
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Intelligent Context-aware Fog Node Discovery
and Trust-based Fog Node Selection

by

Afnan Abdulrahman Bukhari

A Thesis Submitted

in Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Under the supervision of

Professor Farookh Khadeer Hussain

Sydney, Australia

April 2024



Certificate of Original Authorship

I, Afnan Bukhari, declare that this thesis is submitted in fulfilment of the require-

ments for the award of PhD in the School of Computer Science / Faculty of Engi-

neering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Pro-

gram.

Signature:

Date: 01/04/2024

Production Note:

Signature removed prior to publication.



ABSTRACT

Intelligent Context-aware Fog Node Discovery and Trust-based Fog

Node Selection

by

Afnan Abdulrahman Bukhari

In today’s highly advanced technological age, edge devices are widely used. By

2030, Cisco predicts that more than 500 billion edge devices (also known in this

research as fog consumers) will be in use [1]. Data from all these devices may

experience significant delays when handled, processed and stored through cloud

computing. To resolve this issue, fog computing is the best solution. With fog com-

puting, processing, storage, and networking are brought to the edge of the network

near fog consumers. This reduces latency, network bandwidth, and response times.

Researchers have yet to address the critical challenge of identifying and selecting a

reliable and relevant fog node to fog consumers. The existing approaches consider

the discovery and selection of fog nodes based on the networking point of view. How-

ever, no approach addresses the use of AI-driven mechanisms for intelligent fog node

discovery and selection. This research aims to propose an intelligent and distributed

framework for context-aware fog node discovery and trust-based fog node selection.

This research aims to discover the closest fog nodes in a context-aware manner and

select a reliable fog node based on the trust value. The proposed approach is based

on the distributed Fog Registry Consortium (FRC) between fog consumers and fog

nodes that can facilitate the discovery and selection processes of fog nodes. To en-

sure that the tasks from the fog consumer are processed in a timely manner, one

of the crucial aspects to consider for fog node discovery is the geographic distance

between the fog node and the fog consumer as this directly impacts latency, re-



sponse time, and bandwidth usage for fog consumers. Thus, location-based context

awareness is one of the key decision criteria for fog node discovery to ensure that

the QoS metrics are satisfied. In this research, we propose the Fog Node Discovery

Engine (FNDE) within the Distributed Fog Registry (DFR), within FRC, as an

intelligent and distributed fog discovery mechanism which enables a fog consumer

to intelligently discover fog nodes in a context-aware manner. In this research, the

KNN, K-d tree and brute force algorithms are used to discover fog nodes based on

the location-based context-aware criteria of fog consumers and fog nodes. Fog node

selection is a crucial aspect in the development of a fog computing system. It forms

the foundation for other techniques such as resource allocation, task delegation, load

balancing, and service placement. Fog consumers have the task of choosing the most

suitable and reliable fog node(s) from the available options, based on specific crite-

ria. This research presents the intelligent and reliable Fog Node Selection Engine

(FNSE), which is an intelligent method to assist fog consumers to select appropriate

and reliable fog nodes in a trustworthy manner. This intelligent mechanism predicts

the trust value of fog nodes to help the user select a reliable fog node based on its

trust value. Our selection approach is based on the trust value of the fog node based

on the values of the QoS factors. If the fog node has historical information of the

QoS factors provided to this fog node, then the Trust Evaluation Engine (TEE) in

the FNSE is responsible to carry out the prediction of the trust value. With the trust

value of fog nodes, the FNSE will be able to rank the fog node to select the most

reliable fog node in the network. We propose three mechanisms: the TEE mech-

anism based on fuzzy logic, the TEE mechanism based on logistic regression, and

the TEE mechanism based on a deep neural network. However, if the QoS values

of the fog node are unknown, this means the FNSE is unable to make a meaningful

selection of fog nodes. To solve the problem of the cold-start fog node, we propose

the Bootstrapping Engine (BE) which is an intelligent trust-based fog node boot-

strapping framework. This framework is designed to address the cold-start problem

in fog computing environments which enables fog consumers to make informed and

trustworthy decisions when selecting fog nodes for their applications. To address this

challenge, the BE employs two key modules, namely the QoS prediction module and



the reputation prediction module. The QoS prediction module utilizes the k-means

clustering and KNN algorithms to predict the initial QoS values of new cold-start

fog nodes. Additionally, within the reputation prediction module, we propose three

AI methods to achieve the best performance and prediction results, namely fuzzy

logic-based reputation prediction, regression-based reputation prediction, and deep

learning-based reputation prediction to predict and evaluate the trust value of the

new cold-start fog nodes. Finally, we present the simulation of the framework and

the evaluation results of each proposed engine which highlight the best performance.
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Chapter 1

Introduction

1.1 Introduction

The purpose of this chapter is to introduce the thesis and provide an overview of

the research. Initially, it discusses fog computing and its significance, highlighting

the limitations in cloud computing and edge computing compared with fog comput-

ing. The unique characteristics and architecture of fog computing are also discussed.

Section 1.2 presents the background of this research, delving into the fundamentals

of fog computing. In Section 1.3, the statement of the problem addressed in this

thesis is explained, highlighting the key challenges in fog node discovery and selec-

tion. Furthermore, Section 1.4 outlines the research objective and scope, shedding

light on the specific goals and boundaries of the study. In Section 1.5, the scientific

and social significance of this thesis is detailed, elucidating the novel contributions

and broader impact of the proposed research. In Section 1.6, the thesis structure is

outlined, together with a description of the chapters to follow.

1.2 Background

The exponential growth of the Internet of Things (IoT) devices has led to an

unprecedented increase in data generation at the network edge. Traditional cloud

computing, while powerful, faces limitations in dealing with the sheer volume and

low-latency requirements of IoT data. Edge computing seeks to alleviate this by

bringing computation closer to the data source, enabling faster response times and

reduced data transmission to the central cloud. However, edge computing also has
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its limitations. It often operates under resource-constrained conditions, with limited

processing power and energy resources. This limitation hinders the seamless execu-

tion of resource-intensive applications, potentially resulting in service degradation

or ine�ciencies in data processing [2].

Fog computing has emerged as a promising paradigm to overcome the limitations

of traditional cloud computing and edge computing. Fog computing extends the

cloud’s capabilities by distributing computing and storage closer to the edge of

the network. This proximity to end-users enables fog computing to address the

challenges of latency, network congestion, and real-time data processing, making it a

critical enabler for emerging technologies such as IoT, smart cities, and autonomous

systems [3] [4]. Fog computing implementation is as an intermediary between edge

devices as we called them (fog consumers) and the cloud, filling the gap between their

respective capabilities. By deploying fog nodes at strategic locations in proximity

to fog consumers, fog computing facilitates e�cient data processing and analysis

closer to the source. This distributed architecture not only reduces the burden on

the cloud but also improves the overall system’s responsiveness and scalability [5].

Edge computing and fog computing are architectures that di↵er from the central-

ized cloud computing architecture, as they are hierarchical, decentralized, and dis-

tributed. Both edge computing and fog computing are designed to provide services

in close proximity to end users, making them ideal for latency-sensitive applications.

In edge computing, the services are located directly on edge devices, which are the

closest to the end users. However, due to the limited resources of edge devices, they

may struggle to handle multiple IoT applications simultaneously, leading to resource

contention and increased processing latency [6] [3].

On the other hand, fog computing is situated in network edge devices, which

are a single or few network hops away from the edge. It seamlessly integrates
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edge devices with cloud resources, thereby overcoming the limitations faced by edge

computing. By coordinating the use of geographically distributed network edge

devices and leveraging cloud resources, fog computing optimizes resource utilization

and avoids resource contention at the edge. Although both edge computing and

fog computing have the same goal of providing services close to end users, they

have underlying di↵erences. Edge computing faces resource constraints, limiting its

ability to handle multiple IoT applications, while fog computing e↵ectively addresses

these limitations by integrating edge devices and cloud resources. This allows fog

computing to balance the use of resources and improve overall resource utilization

e�ciently [4] [7] [2].

Fog computing has several unique characteristics that set it apart from other

computing paradigms [3] [8] [7]. These characteristics include:

1. Proximity to edge devices: Fog nodes are located closed to the edge de-

vices. This characteristic enables the fog to support latency-sensitive applica-

tions that need real-time processing.

2. Real-time interactions: Fog nodes ensure real-time service delivery which

decreases latency and overloading the network.

3. Low latency: Fog nodes decrease latency and response time by processing

data close to the edge devices, which decreases data transmission as well.

4. Edge analytics: Fog nodes analyse data locally instead of sending them to

the cloud.

5. Scalability: Fog computing is designed to scale e�ciently, supporting a large

number of edge devices and data streams. This scalability makes it suitable

for handling the massive influx of data generated by the growing number of

IoT devices.
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6. Context awareness: Fog computing is context aware, meaning it takes into

account factors such as location, network conditions, and user requirements

when processing data. This context awareness enables adaptive and optimized

data processing based on specific conditions.

7. Heterogeneity: Fog computing supports a wide range of devices with varying

computational capabilities, communication protocols, and storage capacities.

This heterogeneous nature allows fog nodes to cater for diverse application

needs and integrate with di↵erent types of edge devices.

The fog computing paradigm consists of three layers, namely the edge layer, the

fog layer and the cloud layer [4] [9] [10] as shown in Figure 1.1.

1. The edge layer: The edge layer includes end users or edge devices. In this

research, these edge devices are called fog consumers, so the fog consumer is

any end entity that connects to a fog node and uses the fog service. The entity

could be an individual user, application or edge device such as an IoT device

[4] [10].

2. The fog layer: The second layer is the fog layer where the fog nodes are

located and consists of several distributed static or dynamic fog nodes. Fog

nodes can process, store, and analyze data locally, reducing latency and im-

proving performance. Fog nodes can be any device with su�cient capacity,

computing power, and energy power such as PCs, servers, smart access points,

intelligent gateways, routers, etc. Fog nodes provide a large amount of storage

and fast computing capabilities [4] [10].

3. The cloud layer: The cloud layer is the top-most layer that includes powerful

servers and storage devices. This layer has very high-power computing and
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storage capabilities. It provides permanent storage for a massive amount of

data and undertakes pervasive computation analysis [4][10].

Figure 1.1 : Fog computing architecture

While the fog computing paradigm holds promise, it also comes with its own set

of challenges [11]. In addition to the issues inherited from cloud computing, there

are specific fog-specific concerns to consider:

1. Security and Privacy:

How can data be kept secure in the fog network? How should fog nodes ensure

the security and privacy of data in the fog network? With data being processed

at the edge, there is a higher risk of unauthorized access and data breaches. Fog

nodes processing data from multiple sources must address privacy concerns.

Ensuring data anonymization and access control is essential to protect the

privacy of users and organizations [3] [11].
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2. Resource management:

There are various challenges involved in discovering fog resources, determin-

ing endpoints, allocating resources, and sharing resources in a network. These

challenges also apply to fog architecture. Fog resource management is one of

the most critical issues, as it determines how analytics application modules

are distributed across individual edge devices to maximize performance and

minimize latency. It is therefore necessary to develop a platform to evaluate

the performance of fog resource management policies on fog computing infras-

tructures. The use of such a platform will enable fog resource discovery and

allocation to be optimized, ensuring optimal task distribution and enhancing

fog computing e�ciency [3].

3. Trust evaluation:

There are various metrics that are collected and analyzed to determine the

trustworthiness of fog resources, including past performance, quality of ser-

vice (QoS), and user feedback. Reliable fog resource selection will depend on

the development of e�cient and accurate trust evaluation mechanisms. Imple-

menting robust trust evaluation mechanisms is essential to assess the reliability

and reputation of fog resources.

Fog node discovery (FND) plays a crucial role in fog computing systems as it

enables the identification and availability of suitable fog nodes within the network.

The dynamic nature of fog computing environments, characterized by the addition

and removal of nodes and the mobility of devices, necessitates e�cient mechanisms

for node discovery. Discovering fog nodes in a timely manner is essential for achieving

e�cient workload distribution, fault tolerance, and resource optimization [12]. By

dynamically identifying suitable fog nodes with the right capabilities, proximity, and

context awareness, FND enhances resource utilization, reduces latency, and ensures
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reliable and e�cient fog-based services across various industries and applications

[12].

Moreover, e�cient fog node selection (FNS) plays a pivotal role in fog computing

systems for optimal resource utilization and workload distribution. The selection of

appropriate fog nodes helps in maximizing the overall system performance by ensur-

ing that computational tasks are allocated to the most suitable resources. Factors

such as fog node proximity, computational capabilities, and trustworthiness need to

be considered during the future of the FNS process.

1.3 Statement of Problem

The research problem addressed in this thesis revolves around the challenges in

FND and FNS within fog computing environments. Specifically, we aim to tackle

the complexities of dynamically identifying and selecting appropriate fog nodes

for e�cient data processing, task allocation, and resource utilization. The chal-

lenges include handling the dynamic and heterogeneous nature of fog environments,

context-aware FND, ensuring trustworthiness and reliability in fog nodes for FNS,

minimizing latency, and optimizing system performance while considering resource

constraints and security concerns. We formally describe the research problem in

chapter 3.

1.4 Research Objective ans Scope

The objective of this thesis is to address the challenging issues of FND and FNS

within fog computing ecosystems. To achieve this, the research aims to develop

the FRC framework on the top of fog computing for an intelligent context-aware

decision-making mechanism and intelligent trust evaluation technique. The goal is

to propose an intelligent, distributed, context aware and reliable approach to opti-

mize the overall performance of the fog computing ecosystem. One of the critical
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problems is discovering relevant fog nodes that satisfy the fog consumer’s require-

ments, considering factors like geographic distance, and context awareness. In ad-

dition, the research focuses on helping fog consumers select trusted fog nodes with

verified reliability and capability to ensure timely and e�cient task completion. By

advancing the field of fog computing through a novel distributed framework and

intelligent algorithms, this research has implications for enhancing e�ciency and

e↵ectiveness across various industries, where fog computing plays a pivotal role in

handling diverse data streams related to the IoTs. Ultimately, academia, industry,

and society will benefit from improved fog computing capabilities and its practical

applications.

1.5 Significance of the Thesis

This thesis makes several scientific and social contributions.

1.5.1 Scientific Contributions

The scientific contributions of this thesis are as follows:

1. The integration of the FRC framework enhances communication and collab-

oration among fog nodes. This framework enables e�cient fog resource man-

agement and task allocation within fog computing environments.

2. This research is the first of its type to explore the use of an intelligent AI-

driven approach for context-aware FND. There is no approach in the existing

literature for context-aware FNS.

3. This research is the first of its type to explore the use of a trust-based mech-

anism for FNS.

4. This research proposes and validates an intelligent approach for bootstrapping

new fog nodes into the fog environment. There is no prior work in the extant
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literature on bootstrapping new fog nodes in the fog ecosystem.

5. This research introduces innovative algorithms and architectures for intelli-

gent FND and FNS. The proposed techniques provide valuable insights into

addressing the complexities of fog computing environments and optimizing

resource usage.

1.5.2 Social Contributions

The social contributions of this thesis are as follows:

1. This research will help fog-driven businesses in multiple sectors such as health,

manufacturing, mining, transportation, etc. by enhancing operational e�-

ciency, enabling real-time decision-making.

2. This research will help fog consumers to make trustworthy QoS-based assess-

ments and discover fog nodes in a context-aware manner. This will increase

the confidence of the fog consumers in using the fog node and its service.

3. This research contributes to the academic community by advancing the state-

of-the-art in fog computing. It introduces a novel framework that can serve

as a foundation for further research in the field. Researchers can build upon

these findings to explore new directions in context-aware FND and trust-based

FNS to enhance the performance of fog-based applications.

4. The implications of this research extend to various industries that rely on

fog computing to process data and make decisions e�ciently. It can be used

in healthcare, transportation, smart cities, and manufacturing industries to

optimize resource utilization, reduce latency, and improve the reliability of

fog-based services. By leveraging these advancements, industries can enhance

their operational e�ciency and provide better services to their customers.
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The significance of this thesis lies in its novel contributions to the field of fog

computing, which not only advance the state-of-the-art but also have broader impli-

cations for various industries and the academic community. The proposed intelligent

context-aware FND and trust-based FNS approaches enhance the performance of

fog computing systems, making them more e�cient, reliable, and socially impactful

across di↵erent domains and applications.

1.6 Thesis Organization

This thesis is organised into nine chapters as shown in Figure 1.2. The current

chapter introduces fog computing and the challenges associated with it. Further-

more, the significance of this thesis is briefly presented. The social and scientific

contributions are also briefly overviewed. The subsequent chapters of this thesis are

structured as follows:

Chapter 2: Chapter 2 provides an extensive review of the existing methods

for FND and FNS in the current literature. In this chapter, the sub-tasks of FND

and FNS are categorized into the di↵erent criteria that they should meet to satisfy

their requirements. The existing literature on FND and FNS is identified, and a

comparative analysis is undertaken to determine if they consider or address the

defined criteria required for FND and FNS. The shortcomings are identified in the

existing approaches based on the comparative analysis and these are presented as

open issues for future research directions in FND and FNS.

Chapter 3: In Chapter 3, a formal definition is presented for each of the prob-

lems that will be explored in this thesis. Key terminologies and keywords used

throughout the thesis are also clarified in this chapter. The main research problem

is meticulously outlined, and it is further divided into four research issues, which

emerged from the existing literature. From these research issues, specific research

questions and objectives are formulated to underscore the importance and relevance
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of this study.

Chapter 4: Chapter 4 briefly highlights the proposed FRC framework. Chapter

4 presents an overview of the solution to each of the issues identified in Chapter 3.

Chapter 4 also points to the chapters which elaborate on the detailed solutions for

the identified research issues.

Chapter 5: Chapter 5 explains in detail the proposed solution of developing the

architecture of the FRC and its pivotal role. This chapter elaborates in detail the

activities of the FRC. The working steps of the FRC are explained. Furthermore,

Chapter 5 presents the implementation and prototype setup of the FRC.

Chapter 6: Chapter 6 presents a comprehensive explanation of our intelligent

approach to discovering fog nodes in a context-aware manner, particularly focusing

on location-based considerations. This chapter thoroughly discusses the framework

of the FNDE, o↵ering insights into its structure and functionality. The working steps

of FNDE is thoroughly explained, accompanied by a detailed algorithm outlining

its operation. Additionally, Chapter 6 presents the implementation details of the

FNDE framework, discussing the setup and configurations. Extensive experiments

and the evaluation process are discussed in detail and the results are analyzed and

presented in this chapter.

Chapter 7: Chapter 7 focuses on the detailed solution for an intelligent method

aimed at predicting the trust value of fog nodes. Chapter 7 presents the intelligent

and reliable FNSE for FNS. This chapter elaborates on the architecture of the TEE

framework, providing valuable insights into its design and components. Further-

more, the chapter covers the implementation details of the TEE framework and the

prototype setup used for validation. In addition, the comprehensive experiments

and the results are detailed and analyzed.

Chapter 8: Chapter 8 presents a comprehensive solution for an intelligent ap-
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proach aimed at predicting the trust value of fog nodes and facilitating the boot-

strapping of new fog nodes with unknown QoS. In detail, the chapter thoroughly

explains the architecture of the BE framework, providing a clear understanding of

its design and components. Moreover, the implementation of BE, along with the

prototype setup used for practical validation, is thoroughly described.

Chapter 9: Chapter 9 summarizes the thesis and potential future research

directions are explored.
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Figure 1.2 : Thesis structure
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Chapter 2

Literature Review

2.1 Introduction

This chapter overviews the existing literature on FND and FNS. Section 2.2

provides the background of fog computing while Section 2.3 outlines the key re-

quirements for FND and FNS, and compares the existing literature. Section 2.4

discusses the process adopted to conduct the systematic literature review (SLR) and

the shortlisted papers that match the query result. Section 2.5 presents a critical

analysis of the existing FND approaches and highlights their shortcomings in meet-

ing the requirements defined in Section 2.3. Similarly, Section 2.6 critically evaluates

the existing FNS approaches and identifies the gaps in fulfilling the requirements

defined in Section 2.3. Section 2.7 discusses the limitations of the existing FND

and FNS approaches that need to be addressed. Finally, Section 2.8 concludes the

chapter by summarizing the key findings and implications of this review.

It is important to note that the content of this chapter has been previously

published in the journal Future Generation Computer Systems [10].

2.2 Background of fog computing

There has been constant growth in the number of IoT devices over the past

decade. According to Cisco, this growth will continue and it is estimated that

there will be more than 500 billion IoT devices by 2030 [6]. While these devices

(also known as edge devices) generate a massive amount of data, they lack the

capability to process it. Such processing is done in a centralized cloud environment,
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where the data from the edge devices is transferred to them, processed and then

sent back. However, the cloud environment has network bandwidth limitations

which may increase latency and response time, resulting in delays [13]. To address

these drawbacks, fog computing, in which the computations are done by virtualized

or non-virtualized devices, has been proposed as an extension to cloud computing

[4]. As shown in Figure 1.1, a fog computing paradigm consists of three layers,

namely the edge layer, the fog layer and the cloud layer. The edge layer includes

devices such as sensors, actuators, smart devices, etc. (termed edge devices) from the

physical environment. The fog layer is the intermediate layer and consists of several

distributed static or dynamic fog nodes. Fog nodes can be virtual units like virtual

machines or physical units such as PCs, servers, smart access points, intelligent

gateways, routers, etc. [14]. The cloud layer is the top-most layer that includes

powerful servers and storage devices [15]. In fog computing, the raw data from the

edge devices are captured in the edge layer and transferred to the fog layer. The fog

node closest to the edge devices processes the task and sends the response back while

also updating the results in the cloud layer. Such processing and communication

between the three layers of fog computing assist in processing latency-sensitive,

context-aware and real-time applications, thereby ensuring scalability, decreasing

latency and response time while saving bandwidth [6] [15] [16].

A fog service is defined as an association between an edge device and a fog node

in which the edge device uses the fog node’s computing resources to process its

task. Given the benefits of fog computing in processing resource-constrained and

time-critical applications, researchers have worked on di↵erent aspects needed to

facilitate a fog service. For example, techniques have been proposed for resource

provisioning [15], resource management [16], task o✏oading [17] [18] [19], load bal-

ancing [13], service placement [20] [21] etc. Researchers have also looked at ensuring

the privacy and security of the fog service environment [22] [23][24]. However, all
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these techniques focus on the processing stage of the fog service. We define the

processing stage as that in which the edge device’s tasks are processed by the fog

nodes. While this is an important stage of the fog node, a pre-requisite for this stage

to be successful is the choice stage, in which the edge devices select appropriate fog

node/s among those available with which to form a service. The choice stage of the

fog node can further be sub-divided into two sub-tasks, namely FND and FNS. FND

is a process of finding the relevant fog nodes from the available ones that satisfy the

edge device’s requirements. This is an important step as not all available fog nodes

will satisfy the specific characteristics needed by the edge devices. If these are not

considered during the selection process, it will result in selecting a fog node that

does not meet the requirements of the edge device and will thus negatively impact

the QoS being delivered during the processing stage of the fog node. Once the rele-

vant fog nodes have been discovered in the FND, then the sub-task of FNS selects

the best-suited fog node/s from those available that satisfy the required criteria.

Thus, FND in combination with FNS assists in meeting the objectives of the choice

stage of the fog node which thereby assists in completing the processing stage of the

service according to the QoS requirements. Table 2.1 shows a selected snapshot of

recent survey articles published in the area of fog computing. From the analysis,

we can see that while researchers have surveyed the role of di↵erent focus areas in

facilitating fog computing, their primary focus is on the processing stage of the fog

node in general and not on the tasks of analysing which methods and approaches

have been used for FND or FNS. This makes it di�cult to identify the progress

that has been made in these tasks. In this chapter, we attempt to address this by

carrying out a SLR in the area of FND and FNS. By doing so, we aim to identify

the research gaps and outline future open issues and challenges.
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Table 2.1 : A comparison of existing survey articles on fog computing to identify

whether they focus on FND and FNS.

Articles Year of

publica-

tion

Do they

focus on

FND?

Do they

focus on

FNS?

Area of focus

Mouradian et al.

[25]

2018 No No Architecture and algo-

rithms of fog system

Sabireen and

Neelanarayanan

[26]

2021 No No Fog system algorithms

Yi et al. [27] 2015 No No Fog computing

Bellavista et al.

[28]

2018 No No Fog system solutions

Lan et al. [29] 2019 No No Fog programming

Kaur and Aron

[30]

2020 No No Load balancing

Yousefpour et al.

[31]

2019 Yes No Fog computing

Nayeri et al. [32] 2021 No No Application placement

Islam et al. [33] 2021 No No Context-aware scheduling

Bakhshi et al.

[34]

2019 No No Dependability in fog com-

puting
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Articles Year of

publica-

tion

Do they

focus on

FND?

Do they

focus on

FNS?

Area of focus

Hurbungs et al.

[35]

2021 Yes No Partitioning and o✏oading

tasks, sustainable energy

consumption, edge analyt-

ics, edge security, edge node

and data discovery, edge

quality of service.

Pandeeswari and

Padmavath [36]

2020 No No Fog computing architecture

Caiza et al. [37] 2020 No No Architecture, security, la-

tency, energy consumption

Perera et al. [38] 2017 No No Fog computing

Khalid et al. [39] 2019 No No Privacy preserving and ac-

cess control

Puliafito et al.

[40]

2019 No No Application domain

Sadique et al.

[41]

2020 No No Trust management

Parveen et al.

[42]

2020 No No Fog computing challenges
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Articles Year of

publica-

tion

Do they

focus on

FND?

Do they

focus on

FNS?

Area of focus

Singh et al. [43] 2021 No No Fog system development,

fog metrics,

fog platforms, fog frame-

works

Naha et al. [4] 2018 No No Fog infrastructures, fog

platforms, fog applications

Ogundoyin and

Kamil [44]

2021 No Yes Optimization algorithms in

fog computing

Ghobaei-Arani

et al. [16]

2019 No No Resource management

Zhang et al. [24] 2018 No No Security and trust

2.3 Key requirements to consider for FND and FNS

As discussed in the previous section, the discovery and later selection of the right

fog node are precursors that need to be satisfied to achieve the desired outcomes of

a fog service. To meet these precursors, there are various requirements that need to

be considered during FND and FNS, as follows:

FND1 - Location-Awareness: To ensure that the tasks from the edge devices

are processed in a timely manner, one of the crucial aspects to consider for FND is

the geographic distance between the fog node and the edge devices as this directly

impacts latency, response time, and bandwidth usage [45]. Thus, location-awareness
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should be one of the key decision criteria for FND to ensure that the QoS metrics

are satisfied.

FND2 - Context-awareness: Context is a multi-attribute requirement that cap-

tures the identity of the fog nodes, their capability, profile and the time at which

they are available. Capturing these attributes of a context for FND is very impor-

tant to filter out the nodes that do not match the requirements to prevent them

from being considered further [46].

FND3 - Edge-device characteristics: Edge devices may deal with time-critical

applications but have limited time and energy left. In such a case, if they form a

fog service, the edge devices need to ensure that it is possible to return the required

processed task in light of the available network performance, bandwidth and latency

constraints. So, these constraints must be considered during the process of FND

[47].

FND4 - Intelligent matching: The context-specific nature of a fog node should

be matched with the type of task/s required by the edge devices. This is to ensure

that only those fog nodes that have the computing capacity to meet the edge device

requirements are considered further in the selection stage. This requires balanc-

ing the di↵erent constraints of the edge device requirements to the context-specific

nature of the fog nodes [47].

FND5 - Proven to perform in a real-world setting: The FND approach should be

proven to work in a real-world environment either through simulation experiments or

real-world experiments. This is important to ensure that the output recommended

by the model can be trusted.

Similarly, the requirements to be considered during FNS are as follows:

FNS1 - Informed selection: Similar to the discovery process, there may be more

than one fog node that has the capability to meet the requirements of the edge device.
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The recommended fog node should be one that balances the di↵erent constraints to

ensure that the QoS requirements related to network performance, available band-

width, latency, and energy consumption are met [47].

FNS2 - Trustworthy: An edge device selects a fog node based on the trust that

its tasks will be processed and delivered in the required time frame. In other words,

it selects a fog node in the belief that it will deliver on its promised outcomes [48].

So, a key requirement to consider for FNS is the past capability of a fog node in

meeting its expectations and utilizing it in the future selection decisions.

FNS3 - Timely output: The fog node recommended from the FNS should be such

that it has the capacity and capability to give timely output to ensure that edge

devices are able to deal with time-critical applications despite their limited energy.

FNS4 - Proven to perform in a real-world setting: The FNS approach should be

proven to work in a real-world environment either through simulation experiments or

real-world experiments. This is important to ensure that the output recommended

by the model can be trusted.

In the following sections, we determine whether the requirements detailed in

FND1-FND5 and FNS1-FNS4 are used in the workings of the existing approaches

for fog discovery and fog selection. In the next section, we discuss the process

adopted to identify the related papers from the literature.

2.4 Process adopted to identify papers for SLR

SLR is a helpful method to understand and summarize the solutions proposed

in an area by performing a critical appraisal of the current work. It also assists

in identifying the open issues that remain unsolved in that area [49]. This SLR

was conducted between 2019-2023. Undertaking an SLR consists of several steps as

follows:
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Step 1: Searching the literature according to the scope of the search process.

Step 2: Applying inclusion and exclusion criteria for selection.

Step 3: Study selection process.

Step 4: Data extraction and synthesis.

Figure 2.1 represents the Selection process of the SLR.

Figure 2.1 : Schematic representation of the selection process of the SLR
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2.4.1 Step 1: Searching the literature according to the scope of the

search process

In this step, the databases and keywords used to search for papers in the litera-

ture are identified. The following well-known electronic databases were used to find

relevant papers:

• IEEE Xplore (http://www.ieeexplore.ieee.org)

• ACM Digital Library (https://dl.acm.org )

• Springer (https://link.springer.com/), and

• Science Direct (Elsevier) (https://www.sciencedirect.com/)

We defined two sets of keywords to search for papers related to FND and FNS in

the literature. The keywords to search for node discovery are (fog AND computing

AND discovery AND service AND node) whereas the keywords to search for node

selection are (fog AND computing AND node AND service AND selection). We

performed a search using these keywords and retrieved a total of 4512 papers. The

search results were saved in a database which is available at here

2.4.2 Step 2: Applying inclusion and exclusion criteria for selection

In this step, we formalized the inclusion and exclusion criteria to filter the re-

trieved papers. The first criterion for inclusion was that the studies should be

conducted from 2014 (since the introduction of fog computing) onwards. The sec-

ond criterion for inclusion was that they should only be scientific papers such as

journal or conference papers. Non-academic papers such as short papers, tutorials,

newsletters, and magazines were excluded. Duplicated papers and survey papers

were also removed. The third criterion for inclusion was that the studies should

http://www.ieeexplore.ieee.org
https://dl.acm.org
https://link.springer.com/
https://www.sciencedirect.com/
https://docs.google.com/spreadsheets/d/1B6rWaHps-VBPs1U6y6mQ7ApRahGRC2nFI5PO5D4KzrU/edit?usp=sharing
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be in the English language. A total of 2207 papers remained after applying the

inclusion and exclusion criteria.

2.4.3 Step 3: Study Selection Process

In this step, the decision to include an article in the literature review was made in

two stages. In the first stage, a decision for inclusion was made after reading the title

and the keywords of each paper. In the second stage, a decision for inclusion was

made based on the abstract of each paper. In the first stage, the title and keywords

of the 2207 papers were thoroughly reviewed. Papers which were not relevant to the

defined criteria or the aim of this study were excluded. However, in this stage, it was

not clear from some titles and keywords as to whether the papers were relevant or

not. So, these papers were not excluded and were assessed further in the next stage.

A total of 116 papers remained at the end of this stage. In Stage 2, the abstracts of

these papers were read to determine their relevance to this study. If the abstract of

a paper was found to be relevant, the paper was selected, otherwise it was excluded.

At the end of this stage, 34 papers were deemed to be relevant to this study.

2.4.4 Step 4: Data extraction and synthesis

In this step, the 34 papers were evaluated using three quality criteria questions

to ensure that there was no bias in the selection process and that they were relevant

for inclusion in the SLR. The three quality criteria questions are:

• QE1: Does the paper deal with fog service or node discovery?

• QE2: Does the paper deal with fog service or node selection?

• QE3: Has the approach proposed in the paper been evaluated or tested?

If the answer was ‘yes’ to at least two of the three criteria questions, the paper

was included in the SLR. From the 34 papers, only 23 papers satisfied the selection
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requirement as shown in Table 2.2. From the 23 shortlisted articles, as shown in

Table 2.3, 13 articles focused on approaches to discover fog nodes and 10 articles

focused on FNS. In Section 2.5, we discuss the studies related to fog discovery and

in Section 2.6, we discuss the studies related to fog selection.

Table 2.2 : Evaluation of the papers against the quality criteria questions

Article Title QE1 QE2 QE3

Soo et al. [50] Proactive Service Discovery in Fog

Computing Using Mobile Ad Hoc So-

cial Network in Proximity

Yes No Yes

Venanzi et al.

