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ABSTRACT

Nowadays, the development of Web 2.0 technology brings a huge change in the

way of human’s life styles. Variant e-commerce websites, e.g., Yelp, eBay and

Amazon, provide internet user with a convenient, efficient and relatively reli-

able online trading environment. More and more merchants prefer to build their virtual

shop through different online platforms. Meanwhile, an increasing number of consumers

gradually get used to this way of shopping, and automatically share their shop experi-

ences by using online platform which applied by the e-commerce website. This trend

generates huge amount of user behavior information and product attributes during

purchasing process. We define this online shopping scenario as a special kind of social

network, named e-commerce Social Networks (ESNs) in this thesis. Online ESNs poses

an interesting problem: how to best characterize the different classes of user behavior.

Traditionally, user behavior representation methods, based on user individual features,

are not appropriate for online networking platforms. In these complex social networks,

users interact with other users through multiple interfaces that allow them to upload

multimedia content and have many other interactions. Different behavior patterns can

be observed for different individuals and groups. In this thesis, we will propose graph-

structured methodologies for characterizing and identifying user behaviors in online

social networks. This thesis will help the achievement of more strategic objectives on

large-scale node classification tasks in graph-structured social network datasets.

This thesis achieves research contributions as follows:

• It develops a novel graph-based model, namely Graph-aware Deep Fusion Net-

works (GDFN) that utilizes information from relevant metadata (review text,

features of users, and items) and relational data (network) to capture the semantic

information from their complex heterogeneous interactions via graph convolutional

networks. Besides, GDFN also uses a novel fusion technique to synthesize low

and high-order interactions with propagated information across multiple review-

related sub-graphs. Extensive experiments on publicly available datasets show
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that our proposed model is effective and outperforms several strong state-of-the-art

baselines.

• It designs a Hypergraph Click-Through Rate prediction framework (HyperCTR)

built upon the hyperedge notion of hypergraph neural networks, which can yield

modal-specific representations of users and micro-videos to better capture user

preferences. We construct a time-aware user-item bipartite network with multi-

modal information and enrich the representation of each user and item with

the generated interests-based user hypergraph and item hypergraph. Through

extensive experiments on three public datasets, we demonstrate that our proposed

model significantly outperforms various state-of-the-art methods.

• It further improves the GCN-based Collaborative Filtering (CF) models from two

aspects. First, we remove non-linearities to enhance recommendation performance,

which is consistent with the theories in simple graph convolutional networks.

Second, we obtain the initialization of the embedding for each node in the graph by

computing the network embedding on the condensed graph, which alleviates the

over smoothing problem in graph convolution aggregation operation with sparse

interaction data. The proposed model is a linear model that is easy to train, scalable

to large datasets, and shown to yield better efficiency and effectiveness on four real

datasets.

• It explores informative and controllable text using social media language by in-

corporating topic knowledge into a keyword-to-text framework. It is a novel Topic-

Controllable Key-to-Text (TC-K2T) generator that focuses on the issues of ignoring

unordered keywords and utilizing subject-controlled information from previous

research. TC-K2T is built on the framework of conditional language encoders. In

order to guide the model to produce an informative and controllable language, the

generator first inputs unordered keywords and uses subjects to simulate prior

human knowledge. Using an additional probability term, the model increases the

likelihood of topic words appearing in the generated text to bias the overall dis-

tribution. The proposed TC-K2T can produce more informative and controllable

senescence, outperforming state-of-the-art models, according to empirical research

on automatic evaluation metrics and human annotations.
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INTRODUCTION

Over the years, User Behavioral Analysis (UBA) has been the focus of intense efforts

in e-commerce applications [35]. Obviously, the objective is to adopt some new specific

and efficient marketing strategies that are based on data, i.e., recorded information that

represent the past activities of potential consumers. This is referred to as data-based

behavioral marketing [37]. Behavioral analysis has also found its usefulness in the

fight against fraud and in various other applications [3]. Recently, it is not a surprise to

see that behavioral analysis can enhance information and communication technology,

organize more efficiently production tools, detect internal threats like targeted attacks,

adapt softwares to the users, accelerate some repetitive tasks, etc. However, it goes with

a certain acceptability from the users [6].

The UBA is the discipline of analyzing user behaviors. In an operational way, it is

essentially the collecting, monitoring and processing of user data. The datasets collected

from the users are stored in databases, data log files, histories, directories, and further-

more any other systems recording the user behaviors. The purpose of this process is to

provide parameters and to build reliable and usable models of users, in other words, that

accurately characterize the users.

For example, the online social network has become a sharing content space for

individuals and groups. Indeed, technologies are now mature, ready and spread out

in order to collect and exploit the present and past behavior of Internet users in real

time. The datasets generated through internet browsing enable us to deduce various

aspects such as points of interest (POI), attendance patterns, factual details and gestures,
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CHAPTER 1. INTRODUCTION

movements, attitudes, lifestyle preferences, and living standards. Obviously, the status

of a user can evolve and change over time. Techniques make it possible to adapt the

models on the basis of the experiment and according to the evolutions of the collected

data in real time [12].

The UBA relies on three key components: Data analysis, data integration and data

presentation. Actually, the analysis and processing the phenomenal amount of data is

the most difficult challenge. The heterogeneity, volume and speed of data generation are

increasing rapidly. This is exacerbated with the use of wireless networks, Internet of

Things (IoT) sensors, smartphones and the increasing activities on the Internet. There-

fore, real time UBA must be fast in processing the big amount of data and Machine

Learning (ML) algorithms should be appropriate candidates [90]. For that purpose, ML

algorithms must be run in real time, access to the whole datasets, adapt their own learn-

ing parameters. ML algorithms can also be interfaced with enterprise resource planning

softwares to get additional information about the users and to combine them with their

past and present activities while processing. The idea is to enable the establishment of

self-adaptive models [113].

The thesis aims to solve two challenges of UBA, which are the user credibility analysis

and the user preference learning. It will provide a deeper look at the online consumer

behavior and quantify these behavior with in online content sharing platforms using

machine learning, neural networks methods, text mining approaches and graph-based

solutions. These are about combining graph-structured representation techniques with

other deep learning models to quantify internet users behaviours within a mathematical

model. The research methodology utilises deep learning algorithms to apply the group-

based neural network for deep analytics.

1.1 Main Challenges

In this section, we will introduce our main challenges from four perspectives: online re-

views, click-through rate, graph convolutional networks(GCN) simplification and natural

language generation.

Online Reviews E-commerce companies such as Amazon and eBay have earned

approximately $3.5 trillion in sales in 2019 and are anticipating an increase to $4.9

trillion by the end of 2021, according to Shopify.com.Online e-commerce has demonstrated

its unique importance during the COVID-19 pandemic and enabled hundreds of millions
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of consumers to purchase products anytime and anywhere around the world. These days

customers can also share their shopping experiences by rating items, writing reviews

and answering questions.

Online reviews play an important role in e-commerce as they impact the purchasing

decisions of approximately 93% people, according to Ingniyte.co.uk. Unfortunately, on-

line reviews can be deliberately injected (a.k.a., “spam reviews”) to mislead potential

customers [58] for various unethical reasons, such as unfair marketing or online brand

attacks [71]. According to BrightLocal.com, 74% of consumers in 2019 have encountered

spam reviews yet failed to recognize them. It has thus become very crucial to devise

effective methods that can identify spam reviews automatically so that these platforms

remain reliable [147].

Click-through Rate Advertising is central to many online e-commerce platforms

such as e-Bay and Amazon. One of the important signals that these platforms rely

upon is the click-through rate (CTR) prediction. The recent popularity of multi-modal

sharing platforms such as TikTok has led to an increased interest in online micro-videos.

It is, therefore, useful to consider micro-videos to help a merchant target micro-video

advertising better and find users’ favourites to enhance user experience. Existing works

on CTR prediction largely exploit unimodal content to learn item representations. A

relatively minimal effort has been made to leverage multi-modal information exchange

among users and items.

