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Abstract
Powder bed fusion is importance is growing with uses across industries in both polymer and metallic components, particularly 
in mass individualization. However, due to the relatively slow mass deposition speed compared to conventional methods, 
scheduling and production planning play a crucial role in scaling up additive manufacturing productivity to higher volumes. 
This paper introduces a framework combining discrete event simulation and a genetic algorithm showing makespan improve-
ment opportunities for multiple powder bed fusion factories varying workers, jobs and available equipment. The results show 
that bottlenecks move among workstations based on worker and capital equipment availability, which depend on the size of 
the facility indicating a resource-driven constraint for makespan. A makespan reduction of 78% is achieved in the simulation. 
This shows the trade-off of worker and capital equipment to achieve makespan improvements. The addition of personnel 
or equipment increases production with further gains achieved by scheduling optimization. Two levels of job demands are 
analyzed showing productivity gains of 45% makespan improvement when adding the first worker and additional savings 
with scheduling optimization using a genetic algorithm up to 11%. Most research on additive manufacturing production 
has focused on the quality of produced parts and printing technology rather than factory level management. This is the first 
application of this methodology to varying sizes of these potential factories. The method developed here will help decision-
makers to determine the appropriate number of resources to meet their customer demand on time, additionally, finding the 
optimal route for jobs before starting the production process.

Keywords Additive manufacturing · Discrete event simulation · Makespan · Genetic algorithm · Scheduling

1 Introduction

Powder bed fusion (PBF)  [1], has become a viable option 
for industrial and commercial production. It has enabled 
the production of parts that are more complex, customized, 
and variable than conventionally manufactured parts. As 
noted and evaluated in [2] effective planning of factories 

is a challenging and crucial step for manufacturing com-
petitiveness. In this study, we investigate a set of design 
choices for such planning for Multi Jet Fusion (MJF). MJF 
uses infrared lamps and a doping agent deposited by inkjet 
nozzles for fusing polymers together and is classified in the 
PBF family of additive manufacturing processes per ISO/
ASTM 52900 [1]. MJF is a competitive process with other 
polymer processes, the closest being Selective laser sintering 
(SLS). In comparison to FFF, MJF is up to ten times faster 
with superior surface finish and more isotropic mechanical 
properties [3] leading to commercial adoption in aerospace, 
medical, and automotive industries  [4]. Examples include 
tooling  [5], production line components  [6], and orthotics 
[7]. Furthermore, the recent announcement of HP’s metal 
system  [8], which shares similarities with their existing 
polymer systems, such as ease of use and scalability, has 
sparked interest in the industry for factory arranged produc-
tion systems. However, the scale-up of additive manufactur-
ing for production-level fabrication is challenged by the low 
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mass deposition per unit of time and the classic problem of 
high mix low volume products  [9]. PBF systems allow for 
individual customization of parts built in the same batch 
leveraging the geometric freedom of AM and enabling eco-
nomic lot size 1 production. PBF is a layer-by-layer process, 
and the deposition rate is limited by the size of the deposi-
tion nozzles, the resolution of the print, and the properties 
of the material being used   [10]. This can result in longer 
production times per unit compared to conventional manu-
facturing methods like injection molding. At a factory level, 
additional variables affect the total production time such as 
machine failure, worker availability, and shift time. When 
production quantities increase, the impacts of these variables 
become more significant.

Scheduling and production planning methods in AM 
are still developing with a recent review indicating limited 
investigation into this topic  [11]. Existing studies on pro-
duction planning in AM treated this challenge as a nesting 
and scheduling problem using heuristic optimization meth-
ods to allocate workers and parts to a static representation 
of the production system. Their objectives varied including 
minimizing production cost  [12, 13], minimizing lateness  
[14], minimizing makespan  [15], or maximizing profit and 
resource utilization  [16]. Kucukkoc et al.  [17] examined the 
scheduling problem in additive manufacturing for the pur-
pose of optimizing the processing time by assigning parts in 
job batches and scheduling them on multiple machines based 
on multi-integer linear programming models. Similarly, 
Dvorak et al.  [18] used heuristic algorithms to minimize 
makespans such as hill climbing (HC), tabu search (TS), and 
simulated annealing (SA). Zhang, et al.  [19] developed an 
algorithm for additive manufacturing based on combining 
the genetic algorithm with a heuristic placement strategy 
to minimize the makespan, they found that the developed 
algorithm showed better performance than the other heu-
ristic algorithms such as a genetic algorithm alone and a 
particle swarm algorithm. Oh et al.  [20] investigated the 
production planning and scheduling problem within mul-
tiple AM machines, they proposed a heuristic algorithm to 
optimize the build orientation, 2D packing, and scheduling 
based on the longest cycle time. Akram et al.  [21] examined 
the scheduling of identical parallel AM machines, aiming 
to meet distinct order deadlines while minimizing overall 
tardiness. They introduced both the mathematical framework 
for this challenge and a heuristic approach. The problem was 
deconstructed into two subproblems: first, the allocation of 
parts/jobs via part clustering linked to due dates, followed 
by job scheduling centered on job tardiness. However, this 
body of research focused on reducing the makespan analyti-
cally or with a static representation of the system and does 
not consider the stochastic and dynamic nature of a factory 
floor. Stittgen et al. [22] notes a strong impact of job alloca-
tion and selection within builds on laser-PBF throughput 

highlighting this challenge needs further investigation. 
Prior methods focused on specific snapshots in time, i.e. 
were static in their implementation and unable to update 
with changes in worker or machine availability and setups. 
Thus, these methods did not adjust for dynamic changes in 
the factory, like machine failures or worker absence. More 
dynamic methods of simulating production flows are needed 
to explore factory level implications of operating PBF sys-
tems and provide better insight into factory planning and 
management. We apply Discrete Event Simulation integrated 
with a genetic algorithm to solve complex problems allow-
ing stochastic variation to address this gap for MJF.

