the 10 cm threshold (Metric (5)).

Figures 6.4 and 6.5 show subjective measurement of the impression of the participant

based on the rating scale (RS) and the pairwise comparison method (PC) in Chapter 5

(Metric (6)).

6.3.3.1 Average Magnitude of Human Force

1. Over the Whole Trajectory: Figure 6.2(a) shows that the RA control strat-

egy can reduce the magnitude of human force by -36.90% and -8.16% compared to

strategies of HL and RL, respectively.

2. Unstructured (over the trajectory from L1, L2 to L3): Figure 6.2(c) show

that RA reduces the magnitude of human force by -28.50% and -20.81% compared

to HL and RL, respectively.
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Figure 6.2: Evaluations of the three control strategies from the fifteen participants for
smoothness performance in Experiment 1 in Section 6.3 based on the evaluation criteria
1, 2 in Section 6.2.3: (a) Human Force (Overall) (b) Tracking Error (Overall) (c) Human
Force (Unstructured) (d) Tracking error (Unstructured) (e) Human Force (Unstructured)
(f) Tracking error (Unstructured). Unstructured: The first half of the trajectory with
sensor noise on the desired red moving target in Figure 6.1, i.e. from L1, L2 to L3.
Structured: Second half of the trajectory without sensor noise, i.e. from L3, L4 to L1.

The error bar is the standard deviation.
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Figure 6.3: Evaluations of the three control strategies from the fifteen participants for
smoothness performance in Experiment 1 in Section 6.3 based on the evaluation criteria
3, 4 in Section 6.2.3: (a) Averaged Human Force (b) Averaged Tracking Error of the
fifteen participants over the experiment at each timestep. The pink dotted vertical lines
are the time step referring to L3 in Figure 6.1. The left side of L3 corresponds to the
unstructured environment with sensor noise and the right side of L3 corresponds to a

structured environment.

3. Structured (over the trajectory from L3, L4 to L1): Figure 6.2(e) show that

RA reduces the magnitude of human force by -44.2% compared to HL, but increased

by +11.7% compared to RL.

6.3.3.2 Average Tracking Error

1. Over the Whole Trajectory: Figure 6.2(b) shows that RA reduces the tracking

error by -8.33% compared to HL, and increases +23.10% compared to RL.

2. Unstructured (over the trajectory from L1, L2 to L3): Figure 6.2(d) shows

that RA reduces the tracking error by -10.25% compared to HL, and increases

+29.23% compared to RL.
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3. Structured (over the trajectory from L3, L4 to L1): Figure 6.2(f) shows that

RA reduces the tracking error by -30.06% compared to HL, and increases by +7.92%

compared to RL.

6.3.3.3 Discussion of Human Force and Tracking Error

The findings align with the anticipation that autonomous control excels in a structured en-

vironment (RL < HL in Figures 6.2(e)(f), represents lower magnitude of force undertaken

and less tracking error introduced for RL), whereas human co-workers are more adept in

unstructured settings (HL < RL in Figures 6.2(c)(d)). In Figure 6.2(c), it is evident

that RL outperforms RA. However, when corresponding to a structured environment in

Figure 6.2(e), the trend reverses with RL < RA. This principle remains consistent when

observing the tracking error in Figures 6.2 (d) and (f). Here, the order is HL < RA < RL,

which can be attributed to the autonomous system being misled by the sensor noise at the

position of RMT. Similarly, in Figure 6.3, a notable observation is that the force exerted by

humans under the RL control strategy considerably exceeds that of RA and HL, especially

during the transition through the unstructured environment, specifically on the left-hand

side of L3. This trend is likely a consequence of the unpredictable and errant movements

initiated by the robot control. Consequently, human co-workers apply additional force

to regain control. In addition, the worse performance caused by misguided autonomous

control results in a significant decrease in subjective impression, which can be observed in

Figure 6.4 and Figure 6.5. These results demonstrate that the proposed role arbitration

method artfully integrates the strengths of human and autonomous controls. The result

is a noticeable improvement in the combined performance of human-robot collaborations

(lower tracking error) and a decrease in the physical workload carried out by the human

co-worker (lower human force) in general in (a) and (b) in Figure 6.2.

Another intriguing discovery is the elevated standard deviation (std) of the tracking error

during RL in structured settings in Figure 6.2(f), which underscores the variable reliability

of autonomous control between individuals. Those inclined to trust autonomous control

might lean on it more, resulting in superior tracking accuracy. Conversely, individuals

sceptical of the robot’s capabilities might oppose its actions, leading to subpar perfor-

mance. A hypothesis can be made that this variance can be largely attributed to the

different levels of trust and reliance on the autonomous system among participants ac-

cording to the participant’s self-reporting and based on the observations. When analysing

tracking errors, the std of HL emerges as the highest. This is expected since there is no

autonomous intervention shaping the robot’s movements, leading to discrepancies arising

from participants’ varying skill levels due to RI-cohort (profieint group) is 1.94cm, and
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Non-RI-cohort (Non-profieint group) is 3.98cm. Therefore, an interesting research direc-

tion can investigate the dynamic of human trust in robot and robot self-confidence, as well

as the level of reliance on autonomous control when the human co-worker interacts with

the proposed role arbitration method. A larger and more comprehensive trust dynamic

between humans and robot could be formulated to combine the proposed robot trust in

human co-worker and robot self-confidence model with human trust in robot and human

trust in itself model. Based on the comprehensive trust dynamic, a new role arbitration

method could be investigated and derived.

6.3.3.4 Failure Rate

The failure rate represents the bottom line for the successful completion of the task. If the

participant exceeds more than a certain tracking error, which is considered as the required

task performance for the current experiment design, then the corresponding experiment is

considered a failure. The delineated threshold tracking error for Experiment 1 is anchored

at 10 cm, as indicated in Table 6.2.

It should be noted that RL with a failure rate of 43.75% significantly overshadows both

HL and RA, both of which register at 0%. This substantial difference is primarily due

to the inherent challenges posed by the unstructured environment, as shown in Figure

6.3. In such conditions, the movements directed by the robot control can be erratic

and unpredictable due to the addition of sensor noise, and with the robot leading the

interaction, there is reduced ability for the human co-worker to promptly intervene and

adjust the end effector’s pose. In contrast, for both RA and HL modes, the robot’s actions

are considerably more foreseeable due to the robot movement is totally or partially under

control by the human co-workers. This predictability ensures that participants find it more

manageable to steer the robot and maintain the tracking error within the set threshold.

Table 6.2: Smoothness experiment failure rate of HL, RA and RL based on the evalua-
tion criteria 5 in Section 6.2.3

Threshold: 10cm HL RA RL

Failure Rate % 0.00 0.00 43.75

6.3.3.5 Subjective - NASA-TLX

Figures 6.4 and 6.5 showcase the questionnaire results, capturing the perceived workload

of the 15 participants. These evaluations are rooted in the NASA-TLX framework, with

data gathered via the rating scale (RS) and pairwise comparison (PC) methodologies.
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NASA TLX offers participants a structured platform to articulate their feedback across six

axes: mental demand (MD), physical demand (PD), temporal demand (TD), performance

(PER), effort (EFF), and frustration (FRU) as shown in (a) - (f), respectively.

