
University of Technology Sydney
Faculty of Engineering and Information Technology

School of Electrical and Data Engineering

Federated Learning for Cyberattack Detection in

Decentralized Networks

Viet Khoa Tran

A Thesis Submitted

in Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

under the supervision of

A/Prof. Hoang Dinh, Principal supervisor
A/Prof. Diep N. Nguyen, Co-supervisor
Prof. Eryk Dutkiewicz, Co-supervisor

A/Prof. Nguyen Linh Trung, External supervisor
A/Prof. Nguyen Viet Ha, External supervisor

Sydney, Australia

January 2024

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, VIET KHOA TRAN, declare that this thesis is submitted in fulfilment of the

requirements for the award of DOCTOR OF PHILOSOPHY in the Faculty of En-

gineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used in the thesis are

indicated.

I certify that the work in this thesis has not previously been submitted for a degree

nor has it been submitted as part of the requirements for a degree at any other

academic institution except as fully acknowledged within the text.

This research is supported by the Australian Government Research Training Pro-

gram.

Student Name: Viet Khoa Tran

Student Signature:

Date: April 15, 2024

Production Note:

Signature removed prior to publication.

ABSTRACT

Federated Learning for Cyberattack Detection in

Decentralized Networks

by

Viet Khoa Tran

Recently, the rapid development of various technologies, such as blockchain and

Internet-of-Things (IoT), has enabled numerous applications to become integral to

many aspects of our daily lives. However, this leads to a massive amount of data

and raises serious security concerns. Machine Learning (ML), especially Deep Learn-

ing (DL), has been widely used in cyberattack detection to detect cyberattacks in

emerging networks. Nevertheless, DL-based cyberattack detection systems usually

require a huge amount of data from users/systems. This threatens user privacy

because sensitive data may be sent over the network to a centralized server for

processing. Additionally, transmitting such a large amount of data imposes commu-

nication overhead on the network.

This thesis aims to develop ML frameworks that can efficiently detect cyberat-

tacks/intrusions in decentralized networks, such as IoT and blockchain networks,

without exposing their local data over the network. In the first study, we develop a

collaborative learning framework that enables a target network with unlabeled data

to learn “knowledge” from a source network with abundant labeled data in IoT

networks. Our proposed framework can exchange the learned “knowledge” among

various DL models, even when their datasets have different features. The exper-

iments showed that our proposed framework could achieve higher accuracy than

state-of-the-art DL-based approaches.

In the second study, we develop a cyberattack detection framework to detect

cyberattacks in the network traffic of blockchain networks. Specifically, we first

implement a blockchain network in our laboratory. This blockchain network will

serve to generate real traffic data and implement real-time experiments to evalu-

ate the performance of our frameworks. We then propose a collaborative learning

model that allows efficient deployment in the blockchain network to detect attacks.

Both simulated and real-time experiments have been provided to demonstrate the

efficiency of our proposed framework.

In the third study, we propose a collaborative learning framework to detect

attacks on blockchain transactions and smart contracts. Our framework can classify

various types of blockchain attacks, including intricate attacks at the machine code

level which typically necessitate significant time and security expertise. Additionally,

our framework enables real-time detection of diverse attack types at Ethereum nodes.

The simulated and real-time experiments demonstrate the outperformance of our

proposed framework compared to conventional DL models.

All the results above have demonstrated that our proposed federated learning-

based frameworks can efficiently be deployed in decentralized networks to detect

cyberattacks with high accuracy.

Dedication

Dedicated to my beloved father, my mother, my wife, and my daughters, who have

been my unwavering support throughout this journey.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors

– professors Hoang Dinh, Nguyen Linh Trung, Diep N. Nguyen, Eryk Dutkiewicz,

and Nguyen Viet Ha – for their guidance, encouragement and support. Without

them, this dissertation would have been impossible. During my study, they not only

guided me to pursue great and impactful research but also gave valuable advice for

my career. Their guidance and support go far beyond this thesis, and I have been

lucky to be supervised by them.

I would like to thank all my colleagues and friends at the University of Technology

Sydney (UTS), and Advanced Institute of Engineering and Technology (AVITECH),

University of Engineering and Technology, Vietnam National University, Hanoi

(VNU-UET) for their support, discussion, and friendship. Thanks should also go to

the SEDE admin team for handling all the paperwork and forms during my PhD

study. I would like to thank the Joint Technology and Innovation Research Centre

(JTIRC) between UTS and VNU-UET, and the Faculty of Engineering and Infor-

mation Technology (FEIT) for giving me the opportunities and financial support

during the past years.

This work was partly supported by the ASEAN IVO projects on “Cyber-Attack

Detection and Information Security for Industry 4.0” and on “Agricultural IoT based

on Edge computing”.

I would especially like to thank my family and friends for their endless love and

support that gave me the strength to overcome difficulties in my life.

Contents

Certificate of Original Authorship ii

Abstract iii

Dedication v

Acknowledgments vi

Table of Contents vii

List of Publications xi

List of Figures xiii

Abbreviation xv

1 Motivation, Background, and Literature Review 1

1.1 Motivation . 1

1.2 Background . 4

1.2.1 Deep Learning . 4

1.2.2 Collaborative Learning . 14

1.3 Literature Review . 16

1.3.1 Machine Learning for Cyberattack Detection in IoT Networks 16

1.3.2 Machine Learning for Attack Detection in Blockchain Systems 20

1.4 Thesis Organization and Contributions 25

1.4.1 Chapter 2 - Federated Transfer Learning for IoT Networks . . 25

1.4.2 Chapter 3 - Federated Learning for Attack Detection in

Blockchain Networks . 26

CONTENTS viii

1.4.3 Chapter 4 - Federated Learning for Attack Detection in

Transactions and Smart Contracts 27

1.4.4 Conclusions and Potential Research Directions 29

2 Collaborative Learning for Cyberattack Detection Sys-

tems in IoT Networks 30

2.1 Proposed Federated Transfer Learning Framework for Cyberattack

Detection in IoT Networks . 31

2.1.1 System Model . 31

2.1.2 Proposed Federated Transfer Learning Approach for

Cyberattack Detection . 33

2.1.3 Evaluation Methods . 38

2.2 Performance Analysis . 39

2.2.1 Datasets . 39

2.2.2 Experiment Setup . 40

2.2.3 Experimental Results . 42

2.3 Conclusion . 48

3 Collaborative Learning for Cyberattack Detection

in Blockchain Networks 51

3.1 Blockchain Network: Fundamentals and Proposed Network Model . . 52

3.1.1 Blockchain . 52

3.1.2 Designed Blockchain Network at our Laboratory 53

3.2 Proposed collaborative learning model for intrusion detection in

blockchain network . 55

3.3 Experiment Setup, Dataset Collection and Evaluation Method 62

CONTENTS ix

3.3.1 Experiment Setup . 62

3.3.2 Dataset Collection and Feature Extraction 64

3.3.3 Evaluation Method . 69

3.4 Experimental Results and Performance Evaluation 70

3.4.1 Simulation Results . 70

3.4.2 Experimental Results . 72

3.5 Conclusion . 76

4 Collaborative Learning for Detection of Attacks to Trans-

actions and Smart Contracts 79

4.1 Designed Blockchain System and Our Proposed Collaborative

Learning Framework . 80

4.2 Proposed Attack Detection Framework 82

4.2.1 Preprocessing Process . 83

4.2.2 Learning Process . 85

4.2.3 Collaborative Learning Process 88

4.3 Performance Analysis . 89

4.3.1 Experiment Setup . 89

4.3.2 Dataset Collection . 90

4.3.3 Evaluation Methods . 93

4.3.4 Simulation and Experimental Results 94

4.4 Conclusion . 100

5 Conclusions and Potential Research Directions 107

5.1 Conclusions . 107

5.2 Potential Future Research Directions 109

CONTENTS x

5.2.1 FL for cyberattack detection in autonomous vehicle systems . 109

5.2.2 FL for cyberattack detection in satellite systems 110

5.2.3 FL for cyberattack detection in Metaverse 110

Bibliography 112

List of Publications

Journal Papers

J-1. T. V. Khoa, D. T. Hoang, N. L. Trung, C. T. Nguyen, T. T. Quynh, D.

N. Nguyen, N. V. Ha and E. Dutkiewicz, “Deep Transfer Learning: A Novel

Collaborative Learning Model for Cyberattack Detection Systems in IoT Net-

works,” IEEE Internet of Things Journal, vol. 10, no. 10, pp. 8578-8589, 15

May 2023. (Corresponding to Chapter 2).

J-2. T. V. Khoa, D. H. Son, D. T. Hoang, N. L. Trung, T. T. T. Quynh, D.

N. Nguyen, N. V. Ha, and E. Dutkiewicz, “Collaborative Learning for Cyber-

attack Detection in Blockchain Networks,” IEEE Transactions on Systems,

Man and Cybernetics: Systems, early access, 03 April 2024. (Corresponding

to Chapter 3).

J-3. T. V. Khoa, D. H. Son, Chi-Hieu Nguyen, D. T. Hoang, N. L. Trung, D. N.

Nguyen, T. T. T. Quynh, Trong-Minh Hoang, N. V. Ha, and E. Dutkiewicz,

“Securing Blockchain Systems: A Novel Collaborative Learning Framework

to Detect Attacks in Transactions and Smart Contracts,” IEEE Transactions

on Systems, Man and Cybernetics: Systems, under review. (Corresponding to

Chapter 4).

J-4. C. T. Nguyen, Y. M. Saputra, N. V. Huynh, N. T. Nguyen, T. V. Khoa, B.

M. Tuan, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, S. Chatzino-

tas and B. Ottersten, “A Comprehensive Survey of Enabling and Emerging

Technologies for Social Distancing—Part I: Fundamentals and Enabling Tech-

nologies,” IEEE Access, vol. 8, pp. 153479-153507, Aug. 2020.

J-5. C. T. Nguyen, Y. M. Saputra, N. V. Huynh, N. T. Nguyen, T. V. Khoa, B.

LIST OF PUBLICATIONS xii

M. Tuan, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, S. Chatzino-

tas and B. Ottersten, “A Comprehensive Survey of Enabling and Emerging

Technologies for Social Distancing—Part II: Emerging Technologies and Open

Issues,” IEEE Access, vol. 8, pp. 154209-154236, Aug. 2020.

Conference Papers

C-1. T. V. Khoa, D. H. Son, D. T. Hoang, N. L. Trung, T. T. T. Quynh, D.

N. Nguyen, N. V. Ha, and E. Dutkiewicz, “Real-time Cyberattack Detection

with Collaborative Learning for Blockchain Networks,” 2024 IEEE Wireless

Communications and Networking Conference (WCNC), accepted.

C-2. D. H. Son, T. T. T. Quynh, T. V. Khoa, D. T. Hoang, N. L. Trung, N. V.

Ha, D. Niyato, D. N. Nguyen, and E. Dutkiewicz, “An Effective Framework of

Private Ethereum Blockchain Networks for Smart Grid,” 2021 International

Conference on Advanced Technologies for Communications (ATC), 2021, pp.

312-317, [Best student paper award].

C-3. T. V. Khoa, Y. M. Saputra, D. T. Hoang, N. L. Trung, D. N. Nguyen,

N. V. Ha, and E. Dutkiewicz, “Collaborative Learning Model for Cyberattack

Detection Systems in IoT Industry 4.0,” 2020 IEEE Wireless Communications

and Networking Conference (WCNC), 2020, pp. 1-6.

List of Figures

1.1 Multilayer deep neural network. 5

1.2 Architecture of a basic AE. 6

1.3 Deep Belief Network structure. 8

1.4 The architecture of a CNN model. 12

1.5 Illustration of an FL process. 13

2.1 Illustration of a system model for cyberattack detection in IoT

networks. 32

2.2 The FTL processes. 34

2.3 The illustration of data of participated networks used in this

experiment. 41

2.4 The reconstruction errors in CASE 1. 45

2.5 The reconstruction errors in CASE 2. 46

2.6 The illustration of AUC with different percentages of mutual

information. 49

3.1 Our proposed learning model for blockchain network. 54

3.2 The structure of classification-based for intrusion detection learning

model in a blockchain network. 57

3.3 The illustration of the collaborative learning between DL models

and the CS. 60

LIST OF FIGURES xiv

3.4 Experiment setup. 62

3.5 Visualization using t-SNE for collected datasets. 67

3.6 Training process of considered learning models. 72

3.7 Timeline of verification phase. 73

3.8 Real-time blockchain cyberattack detection 77

3.9 Histogram of real-time detection duration. 78

4.1 The system model of the proposed collaborative learning framework

for detection of attacks to transactions and smart contracts 81

4.2 The preprocessing process of the proposed collaborative learning

framework for detection of attacks to transactions and smart contracts 83

4.3 Real experiment setup. 90

4.4 The results of the preprocessing processes in different schemes. 95

4.5 The detection results of the models with and without the Value feature102

4.6 The detection results of Centralized-CNN and Co-CNN-5 models. . . 103

4.7 The convergence of accuracy and loss over iterations 104

4.8 Real-time cyberattack detection: proposed Co-CNN-5 model in

Ethereum node 1. 106

4.9 The processing time of proposed Co-CNN-5 model in two computer

configurations. 106

Abbreviation

IoT Internet of Things

AI Artificial Intelligence

6G Sixth-generation Wireless Network

IDS Intrusion Detection System

ML Machine Learning

DL Deep Learning

UDL Unsupervised Deep Learning

FL Federated Learning

TL Transfer Learning

DNN Deep Neural Network

DBN Deep Belief Network

GRBM Gaussian Restricted Boltzmann Machines

RBM Restricted Boltzmann Machine

CNN Convolutional Neural Network

Co-CNN Collaborative Deep Convolutional Neural Network

MN Mining Node

EN Ethereum Node

SC Smart Contract

CS Centralized Server

BNAT Blockchain Network Attack Traffic

BCID Blockchain Intrusion Detection

ABTD Attacks on Blockchain Transactions Dataset

BCEC Blockchain Code Extraction and Conversion Tool

1

Chapter 1

Motivation, Background, and Literature Review

In this chapter, we first present the motivation of this thesis. We then provide the

background of deep learning, federated learning, and transfer learning. After that,

we discuss the state of the art, challenges, and solutions of applying these techniques

to intrusion detection systems in decentralized networks. Finally, we highlight the

structure and the main contributions of this thesis.

1.1 Motivation

In recent years, the rapid development of various technologies, such as 5G/6G,

Industry 4.0, and Internet-of-Things (IoT), has led to the integration of numerous

applications into various aspects of our daily lives. However, such fast growth has

also led to an unprecedented massive amount of data and the proliferation of in-

terconnected devices, e.g., sensors, smart cars, and cameras, which raises serious

security and privacy concerns. Particularly, the increasing number of emerging ap-

plications has also brought forth various new types of cyberattacks. For example, the

number of new (zero-day) cyberattacks has increased by 60% from 2018 to 2019 [1].

Beside the dire consequences to the economy, e.g., ransomware alone cost more than

$5 billion globally in 2017 [2], cyberattacks pose serious threats to other areas with

highly sensitive information such as healthcare and public security. As a result, cy-

berattack detection methods play a key role in detecting and promptly preventing

the consequences of cyberattacks in future IoT networks.

Beside IoT, Blockchain also has been emerging as a novel technology in stor-

1.1 Motivation 2

ing and managing data with many advantages over conventional data management

systems. In particular, unlike traditional centralized data management solutions,

blockchain technology enables data to be stored in a distributed manner across mul-

tiple nodes. In this way, data can be accessed and processed simultaneously at

multiple nodes, thus avoiding the problem of bottlenecks and single point of fail-

ure. More importantly, one of the most important features of blockchain technology

is to enable data to be stored in blocks, and once a block of data is verified and

placed in the chain, it cannot be modified and/or deleted. In this way, the data’s

integrity can be protected thanks to outstanding features of blockchain, e.g., decen-

tralization, immutability, auditability, and fault tolerance [3]. As a result, there are

more and more applications of blockchain technology in our lives including finance,

healthcare, logistics, and IoT systems [3–6]. Due to the rapid success with a wide

range of applications in most areas, especially in money transfer and cryptocurrency,

blockchain-based systems have been becoming targets of many new-generation cy-

berattacks. For example, in September 2020, KuCoin, a crypto exchange based in

Singapore, announced that its system was hacked and the hackers stole over $281

million worth of coins and tokens [7]. Most recently, in January 2022, Chainaly-

sis reported that North Korean hackers performed seven attacks on cryptocurrency

platforms and stole nearly $400 million from digital assets in 2021 [8]. Although most

current attacks target on virtual money exchange systems, a number of blockchain

applications in critical areas such as healthcare [9] and food supply chains [10] could

be potential for attackers in the near future. If these attacks happen, they not only

cause huge losses on our assets but can also lead to many serious issues related

to human health and lives. Therefore, solutions to detect and prevent attacks in

blockchain networks are becoming more urgent than ever.

Cyberattack detection methods can be classified into signature-based and anomaly-

based methods. Signature-based methods rely on the prior knowledge (signatures)

1.1 Motivation 3

of a cyberattack to detect its perpetration. Although such methods can achieve a

low false-positive rate, they require frequent updates of the signature database to

achieve high performance. Moreover, these methods cannot detect various types

of attacks, such as zero-day attacks, because their signatures are yet unknown to

the database or defense systems. In contrast, anomaly-based methods can detect

attacks based on the anomalies in the incoming traffic. Although these methods

may cause more false alarms as compared to those of the signature-based methods,

anomaly-based methods are more effective in detecting new types of cyberattacks

because they do not rely on known signatures. Since both signature-based and

anomaly-based methods have complementary advantages, it is desirable to have so-

lutions that can leverage the advantages of both techniques, but at the same time

can effectively overcome the current limitations of these techniques.

Recently, with outstanding classification ability, Machine Learning (ML) tech-

niques, especially deep learning (DL), have been widely applied for cyberattack

detection problems. Particularly, DL models can effectively learn the signatures of

various cyberattack types. Moreover, DL models even can detect new types of at-

tacks that have never been learned/trained before [11]. As a result, in addition to

the ability to effectively detect various types of known attacks, DL-based methods

can be also used to identify new types of cyberattacks even without requiring prior

knowledge of the attack signatures. Nonetheless, DL-based cyberattack detection

systems are also facing numerous practical challenges. Particularly, conventional

DL approaches usually require a huge amount of data to achieve high performance.

However, in numerous applications, data are very difficult to collect because they are

often stored locally on user devices such as IoT devices, smartphones, and wearable

devices. This poses a threat to user privacy because sensitive data (e.g., location and

private information) have to be sent over the network and stored at the centralized

server for processing. Besides privacy concerns, transmitting such a collectively large

1.2 Background 4

amount of data also imposes an extra communication burden on the network. Con-

sequently, these limitations have been hindering the effectiveness of DL techniques

in cyberattack detection systems.

To address these problems, Federated Learning (FL) has emerged to be a highly

effective solution. Unlike conventional DL techniques that collect data and train the

global model at a central server, FL enables the learning process to be distributed

across all devices. Particularly, instead of sending data to a central server, the

local data can be used to train the global model locally on each user device. Then,

the obtained model weights of each device are periodically sent to a central server

for aggregation. Afterward, the aggregated weights are sent back to all devices to

update the weights of the local models. Since only the weights are exchanged in FL,

both the privacy and communication overhead issues can be mitigated [12].

1.2 Background

In this section, we present the fundamental knowledge of deep learning, federated

learning, and transfer learning. They are the key techniques that will be used in the

following chapters of the thesis.

1.2.1 Deep Learning

Deep learning – a sub-field of machine learning – is a multilayer Deep Neuron

Network (DNN) that imitates the neural network of human brains. Figure 1.1

describes a multilayer neural network. In this network, each neuron connects to

others by a hypothesis function that is characterized by a matrix of weights W as

the following [13]:

Z = WX+ b, (1.1)

where X is a vector of the input data, Z is a vector of output data of the neural

network, and b is the vector of bias values. Typically, the deep neural network

1.2 Background 5

Hidden LayersInput Layer Output Layer

Figure 1.1: Multilayer deep neural network.

architecture mainly consists of three layers including an input layer, hidden layers,

and an output layer [13]. The input layer is the gateway to process and transform

the input data into the space of the hidden layers. The hidden layers, the core of DL,

include multiple neuron layers to process, analyze and optimize the input data. The

output layer is the last layer which represents the results of the whole DL process.

From the processing perspective, DL includes two main processes namely training

process and testing process. The training process is the main process of DL to

analyze and process the input data. First, forward propagation is used to calculate

the vector of predicted values. Then, the vector of predicted values Z (i.e., the output

of the neural network) is evaluated to calculate the errors by the loss function. Here,

the loss function depends on the type of output or function, e.g., the logistic loss

function [14] with a predicted value z and a label y:

J(z, y) = log
(
1 + exp(−zy)

)
, (1.2)

The output of the loss function is used by the backpropagation to update the pa-

rameters of the neural network. The forward propagation and backpropagation are

repeated in the training process to optimize the output and neural network. After

1.2 Background 6

Figure 1.2: Architecture of a basic AE.

the training process, the testing process is performed to evaluate the efficiency of

the learning process [13].

1.2.1.1 Autoencoder

Autoencoder (AE) is a type of unsupervised deep learning model that can effec-

tively learn the latent feature representation of the input data for multiple purposes,

such as dimensionality reduction and generative modeling [15]. As illustrated in Fig-

ure 1.2, a basic AE consists of three layers, i.e., one input layer, one hidden layer,

and one output layer. Note that, for deep AEs, we can use multiple hidden layers

to improve the learning performance. The input and hidden layers together form

the encoder which is used to map the vector of the input data X with n-features

into the representation of another vector with m-features (H) by the encode func-

tion f(·) as H = f(X). Then, the decoder, i.e., the other hidden layers and the

output layer, uses H to reconstruct the vector of input data by the decode function

g(·). This process creates the vector of output data Xd as Xd = g(H). During the

training process, the AE aims to learn the functions f(·) and g(·) that minimize the

x1

x2

x3

xn

h1

h2

hm

x’1

x’2

x’3

x’n

......

......
......

Encoder

Decoder
Input

Ouput

Hidden

1.2 Background 7

reconstruction error [15], i.e.,

min
f,g
∥X− g(f(X))∥. (1.3)

In practice, AE is often employed for dimensionality reduction [15]. The AE is

trained with the original data to minimize the reconstruction error, thereby allowing

the original data to be reconstructed using the hidden layers with minimal error.

After sufficient training, the hidden layers of the encoder become an accurate m-

feature representation of the original n-features input data [16]. AE is a very useful

mechanism to convert the input data into the feature space as well as to perform

unsupervised learning so as to analyze the unlabeled data of the input dataset. In

this situation, various ML algorithms, e.g., k-means, can be used to cluster the

unlabeled data into different groups. As a result, the AE has been widely used for

various purposes, especially in cybersecurity for intrusion detection [17,18].

1.2.1.2 Deep Belief Network

The Deep Belief Network (DBN) is a type of deep neural network that is used

as a generative model for both labeled and unlabeled data. Therefore, unlike other

supervised deep neural networks which use labeled data to train the neural networks

(e.g., convolutional neural networks [13]), a DBN has two stages in the training

process. The first stage is the pre-training process where the DBN is trained using

an unlabeled dataset. The second stage is the fine-tuning process where the DBN

is trained using a labeled dataset. Thereby, the DBN can better represent the

characteristics of the labeled dataset, and thus it can classify the normal behavior

and different types of attacks with high accuracies. In addition, the DBN includes

multiple Restricted Boltzmann Machine (RBM) layers for latent representation [19].

In the DBN training process, the current layer generates a latent representation by

1.2 Background 8

GRBM RBM RBM

Input layer Hidden layers Output layer

Figure 1.3: Deep Belief Network structure.

using the latent representation of the previous layer as the input. Unlike other

deep neural networks which can also process both labeled and unlabeled data (e.g.,

autoencoder deep learning network [13]), the DBN optimizes the energy function of

each layer to have better a latent representation of data on each RBM layer in each

iteration. Therefore, the DBN is more appropriate to analyze the network traffic

where the samples and features have relative coherence with each other.

