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Abstract

The purpose of forecasting is to be able to analyse unknown data and make strategic

decisions in an accurate, robust and interpretable manner. Time series problems are an

integral part of the forecasting problem and use statistics and machine learning modelling

to analyse time series data to inform strategic decisions. This research focuses on new

solutions to time series problems through novel deep learning models, mainly including

time series prediction using mobile traffic data.

Cellular networks have witnessed an exponential growth in data traffic due to the pro-

liferation of mobile devices and the increasing demand for high-bandwidth applications.

Efficiently managing this burgeoning traffic has become a critical challenge for telecom-

munication providers. Forecasting and analyzing cellular traffic patterns are crucial for

optimizing network performance, resource allocation, and ensuring a seamless user ex-

perience. In recent years, deep learning techniques, especially Transformers [45], have

emerged as powerful tools for handling the complexity and dynamic nature of cellular

traffic data.

This thesis presents a comprehensive review of statistical methods, machine learning-

based methodologies and deep learning-based methodologies applied to cellular traffic

forecasting and analysis. It provides an overview of traditional forecasting techniques

and highlights the limitations that have prompted the adoption of deep learning models.

Various deep learning architectures such as recurrent neural networks (RNNs) [47], long

short-term memory networks (LSTMs) [25], convolutional neural networks (CNNs) [53],

and hybrid models are examined in the context of their applications for traffic prediction

and analysis. Furthermore, this thesis discusses the challenges and opportunities asso-

ciated with employing deep learning in cellular traffic management. Issues such as data

heterogeneity, scalability, interpretability, and real-time processing constraints are pointed



out, along with potential solutions and future research directions.

There are two main work in our research. In the Chapter 3, we mainly focus on how

to enhance the efficiency of the cellular traffic forecasting. Due to the widespread use of

portable devices and the advancement of 5G technology, we have received a significant

amount of mobile data, which requires prediction models for cellular traffic data. How-

ever, forecasting mobile traffic data efficiently is challenging due to the complex spatial

and temporal correlations, especially when the mobile data comes from a large geograph-

ical area. To tackle this challenge, we propose a new model, called ST-InducedTrans, to

dynamically explore the large geographical correlations (spatial) and periodic variations

(temporal). Specifically, a Spatial Bottleneck Transformer is devised to obtain spatial cor-

relations from the most relevant grids in the geographical area at the cost of linear com-

plexity. For the temporal blocks, we embed the elaborately selected temporal clues into

a temporal Transformer to offer useful temporal prompts for cellular prediction. Finally,

several spatial and temporal blocks are effectively stitched into a whole model for comple-

mentary cellular traffic prediction. In Chapter 4, we add more cross-domain datasets into

the cellular traffic data to improve prediction accuracy, including base station geograph-

ical location, POI distributions and social activity information. In both Chapter 3 and

4, We conducted comprehensive experiments on the public real-world cellular data from

Telecom Italia, Milan [10]. Results show that our model outperforms the state-of-the-art

methods on three metrics (MAE, NRMSE, and R2) at the cost of lower time complexity.

Overall, this thesis consolidates the current state-of-the-art in utilizing deep learning,

mainly Transformer, for cellular traffic forecasting and analysis, highlighting its potential

to revolutionize how telecommunication networks anticipate and manage traffic demands.

v



vi

Acknowledgements

I extend my heartfelt appreciation to everyone who contributed to the completion of this

thesis.

Foremost, I am immensely grateful to my supervisor, Prof. Ling Chen, whose unwa-

vering guidance and dedicated time throughout my Master of Analytics (Research) were

invaluable. Her continuous support and insightful feedback were instrumental in bringing

this thesis to fruition.

I am indebted to my co-supervisor, Dr. Yanbin Liu, whose constructive guidance and

invaluable suggestions significantly shaped both my research and professional growth.

My heartfelt acknowledgments also go to Changlu Chen, Chaoxi Niu, Dr. Yang

Lin, Zihan Zhang, Brodie Skriveris for their unwavering support and enlightening dis-

cussions.

To my family, whose unwavering support and understanding sustained me during the

most challenging moments of my life, I am forever grateful.

Lastly, I extend my appreciation to the wider research and machine learning commu-

nities. Their invaluable research contributions and open-source resources have played a

pivotal role in shaping and enriching the content of this thesis.



Contents

1 Introduction 2

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Aims and Outline . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Research Aims and Plan . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 9

2.1 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 AutoRegressive Integrated Moving Average . . . . . . . . . . . . 10

2.1.3 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 K Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Recurrent Neural networks . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 15

2.3.3 Encoder-Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 16



CONTENTS

2.3.4 Graph Neural Network . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.5 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Spatial Bottleneck Transformer for Cellular Traffic Prediction

in the Urban City 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Spatial Bottleneck Transformer . . . . . . . . . . . . . . . . . . 27

3.4.2 ST-InducedTran Model . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . 37

3.6.2 Comparison with the State-of-the-art Methods . . . . . . . . . . . 38

3.6.3 Parameter Analysis and Visualization . . . . . . . . . . . . . . . 38

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

viii



CONTENTS

4 Transformer-Based Cellular Traffic Prediction across Diverse

Domains of Big Data Sources 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Spatial Dependencies . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Temporal Dependencies . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Structure of Transformers . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 ST-InducedTrans Model with Cross-Domain Datasets . . . . . . . 51

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusion 62

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Challenges and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 64

References 66

1



2

Chapter 1

Introduction

1.1 Introduction

The realm of time series forecasting dilemmas has garnered significant interest among re-

searchers and scientists. The establishment of the International Association of Forecasters

(IFF) occurred 25 years ago, specifically addressing the intricacies of time series forecast-

ing [8]. Preceding 2005, a considerable volume of approximately 1000 papers focused on

time series forecasting, leading to substantial advancements in research. Time series data

typically exhibits distinct traits, showcasing trends that depict overarching patterns over

time and seasonality, representing fluctuations in behavior within specific periods.

Cellular traffic data typically adhere to a time series format and exhibit distinct pe-

riodic patterns [45]. Over the last decade, the demand for 5G has surged, leading to a

notable surge in mobile data traffic. Enhancement of cellular networks spans various as-

pects, including time, space, frequency, energy efficiency, and advanced signal processing

techniques, offering avenues for eco-friendly initiatives and energy conservation. Accu-

rate prediction in cellular prediction stands as a pivotal necessity.

Owing to its recurring patterns, temporal aspects play a crucial role in mobile traffic

prediction. Previous studies have extensively employed Autoregressive Integrated Mov-

ing Average (ARIMA) and Recurrent Neural Networks (RNN) for forecasting cellular

traffic. These models, designed for time series analysis, primarily emphasize the utiliza-

tion of temporal elements [33]. ARIMA, a statistical technique, is unsuitable for nonlinear

data, while RNNs face limitations in effectively handling extended time series informa-

tion. The sequential nature of RNN operations results in prolonged processing times when

managing extensive time series datasets.
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In the spatial domain, Convolutional Neural Networks (CNNs) [53] and Graph Neu-

ral Networks (GNNs) [59] are commonly employed to capture spatial correlations. CNNs

exploit diverse filter windows to capture spatial information, yet they are constrained by

the distance spanned by geographical locations. For instance, long-range spatial correla-

tions between distant grids may not be adequately captured. GNNs require an adjacency

matrix and face privacy concerns when acquiring detailed data to construct this matrix

[45]. Various statistical approaches, such as Pearson Correlation, are utilized to compute

the adjacency matrix.

To circumvent the constraints posed by the limited receptive field in CNNs and the

necessity for an adjacency matrix in GNNs, our study introduces an innovative model

centered on the Transformer architecture. The Transformer model offers a broader recep-

tive field and is adaptable to parallel computation. Our primary goal is to dynamically

capture intricate spatial correlations, thereby enhancing the efficiency of the forecasting

process. Additionally, our aim is to augment the precision of cellular traffic forecasting

by leveraging this novel approach.

Expanding upon our objectives, we endeavor to explore the Transformer’s capacity to

capture nuanced spatial dependencies across cellular traffic data. By leveraging its inher-

ent strengths in handling extensive contextual information, we seek to revolutionize the

predictive accuracy of cellular traffic patterns. Furthermore, our research aims to validate

the efficacy of this Transformer-based model by conducting comprehensive evaluations

against existing state-of-the-art methods. Through these endeavors, we strive to not only

enhance prediction accuracy but also pave the way for more efficient and adaptable fore-

casting frameworks in the realm of cellular traffic analysis.

1.2 Background

The realm of cellular traffic forecasting has garnered considerable interest recently, draw-

ing attention from a multitude of researchers. The diligent efforts of scholars in this do-

main have culminated in the application of three primary methodologies to address time

3
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series challenges: statistical models, machine learning models, and deep learning models.

A comprehensive exploration and detailed analysis of the literature review encompassing

these methodologies will be presented in Chapter 2. Herein, we provide an overview of

these three domains to set the stage for the ensuing comprehensive literature review.

Diving deeper into these methodologies, statistical models encompass a range of tech-

niques leveraging mathematical formulations and historical data patterns to infer future

trends. Machine learning models, on the other hand, harness algorithms and computa-

tional techniques to discern patterns and make predictions based on training data. Lastly,

deep learning models, characterized by multi-layered neural networks, excel in capturing

complex relationships within data, particularly in time series contexts. This section aims

to provide a foundational understanding before the forthcoming literature review.

Statistical Models Cellular traffic forecasting, within the domain of statistical models,

has undergone significant evolution over time. Early studies in time series analysis in-

troduced the Exponential Smoothing method, marking a foundational step in addressing

time series problems [12]. This method laid the groundwork for subsequent advance-

ments, notably the Autoregressive Integrated Moving Average (ARIMA) model, which

emerged as a prominent tool for time series forecasting [11].

Moreover, advancements building upon Snyder’s work [60] led to the development of

State Space Models within the context of cellular traffic prediction [21]. These models

presented an advantageous solution, particularly for non-linear exponential smoothing

methods [52]. However, one of the limitations of State Space Models in cellular traffic

forecasting lies in their inability to capture intricate time series correlation patterns [42].

Machine Learning Models The escalating diversity and intricacy within mobile traf-

fic data have imposed limitations on traditional statistical methods. Consequently, there

has been a notable surge in research endeavors focused on leveraging machine learning

techniques to enhance time series predictions, thereby overcoming these limitations and

yielding more accurate forecasts [54]. Machine learning approaches enable the extraction

4
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of pertinent temporal and spatial insights from traffic data.

In the realm of machine learning algorithms applied to cellular traffic prediction, a

variety of methodologies have been employed. Traditional machine learning models, par-

ticularly shallow neural networks featuring feed-forward multi-layer architectures, have

demonstrated efficacy in model training and algorithm learning, resolving numerous time

series challenges to a certain extent.

However, the exponential growth in mobile traffic data volume has resulted in es-

calating data sizes and heightened data dimensionality [22]. Consequently, traditional

machine learning tools, including shallow neural networks, face limitations in handling

these large-scale datasets. As a result, specific problems within cellular traffic prediction

become exceedingly intricate or impractical for conventional machine learning models

[76].

Deep Learning Models Numerous researchers have turned to deep learning methodolo-

gies to address the challenges posed by extensive time series problems, a response to the

limitations encountered in traditional machine learning techniques. Within the realm of

deep learning models, prominent architectures include Recurrent Neural Networks (RNN)

[47], Convolutional Neural Networks (CNN) [53], and Transformer-based models [66].

RNN models excel in handling sequential data, notably time series information, and

have been extensively researched for capturing temporal dependencies. However, they

face challenges related to gradient instability, especially when predicting prolonged time

series data.

CNNs, another prevalent deep learning architecture, effectively captures spatially rel-

evant information through convolutional filters without relying on prior features. Zhang’s

study [77], for instance, employs LSTM to process temporal data and CNN to handle

spatial information, subsequently merging the outcomes.

The Transformer model, a novel architecture reliant solely on attention mechanisms,

offers enhanced parallelism and quicker convergence rates [66]. In time series prob-

5
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lems, Transformers effectively gather relevant information using self-attention mecha-

nisms. Notably, the Transformer-based approach has showcased promising outcomes in

dealing with mobile traffic data.

While RNNs, CNNs, and encoder-decoder models remain foundational in sequence

modeling, they tend to be more complex. In contrast, the Transformer model’s reliance

on attention mechanisms provides superior parallelism and has demonstrated noteworthy

efficacy, particularly in achieving robust results within shorter timeframes. The success of

Transformer-based models in mobile traffic data underscores their potential in addressing

complex time series problems.