To overcome these challenges, using multiple approaches 
from in scheduling optimization and production planning 
for conventional manufacturing could be beneficial. Con-
ventional manufacturing systems have been significantly 
improved using computer simulation and various optimiza-
tion algorithms for design and operation. A seminal work 
in dynamic system simulation introduced Discrete Event 
Simulation (DES) to capture real-world variability for pro-
duction scheduling  [23]. DES is a powerful method for 
simulating solving complex queuing problems. DES has 
been successfully applied for bottleneck identification  [24], 
and for manual assembly  [25], where it was combined with 
operation management to solve a lot size problem to reduce 
the production cost. DES may be suitable for analyzing and 
improving AM process planning. Despite the general advan-
tages of DES, it does not iteratively perform optimization in 
isolation. Instead a suitable optimization method is needed 
to provide further improvements.

In this respect, several optimization methods have 
improved productivity in factories by simplifying the prob-
lem and either solving it analytically or using a heuristic opti-
mization method, simulated annealing (SA)  [26], and ant 
colony optimization (ACO)  [27]. Genetic algorithms (GA) 
represent an established and successful optimization search 
heuristic for a wide variety of problems  [28]. A genetic 
algorithm is a heuristic optimization technique based on the 
natural process of evolution  [29]. An advantage to GA is it is 
not myopic and can escape local minima [30]. GA has been 
successfully applied to optim izing and planning production 
systems, such as job scheduling [31], layout optimization 
[32], assembly line balancing [33], and resource utilization 
[34]. Conventional manufacturing settings have demonstrated 
the benefits of combining DES with optimization tools to 
solve some complex production problems. Shi et al.  [35] 
used a genetic algorithm with DES to minimize the overall 
energy consumption, carbon emission, and makespan in a 
flow shop. Nili et al.  [36] used DES and GA for maintenance 
plan schedules for repairing parts which led to minimizing 
the total cost of repairing projects. Rashid et al.  [37] com-
bined DES and GA in a construction factory to determine 
the number of workers on workstations that minimize total 
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production time. Fumagalli, et al.  [38] used this combina-
tion in aerospace manufacturing, they used DES to evaluate 
the solutions created by GA for solving the scheduling prob-
lem. Integrating DES with the GA is a useful approach that 
takes the benefits of both capturing dynamic variation in the 
system and a non-convex optimization search method. How-
ever, these methods have not yet been applied to flow-shop 
scheduling in additive manufacturing, which may provide 
insight into very high mix low volume (lot size 1) production 
systems. Given the success in other manufacturing settings, 
combining DES and GA approach may similarly improve 
planning and production system design in AM.

This work presents a simulation-optimization approach 
to solve a scheduling and bottleneck identification problem 
in additive manufacturing for a powder bed fusion-based 
process which can inform factory planning and operations. 
This research extends productivity improvement methods 
from conventional manufacturing into in the field of additive 
manufacturing showing the effectiveness of integrating GA 
with DES. Application of this method can enable companies 
to reduce their makespan and make informed decisions about 
equipment and staffing arrangements while reducing costs 
and improving customer service. This approach helps sys-
tematically analyze and identify the specific trade-off point 
between intended output performance and required machines 
and personnel as well as the contribution of intelligent sched-
uling. Additionally, it enhances the overall decision mak-
ing process by capturing the dynamic environment which 
associated with high level of uncertainties [39]. A summary 
of the related literature of production planning in additive 

manufacturing and the using of DES and GA in conventional 
manufacturing are listed in Tables 1 and 2.

The structure of this paper is as follows. Section  2 
described the focal AM problem setting, which is to be 
analysed and improved. Section 3 explains the research 
approach and how it led to the results in Sect. 4. Section 5 
discusses the results and their implications to academia and 
industry. Section 6 concludes the paper and provides an out-
look onto next steps.

2  Problem statement

The production flow in an additive manufacturing facil-
ity is defined as a scheduling problem where n jobs, 
j ∈ J = 1, 2,…… , n , enter the facility in a processing win-
dow and need to be completed. Each job is comprised of p 
parts of varying dimensions and numbers. For example j1 
contains 5 parts j2 has two parts jn has p parts as pj1 = 5 and 
pj2 = 2 . Each job is restricted to a single batch. A batch is 
defined as a group of parts that are produced together in the 
3D printer as a group at one time. The batch (or job) is then 
processed in subsequent stages as a collective unit.