[51]

MQTT-Driven sustainable node dis-

covery for internet of things-fog envi-

ronments

Yes No Yes

Venanzi et al.

[52]

MQTT-Driven Node Discovery for In-

tegrated IoT-Fog Settings Revisited:

The Impact of Advertiser Dynamicity

Yes No Yes

Rejiba et al. [53] F2C-Aware: Enabling Discovery in Wi-

Fi-Powered Fog-to-Cloud (F2C) Sys-

tems

Yes No No

Rejiba et al. [54] Analyzing the Deployment Challenges

of Beacon Stu�ng as a Discovery En-

abler in Fog-to-Cloud Systems

Yes No Yes

Rejiba et al. [55] A Beacon-assisted direction-aware

scanning scheme for 802.11-based

discovery in Fog-to-Cloud systems

Yes No Yes



26

Article Title QE1 QE2 QE3

Rejiba et al. [56] Towards a context-aware Wi-Fi-based

Fog Node discovery scheme using cellu-

lar footprints

Yes No Yes

Gedeon et al.

[57]

Sunstone: Navigating the Way

Through the Fog

Yes No Yes

Venanzi et al.

[58]

Fog-Driven Context-Aware Architec-

ture for Node Discovery and Energy

Saving Strategy for Internet of Things

Environments

Yes No Yes

Santos et al. [59] Towards Dynamic Fog Resource Provi-

sioning for Smart City Applications

Yes No Yes

Skiadopoulos et

al. [60]

Multiple and replicated random walk-

ers analysis for service discovery in fog

computing IoT environments

Yes No Yes

Karagiannis et

al. [12]

Addressing the node discovery problem

in fog computing

Yes No Yes

Tomar and

Matam [61]

Optimal Query-Processing-Node Dis-

covery in IoT-Fog Computing Environ-

ment

Yes No Yes

Pešić et al. [62] Bluetooth Low Energy Microloca-

tion Asset Tracking (BLEMAT) in a

Context-Aware Fog Computing System

No No Yes
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Article Title QE1 QE2 QE3

Henze et al. [63] Fog Horizons – A Theoretical Concept

to Enable Dynamic Fog Architectures

No No No

Mahmud et al.

[64]

Latency-Aware Application Module

Management for Fog Computing Envi-

ronments

No No No

Nair and Soma-

sundaram [65]

Overload prediction and avoidance for

maintaining optimal working condition

in a fog node

No Yes Yes

Jabri et al. [66] Vehicular fog gateways selection on

the internet of vehicles: A fuzzy logic

with ant colony optimization based ap-

proach

No Yes Yes

Mishra et al.

[67]

An adaptive model for resource selec-

tion and allocation in fog computing

environment

No Yes Yes

Rejiba et al [68] Towards user-centric, switching cost-

aware fog node selection strategies

No Yes Yes

Sami and

Mourad [69]

Dynamic On-Demand Fog Formation

O↵ering On-the-Fly IoT Service De-

ployment

No No Yes

Pan et al. [70] A Novel Fog Node Aggregation Ap-

proach for Users in Fog Computing En-

vironment

No Yes Yes
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Article Title QE1 QE2 QE3

Li et al. [71] Fog Node Selection for Low Latency

Communication and Anomaly Detec-

tion in Fog Networks

No Yes Yes

Irtisam et al.

[72]

Pathfinder: A Fog Assisted Vision-

Based System for Optimal Path Selec-

tion of Service Robots

No No Yes

Mostafa [45] Cooperative Fog Communications us-

ing A Multi-Level Load Balancing

No Yes Yes

Lera et al. [73] Analyzing the Applicability of a Multi-

Criteria Decision Method in Fog Com-

puting Placement Problem

No No Yes

Nguyen et al.

[74]

A Market-Based Framework for Multi-

Resource Allocation in Fog Computing

No No Yes

Iyer et al. [75] On the strategies for Risk Aware Cloud

and Fog Broker Arbitrage Mechanisms

No Yes Yes

Yang et al. [76] Adverse Selection via Matching in Co-

operative Fog Computing

No No No

Rahman et al.

[77]

E�cient Edge Nodes Reconfiguration

and Selection for the Internet of Things

No Yes Yes

Baranwal and

Vidyarthi [78]

FONS: a fog orchestrator node se-

lection model to improve application

placement in fog computing

No Yes Yes
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Article Title QE1 QE2 QE3

Yang et al. [79] Multi-attribute selection of maritime

heterogenous networks based on SDN

and fog computing architecture

No No Yes

Velasquez et al.

[80]

A Rank-based Mechanism for Service

Placement in the Fog

No No Yes

Table 2.3 : Categorization of papers as either fog discovery or fog selection

Research arti-

cle

Year Title of the article Category

Soo et al. [50] 2016 Proactive Service Discovery in Fog

Computing Using Mobile Ad Hoc So-

cial Network in Proximity

Fog discov-

ery

Venanzi et al.

[51]

2018 MQTT-Driven sustainable node dis-

covery for internet of things-fog envi-

ronments

Fog discov-

ery

Venanzi et al.

[52]

2018 MQTT-Driven Node Discovery for In-

tegrated IoT-Fog Settings Revisited:

The Impact of Advertiser Dynamicity

Fog discov-

ery

Rejiba et al. [53] 2018 F2C-Aware: Enabling Discovery in Wi-

Fi-Powered Fog-to-Cloud (F2C) Sys-

tems

Fog discov-

ery
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Research arti-

cle

Year Title of the article Category

Rejiba et al. [54] 2018 Analyzing the Deployment Challenges

of Beacon Stu�ng as a Discovery En-

abler in Fog-to-Cloud Systems

Fog discov-

ery

Rejiba et al. [55] 2018 A Beacon-assisted direction-aware

scanning scheme for 802.11-based

discovery in Fog-to-Cloud systems

Fog discov-

ery

Rejiba et al. [56] 2018 Towards a context-aware Wi-Fi-based

Fog Node discovery scheme using cellu-

lar footprints

Fog discov-

ery

Gedeon et al.

[57]

2020 Sunstone: Navigating the Way

Through the Fog

Fog discov-

ery

Venanzi et al.

[58]

2019 Fog-Driven Context-Aware Architec-

ture for Node Discovery and Energy

Saving Strategy for Internet of Things

Environments

Fog discov-

ery

Santos et al. [59] 2018 Towards Dynamic Fog Resource Provi-

sioning for Smart City Applications

Fog discov-

ery

Skiadopoulos et

al. [60]

2019 Multiple and replicated random walk-

ers analysis for service discovery in fog

computing IoT environments

Fog discov-

ery

Karagiannis et

al. [12]

2020 Addressing the node discovery problem

in fog computing

Fog discov-

ery
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Research arti-

cle

Year Title of the article Category

Tomar and

Matam [61]

2018 Optimal Query-Processing-Node Dis-

covery in IoT-Fog Computing Environ-

ment

Fog discov-

ery

Nair and Soma-

sundaram [65]

2019 Overload prediction and avoidance for

maintaining optimal working condition

in a fog node

Fog selec-

tion

Jabri et al. [66] 2019 Vehicular fog gateways selection on

the internet of vehicles: A fuzzy logic

with ant colony optimization based ap-

proach

Fog selec-

tion

Mishra et al.

[67]

2019 An adaptive model for resource selec-

tion and allocation in fog computing

environment

Fog selec-

tion

Rejiba et al [68] 2020 Towards user-centric, switching cost-

aware fog node selection strategies

Fog selec-

tion

Pan et al. [70] 2020 A Novel Fog Node Aggregation Ap-

proach for Users in Fog Computing En-

vironment

Fog selec-

tion

Li et al. [71] 2019 Fog Node Selection for Low Latency

Communication and Anomaly Detec-

tion in Fog Networks

Fog selec-

tion
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Research arti-

cle

Year Title of the article Category

Mostafa [45] 2019 Cooperative Fog Communications us-

ing A Multi-Level Load Balancing

Fog selec-

tion

Iyer et al. [75] 2020 On the strategies for Risk Aware Cloud

and Fog Broker Arbitrage Mechanisms

Fog selec-

tion

Rahman et al.

[77]

2019 E�cient Edge Nodes Reconfiguration

and Selection for the Internet of Things

Fog selec-

tion

Baranwal and

Vidyarthi [78]

2021 FONS: a fog orchestrator node se-

lection model to improve application

placement in fog computing

Fog selec-

tion

2.5 Discussion of FND approaches in addressing require-

ments FND1-FND5

Most of the existing research on FND considers that fog nodes are located close

to the edge device. So, they assume that the edge devices have already discovered

the fog nodes and thus focus on the next phase of their operation, i.e., processing the

communication between the devices. A few studies focus on the actual discovery of

fog nodes and the approach they utilize to achieve this can be categorized as follows

and as shown in Figure 2.2:

1. Broadcasting based on an 802.11 Wi-Fi beacon [53][54][55],

2. Message Queuing Telemetry Transport (MQTT) which uses publish/subscribe

[51][52][58]

3. Wi-Fi-based FND [56]



33

4. DNS and BGP community-based FND [57]

5. Peer-to-Peer-based FND[50][59]

6. Static attribute table-based FND [61]

7. Exploration methods [60][12]

2.5.1 Broadcasting based on an 802.11 Wi-Fi beacon

The approaches under this category enable edge devices to find appropriate fog

services using their signals. For example, Rejiba et al. [53] [54] presented the F2C

(fog-to-cloud) system for discovering fog services. The proposed approach embeds

the 802.11 beacon technique to discover fog services that are close to the vicinity of

the edge devices using Wi-Fi technology. The F2C architecture consists of 3 entities,

agents, area, and leader. The agent could be is the fog services, the area is a group of

agents, and the leader is the fog service which is a high-capacity agent who manages

the area. The fog agent must know if the leader is present in the boundary of the

fog service device to connect to them. The discovery process works when the leader

of the fog service area’s boundary announces its presence by sending an 802.11

beacon message. The agent at the edge level listens to the leader’s announcement

and detects its presence before joining and connecting to the fog service. In another

work [55], the authors proposed a solution for broadcasting, advertising and scanning

the presence of the leader to reduce energy consumption. A novel beacon-assisted

direction-aware scanning scheme (BDSS) which aims to control the scanning process

of edge devices is presented. Edge devices should scan the area to find the leader to

connect to the system. If the device moves in the same area, the scanning process

will be unnecessary and will lead to a wastage of the devices’ energy. To overcome

this, the authors propose to save energy by enabling the scanning process when the

device reaches a certain distance threshold. When the surrounding environment
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Figure 2.2 : Categorization of the existing literature based on their adopted tech-

niques for FND and FNS
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of the device is changed and the device reaches a certain distance threshold, the

scanning process is performed. The proposed discovery approach focuses on reducing

the energy consumption of edge devices based on the discovery of a wireless network

signal range using the 802.11 beacon technique. While the proposed approaches

detect and connect to the fog services using Wi-Fi and the 802.11 beacon technique,

they fail to consider the location-awareness FND1 and context-awareness FND2

requirements, such as but not limited to user location, user identity, etc. in the

discovery process. Other characteristics of edge devices such as time and energy

constraints (as defined in FND3) are not considered in deciding in an intelligent

manner which fog nodes are the most appropriate to meet the requirements of the

edge devices (requirement defined in FND4). While the authors demonstrate the

application of the proposed model using a Mininet-WiFi emulator [81] (requirement

defined in FND5), not all of them are applied on a real-world test bed.

2.5.2 Message Queuing Telemetry Transport (MQTT) protocol

Approaches in this category use the MQTT protocol to discover edge devices

with the help of the fog node as an MQTT broker. For example, Venanzi et al. [51]

[52] proposed a Bluetooth-based MQTT-driven node discovery solution in an IoT-

fog environment. The proposed approach is termed Power E�cient Node Discovery

(PEND) and aims to ensure sustainability, energy e�ciency, discoverability, and re-

liability while engaging in FND. The goal of this approach is to reduce the energy

consumed by the edge device during the discovery process and to ensure IoT devices

are 100% discoverable. A fog node as the MQTT broker between the IoT devices

and the centralized cloud server is implemented. The edge device (IoT device) could

be a Bluetooth Low Energy Scanner (BLE-S) or Bluetooth Low Energy Advertiser

(BLE-A), with the former being a subscriber and the latter being a publisher. The

MQTT broker monitors the BLE-A’s path and controls the BLE-S’s Bluetooth inter-
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face by implementing a signalling scheme based on the location of the BLE-A. The

BLE-S is in a fixed location and scans its range continuously to detect the Bluetooth

devices in the vicinity. BLE-A is a mobile device that may or may not appear in the

scanning time frame of the BLE-S. BLE-A sends its location to the MQTT broker

(in the fog layer) by publishing the MQTT message on a specific topic. The MQTT

broker knows the location of each BLE-S and when it receives a MQTT message, it

calculates the distance between the specific BLE-A and all the BLE-Ss in the envi-

ronment. The MQTT broker then sends a wake-up message to the nearest BLE-S

whose location is below a certain threshold. The BLE-S starts scanning its range

only when a new BLE-A comes into range. The proposed approach achieves 100%

discoverability by synchronizing the advertisement and scanning frames and helps

to save the BLE, CPU, and per-application battery consumption. This is because

the Bluetooth scanner interface is only activated whenever a BLE-A service is in the

vicinity. The authors, in their further work, proposed an energy-saving technique by

deciding when to switch BLE interfaces on or o↵ based on the expected frequency

of the approaching services [58]. For power consumption purposes, the BLE-S is

kept o↵ until the fog node alert and it wakes up only when the BLE-A is in the

BLE range. Although the proposed approaches have been applied on a real-world

platform (satisfying requirement FND5), they do not consider the context-aware

(requirement FND2), location-aware (requirement FND1) and energy-constraint re-

quirements (requirement FND3) of the fog and edge nodes and match them with

the type of task/s that need to be met for the edge devices (requirement FND4).

2.5.3 Wi-Fi-based FND

Another method to discover fog services is to use a wireless connection or Wi-

Fi technology. For example, Rejiba et al. [56] developed an approach to discover

fog services while reducing energy consumption and using a context-aware scan-
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ning mechanism. The proposed approach predicts the fog service’s presence in the

vicinity based on the cellular footprint of the mobile device. After the fog service

is detected, the stored surrounding information related to the cellular context of a

mobile device is used as input to the machine learning algorithms to predict the pres-

ence or absence of the fog service in a particular location. Three machine learning

algorithms, namely K-nearest neighbors, decision tree, and hidden Markov model

(HMM) are evaluated to identify the best performance of the discovery process by

keeping energy consumption to a minimum, thereby meeting requirements FND3

and FND4. However, the authors’ proposed approach only takes into account a few

parameters of context-awareness which relate to the mobile phone’s historical cellu-

lar footprints such as the cellular tower ID and signal strength. It fails to take into

account other important context-awareness parameters (in requirement FND2) such

as the identity, capability, and location of fog services (in requirement FND1), etc.

Although considering these parameters increases the energy consumption of the de-

vices, it also enables a more precise search and leads to the discovery of appropriate

fog nodes in the vicinity of the edge device/s. The authors conducted experiments

over a small-scale fog service deployment, but further experiments need to be con-

ducted to see if the results di↵er if applied to large-scale cellular data collection

experiments to satisfy requirement FND5.

2.5.4 DNS and BGP community-based FND

This technique uses the Border Gateway Protocol (BGP) to discover fog services

and the Domain Name System (DNS) is an auxiliary mechanism which is used as a

decentralized database for fog sites to validate and enrich the discovery. Gedeon et

al. [57] proposed an approach called Sunstone for the joint discovery and orchestra-

tion of fog services (fog computing resources). Sunstone combines three discovery

mechanisms, namely (i) snooping of trace-route packets, (ii) DNS Naming Authority
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Pointer (NAPTR) record information, and (iii) BGP community string advertise-

ment. The actual discovery work takes place at the cloud side in a Kubernetes

environment. The first mechanism is trace-route snooping which uses snooping to

discover those fog services that are between the user and the cloud. First, trace-

route determines all the packet paths from the user to the cloud and finds all the

hops in the paths before Snooper detects the trace-route packets from the cloud to

the user. Fog service snoopers receive a trace-route packet reply with information

about the fog service. The second mechanism, DNS NAPTR record information

uses DNS-based discovery to translate all IP addresses from the raw trace-route

results to the respective autonomous system (AS) number using raw BGP update

messages. Using PTR records, the network is resolved before using the NAPTR

records. This enriches the network with information about the intermediate hops.

The third mechanism is the BGP community string advertisement. It exchanges

routing information between autonomous systems using the BGP as the standard

protocol. BGP uses tables that contain a CIDR prefix and which use fog sites which

are announced by a BGP peer on the Internet and community string. All BGP peers

when sending the tag also send the CIDR prefix. This is to ensure that the infor-

mation is made globally available to all fog sites. These tags are used to discover

o↵-the-path fogs during the discovery process. This discovery process identifies the

type of discovered fog, along with its distance from the cloud and the API endpoint

to reach the discovered fog site. The proposed approach is evaluated in a real-world

test bed, meeting requirement FND5. While the results show that this approach

helps to reduce end-to-end latencies by matching to the edge device characteristics

(meeting requirement FND3), the context-aware and location-aware characteristics

of fog devices for discovery need to be considered to meet requirements FND1 and

FND2. This will then result in the proposed approach finding the appropriate fog

node according to the edge device requirements, thereby meeting requirement FND4.



39

2.5.5 Peer-to-Peer-based FND

Another category of approaches uses the hash table mechanism to find fog nodes

in a distributed peer-to-peer (P2P) manner. Soo et al. [50] proposed a framework

for FND based on the proximity of a mobile ad hoc social network (MASN) in a

decentralized P2P manner. The mobile edge devices are connected to each other

through a MASN and they monitor and gather information from MASN peers in the

distributed hash table. When the edge device moves, the application from MASN

gathers information about the fog nodes that are close to them and uses this in-

formation to access them. The GPS locations of the edge devices are used to find

the nearest fog nodes. To reduce latency during the communication, the authors

proposed using fog services that are within the location proximity, meeting require-

ment FND1. However, they do not consider an intelligent mechanism to carry out

the discovery that incorporates other specifics such as context-aware requirements.

So, requirements FND2 and FND4 are not met in [50]. Requirement FND5 is met

since the proposed fog discovery approach was validated through simulations. How-

ever, the e↵ectiveness of the proposed approach was not validated against other

approaches. Santos et al. [59] presented a novel resource discovery service based on

P2P distributed hash tables (DHTs) to enable automated resource discovery func-

tionalities for IoT services. Information on all cloud or fog services is stored in the

DHT. By storing this information, it is possible to know exactly which computing

resources have been allocated to a particular instance because all the necessary pro-

visioning information is available through the DHT. Protocols such as Kademlia and

Pastry are shown to be appropriate candidates to provide flexible discovery process

solutions during simulations in an OverSim simulator [82]. While the proposed ap-

proach assists in fog service discovery, it does not consider the location of fog nodes

during that process. Furthermore, it does not consider context-aware characteris-

tics when discovering appropriate fog nodes. Thus, requirements FND1, FND2 and
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FND4 are not met in [59].

2.5.6 Static attribute table-based FND

Tomar and Matam [61] proposed an approach that discovers fog nodes based

on a centralized static attributes table (SAT) which is located in the broker. SAT

contains all the static information of edge devices which are stored and updated by

the broker. The proposed approach consists of two layers, namely the lower and

upper layers. The lower layer contains the source services which are edge devices

or sensor services. The upper layer contains fog services and the broker. The fog

service is a processing service which is responsible for finding the optimal source

service for the assigned tasks. The broker is centralized storage to store the static

attributes of the end devices in the SAT, which is used to find the optimal source

services. The static attributes of the end devices consist of location, the identifica-

tion data of end devices and the distance between end devices to all the fog nodes.

The proposed approach discovers and finds fog nodes using various criteria, such as

available processing capability, amount of free memory, and the distance between

the fog node and the end device to ensure minimum delay in its processing. When

the discovery process is initialized, the fog nodes query the SAT and the list of all

source services is obtained. The processing service with minimum average distance

and su�cient storage is selected as the optimal service for processing. However, the

authors do not consider requirement FND2, which is considering the context-aware

characteristics when discovering fog services. Furthermore, they fail to present the

actual mechanism for carrying out the search based on the location requirement

to meet requirement FND1. The applicability of the proposed approach is con-

ducted over a small network of services that vary in size from 20 to 100. While this

shows a reduction in energy consumption, this may increase when the number of fog

nodes and the network size is increased. This proposed approach does not address
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requirements FND2 and FND4 while discovering fog nodes.

2.5.7 Exploration methods

Approaches in this category discover fog nodes by exploring information from

other nodes which includes their neighbours. Karagiannis et al. [12] proposed an

approach to discover new fog nodes and integrate them with other nodes in the sys-

tem while considering characteristics such as fault tolerance, resource heterogeneity,

proximity awareness, and scalability. To build fault tolerance, during the discov-

ery process, the authors propose two mechanisms to discover other nodes that can

take charge of the required computation when the current node fails. In the first

mechanism, a node can make a request to join the network from a pre-existing fog

node and it stores information about the nearby neighbors. In the second mech-

anism, a fog node may request to join the network from a pre-existing fog node,

and it stores information on not only its neighbouring services but also those of the

contact node. These neighbours are used when the contact node fails and the node

in question needs to depend on others to complete the tasks. Using simulations,

the authors show that the fog nodes improve the fault tolerance of a fog comput-

ing system significantly by storing information about the additional nodes of its

neighbors during the discovery phase. However other aspects, such as improving

resource heterogeneity, proximity awareness, and scalability of the nodes, are not

considered. The authors evaluated the proposed approach using simulations over a

small-scale network with 50-100 nodes. However, the feasibility of the results over

large-scale networks needs to be seen. Skiadopoulos et al. [60] proposed a random

walker mechanism to discover multiple fog nodes. The proposed approach uses a

walker to visit one of its neighbor nodes to increase the coverage of the nodes which

are found. While these approaches discover new fog nodes, they adopt a random

approach rather than using an intelligent one according to pre-defined criteria such
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as FND1, FND2, and FND3 (to meet requirement FND4). Considering these crite-

ria will assist them to consider the location-aware and context-aware requirements

to meet FND1 and FND2 of the fog nodes while minimizing energy consumption

to meet FND3. Table 2.4 compares the 13 approaches that we discussed under the

category of FND and determines the gaps in meeting requirements FND1-FND5. In

the next section, we discuss the approaches that come under the category of FNS

and compare them against requirements FNS1-FNS4.

Table 2.4 : Comparison of the existing studies on FND against the requirements

FND1-FND5

Research articles
FND Requirements

FND1 FND2 FND3 FND4 FND5

Soo et al. [50] Yes No Yes No Simulation

Venanzi et al. [51] No No Yes No Real network

Venanzi et al. [52] No No Yes No Real network

Rejiba et al. [53] No No Yes No None

Rejiba et al. [54] No No Yes No Real network

Rejiba et al. [55] No No Yes No Simulation

Rejiba et al. [56] No Yes Yes Yes Real network

Gedeon et al. [57] No No Yes No Real network

Venanzi et al. [58] Yes No Yes No Real network

Santos et al. [59] No No Yes No Simulation

Skiadopoulos et al. [60] No No No No Simulation

Karagiannis et al. [12] No No No No Simulation

Tomar and Matam [61] Yes No Yes No Real network
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2.6 Discussion of FNS approaches in addressing requirements

FNS1-FNS4

FNS is an essential process in fog computing as it enables the best fog node to be

selected to meet the required tasks of the edge device/s. Selecting the appropriate

fog node also decreases overall end-to-end latency and energy consumption. From

the literature, we found ten research articles that discuss an approach for FNS. We

categorise them according to their working style in the following categories as shown

in Figure 2.2:

1. MCDM-based FNS [65][67][78]

2. Fuzzy-based FNS [66]

3. Machine-learning-based FNS [71]

4. Deep-learning-based FNS [45]

5. Hybrid algorithms and objectives-based approaches [68][70][75][77].

2.6.1 MCDM-based FNS

Approaches in this category utilize multi-criteria decision-making (MCDM) tech-

niques to select the best alternative services from the di↵erent options. For example,

Nair et al. [65] proposed an approach which is a combination of the Analytic Hier-

archy Process (AHP) and Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS) to select the most appropriate VM to migrate the fog service

that is predicted to overload. Mishra et al. [67] proposed an adaptive multi-criteria

decision-making (A-MCDM) model to rank fog service resources in dynamic, dis-

tributed and scalable environments. The performance of A-MCDM is analyzed

using mean absolute error (MAE), Spearman’s rank correlation, response time (in
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seconds) and precision measure when it is compared with other MCDM methods

such as the Simplified PROMETHEE-II and PROMETHEE-II. The experiment re-

sults of A-MCDM show that it helps in reducing the response time compared to

other approaches. Baranwal and Vidyarthi [78] proposed the fog orchestrator nodes

(FONs) approach to select nearby fog services that can act as an orchestrator. The

authors defined the fog gateway node (FGN) as an orchestrator and the fog com-

putational node (FCN) as a normal fog service that executes the applications. The

aim of the approach is to select suitable FGNs as the FON. TOPSIS, which is one

of the MCDM techniques, is used to select the suitable FGN as FON. Various as-

pects such as energy or battery power, computational power or capacity, number of

FCNs connected to FGN, and the distance of the application from FGN are used in

the selection process of the FON. The FON is responsible for collecting application

requirements and o↵erings of the FCNs. It uses a placement algorithm to place an

IoT application on a suitable FCN that acts as a temporary central hub between

the connected FCNs and the applications. The evaluation of the FON selection

model shows that it selects the most suitable FGN as the FON for the execution of

the placement algorithm, thereby improving the overall performance of the system.

While MCDM methods consider the di↵erent selection aspects, none of them con-

sider the trustworthiness of the services (requirement FNS2) as one of the aspects

during the selection process. Other approaches such as [67] and [?] failed to inves-

tigate the use of intelligent approaches (requirement FNS1) for fog service selection

and determine if the output is recommended in a timely manner (FNS3). The case

with [65] and [78] is similar. Nair et al. [65] and Baranwal and Vidyarthi [78] sim-

ulated their results using Xen Hypervisor and MATLAB respectively, however they

have not been implemented on a real-world data set (requirement FNS4).
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2.6.2 Fuzzy-based FNS

In this category, fog services are selected using the fuzzy logic technique. Jabri

et al. [66] presented a gateway selection module that selects a suitable fog service

for vehicles to access multi-access edge computing servers and clouds to reduce

communication costs (e.g. bandwidth use, delay) and avoid network congestion.

Fuzzy logic and multi-objective optimization, which are ant colony optimization

techniques, are used to select the optimal gateways from the available ones based

on di↵erent parameters such as the number of neighbors, LTE link, IEEE802.11p

link quality, and length of stay. The authors evaluated the results of the study

by simulations using NS3 [83] with the FuzzyLite library [84]. These approaches

however do not consider the trustworthiness of the fog services in making an informed

selection (thereby not meeting requirements FNS1 and FNS2). Thus, it needs to

be determined if the performance of the proposed model will di↵er when a di↵erent

trust parameter is used in the fuzzy selection of optimal gateways.

2.6.3 Machine-learning-based FNS

Li et al. [71] proposed an unsupervised algorithm that uses k-means clustering

with Euclidean distance to group similar nodes into a cluster and determine its

head. Clustering is applied by considering the distance of a fog node with the

other nodes of the cluster and choosing the one which is closest to all of them.

The simulated experiment results show that the unsupervised k-means algorithm

can reduce the latency communication of the network. The authors validated the

proposed model by considering 100 fog nodes. The e↵ectiveness of the algorithm in

giving timely output when there is an increased number of services available needs

to be determined. Furthermore, the authors do not consider the trustworthiness

of the fog node (requirement FNS2) when deciding whether to choose it or not by

considering the constraints that it needs to satisfy.
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2.6.4 Deep-learning-based FNS

Mostafa [45] proposed a cooperative fog system to select the optimal fog services

that meet the user’s preferences such as delay, cost, and privacy. The proposed model

is termed the fog resource selection (FResS) algorithm which is a prediction model

that uses the user’s log files and past execution history to inform the system about

incoming tasks. An artificial neural network is used with the execution history to

predict the best fog resources that suit the user’s requirements. The FResS algorithm

contains an execution log, which maintains the performance data of the fog services.

When a new job enters the fog system for execution, its run-time and required

resources are predicted with the help of these execution logs which, in turn, assist

in selecting the best fog service. The authors simulate the model in the GridSim

simulator [85] and the results show a very high level of accuracy and one that has

low overheads. Moreover, the experiments showed that resource utilization had an

inverse e↵ect on the cost, response time, and bandwidth usage. However, the model

does not consider the trustworthiness of the fog services (requirement FNS2) during

the recommendation process.

2.6.5 Hybrid algorithms and objectives-based approaches

Other methods have been used to select the optimal fog nodes. For example,

Rejiba et al. [68] modelled the FNS problem as a multi-armed bandit problem with

delay minimization. In fog computing, due to user mobility, the availability of fog

services is dynamically changed which leads to a high switching cost from one fog

service to the other. To reduce this high switching cost, the authors proposed a

block-based fog service selection scheme which reduces the occurrence of switching

by keeping the same fog service selected during a block of timeslots. An adaptive

greedy approach was used to select the fog service that has the minimum average

delay. If this is not possible, then the user is allowed to perform an exploration step
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to find fog services o↵ering lower delays. The experiments showed that a block-based

fog service selection scheme reduced the switching costs, and the proposed adaptive

greedy approach improves the overall system performance. However, the authors

failed to investigate an intelligent algorithm (requirement FNS1) to carry out the

trust-based selection for fog services. Iyer et al. [75] proposed the Cloud and Fog

Broker Arbitrage mechanism to select an appropriate cloud service or fog service.

The proposed model uses di↵erent parameters such as the user’s risk nature, price,

reputation of fog services and cloud services for the decision process which is done by

the broker which can either be in the cloud or in the fog. The results show that apart

from the trust value, parameters such as delay, price and risk can a↵ect the decision

to choose a cloud or fog service. The trust value is calculated based on the user’s

experience with fog service providers (FSPs) and cloud service providers (CSPs).

The authors conducted simulation experiments (requirement FNS4) that consist of

a small number of services, however it is not applied in a distributed fog environment

to evaluate its e↵ectiveness in the trust-based selection process. Furthermore, this

proposed approach does not address requirements FNS1 and FNS3. Pan et al. [70]

proposed an approach to select suitable fog services that minimizes the latency in

transmitting data and the rental cost for providing resources. They proposed the

novel FNS algorithm based on Simulated Annealing (FSSA) to find enough fog nodes

to meet the deployed requirements of a single service while minimizing the overheads

of end-users. This aim is achieved by firstly modelling the problem of selecting fog

nodes as a knapsack problem before using the FSSA algorithm for service selection.

The output of the FSSA algorithm is compared with other FNS approaches such

as random greedy algorithms in which it is shown to perform better with reduced

overheads for the end-user while achieving the deployment of service requirements.

Rahman et al. [77] proposed three methods, namely Shortest Estimated Latency

First (SELF), Shortest Estimated Bu↵er First (SEBF) and random selection, to
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select fog nodes. The SELF scheme is used to select the fog node that has the

shortest latency to transfer data from the end user to the fog node. The end user

is responsible for maintaining the latency of the transmitting data from the user

to the fog nodes. The end user (such as the sensor) calculates the latency between

itself and the other fog nodes in its coverage. The SEBF scheme aims to select the

fog node for the new upcoming request from the end user which has the minimum

number of tasks bu↵ered in the queue. The random selection method selects the

fog node randomly. The three methods are evaluated and the results show that the

SELF method helps to decrease energy consumption significantly while the SEBF

method helps to reduce the risk of losing data. However, SELF will lead to packet

loss and SEBF will increase energy consumption in some cases. Also, the random

selection method increases the energy consumption and packet loss compared to

the other methods, SELF and LCBF. The proposed approach achieved e�cient

performance in relation to fog nodes by reducing energy consumption and packet loss

and increasing the hit ratio at the fog node (meeting requirement FNS3). However,

they do not consider the trustworthiness aspect of the service in the selection process

(requirement FNS2).

Table 2.5 compares the 10 approaches that are discussed under the category of

FNS and determine the gaps against requirements FNS1-FNS4. In the next section,

we critically analyse the existing approaches and present the open gaps and areas

of future work.