CTR prediction has become one of the core components of modern advertising on many

e-commerce platforms. The goal is to predict customers’ click probability on wide range

of items. Existing works on CTR prediction only focus on modeling pairwise interactions

from uni-modal features which might not lead to satisfactory results. This existing

gap leads to new opportunities where we can exploit the widely available multi-modal

features which is largely unexplored. Besides, they can given complementary information

to the model which alone cannot be obtained via uni-modal modeling.

Recently, the wide-spreading influence of micro-video sharing platforms, e.g., Tiktok 1

and Kuaishou 2 make them a popular platform for socialising, sharing and advertising

as micro-videos. These videos are compact and come with rich multimedia content from

multiple modalities, i.e., textual, visual, as well as acoustic information. Motivated by

this, we propose a novel method which addresses the limitations in current methods

1https://www.tiktok.com/
2https://www.kuaishou.com/

3



CHAPTER 1. INTRODUCTION

and improve CTR prediction performance through micro-videos. However, modeling

multi-modal features extracted from micro-videos for CTR prediction in a holistic way

is not straightforward. First, in a typical setting of CTR prediction, the interactions

between users and items are normally sparse, and the sparsity issue becomes even more

severe (in magnitude of number of modalities) when taking into account multi-modal

features. For example, compared to uni-modal feature space, the sparsity of a dataset is

tripled when considering visual, acoustic and text features of a target item. Therefore,

effectively mitigating the sparsity issues introduced by multi-modal features without

compromising upon the performance of the model is the key to this problem.

GCN Simplification The field of “GCN Simplification” refers to the research area

focused on simplifying Graph Convolutional Networks (GCNs) - a popular deep learning

architecture for graph data. Graph data involves entities or nodes connected through

edges, representing relationships between them such as social networks, citation net-

works, or biological interactions.

GCNs have gained significant attention due to their ability to effectively capture

the complex relationships and dependencies inherent in graph data. However, their

complexity and large parameter space pose challenges, limiting their usability, especially

in resource-constrained scenarios.

The goal of GCN Simplification research is to address these challenges by devising

techniques that reduce the complexity and size of GCNs while maintaining or even en-

hancing their performance. This involves exploring approaches such as network pruning,

model compression, or knowledge distillation. By simplifying GCNs, researchers aim

to make them more computationally efficient, memory-friendly, and deployable on edge

devices or low-power hardware.

The outcomes of GCN Simplification research have the potential to open doors

for widespread adoption of GCNs in various fields, including social network analysis,

recommendation systems, bioinformatics, and drug discovery. By making GCNs more

accessible and less resource-demanding, researchers envision democratizing the power

of graph-based learning, enabling more efficient analysis and decision-making in a wide

range of domains.

Natural Language Generation Natural Language Generation (NLG) is a research

field within the realm of Artificial Intelligence (AI) and natural language processing that

focuses on the automatic generation of human-like text or speech from structured data
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or other non-linguistic sources. NLG aims to enable machines to produce coherent, con-

textually appropriate, and linguistically accurate narratives. This technology has diverse

applications in chatbots, conversational agents, language translation, summarization

systems, content generation, and personalized recommendation systems.

According to a study conducted by Dusek et al. (2019) [115], NLG techniques employ

statistical models, deep learning architectures, and rule-based approaches to trans-

form structured data into natural language text. These methodologies utilize advanced

machine learning and computational linguistics techniques to generate text that mim-

ics human-like language patterns, semantics, and stylistic variations. However, NLG

research encounters challenges such as managing ambiguity, ensuring coherence, gener-

ating diverse and creative outputs, and decreasing grammar and meaning errors.

The advancements in NLG have shown promising results, with systems capable of

generating high-quality narratives and engaging in real-time interactions with users.

NLG technology has significant implications for various industries, including customer

service, e-commerce, healthcare, and content creation, as it enables automated generation

of context-aware and personalized content at scale.

In conclusion, ongoing research in NLG aims to advance the state-of-the-art in

generating natural language text, making machines proficient in understanding and

producing human-like narratives, and enhancing human-machine communication and

collaboration.

1.2 Research Questions and Objectives

As the digital landscape continues to evolve, the credibility of user behavior in e-

commerce systems and the effective utilization of graph neural networks for large-

scale node classification tasks have become paramount research questions. Similarly,

efficiently presenting user preferences in recommender systems and leveraging graph

neural networks for prediction tasks and unsupervised node representation learning

pose significant challenges. Furthermore, enhancing complex graph-based models with

multimodal information to infer user behavior in sequential data, improving upon these

models with simplified and accelerated forms of GCNs, and discovering effective repre-

sentations of user behavior through natural language processing are critical areas of

inquiry.

Research Question 1: How to accurately analyze the credibility of user
behavior in e-commerce system and can we develop and efficiently implement
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graph neural network models for large-scale node classification tasks in graph-
structured datasets?

Our main contribution to address this question is a novel graph neural network

model that we call the graph convolutional network (GCN) [64]. GCN improves upon

earlier work in the community on so-called spectral graph convolutions. We extend this

method to homogeneous and heterogeneous networks and demonstrate an application of

this model on text classification task with large-scale nodes and edges.

Research Question 2: How to efficient to present user potential preferences
in recommender system and can graph neural networks be utilized for predic-
tion task and unsupervised node representation learning?

We introduce a extension to the GCN model to address prediction task in recommen-

dation system. Our models can be trained on graphs in the absence of node labels, a

setting often referred to as unsupervised node representation learning and introduced

neural network architectures for explicitly graph-structured data in this thesis. We

will investigate how models with structural and compositional inductive biases - such

as graph neural networks - can be developed and applied to problems with implicit or

hidden structure.

Research Question 3: How can we improve upon complex graph-based
models with multimodal information that infer user behavior in sequential
data?

Many graph-based methods are heavily rely on the pairwise relations and users

are regarded as independent. However, these user behaviour models might not be a

strong suit for the scenarios with multi-modal data, the situation for data correlation

modelling could be more complex. Under such circumstances, traditional graph structure

has the limitation to formulate the data correlation, which limits the application of graph

convolutional neural networks. With the recent advancement in hypergraph neural

networks (HGNN), quantifying the user behaviour with multimodal hypergraph neural

networks might be a good approach to model e-commerce users‚Äò behaviours.

Research Question 4: How can we improve upon complex graph-based
models with simplified and accelerated form of GCNs?

The goal of the research is to develop a more efficient and effective method for

graph-based modeling using a simplified and accelerated version of Graph Convolutional

Networks (GCNs). GCNs are a popular technique for learning representations in graph-

structured data, but they can be computationally expensive and challenging to implement

in large-scale applications. Therefore, the research aims to simplify and accelerate GCNs
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to make them more practical and accessible for complex graph-based models.

Research Question 5: How can we discover and build effective representa-
tions of user behavior by using natural language processing?

The purpose of the research is to explore the utilization of natural language pro-

cessing techniques to discover and construct effective representations of user behavior.

This involves analyzing textual data, such as user reviews, comments, or feedback, to

extract meaningful information and patterns. By leveraging natural language processing

algorithms, the research aims to develop techniques that can process and understand

user-generated content, enabling the construction of accurate and comprehensive rep-

resentations of user behavior. These representations can then be utilized for various

applications, such as personalized recommendations, sentiment analysis, or user profil-

ing.

To address these questions, we have formulated the following research objectives:

Firstly, we aim to analyze the correlation between various factors and online review

behaviors of e-commerce consumers, providing insights into user credibility. Secondly,

we seek to develop an efficient click-through rate prediction model tailored to capture

the interest behaviors of users on content sharing platforms. Thirdly, we intend to

construct sequential graph-based networks that incorporate multiple modalities of

information to accurately model user preferences. Finally, we explore the utilization

of control language generation models to generate textual information and employ

representation learning methods embedded in user behavior, aiming to discover and

build effective representations of user behavior. Through these objectives, we hope

to contribute significantly to the understanding and optimization of user behavior in

e-commerce systems and recommender systems.

Objective 1 (in answer to RQ1)Analyse the correlation between different factors and

different online review behaviours of e-commerce consumers.