An examination of the results underscores the similarity between the RS and PC evalua-

tion methods, especially in the way that they capture the six-dimensional measurements

from the NASA-TLX. This congruence aligns well with the revelations from Chapter 5,

which, when the difference between the control strategies is significant, the results ob-

tained through the RS and PC methods are similar. In terms of interaction experience,

RA stands out as the most favourable, followed by HL, and then RL. Indeed, the erratic

and unpredictable behaviour of the robot in the RL setting puts it at a disadvantage

(RL >> HL > RA). This unpredictability manifests itself even when objective metrics

do not significantly distinguish between RA, RL, and HL. A noteworthy observation is

in the realm of physical workload: objectively, HL records the highest strain as shown

in Figure 6.2(a)(c)(e), but subjectively, this does not seem to dominate participants’ im-

pressions. A hypothesis is made that this disconnect is likely because participants are

primarily attuned to the unpredictability inherent in the robot’s movements, particularly

evident in the conflicting forces that emerge between humans and robots in unstructured

settings.

Feedback from participants also suggests a noticeable trend: there is a discernible reluc-

tance to utilise the robot under the RL mode. Consequently, in the design of robotic sys-

tems with human-in-the-loop considerations, it is imperative to strike a balance. Although

task performance remains undeniably crucial, the role arbitration paradigm underscores

the need to prioritise subjective impressions. If an autonomous control system is adept

at tracking but is poor at identifying the correct target, it can foster more significant

misalignment, leading to heightened conflict in interaction experiences. Conversely, if the

system’s tracking capabilities fall short, its performance leaves much to be desired, partic-

ularly in structured environments. These insights reinforce the argument that, while task

performance is vital, designers must give great consideration to the subjective impressions

of users when crafting robotic systems with human elements.

6.3.3.6 Conclusion - Smoothness Performance

The one-way analysis of variance (ANOVA) performed shows the statistically significant

difference (p < 0.05) for all the evaluation metrics in Section 6.2.3 between HL, RA,

and RL. In conclusion, the proposed role arbitration method has been shown to achieve

superior combined human-robot performance, reduce the workload of human coworkers,

and improve subjective preference when incorporating smoothness performance measures.
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Figure 6.4: Normalized subjective results from NASA-TLX with rating scale method
(RS) based on Evaluation Criteria 6 (Mental demand, physical demand, temporal demand,
overall performance, effort, and frustration level) from the fifteen participants for the

smoothness experiment. 0 - good performance, 100 - bad performance.
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Figure 6.5: Subjective results from NASA-TLX with pairwise comparison method (PC)
based on Evaluation Criteria 6 (Mental demand, physical demand, temporal demand,
overall performance, effort, and frustration level) from the fifteen participants for the

smoothness experiment. 0 - bad performance, 2 - good performance.
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6.4 Experiment 2 - Physical Performance

6.4.1 Pre-experiment Parameter Identification

Modelling physical performance accurately requires a nuanced understanding of how it

varies between tasks and individuals. Factors such as the specific muscle groups engaged

during a task or whether the task is of high or low workload play a pivotal role. As such,

this section presents a pre-experiment parameter identification process tailored to capture

the intricacies of physical performance. In order to identify the physical performance

Figure 6.6: Hand Dynamometer used for measuring maximum isometric force.

parameters fatigue coefficient, recovery coefficient, and maximum voluntary contraction

(Cf,Cr,MV C) in Equation 3.12 and 3.13, a pre-experiment test is designed. Participants

are asked first to perform a maximum effort task, followed by a rest experiment. The

maximum isometric force (MVC) is measured through a hand dynamometer [121] as shown

in Figure 6.6 because MVC is a standard method to measure the strength of the upper

limb [122]. At first, we collect the data as MVC (Fmax,iso[0] = MVC). Next, participants

are asked to move the robot as hard as possible to ensure maximum effort in their muscle

groups, so that we keep the external force in the muscle groups required for the task

maximum (Fext = Fmax,iso) for 4 minutes. During this task, we measure Fmax,iso three

times every 30 seconds through a hand dynamometer and calculate the average of the

three values. After the exercise session, a 4-minute rest is performed, during which we

measure Fmax,iso at 30-second intervals in the same way as previously described. During

the rest period, the external load is zero (Fext = 0). Therefore, based on a sequence of

measured FM
max,iso, an optimisation method is formulated using fmincon in MATLAB as

shown in Equation 6.3:

min
Cr,Cf,MV C

∑N
n=1(F

M
max,iso[n]− Fmax,iso[n])2 (6.3)
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The measured FM
max,iso and the curve fitting Fmax,iso is shown in Figure 6.7.
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Figure 6.7: One of the participant pre-experiment parameter identification: Maxi-
mum isometric force measured FM

max,iso through the hand dynamometer and fitted curve
Fmax,iso (Equation 6.3). The left side of the four-minute cut-off line (vertical black line)
is the maximum-effort session and the right side is the rest session. The dashed horizontal
line MVC is the maximum isometric force. The identified physical performance based on

the curve fitted result is MVC = 45, Cf = 0.012, Cr = 0.006.

6.4.2 Experiment Design

In order to impose physical fatigue on the participants, the speed of RMT is designed to

be large (VRMT = 15cm/s) as shown in Table 6.3. The trajectory of the RMT adheres to

the anticipated path, thereby resulting in a minimized cognitive workload.

Table 6.3: Physical Experimental Parameters

Experiment Parameter Value

High Tracking Accuracy No

Speed of RMT (cm/s) 15

Random movement of RMT (cm) a = 0, b = 0

Number of loops 10
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6.4.3 Validation of Physical Performance in Physical Human-Robot Col-

laboration

Table 6.4: Experimental Parameters Physical Performance Validation

Experiment Parameter Low

Physical

workload

Medium

Physical

workload

High

Physical

workload

High Tracking Accuracy No No No

Speed of RMT (cm/s) 5 10 15

Random movement of RMT (cm) a = 0, b = 0 a = 0, b = 0 a = 0, b = 0

Number of Loops 10 10 10

The efficacy of the physical performance model has not previously been assessed in the

context of pHRC. To address this gap, three experiments are designed, taking inspiration

from Section 6.2.2 and referencing Table 6.4. These experiments mainly aim to determine

whether variations in physical performance can induce differences in task performance.

A significant challenge lies in modulating the force applied. To overcome this, we adopted a

three-tiered speed level for the RMT, the rationale being that a faster speed necessitates a

higher force output. This is predicated on the direct proportional relationship established

between the velocity of the end effector and the force applied, especially within the context

of admittance control. By mirroring the pre-experiment presented in Section 6.4.1, we

measure the maximum isometric force (Fmax,iso) at second intervals as the human co-

worker engages with the experiment.