The whole process of DBN is illustrated in Figure 1.3. Like other DNNs, the

structure of DBN has three components: an input layer, an output layer, and multi-

ple hidden layers. As can be seen in Figure 1.3, the Gaussian Restricted Boltzmann

Machine (GRBM) layer – a type of RBM that can process real values of data –

is the input layer to receive and transform the input data into binary values. We

denote by v and h the vectors of visible and hidden layers of the DBN, respectively.

We denote by M and N the numbers of visible and hidden neurons of GRBM. In

addition, we denote by hn, hn ∈ h, and vm, vm ∈ v the hidden layer-n and visible

layer-m of the DBN, respectively. As defined in [19], the energy function of GRBM

of the DBN is calculated as follows:

EG(v,h) =
M∑

m=1

(vm − b1,m)
2

2ϵ2m
−

M∑
m=1

N∑
n=1

wm,nhn
vm
ϵm
−

N∑
n=1

b2,nhn, (1.4)

1.2 Background 9

where wm,n is the weight between visible and hidden neurons; b1,m and b2,n indicate

the bias of visible and hidden neurons, respectively; and ϵm represents the standard

deviation of the neuron in the visible layer. From the result of equation (1.4), we

can find the probability that is used in the visible layer of GRBM [19] as follows:

pG(v) =

∑
h e

−EG(v,h)∑
v

∑
h e

−EG(v,h)
. (1.5)

Then, we use the probability in equation (1.5) to calculate the gradients of each

GRBM layer with the expectation value
〈
.
〉
as follows [19]:

∇gG,m,n =
∂ log pG(v)

∂wm,n

=
〈 1

ϵm
vmhn

〉
dataset

−
〈 1

ϵm
vmhn

〉
model

.

(1.6)

Next, the gradient of GRBM layers can be calculated:

∇gG =
M∑

m=1

N∑
n=1

∇gG,m,n. (1.7)

In the next stage, we need to calculate the energy function and the gradient of

RBM layers. We denote by M ′ and N ′ the numbers of visible and hidden neurons

of RBM layers. As defined in [19], the energy functions of RBM layers of the DBN

are defined as follows:

ERBM(v,h) = −
M ′∑
m=1

b1,mvm −
M ′∑
m=1

N ′∑
n=1

wm,nvmhn −
N ′∑
n=1

b2,nhn. (1.8)

Similar to the GRBM layers, we can calculate the gradient of each RBM layer

as follows:

∇gR,m,n =
〈
vmhn

〉
dataset

−
〈
vmhn

〉
model

. (1.9)

1.2 Background 10

In addition, the gradient of RBM layers in the DBN can be defined as follows:

∇gR =
M ′∑
m=1

N ′∑
n=1

∇gR,m,n. (1.10)

After learning with multiple GRBM and RBM layers, we define Xg,r as the

output of the last hidden layer. Here, the output layer utilizes the softmax regression

function to classify the data samples based on probability. We denote by W o and

bo the weight matrix and bias vector between the output and the last hidden layer,

respectively. We then can define the probability of the output Z belonging to Class-t

as follows:

po(Z = t|Xg,r,W o, bo) = softmax(W o, bo), (1.11)

where t ∈ {1, . . . , T} is a class of the output, and T refers to the total number of

classes (including different types of attacks and normal behavior). The prediction

Z of the probability po can be calculated:

Z = argmax
t

[po(Z = t|Xg,r,W o, bo)], (1.12)

where Z is the output prediction. Then, we can calculate the gradient between the

output layer and the last hidden layer from equation (1.11) as follows:

∇go = ∂po(Z = t|Xg,r,W o, bo)

∂W o
. (1.13)

After that, the results of equation (1.7), equation (1.10), and equation (1.13) are

used to calculate the total gradient ∇gt of DBN with multiple GRBM, RBM layers

and the output layer of the DBN as follows:

∇gt = ∇gG +∇gR +∇go. (1.14)

1.2 Background 11

In the training process, the DBN first trains its neural network with unlabeled

data for pre-training. Then, DBN uses its labeled data to fine-tune its neural net-

work.

1.2.1.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a framework that can classify a large

amount of labeled data, especially in image classification with high accuracy [20].

The architecture of CNN includes three types of layers, i.e., convolution layer, max

pooling layer, and fully connected layer [20]. Figure 1.4 describes the different layers

of a CNN. These layers can be described as follows:

• Convolution layer: The neurons in this layer are formed in feature maps to

learn the feature representation of the input. In addition, these feature maps

can connect with others of the previous layer by weight parameters called filter

banks [21]. In this layer, the input data is convoluted with weight parameters

in every iteration to create feature maps.

• Max pooling layer: The main purpose of this layer is to reduce the resolution

of feature maps in the previous layer. To do this, this layer selects the largest

values in areas of feature map [20] and then sends them to the next layer.

• Fully connected layer: This layer performs classification functions for the

neural network. In this layer, the feature maps from previous layers are first

flattened. They are then put into a fully connected layer for classification. The

softmax function is included at the end of this layer to produce the output

prediction.

We denote by D a dataset to train a CNN. D includes S images and Y labels

so we can denote D = (S,Y). We denote by N the number of training layers of

1.2 Background 12

InputInput
ImageImage

1111stst Convolution Convolution Convolution Convolution
layerlayer

11stst Max Pooling Max Pooling
layerlayer

FlattenFlatten

22ndnd Convolution Convolution
layerlayer

22ndnd Max Pooling Max Pooling
layerlayer

Fully ConnectedFully Connected
layerslayers

Figure 1.4: The architecture of a CNN model. The convolution layer learns the
feature representation of the input. Each max pooling layer reduces the resolution
of the feature map in the previous layer. The fully connected layer performs classi-
fication functions to produce output [22].

the neural network. We denote by I the matrix features of image S, and Ii as

the matrix features of image S at iteration i. The output of a convolution layer n,

n ∈ {1, . . . , N}, at iteration i+ 1 can be calculated as follows [23]:

In+1,i = γn

(
In,i ∗ Fn

)
, (1.15)

where (∗) is the convolutional operator, γn is the activation function and Fn is the

filter bank of layer n. After that, the output of the convolution layer is put into a

max pooling layer. The output of a max pooling layer can be calculated as follows:

In+2,i = ϕ
(
In+1,i

)
, (1.16)

where ϕ is the max pooling function that selects the maximum value in a pooling

area. We denote by Ie,i the matrix features of the last data after processing with

multiple convolution layers and max pooling layers. Ie,i is put into a softmax func-

tion to classify and produce the output of the fully connected layer. We consider

l ∈ {1, ..., L} as the classification group number, Ŷl ∈ Ŷ as the output prediction,

1.2 Background 13

FL server

Data 1

Send updated local models
Send updated global model

FL user 1

FL user 2
Data 2

FL user K
Data K

Figure 1.5: Illustration of an FL process.

the probability that an output prediction Ŷ belongs to group l can be calculated as

follows:

p(Ŷl = l|Ie,i,We,i, be,i) = softmax(We,i, be,i)

=
eWe,iIe,i+be,i∑
l e

We,l,iIe,i+be,l,i
,

(1.17)

where We,i, be,i are the weights and biases of the fully connected layer at iteration

i, respectively; and We,l,i, be,l,i as weights and biases of the fully connected layer at

iteration i to classify an output prediction into class l. Based on equation (1.17), we

can calculate a vector of prediction Ŷ which includes output prediction Ŷl belonging

group l with probability p as follows:

Ŷ = argmax
l

[p(Ŷl = l|Ie,i,We,i, be,i)]. (1.18)

1.2 Background 14

1.2.2 Collaborative Learning

1.2.2.1 Federated Learning

Federated Learning (FL) is an emerging distributed learning framework that

allows multiple devices to distributedly train a shared model without the need of

collecting and aggregating all data from all the nodes in the network, thereby pro-

tecting data privacy and reducing communication overhead. Typically, an FL system

consists of an FL server and N FL users. Each user i ∈ N , N = {1, . . . , N}, in

the system possesses a private dataset Di and a local model wi, whereas the FL

server has a global model wG. As illustrated in Figure 1.5, at the beginning of an

FL process, the FL server broadcasts the initial global model w1
G to every user in

the network. Then, each user i trains the received model locally using its private

dataset Di to generate the gradient g1
i and the updated local model w1

i [24]:

w1
i ← w1

G − µg1
i . (1.19)

After the training process finishes, the users send their updated local models w1
i (∀i ∈

N) to the server. The server then aggregates all the updated weights of local

models into the global model using an aggregation algorithm, e.g., the FedAvg

Algorithm [24]:

w2
G ←

T∑
i=1

ti
t
w1

i . (1.20)

In equation (1.20), t is the total number of samples, T is the number of local

models, and ti is the number of samples of user i. The aggregated global model

weight w2
G is then sent to the users for training in the next iteration. The FL

process is repeated until a termination criterion is met, e.g., the global loss function

converges. As a result, each user can receive updated learning knowledge from others

without sharing their own private data. However, the conventional FL approaches

1.2 Background 15

require the dataset of each user to have the same characteristics such as features or

labels. Therefore, they might not be effective in highly dynamic and decentralized

networks such as the cyberattack detection for IoT networks [14,25].

1.2.2.2 Transfer Learning

Conventional deep learning uses a dataset collected from the network to learn

and predict the network behaviors. However, when the dataset is small and lack of

useful information, it will dramatically affect the accuracy of the trained model [26].

Transfer Learning (TL) is a technique that allows a model fed by a small dataset

to improve its learning by inheriting the knowledge learned from other models with

much better data quality. This method can also overcome the limitations of conven-

tional FL by allowing datasets with different characteristics (e.g., features or labels)

to share and exchange their knowledge. As a result, this technique has a wide range

of applications in practice [27,28].

TL is generally defined based on two fundamental concepts, i.e., domain and task.

A domain D consists of a feature space K and a marginal probability distribution

P (K) where K = {k1, ..., kn} ∈ K and n is the number of features in vector K

i.e., D = {K, P (K)}. Given D, a task is defined by a function Ω(·) that aims to

map domain D to a label space L of labels Y. We denote by DS, TS, DT, and TT

the source domain, source task, target domain, and target task, respectively. The

main objective of TL is to utilize the knowledge from the source, i.e., DS and TS,

to improve the learning process of the target task. Based on the availability of

labeled data and the difference among DS, TS, DT, and TT, TL can be classified

into inductive (DS = DT, TS ̸= TT, labeled target data), transductive (DS ̸= DT,

TS = TT, labeled source data), and unsupervised TL (unlabeled target and source

data) [27–29]. With the ability to inherit knowledge from bigger sources, TL can

be applied to address numerous practical problems, especially in cybersecurity to

1.3 Literature Review 16

detect cyberattacks in IoT networks [17,28,30].

1.3 Literature Review

In this section, we first present the advantages and the limitations of existing

work on using various DL models for cyberattack detection. We then highlight the

main contributions of this thesis.

1.3.1 Machine Learning for Cyberattack Detection in IoT Networks

In this section, we review several emerging machine learning techniques that have

been used to detect cyberattacks in IoT networks.

1.3.1.1 Deep Learning for Cyberattack Detection in IoT Networks

Recently, with outstanding classification ability, Machine Learning (ML) tech-

niques, especially deep learning (DL), have been widely applied to cyberattack detec-

tion problems. Particularly, DL models can effectively learn the signatures of various

cyberattack types. Moreover, DL models even can detect new types of attacks that

have never been learned/trained before [11]. There is rich literature proposing DL

approaches for cyberattack detection. In [31], a deep neural network (DNN) model

is developed to detect zero-day attacks based on two types of data, i.e., network ac-

tivities and local system activities. The results show that for most of the datasets,

the proposed DNN can achieve a higher detection accuracy and lower false-positive

rate compared to those of the other conventional machine learning classifiers such

as K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). In [32], the

authors build IoT systems and perform cyberattack experiments on them to collect

a dataset named N-BaIoT dataset. In these experiments, the authors deploy DoS

and DDoS attacks using BASHLITE and Mirai on 9 IoT devices. After that, they

capture network traffic and extract their features into a dataset. They then use

1.3 Literature Review 17

the dataset to train the autoencoder neural network to detect attacks. The simu-

lation results show that the accuracy of detection can reach 100% in terms of True

Positive Rate. However, in [33], the authors pointed out that the N-BaIoT lacks

the telemetry data of IoT sensors and the data traces of operating systems. They

deployed cyberattack experiments and then collected a dataset named ToN-IoT to

address the problem of N-BaIoT. After that, they used DNN, Naive Bayes (NB),

and many other ML methods to analyze their dataset. All of them demonstrated

their performance with the Area Under the Curve (AUC) above 90%. In [34], the

authors summarized IoT security threats, provided the taxonomy of ML and DL for

IoT security at different levels, and analyzed their challenges and future research

directions.

Nevertheless, DL-based cyberattack detection systems are also facing numerous

practical challenges. Particularly, conventional DL approaches usually require a huge

amount of data to achieve a high performance. However, in various applications,

data are very difficult to collect because they are often stored locally on user devices

such as IoT devices, smartphones, and wearable devices. This poses a threat to user

privacy because sensitive data (e.g., location and private information) have to be

sent over the network and stored at the centralized server for processing. Beside the

privacy concerns, transmitting such a collectively large amount of data also imposes

an extra communication burden over the network. Consequently, these limitations

have been hindering the effectiveness of DL techniques in cyberattack detection

systems.

1.3.1.2 Federated Learning for Cyberattack Detection in IoT Networks

With the advent of FL, numerous research studies have been performed to apply

this framework to cyberattack detection, especially in environments with a large

of devices such as IoT and mobile edge networks. In [35], an FL framework is

1.3 Literature Review 18

proposed for cyberattack detection in an edge network. In this network, the data

for intrusion detection are stored locally at each edge node. The edge nodes train

their data locally and send their model weights to an FL server for aggregating. After

aggregation, the FL server sends the weights back to all edge nodes. In this way, each

edge node can benefit from data and training of the other nodes while protecting

its privacy and reducing the communication burden of the network. Experiments

with the NSL-KDD datasets showed that the proposed approach could achieve an

accuracy of up to 99.2%. In [36], the authors proposed DÏoT which is a self-learning

distributed system for anomaly detection in IoT devices. In this paper, the authors

performed experiments on 30 IoT devices and showed that their proposed model

could address various new types of attacks, and their model could reach a detection

rate of up to 95.6% at around 257ms. Another FL approach is proposed in [37]

for anomaly detection in IoT networks. In this paper, the authors deployed a DL

model that exchanged learned weights between a gated recurrent unit (GRU) and

a central server. The simulation results showed that their proposed model could

achieve an accuracy of up to 99.5% with the lowest number of false alarms. In [38],

the authors reviewed the state of the art of FL and provided their vision of FL

in IoT. They also presented the advantages of using FL in IoT services and IoT

applications, especially in attack detection and data privacy. At the end of the

survey, the authors also provided the research challenges and future direction in

using FL in IoT systems.

1.3.1.3 Transfer Learning for Cyberattack Detection in IoT Networks

Although FL can effectively address the privacy and communication load con-

cerns of conventional ML for cyberattack detection, they are still facing several

challenges. Particularly, FL usually requires high-quality and labeled data for train-

ing. However, collecting and labeling such data is expensive and time-consuming,

1.3 Literature Review 19

especially for large-scale systems. On the other hand, unlabeled data are often

abundant in environments such as IoT and mobile edge networks. Thus, a deep

TL technique was proposed for IoT intrusion detection in [17] based on network

activities, utilizing both labeled and unlabeled data. In this approach, the authors

employed two AEs. The first AE was trained with labeled data, while the second AE

was trained with unlabeled data. Then, the knowledge was transferred from the first

AE to the second AE by minimizing the Maximum Mean Discrepancy (MMD) dis-

tances between their weights. Experiments over nine IoT datasets were conducted

to show that the proposed approach could achieve higher Area Under the Curve

(AUC) scores compared to those of many other approaches. In [39], the authors

proposed a dependable intrusion detection system model based on TL techniques to

detect abnormal behaviour of IoT systems. In this paper, the authors designed a

TL model that used the knowledge of the ResNet model to detect attacks in a small

amount of data. The simulation results showed that their proposed model which

could achieve an F1-Score of up to 86% outperformed other state-of-the-art models

such as CNN, RNN, and LSTM. In addition, in [40], the authors studied the use of

TL for intrusion detection in IoT devices. In this paper, the authors explored TL to

transfer learned knowledge for both generating appropriate intrusion algorithms for

new IoT devices and detecting new types of attacks. The simulation results showed

that their proposed TL model could achieve a high accuracy in detecting attacks

with a low energy.

Based on the aforementioned observations, in Chapter 2, we will propose a col-

laborative learning framework that can leverage the strengths of both FL and TL

to address the limitations of ML-based intrusion detection systems, e.g., lack of

labeled data, privacy, and heterogeneous data feature space. Moreover, in our ap-

proach, each IoT network has a separate model that is fine-tuned specifically for that

network, therefore the model is more effective for that network cyberattack detection

1.3 Literature Review 20

compared to FL frameworks with a single model for all networks. Furthermore, our

proposed system model can utilize knowledge from both source and target data in

the network instead of only transferring knowledge from a single source as proposed

in most of the mentioned TL frameworks [17,41–43], thereby mitigating the negative

transfer problem.

1.3.2 Machine Learning for Attack Detection in Blockchain Systems

This section presents ML techniques that have been proposed to detect cyber-

attacks in blockchain systems.

1.3.2.1 Machine Learning for Attack Detection in Network Traffic

ML has been considered as a highly-effective solution to detect cyberattacks

for blockchain networks [44]. In particular, in [45], the authors proposed to use

Random Forest and XGBoost to detect attacks in a blockchain-based IoT system.

The results showed that this solution could identify different types of attacks and

normal behaviors with an accuracy of up to 99%. However, they only test their

results on the BoT-IoT dataset that is not real blockchain traffic. Similarly, in [46],

the authors proposed an ML-based method, called bidirectional long short-term

memory (BiLSTM) to detect attacks in an IoT network before the data is stored

in the blockchain network. Although the results also showed that they could detect

different kinds of attacks with an accuracy of up to 99%, they were validated only on

conventional network datasets such as UNSW-NB15 and BoT-IoT datasets. These

datasets were collected in conventional computer networks and thus cannot reflect

actual traffic in blockchain networks. In particular, these datasets have just general

attacks in computer networks without specific attacks in blockchains, e.g., changes

in blockchain transactions, incorrect consensus protocol, or the break of the chain

of blocks.

1.3 Literature Review 21

To the best of our knowledge, there are a few studies that consider using the

real blockchain traffic, e.g., try to generate artificial data or try to create data to

simulate an attack for blockchain networks to train ML models such as [47–49].

Specifically, in [47] the authors proposed a method to collect blockchain traffic data.

First, they captured traffic samples from a public Bitcoin node and used them as

normal network data. Then, for the malicious traffic data, the authors performed

DoS and Eclipse attacks on a target device (this device was created to become a

node in the Bitcoin network). After that, the collected data was used to train

an autoencoder deep learning model. This solution showed an accuracy of attack

detection up to 99%. In [48], the authors used a public dataset and a private dataset

from their testbed. Then, they proposed to use a Long Short-Term Memory Network

(LSTM) to learn the properties of normal samples in the datasets. After that, they

deployed a Condition Generative Adversarial Networks (CGAN) model to generate

the artificial Low-rate Distributed DoS (LDDoS) attack samples for their blockchain

dataset. The results showed the accuracy of classification up to 93%. In addition,

in [49], the authors performed a DDoS attack namely Link Flood Attack (LFA) on

a simulation Ethereum network and collected the traceroute records of the network

in both normal and attack behaviors. After that, the authors used the Recurrent

Neural Network (RNN) to analyze the traceroute records to identify the attacks in

the network. The results showed that the attack detection rate could achieve nearly

99%. In [50], the authors developed a framework based on blockchain to detect

only one specific attack, i.e., replay attacks, for a power system. Moreover, in [51],

the authors proposed using blockchain and the Support Vector Machine (SVM) to

detect cyberattacks for multimicrogrid systems. Differently, in our work, we aim

to develop a decentralized learning model that can detect different types of attacks

(i.e., Denial of Service, Password Brute-Force, and Flooding of Transactions) for

blockchain-based systems.

1.3 Literature Review 22

From all the above works and others in the literature, we can observe two main

challenges for ML-based intrusion detection systems in blockchain networks which

have still not been addressed. In particular, the first challenge is the lack of synthetic

data from laboratories for training ML models. Most of the current works, e.g., [45]

and [46] are using conventional cybersecurity datasets (e.g., UNSW-NB15 and BoT-

IoT) to train data. However, these datasets are not designed for blockchain networks,

thus they are not appropriate to use in intrusion detection systems in blockchain

networks. Other works, e.g., [47–49], try to build their own datasets for blockchain

networks, e.g., by obtaining the normal samples from the Bitcoin network [47],

creating simulation experiment to detect the LFA [49] and generating artificial attack

samples by CGAN [48]. However, these methods have several issues. First, normal

samples of transactions from the Bitcoin network may include attacks from public

blockchain network, but all collected data are classified and labeled to be normal

data. Second, the simulation experiment in [49] is to generate traceroute records

only for the LFA so they cannot extend to other attacks. Furthermore, it is difficult

to evaluate the effects of artificial attack samples in [48] whether they can simulate

a real attack on a blockchain network or not. Another challenge we can observe

here is that all of the current ML-based intrusion detection solutions for blockchain

networks are based on centralized learning models, i.e., all data is collected at a

centralized node for training and detection. However, this solution is not suitable

to deploy in blockchains as they are decentralized networks. Specifically, nodes in

blockchain networks may have different data to train, and due to privacy concerns,

they may not want to share their raw data∗ with a centralized node (or other nodes)

for training processes. Moreover, sending a huge amount of data to the network

will not only cause excessive network traffic but also risk compromising the data

∗The raw data means the network traffic data of a local network that can be classified into
normal or attack data, that will be used for the learning process. This data usually contains
sensitive information (e.g., cryptographic keys, usage ports, or local network bandwidth) that the
node does not want to share with other nodes in the network.

1.3 Literature Review 23

integrity of blockchain networks.

1.3.2.2 Federated Learning for Attack Detection in Transactions and

Smart Contracts

There are several works trying to deal with attacks on transactions and Smart

Contracts (SCs) in blockchain networks. In [52], the authors proposed to convert

the source codes of smart contracts into vectors. They then used bidirectional long-

short-term memory to identify abnormal patterns of vectors to detect re-entrancy

attacks. The simulation results showed that their proposed model could achieve

88.26% F1-Score and 88.47% accuracy in detecting re-entrancy attacks. In [53],

the authors proposed to use feature extraction to analyze the Bytecode of SCs.

This approach is motivated by the fact that the characteristics of attacks are often

expressed as sets of hexadecimal numbers embedded inside bytecodes. In this paper,

the authors used various types of ML models to detect 6 types of attacks with an

F1-score of up to 97%. Even though the methods in [52, 53] can detect various

types of attacks, they need to use source codes of SCs in high-level programming

languages (e.g., Solidity). It is worth noting that when an SC is created, the SC

creates corresponding transactions for execution and then sends them to ENs for the

mining process. From the EN point of view, we only can observe transactions with

the encoded content (e.g., Bytecode) in their features. In real-time attack detection,

we need to analyze this content to find out the insight attacks in transactions and

SCs.

Unlike the above DL approaches, in [54], the authors also studied the Bytecode.

They proposed to use the attack vector method to directly analyze the Bytecode.

This approach could effectively detect various specific attacks by using pre-defined

vectors. Hence, this method is difficult to extend to various types of new attacks. In

addition, even though the attack detection ability could achieve up to 100% in var-

1.3 Literature Review 24

ious types of attacks (e.g., re-entrancy, delegatecall, overflow, etc), the authors only

tested this method in a small scale of data (about 100 samples). In [55] the authors

proposed to use Graph embedding to analyze Bytecode. To do this, the authors

converted the Bytecode of SC into vectors and then compared the similarities be-

tween the vectors of SC to detect the insight attacks of SC. The experimental results

showed that this method could achieve a precision of up to 91.95% in detecting at-

tacks. Both [54] and [55] have to use source code to analyze the bytecode. In [56], the

authors introduced a smart contract security testing approach with the aim of iden-

tifying the suspicious behaviors associated with vulnerabilities of smart contracts

in blockchain networks. According to their evaluations, the proposed framework

completely rejected about 3.5% of transactions due to being untestable. Therefore,

they pointed out that further Bytecode analysis could reduce this portion. In ad-

dition, in [57], the authors proposed DefectChecker which was a framework using

symbolic execution to analyze Bytecode without the need for source codes. This

framework could detect eight types of attacks in SCs and get an F1-score of 88%.