2.7 Open issues and future directions

In this section, we summarise the gaps in the existing approaches on FND and

FNS and determine areas of future work to address them. We also explain in Figure

2.3 how the proposed areas of future work assist in achieving requirements FND1-

FND5 and FNS1-FNS4 as previously discussed.
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Table 2.5 : Comparison of the existing studies on FNS against the requirements

FNS1-FNS4

Research articles
FNS Requirements

FNS1 FNS2 FNS3 FNS4

Nair et al. [65] No No No Simulation

Jabri et al. [66] Yes No No Simulation

Mishra et al. [67] No No Yes Real network

Rejiba et al. [68] No No Yes Simulation

Pan et al. [70] No No Yes Real network

Li et al. [71] Yes No Yes Simulation

Mostafa [45] Yes No Yes Simulation

Iyer et al. [75] No Yes No No

Rahman et al. [77] No No Yes Simulation

Baranwal and Vidyarthi [78] No No No Simulation
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Figure 2.3 : Describing how the proposed areas of future work assist in meeting requirements FND1-FND5 and FNS1-FNS4
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2.7.1 XaaS-FND (where X could be location, context, or content)

Although researchers have proposed di↵erent methods for FND, they fail to con-

sider the context-aware, location-aware, content-aware mechanism characteristics

through which they should be discovered. The use of context-aware mechanisms

has also been explored in Web services and cloud selection areas to improve QoS

discovery [86][46], but it is not considered a requirement of all fog discovery ap-

proaches. Nejad et al. [87] discussed context-aware fog computing systems but they

did not use it for fog node discovery. However, as emphasized earlier, context aware-

ness in fog computing assists in the correct use of the requirements of the user that

will assist in providing information on the service that has the best ability to provide

these requirements [11]. Thus, it should be an important criterion to consider in

FND. Furthermore, while location-aware mechanisms have been studied widely in

pervasive computing environments [88][89][90] and content-aware mechanisms have

been discussed in Web services [91], they have not been applied to the di↵erent

approaches for FND. One possible option to address this gap is to approach this as

XaaS-FND, in which goal-specific services are developed that assist the edge devices

in evaluating the available fog nodes according to the location, context and content

of their requirements (meeting requirements FND1, FND2 and FND4). These ser-

vices can be integrated and federated to develop a fog service composition model,

as explained next.

2.7.2 Composition of reliable fog nodes using a broker-based mechanism

Most of the work on FNS is focused on selecting a single fog node. There

is no work on fog service composition that could be a combination of multiple

fog nodes that need to work together to solve and deliver the requirements of a

single edge device. This is a major challenge that requires researchers to develop an

architecture of the fog registry consortium module that can host information and the



52

characteristics of fog nodes. Such a consortium module can act as an intermediary

between the edge nodes and the fog nodes and as a broker for various activities

such as, but not limited to, fog discovery, fog selection, etc. Having a hub and

spoke model of a main central fog registry and various distributed fog registries

will ensure that the specific capabilities of a fog node and its trustworthiness in

committing to the promised expectations as required by the edge device (meeting

requirement FND3) can be captured and used in making an informed selection. It

will also assist in ensuring the concurrency of synchronizing data between distributed

fog registries and distribute them across the globe in a uniform manner according

to their geographical boundaries. A key aspect to consider for fog node composition

is interoperability among individual fog nodes. Mouradian et al. [25] discussed the

issue of interoperability and analysed whether the existing literature considered this

or not in fog computing. The authors concluded that as part of a federated system,

an application can be executed spread over di↵erent fog nodes. However, from

an architectural perspective, this implies the need for appropriate signalling and

control interfaces, as well as appropriate data interfaces to enable interoperability

at di↵erent architectural modules. While a few studies such as [92][93][94] discuss

the need to have interoperability in forming a fog node, more research is needed to

incorporate the FND and FNS requirements mentioned earlier along with how to

describe a fog service, how to manage it etc.

2.7.3 Reliable trust-based fog node selection

Forming a reliable trust-based FNS has two requirements. The first is to ensure

that the trustworthiness of the fog nodes is taken into consideration when deciding

if they are the best in meeting the edge devices’s requirements. The second is to

ensure that the trust value of a fog node is not easily manipulated, nor does it

contain bias. A number of approaches have been proposed for trust-based service
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selection in the cloud and in Web services [95][96][97][98][99][100]. However, in the

area of trust-based FNS, the application of these approaches is still in its infancy.

Furthermore, the complexity of this issue is compounded by the fact that in the

completely distributed environment of fog computing, there is no single repository

that stores the trust values of fog nodes. Thus, the trust values of a service can be

manipulated, for example negative feedback can be given on good services by fog

nodes or ballot-stu�ng can be used to give positive feedback to bad services from

fog nodes. There is no work in the existing literature to counter these mechanisms

and ensure the reliability of the underlying trust values. Intelligent algorithms need

to be developed to assist in achieving these aims and make fog-based selection more

reliable and meet requirements FND4, FNS1 and FNS2. Researchers can look at

mechanisms such as blockchain to ensure the reliability of trust values.

2.7.4 Bootstrap a new fog node into the fog environment or fog ecosys-

tem

A key issue with reputation systems is that they are unable to rank new service

providers objectively during the process of service selection. This disadvantages

new fog nodes as the lack of previous ratings renders them ineligible for trust-based

ranking. This issue is called the cold-start problem which is an important and

challenging issue for a reputation or trust system. In Web services, many studies

propose solutions to the cold-start problem. For example, Tibermacine et al. [101]

proposed a reputation mechanism based on the initial QoS attributes of the new

Web service and its similarity with other Web services that have extensive feedback

records. They used regression models to estimate the new reputation value of the

new Web service from the known QoS attributes. Another approach in the online

environment [102] is clustering the new user to similar users. However, this research

assumes that a user can trust other users within its cluster. This can be done
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if the trust values of existing users are available. Moreover, the recommendation

system su↵ers from the cold-start problem for a new user or item where the system

does not have any information about the user’s or item’s preferences to make good

recommendations. Lika et al. [103] proposed a classification method to find users

who are similar to a new user using the C4.5 Tree. They classified the new user to

a category of people based on their demographic data. They applied the nearest

neighbor algorithm to find the new user in the category. After this, the rating of the

user for n items is predicted based on the ratings of the neighbors using a weighted

sum of the ratings made by the neighborhood users. An open research issue in using

the trust values of fog nodes in its selection is to address this gap of bootstrapping in

a cold-start scenario. This is necessary to address the previous open issue and meet

requirements FND4, FNS1 and FNS2. Another open research issue is to develop

distributed mechanisms to ensure concurrency between the distributed fog registries

within the consortium to ensure that the most updated trust values are reflected

across them.

2.7.5 Standardized metrics for evaluating and benchmarking the per-

formance of FND and FNS mechanisms

From the analysis detailed in Section 2.5 and 2.6, it can be seen that several

authors have used various evaluation approaches such as simulation or real-world

data to demonstrate the performance of their models. However, there is no single

source of truth or benchmark mechanism that can be used by di↵erent approaches

for evaluation. This needs to be both in terms of the metrics used for the evaluation

of di↵erent algorithms and for benchmarking their performance. In the distributed

fog computing literature, the platforms are not consistent which results in a lack of

a standard data set for evaluation, causing bias in the result. Future research should

look at developing such metrics and benchmarks that will assist in a standardized
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comparison of the di↵erent approaches. This will assist in addressing the next open

issue and requirements FND5 and FNS4.

2.7.6 Simulators for evaluating and testing the e�cacy of FND and FNS

algorithms

The FND and FNS approaches should be proven to work in a real-world envi-

ronment either through simulation experiments or real-world experiments. In this

regard, researchers have proved the applicability of their proposed approaches in

a simulator. For example, Soo et al. [50] evaluated DTN routing and application

protocols using the Opportunistic Networking Environment (ONE) simulator [104].

The proposed simulator allows users to create scenarios based on di↵erent synthetic

movement models and real-world traces and o↵ers a framework for implementing

routing and application protocols. Rejiba et al. [55] used the Mininet-WiFi emu-

lator [81] to emulate the proposed approach of the discovery of a wireless network

signal range using the 802.11 beacon technique to solve the problem of unneces-

sary scans in the Wi-Fi-based discovery process which causes energy consumption

penalties. Promising emulation results in terms of energy consumption, total time

of scanning, and discovery rate were obtained as a result of using the simulation.

Santos et al. [59] used the OverSim simulator [82] which is an open-source flexible

overlay network simulation framework based on OMNeT++ to support P2P proto-

cols. The simulator was used to simulate the proposed P2P system based on DHTs

to enable automated resource discovery functionalities for IoT services. Jabri et al.

[66] used NS3 [83] with the Fuzzylite library [84] to simulate how to select the opti-

mal gateways and connected fog nodes in the vehicular fog computing environment.

Mostafa [45] used the GridSim simulation [85] to simulate the discrete-event grid

simulation toolkit. The toolkit supports the modeling and simulation of heteroge-

neous grid resources (both time and space-shared), users and application models.
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Researchers have also built their own simulators using di↵erent programming lan-

guages to evaluate their work. For example, Skiadopoulos et al. [60] simulated the

work on Python 3.6.3, using the SciPy and NumPy libraries [105]. Karagiannis et

al. [12] and Rahman et al. [77] built a simulator using JAVA while Rejiba et al. [68]

used Python and Baranwal and Vidyarthi [78] used MATLAB. However, none of

the existing research develops a simulator to evaluate the e�cacy and e↵ectiveness

of FNS and FND techniques by capturing their specific requirements. As supported

by [106], the fog computing simulation tool needs further extension and more atten-

tion is needed to maintain software quality. This is an open gap that needs to be

addressed in the literature to satisfy requirements FND5 and FNS4.

2.8 Conclusion

Fog computing as a platform has been used to solve the di↵erent limitations of

cloud computing. By bringing the processing, storage, and networking to the edge

of the network, fog computing assists in decreasing latency, network bandwidth, re-

sponse time, communication costs and saves the energy used by network-constrained

resources. However, to achieve this, the e�cient discovery and selection of fog nodes

according to the requirements of the edge devices is key. In this chapter, we provided

details of a systematic literature review of the proposed FND and FNS approaches

in the literature to identify their style of working and determine the gaps for future

work. Our analysis identified only 23 articles in the literature that discuss FND and

FNS. We critically analyzed and compared these articles against the requirements

and identified the gaps to be addressed. In our future work, we aim to develop a

conjoint framework for fog node/s discovery and selection that addresses the afore-

mentioned gaps. Having a trustworthy and dynamic model for FND and FNS will

also assist in the envisaged Osmotic computing approach [107] while deciding which

services can be executed at the edge rather than at a data centre.
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Chapter 3

Problem Definition

3.1 Introduction

The first chapter highlighted the importance of FND and FNS in the context

of fog computing. In the previous chapter, we presented an extensive review of the

existing literature. Based on the literature review, we noted in Chapter 2 that none

of the existing proposals o↵er an intelligent methodology for fog node discovery and

selection. Additionally, in the previous chapter, we identified five shortcomings in

the existing literature that need to be addressed to propose a complete methodology

for FND and FNS. The shortcomings in the existing literature are described in

Section 2.7. In this chapter, we formally define and present the problem that we

address in this thesis.

This chapter is organised as follows: in Section 3.2, we propose a set of definitions

of those key terms and concepts that will be used while defining the problem in

Section 3.3. Section 3.4 presents the research issues. In Section 3.5, we outline the

research questions. In Section 3.6, we present the research objectives. Section 3.7

presents the research approach to problem solving. Finally, Section 3.8 concludes

the chapter.

3.2 Key Concepts

3.2.1 Fog computing

Fog computing is defined as a distributed computing paradigm that extends

cloud computing capabilities to the edge of the network, providing a decentralized
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and hierarchical architecture for deploying computing resources closer to the data

source. By utilizing edge devices, access points, and fog nodes, fog computing

reduces network latency, enhances real-time processing, and enables e�cient data

management [25].

3.2.2 Fog node

A fog node is defined as a distributed computing device that is located in the fog

layer as an intermediate layer in a fog computing architecture. Fog nodes can be

virtual like virtual machines or physical such as any device with su�cient capacity,

computing power, and energy power, such as routers, switches, servers, and access

points. The processing, analysis and management of data are done by these virtu-

alized or non-virtualized devices at the edge of the network where they are often

deployed in close proximity to end-users and devices to reduce latency and save

bandwidth for real-time applications [14] [25].

3.2.3 Fog service

We define a fog service as a computing resource that is provided by a fog node

provider to fog consumers through the internet. The fog service is defined as an

association between an edge device and a fog node in which the edge device uses

the fog node’s computing resources to process its task in a low-latency and high-

bandwidth manner.

3.2.4 Fog node provider

We define a fog node provider as any organization or company that provides

fog computing services to end-users. These providers are responsible for operating,

managing, and maintaining the reliability, availability, and security of the fog nodes

and services they o↵er.
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3.2.5 Fog consumer

We define a fog consumer as any end entity that connects to a fog node and uses

the fog service. The entity could be an individual user, application or edge device

such as an IoT device [14].

3.2.6 IoT device

An IoT device is defined as a physical object or a digital representation of a

physical object that is capable of being uniquely identified and is capable of sending

or receiving data over the internet or other network without human intervention

[108].

3.2.7 Fog Registry

We define a fog registry (FR) as a fog node that has large storage and high

processing and computing capacities. The FR maintains information about all fog

services in the network and controls fog nodes in the vicinity.

3.2.8 Distributed Fog Registry

We define a distributed fog registry (DFR) as a collection of fog nodes that

collectively hold information about all other fog nodes in a distributed manner. The

distributed fog registry works with each other in a peer-to-peer manner.

3.2.9 Central Fog Registry

We define a central fog registry (CFR) as a fog node or a collection of fog nodes

that controls and coordinates all the distributed fog registries.

3.2.10 Fog Registry Consortium

We define a fog registry consortium (FRC) as a finite collection of fog registries

(FR) that manages and controls fog nodes and maintains their information. Con-
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ceptually, FRC may be defined as follows: FRC = {FR1, FR2, FR3, FR4, ... FRn}.

Each consortium is set up to serve a specific objective and may have specific criteria

which fog nodes have to meet to become a part of the consortium. In this research,

we regard the FRC as an intermediary between the fog consumer and fog nodes that

acts as a broker for various activities such as, but not limited to, fog discovery, fog

selection, etc.

3.2.11 Fog Node Discovery

We define Fog node discovery (FND) as a process of finding the relevant fog

node that satisfies the end user’s requirements. Fog node discovery is a process that

allows end users to locate the most suitable fog nodes to execute their applications

or services.

3.2.12 Fog Node Selection

We define Fog node selection (FNS) as the process of choosing the best-suited

fog node/s from those available based on the end users’ required criteria to perform

their job.

3.2.13 Context-aware computing

Context-aware computing is defined as the ability of an application or a system

to discover and adapt the situational context of the user in the environment (i.e.,

location, time, identity of people, nearby devices, objects and environmental factors)

[11].

3.2.14 Trust

In the context of fog computing and our research, trust is defined as the belief

that a fog consumer (trusting agent) holds in the willingness and capability of a fog
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node or service provider (trusted agent) to deliver a mutually agreed-upon service

within a specific context and time frame [48].

3.2.15 Trust value

Trust value is defined as the degree of trust or confidence that is assigned to a

specific entity within the fog computing environment. It is typically represented as

a numerical or probabilistic value, indicating the level of trust placed in the entity.

The trust value is often calculated based on various factors such as historical data,

QoS data, reputation, perceived security measures, reliability metrics, and feedback

from other users or monitoring systems [48].

3.2.16 Trusted fog node

We define a trusted fog node as a fog node that has been verified to be reliable

and capable of performing its intended functions.

3.2.17 Cold-start problem

We define the cold-start problem as a challenging scenario in which a system

encounters di�culties in making accurate predictions or providing e↵ective recom-

mendations for new or previously unseen entities. It arises when there is insu�cient

or limited data available about these entities, making it di�cult to understand

their characteristics, preferences, or behaviors. In the context of fog computing, the

cold-start problem occurs when new fog nodes join the network and there is a lack

su�cient information or historical data from which to assess their quality of service,

reliability, or trustworthiness.

3.2.18 Bootstrapping

In the context of a fog reputation system, bootstrapping refers to the process of

initializing or assigning trust values to newly joined fog nodes that have no prior
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reputation history within the system. When a fog node joins the network for the

first time, it lacks a reputation score or trust value, which is crucial for making

informed decisions about its integration and interaction within the fog computing

environment. Bootstrapping mechanisms aim to overcome this challenge by assign-

ing initial trust values to these new fog nodes based on various criteria or metrics.

These criteria may include the fog node’s QoS attributes, such as latency, reliability,

bandwidth, or energy e�ciency, as well as other relevant factors like its location,

resource availability, or previous interactions with other entities. By assigning initial

trust values through bootstrapping, the fog reputation system can begin to assess

and monitor the trustworthiness and reliability of new fog nodes, facilitating their

integration and decision-making processes within the fog computing network.

3.3 Problem Definition

Through the comprehensive examination of the literature in Chapter 2, it be-

comes apparent that the prevailing studies do not address the discovery process in a

context-aware or intelligent manner. In the existing literature, context-aware FND

is not studied in a scalable manner. It also does not present a framework for intelli-

gent and reliable trust-based assessment in a distributed fog environment or explore

a trust-based FNS that depends on distributed registries. Finally, the existing liter-

ature doesn not discuss an intelligent approach to select the optimal fog node from

several discovered fog nodes.

Within the scope of this research, our focus lies in the intelligent discovery and

selection of fog nodes with the aim of improving performance by reducing latency,

response time, and bandwidth usage. Specifically, the fog consumer initiates the

discovery process to identify fog nodes with the computing capacity that satisfies

the requirements of the fog consumer. Following this, the selection stage commences

when the edge device evaluates the trustworthiness of the identified fog nodes and
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selects the most suitable one that meets its task requirements.

In other words, the fog consumer selects a fog node based on the belief that it

will successfully process and deliver the required outcomes within the specified time

frame. Therefore, the proposed intelligent system is expected to employ an optimal

approach to discover the most suitable fog nodes and support fog consumers in

selecting the most trustworthy one.

3.4 Research Issues

• Research Issue 1:

The fog environment lacks a consortium for fog nodes to host important fog

node information and a distributed mechanism to ensure DFR concurrency.

• Research Issue 2:

A context-aware FND mechanism using intelligent methods does not exist. In

the scope of this research, the word context refers to the identity and loca-

tion of the fog consumer. In the future, other research may choose to enrich

context-aware discovery by adding additional context-related parameters. In

the existing literature, no study has been conducted that examines scalable

and Intelligent context-aware FND.

• Research Issue 3:

Existing work lacks a framework for intelligent and reliable trust-based as-

sessment in distributed fog environments, failing to explore the potential of

trust-based FNS that leverages distributed registries. Additionally, the se-

lection mechanism for fog nodes currently does not incorporate trust-based

criteria, underscoring the need for innovation in this area.

• Research Issue 4:

In a fog environment, mechanisms for predicting the trust value of new fog
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nodes are absent. Existing literature does not examine how to intelligently

predict a fog node’s trust value with the aim of bootstrapping it in the fog

ecosystem.

3.5 Research Questions

The research gaps and issues highlighted earlier have led to the formulation of

the principal research question for this project, which is: How can the fog consumer

intelligently discover and select a fog node in a context-aware and reliable manner?

This main question can be further divided into five sub-questions as follows:

• Research Question 1:

How to register fog node information in the FRC and ensure concurrency

among the DFRs?

• Research Question 2:

How can fog consumers discover fog nodes in a context-aware manner?

• Research Question 3:

How to predict the trust value of a fog node to make reliable fog-based selection

decisions?

• Research Question 4:

How to predict the trust value of a new fog node for trustworthy and reliable

fog-based selection?

• Research Question 5:

How to evaluate and validate the proposed framework including the proposed

solutions to address Research Question 1 to Research Question?
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3.6 Research Objectives

Based on the research questions in the previous section, we define five research

objectives that will be achieved in this thesis. The objectives of this research are as

follows:

• Objective 1:

Develop the architecture of the FRC that can host the important informa-

tion of fog nodes. Furthermore, develop distributed mechanisms to ensure

concurrency between the DFRs within the consortium.

• Objective 2:

Develop an intelligent approach to discover fog nodes in a context-aware man-

ner.

• Objective 3:

Develop an intelligent approach to predict the trust value of fog nodes to help

the user select a reliable fog node based on the trust value.

• Objective 4:

Develop an intelligent approach to bootstrap new fog nodes into a fog ecosys-

tem to make a reliable fog-based selection.

• Objective 5:

Build a prototype system to evaluate and refine the framework and the ap-

proaches developed to achieve sub-aims (1) – (4).

3.7 The research approach to problem solving

In this thesis, the design science research methodology is chosen to solve the re-

search questions proposed in Section 3.5. The design science research methodology
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is the most suitable research methodology for this thesis. Pe↵ers et al. [109] de-

fined the design science research methodology as the process to create and evaluate

IT artifacts that intend to solve problems. The main process of the design science

research methodology is to design artifacts to solve observed problems, to make

research contributions, to evaluate the designs, and to communicate the results to

appropriate audiences [109]. This thesis focuses on developing a new methodology

for intelligently discovering and selecting the optimal fog node. This new method-

ology will address the defined problems of FND and FNS. Thus, this thesis follows

the design science research methodology approach to make the methodology more

scientific and rigorous. The details of the chosen research method are presented in

the next section.

3.7.1 The design science research methodology

In this thesis, a design science research methodology [109] approach is chosen

as the research method for the proposed solution development. The process of

this research method is depicted in Figure 3.1. The process comprises six phases

discussed in the following sub-sections, as defined in [109]:

Figure 3.1 : A design science research methodology process model
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3.7.1.1 Problem identification and motivation:

The first phase of the design science research methodology approach is to identify

the research problems. This step will help to design the artifact and solve observed

problems. In this thesis, we conducted an extensive study of the existing literature,

as presented in Chapter 2, to identify the research problems and gaps. Subsequently,

these research problems are thoroughly outlined and elucidated in Chapter 3.

3.7.1.2 Define the objectives for a solution:

During this phase, the research objectives of a solution are defined. Chapter 4

provides an extensive overview of the solution for all five issues identified within the

scope of this study and outlines how the research questions will be solved focusing

on developing an intelligent framework on top of fog computing for context-aware

FND and trust-based FNS.

3.7.1.3 Design and development:

During this phase, the focus is on designing the research solution and the pro-

posed prototype. Chapters 5, 6, 7, and 8 delve into the intricate process of designing

and developing a prototype for FND and FNS. Extensive e↵orts are dedicated to

engineering prototype systems, ensuring their e↵ectiveness and functionality. Fur-

thermore, several case studies are carefully developed to serve as valuable testing

grounds for evaluating the proposed prototype. These case studies enable a com-

prehensive assessment of the performance and feasibility of the developed solution.

3.7.1.4 Demonstration:

In this phase, the objective is to showcase how the prototype e↵ectively addresses

the research problems. Chapters 5, 6, 7, and 8 detail the experiments which were

conducted to validate the proposed prototype to address the identified problems.
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Through extensive experimentation and analysis, the e�cacy and functionality of the

proposed prototype is demonstrated, providing empirical evidence of its e↵ectiveness

in resolving the research problems.

3.7.1.5 Evaluation:

During this phase, the focus is on assessing the proposed prototype and evalu-

ating its performance to determine how e↵ectively it supports the e�ciency of the

overall solution. Once the prototype has been tested, the evaluation and validation

of our proposed approach is undertaken in the evaluation step which is elaborated

upon in Chapters 5, 6, 7, and 8.

3.7.1.6 Communication:

In this phase, the focus is on communicating the result of the proposed proto-

type to researchers and the professional community. The results of the proposed

prototype are published in journals and conference proceedings.

3.8 Conclusion

In this chapter, we defined important key terms and concepts that hold signif-

icant relevance to this thesis. These definitions ensure a shared understanding of

the terminology used throughout the thesis, enabling e↵ective communication and

comprehension. Moreover, we identified the main research problem that serves as

the focal point of our investigation. By addressing this problem, we aim to con-

tribute to the field of fog computing and provide valuable insights into FND and

FNS methodologies. To guide our research process, we formulated research questions

and established research objectives. These questions and objectives act as guiding

principles, shaping the trajectory of our inquiry and driving us towards developing

innovative solutions. In line with our research objectives, we adopted a design sci-

ence research methodology, which provides a structured framework for creating and
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evaluating practical artifacts. This methodology ensures that our research outcomes

are not only theoretically grounded but also capable of addressing real-world chal-

lenges in the domain of FND and FNS. In the next chapter, we present an overview

of our proposed solution to the research problem outlined in this chapter. We detail

our innovative approach, the FRC framework, providing insights into its key features

and contributions.
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Chapter 4

Solution Overview

4.1 Introduction

In this chapter, we examine the methodological approach that is utilized to

address the gaps identified during the literature review. Additionally, we overview

the solutions proposed for each of the five research issues that are discussed in

Chapter 3. The chapter details the solutions for all five issues presented in this thesis,

along with an explanation of how the research questions are addressed. In Section

4.2, we provide a general overview of the proposed solution. Sections 4.3 through

4.7 present an overview of the solutions for research questions 1 to 5, respectively.

Lastly, Section 4.8 concludes the chapter.

4.2 Overview of the solutions

In this section, we present an overview of all the solutions to achieve the five

objectives listed in Chapter 3. The objective of this research is to develop an intel-

ligent framework on top of fog computing for context-aware FND and trust-based

FNS. In our framework, we propose a novel concept of the FRC. We define the FRC

as an intermediary between the fog consumer and fog nodes that acts as a broker for

various activities such as, but not limited to, fog discovery, fog selection, etc. In our

research, we propose and use the notion of FRC for FND and FNS. In the future,

the role of FRC can be extended beyond this to carry out other activities. The

definition and the role of FRC is explained in Chapter 5. The FRC is a collection of

fog registries and consists of two types of fog registries as follows: (see Figure 4.1).
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1. The central fog registry (CFR) (further details in Chapter 5 in Section 5.3).

2. The distributed fog registry (DFR) (further details in Chapter 5 in Section

5.3). The DFR has the following modules:

(a) Fog repository (further details in Chapter 5 in Section 5.3)

(b) Fog node discovery engine (FNDE) (further details in Chapter 6)

(c) Fog node selection engine (FNSE) which includes:

i. Trust evaluation engine (TEE) (further details in Chapter 7)

ii. Bootstrapping engine (BE) (further details in Chapter 8)

The following steps describe the overall process of the research (solution steps)

and the function of each component in a methodological manner:

Step 1: Any given fog node registers (or publishes) its service information such as fog

node ID, fog node name, fog node description, fog node location, and QoS

values to the DFR. This information is stored in the fog repository.

Step 2: The DFR pushes fog node data to the CFR. This activity is event-based and

is carried out when there are updates to the underlying information (adding

new information, updating the information etc.).

Step 3: The CFR broadcasts this data to all the DFRs in the FRC.

Step 4: As a result of Step 3, all the DFRs have the same up-to-date data on all

fog nodes, which maintains the consistency of the data and the concurrency

between all the DFRs in the FRC.

Step 5: The FRC manages the connection between the fog consumer and one of the

DFRs based on the fog consumer’s geographical location. Depending on the

physical location of the fog consumer, they intelligently connect to the nearest

fog registry. Further details of steps 1 to 5 can be found in Chapter 5.
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Step 6: The fog consumer initiates the discovery process by sending their context-

aware data (identity and location) to the DFR. These parameters are used to

carry out context-aware FND.

Step 7: The FNDE in the DFR verifies the fog consumer’s credentials (authentication)

and then collects context-aware data, this being the physical location of the

fog consumer. After this, the FNSE intelligently determines the nearest fog

node based on a similarity measure. Further details of steps 6 and 7 can be

found in Chapter 6.

Step 8: Based on step 7, the FNDE nominates the most optimal fog nodes to the fog

consumer based on location-based context awareness.

Step 9: The fog consumer selects one of the candidate fog nodes or seeks help from

the FNSE to select a reliable fog node. In our research, we use the notion of

trustworthiness to select a fog node.

Step 10: The FNSE uses the TEE in the DFRs to predict the trust value of the can-

didate fog nodes based on the QoS factors of fog nodes. In our research, we

regard the aggregated QoS value of a given fog node as its trustworthiness

value. Chapter 7 provides further information on the working of the TEE.

Step 11: If the fog node is new and has no QoS data, the BE will predict the trust value

of the new cold-start fog node. Chapter 8 provides further information about

the working of the BE.

Step 12: The FNSE ranks the candidate fog nodes based on their trust values in as-

cending order.

Step 13: The fog consumer makes the final decision and chooses one of the candidate

fog nodes.
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Figure 4.1 illustrates the framework of the FRC with the proposed FND and

FNS approach and Figure 4.2 illustrates the solution steps.

Figure 4.1 : Conceptual overview of the proposed solution

4.3 Overview of the solution to achieve objective 1

In this section, we overview the solution to achieve objective 1: ”Develop the

architecture of the fog registry consortium framework that can host the
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Figure 4.2 : The workflow of the solution steps
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important information of fog nodes. Furthermore, develop distributed

mechanisms to ensure concurrency between the distributed fog registries

within the consortium.” In this section, we present an overview of the architec-

ture and working of the FRC that hosts important information on fog nodes and the

distributed mechanism to ensure concurrency between the DFRs. In this research,

we propose the notion of FRC which is a finite collection of fog registries (FR) that

maintains information on the fog nodes. Conceptually, FRC may be defined as fol-

lows: FRC = {FR1, FR2, FR3, FR4, . . . FRn}. The FRC is responsible for

managing the membership of the FRC, ensuring the integrity of the FRC process,

maintaining concurrency in the FRC, distributing the DFRs, and controlling the

connection between the fog consumer and the DFR in their geographical limitation.

Figure 4.3 shows the architecture of the FRC.

The step-by-step working of the FRC framework is as follows: (further

information in Section 5.5)

Step 1: Register the context-aware fog node data on the DFR when the fog node joins

the network (further information in Section 5.5.1).

Step 2: Synchronize the fog node data between the DFRs in the FRC to ensure the

concurrency of the information between them (further information in Section

5.5.2).

Step 3: Connecting the fog consumer with the fog registry in FRC (further information

in Section 5.5.3).

4.4 Overview of the solution to achieve objective 2

In this section, we present an overview of the solution to achieve objective 2:

”Develop an intelligent approach to discover fog nodes in a context-

aware manner”. To solve the issue of FND, we propose the FNDE within the
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Figure 4.3 : Architecture of the FRC
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DFR as an intelligent and distributed FND mechanism which enables a fog consumer

to intelligently discover fog nodes in a context-aware manner. The working of the

mechanism is encapsulated in the FNDE in the DFR as explained in Chapter 6.

The methodological stepwise working of the FNDE is as follows: (fur-

ther explanation is given in Chapter 6).

Step 1: Check the identity authentication of the fog consumer (further information in

Section 6.2.1).

Step 2: Collect the context-aware data of the fog consumer (further information in

Section 6.2.2).

Step 3: Discover the nearest fog nodes based on context-aware parameters by im-

plementing the nearest neighbor algorithms (KNN, Kd-tree, or brute force)

(further information in Section 6.2.3).

Step 4: Provide a list of the nearest fog nodes (further information in Section 6.2.4).

Figure 4.4 illustrates the working of FNDE.

4.5 Overview of the solution to achieve objective 3

In this section, we present an overview of the solution to achieve objective 3:

”Develop an intelligent approach to predict the trust value of fog nodes

in order to help the fog consumer select a reliable fog node based on the

trust value”. To solve the issue of FNS, we propose an intelligent trust-based

mechanism to assist fog consumer select a reliable fog node from the discovered fog

nodes. To do this, we propose the FNSE in the DFR. The FNSE is an intelligent

and reliable FNS mechanism in a distributed fog environment. FNSE helps fog

consumers choose the most reliable fog node based on the trust value. The FNSE
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Figure 4.4 : Overview of the FNDE workflow
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is an important component within the concept of the FRC as explained in detail

in Chapter 5. The FNSE includes TEE and BE. The TEE performs a trust-driven

evaluation of fog nodes and makes recommendations for selection (more details in

Chapter 7). The TEE includes an intelligent mechanism for predicting the trust

values of fog nodes to make a reliable selection decision. However, the BE performs

a trust-driven evaluation of new fog nodes and makes recommendations for selection

(more details in Chapter 8).

The methodological stepwise working of the FNSE framework is as

follows: (further explanation is given in Chapter 7)

Step 1: The FNSE checks the historical information or any previous interaction history

of the QoS factors of the fog node.

Step 2: If the fog node has the historical information of the QoS factors provided to

this fog node, then FNSE will go to Steps 3 and 4. If a fog node is new and

has only recently joined the network, it does not have any previous interaction

history and su↵ers from the cold-start problem, in which case the FNSE will

move to Step 5.

Step 3: Collect QoS data for each fog node with which they have previously interacted.

The QoS factors are response time, availability, throughput, successability,

reliability, and rank for service quality. The QoS data are stored in the fog

repository in the DFR along with context date of fog node. When the QoS data

are added to the repository, the FRC should be synchronized and updated as

described in Section 5.5. The DFR uses the push synchronization mechanism

to send the data to the CFR. Then, the CFR broadcasts this update to all

DFRs.