The insights from this endeavour are vividly captured in Figure 6.8. This graphical rep-

resentation underscores that the proposed physical performance model possesses a com-

mendable capability to encapsulate human performance nuances. Figure 6.8 (a) dives into

the details, presenting the force values harvested from the hand dynamometer over time in

three different physical workload conditions. Under conditions of increased workload, both

the culmination point of Fmax,iso and the gradient of the curve record the most subdued

values. Figure 6.8 (c) corroborates this, demonstrating that the tracking error under high

workload scenarios exhibits the most pronounced drop compared to the other two testing

conditions. A deeper dive, propelled by the parameter identification method presented in

Section 6.4.1, reveals the simulated physical performance. This simulation, which is based

on specific physical parameters such as MVC, Cr, and Cf , finds a visual representation

in Figure 6.8(b).
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Analysing the data shown in Figure 6.8 leads to an interesting finding. It is evident that

the variations in physical performance measurements, spread across the three different

levels of physical workload, align in a specific order. Furthermore, the tracking errors

among thesse scenarios manifest themselves differently. These observations show that

the proposed physical performance model influences task performance when placed in the

context of pHRC.
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Figure 6.8: (a) Maximum isometric force Fmax,iso versus time under high, medium, and
low physical workload (High, medium, and low speed of red moving target) (b) Physical

Performance versus time (c) Tracking error versus time
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6.4.4 Results and Discussion - Experiment 2 Physical Performance
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Figure 6.9: Evaluations of the three control strategies from the fifteen participants for
physical performance in Experiment 2 in Section 6.3: (a) Human Force (Overall) (b)
Tracking Error (Overall) (c) Human Force (Unstructured) (d) Tracking Error (Unstruc-
tured) (e) Human Force (Unstructured) (f) Tracking Error (Unstructured). Unstructured:
First half of the trajectory sensor noise on the desired red moving target in Figure 6.1,
i.e. from L1, L2 to L3. Structured: Second half of the trajectory without sensor noise,

i.e. from L3, L4 to L1.
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Figure 6.10: Evaluations of the three control strategies from the fifteen participants
for physical performance in Experiment 2 in Section 6.4: (a) Averaged Human Force (b)
Averaged Tracking Error of the fifteen participants over the experiment at each timestep.
The vertical dotted lines are the timestep when transmitting between unstructured and
structured environments (L1 and L3 in Figure 6.1). The red dotted vertical lines are the
timestep when transmitting from structured to unstructured environment (L1 in Figure
6.1). And the blue dotted vertical lines are the timestep when transmitting from unstruc-
tured to structured environment (L3 in Figure 6.1). To clearly demonstrate the results,
the last three loops of the results are presented in Figure 6.10. The full experimental

duration results refer to Figure 6.11.

6.4.4.1 Average Magnitude of Human Force

1. Over the Whole Trajectory: Figure 6.9(a) shows that the RA control strategy

can reduce the magnitude of human force by -43.30% and -47.10% compared to

strategies of HL and RL, respectively.

2. Unstructured (over the trajectory from L1, L2 to L3): Figure 6.9(c) shows

that RA reduces the magnitude of human force by -31.95% and -54.57% compared

to HL and RL, respectively.
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Figure 6.11: Evaluations of the three control strategies from the fifteen participants
for Physical performance in Experiment 3 in Section 6.4: (a) Averaged Human Force (b)
Averaged Tracking Error of the fifteen participants over the experiment at each timestep.
Vertical dotted lines are the timestep when transmitting between an unstructured and a
structured environment (L1 and L3 in Figure 6.1). The red dotted vertical lines are the
timestep when transmitting from structured to unstructured environment (L1 in Figure

6.1).
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3. Structured (over the trajectory from L3, L4 to L1): Figure 6.9(e) shows that

the RA control strategy can reduce the magnitude of human force by -54.28% com-

pared to the HL strategy, but increased by +30.65% compared to the RL strategy.

6.4.4.2 Average Tracking Error

1. Over the Whole Trajectory: Figure 6.9(b) shows that the RA control strategy

can reduce the tracking error by -10.97% compared to the HL strategy, and by

-13.11% compared to the RL strategy, respectively.

2. Unstructured (over the trajectory from L1, L2 to L3): Figure 6.9(d) shows

that RA reduces the tracking error by -5. 95% compared to HL and increases by

+28.56% compared to RL, respectively.

3. Structured (over the trajectory from L3, L4 to L1): Figure 6.9(f) shows that

RA reduces the tracking error by -16.07% compared to the HL strategy, but increases

by +15. 43% compared to the RL strategy, respectively.

6.4.4.3 Discussion of human force and tracking error

In a comprehensive comparison, RA consistently outperforms both HL and RL in terms

of human force and tracking errors, as illustrated in Figure 6.9(a) and (b). One noticeable

observation during the experiment was the physical fatigue experienced by the participants

when operating the robot. This led many to lean more towards autonomous control rather

than actively tracking the RMT, which in turn resulted in pronounced tracking error

escalations for RL. Such case can be distinctly ranked as RL > HL > RA in Figure

(b)(f)(e), which can be attributed to the sensor noise associated with autonomous control.

Conversely, there is a marked reduction in human force, delineated as HL >> RL >

RA in Figure 6.9(a)(c)(e). This aligns with previous findings which suggest that human

performance deteriorates when engagement levels are low [123]. A decrease in the force

magnitude indicates increased reliance on autonomous control, but this often leads to

compromised performance, evident from the rising tracking errors.

The pronounced variance (std) of HL in tracking error, as depicted in Figure 6.9(b)(d)(e),

can be attributed to the varying strength levels among participants. At the end of the

experiment, it was evident from Figure 6.10(b) that participants struggled to keep pace

with the RMT, resulting in increased tracking errors. The exact moment of this surge

largely depends on an individual’s strength, endurance, and the rate at which fatigue sets

in.
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Regarding structured versus unstructured environments, the results concur with prior find-

ings: autonomous control typically surpasses human control in structured settings, and the

opposite holds true for unstructured scenarios. In contrast to previous experiments, the

physical fatigue experienced by participants led to an increased reliance on autonomous

control. This trend is evidenced by the insignificant standard deviation of RL in tracking

error. Such behaviour suggests that human co-workers, perhaps due to diminished confi-

dence in their abilities, placed greater trust in the robot to execute the task competently.

6.4.4.4 Failure Rate

Table 6.5 shows the failure rate of the experiment with thresholds of 30 cm. Due to the

pronounced physical workload, particularly in HL, participants often find it challenging

to complete the task independently. The need for assistance from autonomous control

becomes evident by examining Figure 6.10. Consequently, the failure rate associated with

HL emerges as the most significant.