1.3 Research Aims and Outline

1.3.1 Research Aims and Plan

My primary research goal involves the utilization of authentic cellular traffic data to de-

velop innovative and efficient deep learning models. Grounded in this research theme,

I’ve structured my investigation into two key phases, each with its specific objectives.

Stage 1: explore spatial correlation dynamically and build spatial-temporal trans-

former for cellular traffic forecasting task. Accurate prediction outcomes hold sig-

nificant potential for refining precision traffic engineering, optimizing demand-aware net-

work resource allocation, and enhancing public transportation systems [3]. Prior research

commonly relied on adjacent matrices to discern spatial correlations, an approach no-

torious for its computational intensity in calculating inter-grid correlations. To mitigate

this challenge, we introduce a novel model named the Spatial Bottleneck Transformer.

This innovative model aims to capture spatial dependencies efficiently, thereby enhancing

prediction accuracy while drastically reducing computational complexity from quadratic

to linear levels. The proposed Spatial Bottleneck Transformer can seamlessly integrate

within temporal blocks, offering versatility in its application. In this stage of our re-

search, our primary objective is to construct a transformer-based encoder and decoder

6
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structure explicitly tailored to elevate the precision of cellular traffic forecasting tasks.

This strategic focus aligns with our goal of advancing predictive accuracy while address-

ing computational challenges associated with spatial correlation capture in cellular traffic

modeling.

Research question: Given real-world cellular traffic data in the urban city, how can

we develop a novel model to achieve more accurate forecasting results and reduce time

complexity considering more advanced spatial dependency?

Stage 2: develop a deep learning model based on Transformer with cross-domain big

data. Deep learning has demonstrated superior predictive capabilities in traffic model-

ing compared to traditional methodologies. However, the intricacies of cellular traffic

forecasting extend beyond mere reliance on spatial and temporal factors, encompassing

various external influences impacting traffic generation. Consequently, our current focus

revolves around exploring the transformer attention model’s applicability in incorporating

both internal and external factors into the forecasting process. These factors include but

are not limited to base stations, Points of Interest (POI), and social activities. In this stage

of our research, we aim to leverage real-world industrial data to investigate the integration

of cutting-edge deep learning techniques. The primary objective is to develop a compre-

hensive framework that accounts for both internal and external factors, harnessing the

capabilities of the transformer attention model. By incorporating diverse external factors

such as base stations, POI, and social activities, we endeavor to enhance the predictive

accuracy and contextual relevance of cellular traffic forecasting models. This phase rep-

resents a strategic progression in our research trajectory, aiming to bridge the gap between

theoretical advancements and practical applicability by utilizing real-world industrial data

and state-of-the-art deep learning methodologies.

Research question: Given real-world cellular traffic data with cross-domain big

data, how can we leverage and transfer those external factors into the model and im-

prove comparable cellular traffic forecasting accuracy?

7



CHAPTER 1. INTRODUCTION

1.3.2 Report Outline

This thesis comprises publications and is structured as follows:

Chapter 1 sets the context by presenting the research background, delineating the

research questions, and defining the objectives.

Chapter 2 delves into a comprehensive literature review on time series prediction

within cellular traffic, encompassing successful methods in Statistical, Machine Learn-

ing, and Deep Learning domains. This chapter also highlights the research gap existing

between prior studies and current challenges.

Chapter 3 focuses on advancing cellular traffic prediction through novel transformer-

based models aimed at refining both efficiency and accuracy. The chapter introduces an

innovative model designed to enhance forecasting outcomes by capturing spatial correla-

tion information.

Chapter 4 introduces the integration of cross-domain big data as external information

to augment the precision of cellular traffic prediction results. This chapter emphasizes the

amalgamation of cross-domain data, such as base station, Points of Interest (POI), and

social media information, with cellular traffic data as a primary focal point.

Chapter 5 concludes the thesis, summarizing our contributions to cellular traffic fore-

casting and proposing potential avenues for future research within this domain.

8
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Chapter 2

Literature Review

In Chapter 1, we provided an overview of the historical evolution of time series forecast-

ing, delineating three primary domains: statistical methods, machine learning methods,

and deep learning methods. Notably, deep learning methods are categorized within ma-

chine learning approaches. However, for the sake of our research focus on investigating

and resolving time series forecasting challenges through deep learning frameworks, we

have specifically delineated deep learning as a distinct segment within the literature re-

view. Moving forward, the subsequent section will systematically introduce statistical

methods and deep learning techniques.

2.1 Statistical Methods

Since the 1950s, statistical models have played a crucial role in time series forecasting

tasks. Initially, these methods didn’t garner significant attention. However, with the in-

creasing significance of time series problems, there emerged a necessity to comprehend

the intrinsic relationships within time series data—such as trends, seasonality, and auto-

correlation. This understanding was pivotal in achieving more precise predictions for

future time series outcomes. This segment of the literature review will delve into key sta-

tistical methodologies that have substantially influenced subsequent research, notably Ex-

ponential Smoothing (ES) [12], Autogressive Integrated Moving Average (ARIMA) [11],

and State Space Model (SSM) [37].
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2.1.1 Exponential Smoothing

The Exponential Smoothing method, originating around 1950, represents one of the ear-

liest time series techniques. Despite its inception in the 1950s, this method initially didn’t

attract considerable attention from statisticians [12][26][69]. First introduced by Brown

(1959), it was later recognized as a variant of Moving Average, albeit lacking considera-

tions for trend and seasonality. Its fundamental formula St = a ·yt+(1−a)St−1 involves

St denoting the smoothed value at time t, yt representing the actual value at time t, St−1

indicating the smoothed value at time t − 1, and a as the smoothing constant, typically

within the range of [0, 1].

Muth and John were among the pioneers formalizing the statistical underpinnings of

Exponential Smoothing [50], while Pegels et al. highlighted the existence of seasonality

and trend features in time series problems [16]. Gardner and Everette conducted a semi-

nal review of Exponential Smoothing, classifying published articles, significantly boost-

ing research interest in this method [7]. Snyder’s proposal of an effective Exponential

Smoothing model in spatial contexts laid a foundation for subsequent studies [60]. Taylor

introduced a new statistical model rooted in Exponential Smoothing, building upon previ-

ous empirical findings [65]. Hyndman expanded on Taylor’s approach, categorizing time

series problems into distinctive trends and seasons to delineate crucial trend and seasonal

characteristics [28]. While Exponential Smoothing models suit linear data with evident

trends or seasonality, their performance tends to falter with non-linear data patterns.

2.1.2 AutoRegressive Integrated Moving Average

During the early phases of time series modeling, significant attention was dedicated to

core assumptions and assessments, including stationarity and autocorrelation. These

foundational principles notably contributed to shaping classical time series models like

the Autoregression Method (AM) [75], Moving Average (MA) [75], and Autoregressive

Integrated Moving Average (ARIMA) [11]. These statistical methodologies employ time

as the independent variable and the sequence values as dependent variables, constructing

10
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regression models based on historical data. Specifically, autoregressive models and au-

toregressive moving average models are adept at capturing temporal structures inherent

in the data [11].

Numerous studies [24, 63] have highlighted the advantages of integrating leading in-

dicators into statistical models to bolster forecasting accuracy. Seasonal ARIMA adeptly

manages multiple seasonal cycles within time series data [73]. Moreover, The ARI-

MAX model expands upon ARIMA by incorporating explanatory variables, overcoming

ARIMA’s limitation in capturing seasonal patterns.

Although initially tailored for linear time series, extensions of ARIMA have emerged

to model non-linear and non-stationary time series. Miller and Williams introduced

shrinkage estimators to enhance forecasting accuracy by integrating multiplicative sea-

sonal factors into ARIMA [48]. Hyndman further explored diverse trend and seasonality

relationships in ARIMA modeling [27], while Lee et al. combined ARIMA with genetic

programming to model non-linear time series, leveraging their complementary character-

istics [41]. ARIMA has used data from Chinese cities for cellular traffic forecasting in

some studies [29], while SARIMA has also used accurate Ethiopian data for forecast-

ing [31]. Regarding the base station problem, Zhang [2] proposed to use SARIMA for

time series learning and proposed a new model to obtain the influence of the geographical

location on the base station utilization for the clustering.

2.1.3 State Space Model

State Space Models (SSMs) constitute a diverse and influential family of classic statistical

models widely utilized in time series analysis [37]. They offer a flexible and comprehen-

sive framework for understanding structured temporal data. SSMs stand out for their abil-

ity to represent complex temporal patterns and model time series with well-understood

structures. Their versatility allows a clear representation of underlying processes within

the data. However, despite their rich modeling capabilities, SSMs face limitations. One

primary constraint is their inability to effectively learn patterns from multiple related time

11
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series simultaneously. Additionally, designing SSMs often necessitates in-depth domain

knowledge to appropriately structure and model the time series data.

Several studies demonstrate the diverse applications and adaptations of SSMs in time

series analysis. For instance, Dong et al. proposed SSM techniques aimed at stationariz-

ing time series before integrating them into linear models [19]. Douc et al. explored the

realm of non-linear State Space Models to enhance time series forecasting accuracy [20].

Additionally, Ives and Dakos introduced innovative time-varying and threshold models

using linear SSMs, capturing dynamic changes in non-linear time series [35].

While SSMs offer a versatile and powerful framework for modeling structured time

series data, their limitations underscore the challenges in handling multiple related time

series and the requisite domain expertise for effective model design. Understanding these

strengths and limitations is crucial for utilizing SSMs effectively in time series analysis

and addressing various complexities inherent in temporal data modeling.

2.2 Machine Learning Methods

Machine learning methods have played a pivotal role in the analysis and prediction of time

series data, offering diverse tools to discern patterns and forecast future trends without

relying on deep learning architectures. Traditional machine learning algorithms such as

K Nearest Neighbors and Neural Networks have been extensively utilized in time series

analysis.

2.2.1 K Nearest Neighbors

K Nearest Neighbors (KNN) is a well-established algorithm in time series forecasting that

operates by identifying the top K nearest neighbors within the training dataset and predict-

ing future values based on the average of these neighbors’ future values. This method is

relatively straightforward to implement and is particularly effective in capturing repetitive

patterns frequently observed in time series data. One of the key reasons for the popularity
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of KNN in time series forecasting is its ability to identify similarities in historical patterns,

enabling predictions based on the nearest neighbors’ historical information [15].

In many instances, KNN is employed for making non-autoregressive forecasts, where

predictions are generated without explicitly considering the temporal order or sequential

dependencies in the data. This non-sequential approach is suited for scenarios where

the focus is on capturing similarities and patterns across the historical dataset rather than

sequential trends [15]. However, this non-autoregressive nature might limit its capability

to capture complex temporal dependencies present in certain time series datasets.

To enhance KNN’s forecasting accuracy, researchers have developed variations such

as Pattern Sequence-based Forecasting (PSF). This variation, as mentioned by [9], aims to

address some of the limitations of standard KNN by leveraging pattern sequences within

the time series data to facilitate more precise predictions. For instance, Cai et al. [15]

improved KNN’s performance by incorporating spatiotemporal correlations, leading to

enhanced accuracy in multi-step forecasting.

2.2.2 Neural Networks

Neural Networks (NNs) are computational models inspired by the workings of the human

brain. They are built upon the backpropagation algorithm, a significant advancement in-

troduced in the study of neural networks [40]. However, this algorithm has its limitations;

it may converge to a local minimum and encounter issues like the exploding or vanish-

ing gradient problem. A typical neural network comprises neurons organized into one or

more hidden layers and an output layer. The network’s weights and biases are initialized

randomly and then adjusted through a learning algorithm to minimize error and optimize

performance.

In the context of cellular traffic prediction, Neural Networks have been leveraged to

capture complex patterns and dependencies within the data. Researchers have explored

the use of NN architectures to model the dynamics of cellular traffic more effectively.

For instance, Raza et al [57] introduced a framework for electricity load forecasting that
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combined the predictive outcomes of three distinct neural networks. They trained each

individual model using a global particle swarm optimization method, aiming to enhance

their overall forecasting performance.

The application of Neural Networks in cellular traffic prediction involves utilizing

these architectures to interpret and forecast traffic patterns based on historical data. By

employing diverse NN models and optimizing their parameters, researchers aim to achieve

more accurate and robust predictions in cellular traffic forecasting tasks. Studies like that

of Raza et al [57]. showcase efforts to harness multiple neural network models in tandem,

demonstrating the potential of combined frameworks to improve predictive accuracy in

forecasting cellular traffic trends.

2.3 Deep Learning Methods

In the age of extensive data, the analysis of time series has evolved as a pivotal component

within the realm of AI technology. The fusion of time series analysis with deep learning

models has led to the development of more sophisticated and advanced approaches. This

section predominantly focuses on exploring previous research conducted on mobile traffic

data utilizing the principles of deep learning theory.