Each job must progress through K processing stages. The 
sequence of stages is the same for each job, but the process-
ing time for each stage varies depending on the features of 
the job (p parts, part dimensions, and part quantities). No 
restrictions have been made on the types of parts or their 
features other than those imposed by the machine used for 
fabrication. The processing time, Pj,k , of a given job, j at 

Table 1  Summary of the 
related literature in additive 
manufacturing (papers 12-33) 
and conventional manufacturing 
(papers from 35 to 38)

Paper Objectives Methods

 [12] Minimizing production cost Mixed integer linear programming
 [13] Minimizing production cost Heuristic: ‘best-fit’ and ‘adapted best-fit’
 [14] Minimizing lateness GA
 [15] Minimizing makespan GA
 [16] Maximizing profit and resource utilization Heuristic method
 [17] Minimize processing time Multi-integer linear programming
 [18] Minimizing makespan Heuristic algorithms: HC, TS, and SA
 [19] Minimizing makespan GA combined with a heuristic
 [20] Optimize build orientation Heuristic method
 [21] Minimizing lateness Heuristic method
 [22] Optimizing throughput Simulation model built on MATLAB
 [24] Bottleneck identification DES
 [25] Minimizing cost DES
 [26–28] Optimizing scheduling Heuristic methods: SA, ACO, GA
 [32, 33] Optimizing layout, Assembly line balancing GA
 [35] Minimizing energy, carbon emission, makespan GA with DES
 [36] Minimizing cost of repairing projects GA with DES
 [37] Minimizing total production time GA with DES
 [38] Optimizing schedule GA with DES
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stage k ∈ K is dependent on the number of parts and their 
design properties, such that Pj,k = fk(j) . Processing time also 
includes any waiting time for worker availability, job setup, 
material transfer, and buffering.

The facility has mk parallel machines in stage k such that 
any available machine, M(k, i), in stage k can be assigned the 
next job. Define M(k, i) as the machine with individual ref-
erence i in stage k. The presence and number of workers in 
the facility have an effect on the production speed. For some 
stages, a worker must be present to initialize the operation 
and for others, the worker must perform tasks throughout 
the duration of that processing stage. Thus, the layout of 
the facility and transit to and from each machine across all 
stages is included. Figure 1 illustrates a general problem 
structure, depicting multiple stages and multiple machines 
within each stage. Additionally, the figure depicts multiple 
jobs that need to be allocated to these machines.

The goal is to minimize the total processing time 
for all n jobs j ∈ J = 1, 2,…… , n with processing 
time ( Pj,k,i =

∑

k Pj,k,i ) on M(k,  i) parallel machines 
i ∈ I = 1, 2,…mk , where the machine assigned to the job at 
each stage may vary. This minimization considers the uncer-
tainty and the dynamic nature of the additive manufacturing 
environment such as workers’ availability, shift time, facility 
layout, and traveling distances.

To assign jobs to parallel machines, define the binary var-
iable Xijk = [0, 1] that takes the value 1 if the job is assigned 
to the machine in stage k and is 0, otherwise. Consider the 
following objective function to minimize makespan (w) [40]:

In Eq. 1 the makespan is defined as the completion time 
for all jobs where each job must be assigned to exactly one 
machine in each stage and must progress through all process-
ing stages sequentially.

(1)w ≤

K
∑

k=1

n
∑

j=1

PjkXijk

3  Methodology

The production simulation task is divided into two parts: (A) 
facility resourcing and (B) job scheduling optimization. For (A), 
the impacts of the number of workers and the number of capital 
equipment at the bottleneck location is sought. Then for each 
facility resourcing, a genetic algorithm is used to allocate jobs 
to minimize makespan addressing (B). This work examines an 
example facility that exclusively uses the powder bed fusion 
(PBF) machines produced by Hewlett Packard (HP). HP calls 
their PBF system multi-jet fusion (MJF), which uses a series 
of inkjet nozzles for ink deposition and a heat lamp for ther-
mal fusing [8]. For (A) facility resourcing, a DES model of the 
factory is created and used to identify bottlenecks and evaluate 
worker and equipment utilization for each job schedule. The 
DES model captures additional information about the produc-
tion to better represent real-world production issues than static 
heuristic models alone, such as worker shifts and travel and 
machine downtime for each scheduling evaluation. For (B) job 
scheduling problem is solved to minimize makespan using a 
genetic algorithm and test candidate solutions given each vari-
ation in the number of machines and workers.

The MJF workflow comprises five main stages: (1) slic-
ing, (2) printing, (3) cooling, (4) unpacking, and (5) sand-
blasting. Slicing is the process of converting the 3D draw-
ing into instructions that the printer understands. Printing 
is the actual process of depositing powder and forming the 
parts. Cooling refers to letting the printed parts cool down to 
maintain dimensional accuracy and surface finish, it occurs 
on the building unit which is the platform where the printed 
parts are constructed, which can be removed from the printer 
for further post-processing such as cooling and unpacking. 
Unpacking is the stage of extracting the printed parts from 
the powder in building units using a vacuum. Sandblast-
ing refers to the Process of completely removing powder 
from printed parts.to achieve smooth and clean parts. This 
process is carried out by workers using a combination of 

Fig. 1  Assignment structure of 
n jobs to m machines through k 
stages used to schedule produc-
tion
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airflow and sand. Other post-processing steps such as polish-
ing and dying are possible but not included in this study. A 
digital model for production facilities was built to test the 
total production time of varying (a) parts, (b) workers, and 
(c) machines using Siemens Tecnomatix Plant Simulation 
[41] (Fig. 2). Among other simulation tools, this software 
was selected due to its advanced analysis and visualization 
capabilities, including bottleneck analysis, animation, and 
statistical analysis tools.