Table 6.5: Physical experiment failure rate of HL, RA and RL based on the Evaluation
Criteria 5 in Section 6.2.6

Threshold: 30cm HL RA RL

Failure Rate % 62.5 0.00 0.00

6.4.4.5 Subjective - NASA-TLX

Figures 6.12 and 6.13 show the perceived workload of participants as captured by the

NASA TLX questionnaire, using the RS and PC, respectively. A salient observation is the

congruence between the findings of both methods. This significant alignment between the

HL, RA and RL outcomes is corroborating with the insights from Chapter 5, suggesting

that when differences are pronounced, the outcomes of RS and PC tend to converge.

When juxtaposed with the subjective results from the smoothness performance experi-

ment 1, as seen in Figure 6.4 and Figure 6.5, it becomes evident that RA consistently

outperforms both HL and RL in terms of interaction experience. The higher mental de-

mands and levels of frustration for RL > HL can be attributed to sensor noise inherent in

autonomous control. These attributes are closely aligned with the unpredictability expe-

rienced while operating the robot. This resonates with previous findings suggesting that

unpredictable movements increase cognitive dissonance in humans, and this increase has

a strong association with increased mental demands and levels of frustration [85].
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Figure 6.12: Normalized subjective results from NASA-TLX with rating scale method
(Mental demand, physical demand, temporal demand, overall performance, effort, and
frustration level) from the fifteen participants for smoothness experiment. 0 - good per-

formance, 100 - bad performance.
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Figure 6.13: Subjective results from NASA-TLX with pairwise comparison method
(Mental demand, physical demand, temporal demand, overall performance, effort, and
frustration level) from the fifteen participants. 2 - good performance, 0 - bad performance.
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Furthermore, factors such as physical demand, performance, temporal demand, and effort

reveal a pattern of HL > RL, RL shows a better subjective impression compared to HL

in those evaluation criteria, likely due to the pronounced physical fatigue encountered by

participants. In particular, the standard deviation for HL and RL surpasses that of RA,

underscoring the variability in individual strength levels that leads to different degrees

of dependence on autonomous control. Participants with less strength tend to exhibit a

marked preference for RL, valuing the consistent assistance despite occasional misguided

control. On the contrary, participants endowed with higher strength display a predilection

for HL, as they find misguided controls more irksome.

6.4.4.6 Conclusion - Physical Performance

An analysis using one-way ANOVA was performed, revealing statistically significant dif-

ferences (p < 0.05) across all the evaluation metrics outlined in Section 6.2.3 between HL,

RA, and RL. In summary, the data corroborates the efficacy of the proposed role arbitra-

tion method. It not only enhances the combined performance of human-robot teams but

also alleviates the workload on human collaborators and augments subjective preference

when integrated with physical performance metrics.

6.5 Experiment 3 - Cognitive Performance

6.5.1 Pre-experiment Parameter Identifcation

To accurately determine the task and individual-based cognitive performance parameters

(ar, p+CP , p−CP , and β) as required in Equations 3.15 and 3.16, it is crucial to account

for the diversity in the proficiency levels of the participants and the varying degrees of

difficulty of the task. The discrepancies between the expertise of the participants and the

complexity of the tasks require this modelling process to ensure that cognitive performance

is adequately represented for each individual and task scenario.

Therefore, an optimisation equation is formulated as shown in Equation 6.4 to optimise the

cognitive performance parameters in Equation 3.15 and 3.16 by minimising the difference

between task performance T [n] and cognitive performance PCP based on the hypothesis

that the change in task performance during this task is assumed to be due to the change

in cognitive performance only.

min
ar,p

+
CP ,p−CP ,β

∑N
n=0(T [n]− PCP [n])2 (6.4)
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Task performance T [n] is task-dependent, defined as tracking error d[n] for the current

experiment design, which is the real-time difference between the current position of the end

effector and the position of the RMT as shown in Equation 6.5. A normalisation function

is defined based on the tracking error threshold dth which can be obtained through expert

trials (i.e., the maximum value of the expert trial).

T [n] =
1

W

n∑
i=n−W

(1− d[n]

dth
) (6.5)

d[n] is the tracking error at each timestep. W is the length of the time window. The

moving average reduces the noise caused by human co-worker’s random movement.

6.5.2 Experiment Design

In order to impose cognitive fatigue, an equal distributed noise is added to the position of

the RMT (pRMT ) as shown in Equation 6.6. Visually from the participant, pRMT changes

randomly. The randomness of pRMT is adjusted to increase cognitive workload by tuning

the upper and lower limits of range a, b. In this experiment, a = 0 and b = 8 maximise

the cognitive workload imposed on human participants based on the tests with experts

who experience a high cognitive workload. In order to minimise the effect of physical

fatigue imposed on the human co-worker, the red moving target is designed with low

speed (VRMT = 2.5cm/s). Details of the experimental parameters are shown in Table 6.6.

pHRMT = pRMT + U(a, b) (6.6)

Table 6.6: Cognitive Experimental Parameters

Experiment Parameter Value

High Tracking Accuracy Task Requirement No

Speed of RMT (cm/s) 2.5

Random movement of RMT (cm) a = 0, b = 6

Number of loops 2

Therefore, based on the pre-experiment parameter identification method shown in Section

6.5.1, the measured T and curve fitting PCP based on the experiment design are shown in

Figure 6.14.
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Figure 6.14: Measured task performance T (Equation 6.5) and curve fitting cognitive
performance PCP (Equation 6.4) versus time. This result is the average value of five
trials from one participant. The identified cognitive performance parameters based on
the curve fit result are ar = 0.9987, P+

CP = 0.742, P−
CP = 0, β = 0, which corresponds

to a high cognitive work load task that is shown in Figure 3.6. R2 is the coefficient of
determination which represents how well PCP fit T .

Table 6.7: Experimental Parameters - Three level of difficulty experiments designed for
validate Cognitive Performance through changing the randomness of movement of red

moving target positions

Experiment Parameter Basic
Level

Intermediate
Level

Advanced
Level

High Tracking Accuracy No No No

Speed of RMT (cm/s) 2.5 2.5 2.5

Random movement of RMT (cm) a = 0, b = 2 a = 0, b = 4 a = 0, b = 6

Number of Loops 2 2 2

6.5.3 Validation of Cognitive Performance

Since validation of the cognitive performance model in the context of pHRC has not

previously been undertaken, this study aims to bridge that gap. Three experiments have

been meticulously designed to assess whether the proposed cognitive performance model

accurately gauges cognitive workload at varying levels of such workload. As delineated in

Section 6.5, we adjusted the randomness of the position of the RMT, as illustrated in Table
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6.7. This randomness is added to increase the cognitive difficulty of the task. The speed

of RMT was minimised to limit any influence of physical workload on task performance.

Figure 6.15d displays the measured maximum isometric force, which indicates a small

decrease over time, which is 7% compared to 67% reduction in the maximum isometric

force of the physical workload experiments. This indicates a stable physical workload

throughout the experiment. Performance metrics for task T and curve adjustment PCP

at different levels of cognitive workload are depicted in Figures 6.15a, 6.15b, and 6.15c.