2.3.1 Recurrent Neural networks

Recurrent Neural networks (RNNs) [47] Recurrent neural networks’ powerful tempo-

ral modelling capabilities also play mobile traffic forecasting. RNN is a special type of ar-

tificial neural network adapted to work for time series data or data that involve sequences.

And this model is essential in natural language processing and time series forecasting.

However, RNNs may encounter gradient dispersion and has its limitation when dealing

with long-term sequence data. For example, when RNNs deal with long-term sequence

data, it can only obtain information from relatively recent sequences but does not have a

memory function for earlier sequences, thus losing information. LSTM can be used to

forecast long-term sequence data.
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As to the mobile traffic data, Azari’s research [61] mainly combination of ARIMA

method and LSTM to improve the forecasting accuracy. In Kuber’s research[34], LSTM

is mainly used to build temporal dependent models. Regarding spatial components, other

auxiliary information, such as the location of airports, banks, or restaurants, is primar-

ily used for modelling. In the LSTM research, Azari[61] and Kuber[34] mentioned the

benefits of better resource allocation through prediction.

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) [53] have gained extensive traction in the realm

of computer vision. The grid-like structure of cellular traffic data, resembling images, has

prompted prior investigations into merging convolutional neural networks with recurrent

neural networks to forecast mobile traffic patterns. For instance, Zhang et al. [3] proposed

a model leveraging Milan’s data through a 3D-ConvNet coupled with LSTM for predictive

analysis. This fusion of Convolutional Neural Network and Long Short-Term Memory

effectively captures both temporal and spatial dependencies inherent in the data. Zhang’s

STCNet (Spatial-Temporal Cross-domain Neural Network) [76] incorporates metadata,

such as time of day, day of the week, and additional relevant data, serving as input to a

two-layer neural network comprised of LSTM. This innovative model integrates cross-

domain data, enriching the information within the CNN structured with two layers. The

resultant CNN-RNN model harmonizes intricate spatio-temporal traffic patterns in mobile

traffic prediction, notably enhancing predictive accuracy.

The amalgamation of Convolutional Neural Networks and Long Short-Term Memory

is particularly noteworthy in mobile traffic prediction due to their ability to effectively

extract temporal and spatial dependencies. Zhang’s STCNet [3] significantly leverages

this hybrid model by incorporating diverse metadata as inputs to an LSTM-based neural

network, enhancing the contextual richness of CNN-based models. By integrating cross-

domain data into the CNN structure, Zhang’s innovative approach advances the prediction

accuracy of complex spatio-temporal traffic patterns in mobile networks. This CNN-

RNN fusion not only captures the temporal and spatial aspects of traffic data but also
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underscores its potential to significantly enhance predictive performance in mobile traffic

forecasting tasks.

2.3.3 Encoder-Decoder

The encoder and decoder functions within the framework are pivotal components that

transform input data into a desired format and then decode it into the target format, re-

spectively. The versatility of the encoder-decoder paradigm allows the hybridization of

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) as both

encoder and decoder components, offering flexible configurations adaptable to diverse

tasks. For instance, Zhang introduced the Spatio-Temporal Neural Network (STN) model,

employing a fusion of Convolutional Long Short-Term Memory (LSTM) and 3D Convo-

lutional Neural Network within the encoder-decoder architecture [3]. This fusion captures

temporal and spatial dependencies while efficiently processing mobile traffic data.

Further advancements in the encoder-decoder paradigm have led to innovative models

like SpectraGAN proposed by Kai et al [6]. This model integrates an encoder and a gen-

erator, where the encoder assimilates contextual information, while the generator encap-

sulates the hidden context details and transforms them into the required format [6]. This

distinctive architecture emphasizes the importance of context representation and trans-

lation within the encoder-decoder structure for various applications. Additionally, the

Transformer architecture has recently gained attention for its parallel encoder-decoder

structure. Liu et al. pioneered the application of Transformer architecture in cellular

traffic prediction, demonstrating its effectiveness in modeling temporal and spatial de-

pendencies within traffic data [45].

2.3.4 Graph Neural Network

Over the past decade, Graph Neural Networks (GNN) [59] have gained considerable trac-

tion, revolutionizing various domains. A pivotal advancement in the realm of graph con-

volutional networks emerged in 2013, marked by Bruna et al.’s foundational study [13],
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which introduced a variant of graph convolution grounded in spectral graph theory. This

approach provided a basis for spatial-based graph convolutional networks by leveraging

spectral methods capable of processing entire graphs simultaneously.

Within the realm of mobile traffic data analysis, Graph Neural Networks (GNNs) have

emerged as a critical tool. Wang’s study employed GNN-D (Graph Neural Network with

Decomposed Cellular Traffic Model) to forecast metropolitan mobility data, incorporating

diverse factors such as land use, population dynamics, holidays, and social activities [68].

Similarly, Lin utilized MPGAT (Multivariate and Propagation Graph Attention Network)

to scrutinize changes in traffic flow induced by outdoor mobile traffic data, with a primary

focus on examining road intersections within urban areas [5]. These graph neural network

models have demonstrated their efficacy in accurately predicting movement patterns or

areas with complex traffic dynamics, enabling better traffic control measures to mitigate

accidents and congestion.

The evolution and widespread application of Graph Neural Networks (GNNs) have

substantially reshaped the analysis and understanding of complex network structures like

cellular traffic data. Pioneering studies such as Wang’s utilization of GNN-D and Lin’s

implementation of MPGAT underscore the effectiveness of GNNs in capturing intricate

relationships and patterns within mobile traffic data. These models, enriched with diverse

parameters and features, exhibit promising potential in forecasting mobility and traffic

flow dynamics within urban landscapes.

2.3.5 Transformer

Cellular traffic forecasting has seen remarkable advancements with the emergence of

Transformer architectures. Initially introduced as a novel sequence model, Transformers

revolutionized data processing in various domains, including cellular traffic prediction.

Unlike traditional models, Transformers rely solely on attention mechanisms, dispensing

with recurrent or convolutional layers, thereby enabling access to historical sequences

regardless of temporal distance [66]. Recent studies have demonstrated the superiority
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of Transformer architectures over Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs) in modeling complex temporal dependencies and achieving im-

proved performance in diverse tasks.

In the realm of cellular traffic prediction, several Transformer-based models have sur-

faced to address specific challenges and enhance forecasting accuracy. Li et al. proposed

the LogSparse Transformer, which effectively resolves memory bottleneck issues encoun-

tered by the standard Transformer model by enabling selective attention to relevant parts

of the past history [42]. Addressing spatio-temporal dependencies, Cai et al. introduced

the Traffic Transformer, designed explicitly to model intricate spatio-temporal relation-

ships at different scales for traffic forecasting tasks [14].

Furthermore, Lim et al. proposed the Temporal Fusion Transformer (TFT), a sig-

nificant contribution enabling interpretable time series forecasting [44]. This model ef-

fectively captures temporal dynamics while ensuring interpretability, a crucial aspect in

comprehending and explaining the predicted outcomes. Additionally, Rasul et al. in-

troduced a Transformer-based model employing a conditioned normalizing flow, which

effectively models multivariate temporal dynamics for forecasting tasks [56].

Moreover, Wu et al. devised the Adversarial Sparse Transformer (AST), incorporating

adversarial training strategies to improve forecasting accuracy from a global perspective

in a non-autoregressive manner [70]. These studies collectively highlight the versatility

and adaptability of Transformer-based architectures in capturing intricate cellular traf-

fic patterns and dynamics, indicating their potential to significantly advance the field of

cellular traffic forecasting.
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Chapter 3

Spatial Bottleneck Transformer for Cellular Traffic
Prediction in the Urban City

Due to the widespread use of portable devices and the advancement of 5G technology, we

have received a significant amount of mobile data, which requires prediction models for

cellular traffic data. However, accurately forecasting mobile traffic data is challenging due

to the complex spatial and temporal correlations, especially when the mobile data comes

from a large geographical area. To tackle this challenge, we propose a new model, called

ST-InducedTrans, to dynamically explore the large geographical correlations (spatial) and

periodic variations (temporal). Specifically, a Spatial Bottleneck Transformer is devised

to obtain spatial correlations from the most relevant grids in the geographical area, at the

cost of linear complexity. For the temporal blocks, we embed the elaborately selected

temporal clues into a temporal Transformer to offer useful temporal prompts for cellular

prediction. Finally, several spatial and temporal blocks are effectively stitched into a

whole model for complementary cellular traffic prediction. We conducted comprehensive

experiments on the public real-world cellular data from Milan [10]. Results show that our

model outperforms the state-of-the-art methods on three metrics (MAE, NRMSE, and R2)

at the cost of lower time complexity.

3.1 Introduction

In recent years, cellular traffic prediction has become a prominent area of focus due to

the advancement of 5G technology. With the development of portable devices and the

internet, mobile phones become an essential part of our daily life. Since cellular traffic

data normally contains spatial and temporal information as well as their interactions, ef-
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ficiently identifying the complex spatial and temporal dependence is crucial for accurate

prediction. Previous studies have employed statistical methods, machine learning meth-

ods and deep learning methods to improve both the accuracy and efficiency of cellular

traffic prediction.

Statistical methods extract specific correlation measures from the individual time se-

ries. For example, Zhao et al. [80] used Anselin Local Moran’s I statistic measure, while

Zhang et al. [77] and Liu et al. [45] used the Pearson correlation coefficient to manually

get the spatial correlation between the target grid and its neighboring cells. These methods

used pre-defined statistics and shallow models, so they struggled to capture the complex

non-linear spatial-temporal correlations in real-world cellular traffic data [60, 11].

Machine learning methods utilize various traditional algorithms such as Gradient

Boosting Decision Tree (GBDT) [38], Gaussian mixture model (GMM) [32], and sup-

port vector regression [58] to improve the prediction performance. However, similar to

statistical methods, they are also constrained by shallow models.

Deep learning methods leverage the representation capability of modern deep neural

networks to solve the above problems, including Recurrent Neural Networks (RNNs),

Convolutional Neural Networks (CNNs), Graph Neural Networks (GNNs), and Trans-

formers. Qiu et al. [55] proposed a model using RNNs in the temporal block in their

research. However, its performance deteriorates quickly in predicting long-range time-

series data. CNNs [39] are used to extract the spatial correlation in cellular traffic predic-

tion. For example, in [77], cellular data of the whole geographical area is treated as an

image that can be processed by CNNs to obtain spatial correlations. The disadvantage of

CNNs is that the local receptive fields can only model adjacent spatial information within

a small region range. GNNs are employed to model the spatial correlations by a graph

structure. For example, CNN&GNN model was proposed in [80] to process spatial fea-

tures in cellular traffic prediction. But its graph structure requires an adjacent matrix with

fine-grained data which is difficult to obtain due to privacy issues.

The emergence of Transformer advanced research in various fields such as Natural
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Language Processing (NLP) and computer vision. Hence, it can also serve as a good

network architecture for mobile traffic prediction. On the one hand, Transformer can

resolve the long-range prediction inability of RNNs by escaping the gradient vanishing

problem. On the other hand, Transformer has a global receptive field using the self-

attention mechanism, which relaxes the local limitations of CNNs and is free from the

adjacent matrix of GNNs. Therefore, the vanilla Transformer has been used in [45] to

improve the performance of cellular traffic prediction. Since the complexity of the vanilla

Transformer is quadratic w.r.t the input length, modeling the spatial grids of real-world

cellular traffic (e.g., 100 × 100 in Milan) is computationally expensive and infeasible. In

this context, a novel, dynamic and more efficient model variant is required to reduce the

heavy computation load of Transformer.

Motivated by this, we propose a new model, called ST-InducedTrans, to efficiently

capture the complex spatial-temporal dependencies of a large mobile grid for accurate

cellular traffic prediction. The whole model is composed of several spatial and tempo-

ral blocks. Each spatial block is a well-devised Spatial Bottleneck Transformer, which

introduces a smaller-size query (i.e. inducing point) to only focus on the K most rel-

evant spatial correlations and recovers the input length by an original-size query. This

design significantly reduces the Transformer complexity and also manages to automat-

ically and dynamically select the most relevant region correlations, even for far-away

regions. Each temporal block is a vanilla Transformer augmented with elaborately se-

lected temporal clues (e.g., day of the week and holidays). These clues offer important

prompts for extracting certain cellular traffic patterns, e.g., the difference between week-

days and weekends. The overall structure is built by stitching the spatial and temporal

blocks with several fusion layers. We verify the effectiveness of our model design on a

widely-used cellular prediction benchmark: Milan. The state-of-the-art comparison, pa-

rameter analysis and visualization corroborate the superiority and efficiency of our model

design.