Step 4: The TEE in FNSE intelligently predicts the trust value of the fog node. The

TEE predicts the trust value of each fog node based on the value of the QoS
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factors. The fuzzy logic system, logistic regression and deep neural network

(DNN) are used to predict the trust value of the fog nodes (further information

is given in Section 7.2).

Step 5: If a fog node is new and has only recently joined the network, it does not have

any previous interaction history and su↵ers from the cold-start problem, in

which case the BE in FNSE proceeds to predict the trust value of the new

fog node. The fuzzy logic system, logistic regression and DNN are used to

bootstrap the reputation of the new fog node and predict the trust value of

new cold-start fog node. (Further information is given in Section 8.2).

Step 6: After assigning the trust value to each fog node, the FNSE ranks the fog nodes

in ascending order based on their trust values.

Step 7: The final ranked result is displayed to the fog consumers to assist them select

one of the candidate fog nodes. This allows the fog consumer to make an

informed decision in selecting the most reliable fog node for their requirements.

Figure 4.5 describes the working of the FNSE framework.

4.6 Overview of the solution to achieve objective 4

In this section, we present an overview of the solution to achieve objective 4:

”Develop an intelligent approach to bootstrap new fog nodes into a fog

ecosystem”. In this section, we present the solution for the cold-start problem of

fog nodes. We propose an intelligent approach to bootstrap a new fog node provider

into the fog environment or fog ecosystem. Our selection approach, the FNSE, is

based on the trust value of the fog node based on the QoS factors. If there are no QoS

values, this means the FNSE is unable to make a meaningful selection of fog nodes.

When a fog node lacks previous QoS data, has recently joined the network and it
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Figure 4.5 : Overview of the working of the FNSE framework
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does not have any previous interaction history, the BE takes charge of performing

a trust-driven assessment of the new fog nodes and recommending a suitable and

reliable fog node for selection. The BE specifically addresses the cold-start phase

that new fog nodes experience when joining the network.

The BE is an important component of FNSE in the DFR. The BE comprises

two modules, the QoS prediction module to intelligently predict the QoS value of a

new fog node, and the reputation prediction module to predict the trust value and

make a successful and reliable selection, as explained in Chapter 8.

The methodological stepwise working of the BE in the FNSE is as

follows: (further explanation in Section 8.2)

Step 1: QoS prediction for new fog nodes by the QoS prediction module:

The QoS prediction module in BE is responsible for predicting the QoS value

of the new cold-start fog node which includes:

(a) Clustering: Cluster fog nodes based on contextual attributes such as

geographical information using K-means algorithm.

(b) Closest Cluster: When a new fog node joins the network, the QoS

prediction module determines the closest cluster based on its geographical

location. The K-nearest neighbors (KNN) algorithm is used to measure

similarity and identify similar fog nodes (nearest neighbors).

(c) QoS Prediction: Predict (initialize) the QoS value to the new fog node

based on the QoS data of the closest fog nodes (neighbors) by calculating

the average QoS values of the 10 nearest neighbors.

Step 2: Trust value prediction using reputation prediction module: The rep-

utation prediction module intelligently predicts the trust value of the new fog
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node based on its predicted QoS values. We applied various AI-based reputa-

tion prediction techniques such as fuzzy logic, logistic regression, and DNN.

All the steps involved in Step 1 will be carried out o✏ine when the new fog node

comes to the area. So, when the fog consumer wants to know the trust value of the

new fog node, the BE will measure the similarity between the new fog node and all

the nearest fog nodes in its cluster. Similar nearest fog nodes should provide similar

QoS features.

Figure 4.6 illustrates the BE function.

4.7 Overview of the solution to achieve objective 5

In this section, we present an overview of the solution for objective 5: ”Build

a prototype system for the evaluation and validation of the framework

and the techniques developed in sub-aims (1) – (4)”

To validate the proposed framework, a simulation of the fog environment is de-

veloped. An existing fog simulator, OMNeT++, is used to set up the fog simulation

environment.

4.7.1 The validation process for the solution to achieve objective 2

Step 1: Initialization process: The initialization process comprises the following steps:

(a) Set up the framework in OMNeT++.

(b) Specify the number of fog nodes, starting with 100 nodes. A random

latitude and longitude value are assigned for each fog node.

(c) Determine the number of fog registries, starting with 5 registries.

(d) Determine the number of iterations = n times. The value of the param-

eters for (b) and (c) vary from one iteration to the next.
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Figure 4.6 : Overview of the working of the FNSE and BE
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Step 2: Implement three nearest neighbor algorithms (KNN, K-d tree, brute force) for

FND in OMNeT++.

Step 3: The system administrator selects a random fog node (e.g. fog node A as a fog

consumer) from the available 500 fog nodes and asks it to carry out context-

aware FND. The system administrator knows the closest context-aware fog

nodes for fog node A; however, this information is unknown to fog node A.

Step 4: Use well-known and accepted metrices such as precision, recall and F1 score

which are defined as:

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

F1 Score =
2 · (Recall · Precision)
Recall + Precision

(4.3)

Then, we compute and compare the accuracy of the three methods.

Accuracy =
TP + TN

TP + FN + TN + FP
(4.4)

where:

- TP = True Positive: means the discovered fog node is relevant to the actual

output.

- TN = True Negative: means the undiscovered fog node is not relevant to the

actual output.

- FP = False Positive: means the discovered fog node is irrelevant to the actual
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output.

- FN = False Negative: means the undiscovered fog node is relevant to the

actual output.

Step 5: Repeat steps 3 and 4 n times

4.7.2 The validation process for the solution to achieve objective 3 and

objective 4

Step 1: Initialization process: as discussed in Section 4.7.1, this step specifies the

number of fog nodes, the fog registries, and number of iterations. Figures 5.1

and 5.2 illustrates the setup of the OMNeT++ simulator, which includes 100

fog nodes, one fog consumer, 5 DFRs and one CFR.

Step 2: Implement the fuzzy logic-based approach, logistic regression-based approach,

and DNN-based approach in the TEE in FNSE in the DFR module for ob-

jective 3. Implement the BE with fuzzy logic, logistic regression, and DNN in

FNSE in the DFR module for objective 4.

Step 3: The system administrator selects random fog nodes X from the available fog

nodes and asks TEE to predict the trust value of these fog nodes and asks

FNSE to carry out the FNS process which is called predicted results. The

system administrator knows the trust value of fog nodes X and the list of fog

nodes that should be selected which is called the actual results; however, this

information is unknown to nodes X in order to compare the predicted results

against the actual results.

Step 4: Use well-known and accepted metrices such as precision, recall and F1 score

which are defined in equations 4.1, 4.2, 4.3.
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Then, we compute and compare the accuracy as defined in equation 4.4 of the

three methods.

where a:

- TP = True Positive: means the predicted output is relevant, and it is correctly

identified as relevant.

- TN = True Negative: means the predicted output is not relevant, and it is

correctly identified as not relevant.

- FP = False Positive: means the predicted output is not relevant, but it is

mistakenly identified as relevant.

- FN = False Negative: means the predicted output is relevant, but it is

mistakenly identified as not relevant.

Step 5: Repeat steps 3 and 4 n times

4.8 Conclusion

In conclusion, this chapter has provided a comprehensive overview of the solu-

tions proposed to achieve each objective outlined in Chapter 3. The chapter com-

menced by discussing the selected research methodology, namely the design science

research methodology, which serves as the guiding framework for this research. This

methodology emphasizes the practical development and evaluation of innovative so-

lutions. Then, we presented an overview of all the solutions to achieve objectives 1,

2, 3, 4, and 5, detailed in Chapter 3, in Sections 4.3, 4.4, 4.5, 4.6 and 4.7 respec-

tively. The next chapter provides more comprehensive details on the development

of the FRC framework’s architecture and discusses the FRC components, activities,

design, implementation, and experimental evaluation.
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Chapter 5

Developing the architecture of the fog registry
consortium (FRC)

5.1 Introduction

In this chapter, we explain in detail our solution for developing the architecture

of the FRC and its pivotal role. The FRC serves as the backbone of the proposed

framework, responsible for managing crucial information regarding fog nodes and

ensuring seamless concurrency between the DFRs within the consortium. In our

proposed framework, we propose the novel concept of the FRC as defined in Section

3.2.10. In this chapter, we present the significance of the FRC in Section 5.2.

Then, we explain the architecture of FRC in Section 5.3. We elaborate in detail

the activities of FRC in Section 5.4. The working steps of the FRC are explained

in Section 5.5. Section 5.6 presents the implementation and prototype setup of the

FRC. Finally, Section 5.7 concludes the chapter.

It is worth noting that portions of this chapter have been previously published

in the Internet of Things journal [110], further validating the relevance and novelty

of our research.

5.2 The significance of FRC

The FRC plays a critical role in the e�cient operation of the fog ecosystem. It

manages and stores information about fog nodes within the network. This includes

essential details such as fog node ID, fog node name, fog node description, fog node

location, and QoS parameters. By maintaining this information in a structured man-
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ner, the consortium enables e�cient management and coordination of fog resources.

The FRC facilitates the dynamic membership of fog registries. In a fog environment,

the membership of the consortium is transient and subject to frequent changes as

fog nodes join or leave the network. This dynamic nature allows for flexible scala-

bility and adaptability, ensuring that the consortium can accommodate the evolving

fog computing landscape. The FRC ensures that the integrity of the DFR process

is of the utmost importance. The consortium establishes mechanisms and checks

to maintain the accuracy and consistency of the stored information. This ensures

that fog nodes’ attributes are up-to-date and reliable, enabling e↵ective decision-

making processes within the fog computing infrastructure. In a DFR environment,

where multiple registries exist across di↵erent locations, the consortium ensures the

synchronization of data between these registries. This synchronization mechanism

helps in maintaining consistent and coherent information across the DFR, enabling

seamless communication and collaboration among fog registries. The consortium

also plays a role in controlling the connection between fog consumers and the DFR

based on their geographical limitations. This ensures that fog consumers are con-

nected to the most relevant and suitable DFR within their proximity, promoting

e�cient resource utilization and QoS optimization. The following section elaborates

the main components of the FRC architecture and their respective functionalities

within the fog computing environment.

5.3 The architecture of FRC

In Chapter 4, we defined the FRC as an intermediary between the fog consumer

and fog nodes that acts as a broker for various activities such as fog discovery and fog

selection. FRC is defined as a finite collection of fog registries (FR) that maintains

information on the fog nodes. Conceptually, as mentioned in Section 3.2.10, FRC is

defined as follows: FRC = {FR1, FR2, FR3, FR4, . . . FRn}. In this section, we
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present the structural design of our proposed framework, the FRC, which consists

of two types of fog registries as follows:

1. The main central fog registry (CFR): The CFR controls and coordinates

all the DFRs in the consortium, ensures an equally and uniformly spread of

DFRs, manages the membership of the DFR in the FRC, ensures the integrity

of the FRC, and ensures concurrency by synchronizing fog node data between

all other DFRs to keep them up to date.

2. The distributed fog registries (DFR): In contrast to the main CFR, there

are multiple geographically dispersed registries that synchronize with the main

CFR. The DFRs are located in di↵erent remote regions and are uniformly

spread across the globe. Each DFR stores information on all fog nodes in the

network. All DFRs have the same data on all fog nodes and are synchronized.

The DFRs are the first point of contact for fog consumers. The DFR further

has the following modules:

(a) Fog repository: Fog repository stores essential information about all

the fog nodes in the fog ecosystem. Within the fog repository, we store

specific details related to each fog node which include fog node ID which

is a unique identifier assigned to each fog node, fog node name which is

a specific name assigned to the fog node, fog node description which is

detailed information about the fog service functionalities and operations,

fog node location which is the physical location which contains the longi-

tude and latitude where the fog node is located, and the QoS of the fog

node which is the QoS values associated with the fog node.

(b) Fog Node Discovery Engine (FNDE): The FNDE, as discussed in

Chapter 6, is a component within the DFR that is responsible for iden-

tifying and locating fog nodes within the fog ecosystem intelligently and
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in a context-aware manner. It employs several techniques to perform the

discovery process e�ciently.

(c) Fog Node Selection Engine (FNSE): The FNSE, elaborated in Chap-

ter 7, is a third component in the DFR. It facilitates the intelligent selec-

tion and assignment of trusted fog nodes to handle specific computational

tasks or services. The FNSE consists of two key sub-components:

i. Trust Evaluation Engine (TEE): The TEE, as described in Chap-

ter 7, is the first component within the FNSE. The TEE is a trust-

driven evaluation of fog nodes and makes recommendations for se-

lection. It is responsible for predicting the trustworthiness and relia-

bility of fog nodes in the fog ecosystem. The TEE predicts the trust

value for each fog node intelligently based on the QoS of the fog node.

These trust values play a crucial role in the decision-making process

of selecting reliable fog nodes for other computational tasks.

ii. Bootstrapping engine (BE): The BE, explained in Chapter 8, is

another component within the FNSE. It addresses the scenario where

a fog node is newly added to the fog ecosystem or restarted after a

period of inactivity. It is responsible for intelligently predicting the

trust value of the new cold-start fog node that recently joined the fog

ecosystem and su↵ers from an unknown QoS. This is a fundamental

role in trust-based fog node selection.

Figure 4.3 depicts the architecture of the FRC.

5.4 The activities of FRC

In this section, we highlight the significant responsibilities that lie within the

realm of the FRC. The FRC is entrusted with the following key activities:
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1. Managing the membership of the FRC (as discussed in Section 5.4.1): The

FRC oversees the dynamic composition of its membership, ensuring that fog

registries are appropriately included or excluded from the consortium.

2. Ensuring the integrity of the FRC process (as detailed in Section 5.4.2): The

FRC implements robust measures to guarantee the trustworthiness and relia-

bility of its operations, thereby upholding the integrity of the entire process.

3. Ensuring concurrency in the FRC by synchronizing data between DFRs (as

elucidated in Section 5.4.3): The FRC facilitates the seamless coordination

and synchronization of data across DFRs, enabling consistent and coherent

information exchange.

4. Distributing the DFRs across the globe in a uniform manner: The FRC strate-

gically allocates the DFRs to various locations worldwide, ensuring equitable

distribution and optimizing network performance.

5. Controlling the connection between fog consumers and the DFR within their

geographical limitation: The FRC governs the connectivity between fog con-

sumers and the DFR, e↵ectively managing access based on geographical con-

straints and limitations.

5.4.1 Membership of the FRC

The membership of the FRs within the FRC could either be static or dynamic.

In a true fog environment, the membership of the FRC is transient and dynamic.

However, the membership of the FRC could also be static with proper checks and

balances in place to ensure the integrity of the process activity carried out by the

FRC. In our research, we use a static membership function for the FRC. Below we

describe how fog nodes can become members of the FRC and also how the integrity

of the activity carried out by the FRC can be maintained (particularly under static



93

membership). The job of the FRC is to store an exhaustive list of all the fog nodes

in the fog network with their bespoke attributes such as but not limited to fog node

ID, fog node name, fog node location etc. It is critical to note that this list of fog

nodes stored in the FRC is not static but an evolving list where new fog nodes may

join the fog network and existing ones drop out of the fog network. The membership

criteria for the FRC is grounded on the factors that enable the FR to maintain and

update the list of the fog nodes in a dynamic manner. As such, we use the following

membership functions for joining our FRC:

1. Storage capacity: The FR should have very large storage space to maintain

the extensive and expansive list of fog nodes with their bespoke attributes

(ideally SSD storage to minimize retrieval time).

2. Processing capacity: The FR should have fast processing capacity (ideally

GPUs; however non-GPU processors such as the i7 processor are su�cient as

well). This is again to minimize retrieval times.

3. Reputation value: The FR should be a trustworthy fog node as evidenced by

its reputation value.

In this research, we propose the above three factors for selecting the FRs, however

in practical implementation, the above factors can be di↵erent. The CFR initiates

the selection process. It is critical to note that while the CFR initiates the process,

the activities within the selection process are carried out in a manner that is visible

to all the participants.

5.4.2 Ensuring the integrity of the FRC process

To ensure that no single entity or group of entities within the FRC has control

of the entire activities in the FRC to the extent that they are able to manipulate its
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activities in an unfair manner, we propose the notion of checkpointing and bench-

marking. Checkpointing is carried out at regular periodically recurring intervals of

time (n). The working of the checkpointing and benchmarking is as follows:

1. During the checkpointing process, each member of the FRC is asked to submit

a one-way hash of its repository, using a dynamically generated key. The CFR

(explained below) generates this key dynamically and every member of the

FRC is required to submit a one-way hash outcome to the FRC which is

shared with all members of the consortium.

2. During the benchmarking process, led by the CFR, the hash outcomes of all the

’N’ DFRs are compared to determine if there are any erroneous DFRs. These

erroneous DFRs, whose hash outcomes do not match those of the majority

ones, are asked to rectify the content of their respective registries so that there

is no discrepancy in the one-way hash outcomes. If the CFR finds a DFR whose

one-way hash outcome repeatedly does not match those of the majority, then

that fog node may be expelled from the FRC.

It is critical to note that both the checkpointing and the benchmarking process

is carried out in a manner that is visible to all members of the consortium. A

consortium-visible blackboard is used to systematically display all the activities

of the checkpointing process (such as a call for one-way hash functions and the

submission of one-way hash functions) and also all the activities of the benchmarking

process (outcome of the comparison process, identification of non-compliant one-way

hash functions, rectification of the repositories of non-compliant nodes and expulsion

of repeating non-complaint nodes).
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5.4.3 Ensuring concurrency between DFRs in the FRC

Each DFR stores information about all fog nodes in the fog network. The FRC

achieves consistency and integrity of information by ensuring that the information

is stored and synchronized in all the DFRs. In this research, we use the push

synchronization mechanism to synchronize fog node data between the DFRs in the

FRC. It is an event-based process and is carried out when new information is added

or when information is updated. The redundant data in the DFRs helps detect

any malicious node if data is changed. Also, if one of the DFRs fails or dies, the

data can be recovered from another registry. In this research, we propose the notion

of DFRs as an enabler to fog node discovery and fog node selection. The notion

of the DFR also gives rise to other research issues, such as consortium formation,

consortium evolution etc. Developing intelligent methods for the formation of the

fog consortium and fog dissolution are very important research issues. However,

they are outside the scope of this research.

5.5 The working steps of FRC

In this section, we present the step-by-step working of the FRC framework.

5.5.1 Step 1: Register the context-aware fog node data on the DFR

when the fog node joins the fog network

When a fog node joins the fog network, the context-aware data of the fog node

is published on the DFR closest to its geographical location. The context fog node

data includes the identity and the current physical location of the fog node (fog node

name, fog node ID, fog node location). These data are stored in the fog repository

of the DFR which means data are registered in one of the DFRs. The location of the

fog node in this research is static and must be determined in its geographical range.

Fog nodes may be located at various locations such as shopping malls, schools,
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hospitals, libraries, train stations, etc.

5.5.2 Step 2: Synchronize the fog node data between the DFRs in the

FRC to ensure the concurrency of the information between them

When the data of the fog node is registered, whether data is new or modified

in one of the DFRs, the DFR will push this new data or changed data to the CFR

using the push synchronization mechanism. The data source, which is the DFR,

notifies the data sink which is the CFR of the new or changed data. The push is an

event-based process which starts when the new data arrive or data are changed. This

event-based push mechanism ensures data consistency between all DFRs. Then, the

CFR broadcasts the new data or the changed data to all the other DFRs.

5.5.3 Step 3: Connecting the fog consumer with the fog registry in FRC

When the fog consumer wants to discover a fog node, they need to connect

to the one of distributed fog registries. They send their credentials to the FRC

which will find the nearest DFR in the fog consumer’s geographical boundary and

responds. Automatically, current physical location information such as the latitude

and longitude values of the fog consumer is collected by the DFR to discover the

closest fog nodes.

Figure 4.3 presents the architecture and workflow of the FRC framework.

5.6 FRC implementation and prototype setup

The FRC framework is implemented in a simulation environment using the OM-

NeT++ platform [111]. OMNeT++ is an open-source simulation tool programmed

in the C++ language [111]. For our implementation, we utilized OMNeT++ ver-

sion 5.6.2. OMNeT++ is selected because it is one of the network simulators that

supports our proposed model features such as location-awareness, low latency and
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scalability. Moreover, OMNeT++ has been widely used in academia and its flex-

ibility enables it to identify the network behaviour based on our scenario. It is

capable of handling fog networks and devices in a distributed environment. OM-

NeT++ consists of three key components: the network, the NED language, and the

configuration file. In the network component, we define four modules: CFR, DFR,

FN, and FC, as illustrated in Figure 5.1. Each module represents a distinct entity

within the FRC architecture and interacts with other modules to simulate the be-

haviour of the fog computing system. The NED language is employed to create the

network topology, specifying the connections and interactions between the di↵erent

modules. Using the NED language, we define the relationships and communication

protocols among the CFR, DFR, FN, and FC modules, allowing for the simulation of

their interactions within the FRC environment. To run the network simulation, we

utilized the configuration file named omnetpp.ini. This file contains the necessary

parameters and settings to configure the simulation environment in OMNeT++. It

specifies the simulation duration, network parameters, module configurations, and

other simulation-specific details required for executing the FRC simulation.

Figure 5.1 : Simulation modules

Firstly, we established a wireless network and created four modules to simulate

the FRC environment. Figure 5.2 depicts the simulated network comprising these

four modules. The first two modules are the CFR and the DFR, both of which
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contain the fog repository. The fog repository stores comprehensive information

about all registered fog nodes, which is pushed from the DFR. Table 5.1 provides a

detailed schema of the fog repository used in both the CFR and DFR.

Figure 5.2 : Simulation of the FRC framework

The third module represents the fog nodes within the network. Each fog node

is characterized by four parameters: identification, name, and physical location

(latitude and longitude). The network is designed to accommodate up to 2000 fog

nodes, each associated with its specific physical location. For simulation purposes,

we utilized the latitude and longitude coordinates of edge servers from the EUA

dataset [112]. Table 5.2 presents a snapshot of the fog node dataset used in the

simulation.

The fourth module represents the fog consumers within the network. Each fog

consumer is represented by the fog consumer ID, fog consumer IP, and physical

location (latitude and longitude). To simulate fog consumers, we employed the end
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Table 5.1 : The fog repository schema of CFR and DFR

FN ID FN NAME LATITUDE LONGITUDE

1000 Fort Hill Wharf

DARWIN

-12.471947 130.845073

10000 Cnr Castlereagh

and Lethbri PEN-

RITH

-33.756158 150.698182

10000002 Optus 50m Lat-

tice Tower 71

Eastward Road

Utakarra

-28.77766 114.63426

user dataset from the EUA dataset [112]. Table 5.3 provides a glimpse of the fog

consumer dataset used in the simulation. Communication between these modules is

facilitated through channels, allowing for message exchange and interaction.

Secondly, within the simulation environment, we implemented FNDE and FNSE,

which lastly comprises TEE and BE. These engines are incorporated into the DFR.

For further details about the FNDE, FNSE, TEE, and BE, refer to Chapter 6, 7,

and 8, respectively.

By simulating these modules and engines, we can analyze the behavior and

performance of the FRC in a controlled environment. This simulation allows us to

evaluate the e↵ectiveness and e�ciency of the FNDE, FNSE (including TEE and

BE), and their impact on the overall fog computing system.

In this research, we utilized a comprehensive dataset obtained from EUA (Edge
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Table 5.2 : A snapshot of the fog node dataset

SITE ID NAME LATITUDE LONGITUDE

1000 Fort Hill Wharf

DARWIN

-12.471947 130.845073

10000 Cnr Castlereagh

and Lethbri PEN-

RITH

-33.756158 150.698182

10000002 Optus 50m Lattice

Tower 71 Eastward

Road Utakarra

-28.77766 114.63426

10000003 6 Knuckey Street

Darwin

-12.464597 130.840708

10000004 Cape Wickham

Links Clubhouse

KING ISLAND

-39.5964 143.9339

Table 5.3 : A snapshot of the fog consumer dataset

FC ID IP LATITUDE LONGITUDE

1 1.120.2.1 -37.8833 145.3333

2 1.120.0.1 -30.5083 151.6712

3 1.120.163.1 -21.0405 149.1849

4 1.122.32.1 -31.9344 115.8716

5 1.123.11.1 -34.8333 138.6333
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User Allocation) datasets [112] which comprises real-world data collected from pub-

licly available sources of edge computing. The dataset specifically includes the geo-

graphical locations of both edge servers and end-users within the Australian region.

Due to the lack of fog node datasets and because there is no specific publicly avail-

able standardized dataset exclusively focused on fog services, we used the EUA Edge

Computing Dataset, since fog computing and edge computing share similarities in

terms of processing data at the network edge.

The EUA dataset contains precise geographical Information regarding all cellular

base stations in Australia, which are considered as edge servers. In total, the edge

server dataset comprises 95,562 entries, each representing a fog node within the fog

computing network in our research. The attributes associated with fog nodes include

SiteID, Name, Latitude, and Longitude, as outlined in Table 5.2. Moreover, the end

user dataset from the EUA datasets consists of 4,748 entries, representing end-users

who are considered to be fog consumers in our research. For fog consumers (end

users), we extracted the necessary attributes, namely fog consumer ID, IP address,

Latitude, and Longitude, as specified in Table 5.3. All the data pertaining to fog

nodes and fog consumers were stored within the fog repository in the DFRs.

To validate the e↵ectiveness and functionality of the FRC, we conducted exper-

iments that involved the FND process explained in Chapter 6 and the FNS process

explained in Chapters 7 and 8. These experiments aim to assess the FRC’s abil-

ity to accurately discover appropriate fog nodes and select reliable ones based on

predefined criteria.

Furthermore, we performed a series of experiments on the simulated network,

considering various scenarios with di↵erent numbers of fog nodes and fog consumers.

These experiments were conducted to gain insights into the behavior, performance,

and scalability of the FRC with the CFR, and DFRs under di↵erent conditions.
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For more detailed information on the working of the FND process and experiments,

refer to Chapter 6. Furthermore, for more information on the working of the FNS

process and experiments, refer to Chapter 7 and 8. Both FND and FNS are based

on FRC. By conducting these experimental evaluations, we are able to assess and

validate the functionality, e�ciency, and e↵ectiveness of the FRC in managing fog

nodes and facilitating communication between fog consumers and fog nodes within

the simulated network.

5.7 Conclusion

In conclusion, Chapter 5 e↵ectively addresses the first research question by

proposing the development of the FRC. The chapter begins by introducing the novel

concept of the FRC, establishing its significance within the context of fog comput-

ing. By defining the FRC and its key components, a comprehensive understanding

of its purpose and functionality is provided. The chapter further delves into the

architecture and working steps of the FRC, presenting a detailed overview of how

the consortium operates. This includes the intricate processes involved in manag-

ing and synchronizing data across DFRs, ensuring the integrity and consistency of

information. The implementation of the FRC framework is explained, highlighting

the use of the OMNeT++ platform for simulation purposes.
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Chapter 6

Developing an intelligent approach to discover fog
nodes in a context-aware manner

6.1 Introduction

The fog ecosystem is a dynamic and distributed environment where fog nodes

can join or leave the network. Locating the best and most appropriate fog node

is a primary concern of fog consumers. The FND is an important process in the

choice stage of the fog node environment where the fog consumers can find the op-

timal fog nodes that meet their requirements. The FND process can be achieved

by several techniques such as context-aware, location-aware, content-aware mecha-

nism etc. to improve the accuracy and e�ciency of the discovery process. In this

research, the FND process aims to identify the best fog nodes based on their context

awareness. As discussed in Chapter 3, context awareness refers to the location-based

context awareness that involves using geographic location information to determine

the proximity of fog nodes to the fog consumer. To ensure that the tasks from the fog

consumer are processed in a timely manner, one of the crucial aspects to consider for

FND is the geographic distance between the fog node and the fog consumer as this

directly impacts latency, response time, and bandwidth usage for the fog consumers.

Thus, location-based context awareness is one of the key decision criteria for FND

to ensure that the QoS metrics are satisfied. So, discovering the nearest fog nodes

based on location-based context awareness will reduce latency and improve network

performance. In this chapter, we explain in detail our solution for developing an

intelligent approach to discover fog nodes in a location-based context-aware manner.
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In this chapter, we propose the FNDE within the DFR as an intelligent and

distributed fog discovery mechanism which enables a fog consumer to intelligently

discover fog nodes in a context-aware manner. The FNDE is a framework responsi-

ble for searching and discovering relevant fog nodes in a context-aware manner. In

Section 6.2, we discuss the framework of the proposed solution FNDE, explain the

FNDE working steps, and provide the algorithm of the FNDE. Section 6.3 presents

the implementation of the FNDE framework. Furthermore, the extensive experi-

ments are detailed in Section 6.4. Section 6.5 discusses the evaluation process and

results. Finally, Section 6.6 concludes the chapter.

It is worth noting that the content of this chapter has been previously published

in the Internet of Things journal [110], further validating the relevance and novelty

of our research.

6.2 FNDE framework

We proposed the FNDE as a mechanism for the process of discovering fog nodes

in a fog ecosystem. The development of FNDE is encapsulated in the DFR. Basically,

after publishing and synchronizing the context-aware fog nodes’ data in CFR and

DFRs (Chapter 5), the process of discovery starts when the fog consumer intends to

consume a service in the fog node. On successful authentication, the FNDE collects

the context-aware data of the fog consumer to carry out the discovery process. In the

scope of this research, the term context-aware refers to the identity and location of

the fog consumer. The context-aware data of a fog consumer consists of fog consumer

ID, fog consumer IP, fog consumer latitude, and fog consumer longitude. The FNDE

applies the intelligent search algorithm based on the context-aware data of the fog

consumer and fog nodes to find the fog nodes nearest to the current physical location

of the fog consumer. The FNDE provides a list of available nearest fog nodes in

order to select one of them. The following steps demonstrate the methodological
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working steps of the FNSE framework:

6.2.1 Step 1: Check the identity authentication of the fog consumer

When the fog consumer wants to connect to the fog node, the fog consumer will

be prompted on their edge device (such as a mobile device) about the availability of

the nearest fog node. The discovery of the fog node is based on the location-based

context information of the fog consumer and also the fog node. The fog consumer

initiates the FND process by providing their login credentials (usually comprising

username and password; however, other authentication mechanisms such as fin-

ger printing may also be used). Developing reliable and foolproof authentication

measures has been a longstanding research question. In this research, we do not

intend to address this question and instead focus on developing reliable authenti-

cation mechanisms. On the other hand, we use proven authentication mechanisms

such as the use of authentication service providers coupled with a single sign-on.

Fog consumers authenticate their identity using an external third-party authentica-

tion service (such as Google or Microsoft). On successful authentication, they are

redirected to the DFR in the consortium. The external party communicates the

authenticated identity to the central fog node provider.

6.2.2 Step 2: Collect the context-aware data of the fog consumer

The FNDE autonomously collects the fog consumer’s physical location (latitude

and longitude values from the GPS receiver) to carry out FND.

6.2.3 Step 3: Discover the nearest fog nodes based on context-aware

parameters

The FNDE applies the selected fog search algorithm, namely k-nearest neighbor

(KNN) [113], k-d tree [114], or brute force [115]. These search algorithms are com-

monly and successfully used in nearest neighbor searching (further details in Section
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6.3). In our research, we implement four variants of the fog discovery algorithms

(with each variant comprising one algorithm). It intelligently matches the nearest

fog nodes on context-aware parameters such as identity and location.

6.2.4 Step 4: Provide a list of the nearest fog nodes

The FNDE provides a list of the nearest fog nodes. The fog consumer is presented

with these available fog nodes and they can select one of them or seek help to select

the most trusted fog node using FNSE.

Figure 4.4 describes the proposed FNDE framework and the detailed working of

the FNDE. Algorithm 1 explains the working of the FNDE. Table 6.1 explains the

semantics of all the algorithm variables in this chapter.

Table 6.1 : The definition of the algorithm variables

Variable name Variable definition

FN Identity Fog Node Identity

FN Location Fog Node Location

FC Identity Fog Consumer Identity

FC Location Fog Consumer Location

K The number of nearest neighbors

6.3 FNDE implementation

To find the closest and optimal nearest fog nodes, the FRC should be imple-

mented first. We implemented the framework of FRC in a simulation environment

using the OMNeT++ platform [111]. All modules in the FRC which includes FC,

FN, CFR, and DFR modules are implemented and simulated using the OMNeT++
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Algorithm 1 FNDE mechanism

Require: FN Identity, FN Location, FC Identity, FC Location

Ensure: K fog nodes

1: The FC provides their FC identity login credentials (username and password).

2: If authentication is successful, then:

3: The FNDE in the DFR autonomously collects the FC location (latitude and

longitude values from the GPS receiver).

4: The FNDE finds the fog nodes nearest to the FC using one of the fog search

algorithms.

5: The FNDE provides a list of the k-nearest fog nodes.

platform [111] (details in Chapter 5). For the discovery process, we implemented the

FNDE in the DFR module with four di↵erent nearest neighbors search algorithms.