These figures correspond to varying levels of task complexities.
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Figure 6.15: Results of measured task performance T and curve fitted cognitive perfor-
mance pCP based on the optimization process in Section 6.5.1 under three different level
of task difficulties (a) Basic Level (b) Intermediate Level (c) Advanced Level. The levels

correspond to Table 6.7.
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6.5.4 Results and Discussion - Experiment 3 Cognitive Performance

6.5.4.1 Average Magnitude of Human Force

1. Over the Whole Trajectory: Figure 6.16(a) shows that the RA control strategy

can reduce the magnitude of human force by -32.79% and -33.55% compared to

strategies of HL and RL, respectively.

2. Unstructured (over the trajectory from L1, L2 to L3): Figure 6.16(c) shows

that RA reduces the magnitude of human force by -21.35% and -45.51% compared

to HL and RL, respectively.

3. Structured (over the trajectory from L3, L4 to L1): Figure 6.16(e) shows

that RA reduces the magnitude of human force by -43.68% and -14.46% compared

to HL and RL, respectively.

6.5.4.2 Average Tracking Error

1. Over the Whole Trajectory: Figure 6.16(b) shows that the RA control strategy

can reduce the tracking error by -2.06% compared to the HL strategy, and by -15.38%

compared to the RL strategy.

2. Unstructured (over the trajectory from L1, L2 to L3): Figure 6.16(d) shows

that the RA control strategy can reduce the tracking error by -9.11% compared to

the RL strategy, but increased by +32.71% compared to the HL strategy.

3. Structured (over the trajectory from L3, L4 to L1): Figure 6.16(f) shows

that the RA control strategy can reduce the tracking error by -12.50% compared to

the HL strategy, but increased by +20.97% compared to the RL strategy.

6.5.4.3 Discussion of Human Force and Tracking Error

In a comprehensive assessment, the performance of RA consistently surpasses that of HL

and RL, as demonstrated by the relationships RL > HL > RA in Figure 6.16(a) for human

force, and RL ≈ HL > RA in Figure 6.16(b) for tracking error. The performance trends of

the three control strategies (HL, RA, and RL) mirror the results observed in the preceding

two experiments. Specifically, in an unstructured environment, the relationship is denoted

as RA ≈ HL < RL in Figure 6.16(c)(d) for both tracking error and human force. This

can be attributed to the unpredictable movements generated by the robot, a consequence
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Figure 6.16: Evaluations of the three control strategies from the fifteen participants
for cognitive performance in Experiment 3 in Section 6.5: (a) Human Force (Overall) (b)
Tracking Error (Overall) (c) Human Force (Unstructured) (d) Tracking Error (Unstruc-
tured) (e) Human Force (Unstructured) (f) Tracking Error (Unstructured). Unstructured:
The first half of the trajectory sensor noise on the desired red moving target in Figure 6.1,
i.e. from L1, L2 to L3. Structured: Second half of the trajectory without sensor noise,

i.e. from L3, L4 to L1.
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Figure 6.17: Evaluations of the three control strategies from the fifteen participants for
Cognitive performance in Experiment 3 in Section 6.4: (a) Averaged Human Force (b)
Averaged Tracking Error of the fifteen participants in the experiment at each timestep.
The vertical dotted lines are the timestep when transmitting between unstructured and
structured environments (L1 and L3 in Figure 6.1). The red dotted vertical lines are
the timestep when transmitting from a structured to an unstructured environment (L1
in Figure 6.1). In order to demonstrate the results clearly, the first loop of results is

presented in Figure 6.17. The full experimental duration results refer to Figure 6.18.

of sensor noise that affects the desired position of the RMT during autonomous control.

However, in a structured setting, however, the sequence transitions to RA ≈ RL < HL

(Figure 6.16(e)(f)), showcasing the inherent accuracy advantage autonomous control has

over human intervention.

The substantial standard deviation (std) associated with HL for tracking error, as high-

lighted in Figure 6.16 (f), is due to the diverse levels of expertise of the participants

regarding the designated task, the RI cohort (proficient group) is 2.04 cm, and the non-RI

cohort (non-profieint group) is 9.12 cm. For instance, participants in the UTS RI institute

cohort, who are presumably more adept, display reduced tracking errors, while external

participants manifest a more pronounced error range. On the contrary, the tracking error

standard deviations for RA and RL are considerably lower compared to HL. This can be
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Figure 6.18: Evaluations of the three control strategies from the fifteen participants for
Cognitive performance in Experiment 3 in Section 6.5: (a) Averaged Human Force (b)
Averaged Tracking Error of the fifteen participants over the experiment at each timestep.
The vertical dotted lines are the timestep when transmitting between unstructured and
structured environments (L1 and L3 in Figure 6.1). The red dotted vertical lines are the
timestep when transmitting from structured to unstructured environment (L1 in Figure

6.1).
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explained by the influence of autonomous control dynamics within the role arbitration

mechanism, rendering the robot’s final pose more predictable than the purely manual in-

put seen in HL. However, in an unstructured setting, RL shows a markedly higher std

in human force (Figure 6.16(e)), a reflection of varying degrees of participant reliance

on autonomous control. Notably, adept participants lean less on autonomous assistance,

while their less experienced counterparts depend on it more, RI cohort (proficient group)

is 27.43N, and the non-RI cohort (non-profieint group) is 9.84N.

6.5.4.4 Failure Rate

Table 6.8 shows the failure rates for cognitive performance when set against a 15 cm

tracking error threshold. The findings delineate a trend as RL > HL > RA. The unpre-

dictability in the movement of the RMT subjects the participants to an elevated cognitive

workload. This surge in workload subsequently diminishes their focus on the task at hand,

rendering them unable to accurately track the RMT’s position under the HL condition.

In the context of RL, the challenges are twofold: first, the unpredictability introduced by

the robot due to misguided autonomous control due to the added sensor noise in RMT

tracking, and second, the inherent unpredictability of RMT movements. Compound un-

predictability makes it difficult for participants to control the robot effectively, leading to

experiment failures.

Table 6.8: Cognitive experiment failure rate of HL, RA and RL based on the Evaluation
Criteria 5 in Section 6.2.6

Threshold: 15 cm HL RA RL

Failure Rate % 22.22 0.00 70.00

6.5.4.5 Subjective - NASA-TLX

Figures 6.19 and 6.20 show the results of the questionnaire based on both the rating

scale (RS) and pairwise comparison (PC) methodologies, measuring participants’ perceived

workload through the NASA TLX framework. The alignment between the RS and PC

results can be attributed to the marked disparities among RA, RL, and HL, a finding

consistent with the conclusions drawn in Chapter 5. In particular, Figures 6.19 and 6.20

underscore RA’s superior performance over RL and HL, the discrepancy being particularly

pronounced for RL (RL >> HL > RA).