The contributions of this paper are summarized as follows:
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• We propose ST-InduscedTrans, a novel and efficient model for cellular traffic pre-

diction on a real-world large grid.

• We design a Spatial Bottleneck Transformer in ST-InducedTrans to capture the spa-

tial dependencies, which can improve the prediction accuracy and reduce the time

complexity from quadratic to linear.

• Informative temporal clues (e.g., day of the week and holidays) are embedded in

the temporal Transformer to provide useful temporal prompts beneficial for cellular

prediction.

• Comprehensive experiments are conducted on the real-world benchmark dataset

Milan, which verifies the superiority and efficiency of our method.

3.2 Related Work

Amidst the era of big data, time series analysis has evolved as a subset of AI technology,

drawing significant interest from researchers toward cellular traffic forecasting. Many

scholars have engaged statistical methods and traditional machine learning techniques for

cellular traffic data prediction. Moreover, the fusion of cellular traffic challenges with ad-

vanced deep learning models has led to the development of more sophisticated predictive

frameworks. This section primarily focuses on presenting the relevant literature within

the domain of mobile traffic prediction.

3.2.1 Statistical Methods

Several noteworthy statistical models have found application in cellular traffic forecast-

ing, notably including Autoregressive Integrated Moving Average (ARIMA), Exponential

Smoothing (ES), and the Holt-Winters (HW) model. ARIMA, characterized by its autore-

gressive, difference, and moving average components, has been utilized by Guo et al. [29]

in predicting cellular traffic data from various Chinese cities.
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In addressing the base station problem, Zhang et al. [2] employed Seasonal Autore-

gressive Integrated Moving Average (SARIMA) for time series learning. Their work

introduced a novel model aimed at understanding the geographical impact on base station

utilization through clustering techniques. Furthermore, Snyder [60] contributed signifi-

cantly by proposing an effective Exponential Smoothing model within spatial modules,

laying the foundation for subsequent research endeavors.

Earlier approaches predominantly relied on the empirical properties of these research

methodologies. Taylor et al. [65] proposed a statistical model based on Exponential

Smoothing, while Hyndman et al. [28] extended this approach by segmenting time se-

ries problems into five trends and three seasons. This segmentation elucidates the trend

and seasonal characteristics of time series problems. Although these statistical methods

require less computation, they primarily rely on linear relationships between inputs and

outputs, which poses challenges in identifying nonlinear relationships.

Combining statistical and machine learning methodologies, Azari’s research [61] in-

tegrates the ARIMA method with Long Short-Term Memory (LSTMs) to unveil nonlinear

relationships, showcasing a hybrid approach that merges the strengths of both statistical

and machine learning techniques.

3.2.2 Machine Learning Methods

LightGNM, a novel tree-based model, was introduced to expedite the training process

of traditional Gradient Boosting Decision Trees (GBDT) in cellular traffic forecasting, as

outlined by Ke et al. [38]. This model found application within the final prediction model,

enhancing its efficiency. In a related domain, Zhang et al. [32] proposed a Gaussian

Mixture Model (GMM) aimed at minimizing power consumption for unmanned aerial

vehicle transmission and mobility. Their model significantly reduced power requirements

for downlink transmission and mobility processes.

Additionally, Support Vector Regression (SVR) [58] emerged as another method em-

ployed in predicting cellular traffic data. However, compared to deep learning models,
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most machine learning models in cellular traffic forecasting are relatively shallow.

One of the primary limitations of these methods is their oversight of spatial-temporal

data correlations and challenges in scalability when dealing with high-dimensional datasets.

While machine learning models generally outperform statistical methods, only a few

of these models have demonstrated superiority over deep learning models in cellular

traffic forecasting [36]. This highlights the ongoing pursuit for methodologies that ef-

fectively capture spatial-temporal correlations and scalability in high-dimensional data,

while also emphasizing the comparative advantages and limitations of different predictive

approaches in this domain.

3.2.3 Deep Learning Methods

Numerous attempts have been made to address challenges in cellular traffic forecasting

using deep learning methodologies. Recurrent Neural Networks (RNNs), as highlighted

by Medsker et al. [47], have been instrumental in uncovering temporal variations within

cellular traffic prediction, particularly within temporal blocks. Although Qiu et al. [55]

employed RNNs in the temporal block of their model, they encountered limitations re-

garding accuracy in predicting extended time series data.

Kuber et al. [34] primarily relied on Long Short-Term Memory (LSTMs) to construct

temporal-dependent models in their research. Concurrently, they incorporated auxiliary

information (such as the geographical locations of airports, banks, or restaurants) to en-

hance spatial components. Moreover, both Azari [61] and Kuber [34] highlighted the

advantageous implications of improved resource allocation via prediction models.

However, the sequential nature of RNNs and LSTMs poses challenges in efficiently

processing input sequences, resulting in slower training processes. Given that cellular

traffic data can be likened to image-based grids, researchers have combined Convolu-

tional Neural Networks (CNNs) with RNNs to predict mobile traffic data. While CNNs,

as emphasized by Kim et al. [39], excel in handling spatial components, they often strug-

gle to capture distant spatial information beyond adjacent regions. Additionally, Graph
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Convolutional Networks (GCNs) and Graph Neural Networks (GNNs) have gained trac-

tion in processing spatial-related information in recent studies.

Notably, Zhang et al. [3] proposed a ConvLSTM model, employing LSTMs to han-

dle long temporal information while utilizing CNNs to explore spatial dependencies.

Nonetheless, limitations persist, particularly in accurately describing dependencies among

adjacent grids.

Incorporating the encoder-decoder paradigm, researchers have hybridized CNNs and

RNNs, leveraging their strengths for diverse tasks. For instance, Zhang et al. [3] intro-

duced the Spatio-Temporal Neural Network (STN) within an encoder-decoder framework,

combining Convolutional Long Short-Term Memory and 3D Convolutional Neural Net-

work. Similarly, Xu and Kai [6] proposed SpectraGAN, integrating an encoder and a

generator for contextual and hidden information processing, respectively.

The advent of Transformer architectures has sparked interest in cellular traffic pre-

diction, pioneered by Liu et al. [45]. Transformers, renowned for their parallel encoder-

decoder structure and success in Natural Language Processing (NLP), have shown promise

in various domains. Liu et al. [45] devised novel transformer modules, STB and TTB,

specifically tailored for cellular traffic prediction. However, the computational complex-

ity of basic transformers, operating at O(n2) for a 100x100 grid, poses significant com-

putational challenges, demanding the development of more efficient models to alleviate

computational burdens.

3.3 Problem Formulation

We conduct cellular traffic research on the large-scale, real-world public telecommunica-

tion dataset from a well-known telecommunication provider: Telecom Italia. The dataset,

collected from Milan, divides the large geographical areas into a H×W grid. Various cel-

lular traffic activities are recorded, including Received SMS, Sent SMS, Incoming Call,

Outgoing Call and Internet usage.
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Figure 3.1 : Xp(t), Xc(t), Xtarget(t) at the X(t) interval.

In this paper, we deal with the cellular traffic forecasting problem. In particular, we

study the behavior of Call data prediction. Cellular traffic prediction is performed on the

H ×W grid representing the whole geographical location. Each cell of the grid reflects

the cellular traffic in a certain location. As a time-series prediction problem, we make

use of two types of historical data: close neighboring cellular data and periodical cellular

data. Denote the current time step of traffic data as t in Fig. 3.1; we want to predict future

data Xtarget(t) ∈ RN×c of the future c steps, where N is the number of grids. Then, we

define close neighboring data Xc(t) ∈ RN×c as the previous c steps just before future data

on all N locations. We define periodic data Xp(t) ∈ RN×p×c as historical data having the

same multiplicative intervals relative to future steps.

To summarize, the cellular traffic forecasting problem is defined as follows:

Given cellular traffic data from N geographical grids: (1) Close neighboring cellular

data Xc(t) = (X t−c+1, X t−c+2, . . . , X t) ∈ RN×c, (2) Periodical cellular data Xp(t) =

(X t+1−p∆, . . . , X t+c−p∆, . . . , X t+1−∆, . . . , X t+c−∆) ∈ RN×p×c, Forecast future traffic

data Xtarget(t) = (X t+1, X t+2, . . . , X t+c) ∈ RN×c.

3.4 Methodology

In recent years, the revolutionary improvements that Transformer has brought to com-

puter vision and Natural Language Processing (NLP) have attracted much attention from

the academic community. Some work, such as [45], has used the vanilla Transformer

to predict cellular traffic and has achieved certain improvements. For real-world cellu-

lar traffic prediction problems, data usually comes from a large geographical area (e.g.,
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100 × 100 in Milan). In this case, the adoption of Transformer is computationally heavy

and infeasible due to its quadratic time complexity. We propose a novel ST-InducedTrans

model for cellular traffic prediction, which contains a well-devised Spatial Bottleneck

Transformer to obtain the spatial correlations from all grids by inducing points (i.e., bot-

tleneck). Moreover, we embed informative temporal clues in the temporal Transformer to

augment the temporal pattern extraction.

However, due to the large time complexity of Transformer in terms of large geograph-

ical grids, most previous studies have adopted different statistical methods to obtain the

most relevant spatial correlations, such as Anselin Local Moran’s I Statistic Measure [77]

and Pearson Correlation Coefficient [45]. The main problem with these statistical ap-

proaches to select grids is that when there is a large number of data, the computational

cost of calculating the correlation between different grids can be expensive. Therefore,

this paper proposes a Spatial Bottleneck Transformer to obtain spatial information on the

top K grids with higher similarity among all grids by inducing points (i.e., bottleneck).

This inducing point can be learned continuously in the transformer.

The main problem with these statistical approaches is that when the amount of data

is large, the computational cost of calculating the correlation between different grids can

be expensive. Therefore, this paper proposes a Spatial Bottleneck Transformer to obtain

spatial information on the top K grids with higher similarity among all grids by inducing

points. This inducing point can be learned continuously in the transformer.

3.4.1 Spatial Bottleneck Transformer

Spatial Bottleneck Transformer (SBT) is the major contribution in this paper, which elim-

inates the quadratic scaling problem of all-to-all attention of a vanilla Transformer and

decouples the network depth from the input’s size, allowing us to construct very deep

models. Concretely, SBT is a Transformer-based neural network architecture. Unlike

the vanilla Transformer, each SBT block is composed of two Multihead Attention Blocks

(MABs), as shown in Fig. 3.2. We design a bottleneck structure for the two MABs. The
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Figure 3.2 : Spatial Bottleneck Transformer

first MAB (encoder) takes as input a small-size query to extract the K most relevant fea-

tures with the cross-attention mechanism. Then, the second MAB (decoder) retrieves the

spatial correlations from the extracted K relevant features with another cross-attention.

The bottleneck refers to mapping from N input elements to a much smaller K(K ≪

N) features and then recovering the original length size N . There are several advantages

of the bottleneck design over the vanilla transformer design: (1) the computation com-

plexity is significantly reduced with this design; (2) the bottleneck design has the feature

selection effect by only selecting K relevant features. This is consistent with cellular

traffic properties that only a small number of locations sharing similar patterns are highly

related in cellular traffic prediction; (3) K can be adjusted to reflect different circum-

stances, such as different cities and different grid-scale grained.

The main components of the SBT are as follows.

Multi-Head Attention. This module is similar to the Multi-Head Attention in the

vanilla Transformer. It splits the vectors in the input sequence into multiple subsets and

then performs a self-attentive computation on the vectors in each subset. With an input
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tensor of shape (N,D), the Multi-Head Attention outputs a tensor of the same shape

(N,D), but embeds the correlations among all input elements inside. Here, N refers to

the number of input elements, and D stands for the feature dimension. Formally, the

module can be denoted below:

Attention(Q,K, V ) = softmax
(
QKT

)
V,

Multihead(Q,K, V ) = concat (O1, · · · , Oh)W
O,

where Oj = Attention
(
QWQ

i , KWK
i , V W V

i

)
.

(3.1)

Here, WO, QWQ
i , KWK

i , V W V
i are the relevant fully connected layer weights.

Feed-Forward Network The feed-forward neural network has two fully connected

layers for enhanced representation. For each input vector, the Feed-Forward Network

maps it to a higher dimensional vector, which is then passed through a ReLU activation

function and mapped back again to the original dimensional vector. This operation allows

each element to capture more complex interactions after computation.

Layer Normalization Layer Normalization normalises each sub-layers output to im-

prove the model’s stability and generalisation. Instead of using the mean and variance of

the entire set of inputs, it uses the mean and variance of the subset corresponding to each

sample.