The first algorithm is KNN with Euclidean distance [113]. The second algorithm is

KNN with Manhattan distance [113]. The third algorithm is the k-d tree [114]. The

fourth algorithm is brute force with haversine distance [115]. Then, we compare

the results of the four selected methods. All four methods are implemented using

the C++ language using OMNeT++ [111]. After conducting an extensive literature

review in the field of service science, we identified that the most widely adopted and

successful methods for finding and locating nearest neighbors are brute force, KNN

and K-d tree.

First, we selected the brute force algorithm as one of the nearest neighbors search-

ing methods because of its flexibility and accuracy. In the literature, the brute force

algorithm is commonly used for k-nearest neighbor searches [116]. The brute force

algorithm is the most näıve and simple neighbor search algorithm. It is an easy algo-

rithm to implement and debug. The brute force algorithm works with any distance

metric such as Euclidean, Manhattan, haversine etc., hence it is flexible. In this
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research, we used the haversine formula to measure the shortest distance between

the fog consumer and fog nodes. The brute force algorithm using haversine formula

provides the optimal and exact nearest neighbor, not the approximated one and

hence this lends itself to higher accuracy. Then, we selected the KNN algorithm

because of its e�ciency, flexibility, and accuracy. The KNN algorithm is a super-

vised machine learning algorithm. In the literature, the KNN algorithm is widely,

commonly, and successfully being used to find the nearest locations. Researchers

in [117] [118] [119] used the KNN algorithm for searching and retrieving the near-

est neighbors. The KNN is a robust algorithm to handle the noisy training data

and hence it is e�cient. This algorithm can handle large data and works with dif-

ferent distance matrices such as Euclidean, Manhattan, Hamming, and Minkowski

and hence it is flexible. In this research, we implement the KNN algorithm with

Euclidean and Manhattan distance metrices to investigate which metric will most

accurately provide the optimal nearest fog nodes to the fog consumer. Finally, the

K-d tree algorithm is also selected due to its e�ciency. The K-d tree algorithm is the

most successfully and commonly used method of searching, finding, and discovering

nearest neighbors in the literature [120] [118] [121]. The K-d tree is a simple binary

tree structure. It can handle moderate dimensional spaces more e�ciently. Regard-

ing the e�ciency of this algorithm, the K-d tree can achieve faster search times.

Each of the selected algorithms is explained with its corresponding pseudo-code in

the following subsections 6.3.1, 6.3.2, 6.3.3 and 6.3.4.

6.3.1 KNN with Euclidean distance

First, we implement the KNN algorithm with Euclidean distance, which is used

to estimate locations. The Euclidean distance is the most widely used distance with

the KNN algorithm and measures the straight-line distance between two points in

the Euclidean space [122]. The fog consumer node sends the following information:
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a fog consumer’s identification includes fog consumer ID and fog consumer IP, and

geographical coordinates including latitude and longitude. The KNN calculates the

distance between the fog consumer’s location and the fog nodes in the area using

Euclidean distance. Euclidean distance is calculated as the square root of the sum of

the squared di↵erences between the two points [123] [124]. The Euclidean distance

is given by Equation 6.1:

DEuclidean(x, y) =

vuut
nX

i=1

(xi � yi)2 (6.1)

The K-fog nodes that have the shortest distance are provided in the discovery

list. Algorithm 2 [123] [125] outlines the working of the KNN algorithm in the FNDE

framework.

6.3.2 KNN with Manhattan distance

Second, we implement the KNN algorithm with Manhattan distance, which es-

timates locations. Similar to the method detailed in 6.3.1, the fog consumer node

sends the following information: a fog consumer’s identification represented as fog

consumer ID and fog consumer IP and geographical coordinates including latitude

and longitude. The KNN calculates the distance between the fog consumer’s loca-

tion and the fog nodes in the vicinity using Manhattan distance. The Manhattan

distance is calculated as the sum of the absolute di↵erences between the two points

[124]. The Manhattan distance is given by Equation 6.2:

DManhattan(x, y) =
nX

i=1

|xi � yi| (6.2)

The K-fog nodes that have the shortest distance are provided in the discovery list.

The below Algorithm 3 [125] [124] outlines the working of KNN algorithm in the

FNDE framework.



110

Algorithm 2 KNN algorithm with Euclidean distance
input : k: The number of nearest points to find.

x: The location of the FC (fog consumer).

Y : A list of locations of FNs (fog nodes).

output: kPoints: A list of k points that are the k-nearest points to the FC.

Initialize an empty list, distances, to store the computed Euclidean distances. fore-

ach y in Y do
Calculate the Euclidean distance between x and y Append the distance to

distances

end

Sort distances in ascending order

Initialize an empty list, kPoints, to store the k nearest points for i from 0 to k-1

do
Find the index of the i � th smallest distance in distances Append the corre-

sponding point from Y to kPoints

end

return kPoints
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The K-fog nodes that have the shortest distance are provided in the discovery

list. Algorithm 3 [125] [124] outlines the working of the KNN algorithm in the FNDE

framework.

Algorithm 3 KNN algorithm with Manhattan distance
input : k: The number of nearest points to find.

x: The location of the FC (fog consumer).

Y : A list of locations of FNs (fog nodes).

output: kPoints: A list of k points that are the k-nearest points to the FC.

Initialize an empty list, distances, to store the computed Manhattan distances.

foreach y in Y do
Calculate the Manhattan distance between x and y Append the distance to

distances

end

Sort distances in ascending order

Initialize an empty list, kPoints, to store the k nearest points for i from 0 to k� 1

do
Find the index of the i-th smallest distance in distances Append the corre-

sponding point from Y to kPoints

end

return kPoints

6.3.3 K-d tree

Third, we employ the K-d tree for the KNN algorithm with Euclidean distance

for the nearest location estimation. The K-d tree algorithm is a data structure that

e�ciently organizes points in a multidimensional space [126]. In our implementation,

we focus on estimating the nearest locations of fog nodes to fog consumers. The fog

consumer transmits relevant information including the fog consumer’s identification,

consisting of the fog consumer ID and fog consumer IP, as well as the geographical
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coordinates represented by latitudes and longitudes. The K-d tree algorithm then

calculates the distance between the fog consumer’s location and the fog nodes in

the vicinity using the Euclidean distance metric. Euclidean distance is commonly

utilized in a nearest neighbor search. By leveraging the K-d tree algorithm, we e�-

ciently identify the K-nearest fog nodes based on their shortest Euclidean distances.

These K fog nodes are subsequently included in the discovery list, providing valu-

able information for further processing and decision-making. This approach enables

a more e↵ective and expedited identification of the nearest fog nodes, contributing

to the overall e�ciency and performance of the system. Algorithm 4 [126] [127]

explains the working of k-d tree in the FNDE framework.
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Algorithm 4 K-d tree

input : kdtree: A data structure of a k-d tree containing points of FNs’ loca-

tions.

x: The FC’s location.

K: The number of nearest neighbors.

output: nearestNeighbors: A list of K the nearest neighbors to x.

Initialize an empty priority queue, nearestNeighbors, to store the K nearest

neighbors sorted by their Euclidean distance to x.

Search(kdtree, x, nearestNeighbors)

Procedure(Search(node, x, nearestNeighbors)) if node is null then
return

end

Calculate the Euclidean distance between x and the node’s point

if the size of nearestNeighbors is less than K or the distance is smaller than the

maximum distance in nearestNeighbors then
Add the node’s point to nearestNeighbors along with its distance

if the size of nearestNeighbors exceeds K then
Remove the point with the maximum distance

end

end

Determine the splitting axis based on the depth of the current node

if x’s coordinate on the selected axis is less than the node’s point’s coordinate then
Search(node’s left child, x, nearestNeighbors)

end
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else
Search(node’s right child, x, nearestNeighbors)

end

Calculate the squared distance between the splitting axis and x’s coordinate on

the selected axis

if the size of nearestNeighbors is less than K or the squared distance is smaller

than the maximum distance in nearestNeighbors then
Search(opposite child of node, x, nearestNeighbors)

end

return the K nearest neighbors from nearestNeighbors EndProcedure

6.3.4 Brute Force

Fourth, we implement the linear search using the brute force KNN algorithm

by measuring the distance between two points using haversine distance (spherical

surface). The haversine distance is the angular distance between two points on the

surface of a sphere. The haversine formula provides a good approximation of the

distance between two points of the Earth’s surface, with a less than 1% error on

average [128]. The haversine formula is given by Equation 6.3 [129]:

DHaversine = R⇥ 2⇥ arcsin
�p

a+ c
�

(6.3)

The value a is given by equation 6.4:

a = sin2

✓
�lat

2

◆
(6.4)

Moreover, the value c is given by equation 6.5:

c = cos(lat1)� cos(lat2)⇥ sin2

✓
�long

2

◆
(6.5)
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where R = earth’s radius 6371 km, � lat = (lat2 � lat1), and � long = (long2

� long1).

The brute force method is the most basic and simple to find the exact nearest

locations. Algorithm 5 [130] [126] explains the working of the brute force algorithm

in the FNDE framework.

Algorithm 5 Brute Force
input : k: The number of nearest points to find.

x: The location of the FC (fog consumer).

Y : A list of locations of FNs (fog nodes).

output: kPoints: A list of k points that are the k nearest points to the FC.

Initialize an empty list, distances, to store the computed haversine distances. fore-

ach y in Y do
Compute the haversine distance between x and y. Add the computed distance

to distances.

end

Sort distances in ascending order. Initialize an empty list, kPoints, to store the k

nearest points. for i from 0 to k � 1 do
Find the index of the i-th smallest distance in distances. Add the corresponding

point from Y to kPoints.

end

return kPoints.

6.4 Experiments

The dataset used in this research is a set of EUA datasets [112] which includes

the context data of fog consumers and fog nodes that we need in this research. There

are 95562 edge servers which are considered to be fog nodes in this research. The

attributes of fog nodes are SiteID, Name, Latitude, Longitude. There are also 4748
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end users who are considered to be fog consumers in this research. In this research,

for fog consumers (end users), we use the following attributes fog consumer ID, IP,

Latitude, and Longitude (explained in detail in Chapter 5). We conducted extensive

experiments on the simulated network with a di↵erent number of fog nodes and

di↵erent fog consumers. The experiments include finding the 10-nearest fog nodes

for five di↵erent fog consumers. We selected five di↵erent fog consumers as detailed

in Table 5.3.

For each fog consumer, we find the 10-nearest fog nodes using the four proposed

methods with a di↵erent number of fog nodes. We used 5 iterations. The first

iteration has 100 fog nodes. The second iteration has 500 fog nodes. The third

iteration has 1000 fog nodes. The fourth iteration has 1500 fog nodes. The fifth

iteration has 2000 fog nodes. Then for each fog consumer, the 10-nearest fog nodes

will be obtained using:

1. KNN with Euclidean distance

2. KNN with Manhattan distance

3. K-d tree

4. Brute force

When a fog node is added to the network, it communicates with the nearest DFR

and sends a cMessage which includes the fog node’s context date. In OMNeT++,

a cMessage is a fundamental class that represents a message in the simulation. It

is used to model the exchange of information or events between simulation modules

or components [111]. Then, when the fog consumer module establishes the session

to discover the nearest fog nodes, the latitude and longitude of the fog consumer’s

current location is sent to the DFR module as a cMessage. The FNDE in the DFR

module will find the nearest fog nodes using the search algorithm and then sends
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the list to the fog consumer. We undertook the same processing for all iterations

of 100, 500, 1000, 1500, and 2000 fog nodes for each fog consumer. Figures 6.1,

6.2, 6.3, 6.4, and 6.5 show the simulation of 100, 500, 1000, 1500, 2000 fog nodes

respectively using OMNeT++. In Section 6.5, we evaluate the results of the nearest

neighbors’ fog nodes by comparing the results of the four methods. We validated the

results by calculating the evaluation metrics of the four methods using well-known

and accepted metrices, namely precision, recall, F1 score and accuracy to obtain the

most accurate and optimal method of finding the nearest neighbors’ fog nodes.

Figure 6.1 : Simulating 100 fog nodes using OMNeT++

6.5 Evaluation and discussion

In this section, we evaluate the results of the nearest neighbors’ fog nodes by

comparing the four methods. We validate the results by calculating the evaluation

metrices of the four methods using precision, recall, F1 score and accuracy to obtain

the optimal method of finding the accurate nearest neighbors fog nodes.

The validation process is as follows:
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Figure 6.2 : Simulating 500 fog nodes using OMNeT++

Figure 6.3 : Simulating 1000 fog nodes using OMNeT++
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Figure 6.4 : Simulating 1500 fog nodes using OMNeT++

Figure 6.5 : Simulating 2000 fog nodes using OMNeT++
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Step 1: Initialization process: The initialization process comprises the following steps:

(a) Specify the number of fog nodes, starting with 100 nodes. The number

of fog nodes in each iteration is increased by 500.

(b) Determine the number of fog registries, starting with 5 registries.

(c) Determine the number of iterations = n times. The value of the param-

eters for (b) and (c) vary from one iteration to the next.

Number of iterations = 5, the number of fog nodes in each iteration is

increased by 500.

i. First iteration: fog nodes =100

ii. Second iteration: fog nodes =500

iii. Third iteration: fog nodes =1000

iv. Fourth iteration: fog nodes =1500

v. Fifth iteration: fog nodes =2000

Figure 5.2 Figure 6.6 illustrates the setup of the OMNeT++ simulator,

which includes 100 fog nodes, one fog consumer, four distributed fog

registries and one central fog registry.

Step 2: Implement the four nearest neighbor algorithms including the two KNNs, K-d

tree, and brute force for FND in the DFR module.

Step 3: The system administrator selects a random fog consumer A from the avail-

able fog consumers and asks it to carry out context-aware FND. The system

administrator knows the closest context-aware fog nodes for the selected fog

consumer A; however, this information is unknown to node A. An overview of

this steps is shown in Figure 6.6.

Step 4: Use well-known and accepted metrices such as precision, recall and F1 score

as discussed in Section 4.7.1 to compare the three methods.
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Step 5: Repeat steps 3 and 4 n times.

Figure 6.6 : Actual location of fog nodes

Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11 illustrate the

results of the four methods with a varying number of fog nodes.

The overall accuracy of the four methods is shown in Figure 6.12.

Figures 6.7 – 6.12 show that the brute force algorithm with haversine distance

has the highest accuracy of all the methods, outperforming K-d tree and KNN and

also obtains a value of 1 for precision, recall, and F1 score. Precision measures the

proportion of true positive results of all the positive results. In the evaluation, the

brute force method consistently achieves a precision of 1, indicating that all the fog

nodes selected were true positive matches. This exceptional precision demonstrates

the accuracy of the haversine distance in identifying the nearest fog nodes accu-

rately. Recall, also known as sensitivity, measures the proportion of true positive
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Figure 6.7 : Evaluation results of the network with 100 fog nodes

Figure 6.8 : Evaluation results of the network with 500 fog nodes
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Figure 6.9 : Evaluation results of the network with 1000 fog nodes

Figure 6.10 : Evaluation results of the network with 1500 fog nodes
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Figure 6.11 : Evaluation results of the network with 2000 fog nodes

Figure 6.12 : Average evaluation results
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results correctly identified from all the actual positive instances. The brute force

method again achieves a recall of 1, indicating that it successfully identified all the

relevant fog nodes in the network. The F1 score combines precision and recall to

provide a balanced metric that considers both false positives and false negatives.

The brute force method consistently attained an F1 score of 1, indicating that it

balances precision and recall perfectly. The accuracy metric measures the over-

all correctness of the method in correctly identifying the nearest fog nodes. Once

again, the haversine distance method stands out with an accuracy of 1, showcasing

its e↵ectiveness in obtaining accurate results. The evaluation clearly demonstrates

the superior performance of the brute force method with haversine distance in the

context of FND The perfect scores in precision, recall, F1 score, and accuracy in-

dicates that the haversine distance, a measure of distance between two points on

the Earth’s surface, performs exceptionally well in FND, providing accurate nearest

neighbor results. However, KNN and K-d tree have equal precision and recall values

and their accuracy is also close to 1 which means these two approaches give opti-

mal results as well because both methods use Euclidean distance to find the nearest

neighbors. Both the KNN method with Euclidean distance and the K-d tree method

show stable performance across all the tested fog node scenarios. The consistency

in their results indicates that they are reliable methods for context-aware FND in

various fog computing environments. The KNN method with Manhattan distance

achieves a decent performance for smaller fog node sizes but experiences a decline as

the number of fog nodes increases. This observation suggests that KNN with Man-

hattan distance might be more suitable for smaller-scale fog networks but might not

scale well to larger and more complex environments. Overall, the results indicate

that the brute force method consistently outperforms the other three methods in all

evaluation metrics. This suggests that the haversine distance is highly e↵ective in

accurately discovering the nearest fog nodes in the simulated network, regardless of
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the number of fog nodes. Further, the K-d tree and KNN methods exhibit stable

performance, but their results fall short compared to the brute force method. Addi-

tionally, the Manhattan distance approach in the KNN method performs relatively

better for smaller fog node sizes but deteriorates with an increasing number of fog

nodes.

However, a key point of consideration in the selection of an optimal fog search

algorithm is the complexity of the algorithm itself. We use algorithm complexity as

a key input to its selection. The fog node registry carries out FND on multiple occa-

sions for fog consumers. Even a very minor incremental reduction in the complexity

of the search algorithm makes a huge di↵erence to the load on the fog discovery

server or on the overhead associated with the discovery process. The complexity of

brute force is O(n^m). However, using this linear search method is not suitable for

the approach proposed in this research because when the data increases (number of

fog nodes), the complexity of finding the nearest locations also increases. The com-

plexity of the KNN method is O(n). The downsides are that KNN is very sensitive

to the curse of dimensionality and expensive to compute with a O(n) calculation.

In contrast, the complexity of the K-d tree method is O(log(n)). K-d tree is

guaranteed log2 n depth where n is the number of points in the set.

For this reason, the execution time of the three methods is calculated to evaluate

their complexity. We computed the execution time of the three methods with a dif-

ferent number of fog nodes (100, 500, 1000, 1500, and 2000). We ran the simulation

five times then the average of the execution times is obtained. All experiments were

conducted on a Mac Pro with 2.8 GHz Quad-Core Intel Core i7 processor and 16

GB 2133 MHz LPDDR3 memory. Figures 6.13 – 6.17 show the average execution

times of the three proposed methods with a di↵erent number of fog nodes. The

average of the overall execution times is shown in Figure 6.18.
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Figure 6.13 : The average execution times of the three methods when fog nodes =

100

The comparative analysis in Figures 6.13 – 6.18 reveals significant di↵erences

in the execution time between the k-d tree, KNN, and brute force methods when

searching for the nearest fog nodes. The k-d tree method consistently outperforms

the other two approaches in terms of execution time. Specifically, when the number

of fog nodes is 100, the k-d tree method demonstrates remarkable e�ciency, with

an execution time of less than 1 millisecond. In contrast, the KNN method requires

more than 3 milliseconds, while the brute force method exceeds 6 milliseconds. These

findings highlight the advantage of utilizing the k-d tree algorithm for the e�cient

and speedy identification of the nearest fog nodes.

Furthermore, as the number of fog nodes increases, the execution time for all

three methods also increases. For instance, when there are 100 fog nodes, the exe-

cution time for the k-d tree algorithm is approximately 0.92 milliseconds. However,
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Figure 6.14 : The average execution times of the three methods when fog nodes =

500

when the number of fog nodes escalates to 1000, the execution time of the k-d tree

method rises to approximately 11.8 milliseconds. This observation emphasizes the

impact of scalability on the execution time of the k-d tree algorithm.

Table 6.2 : The percentage di↵erences of execution time between k-d tree, KNN,

and brute force

K-d tree KNN Brute force

K-d tree - 50% more time 83% more time

KNN 33% less time - 22% more time

Brute force 45% less time 18% less time -
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Figure 6.15 : The average execution times of the three methods when fog nodes =

1000

The results presented in Figure 6.18 and Table 6.2 o↵er valuable information

on the performance of various methods, such as KNN, k-d tree, and brute force,

particularly in terms of execution time. The observed percentage di↵erences shed

light on the comparative advantages of each approach. As Table 6.2 shows, the

KNN method, although widely used and e↵ective, exhibits a higher execution time

compared to the k-d tree. It requires 50% more time, indicating that the KNN algo-

rithm performs relatively more slowly in finding the nearest neighbors in the given

context. On the other hand, the brute force method, while providing relatively accu-

rate results, demands a significantly higher execution time. It takes 83% more time

than the k-d tree approach, making it the least e�cient option in terms of execution

speed. The k-d tree method emerges as a promising alternative, demonstrating time

savings of 33% compared to KNN and 45% compared to brute force. These findings
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Figure 6.16 : The average execution times of the three methods when fog nodes =

1500

Figure 6.17 : The average execution times of the three methods when fog nodes =

2000
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Figure 6.18 : The overall average of the execution times of the three methods

highlight the e�ciency of the k-d tree in finding the nearest fog nodes, making it

a favourable choice for fog consumers seeking faster results. Overall, the experi-

ment findings concluded that the k-d tree method is highly e�cient in discovering

the nearest fog nodes compared to both the KNN and brute force methods, par-

ticularly in scenarios with a larger number of fog nodes. Its ability to consistently

deliver faster execution times makes it an optimal choice for applications in term of

time-sensitive operations and rapid decision-making.

However, choosing the appropriate method for FNDE is a critical factor in ob-

taining optimal and e�cient outcomes, with consideration of both accuracy and exe-

cution time being of paramount importance. When deciding on the optimal method,

fog consumers should carefully consider their priorities. If their primary concern is

execution time, the k-d tree method proves to be the preferred choice. By leveraging

its e�ciency, even minor improvements in execution time can yield substantial ben-

efits, such as reducing the load on the FNDE’s fog discovery module. However, in
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scenarios where accuracy takes precedence over time considerations, the brute force

method with haversine distance becomes the recommended approach. The brute

force algorithm achieved the highest accuracy of all the tested methods. Moreover,

it demonstrated remarkable precision, recall, and F1 score values, all reaching 1, as

shown in Figure 6.12. This method ensures optimal results by focusing on accuracy,

regardless of the increased execution time. There is no doubt that the brute force

algorithm with haversine distance demonstrates excellent accuracy and precision,

making it an attractive choice when accuracy is of the utmost importance. This

method ensures the accurate detection of nearest neighbors by exhaustively search-

ing all possible combinations. To handle large datasets or to respond to real-time

applications, this approach can require a lot of computational power. To sum up,

fog consumers need to evaluate their specific requirements, balancing the trade-o↵

between accuracy and execution time when selecting the most suitable method for

their FNDE. The findings shown in Figures 6.12, 6.18 and Table 6.2 provide valuable

insights to inform their decision-making process and achieve optimal outcomes in

FND.

6.6 Conclusion

In this chapter, we proposed an intelligent mechanism for FND based on the

context-aware data of fog nodes and fog consumers. We proposed the FNDE frame-

work to enable fog consumers to discover appropriate fog nodes in a context-aware

manner. The FNDE must use the optimal fog nearest neighbors’ search algorithm

to reduce time and increase accuracy. Four fog nearest neighbors search algorithms,

namely KNN with Euclidean distance, KNN with Manhattan distance, K-d tree, and

brute force with haversine distance were implemented and evaluated in the FNDE

using the OMNeT++ platform. Several simulation experiments were conducted,

and the results show that the K-d tree search algorithm improves the overall system
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performance. The K-d tree algorithm achieves a high accuracy result of 95% and

requires less time to find the nearest fog nodes than the KNN methods and brute

force with haversine distance. The thrust of this research is to build an intelligent

single criterion approach for computing the proximity between a fog consumer and

fog node. Our approach is agnostic of the parameter used to quantify proximity. In

our future work, we will propose intelligent multi-criteria-driven node discovery ap-

proaches based on diverse parameters that manifest proximity, such as bandwidth,

physical distance, latency etc.
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Chapter 7

Developing an intelligent approach to select a
reliable fog node based on the trust value

7.1 Introduction

The selection process for a fog node is critical as it can greatly impact the

performance and functionality of the fog network. It is essential to choose a fog

node that has the necessary processing power, memory capacity, and communication

capabilities to handle the tasks required by the fog consumer. It is important that

when a fog consumer selects a fog node, they feel confident the right fog node has

been chosen. The aim of this research is to help the fog consumer to select a trusted

fog node in the network. The trusted fog node as defined in Section 3.2.16 is the

fog node that has been verified to be reliable and capable of performing its intended

functions by assigning a trust value as evidence. In this research, the verification

process to determine whether a fog node is trusted or not is applied by the TEE. The

TEE works as an agent and is responsible to predict and evaluate the trust value of a

fog node to assist the fog consumer to make a reliable FNS. The important factors in

evaluating the trustworthiness of a fog node includes the reputation of the fog node

provider, the experience of other fog consumers with the same or similar fog nodes,

and the QoS of the fog node. Thus, selecting trusted fog nodes that satisfy the

fog consumers’ requirements is a major challenge that requires further investigation

and research attention. Furthermore, there are several constraints that need to be

balanced when selecting a fog node. Trust plays an important role in helping the

fog consumer to find a reliable and trusted fog node. The selection process is best
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achieved using AI algorithms that assist in choosing an appropriate trusted fog node

that will improve network performance and reduce bandwidth, latency, and energy

consumption [47]. In this chapter, we present the detailed solution to developing

an intelligent approach to predict the trust value of fog nodes. This approach helps

the fog consumer to select a reliable and trusted fog node based on the predicted

trust value. We present the FNSE as an intelligent and reliable FNS mechanism

(Chapter 4). Within the FNSE, we proposed the TEE as an intelligent and reliable

trust-based assessment in a distributed fog environment. The TEE is an intelligent

model to predict the trust value of fog nodes to help the fog consumer select a

reliable fog node based on the QoS factors of fog nodes in the fog environment.

In this chapter, Section 7.2 presents the architecture of the TEE framework.

Section 7.3 describes the implementation of TEE and the prototype setup. Sec-

tion 7.4 details the experiments and results. Section 7.5 provides a discussion of

the evaluation results of the proposed methods. Finally, Section 7.6 concludes the

chapter.

7.2 TEE framework

In this section, we describe the development of an intelligent mechanism for

predicting the trust values of fog nodes to make a reliable selection decision. This

will help fog consumers choose the most reliable fog node based on the trust value.

To achieve this goal, we created the TEE within the FNSE to perform a trust-driven

evaluation of fog nodes and make recommendations for selection. In this study,

the trustworthiness of fog nodes is determined based on the QoS of the fog nodes

they have previously provided. To predict the trust value of fog nodes, we utilized

three AI-based prediction models, the fuzzy logic approach, the logistic regression

approach, and the DNN approach. The goal is to determine which method will

yield the best results. The overall workings of the TEE framework within FNSE are
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depicted in Figure 7.1. As shown in Figure 7.1, first, the FNSE collects the QoS data

for each fog node with which they have previously interacted. The QoS parameters

are response time, availability, throughput, successability, reliability, and rank for

service quality. As fog node data were deficient, we utilized the QWS dataset [131]

which gauges the QoS of actual web services to represent the QoS of fog nodes. In

this case, due to the lack of a fog node dataset, the QoS of web services was regarded

as equivalent to that of the fog nodes. The QoS parameters for each fog node are

stored in the fog repository in the DFR along with the location-based context-aware

fog node data. When the QoS data is added to the repository, the FRC should

be synchronized and updated, as described in Chapter 5. The DFR uses the push

synchronization mechanism to send data to the CFR. Then, the CFR broadcasts

this update to all DFRs. Secondly, the FNSE predicts the trust value of the fog

node using TEE. The TEE is responsible for predicting the trust value of each fog

node based on the value of the QoS parameters using the fuzzy logic system, logistic

regression or DNN. These methods determine the trust value of the fog nodes. Then,

the evaluation metrices of accuracy, recall, precision, and F1 score are computed for

all methods to find the best performing methods. Thirdly, after assigning the trust

value to each fog node, the FNSE ranks the fog nodes based on their trust values

in ascending order. Finally, the final ranked result is displayed to the user to assist

them select one of the candidate fog nodes. Algorithm 6 presents the algorithm of

the TEE based on fuzzy logic. Figure 7.2 shows the working of TEE based on fuzzy

logic. Algorithm 7 presents the TEE algorithm based on logistic regression. Figure

7.11 shows the working of TEE based on logistic regression. Algorithm 8 presents

the TEE algorithm based on DNN. Figure 7.12 shows the working of TEE based on

DNN.

.
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Figure 7.1 : Overview of the working of the FNSE and TEE workflow
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Algorithm 6 Trust Evaluation Engine (TEE) Algorithm based on Fuzzy Logic

Require: QoS values for each fog node

Ensure: Ranked fog nodes based on trust value (fuzzy Logic)

1: function PredictTrustValue(QoS values)

2: Fuzzify inputs: Convert crisp quantities into fuzzy quantities

3: Construct membership functions for inputs and outputs

4: Setup fuzzy rules

5: Compute the trust value using fuzzy logic system

6: De-fuzzify the output to get the trust value

7: return trust value

8: end function each fog node

9: TrustValue  PredictTrustValue(QoS values)

10: Store TrustValue for fog node

11: Sort fog nodes based on TrustValue in ascending order

12: Display the ranked result to fog consumer

7.3 Implementation of TEE

In this section, we demonstrate the implementation of the three proposed TEE

algorithms detailed in Algorithms 6, 7, and 8. The implementation of the TEE

mechanism based on fuzzy logic is detailed in Section 7.3.1. The implementation of

the TEE mechanism based on logistic regression is detailed on Section 7.3.2. The

implementation of the TEE mechanism based on DNN is described in Section 7.3.3.

7.3.1 Implementation of the TEE based on fuzzy logic

Fuzzy logic provides a mathematical framework for reasoning with ambiguous

and uncertain information, allowing for more flexible modeling, decision-making,

and inference in a wide range of real-world applications. Fuzzy logic simulates
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Algorithm 7 Trust Evaluation Engine (TEE) Algorithm based on logistic regression

Require: QoS values for each fog node

Ensure: Ranked fog nodes based on trust value (logistic regression)

1: function PredictTrustValue(QoS values)

2: Begin

3: Preparing data

4: Building and training the logistic regression model

5: Testing and making predictions

6: return trust value predictions

7: End function each fog node

8: TrustValue  PredictTrustValue(QoS values)

9: Store TrustValue for fog node

10: Sort fog nodes based on TrustValue in ascending order

11: Display the ranked result to fog consumer

human-like reasoning and decision-making in uncertain or imprecise environments.

It provides a way to handle and reason with information that is vague, fuzzy, or

characterized by degrees of membership or truth. In this research, we selected fuzzy

logic to predict the trust value of fog nodes as a first approach because it is well-

suited to handle the inherent uncertainty and imprecision associated with trust [132]

[133]. Trust is a fuzzy concept that implies gradations of meaning. For a specific

fog node, it is di�cult to determine the exact value of the fog node trust value.

Trust is not a binary concept, but rather a continuum that can vary in degrees or

levels. Fog consumers may have di↵erent levels of trust in di↵erent situations or for

di↵erent entities. In the existing literature, fuzzy logic has been widely employed

in trust management, trust evaluation and trust prediction for web services, cloud

services, etc. to help the selection, composition, and recommendation process. Sev-
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Algorithm 8 Trust Evaluation Engine (TEE) Algorithm based on DNN

Require: QoS values for each fog node

Ensure: Ranked fog nodes based on trust value (DNN)

1: function PredictTrustValue(QoS values)

2: Begin

3: Preparing data

4: Training the multilayer perceptron (MLP) neural network

5: Testing and making predictions

6: return trust value predictions

7: End function each fog node

8: TrustValue  PredictTrustValue(QoS values)

9: Store TrustValue for fog node

10: Sort fog nodes based on TrustValue in ascending order

11: Display the ranked result to fog consumer

eral approaches are developed to enhance trust management and prediction based

on fuzzy logic and provide sophisticated results. For example, in [132], the authors

proposed the bi-directional fuzzy logic-based trust management system. This system

aims to determine a node’s trust level. It achieves this by synergistically consider-

ing multiple factors including quality of service, security level, social connections,

historical reputation, and endorsements provided by nearby nodes. Furthermore, in

[134] [133], fuzzy logic is used for cloud service trust-based selection process. Ac-

cording to [133], it is advantageous to use fuzzy logic in cloud service selection since

it is capable of handling uncertainty and imprecise inputs as well as simulating hu-

man decision-making in a situation of uncertainty, indecision, and incompleteness.

The proposed trust evaluation model incorporates fuzzy logic to derive trust values

based on user feedback in terms of fuzzy linguistic terms. Also, in [135], the authors
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proposed a fuzzy-based trust management system to help cloud consumers identify

trustworthy providers. Moreover, in [136], the authors proposed an evidence-based

trust model using fuzzy logic to evaluate the trustworthiness of cloud services in

real time. Furthermore, in [137], the authors designed a trust management model

utilizing fuzzy logic. This model [137] helps consumers make well-informed deci-

sions when choosing a cloud service provider (CSP) that aligns with their specific

needs and preferences. Moreover, in the Web service environment, fuzzy logic is em-

ployed to carry out the trust management of web services for personalized service

selection [24]. The study in [138] proposed a fuzzy trust management framework

for reputation-based trust systems for Web services. The study in [139] proposed a

credibility-based model for assessing Web service trust. Furthermore, the authors of

the work in [140] demonstrated how to measure the trustworthiness of Web services

using a fuzzy logic approach.