Unlike all the above works and others in the literature, in this thesis, we introduce

an innovative ML-based framework to analyze Bytecode directly from transactions

without the need for source code. To do this, we propose to convert the encoded

information of transactions into images. Our proposed framework can analyze these

images to detect various types of attacks in both transactions and SCs. In this way,

our proposed framework is flexible and can detect different types of attacks easier.

Moreover, all of the methods above focus on centralized learning. To implement

those methods, all the data needs to be gathered in a centralized server for learning

and analysis. However, blockchain is a decentralized environment and Ethereum

nodes are distributed worldwide. Thus, gathering all blockchain data to perform

training and testing is impractical and ineffective.

To the best of our knowledge, at the time we perform this work, there is still

1.4 Thesis Organization and Contributions 25

no work on FL to deal with the aforementioned challenges in blockchain systems.

Therefore, in Chapter 3, we propose a collaborative learning model to analyze the

network traffic for detecting cyberattacks in blockchain networks. In addition, in

Chapter 4, we propose a collaborative learning model that can analyze directly the

bytecode to detect insight attacks in smart contracts and transactions.

1.4 Thesis Organization and Contributions

In a decentralized network, it is difficult to gather local data from various nodes

to feed the centralized deep learning-based cyberattack model. Thus, it is important

to develop learning models that can efficiently work in decentralized networks, e.g.,

IoT and blockchain without the need of gathering all local data but still provide

high accuracy like centralized models. The detailed contributions and the rest of

this thesis are presented in the following sections.

1.4.1 Chapter 2 - Federated Transfer Learning for IoT Networks

Chapter 2 presents the proposed federated transfer learning model for cyberat-

tack detection. In particular, Section 2.1 first describes the system model and our

proposed approach. Section 2.2 discusses the datasets, experiment setup, and ex-

perimental results. Finally, the conclusion and future work are given in Section 2.3.

The major contributions of this chapter regarding detecting cyberattacks for an

unlabelled IoT network are summarized as follows:

• We propose a novel collaborative learning framework that can effectively detect

cyberattacks in decentralized IoT systems. By combining the strengths of

FL and TL, our proposed framework can improve learning efficiency and the

accuracy of cyberattack detection in comparison with the conventional DL-

based cyberattack detection systems.

1.4 Thesis Organization and Contributions 26

• We propose an effective TL approach that can allow the DL model from a

rich-data network to transfer useful knowledge to a low-data network even

they have different features for cyberattack detection in IoT networks.

• We perform extensive experiments on recent real-world datasets including N-

BaIoT, KDD, NSL-KDD, and UNSW to evaluate the performance of the pro-

posed collaborative learning framework. The results show that our proposed

approach can achieve an accuracy of up to 99% and an improvement of up to

40% over the unsupervised learning approach.

1.4.2 Chapter 3 - Federated Learning for Attack Detection in Blockchain

Networks

Chapter 3 presents our collaborative learning model for cyberattack detection in

blockchain networks. Specifically, Section 3.1 describes the blockchain fundamental

and our system model. Section 3.2 provides details about our proposed model. Sec-

tion 3.3 describes our experiment setup, dataset collection, and evaluation method.

The simulation and real-time experimental results are discussed in Section 3.4. Fi-

nally, conclusions and future works are given in Section 3.5. The main contributions

of this chapter regarding detecting cyberattacks for blockchain networks can be

summarized as follows:

• We set up experiments in our laboratory to build a private blockchain network

with the aims of not only obtaining real blockchain datasets but also testing our

proposed learning model in a real-time manner. To the best of our knowledge,

this is the first dataset obtained from a laboratory for studying cyberattacks

in blockchain networks, and thus we expect that our proposed BNaT dataset

can promote the development of ML-based intrusion detection solutions in

blockchain networks in the near future. More details of the dataset can be

1.4 Thesis Organization and Contributions 27

found at the link †.

• We build an effective tool named Blockchain Intrusion Detection (BC-ID) to

collect data in the blockchain network. This tool can extract features from

the collected network traffic data, filter attack samples in network traffic, and

exactly label them in a real-time manner.

• We propose a collaborative decentralized learning model to not only improve

the accuracy of identifying attacks but also effectively deploy in decentralized

blockchain networks. This model enables fullnodes in the blockchain network

to effectively share their trained models to improve cyberattack detection ef-

ficiency without the need of sharing their raw data.

• We perform both intensive simulations and real-time experiments to evaluate

our proposed framework. Both simulation and experimental results clearly

show the outperformance of our proposed framework compared with other

baseline ML methods. Furthermore, our results reveal various important infor-

mation in designing and implementing learning models in blockchain networks

in practice, e.g., real-time monitoring and detecting attacks.

1.4.3 Chapter 4 - Federated Learning for Attack Detection in Transac-

tions and Smart Contracts

Chapter 4 introduces our proposed collaborative learning to detect cyberattacks

in blockchain transactions and smart contracts. In particular, Section 4.1 first pro-

vides the overview of our model. After that, Section 4.2 describes in detail our pro-

posed model for detecting attacks in transactions and smart contracts. Section 4.3

then discusses the simulation and real-time experimental results of this work. Fi-

nally, conclusions are drawn in Section 4.4. The main contributions of this chapter

†https://avitech-vnu.github.io/BNaT

1.4 Thesis Organization and Contributions 28

regarding detecting attacks for transactions and smart contracts can be summarized

as follows:

• We implement a blockchain system and perform experiments to collect the

Attacks on Blockchain Transactions Dataset (ABTD) dataset. To the best of

our knowledge, this is the first dataset with cyberattacks on transactions and

SCs of a blockchain system that is synthesized in a laboratory.

• We develop a Blockchain Code Extraction and Conversion Tool (BCEC) that

can collect transactions, extract their features, and convert them into images

to build a dataset. This tool can be implemented in real-time to support the

analysis of the attack detection framework.

• We develop a real-time attack detection framework that can be deployed at

the Ethereum nodes to detect attacks in transactions and SCs for a blockchain

network. In our framework, the Ethereum nodes can detect attacks in trans-

actions and SCs in real-time at about 2,150 transactions per second.

• We propose a collaborative learning framework that can efficiently detect at-

tacks in a blockchain network. In our framework, each Ethereum node can

exchange learning knowledge with others and then aggregate a new global

model without any centralized model. In this way, our framework can achieve

high accuracy at about 94% without exposing the local dataset of Ethereum

nodes over the network.

• We perform both simulations and real-time experiments to evaluate our pro-

posed framework. Our proposed framework can achieve accuracy up to 94%

in simulation and 91% in real-time experimental results. In addition, our

framework has the capacity to analyze various types of transaction features,

expanding the detection capabilities for the diversity of attacks.

1.4 Thesis Organization and Contributions 29

1.4.4 Conclusions and Potential Research Directions

Chapter 5 includes the conclusion and highlights various potential future research

directions of this thesis.

30

Chapter 2

Collaborative Learning for Cyberattack Detection

Systems in IoT Networks

In this chapter, we propose a novel collaborative learning framework that utilizes

the strengths of both TL and FL to address the limitations of conventional DL-

based cyberattack detection systems. Particularly, we consider a scenario with two

different IoT networks∗. The first network (source network) has an abundant la-

beled data resource, while the second network (source network) has very little data

resource (and most of them are unlabeled). The IoT network can be used for many

purposes such as smart farming, manufacturing, smart city, and smart home. Each

IoT network usually includes an IoT gateway and various IoT devices. The IoT

gateway serves as a “gate” to control and monitor all traffic in and out of the IoT

network. Here, unlike most of the current works that assume the data in these

networks has the same features [58], we consider a much more practical and general

case in which data at these two networks may have different features. To address the

problem of dissimilar feature spaces of the target and source networks, we propose to

transform them into a new joint feature-space. In this case, at each learning round

of the FL process, trained models of target and source networks can be exchanged

through the joint feature-space. Thus, by periodically exchanging and updating

the trained model, the target network can eventually achieve the converged trained

deep neural network that can predict attacks with high accuracy (thanks to useful

“knowledge” transferred from the source network). Besides exchanging and updat-

∗The cases with multiple networks can be straightforwardly extended, e.g., by scheduling for
networks to exchange information in order.

2.1 Proposed Federated Transfer Learning Framework for Cyberattack Detection
in IoT Networks 31

ing the learning model iteratively, we use a small number of mutual samples between

two networks to mitigate the negative transfer learning. More importantly, unlike

FL where networks try to train a joint global model, our proposed framework en-

ables the participating networks to obtain their particular trained models that are

specific to their networks, i.e., better predict attacks for particular networks with

different data structures. Extensive experiments on recent real-world datasets, in-

cluding N-BaIoT [32, 59], KDD [60], NSL-KDD [61] and UNSW [62] show that our

proposed framework can achieve an accuracy of up to 99% and an improvement of

up to 40% over the unsupervised learning approach.

The rest of this chapter is organized as follows. Section 2.1 first describes our fed-

erated transfer learning model for cyberattack detection. Section 2.2 then discusses

the datasets, experiment setup, and experimental results. Finally, the conclusion

and future work are given in Section 2.3.

2.1 Proposed Federated Transfer Learning Framework for

Cyberattack Detection in IoT Networks

2.1.1 System Model

The conventional FL model requires to use a centralized server to maintain and

aggregate all the trained models in the whole learning process. However, this may

lead to a high cost to maintain and may not be effective to deploy in IoT networks.

Thus, in this work, we propose a federated transfer learning model that allows the

learning process to be performed more flexibly and effectively in IoT environments.

In particular, we consider a network which has unlabeled data (e.g., Network B as

illustrated in Figure 2.1), and it wants to learn more knowledge from other networks

with abundant labeled data. In this case, this network will connect with a target

network (e.g., Network A as illustrated in Figure 2.1) and nominate itself as a cen-

2.1 Proposed Federated Transfer Learning Framework for Cyberattack Detection
in IoT Networks 32

Figure 2.1: Illustration of a system model for cyberattack detection in IoT networks.

tralized node which can train its data as well as perform TL to exchange knowledge

with the target network.

As presented in Table 2.1, we denote a labeled cybersecurity dataset DA =

{XA,YA, FA} of Network A with (XA,YA) = {xA
1 , y

A
1 ,x

A
2 , y

A
2 , . . . ,x

A
MA

, yAMA
} where

MA is the number of samples of dataset DA, xA
i , i ∈ {1, ...,MA}, is a vector of

a sample data and yAi , i ∈ {1, ...,MA}, is a corresponding label in dataset DA.

In contrast, Network B has an unlabeled cybersecurity dataset DB = {XB, FB}

with XB = {xB
1 ,x

B
2 , . . . ,x

B
MB
} where MB is the number of samples of dataset DB,

xB
i , i ∈ {1, ...,MB}, is a vector of a sample data in dataset DB. FA and FB are

the numbers of features of datasets in Network A and Network B, respectively. The

proposed model will perform TL between two neural networks by minimizing the

total loss J to predict the output of the system P (zBi) with zBi ∈ ZB, i ∈ {1, ...,MB},

as the output for the unlabeled dataset of Network B. In this way, the network

2.1 Proposed Federated Transfer Learning Framework for Cyberattack Detection
in IoT Networks 33

Table 2.1: Table of Notations.

Notation Description
XA,XB The matrix of samples of datasets in Network A

and Network B, respectively.
YA,YB The vector of labels of datasets in Network A

and Network B, respectively.
FA, FB The numbers of features of datasets of Network A

and Network B, respectively.
DA,DB Datasets of Network A and Network B, respectively.
MA,MB The number of samples of datasets in Network A

and Network B, respectively.
MC The number of predicted labels.
MAB The number of overlapping samples between dataset A

and dataset B.
WA,WB The parameter matrices of the neural networks in

Network A and Network B, respectively.
ZA,ZB The output matrices of the neural networks in

Network A and Network B, respectively.
zAi , z

B
i The output vector of an input sample data of the neural

networks in Network A and Network B, respectively.
JB The result of the loss function in Network B.
JAB The result of the alignment loss function between

Network A and Network B.
J The result of final loss function.
wA

l , w
B
l The training parameters for layer-l of the neural networks

in Network A and Network B, respectively.

can help to improve the accuracy in identifying network traffic by learning useful

knowledge from other labeled networks. Each network can be managed by an IoT

gateway and possesses its private dataset. The IoT gateway uses its DL model to

detect normal and abnormal traffic. It is important to note that, unlike conventional

FL approaches [18], in this work, we consider a practical scenario in which the

datasets of networks may have different features.

2.1.2 Proposed Federated Transfer Learning Approach for Cyberattack

Detection

In this section, we propose a highly-effective federated transfer learning model

2.1 Proposed Federated Transfer Learning Framework for Cyberattack Detection
in IoT Networks 34

(a) FTL training process.

(b) FTL predicting process.

Figure 2.2: The FTL processes.

that can exchange knowledge between an unlabeled network and multiple networks

which may have different features. To better analyze the impact of our proposed

approach, we consider a specific scenario in which one labeled network is used as a

source network to support an unlabeled network (i.e., target network). The scenario

with one unlabeled network and multiple labeled networks can be straightforwardly

extended, and we leave it for future study. Figure 2.2 describes the training and

predicting processes of FTL algorithm that we use in this case. The table of no-

tations is presented in Table 2.1. As described in the previous section, Network A

2.1 Proposed Federated Transfer Learning Framework for Cyberattack Detection
in IoT Networks 35

Algorithm 2.1 Federated Transfer Learning Algorithm: Training Process

1: iteration = 0
2: while iteration ≤ T do
3: Network A performs:
4: zAi = WA xA

i .
5: Send {zAi , yAi } to Network B.
6: Network B performs:
7: zBi = WB xB

i .
8: Send zBi to Network A.
9: Network B performs:

10: Compute ∂J
∂wB

l
, JB and JAB, then send them to Network A.

11: Network A performs:
12: Compute ∂J

∂wA
l
and J , then send them to Network B.

13: Network A performs:
14: Update wA

l = wA
l − η ∂J

∂wA
i
.

15: Network B performs:
16: Update wB

l = wB
l − η ∂J

∂wB
i
.

17: if Jprev − J ≤ t then
18: Send stop signal to Network B.
19: Break.
20: else
21: Jprev = J .
22: iteration = iteration+ 1.
23: continue.
24: end if
25: end while

and Network B have their datasets DA and DB, respectively. They also have their

model parameter matrices called WA and WB. The outputs of two neural networks

are calculated as follows:

ZA = WA XA, (2.1a)

ZB = WB XB. (2.1b)

We need to find the prediction function P (zBi) = P (zA1 , y
A
1 , . . . , z

A
MA

, yAMA
, zBi)

to predict the output of the neural network of Network B. P (·) can be a softmax

regression function to classify the data samples based on probability. To find a

2.1 Proposed Federated Transfer Learning Framework for Cyberattack Detection
in IoT Networks 36

high-quality predict function, we first need to minimize the loss function using the

labeled dataset as follows [14]:

argmin
WA,WB

JB =
Mc∑
i

jB(yAi , P (zBi)), (2.2)

where Mc is the number of predicted labels, JB represents the results of the loss

function and jB(·) is a loss function of Network B which depends on the type

of output or function, i.e., the logistic loss function as in equation (1.2) with the

predicted value P (zBi) and the labeled yAi :

jB(P (zBi), y
A
i) = log

(
1 + exp(−P (zBi) y

A
i)
)
. (2.3)

In addition, the datasets of Network A and Network B may have various over-

lapping samples, and thus we can use these samples to optimize the loss function.

We denote by MAB the overlapping samples between the datasets of Network A

and Network B. We need to minimize the alignment loss function between them as

follows [14]:

argmin
WA,WB

JAB = −
MAB∑

i

jAB(zAi , z
B
i), (2.4)

where jAB(·) represents the alignment loss function. This function can be repre-

sented in ||zAi − zBi ||2 or −zAi (zBi)
′ and JB

R =
∑LB

l ||wB
l ||2 in which LA and LB are

the numbers of layers in neural networks of Network A and Network B, respectively,

to find the final loss function that needs to be minimized [14]:

argmin
WA,WB

J = JB + γJAB +
λ

2
(JA

R + JB
R), (2.5)

where γ and λ are the weight parameters. We denote by wA
l , w

B
l the training param-

eters for layer-l of the neural networks in Network A and Network B. The gradients

2.1 Proposed Federated Transfer Learning Framework for Cyberattack Detection
in IoT Networks 37

for updating WA,WB are calculated as ∂J
∂wA

l
, ∂J
∂wB

l
, respectively, by the following

formulas [14]:

∂J

∂wA
l

=
∂JB

∂wA
l

+ γ
∂JAB

∂wA
l

+ λwA
l , (2.6a)

∂J

∂wB
l

=
∂JB

∂wB
l

+ γ
∂JAB

∂wB
l

+ λwB
l . (2.6b)

The training process is presented in Algorithm 2.1. In this algorithm, we use

input parameters to initialize the models, such as the learning rate η, the weight pa-

rameter γ, λ, the maximum iteration T , the tolerance t and Network A and Network

B initialized model parameters WA,WB, to generate the output trained model pa-

rameters (i.e., WA,WB). Specifically, we first initialize WA and WB. Next, we

calculate zAi and zBi from the input samples of dataset DA and dataset DB as shown

in equation (2.1). Then, Network A sends {zAi , yAi } to Network B to calculate JB,

and Network B sends zBi to Network A to calculate the alignment loss function

JAB and the gradients of JB as shown in equations (2.2), (2.4), (2.5) and (2.6),

respectively. In equation (2.4), we use MAB as the number of mutual samples of

two datasets. For example, the same IoT devices are attacked by the same types

of cyberattacks in different networks. Each network extracts the attack data with

different features, e.g., Network A uses timeslot, packet header, IP address while

Network B uses MAC address, error packets, and frame header. The number of

mutual samples is an important factor that strongly supports the learning process

between two networks. After that, we calculate the final loss function J and the

gradient as in equation (2.5) and equation (2.6). Finally, Network A and Network

B update their model parameters based on the gradient and loss functions. This

process continuously repeats until the system converges or reaches the maximum

number of iterations to minimize the final loss function in equation (2.5).

2.1 Proposed Federated Transfer Learning Framework for Cyberattack Detection
in IoT Networks 38

Algorithm 2.2 Federated Transfer Learning Algorithm: Predicting Process

1: Network B performs:
2: ZB = WB XB.
3: Send ZB to Network A.
4: Network A performs:
5: Compute P (ZB) and send it to Network B.

When the training completes, the prediction process described in the Algo-

rithm 2.2 is called to predict the final result of the unlabeled dataset DB. In this

process, both Network A and Network B have their trained models. The main

purpose of Algorithm 2.2 is using the input as model parameters WA,WA and the

matrix of samples of dataset XB to generate the prediction out P (ZB). Similar to

the training process, the dataset DB first goes through the trained model of Network

B to calculate ZB. Then, Network B sends ZB to Network A to archive the TL

knowledge from the trained model of Network A. Network A predicts the results

and sends them back to Network B to classify the attack and normal behaviors of

the network.

2.1.3 Evaluation Methods

As mentioned in [63,64], the confusion matrix is typically used to evaluate system

performance, especially for intrusion detection systems. We denote by TP, TN, FP,

and FN “True Positive”, “True Negative”, “False Positive”, and “False Negative”,

respectively. The Receiver Operator Characteristic (ROC) is created by plotting the

TPR over FPR at different thresholds. Then, we use Area Under the Curve (AUC)

to evaluate the performance of the algorithm in the following formula:

ξ =

∫ 1

x=0

TP(FP−1(x)) dx. (2.7)

In our experiments, we randomly select samples from the original dataset to test

2.2 Performance Analysis 39

the algorithm. In this scenario, the p-value is often used to evaluate the results of

random tests and is given by

p0 = F (ξ|µ, σ) = 1

σ
√
2π

∫ ξ

−∞
e

−(t−µ)2

2σ2 dξ, (2.8)

and

p = p0 ∗ 100, (2.9)

in which µ is the mean and σ is the standard deviation. The results are calculated

by the significant number with the following formula:

Sig = F−1(p0|µ, σ) = {ξ : F (ξ|µ, σ) = p0}, (2.10)

where Sig is the significant number that represents the results of 30 random runs and

the confidence of this number is calculated by conf = 1− p0. In typical scenarios, a

p-value is deemed confident when p0 falls within the range of 0.01 to 0.05 (equivalent

to p values around 1 and 5), indicating significant confidence levels of approximately

99% and 95%, respectively.

2.2 Performance Analysis

2.2.1 Datasets

In this experiment, we use four popular cybersecurity datasets namely the N-

BaIoT [32, 59], KDD [60], NSL-KDD [61] and UNSW [62] datasets to evaluate the

performance of the proposed method. The Network-based Detection of IoT Botnet

Attacks (N-BaIoT) dataset [32, 59] includes the information collected in the setup

network about the normal and attack situation. The attack was performed by an

attack server to nine IoT devices. Besides, the network traffic, which is captured by

a sniffer server, is used to extract the dataset. This dataset is characterized by 115

2.2 Performance Analysis 40

features for both normal and attack behaviors. In this dataset, the attack type is the

Distributed Denial of Service (DDoS) which was implemented by two well-known

botnets, namely Mirai and BASHLITE. The BASHLITE botnet includes 5 types

of attacks, i.e., network scanning (scan), spam data sending (junk), UDP flooding

(udp), TCP flooding (tcp), and the join of sending spam data and opening port to

specific IP address (combo). Besides BASHLITE, the Mirai botnet also includes

5 types of attacks, i.e., scan, ACK flooding (ack), SYN flooding (syn), udp, and

optimized UDP flooding (udpplain).

In addition to IoT datasets, we also want to evaluate our proposed solution on

numerous classical intrusion detection datasets, i.e., KDD [60], NSL-KDD [61] and

UNSW [62] datasets. The KDD dataset [60] includes various different kinds of net-

work attacks simulated in military network environments. The KDD dataset has

41 features and it classifies attacks into 4 groups including Denial of Service (DoS),

Probe, User to Root (U2R), Remote to Local (R2L). The NSL-KDD dataset [61]

inherits the properties from KDD [60] dataset such as the features and types of

attacks but eliminates the redundant samples in the training dataset and the dupli-

cated samples in the testing dataset. Although both KDD and NSL-KDD datasets

are well-known and used in numerous research works, they were developed long time

ago. Thus, various modern attacks were not involved. Therefore, a recent dataset,

i.e., UNSW dataset [62], is considered in this work. Unlike KDD and NSL-KDD,

the feature space of this dataset includes 42 types and 9 kinds of attacks, namely

DoS, Backdoors, Worms, Fuzzers, Analysis, Reconnaissance, Exploits, Shellcode,

and Generic.

2.2.2 Experiment Setup

In this section, we carry out experiments using all the aforementioned datasets

to evaluate the performance of the proposed solution. In this experiment, we denote

2.2 Performance Analysis 41

Federated Transfer
Learning

0 0
0 0
0 0
0 0
0 0
0 0

Sa
m

pl
es

Features

Data of
Network B

Data of
Network A

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Label

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Label
Prediction

Figure 2.3: The illustration of data of participated networks used in this experiment.

by IoT1-9 the dataset names of nine IoT devices (from 1 to 9). Table 2.2 describes

the total features and the representative names of datasets that we use in this

experiment. Figure 2.3 also describes the separated data in each dataset in this

experiment. In this experiment, the participated data are randomly selected from

the dataset. Then, the selected data are separated into label data (data of Network

A) and unlabeled data (data of Network B) with different features as described in

Table 2.2. These data have about 10% mutual samples of total dataset samples.