Spatial Bottleneck Transformer (SBT). SBT model comprises an Encoder and a

Decoder. Unlike the vanilla Transformer, we adopt cross-attention mechanisms in the

Multi-Head Attention module instead of self-attention. Specifically, in the Encoder, we

introduce the inducing point I ∈ RK×D as the query probe to extract K most relevant

features from the original input sequence X ∈ RN×D (N = H ×W in a cellular traffic

grid). Since K ≪ N in our design, the Encoder has the advantages of information

compression and feature extraction, which only keeps the most related features beneficial

for future cellular traffic prediction. I serves as a query (Q), and X serves as key (K)

and value (V) in Eq. 3.1. Taking the Feed-Forward Network and layer normalization into
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consideration, we can represent the structure as:

CrossAttention(I,X) = LayerNorm(H + FeedForward(H)),

where H = LayerNorm(X +Multihead(I,X,X)) .
(3.2)

Similarly, the Decoder adopts a cross-attention structure but designs different query, key,

and value. We take the original input sequence X as query (Q), and the output from the

Encoder as key (K) and value (V). This way, the output of Decoder has the same sequence

length as the input.

The overall structure of the SBT can be represented as:

SBTK(X) = CrossAttention(X,H) ∈ RN×D ,

where H = CrossAttention(I,X) ∈ RK×D .
(3.3)

Here, K stands for the bottleneck size for choosing only K relevant features.

3.4.2 ST-InducedTran Model

We now describe the detailed structure of the ST-InducedTrans model, as shown in

Fig. 3.3. Overall, ST-InducedTrans includes the temporal clues, spatial block and tempo-

ral block, devised to capture the spatial correlations and temporal patterns, respectively.

Temporal Clues. Before going into the details of the model architecture, we first de-

scribe how to leverage indicative temporal clues to help cellular traffic prediction. Our

observation is that the cellular patterns vary with certain temporal events, e.g. weekdays

and weekends exhibit different patterns in using mobile devices, thus leading to differ-

ent prediction modes. Similarly, holidays are an important factor. Bearing this in mind,

we define the one-hot indicative clues ‘day-of-week’ (7-dimension) and ‘holidays’ (1-

dimension). Then, we concatenate them into the temporal clues Xtc ∈ Rn×(7+1). With an

additional projection, the clues can be mapped to Xtc ∈ RN×D (D is the same as all the

Transformers) and used as temporal clues in the later Transformers.
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Figure 3.3 : ST-InducedTran Model

Spatial Block. There are two types of Transformer in the Spatial Block: Spatial Bottle-

neck Transformer and Spatial Transformer.

Spatial Bottleneck Transformer is designed to extract the possible correlations among

all locations in the cellular traffic grid. Since in a real-world grid, not all grid locations

are prediction relevant, the bottleneck structure can efficiently and effectively select only

the relevant spatial locations helpful for cellular traffic prediction. As mentioned before,

the parameter K of the inducing points in the bottleneck can be chosen to reflect the

real-world scenarios, such as cities, grid scale, etc.

Spatial Transformer The input of this block is Xc ∈ RN×c. The top K similar ele-

ments are selected and concatenated to Xs ∈ RN×K×c via Spatial Bottleneck Transformer,

which is a learning-based feature selecting module. The Spatial Transformer takes the

vanilla Transformer structure and contains an encoder and a decoder. Xs is the encoder

input, Xc is the decoder input, and the final output is Xsp ∈ RN×1×c.
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Temporal Block. There are also two types of Transformer in the Temporal Block:

Closeness Transformer and Period Transformer. These two types process the close neigh-

boring data Xc ∈ RN×c and the periodic data Xp ∈ RN×p×c as described in Section

3.

Closeness Transformer We first augment the close neighboring data in the spatial

context. The Q most related spatial locations are selected with the Spatial Bottleneck

Transformer and concatenate with the grid’s own data as Xaug
c = RN×(Q+1)×c. Then Xaug

c

is input to the encoder of the Closeness Transformer. The period data Xp is averaged to

get Xavg
p and input to the decoder of the Closeness Transformer. Closeness Transformer

mainly processes the close data while it also refers to the period average for relevant

information.

Period Transformer The period data Xp is directly input to the encoder. And the close

data Xc is input to the decoder as reference information. Since the period data already

contains various period patterns, there is no need to apply extra augmentations. Period

Transformer processes the period data while it also refers to the close data for relevant

information.

Stitching and Fusion. After getting all the modules and components, we stitch them

in an overall model ST-InducedTrans, as shown in Fig. 3.3. Specifically, the model in-

put includes, period data, close data, and temporal clues. The temporal block and the

Spacial block are put in a parallel layout to process the data. Finally, the Fusion module

is proposed (containing several MLP layers) to combine both the temporal and spatial

processed information for better prediction.

In this experiment, the fusion method is relatively simple: the results of the bimodal

modes are concatenated together, the dimension becomes 2×D, and then the dimension

is reduced from 2×D to D by a linear layer.

32



CHAPTER 3. SPATIAL BOTTLENECK TRANSFORMER FOR CELLULAR
TRAFFIC PREDICTION IN THE URBAN CITY

3.5 Experiments

3.5.1 Dataset

We use the common benchmark dataset Milan [10], whose data is collected from Telecom

Italia. It contains aggregated cellular traffic, including SMS, call service and internet in

the city of Milan. The dataset contains several traffic activities in Milan, which consists

of 1000 mesh overlays. The time duration for data collection is from 2013/11/01 00:00

to 2014/01/01 23:00 for two months (62 days with around 300 million records), with an

interval of 10 minutes. We further aggregated the data into an interval of 60 minutes (1

hour). The geographical area of Milan is divided into a size of H × W grids, where H

and W refer to the number of rows and columns and H = W = 100 (i.e. 10,000 grid

cells). Each grid has an approximate area of 235×235 square meters. Following previous

studies, we take the center 20× 20 grid from the whole 100× 100 grid, mainly to predict

the cellular traffic in urban areas. In this paper, we use call data, and our approach also

fits the other data sets including SMS and Internet usage.

3.5.2 Baseline

We compared the proposed ST-IndusiveTran Model with several classical baseline meth-

ods that are widely used in time series prediction

• Historical Average & ARIMA [11]: Traditional statistical method that uses one day

of mobile phone traffic data from historical data to predict future traffic.

• STDenseNet [77]: This model’s primary objective is to concurrently capture both

spatial and temporal correlations within traffic across distinct cells. Incoming and

outgoing traffic, depicted as a two-channel tensor matrix resembling an image,

is employed at each instance. Utilizing a sliding window approach, training and

test datasets are generated. Fusion techniques are employed to account for both

proximity-based (closeness dependence) and time-based (period dependence) rela-
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tionships within the model.

• STACN(w/o E) [80]: This model proposes a spatial-temporal attention-convolution

network (STACN) that considers the dynamic spatiotemporal correlation of cellu-

lar traffic. A GCN+CNN convolutional module is investigated to capture mobile

traffic’s spatial and temporal characteristics through spatial and temporal attention.

• ConvLSTM [76]: STCNet (Spatial-Temporal Cross-domain Neural Network) can

efficiently capture complex patterns in grid data. The model actively models three

cross-domain datasets to capture the external factors influencing traffic generation.

At the same time, the model proposes a clustering algorithm to divide urban ar-

eas into different groups, thus designing a continuous inter-intentional migration

learning strategy. Finally, cross-domain data modelling is used to detect real data

information.

• ST-Tran [45]: This model is the first to implement all modules in the transformer. It

is of pioneering importance. In this model design, the authors propose a Temporal

Transformer Block and a Spatial Transformer Block, and finally, fuse the results of

the two modules.

3.5.3 Implementation Details

Hardware

All experiments were performed on a GeForce RTX 6000 with 24G RAM.

Optimizer

In this study, we experimented with two optimization algorithms, Adam and AdamW, and

throughout our trials, we observed superior performance with Adam. Adam represents a

departure from classical stochastic gradient descent methods. Unlike traditional stochastic

gradient descent, where the learning rate remains constant during training, Adam offers
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the advantage of individualized learning rates for each parameter. This feature proves

beneficial in handling sparse gradients, ensuring improved performance. Additionally,

Adam adjusts the learning rate for each parameter by computing the weighted averages

of recent gradients, enabling robust performance even in the presence of noisy problems.

Notably, Adam’s optimizer demonstrates reduced sensitivity to varying learning rates.

In this experiment, adam’s β parameter was initialised to 0.98.

Regularization

For each sublayer, including the multihead attention mechanism and the fully connected

layer, a dropout was used before entering the residual component and the layer norm,

where dropout rate = 0.1, indicating a 10% setting of the output to 0.1. The dropout rate

= 0.1 was also used after the positional encoding.

Hyperparameters

During this experiment, the transformers underwent training iterations with N=6. No-

tably, the dimensionality (dmodel) varied across the transformer models: dmodel equaled 64

in the spatial transformer, 256 in the closeness transformer, 128 in the period transformer,

and similarly, 128 in the generic transformer. The dmodel parameter signifies the repre-

sentation size of vectors assigned to tokens upon their entry into a specific transformer

module.

Moreover, a polynomial learning rate decay strategy was adopted for this experiment.

The initial learning rate commenced at 0.001, while the training batch size for the entire

model was set to 16, conducted over a span of 500 training rounds. These specifications

were crucial elements in fine-tuning the performance of the transformer models in the

experimental setup.
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Table 3.1 : Input of Different Transformers.

Transformer dmodel encoder input decoder input

spatial 64 Xs(t) Xc(t)

closeness 256 Xc(t) Xp(t)

period 128 Xp(t) Xc(t)

3.5.4 Evaluation Metrics

It is essential to evaluate the model’s accuracy to describe its performance in the forecast-

ing task. Evaluation metrics change according to the problem type. In this research, we

use MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), and R2 (Coeffi-

cient of determination).

Given ytrue ∈ RN×c to be the ground truth mobile traffic at time step t, and ytpred ∈

RN×c to be the predicted cellular traffic values, and T to be all the time samples predicted,

then, the metrics are defined as follows:

MAE quantifies the average absolute deviation between the original and predicted val-

ues, calculated by averaging their differences across the dataset. A lower error value

closer to zero indicates a more favorable outcome. The formula for RMSE is outlined

below.

MSE =
1

T

T∑
t=1

(
yttrue − ytpred

)
(3.4)

Root Mean Square Error (RMSE) measures the error rate using the square root of

Mean Square Error. Mean Square Error (MSE) evaluates the prediction error of the model,

ranging from [0,+∞]. A lower error value closer to zero indicates better performance.

The formula for RMSE is provided. Normalized root mean error (NRMSE) is an adapta-

tion of RMSE that normalizes the error relative to the observed range of the variable.
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RMSE =

√√√√ 1

T

T∑
t=1

(
yttrue − ytpred

)
(3.5)

R2 denotes the coefficient indicating the goodness of fit between predicted and original

values, with a range of [0, 1]. A higher R2 value signifies better model performance.

R2 = 1−
∑T

t=1

(
yttrue − ytpred

)2∑T
t=1

(
ytave − ytpred

)2 (3.6)

3.6 Results & Discussion

3.6.1 Time Complexity Analysis

One major contribution of this research is to reduce the quadratic scaling problem of

Transformer to a linear complexity problem. Denote N as the total number of grid cells

(i.e. H ×W ) we have, and we want to predict through top K spatially relevant data from

N grid cells with Spatial Bottleneck Transformer. Our design reduces the number of

calculation operations from N2 of the vanilla Transformer to NK (K ≪ N ). This means

the complexity reduces from quadratic to linear. Tab. 3.2 presents the time complexity

comparison. Here D is the dimension of the features in the intermediate layers. The

significant reduction in time complexity makes the computation faster and possible to

predict cellular traffic data in a larger-scale geographical grid.

Table 3.2 : Complexity of vanilla Transformer and Spatial Bottleneck Transformer.

Model Name Complexity Per Layer

Vanilla Transformer O(N2D)

Spatial Bottleneck Transformer O(KND)
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Table 3.3 : Comparison with the state-of-the-art methods.

Methods MAE NRMSE R2

HA 18.7226 0.9687 0.4419

ARIMA 17.1895 0.8813 0.6564

LSTM 13.9438 0.6079 0.7802

STDenseNet 12.3168 0.6442 0.7842

STACN (w/o E) 12.6450 0.6210 0.7207

ConvLSTM 11.2308 0.5652 0.8097

ST-Trans 10.0244 0.5388 0.8273

ST-InducedTrans (w/o Fusion) 9.7215 0.5319 0.8317

ST-InducedTrans 9.7273 0.5035 0.8493

3.6.2 Comparison with the State-of-the-art Methods

In Tab. 3.3, we compare our method with various baselines, including the state-of-the-art

method ST-Trans. Our model variant “w/o Fusion” means the Spatial Bottleneck Trans-

former is removed before the Fusion module (Fig. 3.3 left-right). Our method outperforms

all the baselines with a large margin w.r.t. three metrics. Note that ST-Tran employed

vanilla Transformer architecture. Our method is not only more efficient in time complex-

ity but also much better in performance. The comparison with the “w/o Fusion” variant

shows that the Spatial Bottleneck Transformer is effective and generally applicable in our

model.