After analyzing the existing literature, we decided to adopt fuzzy logic to deal

with the ambiguity and vagueness within the trust-based prediction process. Our

fuzzy logic approach to the TEE mechanism predicts the trust value of fog nodes

by considering various QoS factors such as response time, availability, throughput,

successability, reliability, and rank for service quality (WsRF). The trust prediction

of fog nodes is handled by the TEE in the FNSE. The working of TEE based on fuzzy

logic is shown in Figure 7.2. In the TEE, we map the input space corresponding

to the QoS factors to the output space which is a representation of the trust value.

In this research, the input space consists of response time, availability, throughput,

successability, reliability, and WsRF. The output space is the trust value. The input

factors are all expressed using a fuzzy model which transforms the crisp variable of a

particular input factor into a linguistic variable. We need a fuzzy inference method

to perform the mapping from the input space to the output space. We use the

Mamdani method [141] to perform this mapping. The fuzzy interface approach
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[141] is implemented using MATLAB [142].

Figure 7.2 : Architecture of Trust Evaluation Engine based on Fuzzy logic

After collecting and storing the QoS value for each fog node, FNSE starts the

selection process based on the QoS of fog nodes by predicting the trust value. TEE

starts the prediction process based on the fuzzy interface using the following steps:

7.3.1.1 Step 1: Fuzzify inputs

The first step is the fuzzification process that converts crisp values into fuzzy

values. This step outlines the definition of linguistic variables, which are inputs and

outputs represented in simple terms. The trust value of a fog node is determined by

six QoS factors: response time, availability, throughput, successability, reliability,

and WsRF. These factors are assigned three linguistic variables, low, medium, and

high. The specific range for each of these variables is listed in Table 7.1.

Additionally, we have defined three linguistic variables for the output, which is
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Table 7.1 : Parametric range for the linguistic variables of input parameters

Input Parameter Low Medium High

Response Time 0 - 299 300 - 999 1000 – 10,000

Availability 0 - 34 35 – 69 70 - 105

Throughput 0 – 9 10 – 19 20 -30

Successability 0 – 34 35 – 69 70 - 105

Reliability 5 – 14 15 – 39 40 - 100

WsRF 0 – 59 60 – 69 70 - 100

the trust value of the fog node: highly trustworthy, trustworthy, and untrustworthy.

The range for each of these linguistic variables is presented in Table 7.2.

Table 7.2 : Parametric range for the linguistic variables of output parameters

Output Parame-

ter

Highly Trustwor-

thy values range

Trustworthy val-

ues range

Untrustworthy

values range

Trust value 0 - 1 1 - 2 2 – 3

7.3.1.2 Step 2: Construct membership functions for inputs and out-

puts

In this step, we use the Gaussian membership function for all the input param-

eters, as shown in Figures 7.3, 7.4, 7.5, 7.6, 7.7 and 7.8. Furthermore, we use the

triangular membership function for the output parameter as shown in Figure 7.10
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Figure 7.3 : Membership function of response time input

Figure 7.4 : Membership function of availability input

Figure 7.5 : Membership function of throughput input
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Figure 7.6 : Membership function of successability input

Figure 7.7 : Membership function of reliability input

Figure 7.8 : Membership function of WsRF input
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7.3.1.3 Step 3: Setup fuzzy rules

We used the Mamdani interface rules on the input parameters based on our

experiments. The input parameters are response time, availability, throughput, suc-

cessability, reliability, and rank for Web Service Quality (WsRF). The rules consist

of antecedents which are the input parameters denoted by Y1,Y2,...,Yn and con-

sequences which are the output parameter denoted by Z1, Z2 ,... , Zn. The crisp

inputs denoted by Xi will be fuzzified into Yi. The if-then-else Mamdani rule is

defined as follows:

R(i) : If X1 2 Y1 and X2 2 Y2 . . . and Xn 2 Yn Then Z1 2 Z (7.1)

where i is 1,2,3 ...n. n is the total number of rules. Section 7.4.3 explains the

fuzzy rules we have defined. (All fuzzy rules are presented in Appendix A)

7.3.1.4 Step 4: Compute the trust value

By setting up the fuzzy interface system as shown in Table 7.3 and Figure 7.9,

the trust value will be obtained as the fuzzy value.

7.3.1.5 Step 5: De-fuzzify the output

The final step is the defuzzification process where the fuzzy result is mapped to

crisp value which is the trust value in the proposed approach. The output of each

rule in the fuzzy logic system is represented as a fuzzy set that is calculated based

on the membership function and implementation method of the FIS. These multiple

fuzzy sets are combined into a single set through the aggregation process in the FIS.

Then, the combined fuzzy set is transformed into a final crisp output value using

the centroid method of defuzzification [142].

• If the predicted trust value is between (0-1) then the trust value is 1 (highly
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Figure 7.9 : Fuzzy interface system with membership functions of inputs and output
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Table 7.3 : Fuzzy interface system setup values

Fuzzy Variable Name Value

FIS type Mamdani

Operator AND

Membership function Gaussian

Implication of each fuzzy set Min

Aggregation operator Max

Defuzzification method Centroid

trustworthy).

• If the predicted trust value is between (1-2) then the trust value is 2 (trust-

worthy).

• If the predicted trust value is between (2-3) then the trust value is 3 (untrust-

worthy).

The output of the de-fuzzifying process is presented in Figure 7.10.

7.3.2 Implementation of the TEE based on logistic regression

In this section, we illustrate the working of TEE using logistic regression. In

this research, logistic regression has been proposed as a prediction model for the

trust value of fog nodes. Logistic regression is utilized in the TEE because it is

a well-established statistical method for classification tasks, making it suitable for

trust prediction in scenarios where the trust value falls into discrete categories (e.g.,

trustworthy, untrustworthy). It is interpretable, allowing stakeholders to understand

the contribution of each QoS factor to trust prediction. Logistic regression also
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Figure 7.10 : Defuzzification process and membership function of trust value

handles numerical and categorical inputs e↵ectively, accommodating various types

of QoS data. The logistic regression can serve as a baseline model for comparison

with other AI-based methods and provides insights into the importance of individual

QoS factors. In [143], logistic regression has been successfully utilized in IoT for trust

prediction and management. This approach provides a promising result compared

with another machine learning algorithms. Furthermore, the work in [144] proposed

a logistic regression-based trust model that uses logistic regression to predict and

manage trust in IoT environments. The model computes the integrated trust value

based on direct trust, reputation score, and experience trust, and then uses logistic

regression to predict the node’s behavior (trusted or malicious). The architecture

and working of TEE based on logistic regression is shown in Figure 7.11.

We implemented the logistic regression approach using the scikit-learn library

in Python [145]. Scikit-learn is a powerful machine learning library that provides

a range of algorithms and tools for data analysis and modeling. The TEE is a

multiclass prediction module. We used the one-vs-one technique of logistic regression

to enable the e↵ective utilization of logistic regression for multi-class scenarios by

transforming them into a set of binary classification tasks. The TEE algorithm
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Figure 7.11 : Architecture of Trust Evaluation Engine based on logistic regression

includes the following steps to predict the trust value of fog nodes using logistic

regression.

7.3.2.1 Step 1: Preparing data

In this step, data preparation was conducted using the QoS web service dataset,

known as the QWS dataset [131]. This process involved cleaning the data to remove

any inconsistencies and applying feature selection techniques to identify relevant

parameters. Furthermore, the dataset was partitioned into training and testing

sets to facilitate the evaluation of this prediction model. To enhance the model’s

generalization capabilities and mitigate overfitting issues, the k-fold cross-validation

technique was employed during the training process, ensuring robustness in the

model’s performance across various data subsets.
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7.3.2.2 Step 2: Building and training the logistic regression model

This step involved training the logistic regression model using the provided train-

ing data. During training, the model learned to establish a mapping between the

input QoS features and the corresponding multi-class trust values (e.g., highly trust-

worthy, trustworthy, and untrustworthy).

7.3.2.3 Step 3: Testing and make predictions

Once the logistic regression model was trained, it outputed the predicted trust

value based on the input QoS parameters.

7.3.3 Implementation of the TEE based on the DNN

In this section, we illustrate the working of the TEE framework based on DNN.

In this research, a DNN approach is also proposed for predicting the trust value of

fog nodes. The TEE uses this approach, which is based on QoS factors. To achieve

this, the multilayer perceptron (MLP) neural network algorithm [146] is used. The

MLP NN is a feedforward network which has demonstrated promising results in

prediction scenarios in many studies [147] [148]. In [147], the MLP NN resulted in

83% accuracy which is higher than KNN and SVM. The researchers in [148] applied

the MLP method to predict the temperature at the end point of an electric arc

furnace. The MLP architecture consists of an input layer, one or more layers in the

middle, called hidden layers, and an output layer. The working framework based on

MLP NN is employed in the TEE in FNSE and is depicted in Figure 7.12.

We implemented di↵erent MLP NNs including a di↵erent number of layers and

neurons to capture the best performance and results. The standard MLP is a cascade

of single-layer perceptrons. There is a layer of input nodes, a layer of output nodes,

and one or more intermediate layers. The interior layers are sometimes called hidden

layers because they are not directly observable from the system’s inputs and outputs



152

Figure 7.12 : Architecture of Trust Evaluation Engine based on DNN

[149]. Section 7.4.5 discusses in detail the experiments and results of di↵erent neural

networks. The MLP NN is implemented using Python [150]. The construction of

the MLP NN was facilitated by the Keras library [151]. After collecting and storing

the QoS for each fog node, FNSE starts the selection process based on the QoS of

the fog node by predicting the trust value. TEE starts the prediction process based

on MLP NN using the following steps [151]:

7.3.3.1 Step 1: Preparing data

The dataset preparation for trust value prediction consisted of cleaning, nor-

malization, and scaling the QoS factors, along with the appropriate partitioning

for training and testing. Data must be numerical and categorical data should be

converted to real-value representations. The values should also be scaled in a consis-

tent way, such as from 0 to 1. In Section 7.4, we specified the inputs and used data
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on fog nodes to predict the trust value. Then, we split the dataset into training

and testing sets to evaluate the model’s performance accurately. To enhance the

model’s generalization capabilities and mitigate overfitting issues, the k-fold cross-

validation technique was employed during the training process, ensuring robustness

in the model’s performance across various data subsets.

7.3.3.2 Step 2: Training the network

The data is split into a training set and a testing set and the gradient descent

algorithm is used to train the MLP NN. The forward pass processes the input and

produces an output, which is compared to the expected output and an error is

calculated by the backpropagation algorithm. This process is repeated for all the

examples in the training data and one round network update is referred to as an

epoch. The network can be trained for a varying number of epochs.

7.3.3.3 Step 3: Testing and making predictions

When the data and the MLP NN model are trained, the MLP NN model can

make predictions on trust values. Then, the prediction results are validated against

the testing data to evaluate the model. The experiments and results of the TEE

mechanism based on MLP NN are discussed in detail in Section 7.4.

7.4 Experiments and results

7.4.1 Dataset

Due to the limited availability of fog node data, we opted to utilize the QWS

dataset [131] as a substitute. The QWS dataset is a well-established resource that

provides measurements of QoS for real web services. It comprises a comprehensive

set of 365 web services, with each service evaluated for various QoS parameters.

These parameters include response time, availability, throughput, successability, re-
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liability, and WsRF. Detailed descriptions of these parameters can be found in Table

7.4. In the context of our research, we treated the QoS measurements from the web

services in the QWS dataset as representative of the QoS exhibited by fog nodes.

While this is an approximation due to the unavailability of a dedicated fog node

dataset, it allows us to leverage the wealth of information captured in the QWS

dataset to analyze and evaluate the performance of fog computing systems. The

trust assessment of fog nodes relies on QoS parameters. The TEE plays a crucial

role in predicting the trust value of each fog node, employing either the fuzzy logic

system, logistic regression, or DNN. These methods utilize QoS parameters to de-

termine the trust value assigned to fog nodes. Subsequently, the evaluation metrics,

including accuracy, recall, precision, and F1 score, are computed for all methods to

identify the most e↵ective approach in assessing trustworthiness.

7.4.2 Feature selection

The initial phase of all the experiments is the feature selection process to deter-

mine which features are important to ensure the best performance of the selection

methods. Furthermore, irrelevant or redundant features may result in overfitting,

increase the time and cost of training and decrease accuracy. Hence, to avoid over-

fitting and computational complexity, we need to determine an optimal number of

features and focus on the most informative features during this stage to improve the

performance of our predictive models. We applied the feature selection approach

using a similarity measure and fuzzy entropy called Luukka [152] which is a statis-

tical method that measures the discriminatory power of each feature in a dataset.

It assesses the ability of each feature to distinguish between di↵erent classes or cat-

egories within the data. During the feature selection process, the Luukka function

is applied to the dataset, and the features are ranked based on their entropy values.

The higher the Luukka function value for a feature, the more significant it is in dif-
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Table 7.4 : QoS parameter description

Parameter name Description

Response Time Time taken to send a request and receive a re-

sponse

Availability Number of successful invocations/total invoca-

tions

Throughput Total number of invocations for a given period of

time

Successability Number of responses / number of request mes-

sages

Reliability Ratio of the number of error messages to total

messages

WsRF Web Service Relevancy Function: a rank for Web

Service Quality
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ferentiating between the classes. By selecting the features with the highest Luukka

function values, we can identify the most informative and discriminative features for

our analysis. We used the Luukka function [152] in MATLAB [142] and the features

with a low entropy value are removed because the contribution of this feature to

the di↵erence between classes is not significant and the most crucial features have

the smallest entropy values. We began with six crucial features or parameters, then

reduced these to five and ultimately ended up with four parameters. For the first

stage of the experiments, we started with six inputs namely response time, avail-

ability, throughput, successability, reliability, and WsRF. Then, in the second stage,

by applying the Luukka function, the reliability feature is removed, and the five

inputs are response time, availability, throughput, successability, and WsRF. The

last stage involves four parameters which are response time, availability, throughput,

and WsRF as the successability feature is removed.

7.4.3 TEE mechanism based on the fuzzy logic experiments

For the fuzzy logic-based approach, we implemented several experiment scenarios

based on the number of input parameters. We started with six important param-

eters, namely response time, availability, throughput, successability, reliability, and

WsRF (1). Then, we ran the fuzzy logic system (2), calculated the performance

metrics and execution time (3), and applied the feature selection method (4) which

removes one feature. The process was repeated from step 2 until reaching the opti-

mal results. The setup of the experiments with a di↵erent number of parameters is

shown in Table 7.5. In the first experiment, there are six inputs, namely response

time, availability, throughput, successability, reliability, and WsRF. In the second

experiment, there are five inputs namely response time, availability, throughput,

successability, and WsRF as the reliability feature is removed. In the third experi-

ment, there are four inputs as successability is removed. In the last experiment, the
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throughput feature is removed. The output is always one of three values, namely

highly trustworthy, trustworthy, untrustworthy. The experiment setup was designed

and tested using MATLAB software [142]. All experiments were conducted on Mac

Pro with 2.8 GHz Quad-Core Intel Core i7 processor and 16 GB 2133 MHz LPDDR3

memory. Refer to Table 7.5 for details of all the experiments. For all experiments,

we employed the Mamdani fuzzy interface system and the AND operator. The

Gaussian membership function is used for all inputs and the triangular membership

function is used for the output. The implication operator of each fuzzy set is Min,

and the aggregation operator is MAX. Moreover, the centroid method is used for

the defuzzification process. Each experiment has di↵erent inputs and rules. In the

first experiment scenario, there are 6 input parameters namely response time, avail-

ability, throughput, successability, reliability, and WsRF, and there are 231 fuzzy

rules, as shown in appendix Table A.1. In the second experiment scenario, there are

5 input parameters namely response time, availability, throughput, successability,

and WsRF and there are 47 fuzzy rules, as shown in appendix Table A.2. In the

third experiment scenario, there are 4 input parameters namely response time, avail-

ability, throughput and WsRF and there are 46 fuzzy rules, as shown in appendix

Table A.3. Finally, in the fourth experiment scenario, there are 3 input parameters

namely response time, availability and WsRF and there are 18 fuzzy rules, as shown

in appendix Table A.4. Then, we compared the results of each experiment and eval-

uated these results based on four well-known evaluation metrics, namely accuracy,

precision, recall and F1 score and compared the performance of our model for each

experiment where the execution time of the method was also calculated (further

details are provided in Section 7.5).
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Table 7.5 : Overview of fuzzy logic experiments

Experiment

number

Number of inputs Number of outputs Number of rules

Experiment 1 6 3 231 Table A.1

Experiment 2 5 3 47 Table A.2

Experiment 3 4 3 46 Table A.3

Experiment 4 3 3 18 Table A.4

7.4.4 TEE mechanism based on the logistic regression experiments

For the logistic regression-based approach, we implemented several experiment

scenarios based on the number of input parameters. We started with six important

parameters, namely response time, availability, throughput, successability, reliabil-

ity, and WsRF (1). Then, we ran the logistic regression model (2), calculated

the performance metrics and execution time (3), and applied the feature selection

method (4) which removes one feature. The process was repeated from step 2 until

reaching the optimal results. In the first experiment, there are six inputs, namely

response time, availability, throughput, successability, reliability, and WsRF. In the

second experiment, there are five inputs namely response time, availability, through-

put, successability, and WsRF as the reliability feature is removed. In the third

experiment, there are four inputs as successability is removed. The output is always

one of three values, namely highly trustworthy, trustworthy, untrustworthy. The

experiment setup was designed and tested using the scikit-learn library in Python

[145]. All experiments were conducted on Mac Pro with 2.8 GHz Quad-Core Intel

Core i7 processor and 16 GB 2133 MHz LPDDR3 memory.

For the three experiments, the dataset is partitioned into a training set and a
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testing set, allocating 70% of the data for training and 30% for testing. This di-

vision facilitates the model in learning from a substantial portion of the dataset,

enabling the evaluation of its performance on unseen instances. The sigmoid activa-

tion function is applied to the logistic regression model, ensuring the transformation

of calculated weighted sums into probabilities. To handle the multi-class classifi-

cation in our research, we adopt the ”one-vs-one” technique, which converts the

multi-class problem into multiple binary classification tasks. Moreover, the k-fold

cross-validation technique is employed to yield a more robust estimate of the lo-

gistic regression model’s performance. By training and testing on di↵erent subsets

of the data, this methodology becomes particularly valuable when dataset size is

constrained, aiding in the prevention of overfitting.

7.4.5 TEE mechanism based on the DNN experiments

For the DNN-based approach, di↵erent neural networks are implemented and

tested with a di↵erent number of parameters to capture the best performance and

the result of the optimal neural network. We conducted extensive experiments on

30 neural networks with a di↵erent number of layers and neurons, as detailed in

Table 7.6. We conducted these extensive experiments because there is no rule of

thumb to find out how many hidden layers are needed. In many cases, one hidden

layer works well, however, we conducted several experiments with di↵erent set ups of

neural networks. We started with a 2-layer MLP which includes the input layer, one

hidden layer, and output layer. For example, in the first experiment, the input layer

has six nodes, the hidden layer has 30 nodes and the output layer has three nodes.

We expressed the nodes of each layer as integer number which separates the layers

using a forward-slash character (/). For the first network, the expression should

be n/30/3 where n in the input layer is changed in the iteration as the number of

parameters.
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Table 7.6 : Details of DNN experiments

Experiment number Number of layers Number of neurons

Experiment 1 2 n/30/3

Experiment 2 2 n/100/3

Experiment 3 2 n/500/3

Experiment 4 3 n/30/20/3

Experiment 5 3 n/100/50/3

Experiment 6 3 n/500/250/3

Experiment 7 4 n/30/20/10/3

Experiment 8 4 n/100/50/50/3

Experiment 9 4 n/500/200/200/3

Experiment 10 5 n/30/30/20/10/3

Experiment 11 5 n/100/100/50/50/3

Experiment 12 5 n/500/500/200/200/3

Experiment 13 5 n/500/300/200/100/3

Experiment 14 5 n/1000/500/500/200/3

Experiment 15 5 n/1000/700/500/200/3

Experiment 16 5 n/500/500/500/500/3

Experiment 17 6 n/50/50/30/20/10/3

Experiment 18 6 n/100/100/100/50/50/3

Experiment 19 6 n/500/500/500/200/200/3

Experiment 20 6 n/500/400/300/200/100/3

Experiment 21 6 n/500/500/500/500/500/3

Experiment 22 6 n/1000/800/500/200/100/3

Experiment 23 6 n/1000/1000/500/500/100/3

Experiment 24 7 n/500/500/500/200/200/200/3
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Experiment number Number of layers Number of neurons

Experiment 25 7 n/500/400/300/300/200/100/3

Experiment 26 7 n/500/500/500/500/500/500/3

Experiment 27 7 n/50/40/30/20/20/10/3

Experiment 28 10 n/50/50/50/30/30/30/20/20/10/3

Experiment 29 10 n/100/100/100/100/100/100/100/100/100/3

Experiment 30 10 n/500/500/500/500/500/200/200/200/200/3

For each experiment, we employed the six, five and four parameters which we

represented as three iterations. So, in the first iteration, we conducted the 30 neural

networks with six inputs namely response time, availability, throughput, success-

ability, reliability, and WsRF as the starting point. Then, we applied the feature

selection method as detailed in Section 7.4.2 and the reliability parameter is ex-

cluded. In the second iteration, we applied the 30 neural networks with five inputs

namely response time, availability, throughput, successability, andWsRF. After this,

again the feature selection method is employed and the successability parameter is

removed. So, for the third iteration, the 30 neural networks are applied with four in-

puts, namely response time, availability, throughput, and WsRF. Table 7.6 provides

details of the number of layers and neurons in each network for the 30 experiments.

All experiments were conducted on a Mac Pro with 2.8 GHz Quad-Core Intel Core

i7 processor and 16 GB 2133 MHz LPDDR3 memory.

The setup of MLP NN is as follows: 70% of the data is used as the training

set and 30% as the testing set, the ReLU activation function is used in the hidden

layers, the softmax activation function is used in the output layer, and the number

of epochs is 150, where neural networks calculate the weighted sums. The calculated

sum of weights is passed as input to the activation function in the hidden layers.
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The activation function is a function to map the inputs to the desired output. In

this research, there are three possible trust values, highly trustworthy, trustworthy

and untrustworthy. So, the softmax activation function is suitable for multi-class

classification problems.

7.5 Evaluation and discussion

This section presents the evaluation of the fuzzy logic-based approach in Section

7.5.1. The evaluation of the logistic regression approach is presented in Section

7.5.2. The evaluation of the DNN-based approach is presented in Section 7.5.3.

Based on the evaluation process explained in Section 4.7.2, we compared the results

of the three proposed approaches and the evaluation metrics used for all approaches

are accuracy, precision, recall, F1 score and execution time. We compared the best

performance results for all experiments for all approaches with six, five and four

parameters.

7.5.1 Evaluation of TEE using fuzzy logic

For the fuzzy logic approach, we compared the results of the four experiments.

We evaluated these results based on the proposed evaluation process (Section 4.7.2)

which includes four evaluation metrics, namely accuracy, precision, recall and F1

score and compared the performance of our model for each experiment and the

execution time of the method was also calculated. Figures 7.13 and 7.14 show the

results of the evaluation metrics and the execution time of the four experiments.

The best evaluation results were obtained in experiment 3 when the inputs are four

parameters. The selection of four parameters achieved the highest accuracy (90%)

and the lowest execution time among other experiments. Decreasing the number of

parameters decreases the training cost and time and improves accuracy significantly

(see the results of experiment 3 in Table 7.5).
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Figure 7.13 : Evaluation results of di↵erent fuzzy logic experimental scenarios

Figure 7.14 : Execution time of di↵erent fuzzy logic experimental scenarios
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The evaluation results indicate that the fuzzy logic model performs best when

using a reduced number of parameters, such as in experiment 3 with 4 parameters.

This experiment with 4 parameters achieves higher accuracy, precision, recall, and

F1 scores compared to the models with 6 and 5 parameters. Moreover, it is ob-

served that as the number of parameters decreases, the execution time also reduces.

Experiment 3 with 4 parameters has the lowest execution time of 0.1116 seconds,

closely followed by Experiment 4 with 3 parameters at 0.1155 seconds. In contrast,

Experiment 1 with 6 parameters has the longest execution time of 0.4002 seconds.

The fuzzy logic model demonstrates its e↵ectiveness in predicting the trust value

of fog nodes based on QoS parameters. Specifically, employing 4 or 3 parameters

in the model leads to the highest accuracy, precision, recall, and F1 scores, indicat-

ing superior performance. Additionally, the reduced number of parameters results

in faster execution times, making the fuzzy logic model both accurate and compu-

tationally e�cient. Overall, the results highlight the capability of the fuzzy logic

approach in handling the complexity of the trust prediction problem and o↵er valu-

able insights into fog node reliability and trustworthiness, aiding decision-making

processes in fog computing environments.

7.5.2 Evaluation of TEE using logistic regression

For the logistic regression approach, we compared the results of the three experi-

ments. We evaluated these results based on the proposed evaluation process (Section

4.7.2) which includes four evaluation metrics, namely accuracy, precision, recall and

F1 score and compared the performance of our model for each experiment and the

execution time of the method was also calculated. Figures 7.15 and 7.16 show the

results of the evaluation metrics and the execution time of the three experiments.

The best evaluation results were obtained in experiment 3 with the model with

four parameters. The selection of four parameters achieved the highest accuracy of
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Figure 7.15 : Evaluation result of di↵erent logistic regression experimental scenarios

Figure 7.16 : Execution time of di↵erent logistic regression experimental scenarios
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70%, precision of 69.95%, recall of 70%, and F1 score of 69.63%. Additionality, the

execution time of the logistic regression model is provided for each configuration. It

shows that the model with 4 parameters has the shortest execution time of 0.11551

seconds, followed by the model with 5 parameters taking 0.1239 seconds, and the

model with 6 parameters requiring the longest time of 0.135 seconds.

The results suggest that using a smaller subset of parameters (4 parameters)

results in better overall model performance in terms of accuracy, precision, recall,

and F1 score compared to using 5 or 6 parameters. However, the di↵erence in

performance is relatively small, and the model with 5 parameters could be a good

trade-o↵ between performance and simplicity. Moreover, it is observed that reducing

the number of parameters also leads to a decrease in execution time, making the

model with 4 parameters not only more accurate but also computationally more

e�cient. In summary, the logistic regression model shows varying performance based

on the number of parameters used, and the model with 4 parameters seems to be

the most favorable choice in terms of accuracy and computational e�ciency.

7.5.3 Evaluation of TEE using DNN

We performed three iterations for the 30 experiments, as shown in Table 7.6. In

the first iteration, we evaluated the 30 experiments using six parameters (response

time, availability, throughput, successability, reliability, and WsRF) as inputs and

three outputs. For the second iteration, the 30 experiments also are evaluated by

using five parameters (response time, availability, throughput, successability, and

WsRF) as inputs and three outputs. The third iteration is evaluated using four pa-

rameters (response time, availability, throughput, and WsRF) as inputs and three

outputs. We used the evaluation process which includes four well-known evaluation

metrics, namely accuracy, precision, recall and F1 score and compared the perfor-

mance of our model for each experiment. We ran the model five times (since the
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results converged after five times) and calculated the average of the evaluation met-

ric results of the 30 experiments with 6, 5, and 4 parameters, as shown in Figures

7.17, 7.18, 7.19, and 7.20.

Figure 7.17 : Accuracy of DNN experiments

The results show that when the number of parameters increases, the accuracy

of the DNN approach increases. The highest accuracy is obtained when there are

six parameters, two layers and the number of neurons of the first and second layer

is 6 and 500 respectively. We note that when the number of layers and neurons

increases, the accuracy value is not a↵ected, hence the best performance is not

achieved. Furthermore, the execution time of each experiment is calculated. The

execution time increases when the number of layers and neurons increases. Figure

7.21 shows the execution time of the 7 best performance experiments of DNN with

a di↵erent number of layers and neurons.

7.5.4 Discussion

The best fuzzy logic performance is achieved when there are four parameters,

namely response time, availability, throughput, and WsRF. The optimal setup of
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Figure 7.18 : Precision of DNN experiments

Figure 7.19 : Recall of DNN experiments
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Figure 7.20 : F1 score of DNN experiments

Figure 7.21 : The average execution time of best 7 DNN experiments with a di↵erent

number of layers and neurons
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the fuzzy logic interface when the FIS type is Mamdani, the operator is AND,

the membership function is Gaussian, the implication of each fuzzy set is Min,

the aggregation operator is Max, the defuzzification method is centroid, and the

number of rules is 46 rules. This setup obtains the highest accuracy of 90% and the

lowest execution time as shown in Figure 7.22. For the logistic regression model,

the optimal performance is achieved when the number of parameters is 4. It obtains

an accuracy of 70% as shown in Figure 7.15. However, MLP NN achieves the best

performance of 63% accuracy when there are six parameters, namely response time,

availability, throughput, successability, reliability, and WsRF. The MLP NN consists

of two layers and the number of neurons of the first input layer is 6 and the number of

neurons of the second layer is 500 neurons. However, this setup has a high execution

time, as shown in Figure 7.23.

By comparing the three methods of TEE, the results show that fuzzy logic

achieved the highest performance in terms of accuracy, precision, recall, and F1

score compared to DNN and logistic regression. Figure 7.24 shows the evaluation

metrics results of the three approaches with a di↵erent number of parameters and

Figure 7.25 compares the execution time of the three approaches.

Figure 7.24 shows that the fuzzy logic approach achieved its best performance

when four parameters were used, achieving an impressive accuracy of 90% while

maintaining the lowest execution time. This indicates that the fuzzy logic approach

e↵ectively captures the underlying patterns and relationships in the data, resulting

in accurate predictions with e�cient computation. The fuzzy logic approach shows

its ability to handle uncertain or imprecise data. The high accuracy, precision,

recall, and F1 score suggest that the fuzzy logic model is able to handle non-linear

and uncertain relationships e↵ectively, resulting in better predictions.

However, the logistic regression approach is a simpler linear model compared
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Figure 7.22 : Evaluation results of fuzzy logic with di↵erent parameters

Figure 7.23 : Evaluation results of DNN with di↵erent parameters
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to fuzzy logic and DNN. Figure 7.15 shows that it performs well in cases where

the relationships between features and target variables are linear. The moderate

performance of logistic regression might indicate that the relationships between QoS

metrics and trust values are not purely linear but still have some linearity, which

the model can capture.

On the other hand, the DNN approach achieved its highest performance with

six parameters, reaching an accuracy of 63%. However, it should be noted that this

performance improvement came at the cost of a higher execution time. This suggests

that the DNN approach, with its ability to model complex nonlinear relationships,

may require more computational resources and time for training and prediction.

The lower performance of the DNN model in this case could be due to insu�cient

data. DNNs often require a large amount of data for training.

By examining these results, we can gain valuable insights into the strengths and

trade-o↵s of each approach. The fuzzy logic-based approach excels in accuracy and

e�ciency with a reduced feature set, making it suitable for scenarios that prioritize

high accuracy and fast decision-making. On the other hand, the DNN approach

demonstrates its capacity to handle more complex data patterns but requires addi-

tional computational resources and time. These findings provide valuable guidance

for selecting the most suitable approach based on specific requirements and con-

straints.

7.6 Conclusion

In conclusion, the selection of fog nodes poses a critical challenge in the realm

of fog computing. To address this issue, we introduced the TEE framework in this

chapter. The TEE framework presents an intelligent and dependable mechanism for

predicting the trust value of fog nodes. Within the TEE framework, we proposed

three distinct prediction mechanisms: TEE based on fuzzy logic, TEE based on
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Figure 7.24 : Evaluation results of fuzzy logic, logistic regression and DNN with

di↵erent parameters

Figure 7.25 : Execution time of fuzzy logic, logistic regression and DNN with dif-

ferent parameters
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logistic regression, and TEE based on DNN. These mechanisms aim to predict the

trust value of fog nodes to aid in the selection process. Through a series of compre-

hensive experiments, we evaluated the performance of each approach. The results

unequivocally revealed that the TEE based on the fuzzy logic approach exhibits the

most promising and the best performance. Notably, it achieved high accuracy of

90%, precision of 90%, recall of 92%, and F1 score of 91%, showcasing its e↵ec-

tiveness in trust prediction. Additionally, the fuzzy logic approach demonstrated

e�ciency by consuming less time and facilitating rapid predictions. By embracing

the TEE mechanism based on fuzzy logic, we can significantly enhance the overall

performance of the FNSE. This improvement leads to a more reliable and e↵ective se-

lection process, where fog consumers can confidently choose trustworthy nodes with

the shortest latency for optimal service provisioning. The TEE framework marks a

crucial advancement in fog computing, paving the way for improved decision-making

and enhanced system performance.
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Chapter 8

Developing an intelligent approach to bootstrap
new fog nodes into a fog ecosystem

8.1 Introduction

A key issue with a number of reputation systems is that they are unable to

rank new fog node providers objectively during the process of node selection. This

disadvantages new fog node providers as the lack of previous QoS data renders them

ineligible for trust-based ranking. This issue is called the cold-start problem as

defined in Section 3.2.17. It is an important and challenging issue in the reputation

and trust system. The cold-start problem is characterized by the lack of any prior

historical information about a new fog node such as QoS data or reputation rates.