We hypothesize that modelling the information gathered from reviews, users and

items could help substantially improve the performance and generalizability of online

spam review detection systems. We consider the user-review-item network to formulate

the problem as a graph-based classification task, in which reviews are labelled as spam

or non-spam.

Objective 2 (in answer to RQ2 and RQ3) Build a efficient click-through rate predic-

tion model for interest behaviours of sharing content platform users.

The existing deep learning approaches proposed for CTR prediction target without

considering data aggregation and correlation. In this thesis, the complex data correla-
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tion is formulated in a hypergraph structure, and we design a hyperedge convolution

operation to better exploit the high-order data correlation for representation learning.

Objective 3 (in answer to RQ4) Construct a sequential graph-based networks to

model the user preference with multiple modalities information upon the hyperedge

notion.

Motivated by rich multimedia content from multiple modalities, i.e., textual, visual,

as well as acoustic information, we address this problem with multi-modal features from

user aspect. We first build modality-originated hypergraphs which can be treated as data

argumentation technique.

Objective 4 (in answer to RQ5) Explore the control language generation model to

generate the text information, and use the representation learning method embedded in

the user behavior.

This research object lies in its potential to bridge the gap between user behavior

data and text generation. By exploring the use of a control language generation model,

the research aims to unlock the capability of generating coherent and contextually

appropriate text based on user behavior.

1.3 Research Significance

Understanding user behavior is essential for various domains, including recommender

systems, fraud detection, social network analysis, and personalized marketing. The re-

search significance of user behavior analysis with graph-structured representations lies

in its ability to uncover hidden connections, enhance recommender systems, strengthen

fraud detection, unveil social network dynamics, and contribute to personalized market-

ing efforts.

Graph-structured representations offer a powerful framework for capturing com-

plex relationships among users, items, and their interactions. By representing users,

items, and their interactions as nodes and edges in a graph, this approach enables the

exploration of hidden connections that may not be evident in traditional tabular or se-

quential data formats. This allows researchers to uncover latent user behavior patterns,

community structures, and influential nodes within the network.

In the realm of recommender systems, the integration of graph-structured represen-

tations opens up new possibilities for collaborative filtering, item similarity analysis,

and knowledge propagation across the user-item graph. This leads to improved recom-
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mendation accuracy, diversity, and serendipity, ultimately resulting in enhanced user

satisfaction and engagement.

Moreover, the use of graph-based models strengthens fraud detection systems by

identifying anomalous behavior patterns, suspicious networks, and coordinated attacks.

By leveraging the holistic view of user interactions provided by graph-structured rep-

resentations, researchers can develop robust fraud detection systems that effectively

identify and prevent fraudulent activities.

Understanding social network dynamics is crucial for analyzing information diffusion,

social influence, and community structures. Graph-structured representations enable

researchers to study the complex interplay between individuals, groups, and information

flow within social networks. This provides valuable insights into collective behavior, the

emergence of communities, and information propagation mechanisms.

Lastly, in personalized marketing, graph-structured representations allow for the

creation of personalized customer profiles, identification of similar user clusters, and

targeted marketing campaigns. By leveraging graph-based models, researchers can

enhance personalized marketing efforts, resulting in improved customer satisfaction,

increased conversion rates, and higher marketing return on investment.

In conclusion, the research significance of user behavior analysis with graph-structured

representations lies in its ability to uncover hidden connections, enhance recommender

systems, strengthen fraud detection, unveil social network dynamics, and contribute

to personalized marketing efforts. By harnessing the power of graphs, this research

aims to advance the field of user behavior analysis and provide valuable insights for

various domains, ultimately leading to more effective decision-making, enhanced user

experiences, and improved system performance.

1.4 Thesis Structure

The logical structure of this thesis and relationship between the chapters are shown in

Figure 1.1, including the chapters and the corresponding research questions. The main

contents of each chapter are summarized as follows:

Chapter 2 presents a literature review of research related to this study. In this

chapter, we review related studies from four perspectives: online spam review detection,

click-through rate prediction, GCN simplification and natural language generation. Next,

we introduce the public datasets commonly used in social media analysis research works.

Finally, we review popular methodology of graph-based deep learning.

9
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Chapter 3 introduces a new model called GDFN, which predicts spam reviews by

using a unimodal graph to group similar review text and extract aggregation-based

semantic features. Additionally, we incorporate user (item)-level information to enhance

the overall representation. It also employs a fusion mechanism to capture the underlying

relationship between users, reviews, and items. Through experiments on two public

datasets, it showcase the superior performance of GDFN when compared to other state-

of-the-art models.

Chapter 4 improves the accuracy of CTR prediction, this chapter utilizes temporal

user preferences and multi-modal item attributes. A novel framework, called Hyper-

CTR, leverages the interaction between users and micro-videos by considering different

modalities, using an HGCN-based approach. We enhance the user representation by

incorporating time-aware and group-aware features. By stacking hypergraph convo-

lution networks, self-attention, and fusion layers, the model effectively captures user

preferences and achieves improved performance.

Chapter 5 conducts a review of existing recommendation models based on Graph Con-

volution Networks (GCNs) and introduced a new model called Simplifying Graph-based

Collaborative Filtering(SGCF) for Collaborative Filtering (CF)-based recommendation.

SGCF consists of two primary components. Firstly, it empirically removes non-linear

transformations in GCNs, opting for linear embedding propagation, which has shown

promising progress. Secondly, it devises a condensed graph learning process for the

input network to mitigate the excessive smoothing effect usually caused by higher layers

of graph convolutions. The extensive experiments demonstrated the effectiveness and

efficiency of its proposed model.

Chapter 6 proposes a new text generator called TC-K2T model is introduced for the

task of generating text from keywords. Unlike previous models, TC-K2T incorporates

topic knowledge networks and features an improved decoder. This is the first attempt at

addressing this challenging task. Through a series of experiments on a publicly available

dataset, the performance of TC-K2T model is evaluated, demonstrating its superiority

over state-of-the-art models.

Chapter 7 summarizes the contributions of this research and discusses research

issues for further study.

The justification for each chapter from Chapter 3 to Chapter 6 of the thesis lies in

its focus on a specific objective. Moreover, the selection of methods and datasets in each

chapter is meticulous to ensure the best achievement of that objective. Additionally,

the datasets used in each chapter are selected based on their reliability and validity,
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after carefully assessing their sources and collection methods. Only high-quality and

relevant datasets are utilized, ensuring a solid foundation for addressing the research

question. In essence, the utilization of diverse datasets across various chapters facilitates

a comprehensive analysis of the research questions, thereby bolstering the credibility of

the thesis’ conclusions.
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LITERATURE REVIEW

This Literature Review delves into four crucial areas of research: Online Spam Review

Detection, Click-through Rate Prediction, GCN Simplification, and Natural Language

Generation. By exploring the wealth of existing literature in these fields, we aim to estab-

lish a solid foundation for our study, identify key advancements, and highlight potential

areas for further exploration. Additionally, this review also incorporates a discussion

on Data and Research Ethics, emphasizing the importance of ethical considerations in

conducting research in this domain.

2.1 Online Spam Review Detection

Feature-centric Methods Traditional statistical methods rely on extracting different

features from textual reviews, followed by learning a language model. [58] first identified

three types of spam reviews, which are untruthful opinions, reviews on brands only

and non-reviews, and then analyzed real-world datasets from Amazon. They extracted

review-centric, reviewer-centric and product-centric features, and used them as input to a

logistic regression (LR) model. Recently, [142] summarized eleven platform-independent

features from the word level, the semantic level and the structural level to discriminate

fraud and normal items. They selected Xgboost as a binary classifier, and their evaluation

results indicated that CATS achieves both high precision and recall. [93] approached the

problem using three strategies as features in naive Bayes and SVM classifier. Further,

[135] attempted to use Long Short-Term Memory (LSTM) framework to detect spam
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reviews. They established three types of layers to predict spam reviews, the input layer

for receiving data, hidden layer of LSTM and output layer, respectively.

Graph-based Methods Graph-based methods have been popularly applied to capture

text features among different entities. The first Graph Neural Network [114] (GNN)-

based spam review detection method was proposed by [136], who built a heterogeneous

“review graph” to represent the relationship among reviewers, reviews and online sellers.