3.6.3 Parameter Analysis and Visualization

Parameter K. For too small and too large K, the performance deteriorates quickly, while

in a reasonable range (15 to 20), the performance is stable. The best K is 20 according to

the MAE measure, which is only 5% compared with the overall 400 grid cells.

In this module, the choice of K is significant. K can be selected in the range of
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[0, 400]; when K is chosen as 0, the grid selection function is removed. To enhance the

prediction performance, we experimented with the value of K between 0 and 50; the

MAE value was the lowest for K = 20 when fusion was not implemented.

Figure 3.4 : Performance with respect to varying values of K

Prediction Visualization. We show the comparison between the predicted values and

the ground truth of the 224th grid in Fig. 3.5 and Fig. 3.6 for the model “w/o Fusion” and

our final model. Both models have a relatively good prediction trend. However, our model

performs much better in detail, such as the time range between 75 and 100, verifying the

effectiveness of the Spatial Bottleneck Transformer in the Fusion module.

3.7 Conclusion

This paper proposes a new ST-InducedTrans model to improve forecasting accuracy and

computation complexity. We devise a new spatial transformer block, namely Spatial Bot-

tleneck Transformer (SBT), to explore the spatial dependencies. In SBT design, we intro-

duce a learnable inducing point to reduce the algorithmic complexity of the transformer

from quadratic to O(nm) linear. Moreover, we explore the informative temporal clues

and incorporate them into the temporal embedding of the Transformer. Also, informa-

tion on temporal embedding is added, including information on holidays and days of

the week. Extensive experiments are conducted on the real-world cellular traffic dataset,

which corroborates the efficiency and effectiveness of our ST-InducedTrans model. This

novel ST-InducedTran model is applied to real-world public mobile traffic data. This

model reduces the algorithm’s complexity and improves the accuracy of the prediction.
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Figure 3.5 : Predicted values without Fusion Figure 3.6 : Predicted values with Fusion

In future work, we can add more external information, including POIs, to improve the

accuracy of the prediction.
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Chapter 4

Transformer-Based Cellular Traffic Prediction across
Diverse Domains of Big Data Sources

4.1 Introduction

Time series forecasting refers to predicting future trends and patterns from historical data,

which has been used in many areas, including earthquake prediction, stock market predic-

tion, electricity usage and vehicular traffic forecasting. Cellular traffic prediction has also

become a heated research topic in time series forecasting, which attracts more researchers

to improve accurate prediction of cellular traffic. Accurately predicting mobile traffic is

of vital importance for both operators and application developers. For operators, accurate

forecasting can help them plan and optimize network layouts, improving network quality

and user experience. Moreover, the analysis of user behavior and demand can be used to

predict future cellular traffic demand, thus helping operators to develop traffic packages

and improve user satisfaction. For application developers, accurate prediction can help

them tailor the performance and experience of their applications, thereby improving user

satisfaction and the effectiveness of advertising. In this context, mobile traffic forecasting

has become a hot research topic in the past ten years and gained much research attention.

In the previous chapter, we proposed a novel deep learning model, called ST-

InducedTrans, to eliminates the quadratic scaling problem of all-to-all attention of a

vanilla Transformer and decouples the network depth from the input’s size, allowing us to

construct very deep models. However, in order to obtain more accurate prediction results,

more factors should be taken into consideration, which is a challenging task to combine

extra spatial information with the cellular traffic itself. This combination will make our

dataset more complicated.



CHAPTER 4. TRANSFORMER-BASED CELLULAR TRAFFIC PREDICTION
ACROSS DIVERSE DOMAINS OF BIG DATA SOURCES

Previous studies have done some research on the problem of mobile traffic prediction.

A number of researchers have used statistical methods, machine learning methods and

deep learning methods to improve cellular traffic prediction. Many statistical-based ap-

proaches are used to predict future mobile phone traffic, but most statistical methods are

shallow models whose performance degenerates considerably over time[11]. Statistical

methods operate on individual time series while ignoring spatial correlation. It is also

hard to capture the complex non-linear spatial-temporal correlations in real-world cellu-

lar traffic data[60]. In previous research, Recurrent Neural Networks (RNNs)[47], Long

Short-Term Memory (LSTMs)[23], Convolutional Neural Networks (CNNs)[39], Graph

Convolutional Networks (GCNs)[79], and Graph Neural Networks (GNNs) are proposed

to process grid-based data.

Transformer is an encoder-decoder structure and has achieved good results in Natural

Language Processing (NLP) [66]. In recent years, Transformer has achieved good re-

sults in computer vision, video processing and other fields. Transformer can dynamically

aggregate the most relevant features, have a larger receptive field and conduct parallel

computation, which can somehow solve the problems mentioned in the previous meth-

ods. Some research [45] has used the vanilla transformer to predict cellular traffic, and has

achieved certain improvements. However, since the data we want to predict is a 100×100

grid, the algorithm complexity of the vanilla transformer is O(n2). Calculating the cel-

lular traffic of the entire area is very computationally expensive, and we need to create

novel, dynamic and more efficient models to reduce the huge amount of calculation.

Most of researchers mainly consider the cellular traffic dataset itself as the main data

source to improve the prediction accuracy and external information is rarely taken into

account. However, external factors should be taken into considerations, for example, their

user movements and visits. Some external information, including base stations data, POIs

distribution and social activities information have certain level influence on cellular traffic

generation [30], [72]. For example, people will visit the shopping malls more frequently

compared to those in the rural areas. The number of the base station, the distribution of

POI and the number of social activities for each cell will be vary based on the location of
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the area. Meanwhile, we have to consider the functionality of each zone when we predict

our cellular traffic data. For instance, we can divide any large geographical areas into

different functional zones based, including residential zones, commercial zones, industrial

zones, recreational and open space, etc.

To effectively enhance mobile prediction results over expansive regions and capture

the interplay between spatial and temporal data correlations, we incorporate external fac-

tors into our approach. Employing advanced clustering techniques, we segment areas into

distinct functional zones. Building upon our prior work on the ST-InducedTrans model

detailed in the previous section, a key focus of this chapter lies in integrating additional

factors to adeptly capture correlations among various grid points. This integration con-

stitutes a significant contribution. Drawing insights from a spectrum of extensive data

sources beyond cellular network data, including GPS data and social media trends, holds

promise in enriching predictive models. By amalgamating these diverse datasets, we aim

to augment forecast accuracy and granularity across larger geographical extents. This

multidimensional approach enables us to enhance the predictive capabilities and finer

spatial resolution of our forecasts.

The primary objective of this paper centers on refining the precision of mobile traffic

prediction by leveraging our innovative model introduced in the preceding chapter. This

paper encapsulates several key contributions, outlined as follows:

• We present a novel model tailored explicitly for mobile traffic prediction based on

ST-InducedTrans. Building upon our previous research, this model incorporates

refined methodologies and advanced algorithms to bolster prediction accuracy.

• We introduce a comprehensive approach that integrates diverse factors beyond tra-

ditional data sources. This includes incorporating external data such as GPS in-

formation, social media trends, and other relevant datasets to enrich the predictive

capabilities of our model.

• Our chapter delves into an in-depth exploration of spatial-temporal correlations
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within mobile traffic data. By leveraging sophisticated techniques, we aim to cap-

ture and harness these correlations more effectively to improve prediction accuracy.

These contributions collectively represent our concerted effort to elevate the accu-

racy and applicability of mobile traffic prediction, paving the way for more effective and

reliable forecasting methodologies. The rest of this paper is organized as follows. Sec-

tion 2 introduces some related work. Section 3 describes the problem formulation and

preliminaries. Section 4 presents the proposed novel model architecture with cross do-

main datasets, including base station information, Points of Interest (POIs) distribution

and social media activities. Section 5 presents the performance comparison between the

proposed network and a baseline scheme, followed by Section 6 to show the result and

some discussions. Conclusions are drawn in Section 7.

4.2 Related Work

This section will presents a range of models focusing on different aspects of spatial and

temporal dependencies in cellular traffic forecasting. Spatial models like CNNs, GNNs,

GCNs and variants address different trade-offs between preserving topology and extract-

ing spatial features.Temporal models, including RNNs, LSTM, GRU and Transformers,

offer varying capabilities in handling temporal dynamics, long-range dependencies, and

computational efficiency. In conclusion, this section highlights the diverse methodologies

employed in cellular traffic forecasting, each with its strengths and limitations concerning

spatial and temporal dependencies, paving the way for further advancements and inte-

grated models in this field.

4.2.1 Spatial Dependencies

ARIMA [49] & Bayesian Networks [67] exhibit advantages in handling highly nonlinear

traffic patterns, providing a baseline for understanding temporal trends and patterns in

cellular traffic data. They are useful for capturing nonlinear relationships within the data.
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Convolutional Neural Networks (CNNs) adopted in [46] [1] [78] extract spatial fea-

tures by converting traffic networks into regular grids. However, they might lose crucial

topology information present in irregular traffic networks.

Graph Neural Networks (GNNs) [59] and Graph Convolutional Networks (GCNs)

[18] generalize deep learning to non-Euclidean domains, exploring inherent traffic topol-

ogy and preserving the graph structure. Models like STGCN [74] and DCRNN [43]

use spectral and diffusion graph convolutions on directed graphs, respectively, to capture

spatial dependencies. Graph Attention Networks (GATs) summarize geo-graph features

using meta-learners [4], while Graph WaveNet captures hidden spatial patterns but with

fixed spatial dependencies after training. Graph WaveNet with Dilation Convolution im-

proves accuracy by learning hidden spatial patterns, and these models have limitations in

scalability for long input sequences and capturing long-range dependencies affected by

deeper layers [71].

Spatial-Temporal Transformer Networks efficiently model dynamic directed spatial

dependencies in high-dimensional latent subspaces, not relying on predefined graph struc-

tures, and can adapt to varying spatial relationships.

4.2.2 Temporal Dependencies

Recurrent Neural Networks (RNNs), especially Gated Recurrent Units (GRU) [17] and

Long-Short Term Memory (LSTM) networks, handle temporal dependencies and long-

range relationships in traffic data. However, they suffer from gradient issues during train-

ing and might be computationally intensive for long sequences.

Transformers excel in sequence learning by employing parallelizable self-attention

mechanisms [66]. They effectively capture long-range time-varying dependencies in input

sequences of varying lengths, offering adaptability and efficiency in modeling temporal

dynamics.

Zhang et al. [76] proposed STCNet (Spatial-Temporal Cross-domain Neural Net-

work), which used metadata, including time of the day, day of the week, and other data,
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as the input of the two-layer neural network of LSTMs, and used cross-domain data as

the information in CNNs and employed the CNN-RNN model to combine the complex

spatio-temporal traffic variability in mobile traffic prediction through temporal and spatial

perspectives.

In chapter 3, we proposed a novel model, called ST-InducedTrans [62], to attempt

to bridge spatial and temporal dependencies efficiently, offering promising directions for

future research in cellular traffic forecasting.

4.3 Problem Formulation

Our research focuses on analyzing cellular traffic using a large-scale dataset obtained

from Telecom Italia in Milan. This dataset divides the geographical area into a grid of

H ×W dimensions and records various cellular activities like Received SMS, Sent SMS,

Incoming and Outgoing Calls, and Internet usage.

Our specific focus is on forecasting cellular traffic, particularly in predicting Call data.

The prediction task involves the entire H × W grid, where each grid cell represents the

cellular traffic in a specific location. To approach this time-series prediction problem, we

utilize two types of historical data: neighboring cellular data and periodic cellular data.

Neighboring cellular data Xc(t) ∈ RN×c×x refers to the preceding c time steps leading

up to the future data point Xtarget(t) ∈ RN×c for all N locations, considering x external

factors. On the other hand, periodic cellular data Xp(t) ∈ RN×c×p×x comprises histori-

cal data at regular intervals relative to the future steps, covering the same multiplicative

intervals with x external information.

In essence, the challenge of cellular traffic forecasting involves leveraging the preced-

ing c steps of cellular data in close proximity to the future prediction and historical data

occurring at regular intervals to predict the future c steps of cellular traffic data across N

geographical grids.
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4.4 Methodology

4.4.1 Structure of Transformers

Transformer is a sequence-to-sequence model based on a self-attention mechanism, orig-

inally proposed by Ashish Vaswani et al. in 2017 [66], and is widely used in natural

language processing (NLP), performing particularly well in machine translation tasks.