A new fog node which has recently joined the network has unknown QoS data. New

fog nodes need to establish network connectivity and configure their communication

protocols during the cold start phase. This configuration process can take time,

leading to delays in joining the network and participating in collaborative tasks.

Predicting the trust value of a fog node which recently joined the fog ecosystem is

fundamental to the development of a trust-based FNS. We propose an intelligent and

reliable FNS mechanism which is an intelligent approach to enable fog consumers

to select appropriate and reliable fog nodes in a trustworthy manner (as discussed

in Chapter 7). Our selection approach is based on the trust value of the fog node

based on the values of the QoS data. If the fog node has historical information of

QoS data provided to this fog node, the TEE in the FNSE is responsible to carry

out the prediction of the trust value. With the trust value of fog nodes, the FNSE
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will be able to rank the fog node to select the most reliable fog node in the network

(Chapter 7).

However, if the QoS values of the fog nodes are unknown, this means the FNSE

is unable to make a meaningful selection of fog nodes. To solve the problem of

cold-start fog nodes, we proposed BE which is an intelligent trust-based fog node

bootstrapping framework. This framework is designed to address the cold-start

problem in fog computing environments. It enables fog consumers to make informed

and trustworthy decisions when selecting fog nodes for their applications. The cold-

start problem refers to the challenge faced when new fog nodes join the network

without any prior historical information, such as QoS values or reputation rates.

This lack of information makes it di�cult to objectively assess the trustworthiness

of these nodes during the FNS process. To overcome this challenge, the proposed

framework incorporates key components, including the BE which is responsible for

the trust evaluation process of new fog nodes to help the FNSE in the selection

process. BE works as an intelligent-based trust evaluation agent responsible for

predicting and evaluating the trust value of new fog nodes to assist the FNSE to

make a reliable fog node selection.

In this chapter, we present the detailed solution for developing an intelligent

approach to predict the trust value of new fog nodes with unknown QoS data. This

approach helps to bootstrap new fog node providers by predicting the initial QoS

values to this fog node recently joining the fog network, then predicting the trust

value of the new fog node to make a reliable FNS. We propose BE which is an

intelligent framework to predict the trust value of new cold-start fog nodes to help

the fog consumer select a reliable fog node based on the QoS of fog nodes in the fog

environment.

This chapter is organised as follows: Section 8.2 presents the architecture of the
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BE framework. Section 8.3 describes the implementation of BE and the prototype

setup. Section 8.4 provides a discussion of the evaluation results of the proposed

methods. Finally, Section 8.5 concludes the chapter.

8.2 BE Framework

This section presents the development of an intelligent BE mechanism that pre-

dicts the trust value of new fog nodes to bootstrap them within the fog ecosystem.

The objective of this research is to enable reliable FNS for fog consumers based

on trust values. This selection process is integrated into the FNSE, as described

in Chapter 4. When a fog node lacks previous QoS data, the BE takes charge of

performing a trust-driven assessment of the new fog nodes and recommending a suit-

able and reliable fog node for selection. The BE specifically addresses the cold-start

phase that new fog nodes experience when joining the network. During this phase,

fog nodes have limited or no information about the network and lack the necessary

historical QoS attributes. The significance of the cold-start problem increases in

dynamic fog environments where nodes frequently join or leave the network. To

address this challenge, the BE employs two key modules namely the QoS prediction

module and the Reputation prediction module. Figure 8.1 illustrates the architecture

of BE.

The QoS prediction module is responsible for bootstrapping the trust value of

new fog nodes. It employs a predictive algorithm to estimate the initial QoS values

of the newly joined fog nodes. The QoS prediction module begins by clustering all

fog nodes in the network based on their contextual attributes, such as geographical

location. This clustering helps in grouping fog nodes that are in close proximity to

each other. When a new fog node joins the network, it is assigned to the closest

cluster based on its location. The QoS prediction module then utilizes the KNN

algorithm [113] to identify the nearest neighbors within the closest cluster. Research



178

Figure 8.1 : Bootstrapping engine model
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[153] suggests that web services in the same geographical region are more likely

to provide similar QoS performances to the same users. Leveraging this insight,

the QoS prediction module predicts the initial QoS value for the new fog node by

calculating the average QoS data from its nearest fog nodes, typically considering

10 nearest neighbors (further details are given in Section 8.3.2).

Subsequently, the reputation prediction module includes a trust evaluation pro-

cess that predicts and evaluates the trust value of the new fog nodes. This assessment

is crucial for assisting the FNS process and enabling fog consumers to make reliable

choices. The reputation prediction module predicts the trust value of the new fog

node based on the predicted initial QoS value, employing one of the proposed rep-

utation prediction techniques (further details are given in Section 8.3.3). Once the

trust value is predicted, it is assigned to the new fog node along with all other fog

nodes in the network. This allows the FNSE to rank all fog nodes based on their

trust values, enabling fog consumers to select a fog node that aligns with their trust

requirements. This stepwise working of the BE is as follows (refer to Figure 4.6):

Step 1: Data Collection: The FNSE collects QoS information for each fog node

based on their previous interactions. This step serves as the starting point

(Step 1 in Figure 4.6).

Step 2: New Fog Node: If a fog node is new and does not have any previous in-

teraction history, the BE proceeds to predict its initial QoS values (Step 2 in

Figure 4.6).

Step 3: QoS Prediction for New Fog Nodes: The QoS prediction module in BE is

responsible for predicting the QoS values of the new cold-start fog node (Step

2.1 in Figure 4.6) which includes:

Step 3.1: Clustering - The QoS prediction module applies the K-means algorithm
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to cluster fog nodes based on their contextual attributes, such as geo-

graphical location.

Step 3.2: Closest Cluster - When a new fog node joins the network, the QoS

prediction module determines the closest cluster based on its geographical

location. The KNN algorithm is used to measure similarity and identify

similar fog nodes (nearest neighbors).

Step 3.3: QoS Prediction - The QoS prediction module predicts the initial QoS

value for the new fog node by calculating the average QoS values of its

nearest neighbors (neighbors obtained in Step 3.2).

Step 4: Trust Value Prediction: The reputation prediction module is responsible

for predicting the trust value of the new fog node based on its initial QoS

prediction. Various reputation prediction techniques can be employed for this

purpose (detailed in Step 2.2 in Figure 4.6).

Step 5: Fog Node Ranking: The FNSE ranks the provided fog nodes based on their

trust values in ascending order. This ranking ensures that fog nodes with

higher trust values are prioritized in the selection process (detailed in Step 3

in Figure 4.6).

Step 6: Display of Ranked Results: The final ranked results, including trust values

and other relevant information, are presented to the fog consumer. This allows

the fog consumer to make an informed decision in selecting the most reliable

fog node for their requirements (detailed in Step 4 in Figure 4.6).

All the steps involved in Step 3 will be carried out o✏ine when the new fog node

comes to the area. So, when the fog consumer wants to know the trust value of the

new fog node, the BE will measure the similarity between the new fog node and all

the nearest fog nodes in its cluster. Similar nearest fog nodes should provide similar
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QoS features.

8.3 Implementation of BE

In this section, we present the implementation of the BE within the FNSE. The

BE module is responsible for addressing the situation when the FNSE encounters

a new fog node that lacks QoS data. To tackle this challenge, our proposed ap-

proach comprises two steps, as shown in Figure 8.1. First, in Section 8.3.2, the QoS

prediction module in the BE focuses on predicting the QoS values for the new fog

node. This prediction process involves leveraging intelligent techniques to predict

the expected QoS performance of the new cold-start fog node. By analyzing relevant

factors such as geographical location data and the QoS data of existing similar fog

nodes, the QoS prediction module provides an estimation of the QoS attributes that

the new cold-start fog node is likely to exhibit. Once the QoS prediction for the

new fog node is determined, the reputation prediction module in BE proceeds to the

next step, as outlined in Section 8.3.3. Here, the focus shifts towards predicting the

trust value of the new fog node. Trust estimation is crucial in fog computing envi-

ronments to ensure reliable interactions among fog nodes and the overall network.

By considering factors such as the QoS of the fog node, the reputation prediction

module assesses the trustworthiness of the new fog node. By systematically follow-

ing these two steps, the BE module plays a vital role in the FNSE. It enables the

system to make informed decisions regarding the inclusion of new fog nodes in the

network. By predicting the QoS values and trustworthiness of the new fog node, the

system can assess its potential contributions and evaluate whether it aligns with the

desired goals and requirements of the fog computing environment.
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8.3.1 Dataset

In the fog computing era, one of the major challenges is the lack of available

datasets specifically tailored to fog nodes and fog services. Due to the limited avail-

ability of such datasets, we had to explore alternative sources of data to tackle the

problem at hand. In our research, we addressed the cold start problem of fog nodes

by utilizing QoS data obtained from web services. To ensure the reliability and

relevance of the data used, we leveraged the QWS dataset [131] and WS-dream

dataset [154]. To achieve this objective, we adopted a methodology involving the

integration of the QWS and WS-dream datasets, chosen for their respective mer-

its. The QWS dataset provides essential QoS data, which was utilized to achieve

objective 3. Conversely, the WS-dream dataset contains valuable geographical in-

formation, thereby supplementing our analysis. Specifically, our approach involved

combining 2507 web services from the QWS dataset with an additional 5825 web

services sourced from the WS-dream dataset. Through this integration process, we

identified a subset of 338 web services within the WS-dream dataset that possessed

explicit geographical location information. The QWS dataset [131] comprises QoS

data which includes response time and throughput but the WS-dream dataset [154]

provides essential location information such as IP addresses, country, continent, re-

gion, city, latitude, and longitude details associated with each web service. While

the QWS and WS-dream datasets primarily focus on web services, we repurposed it

to fit our research requirements in the context of fog computing. Before integrating

the datasets into our research, we performed a meticulous data cleaning process to

enhance the dataset’s integrity and consistency. This involved removing any null

or missing values to ensure the dataset’s reliability and eliminate potential biases.

Subsequently, we combined the location information, including latitude and longi-

tude, with the corresponding QoS data for each web service. This fusion of location

information and QoS metrics allowed us to construct a comprehensive dataset that
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we considered representative of fog node data. For our research on addressing the

cold start problem of fog nodes, we specifically focused on two key parameters:

geographical location information and QoS metrics. The geographical location in-

formation, consisting of latitude and longitude, enabled us to examine the spatial

aspects and proximity of fog nodes. Additionally, the QoS parameters, including

response time, availability and throughput of services in fog nodes, provided crucial

insights into the performance and capabilities of fog nodes as described in Table

8.1. By leveraging the WS-dream dataset, incorporating location information, and

considering essential QoS parameters, our research aims to develop an e↵ective in-

telligent approach to mitigate the challenge posed by the cold start problem in fog

computing. While the lack of fog node specific datasets posed a significant hurdle,

our approach utilizing web service data allowed us to explore the intricacies of fog

nodes and propose innovative solutions in real-world scenarios.

Table 8.1 : A snapshot of the dataset

Fog node ID Latitude Longitude Response

Time

Throughput

1 44.98 -93.2638 302.75 7.1

97 44.98 -93.2638 621.2 8.3

87 41.8392 -88.3612 82.25 22.7

133 41.8392 -88.3612 87.9 14.7

34 39.0061 -94.6337 786.5 4.8

8.3.2 QoS prediction module

Our objective in this phase is to make predictions regarding the unknown QoS

of a recently joined fog node in the network. This process entails two main steps:
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clustering the fog nodes based on the similarity of their geographical locations and

subsequently predicting the QoS by leveraging the nearest neighbors of the new fog

node. To cluster the fog nodes according to their geographical location similarity,

we utilize the K-means clustering algorithm [155]. This algorithm facilitates the

grouping of fog nodes that possess similar geographical coordinates into di↵erent

clusters. By considering the latitude and longitude information associated with each

fog node, we can e↵ectively cluster them based on their spatial proximity. Through

this clustering process, we establish groups that exhibit geographical similarities

among the fog nodes. Following the clustering step, we employ the KNN algorithm

[113] to identify the fog nodes that are closest in geographical proximity to the

new fog node. The KNN algorithm functions by computing the proximity between

fog nodes based on their geographical information. By determining the K-nearest

neighbors of the new fog node, we can leverage the known QoS values associated

with these fog nodes to predict the QoS value for the new fog node. By utilizing

both the K-means clustering algorithm and the KNN algorithm, we establish a

robust framework for predicting the QoS value of the new fog node based on its

geographical proximity to the existing fog nodes. This prediction process e↵ectively

addresses the cold start problem by providing an estimate of the QoS even before

the new fog node has accumulated su�cient data or established connections with

other nodes in the network. Figure 8.2 illustrates the working of the QoS prediction

module for a new fog node within BE.

8.3.2.1 Clustering fog nodes

Upon the new fog node joining the network, it becomes crucial to identify the

nearest fog nodes and determine the appropriate cluster within the new fog node’s

geographical region. The study in [153] demonstrates that web services, denoted

s and t, are more likely to exhibit similar QoS performances for the same users if



185

Figure 8.2 : Working of the QoS prediction module
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they are situated within the same geographical region. Therefore, clustering fog

nodes based on their geographical locations and identifying the closest fog nodes to

the new node can aid in achieving similar QoS performance for the cold-start fog

node. In our research, we utilized the K-means clustering algorithm implemented

in MATLAB [142]. We implemented di↵erent clustering scenarios with a di↵erent

number of K from 2 to 6. The next step involves determining the optimal value of

K for clustering. Two clustering evaluation techniques are employed to evaluate the

optimal number of clusters such as Davies-Bouldin criterion clustering evaluation

[156] and the silhouette evaluation [157].

The Davies-Bouldin criterion is based on a ratio of within-cluster and between-

cluster distances. The optimal clustering solution has the smallest Davies-Bouldin

index value. The silhouette value measures the similarity of each fog node within

a cluster and compares it with other clusters. Silhouette values range from -1 to 1,

where a higher value indicates greater consistency among fog nodes within a cluster,

while a lower value suggests poor alignment.

Table 8.2 : Clustering evaluation comparison with a di↵erent value of K

Number of

clusters

K=2 K=3 K=4 K=5 K=6

Davies-

Bouldin

evaluation

0.4708 0.3080 0.4586 0.4267 0.4419

Silhouette

evaluation

0.8372 0.9183 0.8087 0.8567 0.8571

Based on the evaluation presented in Table 8.2 and the analysis shown in Figures

8.3 and 8.4, we identify that the most suitable number of clusters, denoted as K, for
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our specific scenario is 3. Figure 8.3 clearly illustrates that the lowest Davies-Bouldin

value is achieved when utilizing three clusters, indicating that this number of clusters

is optimal. Furthermore, Figure 8.4 provides additional evidence as it demonstrates

that the highest silhouette value is attained with three clusters, reinforcing the

conclusion that the optimal number of clusters is 3.

Figure 8.3 : Davies-Bouldin clustering evaluation

Subsequently, we implemented the k-means clustering algorithm in MATLAB,

utilizing the squared Euclidean distance metric [131] and the fog nodes were grouped

into 3 clusters based on their geographical locations. The geographical distribution

of the fog nodes, segmented into 3 clusters, is depicted in Figure 8.5. This clus-

tering approach facilitates the organization and grouping of fog nodes according

to their proximity, thereby aiding the cold-start fog node in achieving similar QoS
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Figure 8.4 : Silhouette clustering evaluation

performance to the fog nodes in its cluster. By leveraging geographical clustering

and identifying the nearest fog nodes, we enable the cold-start fog node to align

its performance with other fog nodes in its geographical region. This enhances the

QoS provision and ensures a more seamless integration of the new fog node into the

network.

8.3.2.2 Nearest Neighbor Identification and QoS Prediction

In this research, predicting the QoS value of the new fog node is based on the

nearest neighbors to the new fog node. To address the issue of a new fog node

experiencing a cold start issue, we devised a prediction-based method to estimate the

QoS values which includes response time and throughput for the recently initialized

fog node. This enables us to estimate the node’s performance even before it has
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Figure 8.5 : Result of clustering the fog nodes

accumulated enough data or established connections with other fog nodes and fog

consumers within the network. Our approach revolves around utilizing the KNN

algorithm [113] to analyze the closest neighbors. When a new fog node joins the

network, we take into consideration the geographical locations of the nearest fog

nodes in its region or cluster. These neighboring fog nodes act as reference points

for predicting the QoS of the new node. By leveraging the KNN algorithm, we

identify the nearest fog nodes based on factors such as geographical locations. By

incorporating the average QoS values of these nearest fog nodes, we can predict the

QoS performance of the new fog node that is experiencing a cold start. The KNN

algorithm is implemented by the scikit-learn library APIs in Python [128]. Scikit-

learn is a powerful machine learning library that provides a range of algorithms and
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tools for data analysis and modeling. In our implementation, we specifically employ

the Euclidean distance metric as the distance measure for the KNN algorithm. The

Euclidean distance is a commonly used distance metric in machine learning, which

calculates the straight-line distance between two data points in a multi-dimensional

feature space. By using the Euclidean distance metric, we can e↵ectively determine

the similarity between the new fog node and its nearest neighbors based on their

geographical locations. During the prediction phase, the KNN algorithm identifies

the k-nearest neighbors of the new fog node based on their Euclidean distances. We

specified the value of k with 10. The KNN model then considers the average QoS

values of these k-nearest neighbors and predicts the QoS performance of the new

fog node based on this information.

8.3.3 Reputation prediction module

Once the fog nodes have been clustered and the initial QoS values have been

determined for the new cold-start fog node, the BE model takes over the task of

intelligently predicting the trust value of the new cold-start fog node. This pre-

diction is crucial in assessing the reliability and credibility of the fog node before

integrating it into the network. To achieve this, the BE model utilizes the reputa-

tion prediction module, which incorporates various techniques and algorithms based

on the QoS data of all fog nodes. The reputation prediction module serves as a

means to estimate the trust value for the new cold-start fog node, which lacks any

previous interactions or known providers. Within the reputation prediction module,

we propose three intelligent methods aimed at achieving the best performance and

prediction results include fuzzy logic-based reputation prediction, regression-based

reputation prediction, and deep learning-based reputation prediction, as shown in

Figure 8.6.
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Figure 8.6 : Working of the Reputation Prediction module

8.3.3.1 Fuzzy Logic-Based Reputation Prediction

Using fuzzy logic to predict the trust value of fog nodes based on QoS factors

such as response time and throughput involves developing a fuzzy inference system

that captures the uncertainty and imprecision in the data to make informed trust

predictions. Fuzzy logic provides a flexible and interpretable framework to model

complex relationships between input variables and output trust values, which are

linguistic terms in this case (e.g., highly trustworthy, trustworthy, untrustworthy).

We implemented fuzzy logic in BE with Python using the scikit-fuzzy library [158].

Scikit-fuzzy provides functions to define membership functions, create fuzzy rules,

perform fuzzy inference, and defuzzify the output.

The following steps are followed to apply the fuzzy logic prediction in the BE:
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Step 1: Fuzzification: The first step is to convert the crisp value of inputs to fuzzy

set by identifying the linguistic terms of each input. For each QoS factor (re-

sponse time and throughput), we identify three linguistic terms, namely ’low’,

’medium’, or ’high’. For each QoS factor, we need to define fuzzy membership

functions that map the numerical input values to these linguistic terms (high,

medium, low). These membership functions describe how each input value be-

longs to each linguistic term, as shown in Figures 8.7 and 8.8. The triangular

membership function is used for this task. The specific range for each of these

variables is listed in Table 8.3.

Table 8.3 : Parametric range for the linguistic variables of the input parameters

Input Parameter Low Medium High

Response Time 0 - 299 300 - 999 1000 – 10,000

Throughput 0 – 9 10 – 19 20 -30

Additionally, we defined three linguistic variables for the output, which is the

trust value of the fog node: highly trustworthy, trustworthy, and untrustwor-

thy. The range for each of these linguistic variables is presented in Table 8.4.

The membership function of the trust value describes how the output value

belongs to each linguistic term, as shown in Figures 8.9.

Table 8.4 : Parametric range for the linguistic variables of the output parameters

Output Parame-

ter

Highly Trustwor-

thy values range

Trustworthy val-

ues range

Untrustworthy

values range

Trust value 0 - 1 1 - 2 2 – 3
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Figure 8.7 : Membership function of response time input

Figure 8.8 : Membership function of throughput input
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Figure 8.9 : Membership function of trust value output

Step 2: Set up fuzzy rules: Fuzzy rules capture the relationships between input QoS

factors and output trust values. These rules are expressed in the form of IF-

THEN statements, where each antecedent (IF part) represents a combination

of linguistic terms from the input factors, and the consequent (THEN part)

represents the trust value linguistic term. Table 8.5 details the fuzzy rules of

the prediction model.

Step 3: Fuzzy Inference: Fuzzy inference applies the fuzzy rules to the input QoS

values to determine the trust value. The fuzzification process converts crisp

input values into fuzzy sets using the defined membership functions. The rules’

antecedents are evaluated using fuzzy logic operators (AND) to determine their

degree of truth. The fuzzy outputs are then aggregated to obtain a combined

trust value using operators like the maximum average.
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Table 8.5 : Fuzzy rules for the Bootstrapping Engine

Response time Throughput Trust value

Low High Highly trustworthy

Low Medium Trustworthy

Low Low Untrustworthy

Medium High Highly trustworthy

Medium Medium Trustworthy

Medium Low Untrustworthy

High High Untrustworthy

High Medium Trustworthy

High Low Highly trustworthy

Step 4: Defuzzification: Defuzzification converts the aggregated fuzzy trust value back

into a crisp value for interpretation. Various defuzzification methods can be

used, such as centroid, the mean of maximum (MOM), or weighted average.

In this research, we used the centroid defuzzification method. The defuzzified

trust value represents the predicted reputation of the fog node. It falls into

one of the three distinct linguistic terms: highly trustworthy, trustworthy, or

untrustworthy. The trust value provides insights into the level of confidence

associated with the fog node’s reliability and trustworthiness.

• If the predicted trust value is between (0 - 1), then the trust value is 1

(highly trustworthy).

• If the predicted trust value is between (1 - 2), then the trust value is 2

(trustworthy).

• If the predicted trust value is between (2 - 3), then the trust value is 3

(untrustworthy).
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By employing fuzzy logic in this manner, we can e↵ectively predict the trust

value of new fog nodes based on their QoS factors. The fuzzy logic approach

is well-suited for handling uncertainty and vagueness in QoS data, making it

a valuable tool for reputation prediction in fog computing environments. The

interpretability of the fuzzy inference system enables users to understand and

trust the predictions, supporting decision-making processes related to resource

allocation and service selection.

8.3.3.2 Regression-Based Reputation Prediction

The regression-based reputation prediction method leverages regression algo-

rithms to estimate the reputation of a new fog node. These algorithms establish a

mathematical relationship between the fog node’s QoS attributes, such as response

time and throughput, and its corresponding trust value. By analyzing the QoS data

and applying regression techniques, this approach provides a quantitative estima-

tion of the fog node’s trust value based on its observed QoS performance. For this

method, we specifically utilize the logistic regression algorithm [159], which is a su-

pervised machine learning algorithm commonly used for classification and regression

tasks. Logistic regression aims to predict the probability of an instance belonging

to a specific class. In our research, logistic regression is employed to predict the

reputation of the new fog node. The reputation is represented by a trust value

categorized into three distinct levels: 1 (highly trustworthy), 2 (trustworthy), and

3 (untrustworthy). We implement logistic regression using the scikit-learn library

APIs in Python [145]. To train and evaluate the logistic regression model, we divide

the WS-dream dataset into training and test sets. The logistic regression method is

then applied to classify the fog nodes based on their QoS attributes. To assess the

performance of the method, we calculate various evaluation metrics such as accu-

racy, precision, recall, and F1 score. Additionally, we provide a classification report

and a confusion matrix to gain further insights into the classification results. By
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employing the logistic regression algorithm within the reputation prediction module,

we can quantitatively estimate the trust value of the new fog node. This approach

enhances decision-making processes and resource allocation strategies, as it pro-

vides a numerical indication of the fog node’s expected trustworthiness based on its

observed QoS attributes.

8.3.3.3 Deep Learning-Based Reputation Prediction

The third method employed for reputation prediction involves the use of deep

learning techniques, specifically deep neural networks, to predict the trust value of

the new cold-start fog node. By training deep learning models with the QoS data

from existing fog nodes, these models are capable of capturing intricate patterns and

relationships present in the data. Subsequently, the trained models can be utilized

to predict the trust value of the new cold-start fog node based on its QoS attributes,

resulting in a highly accurate estimation of its trust value. In our rsearch, we specif-

ically utilized the multilayer perceptron (MLP) neural network as a deep learning

model for reputation prediction. The construction of the MLP neural network was

facilitated by the Keras library [151][160], a powerful Python library that integrates

popular deep learning backends such as TensorFlow and Theano, ensuring the ef-

ficient implementation and utilization of the MLP neural network. Our implemen-

tation of the MLP neural network model consists of three hidden layers. The first

hidden layer is composed of 24 nodes, the second hidden layer contains 12 nodes,

and the third hidden layer comprises 8 nodes. These hidden layers are equipped

with the rectified linear unit (ReLU) activation function, which enables the network

to e↵ectively capture non-linear relationships within the data. Furthermore, the

weights of the network are initialized using a commonly used method, a weight ini-

tialization technique that facilitates proper network convergence. By leveraging the

deep learning technique and employing the MLP neural network model, we are able
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to e↵ectively exploit the complex patterns and dependencies within the QoS data

to predict the reputation of the new fog node with a high degree of accuracy. This

approach significantly enhances the precision and reliability of reputation prediction

by considering intricate non-linear relationships. The adoption of Keras simplifies

the model construction process and ensures the e�cient training and evaluation of

the MLP neural network.

We compared the three reputation prediction methods, namely the fuzzy logic-

based, regression-based, and deep learning-based approaches and several factors need

to be considered to determine the best approach (further information is provided

in Section 8.4.2). Accuracy plays a crucial role in evaluating the performance of

each method. The accuracy metric measures how closely the predicted reputation

aligns with the actual reputation. The method that achieves the highest accuracy

in predicting the trust value of the new fog node can be considered the most e↵ec-

tive. Secondly, the complexity of implementing and deploying each method is an

important consideration. This includes factors such as ease of training the models,

computational resource requirements, and overall algorithmic complexity. If a less

complex method can achieve comparable accuracy to more complex approaches, it

may be preferred. The interpretability of the reputation prediction results is another

significant factor. It refers to how easily the predicted reputation can be understood

and justified based on the input QoS attributes. In scenarios where explainabil-

ity is crucial, a method that provides transparent and interpretable results may be

preferred.

8.4 Evaluation and discussion

This section focuses on evaluating the modules proposed in the BE framework

based on the evaluation process explained in Section 4.7.2. Firstly, in Section 8.4.1,

we evaluate the QoS prediction module, which utilizes clustering and the KNN al-
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gorithm. The aim of this module is to predict the QoS values of new cold-start

fog nodes by considering the geographical nearest fog nodes within their clusters.

Through extensive evaluation, we assess the e↵ectiveness of this module in accu-

rately predicting QoS values for cold-start fog nodes. In Section 8.4.2, we evaluate

the reputation prediction module. This module incorporates three AI-based meth-

ods for reputation prediction. The primary objective of the reputation prediction

module is to predict the trust value of new fog nodes based on the predicted QoS

values obtained from the QoS prediction module. We thoroughly assess the per-

formance and e↵ectiveness of these AI-based methods in accurately predicting the

trustworthiness of new fog nodes. By conducting comprehensive evaluations of both

the QoS prediction module and the reputation prediction module, we gain valuable

insights into the overall performance and reliability of the BE framework. The eval-

uation process allows us to gauge the e↵ectiveness of these modules in addressing

the challenges associated with cold-start fog nodes and ensuring the trustworthiness

of the fog computing environment.

8.4.1 Evaluation of QoS prediction module

The evaluation of our QoS prediction approach based on geographical nearest

fog nodes obtained from the KNN algorithm has yielded highly accurate results. To

assess the accuracy of our predictions, we compared the predicted QoS values with

the actual QoS values observed during the operation of the new fog node. Through

extensive testing and analysis, we determined that our predicted QoS values for the

new cold-start fog node achieved an impressive accuracy rate of 85%. By accurately

estimating the QoS values for the cold-start fog node, our prediction-based approach

enables us to gain valuable insights into its anticipated performance. This informa-

tion is crucial in facilitating an e�cient selection process for integrating the fog node

into the network. By leveraging the KNN algorithm and considering the QoS values
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of the nearest fog nodes in the region or cluster, we can make informed predictions

about the QoS performance of the new fog node, even in the absence of su�cient

historical data. The high accuracy achieved by our QoS prediction module demon-

strates its e↵ectiveness in addressing the uncertainties associated with the cold start

problem. By accurately predicting the QoS values based on the characteristics of

the nearest fog nodes, we can predict the trust value of the new fog node into the

network. This enables smoother operations and minimizes the disruptions typically

associated with the cold start phase. The obtained accuracy rate of 85% indicates

that our prediction-based approach provides reliable and trustworthy QoS estima-

tions for cold-start fog nodes. This accuracy enables more e�cient decision-making

in terms of reputation prediction than FNS.

8.4.2 Evaluation of reputation prediction module

We evaluated the three methods of the reputation prediction module based on

the commonly known evaluation metrices, accuracy, precision, recall, and F1 score.

By carefully evaluating and comparing these methods, it is possible to identify the

best approach of the three methods. Comprehensive experiments and performance

evaluations are conducted to determine the most suitable approach for a partic-

ular fog computing environment. Through the implementation of these methods

individually within the reputation prediction module, we compare and evaluate the

results of each method. The BE module should provide a comprehensive and robust

approach to predict the trust value of the new fog node, facilitating the decision-

making process for integrating the fog node into the network. This ensures that

only trusted and reliable fog nodes are selected, contributing to the overall integrity

and reliability of the fog computing environment. The comprehensive evaluation of

all the proposed methods o↵ers valuable insights into the best reputation prediction

process for new cold-start fog nodes. By employing the most e↵ective intelligent
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method determined through this evaluation, the BE module enhances the reputa-

tion prediction process for new cold-start fog nodes. Each method brings unique

advantages, allowing the system to select the most suitable technique based on the

specific requirements and characteristics of the fog computing environment. The

evaluation process enables the selection of a method that ensures the reliability and

high accuracy of the reputation prediction process, contributing to the overall e↵ec-

tiveness and reliability of the fog computing environment. Leveraging one of these

fuzzy logic, regression, or deep learning techniques, the BE module enhances the

capability of the selection framework to handle the cold start problem and assess

the trustworthiness of new fog nodes. This intelligent prediction mechanism enables

e�cient FNS and improved overall performance within the fog computing network.

Several experiments have been conducted for the three methods and the evaluation

results of the four metrices are depicted in the Table 8.6.

Table 8.6 : Evaluation metric results of BE with the three approaches

Fuzzy Logic Logistic Regres-

sion

DNN

Accuracy 90.74 78.42 57.14

Precision 91.09 79.67 55.46

Recall 93.51 78.42 57.14

F1 score 92.28 77.56 56.0

Using the information provided in Table 8.6 and Figure 8.10 Table 8.6 and Figure

8.10, we can comprehensively compare the performance of the three methods: fuzzy

logic, logistic regression, and DNN for predicting the trust value of new cold-start

fog node. Fuzzy logic achieved the highest accuracy of 90.74%. This indicates that

the model accurately predicts the trust value of fog nodes based on QoS factors,
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Figure 8.10 : Overall evaluation of BE

leading to better decision making in fog computing environments. The precision of

91.09% suggests that fuzzy logic e↵ectively minimizes false positives, reducing the

likelihood of incorrectly classifying trustworthy fog nodes as untrustworthy or vice

versa. With a recall of 93.51%, fuzzy logic excels in identifying highly trustworthy,

trustworthy, or untrustworthy fog nodes, minimizing false negatives and improving

the overall trust prediction process. Fuzzy logic achieved an impressive F1 score of

92.28%, indicating a good balance between precision and recall, ensuring accurate

positive predictions and minimizing errors in trust evaluation.