A test set of jobs was generated using historical data from 
a university additive manufacturing facility’s HP Multi-
Jet Fusion 4200 machine and randomly ordered. A range 
of factors influences the duration of each job stage. For 
instance, during unpacking and sandblasting, factors such 
as part geometry, packing density (number of parts), build 
height, material type, desired surface finish, and operator 
efficiency play a pivotal role in determining processing time. 
In this study, the number of parts was used as the primary 

Fig. 2  The 3D digital model of the production line built in Tecnomatix Plant Simulation

Table 2  Default order of the 
generated list of 20 jobs for 
processing with processing 
times in each stage

Job Number of 
parts (units)

Max Z height 
(inches)

P-Slicing (min) P-Printing 
(min)

P-Unpacking 
(min)

P-Sand-
blasting 
(min)

1 34 15 68 900 204 102
2 57 9 114 540 228 114
3 8 2 16 120 32 32
4 33 13 66 780 132 132
5 11 11 22 660 44 22
6 41 9 82 540 164 123
7 37 9 74 540 222 148
8 28 13 56 780 112 112
9 54 12 108 720 216 216
10 39 4 78 240 234 156
11 54 10 108 600 324 108
12 8 13 16 780 40 16
13 29 7 58 420 116 87
14 10 8 20 480 50 30
15 60 3 120 180 240 180
16 51 5 102 300 255 153
17 48 11 96 660 192 192
18 44 10 88 600 176 176
19 13 11 26 660 52 26
20 14 6 28 360 84 28
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determinant of processing time assuming all the parts have 
the same geometry and complexity within the jobs and vary 
between jobs. To capture the variability in processing time 
for different parts’ geometry, we have measured the process-
ing time and created random values for (unpacking between 
2 and 6 min and for sandblasting 2–4 min per part). These 
values are obtained from the university’s facility( refer to 
the appendix to see the parts that have been used to compute 
the average time).

In addition to minimizing the makespan for each facility 
layout and available resources, the trade-off of changing the 
number of machines and workers is explored to find an opti-
mal facility design for a range of production scales.

This study uses the following assumptions:

• The processing time for each job is known a priori.
• Setup time is independent of the job sequence and is con-

sidered part of the processing time.
• It is not possible for a machine to process more than one 

job at a time.
• Each job contains a different number of parts, and the 

complexity (difficulty in extraction and cleaning) of parts 
is identical within and between the jobs.

• During the scheduling period, all machines are available 
at the beginning.

• To account for the possibility of failures, a 1% failure rate 
is incorporated into each printing machine.

• Printers processing time depends mainly on the maxi-
mum Z height in each job [11]. Derived from HP’s 
specifications, the computation of printing time entails 
multiplying the job’s maximum height by a rate of 1 inch 
per hour [42]. This computation is established on a layer 
thickness of 0.003 inches and a duration of 8.3 s for each 
layer. The parts’ heights in each job are generated ran-
domly from 2 to 15 inches (the maximum height can be 
made on this printer).

The type of production here is classified as flow shop pro-
duction where all jobs follow the same route to comple-
tion. First, a DES model was built using Siemens Tecno-
matix Plant Simulation to represent the real production 
process of printing parts using multi-jet fusion printers 
including travel distance between machines. Next, a GA 
finds optimal or near-optimal schedules that lead to a 
decrease in the makespan, which improves productivity 
and reduces production costs. GA starts with defining 
Valid inputs to establish the search space. These limits 
define the population of possible solutions. The GA pro-
cedure randomly samples from this population of poten-
tial solutions to a problem. A random sample selected by 
the GA represents a ‘chromosome, or input string. Each 
selected chromosome is evaluated according to its fitness 

function. The fitness function is the cost function to be 
minimized or maximized. The chromosomes that are 
highly fit are retained for the next generation of possible 
solutions. In this next generation, retained chromosomes 
‘reproduce’ through a crossover process by exchanging 
parts of their selected inputs with other chromosomes. 
Often this crossover is a simple average weighting of the 
inputs. This process produces new solutions or “offspring" 
to the optimization problem, leveraging the high-perfor-
mance traits of the parents. The best fitting chromosomes 
are retained for each generation until the convergence 
criteria or computational search time limit is reached   
[29]. In this work, GA searches for the best job order 
for each DES setup (Fig. 3). Each DES setup is manu-
ally constructed by adding or removing machines. This 
type of scheduling problem is classified as an NP-hard 
problem, meaning finding guaranteed optimal solutions 
is not feasible. Finding an optimal solution to the flow 
shop scheduling problem requires exploring a large num-
ber of possible scheduling combinations, which becomes 
increasingly difficult as the number of jobs and machines 
increases. The jobs can be assigned to the machines in (n!) 
sequences. Which is in the first case is 20! = 2.4e18 , and 
100! = 9e157 in the second case. The best solution given 
a maximum search time using GA is kept. The jobs have 
been assigned to the printers as the original sequence (S): 
s0 = j1, j2, j3, ....., jn−1, jn . The GA creates a population of 
different sequences, each candidate sequence is generated 
randomly S = [s1, s2, s3......sz] . The jobs are assigned to 
the available machines according to their sequence with 
the priority rule of first in first out (FIFO) (Fig. 1). The 
GA parameters are set according to trial and error (num-
ber and size of generation). Crossover and mutation are 
applied to produce additional new solutions, after that the 
value of these solutions is evaluated by computing their 
fitness value which is in the makespan in this work. DES 
calculates the makespan of each sequence. Then, the best 
children (solutions) are used to generate a new population. 
This process is repeated through a number of generations 
until the best solution is found. A pseudo-code of the GA 

Fig. 3  Experimental flow for genetic algorithm schedule optimization 
in Tecnomatix Plant Simulation [41]
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is provided Fig. 4(left) and in the flow chart of the GA; 
Fig. 4(right).