We experiment with two cases, i.e., the first one is with 2,000 unlabeled data and

9,577 labeled data (CASE 1), and the second one is with 10,000 unlabeled data and

47,893 labeled data (CASE 2).

In this setup, we consider a baseline solution with the state-of-the-art unsuper-

vised deep learning (UDL) model which clusters the unlabeled data into normal

and attack behaviors based on autoencoder and k-means techniques [13]. The UDL

model includes an autoencoder and k-nearest neighbor to cluster the unlabeled data.

In addition, we consider the second baseline solution that uses both supervised and

unsupervised datasets to feed the FTL learning models. The FTL will exchange the

knowledge from the supervised learning model and the unsupervised learning model

2.2 Performance Analysis 42

Dataset Device name Features of Features of Total
Network A Network B features

IoT1 Danmini Doorbell 85 30 115
IoT2 Ecobee Thermostat 85 30 115
IoT3 Ennio Doorbell 85 30 115
IoT4 Philips B120N10 Baby Monitor 85 30 115
IoT5 Provision PT 737E Security Camera 85 30 115
IoT6 Provision PT 838 Security Camera 85 30 115
IoT7 Samsung SNH 1011 N Webcam 85 30 115
IoT8 SimpleHome XCS7 1002 WHT Security Camera 85 30 115
IoT9 SimpleHome XCS7 1003 WHT Security Camera 85 30 115
KDD - 31 10 41

NSLKDD - 31 10 41
UNSW - 31 11 42

Table 2.2: Dataset preparation

to improve the accuracy of learning as well as increase the precise of identifying

attack and normal behaviors of the unlabeled data. Then, we measure the AUC of

this process 30 times to calculate the signification number of the AUC series results

with both baseline solutions. Finally, we plot the reconstruction errors to analyze

the convergence of the FTL algorithm for all datasets.

2.2.3 Experimental Results

In this section, we show the results of our experiments with different kinds of

cybersecurity datasets.

2.2.3.1 Accuracy Comparison

In this section, we compare the performance of FTL and the UDL models in

terms of the significant number of each p. Table 2.3 and Table 2.4 describe the

significant number of each dataset with p = 1, 3, 5 corresponding to the confidence

of 99%, 97%, 95%.

In general, Table 2.3 and Table 2.4 show that the significant numbers of all

datasets increase as p increases. This is because in (2.10), we calculate the significant

number based on a series of 30 continuous AUC results. When p increases, the AUC

results increase in all tables. This demonstrates that most of the AUC results in 30

2.2 Performance Analysis 43

FTL UDL
IoT1 85.771 45.753
IoT2 83.795 63.171
IoT3 94.286 80.453
IoT4 79.241 77.885
IoT5 90.605 81.876
IoT6 91.179 82.703
IoT7 90.670 85.183
IoT8 82.960 65.256
IoT9 83.222 73.072
KDD 99.315 80.477
NSLKDD 98.485 83.025
UNSW 97.072 68.449

(a) The results with p = 1.

FTL UDL
IoT1 87.398 49.770
IoT2 85.672 65.793
IoT3 94.896 81.070
IoT4 81.672 77.885
IoT5 91.517 82.013
IoT6 92.059 82.703
IoT7 92.030 86.013
IoT8 85.197 68.161
IoT9 85.072 73.078
KDD 99.395 81.304
NSLKDD 98.534 83.450
UNSW 97.141 69.124

(b) The results with p = 3.

FTL UDL
IoT1 88.259 51.897
IoT2 86.666 67.181
IoT3 95.220 81.397
IoT4 82.959 77.885
IoT5 92.000 82.085
IoT6 92.525 82.703
IoT7 92.750 86.453
IoT8 86.381 69.700
IoT9 86.052 73.082
KDD 99.438 81.742
NSLKDD 98.561 83.675
UNSW 97.177 69.482

(c) The results with p = 5.

Table 2.3: The results with multiple datasets in CASE 1.

FTL UDL
IoT1 90.371 49.783
IoT2 68.193 62.591
IoT3 94.525 83.411
IoT4 87.050 77.725
IoT5 86.535 81.954
IoT6 87.214 82.555
IoT7 97.662 79.517
IoT8 84.609 52.702
IoT9 90.095 63.803
KDD 99.535 84.333
NSLKDD 98.858 81.164
UNSW 97.049 66.329

(a) The results with p = 1.

FTL UDL
IoT1 91.497 54.079
IoT2 72.573 65.681
IoT3 95.073 83.565
IoT4 88.538 77.781
IoT5 88.150 82.160
IoT6 88.638 82.664
IoT7 97.928 81.400
IoT8 86.691 57.318
IoT9 90.959 65.559
KDD 99.562 84.423
NSLKDD 98.885 81.976
UNSW 97.121 66.901

(b) The results with p = 3.

FTL UDL
IoT1 92.093 56.354
IoT2 74.892 67.317
IoT3 95.363 83.647
IoT4 89.326 77.811
IoT5 89.006 82.269
IoT6 89.392 82.721
IoT7 98.069 82.397
IoT8 87.793 59.763
IoT9 91.417 66.489
KDD 99.576 84.471
NSLKDD 98.900 82.406
UNSW 97.159 67.203

(c) The results with p = 5.

Table 2.4: The results with multiple datasets in CASE 2.

series are higher than the significant number in the case where p = 1.

Table 2.3(c) shows the significant numbers of participated datasets with p = 5

in CASE 1. In this table, the IoT1 and UNSW datasets show a significant gap of

about 30% and 40% between FTL and UDL. These results show the difficulty of

clustering in recognizing the groups of samples and the advantage of collaborative

learning in these datasets. The other ten datasets have gaps of around 10-20%

between the two methods, which demonstrate the stability of our proposed solution

for any cybersecurity dataset.

2.2 Performance Analysis 44

In addition, Table 2.4(c) shows the significant numbers of multiple datasets with

p = 5 in CASE 2. In this table, the significant numbers also have a gap of around

10-40% between the two solutions. It shows the common trend that the significant

numbers increase for most datasets when the number of samples increases. However,

in IoT2, IoT5, and IoT6 datasets, the significant numbers slightly decrease because of

the randomly selected samples from the original dataset. It also can be demonstrated

by the high fluctuation of the reconstruction errors of IoT2, IoT5, and IoT6 datasets

in Figure 2.5(b) compared with other datasets. However, in all studied datasets,

our proposed solution still performs much better than the state-of-the-art UDL

solution. These results demonstrate that our solution can work efficiently in all IoT

and conventional cybersecurity datasets in detecting cyberattacks in the network.

2.2.3.2 Reconstruction Error Analysis

In this section, we discuss the convergence of the FTL algorithm in each dataset.

Figure 2.4 describes the reconstruction errors of the nine IoT datasets and the

conventional datasets like KDD, NSLKDD, and UNSW in CASE 1. Figure 2.5

describes the reconstruction errors of study datasets in CASE 2.

In Figure 2.4(a) and Figure 2.5(a), we can see that at the first few epochs, the

errors are very high for KDD (up to 2.6× 105 in CASE 1 and 12× 105 in CASE 2),

but this error dramatically reduces to 0.3× 105 in CASE 1 and 1.5× 105 in CASE 2

after only 200 epochs. For the NSLKDD and UNSW, they have very similar trends

with 0.75× 105 in CASE 1 and 3.8× 105 in CASE 2 at the beginning and gradually

reduce to 0.4×105 in CASE 1 and 1.9×105 in CASE 2 after 200 epochs, respectively.

Here, we observe there is a sharp reduction in reconstruction errors within the

first 100 epochs of the KDD dataset, as shown in Figure 2.4(a) and Figure 2.5(a).

This could be from the fact that the original KDD dataset contains a significant

amount of redundant data. Many records are repeated, which means during training,

2.2 Performance Analysis 45

(a) The reconstruction errors of KDD, NSLKDD, and UNSW datasets.

(b) The reconstruction errors of IoT datasets.

Figure 2.4: The reconstruction errors in CASE 1.

2.2 Performance Analysis 46

(a) The reconstruction errors of KDD, NSLKDD and UNSW datasets.

(b) The reconstruction errors of IoT datasets.

Figure 2.5: The reconstruction errors in CASE 2.

2.2 Performance Analysis 47

the model frequently encounters the same situations and can quickly ”memorize” or

fit to these records. This redundancy can artificially accelerate the convergence rate

because the model is effectively learning from a less diverse set of data. After 200

epochs, the algorithm converges as all the reconstruction error curves are flattened.

Figure 2.4(b) and Figure 2.5(b) show the reconstruction errors of nine IoT

datasets in both CASE 1 and CASE 2. we can observe the same trend over all

datasets, i.e., all errors gradually reduce when the number of epochs increases. How-

ever, it can be observed that the trend exhibits various fluctuations in comparison

with the trends in Figure 2.4(a) and Figure 2.5(a) because of the heterogeneous dis-

tribution in IoT datasets. The high fluctuation of the reconstruction errors of IoT2,

IoT5, IoT6 datasets in Figure 2.5(b) also explains why their significant numbers

reduce when the number of samples increases in CASE 2. However, the reconstruc-

tion errors of all studied datasets in our proposed solution dramatically decrease

and become stable after 200 running epochs in both cases.

2.2.3.3 Mutual Information Analysis

As mentioned in the previous section, Network A and Network B may share a

number of mutual samples. The FTL algorithm exploits the information of these

mutual samples to perform the prediction for unlabeled data of Network B. This sec-

tion provides the analysis results to identify how this mutual information can affect

the results of label prediction. In this section, we perform the simulation in CASE

2 with a larger number of samples than in CASE 1. Figure 2.6 gives information

about the variation of AUC when the percentage of mutual data increases.

Figure 2.6(a) shows the increase of AUC on KDD, NSLKDD, and UNSW datasets

when the percentage of mutual samples increases from 0.005% to 10%. The AUC

of KDD and UNSW datasets sharply increase and remain stable at around 96% on

the NSLKDD dataset with about 5% to 10% mutual samples. A similar trend hap-

2.3 Conclusion 48

pens with the IoT datasets in Figure 2.6(b) when the AUCs of all nine IoT datasets

increase and remain stable at approximately 10% of mutual samples. From these

results, it can be observed that achieving high efficiency in AUC for IoT datasets

may require at least 10% of mutual data.

In summary, the results with 12 cybersecurity datasets show the outperformance

of our proposed model in comparison with the state-of-the-art UDL in term of

accuracy as shown in Table 2.3 for CASE 1 and Table 2.4 for CASE 2, especially with

IoT1 and UNSW datasets. Moreover, the reconstruction errors show a fluctuation

of the IoT datasets when the number of samples increases due to noise from the

collected datasets of various IoT devices. Finally, we vary the amount of mutual

data between two networks to evaluate the accuracy of our proposed model. The

results show that the proposed model can achieve high performance with 10% mutual

data on all datasets.

2.3 Conclusion

In this chapter, we have proposed a novel collaborative learning framework to

address the limitations of current ML-based cyberattack detection systems in IoT

networks. In particular, by extracting and transferring knowledge from a network

with abundant labeled data (source network), the intrusion detection performance

of the target network could be significantly improved (even if the target has very

few labeled data). More importantly, unlike most of the current works in this area,

our proposed framework could enable the source network to transfer the knowledge

to the target network even when they have different data structures, e.g., different

features. The experimental results then showed that the accuracy of prediction of

our proposed framework was significantly improved in comparison with the state-

of-the-art UDL model. In addition, the convergence of the proposed collaborative

learning model was also analyzed with various cybersecurity datasets. In future

2.3 Conclusion 49

(a) The percentage mutual information of KDD, NSLKDD and UNSW
datasets.

(b) The percentage mutual information of IoT datasets.

Figure 2.6: The illustration of AUC with different percentages of mutual informa-
tion.

2.3 Conclusion 50

work, we can consider using other effective TL techniques to make TL processes

more stable and achieve better performance, especially when the amount of mutual

information is very limited.

51

Chapter 3

Collaborative Learning for Cyberattack Detection

in Blockchain Networks

This chapter first introduces a novel intrusion detection dataset named BNaT which

stands for Blockchain Network Attack Traffic, created from a real blockchain network

in our laboratory, and then proposes an effective decentralized collaborative machine

learning framework to detect cyberattacks in the blockchain network. Specifically,

to develop BNaT, we first set up and implement a blockchain network in our labo-

ratory using Ethereum (an open-source blockchain software) and perform intensive

experiments to generate blockchain data (including both normal and malicious traf-

fic data). The main objectives of producing BNaT dataset are fourfold. First, we

collect the BNaT in a laboratory environment to have “clean” data samples (i.e.,

to ensure that the obtained data is not corrupted, erroneous, or irrelevant), that

is especially important for training ML models. Second, the BNaT can be easily

extended to include new kinds of blockchain attacks, e.g., 51% or double spend-

ing attacks. Third, we perform experiments with real attacks in the considered

blockchain network, and thus the BNaT can reflect better the actual attack behav-

ior of network than simulations or by artificial attack data generated by GAN in

the literature, e.g., [48]. Fourth, we collect the data in different blockchain nodes to

have a complete view of effects when the attacks are performed in a decentralized

manner. After that, we develop a highly-effective collaborative learning framework

to make it more effective in deploying in blockchain networks to detect attacks. In

particular, in our proposed learning framework, working nodes in the blockchain

network (e.g., mining nodes) can be used as learning nodes to collect blockchain

3.1 Blockchain Network: Fundamentals and Proposed Network Model 52

data (e.g., observing its own traffic and classifying data).

The rest of this chapter is organized as follows. Section 3.1 first describes the

fundamentals of blockchain and our proposed model. Section 3.2 then presents our

proposed collaborative learning attack detection in detail. After that Section 3.4

presents the simulation and experimental results of this work. Finally, the conclusion

and future work are given in Section 3.5.

3.1 Blockchain Network: Fundamentals and Proposed Net-

work Model

3.1.1 Blockchain

Blockchain is a digital ledger technology that provides a transparent, tamper-

proof, and secure environment for transmitting data. This technology enables var-

ious parties to join, verify, and record transactions without a trusted third party

(e.g., a bank). In a blockchain network, multiple nodes are used to simultaneously

process and store data. In particular, when a node in the blockchain network re-

ceives transactions (e.g., money exchange in the Bitcoin network), it will gather all

the transactions and put them in a block. This node will then start a mining process

to find a “nonce” value for this block. It is important to note that thanks to the

feature of the hash function, there is only a small set of satisfying nonce values for a

block, and these values can only be found through an intensive searching process [65].

This mining process is a special process of blockchain networks to provide proofs for

validated blocks, and thus this tamper-proof can significantly enhance security for

blockchain networks. After the node finds the nonce value for the mining block, this

new block will be broadcast and verified by other nodes in the network. Finally, if

this block is verified, it will be put into the chain (linked to the hash value of the

previous block inside its header). After the block is added to the chain, it is nearly

3.1 Blockchain Network: Fundamentals and Proposed Network Model 53

impossible to change information in this block, and thus this property can guarantee

the immutability of the blockchain. Another aspect of blockchain is traceability due

to the infeasible collision of the hash function, and thus any transaction or block can

be tracked correctly. In summary, blockchain can be termed as a decentralization,

immutable, traceable, and time-stamped digital data chain (ledger).

3.1.2 Designed Blockchain Network at our Laboratory

To launch a blockchain network, there are two main kinds of blockchain nodes

namely fullnode and bootnode. First, fullnodes take responsibility to store the

ledger, participate in the mining process, and verify all blocks and states. Further-

more, they can be used to serve the network and provide data on request, e.g.,

netstats, which is a visual interface for tracking Ethereum network status (e.g., the

block number, mining status, and the number of pending transactions). Second,

bootnode is a lightweight application used for the Node Discovery Protocol. The

bootnodes do not synchronize blockchain ledger but help other Ethereum nodes

discover peers to set up Peer-to-Peer (P2P) connections in the network.

The system model together with essential components of our designed blockchain

network is set up as illustrated in Figure 3.1. Specifically, the system includes K

fullnodes which are used to receive transactions, mining blocks, and keep the replica

of ledger. These nodes continuously synchronize their ledgers together by the P2P

protocol with equal permissions and responsibilities for processing data [65]. In

order to connect them together, a management node, known as bootnode, is set up.

The fullnodes connect and interrogate this bootnode for the location of potential

peers in the blockchain network. After being connected, each fullnode can collect

data (i.e., transactions) from its network. Transactions can come from different

blockchain applications such as cryptocurrency, smart cities, food supply chains,

and IoT. First, when transactions are sent to a fullnode, they will be verified and

3.1 Blockchain Network: Fundamentals and Proposed Network Model 54

packed into one block. After the node finds the nonce value for this block, it will

broadcast the block together with this nonce value to other nodes in the network for

verification. Finally, if the block is verified by the majority of nodes in the network,

it will be added to the chain.

Blockchain Fullnode

Deep Learning Model

Transactions

Subnetwork-K

Transactions

Subnetwork-3

Transactions

Transactions

Subnetwork-2

Blockchain Network

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction
Device-1

Device-K

Subnetwork-1

Device-2

Device-3

Figure 3.1: Our proposed learning model for blockchain network.

At our laboratory, we design a private blockchain network based on the Ethereum

blockchain network. This network also uses the Proof-of-Work (PoW) consensus

mechanism, but the block confirmation time is significantly faster than the older

version of Bitcoin. More precisely, it takes approximately 15 seconds to validate

a new block, representing only 2.5% of the block validation time in Bitcoin [66].

3.2 Proposed collaborative learning model for intrusion detection in blockchain
network 55

Furthermore, the smart contract layer of Ethereum is suitable for flexible purposes

of decentralized environments as mentioned above. In addition, at each node, var-

ious attacks, that can cause serious damage to the public blockchain network, will

be considered. We then capture the traffic data to analyze their impacts on the

blockchain network. In order to capture traffic data of these attacks, we build a

dataset collection tool, named BC-ID, which inherits the core of an open-source

utility named “kdd99 feature extractor” [67] and our new designs to fit the con-

sidered Ethereum network, i.e., correct the service of packets related to Ethereum

nodes, remove meaningless features, and automate label dataset samples based on

various given properties. Note that, in practice, there is no software that supports

automatically capturing the blockchain network traffic so far. Thus, we analyze the

blockchain network traffic data using software named Wireshark [68] and build a

new collection tool, namely BC-ID. In this way, we can observe the effects of these

attacks on different nodes in the blockchain network.

3.2 Proposed collaborative learning model for intrusion de-

tection in blockchain network

Figure 3.1 describes our proposed framework for intrusion detection in the blockchain

network. In our proposed collaborative learning model, the fullnodes in the blockchain

networks will be used as Learning Nodes (LNs) to learn knowledge from their col-

lected data inside their subnetworks and share their learned knowledge to improve

learning performance for the whole network. We also propose to use a deep neural

network at each LN to learn useful information from its collected data. Then, the

LNs will share their trained learning models with the CS. After that, the CS will

calculate the aggregated model (i.e., the global model) and share this model back

with the LNs. When an LN receives this aggregated model from the CS, it will inte-

grate with its current LN and train its local dataset. This process will be repeated

3.2 Proposed collaborative learning model for intrusion detection in blockchain
network 56

until convergence or reaching a predefined maximum number of iterations. In this

way, we can obtain the global learning model for all the LNs.

In our proposed model, each blockchain node has a set of local collected data,

and we propose a deep neural network (DNN) using Deep Belief Network (DBN) [19]

to learn knowledge from this data. The DBN is a type of deep neural network that

is used as a generative model for both labeled and unlabeled data. Therefore, unlike

other supervised deep neural networks which use labeled data to train the neural

networks (e.g., convolutional neural networks [13]), the DBN has two stages in the

training process. The first stage is the pre-training process where the DBN is trained

using an unlabeled dataset. The second stage is the fine-tuning process where the

DBN is trained using a labeled dataset. Thereby, the DBN can better represent the

characteristics of the labeled dataset, and thus it can classify the normal behavior

and different types of attacks with high accuracies. In addition, the DBN includes

multiple Restricted Boltzmann Machine (RBM) layers for latent representation [19].

In the DBN training process, the current layer generates a latent representation by

using the latent representation of the previous layer as the input. Unlike other

deep neural networks which can also process both labeled and unlabeled data (e.g.,

autoencoder deep learning network [13]), the DBN optimizes the energy function of

each layer to have better a latent representation of data on each RBM layer in each

iteration. Therefore, the DBN is more appropriate to analyze the network traffic

where the samples and features have relative coherence with each other.

The whole processes of DBN are illustrated in Figure 3.2. Like other DNNs,

the structure of DBN has three components: an input layer, an output layer, and

multiple hidden layers. As can be seen in Figure 3.2, the Gaussian Restricted Boltz-

mann Machine (GRBM) layer – a type of RBM that can process real values of data

– is the input layer to receive and transform the input data into binary values. We

denote by k ∈ {1, ..., K} the number of learning nodes in the collaborative learning

3.2 Proposed collaborative learning model for intrusion detection in blockchain
network 57

GRBM RBM RBM

Input layer Hidden layers Output layer

Normal

BP

FoT

Blockchain
Network Dataset

Deep Belief Network

DoS

MitM

Figure 3.2: The structure of classification-based for intrusion detection learning
model in a blockchain network.

model, vk and hk to be the vectors of visible and hidden layers of DBN in LN-k,

respectively. In addition, M and N are the numbers of visible and hidden neurons

of GRBM. We denote by hk
n, h

k
n ∈ hk, and vkm, v

k
m ∈ vk, the hidden layer-n and

visible layer-m of LN-k. As defined in equation (1.4), the energy function of GRBM

of LN-k is calculated as follows:

Ek
G(v

k,hk) =
M∑

m=1

(vkm − b1,m)
2

2ϵ2m
−

M∑
m=1

N∑
n=1

wm,nh
k
n

vkm
ϵm
−

N∑
n=1

b2,nh
k
n, (3.1)

where wm,n is the weight between visible and hidden neurons; b1,m and b2,n indicate

the bias of visible and hidden neurons, respectively; and ϵm represents the standard

deviation of the neuron in the visible layer. From the result of equation (3.1), we can

find the probability that is used in the visible layer of GRBM as in equation (1.5):

pkG(v
k) =

∑
hk e−EG(vk,hk)∑

vk

∑
hk e−EG(vk,hk)

. (3.2)

Then, we use the probability in equation (3.2) to calculate the gradients of each

3.2 Proposed collaborative learning model for intrusion detection in blockchain
network 58

GRBM layer with the expectation value
〈
.
〉
as in equation (1.6):

∇gkG,m,n =
∂ log pkG(v

k)

∂wm,n

=
〈 1

ϵm
vkmh

k
n

〉
dataset

−
〈 1

ϵm
vkmh

k
n

〉
model

.