This observed trend can be traced back to pronounced unpredictability in both the robot

movement and the designated task. The robot’s unpredictable behaviour is a byproduct
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Figure 6.19: Normalized subjective results from NASA-TLX with rating scale method
(Mental demand, physical demand, temporal demand, overall performance, effort, and
frustration level) from the fifteen participants. 0 - good performance, 100 - bad perfor-

mance.
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Figure 6.20: Subjective results from NASA-TLX with pairwise comparison method
(Mental demand, physical demand, temporal demand, overall performance, effort, and

frustration level) from the fifteen participants.
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of sensor noise affecting the RMT’s position, whereas the task’s unpredictability arises

from the random nature of RMT that was added to increase cognitive workload in this

experiment. These dual unpredictability negatively affect the subjective experience of

participants while navigating the robot within this cognitively demanding task. Conse-

quently, the subjective impression of RL witnessed a substantial dip compared to previous

experiments.

Upon a deeper analysis of individual subjective evaluation metrics, metrics such as mental

workload, overall performance, and frustration levels surfaced as exceptionally elevated.

This aligns with the inherent demands of the experiment’s design, which was geared to-

wards cognitive intensity. The intertwined unpredictability of both RMT and autonomous

control spurred participants to yearn for greater control, manifesting in their application

of increased force to reclaim command. In aggregate, the standard deviations (std) for HL

and RL surpassed those of RA, stemming from variations in the participants’ reliance on

autonomous control and their task proficiency. Less adept participants exhibited greater

sensitivity to misguided autonomous controls. For these individuals, any deviation in

control resulted in a more drastic erosion of their subjective impression compared to their

more proficient counterparts, the RI cohort (proficient group) is 57, and the non-RI cohort

(non-profieint group) is 95 in rating scale comparison.

6.5.4.6 Conclusion - Cognitive Performance

A one-way ANOVA was performed, revealing statistically significant differences (p < 0.05)

in all evaluation metrics outlined in Section 6.2.3 between HL, RA and RL. In summary,

the data support the efficacy of the proposed role arbitration method. Not only does it

amplify the synergistic performance of human-robot collaborations, but it also mitigates

the workload on human counterparts and augments subjective preference, especially when

integrated with metrics assessing cognitive performance.

6.6 Conclusion

In summary, this chapter details three experiments designed to validate the TSC-based

role arbitration method introduced in Chapter 4. These experiments spanned performance

measures that included smoothness, physical, and cognitive aspects. They were evaluated

using both the traditional subjective evaluation method of rating scales and the pairwise

comparison approach proposed in Chapter 5. Furthermore, the validity of cognitive and

physical performance models in the context of pHRC was confirmed. The results demon-

strate that the proposed models adeptly gauge the physical and cognitive workload of
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human co-workers engaged in pHRC experiments. Based on the experimental results, the

role arbitration method has proven its capability to enhance the synergistic performance of

human-robot collaborations, alleviate human co-worker workload, and elevate subjective

preference. These findings are in alignment with the conclusions drawn in Chapter 4.

6.6.1 Human Force and Tracking error

The RA control strategy consistently shows notable force reductions compared to HL in

all performance measures, with reductions of 36.9%, 40.8%, 43.3%. When juxtaposed with

RL, RA’s force reductions are 8.16% and 5.19% in Exp-Smoothness and Exp-Cognitive,

respectively. These disparities arise from participants’ inclination towards autonomous

control, influenced by their perceptions of superior tracking performance and the physical

fatigue experienced during the task. Such a predisposition underscores participants’ trust

in autonomous control when they perceive their own capabilities as inadequate for the

task. As a result, participants often minimise their force input, allowing the autonomous

system to assume control.

In the domain of Exp-cognitive, RL’s human force reduction stands at 47.1%, surpass-

ing that of Exp-Smoothness and Exp-Physical. Such an outcome can be traced to the

unpredictability inherent in both robot movement and the assigned task, with the for-

mer resulting from sensor noise impacting the RMT’s position and the latter from RMT’s

randomness. This unpredictability prompts participants to exert greater force, indicating

their preference for manual control over autonomous direction. The degree of trust that

participants place in autonomous control directly influences the interaction force exerted

on the robot, signaling their intent. Higher trust correlates with reduced force application.

As an outcome, the RL tracking error in contexts of Exp-Smoothness and Exp-Physical

is elevated due to heightened reliance on an autonomous control that can sometimes be

misguided by sensor noise. On the contrary, in Exp-Cognitive, the tracking error decreases

as participants become more engaged, reducing the dependence on autonomous control.

This is consistent with research suggesting that human performance deteriorates during

low-engagement activities [123].

The standard deviation for human force under RL is pronounced and is attributed to vari-

ations in individual trust in autonomous control and cognitive performance. Factors such

as intrinsic trust dynamics, possibly influenced by psychological or cultural nuances, play

a role. Furthermore, the self-assessed ability to complete the task emerges as a dominant

factor. For example, participants familiar with robotics, such as those in the RI cohort, of-

ten exert more force due to their confidence. On the contrary, external participants, those
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not in the RI cohort, generally rely more on autonomous control. However, these partic-

ipants, unfamiliar with robotic systems, exhibit heightened sensitivity to unexpected or

undesired robotic movements. Their subjective impression degrades more rapidly in cases

of substantial discrepancies between the robot’s desired and actual poses, in comparison

to their proficient counterparts.

Consequently, future work should explore the integration of the proposed trust model

within the broader landscape of human-robot interactions. Trust dynamics, which is in-

herently bidirectional in human-human interactions, extends similarly to human-robot

interfaces. Investigating this bidirectional trust, which encompasses mutual trust and self-

confidence of both humans and robots, offers a promising research trajectory. Within this

framework, the development of a role arbitration method grounded in bidirectional trust

dynamics could be particularly insightful.

6.6.2 Failure Rate

The failure rate serves as a critical benchmark for task completion. When a participant’s

tracking error exceeds a specified threshold, the task is deemed unsuccessful. With respect

to this failure rate, RA consistently registers significantly lower values compared to RL

and HL in all experiments. This can be attributed to the control method of RA being

both predictable and intuitive for participants.

In the Exp-Physical, HL registers the highest failure rate, a consequence of participants

being unable to fulfil task requirements, largely due to the pronounced physical fatigue

they experience, especially towards the experiment’s culmination. In the context of Exp-

Smoothness and Exp-Cognitive, failure rates increase due to the misalignment between

human control and autonomous control results in RL registers the highest failure rate.

Participants often find themselves lacking the requisite strength or time to rectify the

robot’s undesired pose, induced by autonomous control, and align it with the desired

position.

6.6.3 Subjective Impression - NASA-TLX

This chapter presents findings of a comprehensive evaluation using both the Rating Scale

(RS) and Pairwise Comparison (PC) metrics. These results, as evidenced in Figures

6.4, 6.5, 6.12, 6.13, 6.19, and 6.20, align closely, confirming the observations of Chapter

5. Specifically, when control strategy differences are pronounced, RS and PC outputs

align and both are able to effectively capture the difference in the participant’s subjective

impressions. Combined, the perceived workload of RA is reduced by 30.9%, 62.37%, and
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41.77% relative to HL, and by 79.22%, 51.75%, and 80.25% compared to RL in smoothness,

physical, and cognitive experiments.