[117] utilized spam features for modelling review datasets as heterogeneous information

networks to map spam review detection procedure into a classification problem in such

networks. In the classification step, they proposed meta-path concepts to find features

importance and calculate the weight. [82] presented a neural network-based graph

model, named Graph Embeddings for Malicious accounts (GEM), which both considered

“device aggregation” and “activity aggregation” in heterogeneous graphs. Until present,

these methods have focused on shallow encoders, i.e., matrix factorization. There is no

parameter sharing, and every node has its unique embedding vector and the inherent

“transductive” features are impossible to generate embeddings for unseen nodes during

training and do not incorporate node features.

Recent years have witnessed a growing interest in utilizing “message-passing” method-

ology in graphs [163], which learns how to aggregate information from each type of

neighbour using Markov Random Field (MRF) techniques implicitly. [40] presented the

GraphSAGE model, which achieves significant improvements compared with previous

methods such as DeepWalk [98] and SemiGCN [64]. This method overcomes the lim-

itation of applying GCN in transductive settings with specified Laplacian matrix. A

model-based Graph Convolutional Neutral Networks (GCNN) for spam-bot detection is

proposed in [1], which proposed an inductive representation learning approach for spam

review detection based on the reviewer profile information and the social network graph

on Twitter datasets, and the inductive representation learning method used in their ap-

proach is similar to that of GraphSAGE. In short, GCN-based methods have been applied

in various domains, such as spam advertisement identification [67], recommendation

system [154], social spammer detection [146], rumor detection [8] and so no. However,

the above methods depend only on the local information of surrounding neighbourhoods

of a target node, making the model sometimes noisy and thus ineffective.
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2.2 Click-through Rate Prediction

CTR prediction Learning the effect of feature interactions seems to be crucial for

accurate CTR prediction. Factorization Machines (FMs) [9, 109] are proposed to model

pairwise feature interactions in terms of the vectors corresponding to the involved fea-

tures. AutoFIS [78] and UBR4CTR [101] further improve FM by removing the redundant

feature interactions and retrieving a limited number of historic behavior that are most

useful for each CTR prediction target. However, a FM-based model considers learning

shallow representation, and it thus is unable to model the features faithfully. Deep Neu-

ral Networks (DNNs) are exploited for CTR prediction in order to automatically learn

feature representations and higher-order feature interactions. DSTN [94] integrates

heterogeneous auxiliary data (i.e., contextual, clicked and unclicked ads) in a unified

framework based on the DNN model. Further, the other stream of models focus more

on mining temporal patterns from sequential user behavior. GRU4Rec [51] is based on

RNN. It is the first work which uses the recurrent cell to model sequential user behavior.

MIMN [99] applies the LSTM/GRU operations for modeling users’ lifelong sequential

behavior.

Exploiting multi-modal representation Some works focus on the multi-modal

representation in the area of multi-modal CTR prediction. Existing multi-modal repre-

sentations have mostly been applied to recommender systems and have been grouped

into two categories: joint representations and coordinated representations [141]. Joint

representations usually combine the single-modal information and project into the same

representation space [22, 23, 160], but they are suited for situations where all of the

modalities are present during inference, which is hardly guaranteed in social platforms.

Different from the joint representations, the coordinated models learn separate rep-

resentations for each modality but coordinate them with constraints [141]. Since the

modal-specific information is the factor for the differences in each modality signals, the

model-specific features are inevitably discarded via similar constrains. In contrast, we

introduce a novel model which respectively models the information augmentation and

group-aware network problems to address the limitations in existing works.

Graph Convolution Network Our proposed model uses the GCNs technique to

represent the users and items, which has been popularly used for modeling the social

media data. In [40] the authors proposed a general inductive framework which leverages

the content information to generate node representation for unseen data. In [154] the
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authors developed a large-scale deep recommendation engine on Pinterest for image

recommendation. In their model, graph convolutions and random walks are combined to

generate the representations of nodes. In [7] the authors proposed a graph auto-encoder

framework based on message passing on the bipartite interaction graph. However, these

methods cannot model the multi-modal data including cases where data correlation

modeling is not straightforward [33].

2.3 GCN Simplification

Graph Convolutional Networks (GCNs) have become a popular deep learning technique

for extracting meaningful representations from graph-structured data. However, the

complexity and computational cost of GCNs make them challenging to implement in

resource-constrained environments. Consequently, simplification techniques for GCNs

have been explored to reduce their complexity while maintaining their essential capa-

bilities. This literature review aims to provide an overview of existing approaches for

GCN simplification and their effectiveness in achieving simplified yet efficient graph

convolution operations.

Graph Convolutional Network (GCN) Kipf and Welling (2017) [64] introduced the

GCN neural network architecture, which generalizes the convolutional operations from

grid-like data to graph-structured data. They proposed a simplified version of spectral

graph convolutions that leverages the localized first-order approximation of spectral

filters. GCNs have shown promising results in various applications, including node

classification and link prediction.

Faster GCN Training To simplify the training process of GCNs, Chen et al. (2018) [15]

proposed a simplified variant called FastGCN. They introduced an edge sampling tech-

nique that approximates global neighborhood aggregation, reducing both the training

time and memory overhead while maintaining competitive accuracy. FastGCN achieves

similar performance to standard GCNs but with significantly improved efficiency.

GraphSAGE Hamilton et al. (2017) [40] presented GraphSAGE, a simplified variation

of GCNs. GraphSAGE defines a generalized framework for generating node represen-

tations using neighborhood aggregation. It employs a simple yet effective sampling
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strategy, which scales well with large graphs. GraphSAGE demonstrates competitive

performance in various graph-based tasks while simplifying the overall architecture.

Graph Attention Networks (GAT) While not a direct simplification of GCNs, Velick-

ovic et al. (2018) [133] introduced Graph Attention Networks (GAT), which offer an

alternative, simplified mechanism for aggregating node information. GATs utilize self-

attention mechanisms to learn weights for aggregating neighbors’ information, avoiding

the need for carefully designed filter functions. GATs achieve competitive performance

with GCNs while simplifying the convolutional operation.

GCN simplification techniques aim to reduce the complexity and computational cost

of traditional GCNs while preserving their representational power. Several approaches,

including FastGCN, GraphSAGE, low-rank approximation, and GAT, have been proposed

to achieve this goal. These techniques simplify various aspects of the GCN architecture,

such as training, weight approximation, and aggregation mechanisms. By striking a

balance between efficiency and accuracy, these simplification techniques make GCNs

more accessible and practical for resource-constrained environments.

2.4 Natural Language Generation

Natural Language Generation (NLG) refers to the process of automatically producing

human-like text or speech from structured data or other non-linguistic inputs. NLG

has become a crucial area of research and application, enabling various tasks such as

machine translation, chatbots, summarization, and data storytelling. This literature

review aims to provide an overview of the recent advancements in NLG techniques and

their applications.

Traditional Rule-Based Approaches Early NLG systems primarily relied on rule-

based approaches, where predefined templates and heuristics were used to generate

sentences. These systems were limited in their ability to handle complex and diverse

inputs and often required manual intervention for rule creation. Despite their limitations,

rule-based NLG systems paved the way for subsequent advancements.

Statistical and Machine Learning Approaches With the rise of machine learning

and statistical techniques, NLG witnessed significant advancements. Techniques such

as Hidden Markov Models (HMMs), Conditional Random Fields (CRFs), and Recurrent
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Neural Networks (RNNs) were employed to capture the statistical properties of text

and perform language generation. [92] These approaches allowed for more dynamic and

adaptable NLG systems.

Neural Language Models The emergence of neural network architectures revolution-

ized NLG. Models like LSTM (Long Short-Term Memory) and Transformer have shown

exceptional performance in various NLG tasks, including language translation, text

summarization, and image captioning. [128, 132] These models leverage the power of

deep learning and attention mechanisms, allowing for more accurate and context-aware

text generation.

Variations of NLG Models Several variations of NLG models have been proposed

to address specific challenges. For example, Pointer-Generator Networks combine the

benefits of traditional statistical approaches and neural networks to generate text by

copying words from the input. GPT (Generative Pre-trained Transformer) models use

large-scale unsupervised training to generate coherent and contextually relevant text.