The objective is to minimize the total production time 
measured as the makespan, or total time to process all 
jobs in the schedule. The main two factors that affect 
makespan are job assignments and resource availability 
(workers, machines, etc.). The combination DES and GA 
method is applied to two example use cases of differ-
ent sizes. The first smaller case study involves 20 jobs 
and the second is larger with 100 jobs. A digital model 
simulates the process and computes the makespan for 
several runs for two cases (small and large quantities). 
The makespan includes working time and non-working 
hours. There were two breaks (a short break of 15 min 
and a lunch break of 45 min) during the shift(8 hrs/day). 
The GA was run for 100 generations which was well after 
it converged.

4  Results

4.1  Case study 1: 20 jobs

For the first case study, 20 jobs were produced on 3 print-
ing machines, with 1 building unit, 1 unpacking machine, 
1 sandblasting, and 1 worker. Multiple experiments were 
conducted, starting with varying numbers of building units 
(the first highlighted column group in Table 3), followed by 
an increase in the number of workers (the second group). 
Then, the relation between workers and unpacking stations 
(third groups). Finally, the relation between the addition of 
extra sandblasting and various configurations of workers and 
the unpacking stations (fourth group).

According to Table 3, the makespan remains unaffected 
by the increase in the other resources such as building units, 
sandblasting, and unpacking stations when there is only one 
worker available. For example, adding an extra unpack-
ing station kept the makespane constant(Exp1, Exp2). As 
these resources are not bottlenecking the work. However, 
with the addition of one extra worker, the makespan was 
significantly reduced by up to 30% (Exp1, Exp3), indicat-
ing that the bottleneck in this arrangement is the availability 

Fig. 4  The pseudo-code and the flow chart of the GA
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of workers. Additionally, introducing an unpacking station 
also dropped the makespan by 11% (Exp3, Exp5) further. 
While adding extra sandblasting improved the makespan by 
only 0.14%(Exp3, Exp4). In certain instances, the applica-
tion of a genetic algorithm (GA) schedule leads to a more 
significant reduction in the makespan than adding extra 
workers. For instance, in Exp 5, the makespan was reduced 
to (9:03:31:45) after applying the GA, whereas in Exp 8, 
introducing an extra worker only reduced the makespan to 
(12:02:13:35). Figure 5 shows the resource statistic results 
after the addition of the unpacking station and one more 
worker for each workstation. It can be seen from the same 
figure that DES captures the dynamic nature of the system 
by taking into consideration the different operating phases 
of the workers and machines. For example, the worker break 
periods are deemed paused time, and ‘unplanned’ refers to 
time without a worker on shift. These variations in avail-
ability and the simulated job sequence give capture factory 
performance unique to the job sequence.

The makespan was notably improved after adding 
an extra unpacking station but more improvement was 
observed by adjusting the jobs schedule through the GA 
(Table 3). The GA ran for 100 generations, and each gen-
eration contained five candidate solutions. The GA largely 
converged after 16 generations, with only a small improve-
ment found after 60 generations, as shown in Fig. 6.

The best performing assignment order for 3 workers, 3 
printers, 2 unpacking stations, and 1 building unit(Exp 8) 
saves approximately 3 working days (a 25% reduction in 
manufacturing time),

The Sankey diagram was utilized to monitor each job, 
as demonstrated in Fig. 7, which illustrates the material 
flow through the shop. The diagram uses colors to indicate 
the route taken by each job. No obvious trends were identi-
fied from viewing these job flows.

Table 3  DOE Exp Workers Unpacking Sandblasting Makespan Makespan GA Reduction
(ID) (#) (#) (#) (dd:hh:mm:ss) (dd:hh:mm:ss) (%)

1 1 1 1 19:02:25:36 16:05:50:26 14
2 1 2 1 19:02:25:36 16:05:50:26 14
3 2 1 1 13:07:33:00 12:02:37:36 10
4 2 1 2 13:05:33:32 12:02:42:01 9
5 2 2 1 12:02:44:41 9:03:31:45 23
6 2 2 2 12:01:30:21 9:02:58:29 23
7 3 1 1 13:07:33:00 12:02:37:36 10
8 3 2 1 12:02:13:35 9:01:36:08 25
9 3 3 1 12:02:05:47 9:01:29:52 25
10 3 3 2 12:01:30:28 9:01:10:46 25

Fig. 5  Continuous processing 
statistics of each station by 
activity in the presence of two 
workers
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4.2  Case study 2: 100 jobs

The second case study had a larger number of resources to 
produce 100 jobs. The experiment was set up with 3 print-
ers, 3 unpacking, and 3 sandblasting stations. Similar to the 
first case study, several runs were executed to test the system 
performance (makespan) with varying resource (number of 
workers and building units) availability (Tables 4 and 5). 
Which shows the makespan results at different setups before 
(Table 4) and after (Table 5) applying the genetic algorithm. 
The results of experiments that were conducted to determine 
the optimal number of building units for each printer in the 
case of the existence of one worker revealed that two build-
ing units per printer resulted in a 4-day saving in production. 