6.6.3.1 Mental Demand and Frustration

Mental demands relate to objective pressures related to the task originating from the task,

while frustration denotes the level of satisfaction and preference during the experimental

activity [124]. In all three experiments, the trend is RL >> HL > RA. RL registers

increased mental demands and frustration in comparison to HL and RA, primarily due

to the unpredictable nature of autonomous control in unstructured environments. Both

these aspects are intricately tied to predictability, with erratic robot movements escalating

mental demands.

6.6.3.2 Physical Demand

Physical demands come from objective tasks [124]. The observed trend is RL > HL > RA

for both Exp-Smoothness and Exp-Cognitive. This outcome does not align with the objec-

tive measures of human force but does correlate in unstructured scenarios. One potential

explanation is that participants intensify conflicting forces in unstructured situations, im-

plying that mental demands can influence physical demands. In terms of Exp-Physical, HL

predominantly dictates the trend, consistent with the attributes of physically demanding

tasks.

6.6.3.3 Effort

Effort amalgamates the physical and cognitive demands [124]. In particular, cognitive

elements play a pivotal role in motor tasks, particularly affecting movement stability [125].

Here, mental demands mirror the unpredictability intrinsic to autonomous control. Thus,

effort encapsulates physical and mental pressures related to the task. Given the diverse

nature of tasks, the relative weighting between these factors varies. For Exp-Cognitive

and Exp-Smoothness, mental demand holds higher weight, resulting in RL > HL > RA.

On the contrary, Exp-Physical places a premium on physical demands, leading to HL >

RL > RA.

6.6.3.4 Temporal

Temporal demands peak in physically intensive tasks due to the rapid motion of RMT,

positioning HL as the most demanding (HL > RL > RA). For Exp-Cognitive and
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Exp-Smooth, RL leads due to the pronounced randomness of RMT. This requires the

participants to maintain continuous focus on the task and adjust to the unpredictability

introduced by autonomous control, resulting in the trend RL > HL > RA. Essentially,

increased mental demands, spurred by unpredictability, amplify temporal demands.

6.6.3.5 Performance

Performance, as a metric, gauges the perceived quality of the execution of tasks by par-

ticipants [124]. Generally, when interfacing with robots, human collaborators aim to cur-

tail both their force input and tracking errors. In Exp-Physical, the emphasis is on the

force magnitude due to the task’s physically demanding nature, producing a trend of

HL >> RL > RA, HL showing the worst performance in Exp-Physical. Conversely,

for Exp-Smoothness and Exp-Cognitive, where physical demands are relatively subdued,

tracking error becomes paramount. Erroneous autonomous controls, influenced by sensor

noise, shift the robot away from the RMT’s position, leading to the trend RL > HL > RA.

6.6.3.6 Discussion

The theme of unpredictability has emerged as a decisive factor that influences subjective

perception in this study. All dimensions of the NASA-TLX evaluation are influenced by

unpredictability to varying extents. In the realm of pHRC, predictability can be articu-

lated as the deviation between the desired and actual postures of the robots. According

to Maurice et al., while manipulating intricate objects, people strive to improve task

predictability [126]. This tendency to forecast the results of the tasks is derived from

accumulated experiences, reflecting the proficiency or strength of the participants [127].

Aldini’s studies, using physiological markers such as EEG, revealed that variations in cog-

nitive conflict arise from disparities between the intended and actual pose of the robot in

pHRC [83, 85].

Collectively, the RA strategy has demonstrated superior performance over HL and RL. In

Exp-smoothness and Exp-cognitive, the trend of RL > HL > RA emerges, mainly due

to the elevated importance of mental demands influencing subjective perception. This is

exacerbated by the unpredictability and errors introduced by autonomous control. On the

contrary, during Exp-Physical, the emphasis shifts to physical demand due to the intensity

of the tasks, resulting in the trend HL > RL > RA. Feedback from participants indi-

cated that if autonomous control could consistently align with human intentions, leading

to precise tracking performance, subjective experience would be positively enhanced. This

alignment is particularly pronounced in structured environments, although its influence di-

minishes in unstructured settings. An exception was noted in physical tasks where, despite
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deviations, the autonomous control remains within the range of the RMT, corroborated

by the RL’s low failure rate.

The harmony between human control and autonomous actions, striving towards a uni-

fied goal, stands out as a pivotal determinant of subjective perception in role arbitration

research. This is owing to the integrative and physically tethered nature of pHRC. A mis-

alignment could potentially lead to the under-utilisation or misuse of robots. Individual

variations, as indicated by the standard deviations of HL, RA, and RL, further highlight

the complexities. Standard deviations of HL and RL are notably higher than those of RA,

and HL is influenced by individual parameters such as strength or proficiency. RL’s vari-

ability, on the other hand, stems from differing degrees of reliance on autonomous control.

Less proficient participants show a rapid decrease in performance and those with reduced

physical strength or expertise are more susceptible to misguidance from autonomous con-

trol. On the contrary, experts or those with higher strength levels have a more predictable

understanding of robot movements and tasks, making them less influenced by these factors.

This all circles back to the overarching theme of predictability, which can be modulated

by the robot, the task, proficiency levels, and the alignment between the task’s objective

and the robot’s movements.





Chapter 7

Conclusion and Future Work

Due to increasing concerns about ageing issues and work-related muscle disorders, phys-

ical human-robot collaboration becomes an effective solution to address these concerns.

To emulate human-human interaction in human-robot interaction, one of the important

human-like cognitive processes is developed: trust and self-confidence. According to hu-

man factor research, an agent tends to rely on its collaborator when trust in their col-

laborator is greater than self-confidence, and vice versa [34]. Therefore, a role arbitration

method based on robot trust in human co-workers and robot self-confidence is proposed.

In addition, subjective impression is critical in pHRC as a result of the constant physical

coupling between humans and robots. The long duration of negative feelings on the robot

may cause disuse and degraded human-robot joint performance. A pairwise comparison

questionnaire evaluation method is proposed to capture subjective impression with subtle

differences in pHRC.

Based on the aforementioned motivation, a research question is proposed:

Q: How can trust and self-confidence be used to create effective arbitration in pHRC?

To elucidate the main research question, the following sub-questions have been formulated:

Q1: What are the effective metrics for measuring robot trust in human collaborators within

pHRC?

Q2: How can robot self-confidence in pHRC be gauged?

Q3: How might we arbitrate roles based on a robot’s trust in human co-workers and its

self-confidence?

Q4: Which techniques are most effective and efficient to assess human subjectivity in

pHRC?