(3.3)

Next, the gradient of GRBM layers can be calculated:

∇gGk =
M∑

m=1

N∑
n=1

∇gkG,m,n. (3.4)

In the next stage, we need to calculate the energy function and the gradient of

RBM layers. We denote by M ′ and N ′ the numbers of visible and hidden neurons

of RBM layers. As defined in equation (1.8) the energy functions of RBM layer of

LN-k are defined as follows:

Ek
RBM(vk,hk) = −

M ′∑
m=1

b1,mv
k
m −

M ′∑
m=1

N ′∑
n=1

wm,nvmh
k
n −

N ′∑
n=1

b2,nh
k
n. (3.5)

Similar to the GRBM layers, we can calculate the gradient of each RBM layer

as follows:

∇gkR,m,n =
〈
vkmh

k
n

〉
dataset

−
〈
vkmh

k
n

〉
model

. (3.6)

As a result, the gradient of RBM layers in LN-k can be defined as follows:

∇gRk =
M ′∑
m=1

N ′∑
n=1

∇gkR,m,n. (3.7)

After learning with multiple GRBM and RBM layers, we define Xg,r
k as the

output of the last hidden layer of LN-k. In this paper, the output layer utilizes the

softmax regression function to classify the data samples based on probability. We

denote by W o and bo the weight matrix and bias vector between the output and

3.2 Proposed collaborative learning model for intrusion detection in blockchain
network 59

the last hidden layer, respectively. We then can define the probability of the output

Z belonging to Class-t as follows:

pok(Z = t|Xg,r
k ,W o, bo) = softmax(W o, bo), (3.8)

where t ∈ {1, .., T} is a class of the output, and T refers to the total classes (including

different types of attacks and normal behavior). The prediction Zk of the probability

pok in LN-k can be calculated:

Zk = argmax
t

[pok(Z = t|Xg,r
k ,W o, bo)], (3.9)

where Z is the output prediction. Then, we can calculate the gradient between the

output layer and the last hidden layer from equation (3.8) as follows:

∇gok =
∂pok(Z = t|Xg,r

k ,W o, bo)

∂W o
. (3.10)

After that, the results of equation (3.4), equation (3.7), and equation (3.10) are

used to calculate the total gradient ∇gtk of DBN with multiple GRBM, RBM layers

and the output layer of LN-k as follows:

∇gtk = ∇gGk +∇gRk +∇gok. (3.11)

In the training process, the DBN first trains its neural network with unlabeled

data for pre-training. Then, DBN uses its labeled data to fine-tune its neural net-

work. At this stage, the DBN of LN-k calculates its gradient ∇gtk. After that, this

gradient is sent to the CS to create an updated global model for all LNs as illustrated

in Figure 3.3. For example, at iteration i, the CS receives gradients from all the K

3.2 Proposed collaborative learning model for intrusion detection in blockchain
network 60

DL model 1

Centralized Server (CS)

Data-1 Data-2 Data-K

DL model KDL model 2

Send local gradient
Send global model

Figure 3.3: The illustration of the collaborative learning between DL models and
the CS.

LNs, the CS first performs the average gradient function [69] as follows:

∇g∗ =
1

K

K∑
k=1

∇gtk. (3.12)

We then denote by ϕi the global model at iteration i which includes the weight

matrix for all layers of the DL model in an LN, and µ represents the learning rate.

From the result of equation (3.12), the CS can update the global model at iteration

i+ 1 as follows:

ϕi+1 = ϕi + µ∇g∗. (3.13)

Next, the CS sends the latest global model ϕi+1 to the LNs to update their DL

models. This process is repeated until it reaches convergence or gets the maximum

number of iterations. At this time, we can find the optimal global model ϕopt that

includes the optimal weights of all layers. We denote by W o
opt the optimal weight

matrix between the output layer and the last hidden layer from ϕopt, the output

3.2 Proposed collaborative learning model for intrusion detection in blockchain
network 61

Algorithm 3.1 The classification-based collaborative learning algorithm

1: while i≤maximum number of iterations or the training process is not converged
do

2: for ∀k ∈ K do
3: DBN of LN-k learns Xk and produces Zk.
4: Calculate gradient ∇gtk.
5: Send ∇gtk to CS.
6: end for
7: CS calculates average gradient ∇g∗ and global model φi.
8: i = i+ 1.
9: CS updates global model φi+1.

10: CS sends global model φi+1 to all LNs.
11: LNs update their DBNs.
12: end while
13: DBN of LNs predict and classify Zk from the training dataset Xk with the

optimal global model φopt .

prediction Zk of LN-k thus can be calculated as follows:

Zk = argmax
t

[pok(Z = t|Xg,r
k ,W o

opt, b
o)]. (3.14)

Using equation (3.14), the softmax regression of each LN can classify its blockchain

network samples to be a normal behavior or a type of attack. Algorithm 4.1 sum-

marizes the process of our proposed collaborative learning model. In our proposed

model, the learning model of each network can be trained by the dataset from its

local network and exchange learning knowledge with those from other nodes in a

blockchain network in an offline manner. In a practical blockchain network with a

large number of learning nodes, we can schedule for nodes to exchange the learning

knowledge in the offline training phase at an appropriate time to avoid network

congestion. In this way, each node can effectively learn knowledge from other nodes

while avoiding the traffic congestion of the network. After the training process, the

trained models can be used to help nodes to detect attacks in a real-time manner.

3.3 Experiment Setup, Dataset Collection and Evaluation Method 62

Figure 3.4: Experiment setup.

3.3 Experiment Setup, Dataset Collection and Evaluation

Method

This section will explain more details about experiment setup, data collection,

and feature extraction over our designed blockchain system.

3.3.1 Experiment Setup

In our experiments, we set up an Ethereum blockchain network in our laboratory

which includes three Ethereum fullnodes, an Ethereum bootnode, and a netstats

server. All these nodes are connected to a Cisco Switch Catalyst 2950 as illustrated

in Figure 3.4. The details of these nodes are as follows:

• Ethereum fullnodes are launched by Geth v1.10.14 [70] - open-source software

for implementation of the Ethereum protocol. These nodes share the same ini-

3.3 Experiment Setup, Dataset Collection and Evaluation Method 63

tial configuration of genesis block, i.e., PoW consensus mechanism, 8,000,000

gas for block gas limit, initial difficulty 100,000. Each node runs on a personal

computer with processor Intel® Core™ i7-4800MQ @2.7 GHz, RAM of 16 GB.

• Bootnode is also created byGeth v1.10.14 and connected to the three Ethereum

nodes.

• Ethereum netstats is launched by an open-source software named “eth-netstats”

on Github [71].

The normal traffic data is configured with the three trustful servers, while an attack

device will execute abnormal/malicious activities to the blockchain network traffic.

Each trustful server takes responsibility for generating data and sending transactions

to the corresponding Ethereum node in its subnetwork as visualized in Figure 3.4.

In summary, in the normal state, the following tasks are scheduled or randomly

occur in the network:

• The servers are scheduled to send transactions.

• The users call functions in the deployed smart contracts to explore the ledger.

Besides transaction-related functions, the users also send requests to the Ethereum

nodes for tracking their balances or the status of miners. Both of these works

are randomly made by HTTP requests to the Ethereum node API (Application

Programming Interface).

• Ethereum nodes broadcast transactions and mined blocks to synchronize their

ledgers. The packets of bootnode are also included in this field.

• WebSockets and JSON-RPC are used when netstats get information from Geth

clients.

3.3 Experiment Setup, Dataset Collection and Evaluation Method 64

• HTTP requests and replies to view netstats interface and results of cyberattack

detection.

3.3.2 Dataset Collection and Feature Extraction

In this section, we consider to detect attacks in network traffic of a permissionless

blockchain system [72, 73]. In general, the goals of an adversary are usually the

monetary benefit, e.g., chain splitting, and wallet theft, or stability of the network,

e.g., delay and information loss. In this work, we focus on the attacks at the network

layer. Attacks at the application layer, e.g., 51%, transaction malleability attacks,

timejacking, and smart contract attacks, are out of the scope of this work and can

be considered in future work. Specifically, we perform four typical types of network

attacks that have been reported in blockchain networks, i.e., the BP for wallet theft;

DoS; man in the middle for information loss; and FoT for consensus delay. These

are the ubiquitous attacks in the network traffic layer that have caused a number of

serious consequences for numerous years. More details are as follows:

• Password Brute-Force (BP) attack : is derived from traditional cyberattack

when attackers perform such attacks to steal blockchain accounts of users. In

this way, the attackers can access the wallets of users and steal their digital

assets. Previously, the BP attack on KuCoin caused the loss of up to $281 mil-

lion [7]. To perform this attack, the attacker retries passwords of an Ethereum

public key until it finds out the correct login information.

• Denial of Service (DoS) attack : is also another common type of attack in

blockchain networks as it can be easily performed to attack blockchain nodes.

For such kind of attack, the attackers will launch a huge amount of traffic to

a target blockchain node in a short period of time. Consequently, the target

node will not be able to work as normal, i.e., mining transactions, and even be

suspended. In the real-world, Bitfinex [74] was temporarily suspended due to

3.3 Experiment Setup, Dataset Collection and Evaluation Method 65

such kind of attack. Thus, in our setup, a simple DoS attack is simulated, i.e.,

an SYN flood attack, by repeatedly sending initial connection request (SYN)

packets to an Ethereum node.

Table 3.1: Features of the designed dataset.

Features name T Description
Basic features

1 duration C
length of the connection
(seconds)

2 protocol type D
type of the protocol
(i.e., tcp, udp, icmp)

3 service D
network service
(e.g., http, ssh, etc)

4 src bytes C
number of data bytes
from source to destination

5 dst bytes C
number of data bytes
from destination to source

6 flag D
normal or error status
of the connection

Statistical features
Features refer to source IP-based Statistical

7 count C
number of connections to
the same source IP
as the current connection

8 srv count C
number of connections to
the same service
as the current connection

Features refer to these same source IP connections
9 serror rate C % of ‘SYN’ errors connections
10 same srv rate C % of same service connections

11 diff srv rate C
% of different services
connections

Features refer to these same service connections
12 srv serror rate C % of ‘SYN’ errors connections
13 srv diff host rate C % of different host connections
Features refer to destination IP-based Statistical

14 dst host count C
number of connections to
the same destination IP
as the current connection

15 dst host srv count C
number of connections to
the same service as
the current connection

Features refer to these same destination IP connections
16 dst host same srv rate C % of same service connections

17 dst host diff srv rate C
% of different services
connections

18 dst host same src port rate C
% of same both source port
and destination IP connections

19 dst host serror rate C % of ‘SYN’ errors connections
Features refer to these same service connections
20 dst host srv diff host rate C % of different host connections
21 dst host srv serror rate C % of ‘SYN’ errors connections

3.3 Experiment Setup, Dataset Collection and Evaluation Method 66

• Flooding of Transactions (FoT) attack : targets delay the PoW blockchain

network by spamming the blockchain network with null or meaningless trans-

actions. When the number of transactions per second in the Ethereum net-

work suddenly hits the top, a mining node may face two following issues, i.e.,

too much traffic (similar to that of DoS), and the queue of pending trans-

actions is full. It equates to the unnecessary time burden for the mining

process and block propagation [75]. In 2017, the Bitcoin mempool size ex-

ceeded 115,000 unconfirmed transactions which led to $700 million worth of

transaction stall [73]. In our work, FoT attack is implemented by continuously

sending a large number of transactions to an existing smart contract.

• Man in the Middle (MitM) attack : is another typical attack where an attacker

places himself between the legitimate communicating parties and secretly re-

lays and possibly modifies the information exchanged between them. In this

way, the attacker can intercept, read, and modify the blockchain messages. For

example, attackers can read the API messages between users and blockchain

nodes to steal their wallet password [76]. To implement MitM, an attack device

first filters ‘eth sendrawtransaction’ packets, which represent any transaction

from users to blockchain nodes. Then, the contents of these packets are ran-

domly modified, leading to invalid transactions.

In order to capture traffic data of these attacks, we build a dataset collec-

tion tool, named BC-ID, which inherits the core of an open-source utility named

“kdd99 feature extractor” [67] and our new designs to fit the considered Ethereum

network, i.e., correct the service of packets related to Ethereum nodes, remove mean-

ingless features, and automate label dataset samples based on various given prop-

erties. To do this, we first use the ‘libpcap-dev’ library of Linux to capture all the

network data (including normal and different types of attacks) from the local net-

3.3 Experiment Setup, Dataset Collection and Evaluation Method 67

(a) Learning Node 1 (b) Learning Node 2 (c) Learning Node 3 (d) Combine data
from all learning
nodes

Figure 3.5: Visualization using t-SNE for collected datasets.

work. Then, the BC-ID is used to extract features from the collected data, filter

the attack samples, and label them as normal or a type of attack. In particular, the

BC-ID starts by capturing raw traffic data based on ‘libpcap-dev’ package of Linux

OS. Since each blockchain network has a few specific ports for peer connections,

client connections, and so on, BC-ID targets to filter and analyze traffic data in

these ports. For example, the Ethereum blockchain network uses port 30303 for the

TCP port listener, and port 8545 for JSON-RPC by default. Similar to the KDD99

dataset [77], BC-ID extracts features and then separates them into two categories,

e.g, basic features (i.e., all the attributes can be extracted from a TCP/IP connec-

tion) and traffic features (i.e., statistics of packets with the same destination host or

service in a window interval). Especially, our goal is to achieve a trained model that

can be applied to our proposed real-time blockchain attack detection system, when

the number of samples in a prediction frame is limited. Thus, the BC-ID collects the

dataset frames in which each frame lasts for 2 seconds and extracts their features.

The BC-ID then puts all collected data in this frame into a single file. Finally, we

merge all single files together to make the full dataset. In summary, Table 3.1 shows

21 features in the designed dataset, which are separated into two types, i.e., discrete

3.3 Experiment Setup, Dataset Collection and Evaluation Method 68

Table 3.2: The number of samples in the designed dataset.

Class

Ethereum
node

Node-1
(samples)

Node-2
(samples)

Node-3
(samples)

Normal 50,000 50,000 50,000
BP 5,000 5,000 5,000
DoS 5,000 5,000 5,000
FoT 5,000 5,000 5,000
MitM 5,000 5,000 5,000

(D) and continuous (C). For continuous features, they are calculated in 2 seconds

time window (similar to that of the famous KDD99 dataset [77]).

In each Ethereum node, the separated dataset is collected in five states (classes),

i.e., normal state (Class-0), BP attack (Class-1), DoS attack (Class-2), FoT at-

tack (Class-3), and MitM attack (Class-4). The normal state is captured in two

hours, the rest of them in an hour through the designed BC-ID tool. As described

above, when a node is attacked, the normal traffic still exists. Therefore, the attack

samples can be filtered out by features-based two properties, i.e., the source and

destination IP address of the attack device; service, src length, and dst length of

the samples, which are analyzed by Wireshark [68]. To improve the diversity of the

designed dataset, the normal traffic data in the attack state is mixed with traffic

data in the normal state. In our experiments, a number of random samples in each

state are selected to reduce the size of the bulk dataset as shown in Table 3.2. In

fact, we mix normal traffic data in an equal ratio, i.e., 10,000 samples per normal

state, normal traffic data at BP, DoS, FoT, and MitM, respectively.

Figure 3.5 illustrates the visualization of our designed dataset using the t-Distributed

Stochastic Neighbor Embedding (t -SNE) [78] with three most important compo-

nents. Although sharing the same configurations for t-SNE, the dataset of each LN

has a different distribution in the output. In the 3D view, the DoS and FoT attack

samples show a fairly clear separation from normal state points. Otherwise, the

3.3 Experiment Setup, Dataset Collection and Evaluation Method 69

BP and MitM attack samples collide with the normal state samples. This indicates

that discriminating BP and MitM samples from the normal data points would be

significantly challenging.

3.3.3 Evaluation Method

The confusion matrix with accuracy, precision, and recall proposed in [63] is

widely used to evaluate the performance of machine learning algorithms. Let TP,

FP, TN, and FN denote “True Positive”, “False Positive”, “True Negative”, and

“False Negative”, respectively. The accuracy of the total system with T classes

including normal behaviors and different types of attacks is as follows:

Accuracy =
1

T

T∑
t=1

TPt + TNt

TPt + TNt + FPt + FNt

. (3.15)

The precision of class t is calculated as P t
re =

TPt

TPt+FPt
. In this chapter, we use

weighted average precision to evaluate the performance of the whole system. We

denote by St the number of samples of class t and S as the number of samples of

the whole dataset. The weighted average precision is calculated as follows:

Precision =
T∑
t=1

P t
reSt

S
. (3.16)

The recall of class t is calculated by Rt
e =

TPt

TPt+FNt
. The weighted average recall

that we use to calculate the performance of the total system is calculated as follows:

Recall =
T∑
t=1

Rt
eSt

S
. (3.17)

In the next section, we also use accuracy, precision, and recall to evaluate and

compare the performance of our proposed Collaborative Learning model (proposed

3.4 Experimental Results and Performance Evaluation 70

Table 3.3: Simulation results.

Model 2 Learning Nodes (LNs) 3 Learning Nodes (LNs)

Proposed CoL CeL
IL

Proposed CoL CeL
IL

LN-1 LN-2 LN-1 LN-2 LN-3
Accuracy 97.427 97.330 97.036 96.865 97.276 97.270 96.827 96.731 96.825
Precision 93.861 93.620 92.793 92.000 93.448 93.249 92.209 91.343 92.798
Recall 93.567 93.324 92.590 92.162 93.189 93.176 92.067 91.829 92.063

CoL) with two other baseline methods, i.e., Centralized Learning model (CeL) and

Independent Learning model (IL).

3.4 Experimental Results and Performance Evaluation

In this section, we use the collected datasets of three nodes described in the afore-

mentioned section for the corresponding LNs. The dataset of each LN is randomly

split into training and testing datasets. All LNs use DBN with the same structure of

neural network for learning and detecting attacks. However, the LNs have to work

in different learning models and various scenarios. Each LN has itself training and

testing dataset, and thus we can use these datasets to evaluate and compare the

performance of the proposed CoL, the CeL, and the IL in different scenarios.

3.4.1 Simulation Results

In this section, we present the simulation results with the dataset of LNs in

different learning models. The details of datasets using for simulation are as follows:

• Proposed Collaborative Learning Model (proposed CoL): Each LN

learns its training dataset and performs collaborative learning with other LNs

to generate the global model. Then, we use the global model to test the merged

testing dataset of all participated LNs.

• Centralized Learning Model (CeL): The centralized node (e.g., one of the

mining node in the network) is assumed to be able to collect data from all the

3.4 Experimental Results and Performance Evaluation 71

nodes in the network and train the DL model on the collected datasets. Then,

we use the trained model to test data based on the merged testing dataset of

all participated LNs.

• Independent Learning Model (IL): Each LN learns its training dataset

without sharing knowledge with other LNs. Then, we use this model to test

data based on the merged testing dataset of all participated LNs.

3.4.1.1 Convergence Analysis

Figure 3.6 describes the convergence of the proposed CoL, the CeL, and the IL

(in terms of accuracy) of three LNs in the training process. The proposed CoL

is obtained at the LN-1 after obtaining the global model. The CeL has a large

number of training samples from three LNs so it can reach the convergence with

around 97% accuracy after 400 epochs. Besides, the proposed CoL and IL converge

after 800 epochs and 1300 epochs, respectively. After 3,000 learning epochs, we

can observe that the proposed CoL has a higher accuracy compared with that of

the IL (i.e., 97.2% vs 96.8%). The reason is that the proposed CoL can obtain the

exchange knowledge from DL models of other LNs. Thereby, it can achieve a similar

performance as that of the CeL.

3.4.1.2 Performance Analysis

Table 3.3 presents the simulation results in two cases, i.e., two participated LNs,

and three participated LNs. In both cases, we can observe the same trend when the

accuracy, precision and recall of the proposed CoL are higher than those of the IL

and nearly equal to those of the CeL. In particular, the accuracy of the proposed

CoL is higher than that obtained by LN-1 in IL (approximately 0.5%), and the

precision of the proposed CoL is about 2% higher than that obtained by LN-2 in IL

in the case of three participated LNs. These results demonstrate that the proposed

3.4 Experimental Results and Performance Evaluation 72

1 500 1000 1500 2000 2500 3000
Epochs

88

90

92

94

96

98

100

A
cc

u
ra

cy

Proposed CoL
CeL
IL

Figure 3.6: Training process of considered learning models.

Table 3.4: Real-time experimental results of 3 LNs models.

Model 2 Learning Nodes (LNs) 3 Learning Nodes (LNs)
Proposed CoL CeL Proposed CoL CeL
LN-1 LN-2 LN-1 LN-2 LN-1 LN-2 LN-3 LN-1 LN-2 LN-3

Accuracy 98.611 98.242 98.464 98.097 98.440 98.131 97.686 98.503 98.192 97.771
Precision 97.433 96.871 97.146 96.634 97.146 96.717 95.902 97.138 96.679 95.864
Recall 96.529 95.606 96.159 95.243 96.101 95.328 94.214 96.258 95.481 94.427

CoL can exchange knowledge with other LNs to improve its ability of detection, so it

can achieve better performance in classifying attacks in the blockchain network than

those of the IL. It also demonstrates that the learning model of IL should not be

used to classify the data of other LNs. In addition, without sharing the LN datasets

with a central node for training (e.g., a cloud server), the proposed CoL can achieve

nearly the same accuracy as those of the CeL in all the scenarios.

3.4.2 Experimental Results

In this section, we present the experimental results obtained through real-time

experiments at our laboratory. In this experiment, each blockchain node is estab-

lished as a learning model to become an LN. Each LN learns its local dataset and

3.4 Experimental Results and Performance Evaluation 73

Fe_Ex Pred Fe_Ex Pred

Frame

capture

Pre-processing

& Prediction

time (s)0 2 4

Data Frame Data Frame Data Frame

Packets

Figure 3.7: Timeline of verification phase.

then performs real-time attack detection in the blockchain network. We consider

the scenario of two LNs and three LNs with the proposed CoL and the CeL. In the

training process, the proposed CoL and the CeL are fed with similar datasets as

explained in the previous section. We then implement the trained model to all the

participated LNs to perform real-time attack detection for both learning models in

the testing process.

3.4.2.1 Real-time capturing and processing

In a real-time system, the cyberattack detection system continuously receives a

number of the Ethereum network traffic data. Therefore, the system has to perform

capturing, collecting frames, extracting features, analyzing and predicting within

a period of time, i.e, 2 seconds. Figure 3.7 shows the timeline of the cyberattack

detection program. The data frame is exploited by our feature extractor function

(Fe Ex) of BC-ID tool, and this is input for the trained model to predict (Pred) and

classify packets to be normal or attack. All processes have to complete in 2 seconds

before the next data frame of IP packets coming. To verify the predicted results

from the trained model, all frames and prediction results are stored. These frames

are merged into a full validation dataset and labeled by own designed BC-ID. After

that, these ground truth labels are compared with the prediction results to obtain

a validation report.

3.4 Experimental Results and Performance Evaluation 74

3.4.2.2 Performance Analysis

Table 3.4 presents the experimental results of the proposed CoL and the CeL with

different participated LNs. We obtain the same trends as those of the simulation

results. The accuracy results obtained by two and three learning models of both

proposed CoL and CeL are slightly higher than those of the simulations at about

1%. This is because each type of attack has attack sample distributions within a

period of time. Table 3.5 presents the number of samples of each class collected in 15

minutes. In this table, we can observe that Class-1 and Class-4 have small numbers

of samples during this period, this can lead to a low accuracy in statistics for these

classes and reduce the total accuracy of the model. However, our proposed CoL still

has better performance than those of the CeL in LN-1 in the case of two LNs (i.e.,

up to 0.2% accuracy, 0.3% precision, and 0.4% recall). Overall, our proposed CoL

always achieves the best performance with approximately 98.6% accuracy, 95.43%

precision, and 96.52% recall with two LNs and 98.44% accuracy, 97.14% precision

and 96.1% recall with three LNs. These results demonstrate that our proposed CoL

can detect attacks with nearly the same accuracies for all participated LNs as those

of CeL.

3.4.2.3 Real-time Monitoring and Detection

Figure 3.8 illustrates the real-time monitoring of our proposed CoL for normal

state and three types of attacks in the network. Figure 3.8(a) is the normal state

(Class-0) of the network with a high number of normal samples and a low number

of attack samples. Then, the BP and MitM attacks are performed. Figure 3.8(b)

and Figure 3.8(e) show a slight increase in the number of BP attacks and MitM

attacks. This is because the number of BP attack samples is much smaller than

other states in a period of time as in Table 3.5. In this case, the detection mechanism

is activated and alarms the network under the BP attack (Class-1). Similarly, the

3.4 Experimental Results and Performance Evaluation 75

Table 3.5: The number of samples on LN-1 in five hours.

Class-0 Class-1 Class-2 Class-3 Class-4
Number of samples 736,897 2,424 481,532 886,389 3,483
Portion (%) 34.912 0.115 22.814 41.994 0.165

DDoS attack in the network is described in Figure 3.8(c) with a high increase in the

number of samples of DoS attacks. Finally, Figure 3.8(d) describes the FoT attacks.

Unlike other attacks, the FoT attacks include a large number of samples, thus it

increases both the number of normal and attack samples (above 200 traffic samples

per 2 seconds) more than other attacks (about 100 traffic samples per 2 seconds).

Thereby, in all the cases, we can observe that our proposed intrusion detection

system can detect attacks effectively in a real-time manner.