The addition of extra building units is observed to be use-
ful in cases where there are three or more workers, with 
a maximum addition of four units (Fig. 8). This shows an 
interconnected relationship between the worker and build-
ing unit quantities. With regards to the number of workers, 
the results show that 1 worker is not enough to handle this 
amount of production leading to a high makespan. Adding 
just 1 worker dropped the makespan significantly, to almost 
half 45%. In the 20 job case, three workers are sufficient, 
and adding more workers does not significantly improve 
the performance. This finding can be utilized to determine 
the number of employees required based on the number of 
unpacking stations and the number of jobs. These results 
are summarized in Fig. 8. Which shows makespan values 

Fig. 6  Example performance 
curve of genetic algorithm in 
reducing the makespan with 
increasing generations

Fig. 7  Monitoring jobs’ assignments using Sankey diagram
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according to the number of resources and job sequences. 
From the same figure, it can be seen that in most cases there 
is an extra improvement in makespan when the parts are 
rescheduled using GA (the outlined bars).   

For a fixed number of workers, the maximum improve-
ment from the combined DES and GA approach is a 78% 
(Table 6). This plateaus for 5 workers and 4 units for the 100 
job case. In order to assess how enlarging job sizes affects 
the performance of GA in minimizing makespan, we con-
ducted a series of experiments using a consistent configu-
ration (3 workers, 3 printers, 1 building unit, 3 unpacking 
stations, and 3 sandblasting stations) while varying the job 
sizes (20, 40, 60, 80, and 100 jobs). Figure 9 shows that 
increasing the problem size leads to greater enhancements 
in GA performance, as indicated by the increased disparity 
between the best and worst solutions.

Fig. 8  Makespan output according to workers(W) and unit(U) num-
bers before(without outlines) and after (with outlines)

Table 4  Makespan values using 
the default job ordering in 
Table 7

Workers Units

1 2 3 4 5 6

1 96:01:52:08 92:07:29:54 92:07:29:54 92:07:29:54 92:07:29:54 92:07:29:54
2 51:03:47:34 49:00:38:49 49:00:26:06 47:05:02:11 48:05:43:03 49:00:34:46
3 49:01:52:08 35:00:37:02 34:01:52:08 33:05:32:15 33:05:32:14 33:05:32:14
4 49:01:52:08 30:02:49:22 27:02:29:48 26:07:25:38 26:05:46:52 26:05:51:51
5 49:01:52:08 30:01:52:00 26:02:07:11 23:02:50:12 23:00:04:34 22:05:45:04
6 49:01:52:08 30:00:37:00 26:01:52:00 22:05:57:16 22:02:29:52 22:00:55:28

Table 5  Makespan values after 
applying the genetic algorithm 
updating the results from 
Table 4

Workers Units

1 2 3 4 5 6

1 92:02:28:27 91:04:55:01 91:04:55:01 91:04:55:01 91:04:55:01 91:04:55:01
2 49:03:48:53 49:00:38:49 49:00:26:06 47:05:02:11 47:04:54:23 47:04:44:45
3 48:01:04:00 35:00:37:00 33:00:06:35 30:07:13:21 30:07:33:13 30:07:33:55
4 48:01:04:00 29:04:12:17 27:00:07:03 23:07:20:06 23:07:22:57 23:07:26:00
5 48:01:04:00 29:01:28:06 23:04:47:00 21:07:31:58 21:05:47:07 21:04:31:27
6 48:01:04:00 29:01:28:00 23:04:47:00 21:01:44:00 21:00:34:36 21:00:38:14

Table 6  Makespan 
improvement from both 
DES and GA combined as a 
percentage (%)

Workers Units

1 2 3 4 5 6

1 4 5 5 5 5 5
2 49 49 49 51 51 51
3 50 64 66 68 68 68
4 50 70 72 76 76 76
5 50 70 76 78 78 78
6 50 70 76 78 78 78
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5  Discussion

A simulation model was developed to explore the design 
of a powder bed fusion factory using a combined DES and 
GA method. The developed method of combining DES 
and GA heuristic optimization strategy showed improve-
ment opportunities from both industrial resource changes 
and scheduling improvements. This highlights the multiple 
dimensions of production system design addressed by the 
combined approach and not provided by either DES or GA 
in isolation. The two case studies illustrate these oppor-
tunities and give guidance on scaling up PBF to factory-
level production. While the first case study considered a 
small set of jobs (20), the second addressed a larger set of 
jobs (100). The objective was to minimize total production 
time (makespan). This approach to production planning 
and scheduling in additive manufacturing offers a path for 
the scale-up of production volume. The introduction of 
this approach overcomes problems associated with other 
scheduling works for AM factory planning, which rely on 
assumptions of static systems and modeling simplifica-
tions that are often too restrictive to capture real-world 
scenarios. The experiments show the necessary number 
of workers is contingent upon the quantity of unpacking 
stations and building units present in the facility. This is 
due to the fact that the unpacking stations necessitate a 
manual unpacking process, which can obstruct the flow 
that comes from the printers. Moreover, if the number of 
workers falls short of the desired number, adding extra 

resources may prove to be redundant and lead to increased 
costs without improving the makespan. For instance, when 
a single worker is already present and adding more build-
ing units (2–6) will not lead to any improvement (Table 4, 
first row). Because the building units in this case are not 
the bottleneck. However, the addition of extra units could 
be more useful in cases where there are three or more 
workers, with a maximum addition of four units. This is 
because the workers are responsible for transporting the 
produced parts to the subsequent stations and processing 
them. If there are insufficient workers, adding more build-
ing units will not add value.