133
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Chapter 3 addresses sub-research question Q1: A computational model of robot trust in

a human co-worker was proposed. This model takes into account many factors in the

physical human-robot collaboration, including robot safety, robot singularity, smoothness

of robot motion, and human physical and cognitive performance. Three experiments were

conducted to verify all the factors in the model. Experiment 1 demonstrates variability

in the rate of change in singularity performance as the system transitions into and out

of singular configurations. Notably, alterations in the system’s direction or velocity are

correlated with changes in performance smoothness. In Experiment 2, findings indicate a

positive correlation between the magnitude of applied force and enhancements in physi-

cal performance. Similarly, an extension in the duration of the experiment is associated

with improvements in cognitive performance metrics. Experiment 3 reveals fluctuations

in safety performance metrics contingent upon the proximity to surrounding obstacles,

illustrating a dynamic response to the spatial relationship with nearby impediments.

Chapter 4 addresses sub-research questions Q2 and Q3: This thesis proposed and experi-

mentally verified a TSC-based role arbitration method with a human subjects experiment

that included a robot trust in human model, robot self-confidence, and a role arbitration

method using the aforementioned two trust models. The proposed role arbitration method

has been shown to achieve superior combined human-robot performance, reduce the work-

load of human coworkers, and improve subjective preference. The results show that the RA

control strategy can reduce the magnitude of human force by 44.9% and 40.6% compared

to the HL and RL strategies, respectively. Furthermore, RA reduces the tracking error

by 18.4% compared to HL and increases by 10.3% compared to RL. However, RL has the

highest failure rate, among the three control strategies, at 46.5%. In terms of subjective

evaluation, RA reduces 67.3% and 79.8% compared to HL and RL, respectively.

Chapter 5 addresses sub-research questions Q4: A novel comparison between two subjec-

tive impression evaluation methods is conducted. The classic NASA-TLX questionnaire

was used as the template to create the Rating Scale (RS) and Pairwise Comparison (PC)

questionnaires, respectively. Through two experimental procedures of different lengths,

the effectiveness of RS and PC was statistically compared. The experimental results show

statistically significant results for both RS and PC when the difference between the com-

paring groups is large (p < 0.05 for both RS and PC). However, when the true difference is

small, PC is more robust and accurate than RS regardless of the experimental procedure

(p > 0.05 for RS and p < 0.05 for PC). Furthermore, compared to RS, PC also reduced the

duration of the experiment by 44%, resulting in a more pleasant experimental experience

and lower cognitive workloads.

Chapter 6 addresses the overarching Research Question experimentally: By combining

trust models and role arbitration, as well as the pairwise comparison method in Chapters
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3, 4, and 5. A comprehensive experiment is conducted that incorporates smoothness, phys-

ical and cognitive performance. Physical and cognitive performance has been validated

in the context of pHRC. Similarly to the results in Chapter 4, the proposed role arbi-

tration method has been shown to achieve superior combined human-robot performance,

reduce the workload of human coworkers, and improve subjective preference. The differ-

ence between the proposed role arbitration method and two other fixed arbitration meth-

ods (human-leading and robot-leading) is significant. Both the rating scale and pairwise

method could capture the subjective impression of the human coworker in pHRC, which is

compliant with the finding in Chapter 5. The performance of RA is increased by 36.90%,

32.31%, and 10.97% relative to HL, and by 43.78%, 38.65%, and 13.11% compared to RL

in smoothness, physical, and cognitive experiments, respectively. The physical workload

of RA is reduced by 36.99%, 40.8%, and 43.3% relative to HL, and by 8.16%, 5.99%, and

47.1% compared to RL in smoothness, physical, and cognitive experiments. The perceived

workload of RA is reduced by 30.9%, 62.37%, and 41.77% relative to HL, and by 79.22%,

51.75%, and 80.25% compared to RL in smoothness, physical, and cognitive experiments.

The outcomes of this research demonstrate the importance of appropriate computational

trust model in achieving effective pHRC. Whether the trust model method could also be

effective in other fields of HRI can be an interesting research direction to be investigated.

For example, in telemanipulated surgical robotics, the trust model with its Safety perfor-

mance metrics may serve to assess discrepancies between the configurations of robots and

the human body, ensuring that a surgical robot’s manipulator maintains a safe distance

from the operation site. Singular performance evaluations address the inherent character-

istic of manipulators to encounter singular configurations, highlighting the importance of

understanding these conditions for effective operation. Smoothness performance, mean-

while, is pertinent to assessing the control accuracy of human co-workers, a critical aspect

in ensuring seamless human-robot collaboration. Cognitive performance gains prominence,

particularly in medical applications, where the demand for sustained attention is high. The

extended duration of surgical tasks can impose significant physical strain on surgeons, es-

pecially when controlling the robot, thereby underlining the importance of monitoring

physical performance to mitigate fatigue and enhance efficacy.

The trust model may also have additional applications for social robotics, where the intri-

cacies of social HRI pivot significantly on cognitive performance, given its impact on the

quality of interaction. The integration of cognitive performance assessments with addi-

tional factors such as robot appearance and physiological signals, like EEG data, presents a

fertile avenue for research. This opens up possibilities for leveraging computational models

of robot trust in humans across a wider array of HRI applications beyond physical col-

laboration, suggesting a holistic approach to understanding and enhancing human-robot

interactions.
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In regards to role arbitration, the concepts of robot trust and self-confidence extend their

applicability to various fields within HRI. For example, in surgical telemanipulation, ad-

vancements in autonomous control technologies, fueled by significant progress in surgical

vision pattern recognition and three-dimensional reconstruction, enable robots to more

accurately navigate to targeted areas of human tissue. Despite these technological ad-

vancements, the inherent complexity of surgical patterns and the dynamic nature of human

tissue deformation present challenges. These challenges manifest as errors in the geometric

and semantic mapping of the surgical environment, subsequently impacting the precision

of autonomous control.

Future work includes how the proposed trust model can fit into a larger context of trust in

human-robot interaction, such as social interaction. Due to the trust being bidirectional

in human-human interaction, combining the proposed robot’s trust and self-confidence

model with the human’s trust and self-confidence model to become a more comprehensive

trust dynamic in the human-robot paradigm can be another interesting research topic to

be investigated. A new trust-based role arbitration paradigm can be modelled based on

this bidirectional trust dynamics. More specifically, the determination of robotic intention

is influenced by the discrepancy between the robot’s trust in humans and its own self-

confidence. Conversely, human intention is shaped by the variance between human trust in

the robot and the individual’s self-confidence. Therefore, improving the control mechanism

of the robot, centered on understanding and optimising the dynamics of bidirectional

interaction between humans and robots, presents an intriguing area of research. Such an

exploration could elucidate how these interdependent factors - trust and confidence on

both sides - dynamically influence the control allocation process, offering insights into the

development of more responsive and intuitive human-robot collaboration systems.

The findings of this thesis have significant implications for the design and implementation

of effective and enjoyable human-robot interactions, especially in scenarios that require

physical contact and cooperation. The thesis also opens up new avenues for future re-

search, such as extending the trust model to other domains of HRI and exploring the

bidirectional dynamics of trust and self-confidence between humans and robots. This the-

sis demonstrates the potential of using trust and self-confidence as key factors for creating

harmonious and productive human-robot teams.
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