3.4.2.4 Real-time Processing Capacity

In this experiment, we fix the number of input samples in our proposed model to

find the maximum real-time processing capacity in capturing and detecting attacks.

Figure 3.9 illustrates the real-time processing capacity of our proposed model. The

processing time τ is counted from the time when our proposed model reads the file

containing the samples, until completing classification and producing the output.

This work is repeated 20,000 times to determine the stability of the detection time

of our proposed model. We vary the number of input samples multiple times to find

the appropriate number that is adapted to the condition in Figure 3.7. In most of

the cases (98%), our proposed framework can classify 85,000 samples in less than

2 seconds. These results demonstrate that our proposed detection framework is

efficient to deploy to detect attacks in real-world blockchain networks. It can not

only detect attacks with high accuracy (up to 98.6%) but also quickly (up to 85,000

samples within 2 seconds).

3.5 Conclusion 76

3.5 Conclusion

In this chapter, we have proposed a novel collaborative learning framework for a

cyberattack detection system in a blockchain network. First, we have implemented

a private blockchain network in our laboratory. This blockchain network was used

to (1) generate data (both normal and attack data) to serve the proposed learning

models and (2) validate the performance of our proposed learning framework in real-

time experiments. After that, we have proposed a highly-effective learning model

that allows to be effectively deployed in the blockchain network. This learning model

enables nodes in the blockchain to be actively involved in the detection process by

collecting data, learning knowledge from their data, and then exchanging knowledge

together to improve the attack detection ability. In this way, we can not only avoid

problems of conventional centralized learning (e.g., congestion and single point of

failure) but also protect the blockchain network right at the edge. Both simulation

and real-time experimental results then have clearly shown the efficiency of our

proposed framework. In the future, we plan to continue developing this dataset

with other emerging types of attacks and develop more effective methods to protect

blockchain networks.

3.5 Conclusion 77

01:20:30 01:20:45 01:21:00

Time

0

20

40

60

80

100

120

T
ra
/

c
d
at

a
(s

am
p
le
s)

02:15:15 02:15:30 02:15:45

Time

0

20

40

60

80

100

T
ra
/

c
d
at

a
(s

am
p
le
s)

02:24:45 02:25:00 02:25:15

Time

0

100

200

300

400

500

600

T
ra
/

c
d
at

a
(s

am
p
le
s)

12:04:00 12:04:15 12:04:30

Time

0

200

400

600

800

T
ra
/

c
d
at

a
(s

am
p
le
s)

(d) FoT attack state

(e) MitM attack state

Figure 3.8: Real-time blockchain cyberattack detection: The proposed CoL model
of 3 LNs in Ethereum node 1.

(a) Normal state (b) BP attack state

(c) DoS attack state

Normal
BP
DoS
FoT
MitM

Time

T
ra
/

c
d
at

a
(s

am
p
le
s)

50

40

30

20

10

0

3.5 Conclusion 78

Figure 3.9: Histogram of real-time detection duration.

79

Chapter 4

Collaborative Learning for Detection of Attacks

to Transactions and Smart Contracts

In this chapter, we first set up experiments in our laboratory to deploy various kinds

of attacks on transactions and SCs in a blockchain system (i.e., a private Ethereum

system). First, we collect all the transactions in Ethereum Nodes (ENs) to build a

dataset, called Attacks on Blockchain Transactions Dataset (ABTD). To the

best of our knowledge, at the time we perform this work, this is the first cyberattack

dataset on transactions and SCs in a blockchain network synthesized in a laboratory.

To enrich the dataset, we create a large number of individual accounts to send trans-

actions to the blockchain network for execution randomly. This dataset can be used

for both research and industry purposes to address cyberattacks in transactions and

smart contracts. In addition, to deal with the challenge in analyzing Bytecode from

transactions, we propose a novel ML-based framework that analyzes transactions

and SCs without the need of understanding the SC source codes. Our proposed

framework automatically extracts transaction features in real-time and efficiently

analyzes them to detect insight attacks. To do this, we first build a highly-effective

tool, called Blockchain Code Extraction and Conversion Tool (BCEC), to

convert important information of transactions and SCs to grey images. This tool

calls a transaction using a transaction hash (i.e., a feature of the transaction) and

then extracts key fields like Bytecode and value from the transaction. After that, it

can convert the contents into images for further processing. Second, we develop an

ML-based approach based on CNN to learn and detect attacks insight transactions

and SCs. To the best of our knowledge, this is the first ML-based frame-

4.1 Designed Blockchain System and Our Proposed Collaborative Learning
Framework 80

work that analyzes the Bytecode directly and detects various types of

attacks in transactions and SCs. Such an ML-based framework, which uses

important information from transactions for analysis, is more flexible and easier

to detect new types of attacks than other vector-based methods. To address the

third challenge about centralized attack detection, we develop a novel collaborative

cyberattack detection framework that can detect cyberattacks inside transactions

and SCs in real-time with high accuracy. In our proposed framework, the CNN

of each Ethereum node can exchange learning knowledge (i.e., the trained models)

with other nodes to create a global model. In this way, the learning model of each

node can improve the detection accuracy without sending their local data over the

network.

The rest of this chapter is organized as follows. Section 4.1 describes the overview

of our proposed model. Section 4.2 then discusses in detail our proposed collabo-

rative learning attack detection for transactions and smart contracts. After that

Section 4.3 provides the simulation and real-time experimental results of this work.

Finally, the conclusion and future work are given in Section 4.4.

4.1 Designed Blockchain System and Our Proposed Collab-

orative Learning Framework

In our laboratory, we set up experiments to collect datasets for training and

testing our framework. We first deploy a blockchain system based on a private

Ethereum network in our laboratory (more details are shown later in Figure 4.3).

This network uses the latest version of the Ethereum network (i.e., Ethereum 2.0).

This version uses Proof-of-Stake (PoS) as a consensus mechanism for validating new

blocks. PoS is a consensus protocol that verifies the blocks of transactions using the

machine of coin owners. In this protocol, the owners pledge their coins as collateral

through staking, in exchange for the opportunity to validate blocks and receive

4.1 Designed Blockchain System and Our Proposed Collaborative Learning
Framework 81

Blockchain SystemBlockchain SystemBlockchain System

Incoming
transactions

Incoming
transactions

Local model Local model

Mining node Mining node
Mining node 1Mining node 1

Mining node 2Mining node 2

Local model 2Local model 2

Incoming
transactions

Normal TransactionNormal Transaction

AttackAttack

Local model 1Local model 1

Figure 4.1: The system model of the proposed collaborative learning framework for
detection of attacks to transactions and smart contracts. While receiving transac-
tions, our framework will perform preprocessing to extract important information.
After that, our collaborative learning will perform the attack detection process to
detect network normal behaviour or a type of attack.

rewards. Consequently, PoS requires fewer computational resources compared to

Proof of Work. Our system includes various ENs, to collect data from their local

networks, and bootnodes, the management nodes to connect ENs together. The

ENs can receive transactions from various types of blockchain applications such as

smart cities, smart agriculture, IoT, and cryptocurrency. As described above, the

transactions are first sent to ENs. They are then put into a block, and the ENs will

perform the mining process to put them into the main chain. We perform various

attacks using malicious transactions and SCs on this system. These attacks (i.e.,

DoS with block gas limit, overflows and underflows, flooding of transactions, re-

entrancy, delegatecall, and function default visibility) happened and caused serious

damage to blockchain systems [79]. Through experiments, we build a state-of-the-

art dataset with both normal and attacked transactions and SCs to evaluate the

performance of attack detection methods.

In this chapter, we consider a blockchain system with T ENs working in a

4.2 Proposed Attack Detection Framework 82

blockchain system as described in Figure 4.1. When an EN receives transactions

from the blockchain network, it uses BCEC (the tool that we developed in our

laboratory) to preprocess them. This tool is deployed at each EN to extract infor-

mation from important features, such as Bytecode and Value. It then preprocesses

the information and converts this information into grey images for further process-

ing. This tool thus executes these processes in real-time to provide the input for

the next real-time processing deep learning model. After that, we propose a col-

laborative learning framework for analyzing the images to detect insight attacks in

transactions and SCs. In our framework, each EN uses its local dataset to train a

deep neural network. After the training process, each EN shares its trained model

with other nodes and also receives their trained models in return. Afterward, ev-

ery EN aggregates all the received trained models from other nodes together with

its current trained model to generate a new global model for further training (we

will explain more details in the next section). In this way, EN can exchange its

learning knowledge with the neural network of other ENs. This approach can not

only improve the overall learning knowledge of the neural network of all ENs but

also protect the privacy of local data over network transmission. By preventing

the transmission of the local data of each EN over the network, our approach can

also reduce network traffic to avoid network congestion. Thus, the neural networks

of ENs can improve the accuracy of detecting attacks for transactions and SCs in

blockchain systems.

4.2 Proposed Attack Detection Framework

In our proposed attack detection framework, the ENs are used to learn and

share their learning knowledge with others to improve the accuracy of their attack

detection. At each EN, we propose to use a deep neural network as a detector to

learn the data of the local EN. After that, the EN exchanges its learning knowledge

4.2 Proposed Attack Detection Framework 83

0xfa8971db8
701f7b4574c
75946f891f71
698ff0df5aa6
87196c2bd89
3acde94e7

0xe46000000000000
00000006bb1d77528
0ea41d0be9d89bfc24

618efe55aab1

57908TransactionTransaction
hashhash Transaction

BytecodeBytecode

ValueValue

[2] PUSH1 0x00
...

[27] PUSH2 0x8efe
[28] SSTORE

OpcodeOpcode

GreyGrey
Image 2Image 2

GreyGrey
Image 1Image 1

Final GreyFinal Grey
ImageImage ConvolutionalConvolutional

NeuralNeural
NetworkNetwork

67.47

ScaledScaled
ValueValue

Figure 4.2: The preprocessing process of the proposed collaborative learning frame-
work for detection of attacks to transactions and smart contracts. Our developed
BCEC tool first collects the transactions in Ethereum nodes. It then extracts the
content of transactions to find “Bytecode” and “Value”. After that, this tool con-
verts them into images for further processing.

(i.e., trained model) with other ENs. When an EN receives trained models from

others, it will integrate them with its current model to train its local dataset. This

process is iteratively repeated until reaching a predefined number of iterations. In

summary, our proposed framework includes three processes. The first process is

preprocessing. In this process, our proposed framework captures and extracts the

important information of the incoming transactions and then converts them to grey

images. The second process is to develop a deep convolution neural network to

classify the grey images to detect attacks. The last process is collaborative learning.

In this process, each EN can exchange the trained model with others to improve the

accuracy of attack detection.

4.2.1 Preprocessing Process

Figure 4.2 describes our proposed preprocessing process for transactions in a

blockchain system. The main purposes of the preprocessing process are extracting

the important features from incoming transactions and converting them into images

for further processing. It is worth noting that SCs are a set of agreements to deploy

transactions. For implementation, a server has to send transactions of the SCs to

the EN for a mining process. From the EN point of view, we only can observe

transaction hashes (i.e., the unique addresses of incoming transactions) which are

4.2 Proposed Attack Detection Framework 84

represented in a series of hexadecimal numbers. The preprocessing process has three

steps to deal with these transaction hashes as follows:

• Step 1: Capture transaction hashes from the EN and then recover transac-

tions from transaction hashes to have the full information of all features in

transactions such as content, value, block hash, block number, chainID, etc.

• Step 2: Extract the content of two crucial features in transactions named

Bytecode and value. The bytecode feature includes the main functions of

transactions and the value feature indicates the amount of ETH (Ethereum)

involved in a transaction. Although we can effectively use the bytecode fea-

ture in detecting various types of attacks in transactions and SCs, it does not

provide any information on various specific types of attacks, such as Flooding

of Transactions [80], where the transaction content is null. Thus, it may be

inefficient if we only rely on the bytecode feature for analysis. Therefore, we

propose to enhance the attack detection framework by incorporating informa-

tion from the value feature. After that, we apply appropriate preprocessing

methods to the corresponding features as follows:

– Bytecode feature: Extract the content and then transform it into op-

code using EVM Bytecode Decompiler [81]. The opcode is a series of

executed comments in assembly. Thus, we propose to convert all features

of this assembly code to a grey image named Grey Image 1.

– Value feature: we first scale its content to an appropriate range and

then convert it to another grey image named Grey Image 2.

• Step 3: In this step, we combine both Grey Image 1 and Grey Image 2 to

create the Final Grey Image. This Final Grey Image includes all essential

information of a transaction and an SC in the blockchain system. They can

4.2 Proposed Attack Detection Framework 85

be used to train the deep convolution neural network to find out the hidden

attacks inside.

In this framework, all these steps are encapsulated in the BCEC tool. This

tool can perform the preprocessing process in real-time to support the analysis of

collaborative attack detection to detect hidden attacks for transactions and SCs in

a blockchain system.

4.2.2 Learning Process

In our proposed framework, at each EN, we implement a detector that can help

to detect attacks based on the transformed images from the preprocessing process

with high accuracy. The core component of the detector is developed based on

a Deep Convolutional Neural Network (CNN). The reason for using CNN is that

this framework can classify a large amount of labeled data, especially in image

classification with high accuracy [20]. Additionally, the CNN model does not have

to learn their local data separately, it can exchange its trained model with other

ENs to improve the learning knowledge as well as enhance the accuracy of attack

detection. In detail, the architecture of CNN in an EN includes three types of layers,

i.e., convolution layer, max pooling layer, and fully connected layer [20]. Figure 1.4

describes the layer of a CNN in an EN. These layers can be described as follows:

• Convolution layer: The neurons in this layer are formed in feature maps to

learn the feature representation of the input. In addition, these feature maps

can connect with others of the previous layer by weight parameters called filter

banks [21]. In this layer, the input data is convoluted with weight parameters

in every iteration to create feature maps.

• Max pooling layer: The main purpose of this layer is to reduce the resolution

of feature maps in the previous layer. To do this, this layer selects the largest

4.2 Proposed Attack Detection Framework 86

values in areas of feature map [20] and then sends them to the next layer.

• Fully connected layer: This layer performs classification functions for the

neural network. In this layer, the feature maps from previous layers are first

flattened. They are then put into a fully connected layer for classification. The

softmax function is included at the end of this layer to produce the output

prediction.

We denote by D a local dataset of an EN to train a CNN. D includes S images

and Y labels so we can denote D = (S,Y). We consider n = {1, .., N} as the

training layer of the neural network. We denote by N the number of training layers

of the neural network. We denote by I the matrix features of image S, and Ii as

the matrix features of image S at iteration i. The output of a convolution layer n,

n ∈ {1, .., N}, at iteration i+ 1 can be calculated as in equation (1.15):

In+1,i = γn

(
In,i ∗ Fn

)
, (4.1)

where (∗) is the convolutional operation, γn is the activation function and Fn is the

filter bank of layer n. After that, the output of the convolution layer is put into a

max pooling layer. The output of a max pooling layer can be calculated as follows:

In+2,i = φ
(
In+1,i

)
, (4.2)

where φ is the max pooling function that selects the maximum value in a pooling

area. We denote by Ie,i the matrix features of the last image after processing with

multiple convolution layers and max pooling layers. Ie,i is put into a softmax func-

tion to classify and produce the output in the fully connected layer. We consider

l ∈ {1, ..., L} as the classification group number, Ŷl ∈ Ŷ as the output prediction,

the probability that an output prediction Ŷ belongs to group l can be calculated as

4.2 Proposed Attack Detection Framework 87

follows:

p(Ŷl = l|Ie,i,We,i, be,i) = softmax(We,i, be,i)

=
eWe,iIe,i+be,i∑
l e

We,l,iIe,i+be,l,i
,

(4.3)

where We,i, be,i are the weights and biases of the fully connected layer at iteration

i, respectively; and We,l,i, be,l,i as weights and biases of the fully connected layer at

iteration i to classify an output prediction into class l. Based on equation (4.3), we

can calculate a vector of prediction Ŷ which includes output prediction Ŷl belonging

group l with probability p as follows:

Ŷ = argmax
l

[p(Ŷl = l|Ie,i,We,i, be,i)]. (4.4)

In this stage, we compare the output predictions with the labels using a sparse

categorical cross-entropy function to calculate the loss for backpropagation. We

denote by Yl ∈ Y the label of class l in Y . The loss function can be calculated as

follows:

J(W) = −
L∑
l=1

Yl log Ŷl. (4.5)

We denote by W the model of the neural network. Based on equation (4.5), we

can calculate the gradient of this function as follows:

∇θ =
∂J(W)

∂W
= −

∂
(∑L

l=1 Yl log Ŷl

)
∂W

.
(4.6)

After having the gradient based on equation (4.6). We then use it for the Adam

optimizer to update the parameters of the neural networks. We consider mi+1 and

vi+1 as the moment vectors of the next iteration i+ 1 of the Adam optimizer. The

mi+1 and vi+1 can be calculated from the gradient and Adam functions [82] as

4.2 Proposed Attack Detection Framework 88

mi+1 = A1(∇θ) and vi+1 = A2(∇θ). We denote by Γi a trained model, and θi a

global model at iteration i. With βi+1 as the learning rate, a new trained model at

the next iteration i+ 1 can be calculated as follows:

Γi+1 = Γi − βi+1
mi+1√
vi+1

= Γi − βi+1
A1(∇θi)√
A2(∇θi)

.

(4.7)

4.2.3 Collaborative Learning Process

In this chapter, we propose a Collaborative Deep Convolutional Neural Network

framework (Co-CNN) to detect the different types of attacks in a blockchain network.

In this framework, each EN has a CNN model to train and test its dataset. The

CNN model can receive trained models from other ENs to improve the accuracy of

attack detection. To do this, the CNN model of an EN first gets the trained model

(gradient) based on equation (4.6). It then sends the trained model to other ENs

and receives trained models from others. We denote by T the total number of ENs

and t ∈ T as the EN number. We consider at iteration i, an EN receives T − 1

trained models from others. θt,i is the trained model of EN t at iteration i. It can

aggregate all trained models using the following formula [83]:

θi+1 =
1

T

T∑
t=1

θt,i, (4.8)

where θi+1 is the new aggregated trained model. After generating a new aggregated

trained model, each EN will calculate a new trained model using equation (4.7).

This process continuously repeats until the algorithm converges or reaches the pre-

defined maximum number of iterations. After the training process, we can obtain

the optimal trained model in each EN to analyze and detect the attacks inside a

series of grey images. This process is summarized in Algorithm 4.1.

4.3 Performance Analysis 89

Algorithm 4.1 The learning process of Co-CNN model

1: while i ≤ maximum number of iterations do
2: for ∀t ∈ T do
3: The CNN of the EN-t learns Dt to produce Ŷ .
4: The EN-t creates the trained model θt and sends it to others.
5: The EN-t receives T − 1 trained models from others.
6: EN calculates a new optimal trained model Γi+1.
7: end for
8: i = i+ 1.
9: end while

10: EN uses its optimal trained model Γoptimal to detect attacks based on input grey
images.

4.3 Performance Analysis

4.3.1 Experiment Setup

In our experiments, we set up an Ethereum 2.0 system in our laboratory as shown

in Figure 4.3. This version of Ethereum uses a new consensus mechanism namely

Proof-of-Stake (PoS) instead of Proof-of-Work (PoW). There are five Ethereum

nodes, two bootnodes, a trustful device, and an attack device in our experiments.

All these devices are connected to a Cisco switch, which serves as the central hub

for our local network. The configuration of these devices is as follows:

• Ethereum nodes are launched by Geth v1.10.22 - an official open-source im-

plementation of Ethereum network [70] and Prysm v3.2.0 - an official imple-

mentation of the PoS consensus mechanism in Ethereum 2.0 [84]. They share

the same genesis configurations, e.g., chainID, block gas limit at 30,000,000

gas, etc. The configurations of nodes 1, 2, and 3 are workstation computers

with processor Intel Core i9-10900 @5.2 GHz, RAM of 64 GB. The configu-

rations of nodes 4 and 5 are personal computers with processor Intel Core i7-

4810MQ @3.8 GHz, RAM of 16 GB.

• Geth bootnode and Prysm bootnode are also created by Geth v1.10.22 and

4.3 Performance Analysis 90

Figure 4.3: Real experiment setup.

Prysm v3.2.0, respectively. They are responsible for connecting all the Ethereum

nodes together.

4.3.2 Dataset Collection

According to the detailed analysis of the public Ethereum network on transac-

tion behavior [85], the addresses that are associated with less than 10 transactions

account for 88% of total addresses. About 50% received addresses appear only one

time for a transaction in history. This is because most people want to create trans-

actions anonymously. Therefore, to create diversity and reality for our dataset, we

need to create a large number of unique accounts (i.e., 10,000 accounts in our ex-

periments) to send transactions to Ethereum nodes. A truthful server, as shown in

Figure 4.3, randomly selects accounts from these accounts to create transactions for

the blockchain system.

4.3 Performance Analysis 91

4.3.2.1 Normal State

For the normal state, we use OpenZeppelin Contracts [86] library as the secured

SCs. Two types of transactions below are used to generate samples randomly for

the normal state.

• Exchange ETH: On the public Ethereum network, most transactions only

exchange the ETH to another address without any bytecode. This kind of

transaction accounts for 75% of the total samples of the normal state in our

experiment.

• Transactions-related SCs: There are two types of these transactions. The

transactions for deploying SCs and the transactions that interact with func-

tions in deployed SCs. We perform three essential categories of SCs in the

Ethereum system, i.e., Tokens/Coins/NFT, Ethereum 2.0 deposit, and SCs

for other purposes.

Although the number of original SCs is minuscule compared to the total trans-

actions in the dataset. The content of transactions and deployed SCs are not dupli-

cated. Because we randomly select not only the senders and recipients but also the

amount of ETH and inputs of functions in any generated transaction.

4.3.2.2 Attack States

SCs have a number of vulnerabilities listed in SWC [87] because of programmers,

consensus mechanisms, and compilers. Attackers can exploit these weaknesses of SC

to perform attacks and then steal money in blockchain systems [79]. In this work,

we regenerate several real-world attacks from the tracks that they left on the ledger

of Ethereum. We give a brief description of the six types of application layer-based

attacks.

4.3 Performance Analysis 92

• DoS with Block Gas Limit (DoS): There are several functions inside SCs.

These functions can be temporarily disabled when their gas requirements ex-

ceed the block gas limit. A DoS case occurred in 2015 when the 1,100 ETH

jackpot payout of SC GovernMental was stuck [87]. The GovernMental SC

is deployed in our work, and we continuously join the jackpot to disable the

payout function.

• Overflows and Underflows (OaU): In solidity language, if a variable is out

of its range, it is in the overflow or underflow state. In this case, the vari-

able is turned to another value (e.g., 0 for overflow and 2256−1 for underflow).

Attackers can use this vulnerability to bypass SCs’ conditions when withdraw-

ing funds. For example, they can bypass the requirements of checking their

accounts’ balances. Several real OaU attacks were detected, e.g., 2256 BEC

tokens, CSTR token, $800k USD of PoWH token [88], and so on [87]. We

re-perform the above OaU attacks on their original SCs in the dataset.

• Flooding of Transactions (FoT): Attackers spam a number of meaningless

transactions to delay the consensus of blockchain networks. Such an attack

caused the unconfirmation of 115k Bitcoin transactions in 2017 [80]. In our

setup, FoT attacks are generated by continuously sending a negligible amount

of ETH from a random sender to another arbitrary recipient.

• Re-entrancy (Re): When the SCs do not update their states before sending

funds, attackers can recursively call the withdraw function to drain the SCs’

balances. Two types of Re attacks are single-function and cross-function. The

single-function type happened and led to a loss of 3.6 million ETH in 2016.

Both types of Re are performed in our dataset [87].

• Delegatecall (DeC): delegatecall() is the mechanism to inherit functions, stor-

age, and variables from other deployed SCs. If the inherited SCs are attacked,

4.3 Performance Analysis 93

Table 4.1: Number of samples on the proposed ABTD dataset.