The example facility used HP Multi-Jet Fusion 4200 
machines with all major production tasks included from file 
preparation through to cleaning printed parts. This example 
facility can be used as a representative of a polymer factory 
with many parallels to metal machines, The biggest improve-
ments from a single resource addition are observed when 
adding the second worker in all production unit arrange-
ments with up to 46% reduction in makespan. This shows 
the power of DES in bottleneck identification. From there, 
additional improvement scenarios were tested. The perfor-
mance improvements peak at a 78% makespan reduction for 
5 workers and 4 building units, where the addition of more 
workers or building units has no impact. This is caused by 
the building units acting as a buffer supplying the workers 
with parts that are ready to be processed at the next stations. 
The extra worker over the number of building units allows 
all building units to be unpacked while some other opera-
tions are simultaneously being performed. Thus, further 
addition of workers or building units is not advantageous 
for the tested number of jobs suggesting a decreasing mar-
ginal benefit with the addition of more capital resources as 
the factory scales up.

A failure rate is included which adds unplanned down-
time that is not captured in static analyses but offers the 
genetic algorithm some additional search space. In a con-
tinuous job arrival mode using the same job list on loop, 
the resource statistical results show that the printers have 
a low working time due to blockages (Fig. 5). The main 
reason for this blockage is the cooling time is about 24 hrs 
which is done on the building unit so the printer can’t be 
run until the parts are unpacked and removed or using a new 
building unit. The printers do not have unplanned or paused 
time because they could be run without a worker present, 
i.e. 24 h per day. However, printer starts are limited by the 
availability of a worker to commence a job and downstream 
processing of printed parts. This suggests that multiple shifts 

Fig. 9  The value of makespan at different sizes of jobs showing the 
initial value of makespan (M initial) and the best and worst solutions 
obtained by GA (M best and M worst)



 Production Engineering

could increase production and reduce or eliminate the high 
percentage of the blockage.

The GA schedule perturbation showed improved makes-
pan for most of the experiments, up to 11%. However, in 
three cases it did not find a better job order, such as when 
there were 2 workers with 2, 3, or 4 units. For these sce-
narios, the default job order may be a sufficiently good order 
given the worker availability constraints. The initial job 
order was randomly determined and is not the worst possi-
ble job ordering, so it may also be that the random order is a 
pretty good solution. It is possible that a much longer search 
time may find some additional improvement in the job order. 
Processing time and complexity of the produced parts were 
assumed to not vary with individual part geometry, there-
fore the only factors that affected the processing time at any 
station were the number of parts and their maximum build 
height in the building unit. This provided some variation in 
job processing time sufficient for this level of simulation. 
This assumption is easily adjusted for specific use cases by 
future practitioners. The effectiveness of combining discrete 
event simulation with a genetic algorithm may vary in mag-
nitude for other equipment or companies.

The combined DES and GA method allows “what-if" sce-
narios to be evaluated, in addition to identifying bottlenecks 
in an existing line. Based on the results, integrating sched-
uling with bottleneck identification gives decision makers 
the capability to identify the weak points or vulnerabilities 
in their production line which can aid in deciding which 
type of resource investment will have the biggest impact. As 
in some cases adding extra resources of one kind leads to 
adding additional cost without improving system productiv-
ity. This framework will help decision-makers design and 
maximize production in current and future factories for the 
AM industry. Existing factories can use this approach to 
understand their system and needs in a virtual environment 
without interrupting the production line and to test different 
scenarios before implementation.

6  Conclusion

This work introduces a simulation optimization-based 
analysis to support additive manufacturing planning and 
scheduling for factory production based on combining 
discrete event simulation (DES) and a genetic algorithm 

(GA). DES was used first as an evaluation tool to analyze 
the performance of different resource configurations and to 
identify bottlenecks. Subsequently, GA was used to further 
improve the makespan by reordering the available jobs. 
The case studies revealed that the bottleneck was often 
the worker availability. A maximum reduction in makes-
pan of 78% was possible with added workers and building 
units. In both case studies, adding an extra worker led to 
a significant reduction in makespan by 40-45%. The DES 
experiments identified the makespan reduction with either 
the addition of more workers or more building units, or 
a combination. Integrating GA into the DES model for 
scheduling introduced a further reduction in the makes-
pan by up to 11%. However, it also showed adding extra 
resources may prove to be redundant and lead to increased 
costs without improving the makespan if the number of 
workers falls short of the desired number. Instead, it helps 
to find the right balance between the number of workers 
and the number of different equipment for a given job set. 
This shows the effectiveness of this hybrid approach as a 
production planning tool for dynamic production systems 
that can help decision-makers to determine the proper 
number of resources to deliver parts in time and how to 
allocate limited resources in the most efficient and flexible 
way. From an academic perspective, this paper’s contri-
bution is the successful transfer of a combined DES-GA 
method to AM. Aside from enhancing the understanding of 
manufacturing flow related AM challenges, it also builds a 
better understanding of how these could be overcome. As 
this is the first application of DES and GA to factory level 
production in powder bed fusion additive manufacturing, 
further research is needed. Future studies could include 
more primary data and additional factors that may impact 
processing time at each station or increase the variability 
of arrival rates of jobs. To validate the new method and 
its results, it is also important to physically implement and 
test original and improved setups.