Transformer has had the same impact on NLP as CNN has on computer vision, providing

a framework for researchers in computer vision to avoid tedious additional steps, such as

feature engineering. The emergence of the Transformer model allows for better results in

most domains.

Transformer is also a type of encoder and decoder model. Transformer used in this

study is the standard Transformer architecture, illustrated in Fig. 3.6, including encoder,

decoder, self-attention, multi-head attention, embedding and positional encoding.

Figure 4.1 : Structure of basic transformer

Encoder The encoder converts the input sequence into a contextual vector. It consists of

several identical layers stacked on each other, each consisting of two sub-layers: a multi-
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headed self-attention mechanism and a position-wise fully connected feed-forward neural

network. The multi-headed self-attention mechanism is used to calculate the relationships

between different positions in the input sequence and is a form of auto-regression. The

fully connected feed-forward neural network is used to enhance the representation, in

which Layer Normalization is used to obtain information about the data. Unlike Batch

Normalization, which calculates the mean and variance for a mini-batch, Layer Normal-

ization obtains the mean and variance for each sample. This has the advantage that the

mean and variance are not affected when targeting a particularly long sequence. Each

sub-layer is linked with residuals using layer normalisation. The output of each sublayer

is:

Output = LayerNorm(x+ Sublayer(x)) (4.1)

Decoder The decoder is similar to the encoder in converting a context vector into an

output sequence. It also consists of a stack of identical layers, each consisting of three sub-

layers: a masked multi-headed self-attention mechanism, a multi-headed cross-attention

mechanism and a fully connected feed-forward neural network. The multi-headed self-

attention mechanism and the fully-connected feed-forward neural network serve the same

purpose as in Encoder. The multi-headed encoder-decoder attention mechanism fuses

the relationship between the context vector and the input sequence to generate the output

sequence better. The main purpose of the mask used in the multi-headed self-attention

mechanism is that information after t should not be seen at time t during decoding. The

self-attention mechanism with a mask does not see information after time t. The masking

effect is achieved by turning all information after time t into 0, thus ensuring that the

training and prediction results are consistent.

Self-Attention The attention function is a function query, key, and value that maps a

query and some key-value pairs into an output. The dimension of the output is the same as

the dimension of value. The self-attention mechanism is the core part of the Transformer

and is used to compute the relationships between different positions in the input sequence.
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In the self-attention mechanism, each position in the input sequence is computed with all

other positions, resulting in a weighted sum vector. The weights are derived by computing

the similarity between the query and the other positions. This calculation allows the model

to capture long-distance dependencies in the input sequence.

In this self-attention, we use dot-product attention, which is easier to implement than

addictive attention. Query and key do dot product. The larger the dot product, the higher

the similarity. The result of the inner product is then divided by
√
dk and softmax to

find the weight, which is a non-negative weight, ranging from 0 to 1. When querying

information with a query, the information distribution is obtained by multiplying the query

and key and then multiplying by the information value to obtain the final attention based

on the query. The formula of self attention is shown as follows.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (4.2)

Multi-head Attention Similar to the filter of CNN, the Multi-Head Self-Attention

mechanism is an extension of the Self-Attention mechanism, which can learn different

representations in different heads and improve the model’s generalisation ability. Specif-

ically, Multi-Head Attention splits the input sequence into multiple sub-sequences, per-

forms the self-attention computation on each sub-sequence separately, concatenates the

computation results and obtains the final representation by a linear layer. Instead of mak-

ing a single attention function, the multi-Head Attention mechanism projects the entire

queries, keys, and values into a d-dimensional hth order attention function. Each func-

tion’s output is concatenated and then projected back to obtain the final output. The reason

for doing a multi-head attention mechanism is that there are not many parameters that can

be learned in dot-product attention, and sometimes more parameters that can be learned

are needed to learn different patterns. Query, key, and values are first projected to a lower

dimension through a linear layer. The projection weights are learnable, split into h parts,

in the hope that different projection weights can be learnt by splitting into h parts, in

the hope that different projection methods can be learnt so that different patterns can be
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matched in the projected metric space. Finally, the h parts are concatenated to make a

single projection, similar to convolutional neural networks with multiple output channels.

MultiHeadMu(Q,K, V ) = Concat (head1, . . . , headh)W
O

where head = Attention
(
QWQ

i , KWK
i , V W V

i

) (4.3)

Embedding Embedding is mapping the input into a vector and learning a vector of

length d to represent it for any sequence. An embedding is required in both Encoder and

Decoder to convert each sample into a vector of equal dmodel length.

Positional Encoding In the attention mechanism, the sequence is not sequential. The

output is a weighted sum of the values. The weight is the similarity between the query and

the key, computed independently of the information in the sequence. The order changes,

but the output does not change. In the RNN model, the RNN uses the output of the

previous output as the input to the next computation. This in itself is a sequence with

sequential information in it. Positional Encoding is a method of encoding positional in-

formation into the input sequence based on some fixed function (3.5) that encodes the

position into a fixed length vector, which is then added to the input vector, thus obtaining

a representation with position information. It is mainly calculated using different periods

using the sin and cos methods. The vector of length dmodel records information about

the current position i, which is then added to the embedding information of length dmodel.

This completes the process of adding the position information to the input.

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (4.4)

Feed Forward The fully connected feed-forward neural network acts once on each sam-

ple, and the transformer has two linear layers put together. The process of transforming

the vector dimension from dmodel1 to dmodel2 and then projecting it back to dmodel1.
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FFN(x) = max (0, xW1 + b1)W2 + b2 (4.5)

4.4.2 ST-InducedTrans Model with Cross-Domain Datasets

The ST-InducedTrans model structure is outlined in Fig. 4.2. In essence, it comprises

three key components: temporal clues, spatial block, and temporal block as we designed

in the previous chapter. These components are designed to capture temporal patterns and

spatial correlations. In this chapter, we not only incorporated supplementary data that

includes spatial information, as well as we simplified the spatial block in the original the

ST-InducedTrans model.

Figure 4.2 : ST-InducedTran Model with Cross-Domain Datasets

Temporal Embeddings In Chapter3, The ST-InducedTrans model incorporates in-

dicative temporal embeddings, such as day-of-week and holiday indicators, recognizing

their impact on cellular traffic patterns, and utilizes a concatenated representation that
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is projected to enable their utilization as temporal embeddings within Transformers. In

this Chapter, the ST-InducedTrans model expands its indicative temporal embeddings to

encompass additional temporal information, including day-of-the-week represented as

numbers from 0 to 6 starting from Sunday, hour-of-day as values ranging from 0 to 23,

binary indicators for weekdays (1 for weekdays, 0 for non-weekdays), and another binary

indicator for weekends and holidays. Recognizing the similar traffic patterns on week-

ends and holidays, the model assigns a value of 1 when the current date falls on either a

weekend or a holiday. For example, at the t-step of 05:00:00 11/05/2013, the respective

temporal embeddings are ‘day-of-week’ (2), ‘hour-of-day’ (5), ‘is-weekdays’ (1), and

‘is-weekend-holiday’ (0). These temporal features are merged with both neighboring and

periodic cellular data before being fed into the temporal block and spatial block. The

combined feature vector forms the temporal embeddings Xte ∈ Rn×4. Through an addi-

tional projection, these embeddings can be transformed to Xte ∈ RN×D (where D remains

consistent across all Transformers) and employed as temporal embeddings in subsequent

Transformers.

Cross-domain Data To represent the concatenation of different cross-domain datasets

(BSs, POIs, and Twitter activities) with the original cellular traffic data, we denote the

combined result as XCross, using the ⊕ symbol to denote the concatenation operation.

This operation signifies the merging of the external spatial information with the original

cellular traffic data. Detailed explanations regarding these cross-domain datasets will be

provided in the upcoming section.

XCross = XBS ⊕XPOI ⊕XSocial (4.6)

Spatial Block

The Spatial Bottleneck Transformer is designed to uncover potential correlations

among various locations within the cellular traffic grid. Recognizing that not all grid

locations are pertinent for prediction in real-world scenarios, this bottleneck structure

efficiently identifies and selects spatial locations crucial for accurate cellular traffic pre-
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diction.

Previously mentioned, the parameter K determining the inducing points within the

bottleneck can be adjusted to reflect practical scenarios, such as city dimensions or grid-

scale considerations. In contrast to the detailed Spatial Bottleneck Transformer discussed

earlier, we’ve streamlined the spatial block. In this adaptation, the Transformer, func-

tioning as an encoder-decoder model, incorporates the Spatial Bottleneck Transformer

module, substituting the original encoder while retaining the decoder in its original form.

Temporal Block Within the Temporal Block, two distinct Transformers are em-

ployed: the Closeness Transformer and the Period Transformer. These specialized Trans-

formers handle the processing of close neighboring data Xc(t) ∈ RN×c×x and periodic

data Xp(t) ∈ RN×c×p×x as detailed in Section 3.

Closeness Transformer: Initially, the close neighboring data is enriched within the

spatial context. Through the Spatial Bottleneck Transformer, the Q most relevant spa-

tial locations are selected and concatenated with the grid’s native data, forming Xaug
c =

RN×(Q+1)×c. This augmented data is then input into the encoder of the Closeness Trans-

former. Simultaneously, the periodic data Xp is averaged to create Xavg
p , which is fed into

the decoder of the Closeness Transformer. The Closeness Transformer primarily handles

close data while also referencing the averaged period data for pertinent insights.

Period Transformer: In contrast, the Period Transformer directly receives the period

data Xp as input to its encoder. On the other hand, the close data Xc serves as reference

information and is input into the decoder. As the period data inherently contains diverse

period patterns, no additional augmentations are necessary. The Period Transformer fo-

cuses on processing the period data while also utilizing close data for relevant contextual

information.

Fusion Once all the individual modules and components are obtained, they are as-

sembled into the comprehensive ST-InducedTrans model (Fig. 4.2). The model’s input

comprises period data, close data, and temporal clues. Notably, the temporal block and

the Spatial block are arranged in a parallel layout to concurrently process this input data.
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To enhance predictive capabilities, a Fusion module, comprising several Multilayer

Perceptron (MLP) layers, is introduced. This Fusion module serves the purpose of amal-

gamating the processed information from both the temporal and spatial pathways, aiming

for improved prediction outcomes.

4.5 Experiments

4.5.1 Dataset

Cellular Traffic Dataset and Key Observations

This research uses a large-scale real-world public telecommunication dataset from a large

telecommunication provider in Italy. They offer two Italian areas: the city of Milan and

the Province of Trentino. The dataset contains several traffic activities in Milan and

Trentino for two months. [10] In our research, we will use the area of Milan, which

consists of 1,000 mesh overlays. The spatial call aggregated detail information within

grids using the following formula:

Si(t) =
∑

v∈Cmap

Rv(t)
Av∩i

Av

(4.7)

The geographical area of Milan is divided into a size of H ×W grids. H and W refer to

the grid’s number of rows and columns. In the dataset of ‘city of Milan’, H = W = 100,

and the whole city is divided into 10000 grids.

Telecom Italia provider provides Call Detail Records. A Radio Base Station is pro-

vided when a user engages in an interaction, including receiving a phone call, making a

phone call, receiving an SMS, sending an SMS and using the Internet. Therefore the data

includes five components: Received SMS, Sent SMS, Incoming Call, Outgoing Call and

Internet. Two-month data containing 300 million records is collected from 2013/11/01

00:00 to 2014/01/01 23:00 (62 days), with an interval of 10 minutes. We further aggre-

gated the data into an interval of 60 minutes (1 hour). In the spatial dimension, the whole

city is divided into 100 × 100 areas and each grid had an approximate size of 235 × 235
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square meters [10].

Figure 4.3 : Milan Grid.

Figure 4.4 : 18:00-19:00 Network Activities

Following are some key observations:

Internet We have selected several Cells to visualise the network traffic data. We have

selected Cell3940 as x, Cell5000 as y and Cell5960 as z. we can see that the daily

network traffic activity shows a clear periodicity, and more periodicity can be considered

in the temporal dimension. Also, in selecting different regional Cells, the variation in

the central area is more pronounced and fluctuates more; for example, Cell1 is not in the

central area and has less variation in magnitude.
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Figure 4.5 : Internet Traffic visualization.

SMS & Call Unlike Internet traffic, SMS and Call traffic patterns are significantly dif-

ferent on weekdays and weekends. In particular, in the central zone, the peak number

of incoming SMS is lower on weekends than on weekdays. The change in the float was

not as pronounced in non-central areas, and the number of incoming SMS messages was

overall smaller in non-central areas than in central areas.