Class Number of samples Portion (%)
Normal 152,423 50.34
DoS 22,994 7.59
OaU 29,254 9.66
FoT 41,732 13.78
Re 22,682 7.49
DeC 22,455 7.41
FDV 11,209 3.73
Total 302,749 100

they will in-directly affect the main SC. To implement, we re-create the 2nd

Parity MultiSig Wallet attack [87]. In this attack, attackers took control and

suicide the inherited SC.

• Function Default Visibility (FDV): If the programmers do not define the vis-

ibility of functions in SCs, it will default to the public. Thus, anyone can

interact with those functions. For implementation, we perform the 1st Parity

MultiSig Wallet attack [87]. In this attack, attackers took control of this SC

through an FDV flaw.

Table 4.1 shows the number of samples in each class of our proposed dataset.

The proportions of the samples in the classes are not balanced, e.g., the number of

Re samples is twice that of FDV. Because Re requires a series of attack transactions

instead of only one attack transaction as in FDV.

4.3.3 Evaluation Methods

The confusion matrix [63,64] is widely used to evaluate the performance of ma-

chine learning models. We denote by TP, TN, FP, and TN “True Positive”, “True

Negative”, “False Positive”, and “True Negative”. In this chapter, we use ubiqui-

tous parameters (i.e., accuracy, precision, recall) in the confusion matrix to evaluate

4.3 Performance Analysis 94

the performance of models. The accuracy of a model can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.9)

In addition, we use the macro-average precision and macro-average recall to eval-

uate the performance of the models. With L as the number of classification groups

(i.e., the total number of normal and attack states), the macro-average precision is

calculated as follows:

Precision =
L∑
l=1

TPl

TPl + FPl

. (4.10)

The macro-average recall of the total system can be calculated as follows:

Recall =
L∑
l=1

TPl

TPl + FNl

. (4.11)

4.3.4 Simulation and Experimental Results

In this section, we present the simulation and real-time experimental results of

our experiments. In particular, we use the confusion matrix to evaluate our proposed

model’s performance (in terms of accuracy, precision, and recall) compared to the

centralized model.

In this section, we compare our proposed model in two schemes. We use our

proposed preprocessing process in the first scheme as in Figure 4.2. In the second

scheme, we eliminate the value feature and use only the Bytecode preprocessing to

analyze the transactions and SCs. Though the results of these schemes, we demon-

strate the efficiency of our proposed preprocessing process in combining various

features of transactions. We use CNN to classify different types of cyberattacks and

normal behavior in transactions and SCs. Figure 4.4 describes the accuracy results

of two schemes. In this figure, the model w/-V has accuracy, precision, and recall

4.3 Performance Analysis 95

Accuracy Precision Recall
0

20

40

60

80

100

72.16

58.91 58.64

93.85
90.41 89.74

P
e
rc
e
n
ta
g
e

Centralized-CNN w/o-V
Centralized-CNN w/-V

Figure 4.4: The results of the preprocessing processes in different schemes.

at 93.849%, 90.413%, and 89.742%, respectively. These results outperformed the

model w/o-V which has accuracy, precision, and recall at 72.163%, 58.911%, and

58.638%, respectively. Especially, Figure 4.5 provides detailed information for all

types of attacks and normal behavior. In Figure 4.5, we can see that the model

w/o-V cannot detect DoS and FoT attacks because it classifies all samples of DoS

and FoT attacks into normal behavior. In contrast, the model w/-V can detect these

types of attacks with high accuracy at about 97% for DoS detection and 100% for

FoT detection. This is because the value feature is essential to support the learning

models to detect various types of important attacks.

4.3.4.1 Accuracy Analysis

In this section, we perform experiments to compare the performance results of

the centralized model with our proposed model. The centralized model (Centralized-

CNN) that we design can learn knowledge from all ENs for training and testing pro-

4.3 Performance Analysis 96

cesses. Besides, we use different schemes of the collaborative learning model with

3 Ethereum nodes (Co-CNN-3), 5 Ethereum nodes (Co-CNN-5), and 10 Ethereum

nodes (Co-CNN-10). In each scheme, the collected datasets are divided equally

among all Ethereum nodes. To implement experiments, we first perform cyberat-

tacks on transactions and SCs in our deployed private Ethereum platform to collect

datasets from all ENs. In our proposed collaborative learning model, each EN uses

its local dataset for both training and testing processes. However, in the training

process, the ENs can exchange their trained models with others to improve their

learning knowledge as well as the accuracy of attack detection. On the other hand,

in the Centralized-CNN, all the local datasets of ENs will be gathered into a big

dataset for its training and testing process.

The performance results of two scenarios of preprocessing processes (i.e., with-

out value feature (w/o-V) and with value feature (w/-V) with all schemes are also

provided in Table 4.2 and Table 4.3. Table 4.2 presents the performance of the sim-

ulation results of all schemes with the w/o-V preprocessing process. In Table 4.2,

the accuracy, precision, and recall are nearly the same at around 72-73%, 58-59%,

and 58-59%, respectively. In contrast, in Table 4.3, we can observe that the perfor-

mance of all schemes with the w/-V preprocessing process outperforms those w/o-V

preprocessing process at about 93-94%, 90-91%, and 89-90% in accuracy, precision,

and recall, respectively. In detail, we first can see in Table 4.3 that the performance

results of our proposed models are nearly the same as the Centralized-CNN. How-

ever, in various ENs such as EN-5 of the Co-CNN-5, the accuracy, precision, and

recall are higher than those of the Centralized-CNN at around 0.6%, 0.6%, and 0.7%,

respectively. Specifically, Figure 4.6 provides detailed information for each type of

attack of the Centralized-CNN and EN-5 of Co-CNN-5. These figures show that

the misdetection of EN-5 of the Co-CNN-5 is dramatically reduced compared to the

Centralized-CNN. In detail, the misdetection of the EN-5 from Normal to DoS is at

4.3 Performance Analysis 97

Table 4.2: Simulation results w/o-V with Centralized-CNN, Co-CNN-3, Co-CNN-5,
and Co-CNN-10 models.

Centralized-CNN
Co-CNN-3 Co-CNN-5

EN-1 EN-2 EN-3 EN-1 EN-2 EN-3 EN-4 EN-5
Accuracy 72.163 71.686 71.761 72.080 72.735 72.519 72.211 72.760 72.627
Precision 58.911 58.323 58.298 58.646 59.676 59.300 58.818 59.699 59.032
Recall 58.638 57.539 57.951 58.608 58.955 58.807 58.415 59.444 58.969

Co-CNN-10
EN-1 EN-2 EN-3 EN-4 EN-5 EN-6 EN-7 EN-8 EN-9 EN-10

Accuracy 72.768 73.333 73.184 73.117 73.150 72.984 73.017 73.267 73.516 73.117
Precision 58.169 59.462 59.107 58.957 58.779 58.621 58.288 59.503 59.013 59.125
Recall 58.131 58.531 58.462 58.727 58.775 58.285 58.528 59.066 59.192 58.650

Table 4.3: Simulation results w/-V with Centralized-CNN, Co-CNN-3, Co-CNN-5,
and Co-CNN-10 models.

Centralized-CNN
Co-CNN-3 Co-CNN-5

EN-1 EN-2 EN-3 EN-1 EN-2 EN-3 EN-4 EN-5
Accuracy 93.849 93.88 94.384 94.115 94.347 94.057 94.148 94.206 94.439
Precision 90.413 90.216 91.162 90.860 90.794 90.540 90.637 90.903 91.029
Recall 89.742 89.665 90.688 89.970 90.329 89.932 90.025 90.514 90.536

Co-CNN-10
EN-1 EN-2 EN-3 EN-4 EN-5 EN-6 EN-7 EN-8 EN-9 EN-10

Accuracy 93.633 94.248 93.849 93.566 93.899 93.832 93.516 93.732 93.699 93.849
Precision 89.326 90.611 90.095 89.969 90.106 90.048 89.252 90.684 89.778 90.464
Recall 89.206 89.716 89.313 89.114 89.745 89.289 89.213 89.464 89.298 89.477

0.88% which is smaller than that of the Centralized-CNN at 1.14%. Similarly, the

misdetection of the EN-5 from OaU to Normal is at 0.926% of total samples of OAU

which is smaller than that of the Centralized-CNN at 3.89%.

4.3.4.2 Convergence Analysis

In this section, we compare the convergence of different models, i.e., the Centralized-

CNN, and the collaborative model with 3, 5, and 10 Ethereum nodes. Figure 4.7

describes the accuracy and loss of these models in 1,000 iterations. In general, all

of the models converged after about 800 iterations in terms of accuracy and loss.

While the accuracies of Centralized-CNN, Co-CNN-3, and Co-CNN-5 models fast

reach the convergence after 400 iterations at about 93%, the accuracies of Co-CNN-

10 need about 800 iterations to converge and reach 93%. The same trends happen

4.3 Performance Analysis 98

with the loss. This is because the number of samples of each EN in Co-CNN-10

is much smaller than those of other models while the number of workers is higher

than those of other models. Thus, Co-CNN-10 needs more time to exchange learn-

ing knowledge with other models. It finally reaches convergence after about 800

iterations and has accuracies nearly the same as other models.

4.3.4.3 Real-time Attack Detection

In this section, we consider a practical scenario by evaluating the performance

of the system in real-time cyberattack scenarios. To do this, we first take the

trained models from all schemes (noted that the trained modes are trained in the

schemes as in the accuracy analysis, i.e., Centralized-CNN, Co-CNN-3, Co-CNN-

5). There are 5 blockchain nodes participating in these experiments and they join

a private Ethereum network as described in the above section. After the learning

models are trained, they are deployed on ENs. In the experiments, both two cases

with value and without value preprocessing processes are considered. In real-time

scenarios, both normal and attack samples continuously come to the blockchain

node. Thus, the BCEC has to collect all the transaction traffic in 3 seconds into a

package and then convert them into images. All processes including preprocessing

(i.e., converting samples into images) and processing (i.e., model prediction) must

be completed within 3 seconds before the next package comes.

Table 4.4 presents the performance of Co-CNN-3, Co-CNN-5, and Centralized-

CNN models in two cases of preprocessing. In general, we can observe in Table 4.4(a)

that the performance of these models in accuracy, precision, and recall w/-V in

the preprocessing process is at about 88-91%, 76-80%, and 77-79%, respectively.

These results outperform those of the w/o-V in preprocessing process with accuracy,

precision, and recall at about 65-66%, 44-51%, and 48-51%, respectively. In addition,

when we compare the same case w/-V in preprocessing process of the simulation as in

4.3 Performance Analysis 99

Table 4.4: Real-time experiment results.

(a) Centralized-CNN and Co-CNN w/-V

Centralized-CNN Co-CNN-3 Co-CNN-5
EN-1 EN-2 EN-3 EN-4 EN-5 EN-1 EN-2 EN-3 EN-4 EN-5 EN-1 EN-2 EN-3 EN-4 EN-5

Accuracy 89.603 89.542 89.668 89.702 89.291 88.663 88.582 88.655 88.794 88.471 90.928 90.896 90.957 91.061 90.614
Precision 76.851 75.806 76.956 76.690 75.582 76.755 75.872 76.845 77.191 75.912 80.192 78.835 80.469 80.846 78.576
Recall 76.858 77.117 76.888 76.767 76.822 78.523 78.939 78.531 78.563 78.724 78.870 79.044 78.757 78.762 78.747

(b) Centralized-CNN and Co-CNN w/o-V

Centralized-CNN Co-CNN-3 Co-CNN-5
EN-1 EN-2 EN-3 EN-4 EN-5 EN-1 EN-2 EN-3 EN-4 EN-5 EN-1 EN-2 EN-3 EN-4 EN-5

Accuracy 65.877 65.780 65.643 66.312 65.734 66.804 66.640 66.569 67.115 66.797 65.606 65.579 65.512 66.212 65.830
Precision 47.263 46.105 46.739 47.544 46.012 51.442 50.024 51.116 51.641 50.433 44.668 44.078 44.534 44.994 44.141
Recall 51.383 51.576 51.434 51.318 51.427 49.670 49.888 49.586 49.557 49.625 48.447 48.544 48.381 48.372 48.518

Table 4.3 and the real-time experimental results as in Table 4.4(a), we can observe

that the accuracy, precision, recall of the real-time experimental results are little

smaller than those of simulation results about 3%, 10%, and 11%, respectively. This

is because, in simulation, we implement multiple types of attacks on the blockchain

system and then collect data to have enough samples for the dataset to train the

model. However, in real-time scenarios, various attack types, such as Re, DeC, and

FDV, rarely appear during the experiment. Thus, it makes more difficult for the

learning models to detect them in real-time.

Specifically, we can observe in Table 4.4(a) that EN-4 of Co-CNN-5 has higher

performance in accuracy, precision, and recall than EN-4 of the Centralized-CNN

about 1.3%, 4%, and 2%, respectively. Therefore, in real-time detection scenarios,

our proposed model still demonstrates better performance in detecting attacks than

in simulation.

4.3.4.4 Real-time Monitoring and Detection

Figure 4.8 shows the real-time cyberattack monitoring from the output of our

proposed model Co-CNN-5 in Ethereum node 1. In these figures, the normal and

each type of attack are displayed in different lines. Figure 4.8(a) displays the normal

state of the system with the high value of the predicted normal state over time. We

4.4 Conclusion 100

can observe that in the normal state, the predicted states of all types of attacks are

nearly 0. When a type of attack happens, the predicted state of that attack will

increase, e.g., the FoT attack state as in Figure 4.8(d). As described in the previous

section, in real-time scenarios, RE, Dec, and FDV attack states have a little number

of attack samples. Therefore, their predicted states in Figure 4.8(b), Figure 4.8(f)

and Figure 4.8(g) do not have high values. However, our proposed model can still

detect all of the attacks in real-time with high accuracy at 91%.

4.3.4.5 Processing Time

Figure 4.9 describes the processing time of two ENs with the same Co-CNN-5

model. We can observe in Figure 4.9 that when the number of transactions in-

creases, the processing time of both ENs also linearly increases. However, there is

a different capacity between the two ENs. In detail, while EN-5 can process about

1,100 transactions per second, the number of transactions that EN-1 can process

is around 2,150 transactions per second. This is because of the different types of

computer configuration between the two ENs described in section 4.3.1. However,

in the mainnet of the Ethereum system, the maximum recorded number of transac-

tions is 93.01 per second [89]. Therefore, the capacity of our proposed system can

be well-adapted to detect attacks on the mainnet Ethereum system.

4.4 Conclusion

In this chapter, we have developed a collaborative learning model that could effi-

ciently detect malicious attacks in transactions and smart contracts in a blockchain

network. To do this, we have implemented a private Ethereum network in our lab-

oratory. We have then performed attacks in transactions and SCs of that network

for analysis. Next, we have analyzed the transaction data and extracted the impor-

tant features (i.e., Bytecode and value) to build the dataset. After that, we have

4.4 Conclusion 101

converted the dataset into the image format to train and evaluate the performance

of our proposed model. In our proposed model, a learning node can detect attacks

in transactions and SCs of a blockchain network. It then can receive and aggregate

learning knowledge (i.e., trained models) from other learning nodes to improve the

accuracy of detection. As a result, our proposed model safeguards the privacy of

the local data at the learning nodes by ensuring that this information is not exposed

over the network. Both simulation results and real-time experimental results showed

the efficiency of our proposed model in detecting attacks.

4.4 Conclusion 102

Normal
29699
97%

4203
100%

488
8%

8327
100%

1632
36%

0
0%

0
0%

Normal

DoS

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

DoS

OaU

852
3%

0
0%

5333
91%

0
0%

0
0%

0
0%

0
0%

OaU

FoT

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

FoT

Re

2
0%

0
0%

30
1%

0
0%

2867
64%

0
0%

2
0%

Re

DeC

1
0%

0
0%

1
0%

0
0%

0
0%

3895
88%

672
29%

DeC

FDV

1
0%

0
0%

0
0%

0
0%

1
0%

549
12%

1620
71%

FDV

T
ru

e
la
b
e
l

Predicted label

(a)

Normal
29347
97%

0
0%

227
4%

0
0%

946
21%

0
0%

0
0%

Normal

DoS

35
0%

4198
100%

0
0%

94
1%

0
0%

0
0%

0
0%

DoS

OaU

839
3%

0
0%

5606
96%

0
0%

0
0%

0
0%

1
0%

OaU

FoT

0
0%

0
0%

0
0%

8233
99%

0
0%

0
0%

0
0%

FoT

Re

20
0%

5
0%

0
0%

0
0%

3554
79%

0
0%

0
0%

Re

DeC

5
0%

0
0%

1
0%

0
0%

0
0%

3897
88%

670
29%

DeC

FDV

2
0%

0
0%

1
0%

0
0%

0
0%

547
12%

1620
71%

FDV

T
ru

e
la
b
e
l

Predicted label

(b)

Figure 4.5: The detection results of the models w/ and w/o-V feature. (a)
Centralized-CNN w/o-V. (b) Centralized-CNN w/-V.

4.4 Conclusion 103

Normal
29347
97%

0
0%

227
4%

0
0%

946
21%

0
0%

0
0%

Normal

DoS

35
0%

4198
100%

0
0%

94
1%

0
0%

0
0%

0
0%

DoS

OaU

839
3%

0
0%

5606
96%

0
0%

0
0%

0
0%

1
0%

OaU

FoT

0
0%

0
0%

0
0%

8233
99%

0
0%

0
0%

0
0%

FoT

Re

20
0%

5
0%

0
0%

0
0%

3554
79%

0
0%

0
0%

Re

DeC

5
0%

0
0%

1
0%

0
0%

0
0%

3897
88%

670
29%

DeC

FDV

2
0%

0
0%

1
0%

0
0%

0
0%

547
12%

1620
71%

FDV

T
ru

e
la
b
e
l

Predicted label

(a)

Normal
5891
96%

0
0%

11
1%

0
0%

184
21%

0
0%

0
0%

Normal

DoS

54
1%

839
99%

0
0%

20
1%

0
0%

0
0%

0
0%

DoS

OaU

161
3%

0
0%

1176
99%

0
0%

0
0%

0
0%

0
0%

OaU

FoT

0
0%

0
0%

0
0%

1641
99%

0
0%

0
0%

0
0%

FoT

Re

7
0%

5
1%

0
0%

0
0%

681
79%

0
0%

0
0%

Re

DeC

0
0%

0
0%

0
0%

0
0%

0
0%

804
88%

123
27%

DeC

FDV

1
0%

0
0%

0
0%

0
0%

0
0%

111
12%

329
73%

FDV

T
ru

e
la
b
e
l

Predicted label

(b)

Figure 4.6: The detection results of Centralized-CNN and Co-CNN-5 models. (a)
Centralized-CNN w/-V. (b) Co-CNN-5 w/-V.

4.4 Conclusion 104

0 200 400 600 800 1000
0.7

0.75

0.8

0.85

0.9

0.95

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b)

Figure 4.7: The convergence of accuracy and loss over iterations: (a) The accuracy
over interactions, and (b) The loss over iterations.

4.4 Conclusion 105

16:29:00 16:29:15 16:29:30

Time

0

10

20

30

40

P
re

d
ic
te

d
st

at
e

(t
ra

n
sa

ct
io

n
s)

13:36:00 13:36:30 13:37:00 13:37:30

Time

0

10

20

30

40

P
re

d
ic
te

d
st

at
e

(t
ra

n
sa

ct
io

n
s)

02:19:45 02:20:00 02:20:15

Time

0

10

20

30

40

P
re

d
ic
te

d
st

at
e

(t
ra

n
sa

ct
io

n
s)

00:51:15 00:51:30 00:51:45

Time

0

10

20

30

P
re

d
ic
te

d
st

at
e

(t
ra

n
sa

ct
io

n
s)

(

01:12:00 01:12:15 01:12:30

Time

0

10

20

30

40

P
re

d
ic
te

d
st

at
e

(t
ra

n
sa

ct
io

n
s)

(e) DoS attack state

01:35:45 01:36:00 01:36:15

Time

0

10

20

30

40

P
re

d
ic
te

d
st

at
e

(t
ra

n
sa

ct
io

n
s)

(f) DeC attack state

(b) Re attack state(a) Normal state

(c) OaU attack state d) FoT attack state

4.4 Conclusion 106

Figure 4.9: The processing time of proposed Co-CNN-5 model in two computer
configurations.

Figure 4.8: Real-time cyberattack detection: proposed Co-CNN-5 model in
Ethereum node 1.

(g) FDV attack state

Normal Re OaU FoT DoS DeC FDV

107

Chapter 5

Conclusions and Potential Research Directions

5.1 Conclusions

In this thesis, we have presented our works in developing cyberattack detection

models based on FL and TL for decentralized networks. In each chapter, we have

deeply analyzed challenges and proposed a collaborative learning model to detect

cyberattacks in IoT or Blockchain networks.

In Chapter 2, we have proposed a novel collaborative learning framework to

address the limitations of current ML-based cyberattack detection systems in IoT

networks. By extracting and transferring knowledge from a network with abundant

labeled data (source network), the intrusion detection performance of the target

network could be significantly improved (even if the target has very few labeled

data). More importantly, unlike most of the current works in this area, our pro-

posed framework could enable the source network to transfer the knowledge to the

target network even when they are different data structures, e.g., different features.

The experimental results then showed that the accuracy of prediction of our pro-

posed framework was significantly improved in comparison with the state-of-the-art

UDL model. In addition, the convergence of the proposed collaborative learning

model was also analyzed with various cybersecurity datasets. In future work, we

can consider using other effective TL techniques to make TL processes more stable

and achieve better performance, especially when the amount of mutual information

is very limited.

In Chapter 3, we have proposed a novel collaborative learning framework for a

5.1 Conclusions 108

cyberattack detection system in a blockchain network. First, we have implemented

a private blockchain network in our laboratory. This blockchain network was used

to (1) generate data (both normal and attack data) to serve the proposed learning

models and (2) validate the performance of our proposed learning framework in

real-time experiments. We then build an effective BC-ID tool to collect data in

the blockchain network. This tool can extract features from the collected network

traffic data, filter attack samples in network traffic, and exactly label them in a real-

time manner. After that, we have proposed a highly-effective learning model that

allows to be effectively deployed in the blockchain network. This learning model

allows nodes in the blockchain can be actively involved in the detection process by

collecting data, learning knowledge from their data, and then exchanging knowledge

together to improve the attack detection ability. In this way, we can not only avoid

problems of conventional centralized learning (e.g., congestion and single point of

failure) but also protect the blockchain network right at the edge. Both simulation

and real-time experimental results then have clearly shown the efficiency of our

proposed framework. In the future, we plan to continue developing this dataset

with other emerging types of attacks and develop more effective methods to protect

blockchain networks.

In Chapter 4, we have developed a collaborative learning model that could effi-

ciently detect malicious attacks in transactions and smart contracts in a blockchain

network. To do this, we have implemented a private Ethereum network in our lab-

oratory. We have then performed attacks in transactions and SCs of that network

for analysis. Next, we have analyzed the transaction data and extracted the impor-

tant features (i.e., Bytecode and value) to build the dataset. After that, we have

converted the dataset into the image format to train and evaluate the performance

of our proposed model. In our proposed model, a learning node can detect attacks

in transactions and SCs of a blockchain network. It then can receive and aggregate

5.2 Potential Future Research Directions 109

learning knowledge (i.e., trained models) from other learning nodes to improve the

accuracy of detection. As a result, our proposed model safeguards the privacy of

the local data at the learning nodes by ensuring that this information is not exposed

over the network. Both simulation results and real-time experimental results showed

the efficiency of our proposed model in detecting attacks.

5.2 Potential Future Research Directions

Cyberattack detection faces numerous challenges with the increasing number of

new types of attacks as well as emerging decentralized systems such as autonomous

vehicle systems, satellite networks, and Metaverse.

5.2.1 FL for cyberattack detection in autonomous vehicle systems

The prospect of research in FL for cyberattack detection in autonomous vehicle

systems is highly promising, particularly as the automotive industry strides toward

an increasingly connected and autonomous future. One key avenue of exploration

lies in enhancing the scalability and efficiency of FL algorithms to accommodate

the complex and dynamic nature of cyber threats targeting autonomous vehicles.