Appendix A. Extended data

See Table 7.
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Table 7  Processing times for 
the 100 jobs in each stage in 
minutes (min)

Job Number of 
parts (units)

Max Z height 
(inches)

P-Slicing (min) P-Printing 
(min)

P-Unpacking 
(min)

P-Sand-
blasting 
(min)

1 39 4 78 240 195 117
2 60 3 120 180 300 180
3 33 13 66 780 165 99
4 60 3 120 180 300 180
5 57 9 114 540 285 171
6 51 5 102 300 255 153
7 48 11 96 660 240 144
8 33 13 66 780 165 99
9 39 4 78 240 195 117
10 8 2 16 120 40 24
11 41 9 82 540 205 123
12 57 9 114 540 285 171
13 10 8 20 480 50 30
14 10 8 20 480 50 30
15 41 9 82 540 205 123
16 8 2 16 120 40 24
17 8 13 16 780 40 24
18 14 6 28 360 70 42
19 14 6 28 360 70 42
20 51 5 102 300 255 153
21 48 11 96 660 240 144
22 37 9 74 540 185 111
23 10 8 20 480 50 30
24 33 13 66 780 165 99
25 29 7 58 420 145 87
26 60 3 120 180 300 180
27 44 10 88 600 220 132
28 48 11 96 660 240 144
29 54 12 108 720 270 162
30 41 9 82 540 205 123
31 10 8 20 480 50 30
32 14 6 28 360 70 42
33 41 9 82 540 205 123
34 28 13 56 780 140 84
35 28 13 56 780 140 84
36 28 13 56 780 140 84
37 11 11 22 660 55 33
38 41 9 82 540 205 123
39 39 4 78 240 195 117
40 33 13 66 780 165 99
41 37 9 74 540 185 111
42 34 15 68 900 170 102
43 44 10 88 600 220 132
44 57 9 114 540 285 171
45 29 7 58 420 145 87
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Table 7  (continued) Job Number of 
parts (units)

Max Z height 
(inches)

P-Slicing (min) P-Printing 
(min)

P-Unpacking 
(min)

P-Sand-
blasting 
(min)

46 28 13 56 780 140 84
47 54 12 108 720 270 162
48 28 13 56 780 140 84
49 48 11 96 660 240 144
50 34 15 68 900 170 102
51 54 10 108 600 270 162
52 29 7 58 420 145 87
53 13 11 26 660 65 39
54 33 13 66 780 165 99
55 44 10 88 600 220 132
56 54 12 108 720 270 162
57 11 11 22 660 55 33
58 60 3 120 180 300 180
59 8 13 16 780 40 24
60 8 2 16 120 40 24
61 54 12 108 720 270 162
62 8 2 16 120 40 24
63 8 13 16 780 40 24
64 11 11 22 660 55 33
65 44 10 88 600 220 132
66 13 11 26 660 65 39
67 57 9 114 540 285 171
68 8 13 16 780 40 24
69 13 11 26 660 65 39
70 51 5 102 300 255 153
71 51 5 102 300 255 153
72 11 11 22 660 55 33
73 29 7 58 420 145 87
74 39 4 78 240 195 117
75 37 9 74 540 185 111
76 54 10 108 600 270 162
77 54 10 108 600 270 162
78 29 7 58 420 145 87
79 54 12 108 720 270 162
80 14 6 28 360 70 42
81 48 11 96 660 240 144
82 10 8 20 480 50 30
83 34 15 68 900 170 102
84 54 10 108 600 270 162
85 8 13 16 780 40 24
86 14 6 28 360 70 42
87 51 5 102 300 255 153
88 13 11 26 660 65 39
89 57 9 114 540 285 171
90 44 10 88 600 220 132
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Appendix B

Unpacking and sandblasting processing time for different 
parts that used. Example of these parts illustrated in Fig. 10 
and the processing time in Table 8.

Table 7  (continued) Job Number of 
parts (units)

Max Z height 
(inches)

P-Slicing (min) P-Printing 
(min)

P-Unpacking 
(min)

P-Sand-
blasting 
(min)

91 8 2 16 120 40 24
92 13 11 26 660 65 39
93 34 15 68 900 170 102
94 54 10 108 600 270 162
95 37 9 74 540 185 111
96 11 11 22 660 55 33
97 34 15 68 900 170 102
98 39 4 78 240 195 117
99 60 3 120 180 300 180
100 37 9 74 540 185 111

Fig. 10  Example parts used 
to calibrate processing time in 
production steps

Table 8  Processing time (min) 
Reading for unpacking and 
sandblasting process for three 
different parts in Fig. 10

Part ID Process 1 2 3 4 5 6 Average (min)

(a) unpacking 1.8 1.9 2 2.3 2.1 2.1 2.03
sandblasting 2.1 2 2.2 2.1 2.3 2 2.11

(b) unpacking 3.4 3.2 3 3 2.1 3.2 2.98
sandblasting 3.6 3.3 3.2 3.5 3.1 3.1 3.3

(c) unpacking 5 5.5 5.4 6 6.1 6.3 5.71
sandblasting 4 4.5 5 5.2 4.7 3.9 4.5
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