These variations have led to significant improvements in the quality and fluency of

generated text.

NLG for Conversational Agents Recent research has focused on NLG for conver-

sational agents such as chatbots and virtual assistants. [103, 115] Neural approaches,

coupled with reinforcement learning techniques, have been used to train chatbots to

generate contextually appropriate and engaging responses. Dialog systems have also

seen advancements in NLG, incorporating techniques such as dialogue state tracking

and adaptive responses.

Evaluation of NLG Systems Evaluating the quality and effectiveness of NLG systems

is a challenging task. Traditional metrics like BLEU and ROUGE have limitations in

capturing the semantic quality and coherence of generated text. Recent research has

focused on developing better evaluation metrics, such as METEOR and BERTScore,

which consider both lexical and semantic aspects to assess the performance of NLG

systems. [28]

The field of Natural Language Generation has seen significant advancements in

recent years, driven by the adoption of neural network architectures and the availability

of large-scale datasets. The combination of deep learning techniques, such as LSTM

and Transformer, with innovative variations like Pointer-Generator Networks and GPT
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Table 2.1: Dataset statistics.

Dataset Yelp Op Spam
CHI NYC ZIP Positive Negative

#Users 38,063 160,225 260,277 - -
#Products 201 923 5044 20 20

#Spam Reviews 8,919 36,885 80,466 400 400
#Non-spam Reviews 58,477 322,167 528,133 400 400

%Spam 13.23% 10.27% 13.22% - -

models, has led to improved text generation quality and fluency. NLG has found appli-

cations in various domains, including conversational agents, summarization, and data

storytelling. Further research is needed to address challenges in evaluation, adaptability

to specific domains, and ethical considerations in NLG systems.

2.5 Data and Research Ethics

The thesis research will utilise both publicly available datasets from other literatures.

Even though the below datasets are sufficient for the empirical works within the scope

of this thesis, the author will actively seek to expand the datasets in order to provide a

broader and more comprehensive analysis for user bevioural modelling of e-commerce

consumers. All the datasets have been processed to remove any personal identification,

including anonymizing names and personal contact details used within the text of

datasets. Datasets will be integrated using customer number only.

2.5.1 Public Datasets

Unimodal Datasets We evaluate our proposed method on two benchmark publicly

available datasets, which are: Yelp from [105] (Table 5.1), contains three public spam

review datasets crawled from Yelp website: YelpChi, YelpNYC, and YelpZip. The dataset

comprises of binary labels: N representing genuine review and Y representing spam

reviews. Op_spam_v1.4 from [21] (Table 5.1), consists of truthful and deceptive hotel

reviews of 20 Chicago hotels. The label of each review in Op_spam_v1.4 was gathered

from Amazon’s popular Mechanical Turk crowdsourcing service and five popular online

review communities: Expedia, Hotels.com, Orbitz, Priceline and TripAdvisor.

Multimodal Datasets Existing CTR prediction models mostly utilize unimodal datasets

[77, 81, 101, 121]. In contrast, we introduce multiple modalities into CTR prediction. As
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Table 2.2: Statistics of the dataset. (v, a and t denote the dimensions of visual, acoustic,
and textual modalities, respectively.)

Dataset #Items #Users #Interactions Sparsity v. a. t.
Kuaishou 3,239,534 10,000 13,661,383 99.98% 2048 - 128
MV1.7M 1,704,880 10,986 12,737,619 - 128 128 128

Movielens 10,681 71,567 10,000,054 99.63% 2048 128 100

mentioned above, micro-video datasets contain rich multimedia information and include

multiple modalities - visual, acoustic and textual. We experimented with three publicly

available datasets: Kuaishou, MV1.7M and MovieLens 10M which are summarized in

Table 4.1.

Kuaishou: This dataset is released by the Kuaishou [75]. There are multiple in-

teractions between users and micro-videos. Each behaviour is also associated with a

timestamp, which records when the event happens. The timestamp has been processed

to modify the absolute time, but the sequential temporal order is preserved w.r.t to the

timestamp.

Micro-Video 1.7M: This dataset was proposed in [20]. The interaction types in-

clude “click” and “unclick”. Each micro-video is represented by a 128-dimensional visual

embedding vector of its thumbnail. Each user’s historical interactions are sorted in

chronological order.

MovieLens: The MovieLens dataset is obtained from the MovieLens 10M Data1.

We assume that a user has an interaction with a movie if the user gives it a rating of 4

or 5. We use the pre-trained ResNet[42] models to obtain the visual features from key

frames extracted from micro-video. For acoustic modality, we separate audio tracks with

FFmpeg6 and adopt VGGish [50] to learn the acoustic deep learning features. For textual

modality, we use Sentence2Vector [84] to derive the textual features from micro-videos’

descriptions.

2.6 Methodology

In this thesis, we utilize graph neural networks approaches to represent complex datasets

for extracting inductive and aggregation-based semantic features. We build a unimodal

graph to cluster similar review text and a multimodal hypergraph to learning user

interests.

1http://files.grouplens.org/datasets/movielens/
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2.6.1 Graph-based Methods

In this section, we introduce the graph related methods that are utilized in this thesis

: the graph convolutional network (GCN) and a hypergraph neural networks (HGNN)

framework, respectively.

Graph-aware Representation In online spam review detection task, our goal is to

learn a graph to model the interaction among similar review source r i from individuals

u j and apply to different item pk. Our motivation is that some correlations between

reviews with particular semantics can reveal the possibility that the source review is

spam. To achieve our objective, a graph Gci = (Vi,E i) is constructed for depicting different

review sets with same content i.e., Vi, where E i is the corresponding edge set. To unify

the review text input, the given source review is represented by a word level encoder.

The input is the embedding of each word in review text r i. Due to the difference in length

of each review, we perform zero padding appending to the tail by setting a fixed length

l. Since the edge set among reviews is unknown, we consider graph-based clustering

algorithm to generate relationship R by connecting comments with similar contents i.e.,

∀eαβ ∈ E
(
GCi

)
,vα ∈ Ri,vβ ∈ Ri, and vα ̸= vβ, |ε (Ci)| = k·(k−1)

2 , where α and β denote two

linked nodes, k denotes the number of v in Gci graph, and E and ε used to denote the

graph edge sets. Then, let the affinity M incorporate the similarity between review node

embeddings given by M(vα,vβ)
Ci

=D
({

rα | wα
1 ,wα

2 , · · · ,wα
e(i)

}
,
{
rβ | wβ

1 ,wβ

2 , · · · ,wβ

e(i)

})
, where

rα and rβ can be seen as embedding vectors of each review text sequence and D denotes

the vector distance. We use matrix R = [wvα,vβ] ∈ Rn×n to represent the relationship

between any pair of nodes vα and vβ in graph Gci . After the clustering operation, the

propagation features is obtained by GCN-based methods. As mentioned above, GCN can

capture information from a node’s one-hop and multi-hop neighbours through stacking

layer-wise convolution. Given the matrix R depicting the matrix of relationship for review

nodes in graph Gci , the new d-dimensional node feature matrix Hl ∈Rn×d represents the

output clustering review embeddings: Xr.