Figure 4.6 : Call in Traffic for two weeks.

Cross-Domain Datasets

Most of the current researchers focus on the spatio-temporal factors, which is the cellular

traffic data itself. However, in order to improve the accuracy of the cellular traffic data,

the importance of the external factors cannot be ignored. In our research, we consider
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Figure 4.7 : SMS in Traffic for two weeks.

three different external data, which are the number of BSs information, POIs distribution

information as well as social activities of each cell.

Base Stations information sourced from Open-CellID, a collaborative project collect-

ing GPS positions of cell towers and their corresponding location area identity [51], offers

valuable data including the longitude, latitude, and mobile country code. Utilizing the

longitude and latitude data of each base station, we integrate the count of base stations

with the original Milan cellular traffic dataset. This integration allows the collection of

the number of base stations for each cell, denoted as X(h,w)
BS . The base station matrix can

be visually represented as the collection of XBS values for each cell, and the base station

matrix can be shown as

XBS =


x
(1,1)
BS x

(1,2)
BS · · · x

(1,W )
BS

x
(2,1)
BS x

(2,2)
BS · · · x

(2,W )
BS

...
... . . . ...

x
(H,1)
BS x

(H,2)
BS · · · x

(H,W )
BS

 (4.8)

We use Google Places API [64] to obtained POIs information. POIs distribution in-

formation includes subway stations, stores, churches, cafe, restaurants and so on. In the

Table 4.1, there are 13 different POIs included. Not all of the POIs have a huge influence

on our cellular traffic prediction. Therefore, we only collect cafes, bars and restaurants,

and then combine other POIs into a different features. Each POI can be denoted as X(h,w)
POI ,
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and the POI matrix can be represented as

XPOI =


x
(1,1)
POI x

(1,2)
POI · · · x

(1,W )
POI

x
(2,1)
POI x

(2,2)
POI · · · x

(2,W )
POI

...
... . . . ...

x
(H,1)
POI x

(H,2)
POI · · · x

(H,W )
POI

 (4.9)

Table 4.1 : Detailed Cross-Domain Datasets

Dataset Type Number

Cellular Traffic SMS / Call / Internet around 300 million

POI Subway station 104658

Store 19748

Restaurant 4666

Bar 3192

Lodging 2922

Hospital 1585

School 1284

Cafe 995

Bank 882

Park 765

Church 512

Parking 392

Library 188

Base Stations GSM / CDMA / LTE 69909

Social Activities Twitter 269290

Social activity information, which represents user movements and user usage for cer-

tain area, is also included as part of our cross-domain dataset. Twitter information is the

main social activity data we obtained from Dandelion API, including the location and

keywords. For each cell, we use X
(h,w)
Social to represent the number of Twitter activities of
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cell (h, w). The social media matrix can be expressed as

XSocial =


x
(1,1)
Social x

(1,2)
Social · · · x

(1,W )
Social

x
(2,1)
Social x

(2,2)
Social · · · x

(2,W )
Social

...
... . . . ...

x
(H,1)
Social x

(H,2)
Social · · · x

(H,W )
Social

 (4.10)

These cross-domain datasets are static datsets, because they do not change over time.

Once they are obtained, they can be fed into our model for training. In this section, we use

heatmaps with 5 layers to represent the original cellular traffic, grids in H × W format,

Base Stations distribution, Social Activities (Twitter), and Points of Interest Distribution.

4.5.2 Baselines

In this section, our main objective is to contrast the refined ST-InducedTrans model with

the original innovative model introduced in Chapter 3. This comparison is especially

pertinent as we have already evaluated several classical and state-of-the-art methods. Ad-

ditionally, the ST-Trans model proposed by Liu et al. (2021) [45] will also be included in

this comparison analysis.

• ST-Trans [45]: The novel aspect of this cellular prediction model lies in its ex-

clusive use of Transformer-based modules throughout. It intricately crafts separate

Transformer-based branches for spatial and temporal processing, amalgamating the

acquired information from these branches at the final stage. This model’s design

entails a Temporal Transformer Block and a Spatial Transformer Block, with the

eventual fusion of the outcomes from these two distinct modules.

• ST-InducedTrans: In ST-InducedTrans, we have engineered a Spatial Bottleneck

Transformer to capture spatial dependencies, aiming to enhance prediction accu-

racy while simultaneously reducing time complexity. This innovation transitions

the computational complexity from quadratic to linear, leading to more efficient

processing while maintaining or improving predictive performance.
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4.5.3 Evaluation metrics

In our comprehensive model evaluation, we employed three extensively used metrics in

time-series and cellular traffic prediction:

• MAE (Mean Absolute Error)

• NRMSE (Normalized Root Mean Squared Error)

• R2 (Coefficient of determination)

For both MAE and NRMSE, lower values indicate better results, with proximity

to zero signifying improved accuracy. Conversely, a higher value for R2 signifies better

model performance.

4.6 Results and Discussions

Our primary contribution in this research involves augmenting the accuracy of cellular

traffic prediction by integrating additional external information. We introduced an en-

hanced model, named ST-InducedTransPlus, which builds upon the ST-InducedTrans

framework. Notably, our model streamlines the spatial block in comparison to ST-

InducedTrans. In our design, we simplified the conventional spatial transformer within the

spatial block and adjusted certain parameters within the spatial bottleneck transformer to

enhance efficiency. Notably, our spatial bottleneck transformer comprises both encoders

and decoders, allowing for more efficient processing while preserving predictive accuracy.

In Table 4.2, our experiments involved various combinations, incorporating temporal

embeddings and additional spatial information encompassing Base Station distributions,

Point of Interests distributions, and social activities. These experiments were conducted

across two primary models: ST-Trans [45] and ST-InducedTransPlus. The findings from

our experiments indicate the substantial impact of XCross on improving cellular traffic

prediction accuracy. Notably, the accuracy improvements were observed in both the ST-

Trans and ST-InducedTransPlus models. The most promising outcomes were observed
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Table 4.2 : Different External Combination in Transformers

Combination MAE NRMSE R2

ST-Trans 10.0244 0.5388 0.8273

ST-Trans + XTE 9.91146 0.54215 0.82519

ST-Trans + XCross 9.84599 0.51274 0.83197

ST-Trans + XTE + XCross 9.88978 0.53153 0.84364

ST-InducedTransPlus 9.89902 0.52308 0.83727

ST-InducedTransPlus + XTE 9.94422 0.53959 0.82683

ST-InducedTransPlus + XCross 9.79733 0.52778 0.83433

ST-InducedTransPlus + XTE + XCross 9.76610 0.51406 0.84283

in the streamlined ST-InducedTrans model, particularly when incorporating temporal em-

beddings and cross-domain datasets.

4.7 Conclusion

In conclusion, the enhancements introduced in this chapter significantly elevate the pre-

dictive capabilities of the ST-InducedTrans model in cellular traffic data analysis. By

integrating temporal embeddings and cross-domain datasets comprising diverse static in-

formation gathered from various APIs, this study achieves notable improvements in pre-

diction accuracy. The strategic concatenation of these datasets and embeddings with the

cellular traffic data, coupled with the streamlined approach to spatial block simplification,

demonstrates a substantial positive impact on prediction performance. Through rigor-

ous experimentation utilizing public real-world datasets and comprehensive assessments

involving varied combinations and baseline models, this work substantiates the effective-

ness of these enhancements in advancing the predictive power of the ST-InducedTrans

model, presenting a promising avenue for further advancements in spatiotemporal data

analysis and forecasting.
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Chapter 5

Conclusion

5.1 Summary

Cellular traffic forecasting is of significant importance in the telecommunications indus-

try, including network optimization, capacity planning, resource management, service

quality, and energy preparation. Accurate cellular traffic prediction can assist in effi-

ciently allocating resources, reducing congestion, and enhancing overall network perfor-

mance. Predicting cellular traffic aids in capacity planning for network infrastructure,

which enables telecom operators to anticipate future demands and make necessary up-

grades or expansions to handle increased traffic. During natural disasters or unexpected

events, accurate forecasts assist in managing network loads, prioritizing services, and en-

suring communication continuity.

Research on cellular traffic forecasting has seen significant advancements in utilizing

various methodologies, including statistical methods, machine learning, deep learning,

including transformer-based approaches.

Traditional statistical models like ARIMA (AutoRegressive Integrated Moving Aver-

age), Exponential Smoothing, and Seasonal Decomposition have been historically used

for cellular traffic forecasting. While these methods provide a good baseline, they might

struggle to capture complex nonlinear patterns and relationships present in modern cellu-

lar networks.

Machine Learning techniques have gained popularity due to their ability to capture

nonlinear relationships and handle large volumes of data. Algorithms such as Support

Vector Machines (SVM), Random Forests, Gradient Boosting, and Regression models

have been applied to predict cellular traffic patterns. Feature engineering and selection
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are crucial in enhancing the performance of these models.

Deep Learning methods, particularly recurrent neural networks (RNNs) and Long

Short-Term Memory networks (LSTMs), have shown promise in modeling temporal de-

pendencies and sequential patterns in cellular traffic data. LSTMs, specifically, are adept

at capturing long-term dependencies and have been used to forecast network traffic with

varying success rates. Transformer architectures, such as the Transformer model origi-

nally introduced for natural language processing (NLP), have recently been adapted for

time series forecasting tasks. Variants like the Temporal Fusion Transformer (TFT) and

other transformer-based models have shown remarkable capabilities in capturing complex

temporal relationships, handling multiple seasonalities, and achieving state-of-the-art per-

formance in various time series forecasting tasks, including cellular traffic prediction.

The core contribution of this thesis is to propose a novel model called ST-

InducedTrans, which is a transformer-based model to improve the efficiency of the calcu-

lation whereas improve the accuracy of the cellular traffic results. Based on the existing

model, we also add extra external factors into the cellular traffic data to improve the ac-

curacy of the prediction results.

In Chapter 3, we introduced the novel concept of Spatial Bottleneck Transformer on

how to eliminate the quadratic scaling problem of all-to-all attention of a vanilla Trans-

former and decouple the network depth from the input’s size, allowing us to construct

very deep models. In our model, there are two main blocks: Temporal Blocks, where we

embed the elaborately selected temporal clues into a temporal Transformer to offer useful

temporal prompts for cellular prediction; Spatial Blocks, which are designed to extract

the possible correlations among all locations in the cellular traffic grid. Our novel model

has reduced the quadratic scaling problem of Transformer to a linear complexity problem.

Based on the novel model proposed in Chapter 3, the main target of Chapter 4 is to

improve the accuracy of cellular traffic prediction by adding extra cross domain datasets,

including base station information, POIs distribution and social activities data. Mean-

while, we also consider temporal meta data as part of the prediction model to improve

63



CHAPTER 5. CONCLUSION

the prediction accuracy. In Chapter 4, we consider the effectiveness of the cross domain

datasets into two different models: Vanila Transformer and ST-InducedTrans. Inspired by

the success of ST-InducedTrans model, combining extra cross domain dataset and meta

data can provide more dimensions to improve the accuracy of the datasets.

The effectiveness of the proposed model and result has been published in [62].

5.2 Challenges and Future Work

For the future work, the research presented in this thesis can be extended in the following

directions.

Currently, all the work we have conducted is based on the city area of Milan rather

than the whole area of the geographical area. In Chapter 3, ST-InducedTrans model has

improved the efficiency of predicting cellular traffic data. The future of cellular traf-

fic forecasting aims to extend its scope beyond city-wide areas to predict and manage

traffic on a large geographical scale, potentially covering regions. Future research will

likely focus on developing models capable of making macroscopic predictions that cover

larger geographical regions. This involves understanding and forecasting traffic patterns

acrossed diverse terrains, population densities and regional variations.

In Chapter 4, we considered kinds of cross-domain datasets to enhance the accuracy

and granularity of forecasts for larger geographical areas and some other sources of big

data can be included, such as satellite imagery, weather patterns, and economic indica-

tors. Integrating satellite data and remote sensing technologies could provide valuable

insights into geographical features, infrastructure, and population density, aiding in the

development of more accuerate predictive models for larger areas.

To predict larger geographical areas, hierarchical forecasting models might be de-

veloped. These models could use a multi-level approach, where predictions are made at

various levels of granularity, such as country-wide, regional, and local levels, allowing for

a comprehensive understanding of traffic dynamics. As the scale of data collection and
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analysis increases, ensuring privacy and addressing ethical concerns related to the collec-

tion and use of extensive geo-location data will be crucial aspects of future research.

In conclusion, future research in cellular traffic forecasting for larger geographical

areas will focus on leveraging diverse datasets, and advanced modeling techniques to

develop robust predictive models capable of handling the complexities of vast regions.
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