Researchers can focus on developing robust FL models that can adapt to diverse

environments and evolving attack strategies, ensuring the resilience of autonomous

systems against adversarial manipulations. Moreover, the integration of advanced

anomaly detection techniques within the FL framework will be pivotal in identify-

ing subtle deviations from normal behavior, thereby fortifying the cyber resilience

of autonomous vehicle networks. As the automotive landscape embraces greater

connectivity, exploring privacy-preserving FL approaches will be crucial to address

concerns surrounding data security and user privacy. Additionally, interdisciplinary

collaborations between experts in machine learning, cybersecurity, and automotive

engineering will play a pivotal role in shaping the future of FL research, fostering

5.2 Potential Future Research Directions 110

innovations that enhance the reliability and security of autonomous vehicles in the

face of emerging cyber threats.

5.2.2 FL for cyberattack detection in satellite systems

The future of research in FL for cyberattack detection in satellite systems holds

tremendous potential as the space industry continues to advance. As satellites be-

come integral to global communication, navigation, and Earth observation, the need

for robust cybersecurity measures is paramount. Future investigations are likely to

focus on optimizing FL algorithms to cater to the unique challenges posed by satellite

networks, including limited bandwidth, high latency, and intermittent connectivity.

Researchers will explore ways to enhance the efficiency of FL models in detecting

and mitigating cyber threats such as jamming, spoofing, and unauthorized access to

satellite systems. Additionally, there will be a concerted effort to develop FL frame-

works that are resilient to adversarial attacks and can adapt to the evolving tactics

of cyber adversaries. Interdisciplinary collaborations between experts in machine

learning, satellite technology, and cybersecurity will play a crucial role in shaping

the future of FL research for satellite systems, ensuring the security and reliability

of these critical space assets in the face of emerging cyber challenges.

5.2.3 FL for cyberattack detection in Metaverse

In the rapidly evolving domain of cybersecurity, the concept of FL holds immense

potential, particularly in the context of the Metaverse. The Metaverse, a collective

virtual shared space created by the convergence of virtually enhanced physical and

digital reality, is inherently complex and decentralized. This complexity presents

unique challenges and opportunities for cyberattack detection. By leveraging de-

centralized data sources across various nodes within the Metaverse without compro-

mising data privacy, FL can provide a robust framework for detecting and mitigating

cyber threats. This approach not only protects the privacy and autonomy of individ-

5.2 Potential Future Research Directions 111

ual data sources but also harnesses their collective intelligence to improve detection

algorithms. The exploration will focus on developing adaptable, efficient, and scal-

able FL models that can effectively identify and counteract evolving cyber threats

in the Metaverse, potentially setting new benchmarks in cybersecurity for virtual

ecosystems.

112

Bibliography

[1] Y. Keshet, “Half of the malware detected in 2019

was classified as zero-day threats, making it the most

common malware to date,” Mar. 2020. [Online]. Avail-

able: https://www.cynet.com/blog/half-of-the-malware-detected-in-2019-was-

classified-as-zero-day-threats-making-it-the-most-common-malware-to-date/

[2] S. Morgan, “Global ransomware damage costs predicted to hit $11.5 billion

by 2019,” Mar. 2021. [Online]. Available: https://cybersecurityventures.com/

ransomware-damage-report-2017-part-2/

[3] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H. Rehmani,

“Applications of blockchains in the Internet of Things: A comprehensive sur-

vey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1676–1717,

Dec. 2018.

[4] J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu, and Y. Liu, “A survey of

blockchain technology applied to smart cities: Research issues and challenges,”

IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2794–2830, Feb.

2019.

[5] S. Biswas, K. Sharif, F. Li, Z. Latif, S. S. Kanhere, and S. P. Mohanty, “Inter-

operability and synchronization management of blockchain-based decentralized

e-health systems,” IEEE Transactions on Engineering Management, vol. 67,

no. 4, pp. 1363–1376, June 2020.

[6] Y. Yuan and F.-Y. Wang, “Blockchain and cryptocurrencies: Model, tech-

https://www.cynet.com/blog/half-of-the-malware-detected-in-2019-was-classified-as-zero-day-threats-making-it-the-most-common-malware-to-date/
https://www.cynet.com/blog/half-of-the-malware-detected-in-2019-was-classified-as-zero-day-threats-making-it-the-most-common-malware-to-date/
https://cybersecurityventures.com/ransomware-damage-report-2017-part-2/
https://cybersecurityventures.com/ransomware-damage-report-2017-part-2/

BIBLIOGRAPHY 113

niques, and applications,” IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, vol. 48, no. 9, pp. 1421–1428, July 2018.

[7] “The 10 Biggest Crypto Exchange Hacks In History,” Accessed: Apr. 11, 2024.

[Online]. Available: https://crystalblockchain.com/articles/the-10-biggest-

crypto-exchange-hacks-in-history

[8] “North Korean Hackers Have Prolific Year as Their Unlaundered Cryptocur-

rency Holdings Reach All-time High,” Accessed: Apr. 11, 2024. [Online]. Avail-

able: https://blog.chainalysis.com/reports/north-korean-hackers-have-prolific-

year-as-their-total-unlaundered-cryptocurrency-holdings-reach-all-time-high

[9] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen, and

E. Dutkiewicz, “Proof-of-stake consensus mechanisms for future blockchain net-

works: fundamentals, applications and opportunities,” IEEE Access, vol. 7, pp.

85 727–85 745, Jun. 2019.

[10] K. Salah, N. Nizamuddin, R. Jayaraman, and M. Omar, “Blockchain-based

soybean traceability in agricultural supply chain,” IEEE Access, vol. 7, pp.

73 295–73 305, May 2019.

[11] T. V. Khoa, D. H. Son, D. T. Hoang, N. L. Trung, T. T. T. Quynh, D. N.

Nguyen, N. V. Ha, and E. Dutkiewicz, “Collaborative learning for cyberattack

detection in blockchain networks,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, Apr. 2024.

[12] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,

D. Niyato, and C. Miao, “Federated learning in mobile edge networks: A com-

prehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,

pp. 2031–2063, Apr. 2020.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

https://crystalblockchain.com/articles/the-10-biggest-crypto-exchange-hacks-in-history
https://crystalblockchain.com/articles/the-10-biggest-crypto-exchange-hacks-in-history
https://blog.chainalysis.com/reports/north-korean-hackers-have-prolific-year-as-their-total-unlaundered-cryptocurrency-holdings-reach-all-time-high
https://blog.chainalysis.com/reports/north-korean-hackers-have-prolific-year-as-their-total-unlaundered-cryptocurrency-holdings-reach-all-time-high

BIBLIOGRAPHY 114

[14] Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, “A secure federated transfer

learning framework,” IEEE Intelligent Systems, vol. 35, no. 4, pp. 70–82, Apr.

2020.

[15] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep

neural network architectures and their applications,” Neurocomputing, vol. 234,

pp. 11–26, Apr. 2017.

[16] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,”

Neurocomputing, vol. 184, pp. 232–242, Apr. 2016.

[17] L. Vu, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, “Deep

transfer learning for IoT attack detection,” IEEE Access, vol. 8, pp. 107 335–

107 344, June 2020.

[18] T. V. Khoa, Y. M. Saputra, D. T. Hoang, N. L. Trung, D. Nguyen, N. V.

Ha, and E. Dutkiewicz, “Collaborative learning model for cyberattack detec-

tion systems in iot industry 4.0,” in 2020 IEEE Wireless Communications and

Networking Conference, May 2020, pp. 1–6.

[19] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, July 2006.

[20] W. Rawat and Z. Wang, “Deep convolutional neural networks for image clas-

sification: A comprehensive review,” Neural Computation, vol. 29, no. 9, pp.

2352–2449, Aug. 2017.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, May 2015.

[22] T. V. Khoa, D. H. Son, C.-H. Nguyen, D. T. Hoang, D. N. Nguyen, N. L.

Trung, T. T. T. Quynh, T.-M. Hoang, N. V. Ha, and E. Dutkiewicz, “Securing

BIBLIOGRAPHY 115

blockchain systems: A novel collaborative learning framework to detect attacks

in transactions and smart contracts,” arXiv preprint arXiv:2308.15804, Aug.

2023.

[23] Y. M. Saputra, D. Nguyen, H. T. Dinh, Q.-V. Pham, E. Dutkiewicz, and W.-J.

Hwang, “Federated learning framework with straggling mitigation and privacy-

awareness for ai-based mobile application services,” IEEE Transactions on Mo-

bile Computing, May 2022.

[24] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,”

in Artificial Intelligence and Statistics, Apr. 2017, pp. 1273–1282.

[25] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept

and applications,” ACM Transactions on Intelligent Systems and Technology,

vol. 10, no. 2, pp. 1–19, Jan. 2019.

[26] S. Niu, Y. Liu, J. Wang, and H. Song, “A decade survey of transfer learning

(2010–2020),” IEEE Transactions on Artificial Intelligence, vol. 1, no. 2, pp.

151–166, Oct. 2020.

[27] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2009.

[28] C. T. Nguyen, N. Van Huynh, N. H. Chu, Y. M. Saputra, D. T. Hoang, D. N.

Nguyen, Q.-V. Pham, D. Niyato, E. Dutkiewicz, and W.-J. Hwang, “Transfer

learning for wireless networks: A comprehensive survey,” Proceedings of the

IEEE, vol. 110, no. 8, pp. 1073–1115, June 2022.

[29] K. E. Mwangi, S. Masupe, and J. Mandu, “Transfer learning for internet of

things malware analysis,” in International Conference on Information, Com-

munication and Computing Technology, Oct. 2019, pp. 198–208.

BIBLIOGRAPHY 116

[30] Y. Fan, Y. Li, M. Zhan, H. Cui, and Y. Zhang, “Iotdefender: A federated

transfer learning intrusion detection framework for 5g iot,” in 2020 IEEE 14th

International Conference on Big Data Science and Engineering, Dec. 2020, pp.

88–95.

[31] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat,

and S. Venkatraman, “Deep learning approach for intelligent intrusion detection

system,” IEEE Access, vol. 7, pp. 41 525–41 550, Apr. 2019.

[32] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher,

and Y. Elovici, “N-BaIoT-Network-based detection of IoT botnet attacks using

deep autoencoders,” IEEE Pervasive Computing, vol. 17, no. 3, pp. 12–22, July

2018.

[33] N. Moustafa, “A new distributed architecture for evaluating ai-based security

systems at the edge: Network ton iot datasets,” Sustainable Cities and Society,

vol. 72, p. 102994, Sep. 2021.

[34] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani,

“A survey of machine and deep learning methods for internet of things (iot)

security,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1646–

1685, Apr. 2020.

[35] A. Abeshu and N. Chilamkurti, “Deep learning: The frontier for distributed

attack detection in fog-to-things computing,” IEEE Communications Magazine,

vol. 56, no. 2, pp. 169–175, Feb. 2018.

[36] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R.

Sadeghi, “Dı̈ot: A federated self-learning anomaly detection system for iot,” in

2019 IEEE 39th International Conference on Distributed Computing Systems,

July 2019, pp. 756–767.

BIBLIOGRAPHY 117

[37] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and

G. Srivastava, “Federated-learning-based anomaly detection for iot security at-

tacks,” IEEE Internet of Things Journal, vol. 9, no. 4, pp. 2545–2554, Feb.

2021.

[38] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V. Poor,

“Federated learning for internet of things: A comprehensive survey,” IEEE

Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, Apr. 2021.

[39] S. T. Mehedi, A. Anwar, Z. Rahman, K. Ahmed, and R. Islam, “Dependable

intrusion detection system for iot: A deep transfer learning based approach,”

IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 1006–1017,

Apr. 2022.

[40] S. Yılmaz, E. Aydogan, and S. Sen, “A transfer learning approach for securing

resource-constrained iot devices,” IEEE Transactions on Information Forensics

and Security, vol. 16, pp. 4405–4418, July 2021.

[41] T. Wen and R. Keyes, “Time series anomaly detection using convolutional

neural networks and transfer learning,” arXiv preprint arXiv:1905.13628, May

2019.

[42] C. Zhao, Z. Cai, M. Huang, M. Shi, X. Du, and M. Guizani, “The identification

of secular variation in IoT based on transfer learning,” in 2018 International

Conference on Computing, Networking and Communications, Mar. 2018, pp.

878–882.

[43] Y. Sharaf-Dabbagh and W. Saad, “Transfer learning for device fingerprinting

with application to cognitive radio networks,” in 2015 IEEE 26th Annual Inter-

national Symposium on Personal, Indoor, and Mobile Radio Communications,

Aug. 2015, pp. 2138–2142.

BIBLIOGRAPHY 118

[44] M. U. Hassan, M. H. Rehmani, and J. Chen, “Anomaly detection in blockchain

networks: A comprehensive survey,” IEEE Communications Surveys & Tuto-

rials, vol. 25, no. 1, pp. 289–318, Sep. 2022.

[45] P. Kumar, R. Kumar, G. Gupta, and R. Tripathi, “A distributed framework

for detecting DDoS attacks in smart contract-based Blockchain-IoT systems

by leveraging fog computing,” Transactions on Emerging Telecommunications

Technologies, vol. 32, no. 6, pp. 1–31, June 2021.

[46] O. Alkadi, N. Moustafa, B. Turnbull, and K.-K. R. Choo, “A deep blockchain

framework-enabled collaborative intrusion detection for protecting IoT and

cloud networks,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9463–

9472, June 2020.

[47] J. Kim, M. Nakashima, W. Fan, S. Wuthier, X. Zhou, I. Kim, and S.-Y. Chang,

“Anomaly detection based on traffic monitoring for secure blockchain network-

ing,” in 2021 IEEE International Conference on Blockchain and Cryptocurrency

(ICBC), Sydney, Australia, May 2021, pp. 1–9.

[48] Z. Liu and X. Yin, “LSTM-CGAN: towards generating low-rate DDoS adver-

sarial samples for blockchain-based wireless network detection models,” IEEE

Access, vol. 9, pp. 22 616–22 625, Feb. 2021.

[49] W. Cao, Y. Huang, D. Li, F. Yang, X. Jiang, and J. Yang, “A blockchain based

link-flooding attack detection scheme,” in 2021 IEEE 4th Advanced Information

Management, Communicates, Electronic and Automation Control Conference

(IMCEC), vol. 4, Chongqing, China, June 2021, pp. 1665–1669.

[50] P. Ramanan, D. Li, and N. Gebraeel, “Blockchain-based decentralized replay

attack detection for large-scale power systems,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, Aug. 2021.

BIBLIOGRAPHY 119

[51] B. Hu, C. Zhou, Y.-C. Tian, Y. Qin, and X. Junping, “A collaborative intru-

sion detection approach using blockchain for multimicrogrid systems,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 8, pp.

1720–1730, Apr. 2019.

[52] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards automated

reentrancy detection for smart contracts based on sequential models,” IEEE

Access, vol. 8, pp. 19 685–19 695, Jan. 2020.

[53] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward: Au-

tomated vulnerability detection models for ethereum smart contracts,” IEEE

Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1133–1144,

Jan. 2020.

[54] Q.-B. Nguyen, A.-Q. Nguyen, V.-H. Nguyen, T. Nguyen-Le, and K. Nguyen-

An, “Detect abnormal behaviours in ethereum smart contracts using attack

vectors,” in International Conference on Future Data and Security Engineering,

Nha Trang City, Vietnam, Nov. 2019, pp. 485–505.

[55] J. Huang, S. Han, W. You, W. Shi, B. Liang, J. Wu, and Y. Wu, “Hunting

vulnerable smart contracts via graph embedding based bytecode matching,”

IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2144–

2156, Jan. 2021.

[56] N. Ivanov, Q. Yan, and A. Kompalli, “Txt: Real-time transaction encapsulation

for Ethereum smart contracts,” IEEE Transactions on Information Forensics

and Security, vol. 18, pp. 1141–1155, Jan. 2023.

[57] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defectchecker:

Automated smart contract defect detection by analyzing evm bytecode,” IEEE

Transactions on Software Engineering, vol. 48, no. 7, pp. 2189–2207, Jan. 2021.

BIBLIOGRAPHY 120

[58] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu, “Federated deep

learning for cyber security in the internet of things: Concepts, applications, and

experimental analysis,” IEEE Access, vol. 9, pp. 138 509–138 542, Oct. 2021.

[59] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensem-

ble of autoencoders for online network intrusion detection,” arXiv preprint

arXiv:1802.09089, Feb. 2018.

[60] “KDD dataset,” http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[61] “NSL-KDD dataset,” https://www.unb.ca/cic/datasets/nsl.html.

[62] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set),” in 2015 Military

Communications and Information Systems Conference, Nov. 2015, pp. 1–6.

[63] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters,

vol. 27, no. 8, pp. 861–874, June 2006.

[64] D. M. Powers, “Evaluation: from precision, recall and F-measure to ROC, in-

formedness, markedness and correlation,” Journal of Machine Learning Tech-

nologies, pp. 37–63, Oct. 2011.

[65] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008,

Accessed: Apr. 11, 2024. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[66] D. H. Son, T. T. T. Quynh, T. V. Khoa, D. T. Hoang, N. L. Trung, N. V.

Ha, D. Niyato, D. N. Nguyen, and E. Dutkiewicz, “An effective framework

of private ethereum blockchain networks for smart grid,” in 2021 International

Conference on Advanced Technologies for Communications (ATC). IEEE, Oct.

2021, pp. 312–317.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://bitcoin.org/bitcoin.pdf

BIBLIOGRAPHY 121

[67] “kdd99 feature extractor,” AI-IDS, Accessed: Apr. 11, 2024. [Online].

Available: https://github.com/AI-IDS/kdd99 feature extractor

[68] “Wireshark Network Analysis,” Accessed: Apr. 11, 2024. [Online]. Available:

https://www.wireshark.org

[69] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Ba-

con, “Federated learning: Strategies for improving communication efficiency,”

arXiv preprint arXiv:1610.05492, 2016.

[70] Ethereum, “Official Go implementation of the Ethereum protocol,”

Accessed: Apr. 11, 2024. [Online]. Available: https://github.com/ethereum/go-

ethereum

[71] M. Oance, “Ethereum Network Stats,” Accessed: Apr. 11, 2024. [Online].

Available: https://github.com/cubedro/eth-netstats

[72] T. Neudecker and H. Hartenstein, “Network layer aspects of permissionless

blockchains,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp.

838–857, Sep. 2019.

[73] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang, and D. Mo-

haisen, “Exploring the attack surface of blockchain: A comprehensive survey,”

IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1977–2008, Mar.

2020.

[74] “Bitfinex restored after DDoS attack,” Accessed: Apr. 11, 2024. [Online].

Available: https://malware.news/t/bitfinex-restored-after-ddos-attack/16933

[75] J. Otávio Chervinski, D. Kreutz, and J. Yu, “Analysis of transaction flooding

attacks against Monero,” in 2021 IEEE International Conference on Blockchain

and Cryptocurrency (ICBC), Sydney, Australia, May 2021, pp. 1–8.

https://github.com/AI-IDS/kdd99_feature_extractor
https://www.wireshark.org
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/cubedro/eth-netstats
https://malware.news/t/bitfinex-restored-after-ddos-attack/16933

BIBLIOGRAPHY 122

[76] X. Wang, X. Zha, G. Yu, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and K. Zheng,

“Attack and defence of ethereum remote apis,” in 2018 IEEE Globecom Work-

shops (GC Wkshps), Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–6.

[77] “KDD Cup 1999 Data,” The Fifth International Conference on Knowledge

Discovery and Data Mining, Accessed: Apr. 11, 2024. [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[78] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of

Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, Nov. 2008.

[79] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum sys-

tems security: Vulnerabilities, attacks, and defenses,” ACM Computing Sur-

veys, vol. 53, no. 3, pp. 1–43, May 2021.

[80] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang, and D. Mo-

haisen, “Exploring the attack surface of blockchain: A comprehensive survey,”

IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1977–2008, Mar.

2020.

[81] L. Hollander, “Evm bytecode decompiler,” Accessed: Apr. 11, 2024. [Online].

Available: https://www.npmjs.com/package/evm

[82] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd

International Conference on Learning Representations, San Diego, CA, USA,

May 2015, pp. 1–15.

[83] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated op-

timization: Distributed machine learning for on-device intelligence,” arXiv

preprint arXiv:1610.02527, 2016.

[84] Prysmatic Labs, “Prysm: An Ethereum Consensus Implementation

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.npmjs.com/package/evm

BIBLIOGRAPHY 123

Written in Go,” Accessed: Apr. 11, 2024. [Online]. Available: https:

//github.com/prysmaticlabs/prysm/tree/v3.2.0

[85] A. Said, M. U. Janjua, S.-U. Hassan, Z. Muzammal, T. Saleem, T. Thaipisu-

tikul, S. Tuarob, and R. Nawaz, “Detailed analysis of ethereum network on

transaction behavior, community structure and link prediction,” PeerJ Com-

puter Science, vol. 7, pp. 1–26, Dec. 2021.

[86] OpenZeppelin, “A library for secure smart contract development,” Ac-

cessed: Apr. 11, 2024. [Online]. Available: https://github.com/OpenZeppelin/

openzeppelin-contracts

[87] SmartContractSecurity, “SWC Registry - Smart Contract Weakness Clas-

sification and Test Cases,” Accessed: Apr. 11, 2024. [Online]. Available:

https://swcregistry.io

[88] E. Banisadr, “How $800k Evaporated from the PoWH Coin

Ponzi Scheme Overnight,” Accessed: Apr. 11, 2024. [Online]. Avail-

able: https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-

coin-ponzi-scheme-overnight-1b025c33b530

[89] Etherscan, “Ethereum daily transactions chart,” Accessed: Apr. 11, 2024.

[Online]. Available: https://etherscan.io/chart/tx

https://github.com/prysmaticlabs/prysm/tree/v3.2.0
https://github.com/prysmaticlabs/prysm/tree/v3.2.0
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://swcregistry.io
https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://medium.com/@ebanisadr/how-800k-evaporated-from-the-powh-coin-ponzi-scheme-overnight-1b025c33b530
https://etherscan.io/chart/tx

	Certificate of Original Authorship
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Publications
	List of Figures
	Abbreviation
	Motivation, Background, and Literature Review
	Motivation
	Background
	Deep Learning
	Collaborative Learning

	Literature Review
	Machine Learning for Cyberattack Detection in IoT Networks
	Machine Learning for Attack Detection in Blockchain Systems

	Thesis Organization and Contributions
	Chapter 2 - Federated Transfer Learning for IoT Networks
	Chapter 3 - Federated Learning for Attack Detection in Blockchain Networks
	Chapter 4 - Federated Learning for Attack Detection in Transactions and Smart Contracts
	Conclusions and Potential Research Directions

	Collaborative Learning for Cyberattack Detection Systems in IoT Networks
	Proposed Federated Transfer Learning Framework for Cyberattack Detection in IoT Networks
	System Model
	Proposed Federated Transfer Learning Approach for Cyberattack Detection
	Evaluation Methods

	Performance Analysis
	Datasets
	Experiment Setup
	Experimental Results

	Conclusion

	Collaborative Learning for Cyberattack Detectionin Blockchain Networks
	Blockchain Network: Fundamentals and Proposed Network Model
	Blockchain
	Designed Blockchain Network at our Laboratory

	Proposed collaborative learning model for intrusion detection in blockchain network
	Experiment Setup, Dataset Collection and Evaluation Method
	Experiment Setup
	Dataset Collection and Feature Extraction
	Evaluation Method

	Experimental Results and Performance Evaluation
	Simulation Results
	Experimental Results

	Conclusion

	Collaborative Learning for Detection of Attacks to Transactions and Smart Contracts
	Designed Blockchain System and Our Proposed Collaborative Learning Framework
	Proposed Attack Detection Framework
	Preprocessing Process
	Learning Process
	Collaborative Learning Process

	Performance Analysis
	Experiment Setup
	Dataset Collection
	Evaluation Methods
	Simulation and Experimental Results

	Conclusion

	Conclusions and Potential Research Directions
	Conclusions
	Potential Future Research Directions
	FL for cyberattack detection in autonomous vehicle systems
	FL for cyberattack detection in satellite systems
	FL for cyberattack detection in Metaverse

	Bibliography