(2.1) H(l)
N(v) =σ

(
ÃH(l−1)W(l) ·RN(v)

Ci

)
where l is the layer number, W(l) is a trainable matrix shared among all nodes at

layer l. Then, we choose to stack two sub-layers to derive the propagation learning

representation, denoted AGG(.) and CONCAT(.). Note here an edge is associated with

relationship R, and the hidden state is updated as the concatenation of previous hidden
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states of two nodes it links to. So the AGG(.) function can be defined as:

(2.2) h(l)
N(v) ← AGG(l)

({
h(l−1)

r ,∀r ∈N(v) |RN(v)
Ci

= 1
})

After aggregating the neighbors’ information, we follow a combination strategy in [40]

for the homogeneous graph as:

(2.3) h(l)
v ←σ

(
W(l) ·CONCAT

(
h(l−1)

v ,h(l)
N(v)

))
Hypergraph Convolution Network (HGCN) In CTR prediction research task, we

aim to exploit the correlations among users and items for their high-order rich em-

beddings, in which the correlated users or items can be more complex than pairwise

relationship, which is difficult to be modeled by a graph structure. On the other hand,

the data representation tends to be multi-modal, such as the visual, text and social

connections. To achieve that, each user should connect with multiple items with various

modality attributes, while each item should correlated with several users. This naturally

fits the assumption of the hypergraph structure for data modeling. Compared with

simple graph, on which the degree for all edges is mandatory to be 2, a hypergraph can

encode high-order data correlation using its degree-free hyperedges [33]. In our work, we

construct a G (u, i) to present user-item interactions over different time slots. Then, we

aim to distill some hyperedges to build user interest-based hypergraph G
tn
g and item hy-

pergraph G
tn
i to aggregate high-order information from all neighborhood. We concatenate

the hyperedge groups to generate the hypergraph adjacent matrix H. The hypergraph

adjacent matrix H and the node feature are fed into a convolutional neural network

(CNN) to get the node output representations. We build a hyperedge convolutional layer

f (X,W,Θ) as follows:

(2.4) X(l+1) =σ
(
D−1/2

v HWD−1
e H⊤D−1/2

v X(l)Θ(l))
where define X,Dv,De and Θ is the signal of hypergraph at l layer, σ denotes the

nonlinear activation function. The GNN model is based on the spectral convolution on

the hypergraph.

2.6.2 Unsupervised Learning

Unsupervised learning is a popular machine learning methods with less labelled datasets.

In this thesis, we first utilize the spectral clustering to build unsupervised learning mod-

ules for learning the review data similarity matrix. Further, inspired by the recent
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success of self-supervised learning (SSL) [81], we utilize the mutual information max-

imization principle to learn the intrinsic data correlation [164] to help construct the

interests-based hypergraph where we represent a group of users with common preference

on modal-specific content.

Graph Clustering Inspired by graph-based clustering approaches, we use relation-

ships from graphs, such as spectral clustering technique [91] to transform the data into a

weighted, undirected graph based on pairwise similarities. The graph clustering methods

generally build k-means graphs with unlabeled data Du as input and extract features

F(Du). With these features, they find k-means for each sample Du using cosine similarity.

We obtain two different versions of k-means graphs, which are: 1) The relationship

R, between the two nodes. Intuitively, it can be understood as whether two nodes are

neighbors in the view of each k-means graph.

(2.5) R(n0,n1)
Ci

=
{

1 if (n0,n1) ∈ E
(
Gci

)
, i = 1,2, . . . , N,

0 otherwise.

where Gci denote to the k-means graph of i-th clustering, and E denotes all edges of

a graph. Here, n0 and n1 represent two nodes in the graph. 2) The affinity M is defined

as the Euclidean Distance measured in the feature space,

(2.6) M(n0,n1)
Ci

=Distance
(〈

FCi (n0) ,FCi (n1)
〉)

, i = 1,2, . . . N

Here, n0 and n1 connected by the affinity vector MCi in C i clustering graph.

Self-supervised Learning We aim to utilize self-supervised learning for the user-
interest matrix F ∈RL×d, where L denote the user counts and d denote the number of
multi-modalities according to items. We trained the weights {θa,θb,θc} for each modalities.
We define {α,β,γ} to denote the degree of interest of each modalities from the item
features. A threshold δ was applied to measure which modality contributes the most for
user-item interaction. We first maximize the mutual information between users u and
item’s multi-modal attributes M tn

in
. For each user and item, the metadata and attributes

provide fine-grained information about them. We aim to fuse user and multimodal-level
information through modeling user-multimodal correlation. It is thus expected to inject
useful multi-modal information into user group representation. Given an item i and
the multi-modal attributes embedding matrix Mtn

i i
∈R|A |×d, we treat user, item and its

associated attributes as three different views denoted as EU , Etn
I and Etn

A . Each Etn
A is
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associated with a embedding matrix Mk ∈ M tn
in
= {vtn

in
,atn

in
, xtn

in
}. We design a loss function

by the contrastive learning framework that maximizes the mutual information between
the three views. Following Eq 4.8, we minimize the User Interest Prediction (UIP) loss
by:

(2.7) LUIP
(
u, i,EA i

)= Ea j∈EAi

[
f
(
u, i,a j

)− log
∑

ã∈EA\EAi
exp( f (u, i, ã))

]
where we sample negative attributes ã that enhance the association among user, item

and the ground-truth multi-modal attributes, "\" defines set subtraction operation. The

function f (·, ·, ·) is implemented with a simple bilinear network:

(2.8) f
(
u, i,a j

)=σ
[(

E⊤
I ·WUIP ·EA j

)
·EU

]
where WUIP ∈Rd×d is a parameter matrix to learn and σ(.) is the sigmoid function. We

define the loss function LUIP for a single user, which will can be extended over the user

set in a straightforward way. The outcome from f (.) for each user can be constructed as a

user-interest matrix F and compared with the threshold δ to output the L-dimensions

vector v ∈R1×L.

2.6.3 User behaviour Model

In order to answer the research questions from one to three, we model the online user

reviews detection and user CTR prediction with some embeddings and deep learning

techniques: hybrid fusion strategy, self-attention methods and multi-layer perceptron.

Hybrid Fusion Strategy Existing works on multiple embeddings research use con-

catenation as fusion [67], resulting in suboptimal interactions. To tackle multiple types

of interactions effectively, we utilize an fusion process that transforms the input repre-

sentations into a heterogeneous tensor [88]. We use three unimodal information vectors

denoted as Xr, Xu and Xp, according to the encoded representations H, v j and xk respec-

tively. Each vector X is augmented with an additional feature of constant values equal

to 1, denoted as X= (X,1)T . Then the augmented matrix X is projected into a multiple

dimensional latent vector space by a parameter matrix W, denoted as WTXm. Therefore,

each possible multiple feature interaction among review-user-item is computed via outer

product, T = f
(
WT · X̃m

)
, expressed as:

(2.9) T =WT · (Xr ⊗Xu ⊗Xp
)

Here ⊗ denotes outer product, X̃ is the input representation from review, user and

item level. It is a three-fold heterogeneous tensor, modeling all possible interrelation,
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i.e., review graph-aware aggregation features H, and user-item interaction outcome Xu

and Xp. These operations result in two benefits: 1) different from simple concatenation,

making use of normal vector among multiple vectors enables learning the different

impacts of elements in different modalities, 2) it can also reduce the dimensionality by

compressing the fusion feature along three directions.

Self-Attentions We develop the sequential user behavior encoder by utilizing atten-

tion mechanism. We proposed to use self-attention layer, i.e., transformer which has also

been applied in time series prediction [104]. In constrast to CNN, RNN-based approaches

and Markov Chains-based models [60], we adopt self-attention as the basic model to

capture the temporal pattern in user-items interaction sequence. A self-attention module

generally consists of two sub-layers, i.e., a multi-head self-attention layer and a point-

wise feed-forward network. The multi-head self-attention mechanism has been adopted

for effectively extracting the information selectively from different representation sub-

spaces [164]. The multi-head self-attention is defined as:

(2.10) MultiHead(Q,K ,V )= Concat ( head 1, . . . , head h)WO

(2.11) head i = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
where the projections are parameter matrices WQ

i ∈Rd×dk , WK
i ∈Rd×dk , WV

i ∈Rd×dv and

WO ∈Rhdv×d. The attention function is implemented by scaled dot-product operation:

(2.12) Attention(Q,K ,V )= softmax
(

QKTp
dk

)
V

where (Q = K = V ) = E are the linear transformations of the input embedding matrix,

and 1p
dk

is the scale factor to avoid large values of the inner product, since the multi-

head attention module is mainly build on the linear projections. In addition to attention

sub-layers, we applied a fully connected feed-forward network, which contains two linear

transformations with a ReLU activation in between.

(2.13) FFN(x)= ReLU (0, xW1 +b1)W2 +b2

where W1,b1,W2,b2 are trainable parameters.