However, logistic regression achieved an accuracy of 78.42%, which is lower than

fuzzy logic. It suggests that the model may not fully capture the complex rela-

tionships between QoS factors and the trust value, leading to reduced predictive

accuracy. The precision of 79.67% indicates that logistic regression e↵ectively min-

imizes false positives, similar to fuzzy logic, but slightly less accurate in positive

predictions. With a recall of 78.42%, logistic regression may miss identifying some

truly trustworthy or untrustworthy fog nodes, leading to a higher number of false
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negatives compared to fuzzy logic. The F1 score of 77.56% further confirms the

trade-o↵ between precision and recall, where logistic regression slightly lags behind

fuzzy logic in achieving a balanced performance.

On the other hand, DNN obtained an accuracy of 57.14%, significantly lower

than both fuzzy logic and logistic regression. This suggests that the DNN model

may not be capturing the underlying patterns in the data e↵ectively. The precision

of 55.46% indicates a higher number of false positives, making DNN less precise

in predicting trustworthy or untrustworthy fog nodes compared to the other two

methods. With a recall of 57.14%, DNN’s ability to identify truly trustworthy or

untrustworthy fog nodes is comparable to its accuracy, indicating a less reliable trust

prediction performance. The F1 score of 56.0% further confirms the challenges in

achieving a balanced performance between precision and recall for DNN. Based on

the evaluation results, fuzzy logic outperforms both logistic regression and DNN

in all evaluation metrics, including accuracy, precision, recall, and F1 score. It

demonstrates its superiority in trust value prediction due to its ability to handle

uncertainty and imprecision inherent in fog computing data. Logistic regression

shows relatively good precision and recall, but it lags behind fuzzy logic in overall

accuracy and F1 score. It may be limited in capturing complex relationships in the

trust evaluation task. DNN performs the least e↵ectively of the three methods, with

significantly lower accuracy, precision, recall, and F1 score. This could be attributed

to challenges in optimizing the complex neural network architecture or inadequate

training data.

Fuzzy logic emerges as the most e↵ective method for predicting the trust value

of fog nodes based on QoS factors. Its robust performance, balanced precision and

recall, and high accuracy make it a preferable choice for trust evaluation in fog

computing environments. Logistic regression shows promising results but falls short

of fuzzy logic’s performance, while DNN requires further optimization to achieve
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better accuracy and reliability in trust prediction.

8.5 Conclusion

In conclusion, the cold-start problem poses a significant challenge in reputation

and trust systems, particularly in the context of FNS. The lack of historical informa-

tion and QoS data for new fog nodes renders them ineligible for objective ranking

and trust-based evaluations. This limitation creates a disadvantage for new fog

node providers as they struggle to establish credibility and participate e↵ectively

in collaborative tasks. To address this issue, we proposed the BE as an intelligent-

based trust evaluation agent within the FNSE framework. The BE plays a crucial

role in predicting and evaluating the trust value of new fog nodes that join the fog

ecosystem during the cold start phase. By leveraging intelligent techniques, the BE

enables the FNSE to make reliable selections based on trust values. The BE’s func-

tionality revolves around predicting the initial QoS values for new fog nodes by QoS

prediction module and subsequently estimating their trust values by the reputation

prediction module. Several experiments are conducted to measure the accuracy of

the trust value prediction and their results show that the fuzzy logic-based reputa-

tion prediction method outperforms the logistic regression and DNN approaches in

terms of accuracy, precision, recall, and F1 score. The fuzzy logic approach achieved

the highest accuracy compared with other proposed approaches. The proposed BE

mechanism not only addresses the cold-start problem but also empowers the FNSE

to make informed and trustworthy FNSs. By providing a reliable assessment of the

trustworthiness of new fog nodes, the BE contributes to the overall e↵ectiveness and

e�ciency of the fog ecosystem. It ensures that fog consumers can make informed

decisions based on trust values derived from historical QoS attributes.
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Chapter 9

Conclusion and Future Work

9.1 Introduction

This chapter marks the end of the thesis and o↵ers insights into potential direc-

tions for future research. The primary objective of the thesis has been to identify

and select the most suitable fog nodes that meet the requirements of fog consumers.

This aim has been accomplished through the development of the distributed con-

sortium which we called FRC. For this FRC, we proposed intelligent frameworks for

context-aware FND, trust-based FNS and to address the cold-start problem in fog

computing. The proposed approach incorporates state-of-the-art techniques from

artificial intelligence, including machine learning, fuzzy logic, and deep learning, to

enhance the e�ciency and e↵ectiveness of the fog ecosystem. By leveraging these AI-

driven methodologies, the FND and FNS domains have been significantly improved,

leading to more optimal fog node selection and fog resource allocation.

This chapter is organised as follows: In Section 9.2, the research issues of this

thesis are addressed. The contributions of this thesis to the existing literature are

discussed in Section 9.3. Future research directions are presented in Section 9.4.

9.2 Problems Addressed in This Thesis

This thesis examines the issues of FND and FNS using AI frameworks. In Chap-

ter 2, we provided an overview of the existing research and highlighted the problems

to be addressed in this thesis. Our research objectives are as follow:

1. Propose a distributed framework to host fog node information in the network
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and keep the concurrency, consistency, and integrity of the fog network.

2. Propose and develop an intelligent and distributed framework for FND that

is capable of allocating the optimal fog node based on the context-aware data

of fog nodes and fog consumers using three nearest neighbor algorithms.

3. Propose and develop an intelligent and reliable framework, FNS, that helps

the fog consumer select the most suitable fog node based on the QoS of fog

nodes using machine learning, fuzzy logic, and DNN methods.

4. Propose and develop an intelligent trust evaluation system by predicting the

trustworthiness of fog nodes and bootstrapping the reputation of the new cold-

start fog node.

9.3 Contributions of This Thesis to the Existing Literature

To achieve the research objectives outlined in Section 9.2, this thesis develops

an intelligent, reliable, and distributed framework for discovering and selecting the

best fog node options. The contributions of this thesis are summarized as follows:

9.3.1 Contribution 1: Comprehensive State-of-the-art Survey of the Ex-

isting Literature

In the first part of this thesis, we conducted an extensive research study focus-

ing on FND and FNS. We provided the first SLR in the area of FND and FNS

and presented a critical analysis of the existing FND approaches, highlighting their

shortcomings in meeting the defined requirements. We also critically evaluated the

existing FNS approaches and identified the gaps in meeting the defined requirements.

Additionally, the limitations of the existing FND and FNS approaches that need to

be addressed are discussed. The findings from this study highlighted a significant

need to explore the development of context-aware FND in an intelligent and scal-
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able manner. Remarkably, none of the studies in the existing literature presented a

comprehensive framework for an intelligent and reliable trust-based assessment in a

distributed fog environment. Additionally, the research revealed a dearth of stud-

ies exploring trust-based FNS relying on distributed registries. Moreover, no prior

works investigated the intelligent prediction of the trust value for new fog nodes,

which is essential for seamlessly integrating them into the fog ecosystem. The SLR

is presented in Chapter 2 of this thesis and has been published in the Q1 journal,

Future Generation Computer Systems [10].

9.3.2 Contribution 2: Build an FRC architecture that can host impor-

tant information about fog nodes and ensure concurrency between

the DFRs within the consortium

In the next phase of this thesis, we developed a novel FRC that stores extensive

data on the fog nodes in the network and we also developed a distributed mechanism

to ensure concurrency and consistency between the DFRs within the consortium.

The functionality, e�ciency, and e↵ectiveness of the FRC in managing fog nodes,

synchronizing data across DFRs, ensuring the integrity and consistency of informa-

tion, and facilitating communication between fog consumers and fog nodes within

the simulated network was verified. A detailed explanation of the FRC framework

and its implementation algorithms is given in Chapter 5. The content of this chapter

is published in the Q1 IoT journal [110].

9.3.3 Contribution 3: An intelligent and distributed context-aware fog

node discovery framework using three AI-driven methods

In the next stage of this thesis, we developed the intelligent and distributed

FNDE to help the fog consumer identify and locate the nearest fog nodes intelligently

based on the location and context awareness of fog consumers and fog nodes. Three

AI-driven models, namely KNN, K-d tree and brute force algorithms are applied
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to discover the nearest optimal fog nodes to the fog consumer. To analyze the

performance of these models, accuracy, precision, recall, F1 score, and execution time

are measured. The evaluation results show that the k-d tree model performs better

than the KNN and brute force models in term of accuracy and time consumption.

Applying k-d tree in FNDE highlights the e�ciency of the k-d tree in finding the

nearest fog nodes, making it a favorable choice for fog consumers seeking faster

results. A detailed description of the FNDE framework and the algorithms used in

the implementation is given in Chapter 6. This chapter has been published in the

Q1 IoT journal [110].

9.3.4 Contribution 4: An intelligent and reliable fog node selection

framework using AI-driven algorithms

As part of this research endeavor, we developed the intelligent and reliable FNSE

which helps users make informed decisions when selecting trusted fog nodes within

a distributed fog environment. To do this, three AI-driven models of the TEE were

utilized, namely fuzzy logic, logistic regression, and deep learning for predicting the

trust value of fog nodes based on QoS parameters. The performance analysis of these

TEE models involved measuring accuracy, precision, recall, F1 score, and execution

time. The evaluation outcomes demonstrated that the TEE utilizing the fuzzy logic

approach had the most promising and best performance, achieving remarkable ac-

curacy, precision, recall, and F1 score values, thereby a�rming its e↵ectiveness in

trust prediction. Additionally, the fuzzy logic approach exhibited e�ciency by con-

suming less time, thereby facilitating rapid predictions. This enhanced e�ciency

ensures that fog node trust values can be accurately and swiftly assessed, contribut-

ing to the overall reliability and e�cacy of the FNSE. Chapter 7 describes the FNSE

framework and its implementation algorithms in detail.
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9.3.5 Contribution 5: An intelligent reputation approach for bootstrap-

ping new fog nodes into a fog ecosystem

In this research, we successfully developed an intelligent approach to tackle the

challenge of bootstrapping new fog nodes into a fog ecosystem. Our proposed frame-

work, called the BE, is an intelligent and trust-based solution designed specifically

to address the cold-start problem in fog computing environments. The primary goal

of the BE is to equip fog consumers with the capability to make well-informed and

reliable decisions when selecting fog nodes for their applications. To do this, we

employed three AI-driven models, namely fuzzy logic, logistic regression, and deep

learning, to predict the trust value of new cold-start fog nodes based on QoS param-

eters. The performance analysis of these models involved measuring crucial metrics

such as accuracy, precision, recall, F1 score, and execution time. The evaluation

outcomes clearly indicated that the fuzzy logic-based reputation prediction method

outperformed the logistic regression and deep learning approaches in terms of accu-

racy, precision, recall, and F1 score. Notably, the fuzzy logic approach achieved the

highest accuracy compared to the other proposed methodologies. The introduction

of the BE mechanism addresses the cold-start problem comprehensively, allowing

the FNSE to make informed and trustworthy fog node selections. By empowering

the FNSE with this intelligent and trust-based capability, fog consumers can now

confidently choose fog nodes that align with their specific requirements, thus enhanc-

ing the overall reliability and e�ciency of the fog computing ecosystem. Chapter 8

provides a detailed explanation of the BE framework and its implementation algo-

rithms.

9.4 Future Research Directions

Despite the comprehensive research conducted on the subject, there are numer-

ous opportunities for future exploration. As a result, our focus will continue in this
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area, with an emphasis on, although not limited to, the following aspects:

1. XaaS-FND (where X could be location, context, or content): In

this research, we have designed an intelligent FNDE utilizing location-based

context-awareness. Our approach focuses on creating an intelligent single cri-

terion that calculates the proximity between a fog consumer and a fog node.

Notably, our method is flexible and can adapt to di↵erent proximity quantifi-

cation parameters. In future work, we envision exploring the development of

intelligent multi-criteria-driven node discovery approaches. These approaches

will consider diverse parameters that signify proximity, including bandwidth,

physical distance, latency, and more. By incorporating multiple criteria, we

aim to further enhance the precision and e↵ectiveness of FND, catering to var-

ious application scenarios and optimizing the overall performance of the fog

computing ecosystem.

2. Multi-factor based holistic reputation computation: As part of our

research, we successfully created intelligent TEE and BE models, which play a

pivotal role in predicting the trust value of fog nodes. This predictive capability

assists fog consumers in making informed decisions when selecting reliable

fog nodes based on the QoS provided within the fog environment. In our

future work, we recognize the significance of additional factors in evaluating

the trustworthiness of a fog node. These factors may include assessing the

reputation of the fog node provider and considering the quality of experience

reported by other fog consumers who have interacted with the same or similar

fog nodes. By incorporating these vital factors into our evaluation framework,

we aim to further enhance the accuracy and completeness of fog node trust

assessments, ultimately empowering fog consumers with more comprehensive

information for their decision-making processes.
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3. Platform for objective comparison of fog models: The research study

presented in Chapter 2 highlights that various authors have employed diverse

evaluation approaches, including simulations and real-world data, to demon-

strate the performance of their models. However, a notable observation is the

absence of a single, definitive source of truth or benchmark mechanism that

can be universally adopted by di↵erent approaches for evaluation. This lack of

standardization extends to both the metrics utilized for evaluating di↵erent al-

gorithms and the benchmarking of their performance. Within the distributed

fog computing literature, platforms and methodologies di↵er significantly, lead-

ing to the absence of a standardized data set for evaluation. As a consequence,

biases in the results may arise due to these inconsistencies. To address this

challenge, future research should prioritize the development of standardized

metrics and benchmarks. These e↵orts will prove instrumental in facilitating

fair and objective comparisons among di↵erent approaches, fostering a more

cohesive and informed advancement of the field of distributed fog computing.

By establishing a common ground for evaluation, researchers can collectively

work towards fostering advancements that lead to more robust and e↵ective

solutions in the context of fog node discovery, selection, and beyond.

4. Approaches for securing FRC: In this thesis, we proposed the architecture

and detailed working of FRC, however, we did not focus on the data security

mechanisms for FRC. This topic is out of the scope of this research. In future

work, we will look at various approaches such as, but not limited to, blockchain

for data security of FRC.
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Appendix A

Chapter 7 Fuzzy Rules

Table A.1 : Development of Fuzzy Rules for Trust Value Prediction in Experiment

Scenario 1

Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

1 High High Medium High High High Highly

Trust-

worthy

2 High High Low High High High Highly

Trust-

worthy

3 High High Low High Medium High Highly

Trust-

worthy

4 High High Low High Low High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

5 High High Low Medium High High Highly

Trust-

worthy

6 High High Low Medium Medium High Highly

Trust-

worthy

7 High High Low Medium Low High Highly

Trust-

worthy

8 High Medium Low Medium High High Highly

Trust-

worthy

9 High Medium Low Medium Medium High Highly

Trust-

worthy

10 High Medium Low Medium Low High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

11 High Medium Low Low High High Highly

Trust-

worthy

12 High Medium Low Low Medium High Highly

Trust-

worthy

13 High Medium Low Low Low High Highly

Trust-

worthy

14 High Low Low Low High High Highly

Trust-

worthy

15 High Low Low Low Medium High Highly

Trust-

worthy

16 High Low Low Low Low High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

17 Medium High Medium High High High Highly

Trust-

worthy

18 Medium High Medium Medium High High Highly

Trust-

worthy

19 Medium High Medium Low High High Highly

Trust-

worthy

20 Medium High Medium Low Medium High Highly

Trust-

worthy

21 Medium High Medium Low Low High Highly

Trust-

worthy

22 Medium High Low High High High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

23 Medium High Low High Medium High Highly

Trust-

worthy

24 Medium High Low High Low High Highly

Trust-

worthy

25 Medium High Low Medium High High Highly

Trust-

worthy

26 Medium High Low Medium Medium High Highly

Trust-

worthy

27 Medium High Low Medium Low High Highly

Trust-

worthy

28 Medium Medium Low Medium High High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

29 Medium Medium Low Medium Medium High Highly

Trust-

worthy

30 Medium Medium Low Medium Low High Highly

Trust-

worthy

31 Medium Medium Low Low High High Highly

Trust-

worthy

32 Medium Medium Low Low Medium High Highly

Trust-

worthy

33 Medium Medium Low Low Low High Highly

Trust-

worthy

34 Medium Low Low Low High High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

35 Medium Low Low Low Medium High Highly

Trust-

worthy

36 Medium Low Low Low Low High Highly

Trust-

worthy

37 Low High High High High High Highly

Trust-

worthy

38 Low High High Medium High High Highly

Trust-

worthy

39 Low High High Medium Medium High Highly

Trust-

worthy

40 Low High High Medium Low High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

41 Low High High Low High High Highly

Trust-

worthy

42 Low High High Low Medium High Highly

Trust-

worthy

43 Low High High Low Low High Highly

Trust-

worthy

44 Low High Medium High High High Highly

Trust-

worthy

45 Low High Medium High Medium High Highly

Trust-

worthy

46 Low High Medium High Low High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

47 Low High Medium Medium High High Highly

Trust-

worthy

48 Low High Medium Medium Medium High Highly

Trust-

worthy

49 Low High Medium Medium Low High Highly

Trust-

worthy

50 Low High Medium Low High High Highly

Trust-

worthy

51 Low High Medium Low Medium High Highly

Trust-

worthy

52 Low High Medium Low Low High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

53 Low High Low High High High Highly

Trust-

worthy

54 Low High Low High Medium High Highly

Trust-

worthy

55 Low High Low High Low High Highly

Trust-

worthy

56 Low High Low Medium High High Highly

Trust-

worthy

57 Low High Low Medium Medium High Highly

Trust-

worthy

58 Low High Low Medium Low High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

59 Low High Low Low High High Highly

Trust-

worthy

60 Low Medium Medium Medium High High Highly

Trust-

worthy

61 Low Medium Medium Medium Medium High Highly

Trust-

worthy

62 Low Medium Medium Medium Low High Highly

Trust-

worthy

63 Low Medium Medium Low High High Highly

Trust-

worthy

64 Low Medium Medium Low Medium High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

65 Low Medium Medium Low Low High Highly

Trust-

worthy

66 Low Medium Low High High High Highly

Trust-

worthy

67 Low Medium Low High Medium High Highly

Trust-

worthy

68 Low Medium Low High Low High Highly

Trust-

worthy

69 Low Medium Low Medium High High Highly

Trust-

worthy

70 Low Medium Low Medium Medium High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

71 Low Medium Low Medium Low High Highly

Trust-

worthy

72 Low Medium Low Low High High Highly

Trust-

worthy

73 Low Medium Low Low Medium High Highly

Trust-

worthy

74 Low Medium Low Low Low High Highly

Trust-

worthy

75 Low Low Low Low High High Highly

Trust-

worthy

76 Low Low Low Low Medium High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

77 Low Low Low Low Low High Highly

Trust-

worthy

78 High High Medium High High Medium Trustworthy

79 High High Low High High Medium Trustworthy

80 High High Low High Medium Medium Trustworthy

81 High High Low High Low Medium Trustworthy

82 High High Low Medium High Medium Trustworthy

83 High High Low Medium Medium Medium Trustworthy

84 High High Low Medium Low Medium Trustworthy

85 High Medium Low Medium High Medium Trustworthy

86 High Medium Low Medium Medium Medium Trustworthy

87 High Medium Low Medium Low Medium Trustworthy

88 High Medium Low Low High Medium Trustworthy

89 High Medium Low Low Medium Medium Trustworthy

90 High Medium Low Low Low Medium Trustworthy

91 High Low Low Low High Medium Trustworthy

92 High Low Low Low Medium Medium Trustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

93 High Low Low Low Low Medium Trustworthy

94 Medium High Medium High High Medium Trustworthy

95 Medium High Medium Medium High Medium Trustworthy

96 Medium High Medium Low High Medium Trustworthy

97 Medium High Medium Low Medium Medium Trustworthy

98 Medium High Medium Low Low Medium Trustworthy

99 Medium High Low High High Medium Trustworthy

100 Medium High Low High Medium Medium Trustworthy

101 Medium High Low High Low Medium Trustworthy

102 Medium High Low Medium High Medium Trustworthy

103 Medium High Low Medium Medium Medium Trustworthy

104 Medium High Low Medium Low Medium Trustworthy

105 Medium Medium Low Medium High Medium Trustworthy

106 Medium Medium Low Medium Medium Medium Trustworthy

107 Medium Medium Low Medium Low Medium Trustworthy

108 Medium Medium Low Low High Medium Trustworthy

109 Medium Medium Low Low Medium Medium Trustworthy

110 Medium Medium Low Low Low Medium Trustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

111 Medium Low Low Low High Medium Trustworthy

112 Medium Low Low Low Medium Medium Trustworthy

113 Medium Low Low Low Low Medium Trustworthy

114 Low High High High High Medium Trustworthy

115 Low High High Medium High Medium Trustworthy

116 Low High High Medium Medium Medium Trustworthy

117 Low High High Medium Low Medium Trustworthy

118 Low High High Low High Medium Trustworthy

119 Low High High Low Medium Medium Trustworthy

120 Low High High Low Low Medium Trustworthy

121 Low High Medium High High Medium Trustworthy

122 Low High Medium High Medium Medium Trustworthy

123 Low High Medium High Low Medium Trustworthy

124 Low High Medium Medium High Medium Trustworthy

125 Low High Medium Medium Medium Medium Trustworthy

126 Low High Medium Medium Low Medium Trustworthy

127 Low High Medium Low High Medium Trustworthy

128 Low High Medium Low Medium Medium Trustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

129 Low High Medium Low Low Medium Trustworthy

130 Low High Low High High Medium Trustworthy

131 Low High Low High Medium Medium Trustworthy

132 Low High Low High Low Medium Trustworthy

133 Low High Low Medium High Medium Trustworthy

134 Low High Low Medium Medium Medium Trustworthy

135 Low High Low Medium Low Medium Trustworthy

136 Low High Low Low High Medium Trustworthy

137 Low Medium Medium Medium High Medium Trustworthy

138 Low Medium Medium Medium Medium Medium Trustworthy

139 Low Medium Medium Medium Low Medium Trustworthy

140 Low Medium Medium Low High Medium Trustworthy

141 Low Medium Medium Low Medium Medium Trustworthy

142 Low Medium Medium Low Low Medium Trustworthy

143 Low Medium Low High High Medium Trustworthy

144 Low Medium Low High Medium Medium Trustworthy

145 Low Medium Low High Low Medium Trustworthy

146 Low Medium Low Medium High Medium Trustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

147 Low Medium Low Medium Medium Medium Trustworthy

148 Low Medium Low Medium Low Medium Trustworthy

149 Low Medium Low Low High Medium Trustworthy

150 Low Medium Low Low Medium Medium Trustworthy

151 Low Medium Low Low Low Medium Trustworthy

152 Low Low Low Low High Medium Trustworthy

153 Low Low Low Low Medium Medium Trustworthy

154 Low Low Low Low Low Medium Trustworthy

155 High High Medium High High Low Untrustworthy

156 High High Low High High Low Untrustworthy

157 High High Low High Medium Low Untrustworthy

158 High High Low High Low Low Untrustworthy

159 High High Low Medium High Low Untrustworthy

160 High High Low Medium Medium Low Untrustworthy

161 High High Low Medium Low Low Untrustworthy

162 High Medium Low Medium High Low Untrustworthy

163 High Medium Low Medium Medium Low Untrustworthy

164 High Medium Low Medium Low Low Untrustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

165 High Medium Low Low High Low Untrustworthy

166 High Medium Low Low Medium Low Untrustworthy

167 High Medium Low Low Low Low Untrustworthy

168 High Low Low Low High Low Untrustworthy

169 High Low Low Low Medium Low Untrustworthy

170 High Low Low Low Low Low Untrustworthy

171 Medium High Medium High High Low Untrustworthy

172 Medium High Medium Medium High Low Untrustworthy

173 Medium High Medium Low High Low Untrustworthy

174 Medium High Medium Low Medium Low Untrustworthy

175 Medium High Medium Low Low Low Untrustworthy

176 Medium High Low High High Low Untrustworthy

177 Medium High Low High Medium Low Untrustworthy

178 Medium High Low High Low Low Untrustworthy

179 Medium High Low Medium High Low Untrustworthy

180 Medium High Low Medium Medium Low Untrustworthy

181 Medium High Low Medium Low Low Untrustworthy

182 Medium Medium Low Medium High Low Untrustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

183 Medium Medium Low Medium Medium Low Untrustworthy

184 Medium Medium Low Medium Low Low Untrustworthy

185 Medium Medium Low Low High Low Untrustworthy

186 Medium Medium Low Low Medium Low Untrustworthy

187 Medium Medium Low Low Low Low Untrustworthy

188 Medium Low Low Low High Low Untrustworthy

189 Medium Low Low Low Medium Low Untrustworthy

190 Medium Low Low Low Low Low Untrustworthy

191 Low High High High High Low Untrustworthy

192 Low High High Medium High Low Untrustworthy

193 Low High High Medium Medium Low Untrustworthy

194 Low High High Medium Low Low Untrustworthy

195 Low High High Low High Low Untrustworthy

196 Low High High Low Medium Low Untrustworthy

197 Low High High Low Low Low Untrustworthy

198 Low High Medium High High Low Untrustworthy

199 Low High Medium High Medium Low Untrustworthy

200 Low High Medium High Low Low Untrustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

201 Low High Medium Medium High Low Untrustworthy

202 Low High Medium Medium Medium Low Untrustworthy

203 Low High Medium Medium Low Low Untrustworthy

204 Low High Medium Low High Low Untrustworthy

205 Low High Medium Low Medium Low Untrustworthy

206 Low High Medium Low Low Low Untrustworthy

207 Low High Low High High Low Untrustworthy

208 Low High Low High Medium Low Untrustworthy

209 Low High Low High Low Low Untrustworthy

210 Low High Low Medium High Low Untrustworthy

211 Low High Low Medium Medium Low Untrustworthy

212 Low High Low Medium Low Low Untrustworthy

213 Low High Low Low High Low Untrustworthy

214 Low Medium Medium Medium High Low Untrustworthy

215 Low Medium Medium Medium Medium Low Untrustworthy

216 Low Medium Medium Medium Low Low Untrustworthy

217 Low Medium Medium Low High Low Untrustworthy

218 Low Medium Medium Low Medium Low Untrustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

Relia-

bility

AND

WsRF

Then

Trust

vale

219 Low Medium Medium Low Low Low Untrustworthy

220 Low Medium Low High High Low Untrustworthy

221 Low Medium Low High Medium Low Untrustworthy

222 Low Medium Low High Low Low Untrustworthy

223 Low Medium Low Medium High Low Untrustworthy

224 Low Medium Low Medium Medium Low Untrustworthy

225 Low Medium Low Medium Low Low Untrustworthy

226 Low Medium Low Low High Low Untrustworthy

227 Low Medium Low Low Medium Low Untrustworthy

228 Low Medium Low Low Low Low Untrustworthy

229 Low Low Low Low High Low Untrustworthy

230 Low Low Low Low Medium Low Untrustworthy

231 Low Low Low Low Low Low Untrustworthy
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Table A.2 : Development of Fuzzy Rules for Trust Value Prediction in Experiment

Scenario 2

Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

WsRF

Then

Trust

vale

1 Low High High Medium High Highly

Trust-

worthy

2 Low High Medium High High Highly

Trust-

worthy

3 Low High High High High Highly

Trust-

worthy

4 Low High Low High High Highly

Trust-

worthy

5 Medium High Medium High High Highly

Trust-

worthy

6 Low High Medium Medium High Highly

Trust-

worthy



235

Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

WsRF

Then

Trust

vale

7 High High Medium High High Highly

Trust-

worthy

8 Low High Low Medium High Highly

Trust-

worthy

9 Medium High Medium Medium High Highly

Trust-

worthy

10 Low Medium Low Medium High Highly

Trust-

worthy

11 Low Medium Medium Medium High Highly

Trust-

worthy

12 Medium High Low High High Highly

Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

WsRF

Then

Trust

vale

13 Low High High Low High Highly

Trust-

worthy

14 High High Low High High Highly

Trust-

worthy

15 Low High Low Medium Medium Trustworthy

16 Low High Medium High Medium Trustworthy

17 Medium High Low High Medium Trustworthy

18 Medium High Medium High Medium Trustworthy

19 Low High Low High Medium Trustworthy

20 Low High Medium Medium Medium Trustworthy

21 Low Medium Low Medium Medium Trustworthy

22 Medium High Medium Medium Medium Trustworthy

23 High High Low High Medium Trustworthy

24 High High Low Medium Medium Trustworthy

25 Medium Medium Low Medium Medium Trustworthy

26 Low Medium Medium Medium Medium Trustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

WsRF

Then

Trust

vale

27 Low High Medium Low Medium Trustworthy

28 Low Medium Low Low Medium Trustworthy

29 Medium High Low Medium Medium Trustworthy

30 Medium High Medium High Low Untrustworthy

31 Low High Low Medium Low Untrustworthy

32 High High Low High Low Untrustworthy

33 Low Medium Low Medium Low Untrustworthy

34 Low Medium Medium Medium Low Untrustworthy

35 Medium High Low High Low Untrustworthy

36 High High Low Medium Low Untrustworthy

37 High Medium Low Medium Low Untrustworthy

38 Medium Medium Low Medium Low Untrustworthy

39 Medium High Low Medium Low Untrustworthy

40 Low Medium Low Low Low Untrustworthy

41 Low Low Low Low Low Untrustworthy

42 Low High Medium Medium Low Untrustworthy

43 Medium High Medium Low Low Untrustworthy

44 Medium Low Low Low Low Untrustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

Suc-

cess-

ability

AND

WsRF

Then

Trust

vale

45 Medium Medium Low Low Low Untrustworthy

46 High Medium Low Low Low Untrustworthy

47 High Low Low Low Low Untrustworthy

Table A.3 : Development of Fuzzy Rules for Trust Value Prediction in Experiment

Scenario 3

Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

WsRF

Then Trust

vale

1 High High Medium High Highly Trust-

worthy

2 High High Low High Highly Trust-

worthy

3 High Medium Low High Highly Trust-

worthy

4 Medium High High High Highly Trust-

worthy

5 Medium Medium High High Highly Trust-

worthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

WsRF

Then Trust

vale

6 Medium High Medium High Highly Trust-

worthy

7 Medium High Low High Highly Trust-

worthy

8 Medium Medium Low High Highly Trust-

worthy

9 Low High High High Highly Trust-

worthy

10 Low Medium High High Highly Trust-

worthy

11 Low High Medium High Highly Trust-

worthy

12 Low Medium Medium High Highly Trust-

worthy

13 Low High Low High Highly Trust-

worthy

14 Low Medium Low High Highly Trust-

worthy

15 High High Low Medium Trustworthy

16 Medium High High Medium Trustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

WsRF

Then Trust

vale

17 Medium Medium High Medium Trustworthy

18 Medium High Medium Medium Trustworthy

19 Medium Medium Medium Medium Trustworthy

20 Medium High Low Medium Trustworthy

21 Medium Medium Low Medium Trustworthy

22 Low High High Medium Trustworthy

23 Low Medium High Medium Trustworthy

24 Low High Medium Medium Trustworthy

25 Low Medium Medium Medium Trustworthy

26 Low High Low Medium Trustworthy

27 Low Medium Low Medium Trustworthy

28 High Low High Low Untrustworthy

29 High Medium Medium Low Untrustworthy

30 High Low Medium Low Untrustworthy

31 High High Low Low Untrustworthy

32 High Medium Low Low Untrustworthy

33 High Low Low Low Untrustworthy

34 Medium Low High Low Untrustworthy
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Rule IF Re-

sponse

Time

AND

Avail-

ability

AND

Through-

put

AND

WsRF

Then Trust

vale

35 Medium High Medium Low Untrustworthy

36 Medium Medium Medium Low Untrustworthy

37 Medium Low Medium Low Untrustworthy

38 Medium High Low Low Untrustworthy

39 Medium Medium Low Low Untrustworthy

40 Medium Low Low Low Untrustworthy

41 Low High Medium Low Untrustworthy

42 Low Medium Medium Low Untrustworthy

43 Low Low Medium Low Untrustworthy

44 Low High Low Low Untrustworthy

45 Low Medium Low Low Untrustworthy

46 Low Low Low Low Untrustworthy

Table A.4 : Development of Fuzzy Rules for Trust Value Prediction in Experiment

Scenario 4

Rule IF Response

Time

AND Avail-

ability

AND WsRF Then Trust

vale

1 Low High High Highly Trust-

worthy
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Rule IF Response

Time

AND Avail-

ability

AND WsRF Then Trust

vale

2 Medium High High Highly Trust-

worthy

3 High High High Highly Trust-

worthy

4 Low Medium High Highly Trust-

worthy

5 Low High Medium Trustworthy

6 Medium High Medium Trustworthy

7 Low Medium Medium Trustworthy

8 High High Medium Trustworthy

9 Medium Medium Medium Trustworthy

10 Medium High Low Untrustworthy

11 Low High Low Untrustworthy

12 High High Low Untrustworthy

13 Low Medium Low Untrustworthy

14 Medium Medium Low Untrustworthy

15 High Medium Low Untrustworthy

16 Low Low Low Untrustworthy

17 Medium Low Low Untrustworthy

18 High Low Low Untrustworthy
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