Multi-layer Perceptron Prediction Mudules We want to incorporate both user

sequential embeddings and group-aware high-order information for a more expressive
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representation of each user in the sequence. We propose the fusion layer to generate the

representation of user u at tn. Existing works on multiple embeddings use concatenation

as fusion [67], resulting in suboptimal interactions. We utilize the fusion process that

transforms the input representations into a heterogeneous tensor [88]. We use the user

sequential embedding Etn and group-aware hypergraph embedding Etn
g . Each vector E is

augmented with an additional feature of constant value equal to 1, denoted as E= (E,1)T .

The augmented matrix E is projected into a multi-dimensional latent vector space by

a parameter matrix W, denoted as WTEm. Therefore, each possible multiple feature

interaction between user and group-level is computed via outer product, T = f
(
WT · Ẽm

)
,

expressed as:

(2.14) TU =WT · (Etn ⊗Etn
g

)
Here ⊗ denotes outer product, Ẽm is the input representation from user and group

level. It is a two-fold heterogeneous user-aspect tensor TU , modeling all possible interre-

lation, i.e., user-item sequential outcome embeddings Etn and group-aware aggregation

features Etn
g .

When predicting the CTR of user for items, we take both sequential user embedding

and item embedding into consideration. We calculate the user-level probability score y to

a candidate item i, to clearly show how the function f works. The final estimation for

the user CTR prediction probability is calculated as:

(2.15) ŷ= f (eu, ei;Θ)

where eu and ei denote user and item-level embeddings, respectively. f is the learned

function with parameter Θ and implemented as a multi-layer deep network with three

layers, whose widths are denoted as {D1,D2, . . . ,DN} respectively. The first and second

layer use ReLU as activation function while the last layer uses sigmoid function as

Sigmoid(x)= 1
1+e−x . As for the loss function, we take an widely used end-to-end training

approach, Cross Entropy Loss[32, 106, 162], and it is formulated as:

(2.16) L(eu, ei)= y logσ( f (eu, ei))+ (1− y) log(1−σ( f (eu, ei)))

where y ∈ {0,1} is ground-truth that indicates whether the user clicks the micro-video

or not, and f represents the multi-layer deep network.
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3
GRAPH-AWARE DEEP FUSION NETWORKS FOR ONLINE

SPAM REVIEW DETECTION

3.1 Introduction

E-commerce companies such as Amazon and eBay have earned approximately $3.5

trillion in sales in 2019 and are anticipating an increase to $4.9 trillion by the end of

2021, according to Shopify.com. Online e-commerce has demonstrated unique importance

during the COVID-19 pandemic and enabled hundreds of millions of consumers to

purchase products anytime and anywhere around the world. Currently, customers can

also share their shopping experiences by rating items, writing reviews, and answering

questions related to the products that they have used in the past or recently purchased

online.

Online reviews play an important role in e-commerce as they impact the purchasing

decisions of approximately 93% of people, according to Ingniyte.co.uk. Unfortunately,

online reviews can be deliberately injected (a.k.a., “spam reviews”) to mislead potential

customers [58] for various unethical reasons, such as unfair marketing or online brand

attacks [71]. According to BrightLocal.com, 74% of consumers in 2019 have encountered

spam reviews yet failed to recognize them. It has thus become very crucial to devise

effective methods that can identify spam reviews automatically so that these platforms

remain reliable [147].

Despite various efforts on automatic spam review detection, most of them largely
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rely on learning from engineered features and lack generalizability. For example, tra-

ditional statistical learning methods usually use supervised classifiers, e.g., support

vector machines [93] (SVM), logistic regression [58], and Naïve Bayes [68], to detect

unusual patterns based on extracting review-specific semantic information [156]. Such

feature-centric methods usually ignore correlations among reviews, users, and items. As

shown in Figure 3.1(a), reviews on Yelp are useful and can be used as a reliable guide

for users to make a choice. However, experience tells us that only looking at the review

may mislead us into making an unwise decision, and we may need to double-check the

information (e.g., credibility, tastes, biases, and beliefs) about reviewers. Similarly, only

leveraging review text as features can be problematic as they are sometimes ambiguous,

and credibility cannot be guaranteed at all times.

To address the limitations of existing methods, we hypothesize that modeling the

information gathered from reviews, users, and items could help substantially improve

the performance and generalizability of online spam review detection systems. We

thus develop a novel model Graph-aware Deep Fusion Networks (GDFN), which

is capable of capturing the heterogeneity and complex interactions among different

features obtained from users, and their reviews on the items. GDFN considers the user-

review-item network to formulate the problem as a graph-based classification task, in

which reviews are labeled as spam or non-spam. At the local feature space level, GDFN

can distill the graph’s structural information from different types of features (i.e., user-

item bipartite graph, review text graph, user-review graph, and item-review graph). For

example, GDFN extracts structured information networks from the original unstructured

textual information of review data, which is potentially helpful for learning strong

discriminative features in spam review detection. At the global level, GDFN can also

learn the macro view of the heterogeneous information network that is aggregated from

the extracted individual graphs. GDFN then learns reinforced cross-graph features that

depict the useful correlations among all available metadata under a unified framework

to detect spam reviews.

Existing methods either concatenate multiple vectors or use selected pooling methods

to obtain a fixed dimensional vector. The limitation of such methods is that they may

result in information loss, especially under heterogeneous feature scenarios. As a result,

we propose a new fusion method to allow flexible information exchange and the interplay

between different local views of graph structural information. Instead of applying con-

catenation of embeddings of various graph views, we adopt the outer product between

subgraph-specific embeddings to obtain the fused features. The reason is that the outer
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Figure 3.1: (a): Yelp Review Platform: the user metadata page (top) and the item informa-
tion page (bottom). The comment area (middle) with rating and raw review text, then the
post review can be treated as a bridge between user and item. (b): Our proposed frame-
work comprises of the following parts: (1) Training datasets from e-commerce platforms.
(2) Heterogeneous Network from review platforms. (3)-(6) Review source homogeneous
graph and User-Review/Item-Review/User-Item bipartite graph distilled from component
(2). (7) Review Graph Clustering. (8) User (Item)-related feature embeddings. (9) Hybrid
Fusion Strategy.

product kernel outputs an N-way tensor that favors the strong expressiveness of both

lower and higher-order feature interactions. When modeling the above information to-

gether, there are several underlying challenges. For instance, a usual representation

learning approach is not universal to different graph structures distilled from distinct

features. Besides, a single general graph convolutional network (GCN) is not adequate to

capture the unique characteristics of different graphs constructed from multiple feature

spaces in a complex heterogeneous environment of online review platforms.

In summary, our key contributions are as follows:

• We propose a novel GCN-based heterogeneous graph-aware spam review detection

framework that is more expressive than existing text-based methods as it seam-

lessly captures relevant metadata and relational data to strengthen the review

embedding for the underlying task.

• We exploit unsupervised approaches to learn the constructed review graph, which

effectively resolves the problem of lack of labeled data. We also develop a novel

fusion strategy to model multiple types of interaction information effectively.

• Extensive experiments with large-scale reviews from two real-world datasets

demonstrate that our framework achieves consistent improvements over state-
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of-the-art methods. Our ablation study demonstrates the effectiveness of novel

components of GDFN.

3.2 Related Work

3.2.1 Feature-centric Methods

Traditional statistical methods rely on extracting different features from textual reviews,

followed by learning a language model. In [58], the authors first identified three types of

spam reviews, which are untruthful opinions, reviews on brands only, and non-reviews,

and then analyzed real-world datasets from Amazon. They extracted review-centric,

reviewer-centric, and product-centric features, and used them as input to a logistic regres-

sion (LR) model. Recently, in [142], the authors summarize eleven platform-independent

features from the word level, the semantic level, and the structural level to discriminate

between fraud and normal items. They used Xgboost as a binary classifier, and their

evaluation results indicated that CATS achieves both high precision and recall. In [93],

the authors approached the problem using three strategies as features in Naïve Bayes

and SVM classifier. The authors in [135] attempted to use Long Short-Term Memory

(LSTM) framework to detect spam reviews. They established three types of layers to

predict spam reviews, the input layer for receiving data, the hidden layer of LSTM, and

the output layer, respectively.

3.2.2 Graph-based Methods

Graph-based methods have been popularly applied to capture text features among

different entities. The first Graph Neural Network [114] (GNN)-based spam review

detection method was proposed by [136], who built a heterogeneous “review graph”

to represent the relationship among reviewers, reviews, and online sellers. In [117],

the authors utilized spam features for modeling review datasets as heterogeneous

information networks to map spam review detection procedure into a classification

problem in such networks. In the classification step, they proposed meta-path concepts to

find feature importance and calculate the weight. The authors in [82] presented a neural

network-based graph model, named Graph Embeddings for Malicious accounts (GEM),

which both considered “device aggregation” and “activity aggregation” in heterogeneous

graphs. So far, these methods have focused on shallow encoders, i.e., matrix factorization.

There is no parameter sharing, and every node has its unique embedding vector and
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the inherent “transductive” features are impossible to generate embeddings for unseen

nodes during training and do not incorporate node features.

Recent years have witnessed a growing interest in utilizing the “message-passing”

methodology in graphs [163], which learns how to aggregate information from each type

of neighbor using Markov Random Field (MRF) techniques implicitly. In [40], the authors

presented the GraphSAGE model, which achieves significant improvements compared

with previous methods such as DeepWalk [98] and SemiGCN [64]. This method overcomes

the limitation of applying GCN in transductive settings with a specified Laplacian matrix.

A model-based Graph Convolutional Neutral Networks (GCNN) for spam-bot detection

is proposed in [1], which proposed an inductive representation learning approach for

spam review detection based on the reviewer profile information and the social network

graph on Twitter datasets, and the inductive representation learning method used

in their approach is similar to that of GraphSAGE. In short, GCN-based methods

have been applied in various domains, such as spam advertisement identification [67],

recommendation system [43, 44, 154], social spammer detection [146], rumor detection [8]

and so no.

The above methods depend only on the local information of surrounding neighbor-

hoods of a target node, making the model sometimes noisy and thus ineffective. The

multiple convolutional layers may cause an over-fitting and over-smoothing problem.

To overcome the limitations inherent in existing methods, we design a novel model

that exploits review-user-item three-fold information and distillsreview clustering and

user-item level information.

3.2.3 Preliminaries

In this section, we introduce some fundamental concepts that are necessary to under-

stand our model. The notations used in this paper are summarized in Table 1.

3.2.3.1 Graph Convolutional Networks (GCN)

Recently, there is an increasing interest in utilizing convolutions in graph-based methods.

GCN is one of the most effective graph-aware models, whose convolution operation is

considered as a general layer-wise propagation architecture as follows:

(3.1) H(l+1) =σ(Ã(l)W(l))

The input is an adjacency matrix A and a feature matrix W ∈RN×E, where Ã= D̃− 1
2 AD̃− 1

2 ,

Ã = A+ IN is the adjacency matrix of graph G with added self-connections and D̃ii =

31



CHAPTER 3. GRAPH-AWARE DEEP FUSION NETWORKS FOR ONLINE SPAM
REVIEW DETECTION

Table 3.1: Notations

Notation Description
R The set of review source, {r1, r2, · · · , r|R|}
U The set of users, {u1,u2, · · · ,u|U |}
P The set of items, {p1, p2, · · · , p|P|}
r i e i words {wi

1,wi
2, · · · ,wi

e i
},r i ∈ R

Yi The tuple formula, denoted as {u j, r i, pk}
Gi A undirected graph of each review cluster
<Vi,E > The node and edge set of Gi
yi The ground-truth label, yi ∈ {Y , N}
T The outcome fusion tensor
f (.) The classifier function

∑
j Ãi j. σ is a non-linear activation function, such as the ReLU(.)= max(0,¬Σ). In [64],

a propagation structure is proposed that can be separated into two components: aggrega-

tion and combination. In general, for a GCN with L layer, aggregation and combination

sub-layers at l th layer (l = 1, · · · ,L) can be written as:

(3.2) H(l)
N(v) =σ

(
W(l) · AGG

({
H(l−1)

v ,∀v ∈N(v)
}))

(3.3) H(l)
v = CONCAT

(
H(l−1)

v ,H(l)
N(v)

)
where N(v) is a set of nodes adjacent to v, AGG(.) is a function used for aggregating

embeddings from neighbors of node v. This function can be customized for specific

models, e.g., mean aggregator, LSTM aggregator and pooling aggregator. The notation

H(l)
N(v) denotes the aggregated feature of node v’s neighborhood at l th layer. CONCAT(.)

function is used to combine self embedding and the aggregated embeddings of neighbors,

which is also a customized setup for different graph models, e.g., concatenation as in

GraphSAGE [40].

3.2.3.2 Graph-based Clustering

Inspired by graph-based clustering approaches, we use relationships from graphs, such as

the spectral clustering technique [91] to transform the data into a weighted, undirected

graph based on pairwise similarities. The graph clustering methods generally build

k-means graphs with unlabeled data Du as input and extract features F(Du). With these

features, they find k-means for each sample Du using cosine similarity. We develop two

different versions of k-means graphs, which are:
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• The relationship R between the two nodes. Intuitively, it can be understood as

whether two nodes are neighbors in the view of each k-means graph.

(3.4) R(n0,n1)
Ci

=
{

1 if (n0,n1) ∈ E
(
Gci

)
, i = 1,2, . . . , N,

0 otherwise.

where Gci denote to the k-means graph of i-th clustering, and E denotes all edges

of a graph. Here, n0 and n1 represent two nodes in the graph.

• The affinity M is defined as the Euclidean Distance (denoted as Dist) measured in

the feature space,

(3.5) M(n0,n1)
Ci

=Dist
(〈

FCi (n0) ,FCi (n1)
〉)

, i = 1,2, . . . N

Here, n0 and n1 are connected by the affinity vector MCi in C i clustering graph.

3.3 Methodology

In a nutshell, in our model, well-tailored representation learning models for each sub-

graph are elaborated to preserve the uniqueness of the derived features. We first utilize

spectral clustering to build unsupervised learning modules for learning the review data

similarity matrix. A multi-layer convolutional neural network is constructed to capture

information from similar neighborhoods of a node, where the convolutions are defined on

a graph structure. We then employ a hybrid fusion strategy [5] to obtain discrete values

from user behavior and item attribute information. Specifically, we first adopt the idea

of “early feature-level fusion” to exploit latent relation among attributes, then apply a

“late cross fusion” method to exploit the correlation and interaction among processed

modalities.

3.3.1 Model Overview

An online review instance is defined as an ensemble representing three types of in-

formation A = {R,U ,P}, where R is a set of review text, U is the user metadata and

profiles, and P is the corresponding item attributes. By leveraging multi-level features to

obtain a fusion tensor T , we build a classifier to learn the mapping relation from input

tensor to output prediction labels. Our novel model Graph-aware Deep Fusion Networks

(GDFN), as illustrated in Figure 3.1(b), automatically predicts spam reviews based on a
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unimodal graph to cluster similar review texts for extracting aggregation-based semantic

features. We then encode user (item)-level information to strengthen the final tensor

representation. By modeling each level of information in A using relatively independent

processes, the output of each encoder becomes the specific individual embeddings. The

graph-aware representation learns semantic correlations from the cluster network and

aggregates neighbor information from multiple sub-graphs. The fusion module is to

explicitly model interactions among reviews, users and items, denoted by fusion tensor

T , including three types of combinations: shallow-level (review text only), medium-level

(two-dimensional matrix) and top-level (three-dimensional tensor). The fused tensor is

fed into fully-connected layers with a softmax layer to perform review classification.

3.3.2 Graph-aware Representation

Our goal is to learn a novel graph to model the interaction among similar review source

r i from individuals u j and apply it to a different item pk. Our motivation is that some

correlations between reviews with particular semantics can reveal the possibility that

the source review is spam.

To achieve our objective, a graph Gci = (Vi,E i) is constructed for depicting different

review sets with same content i.e., Vi, where E i is the corresponding edge set. To unify

the review text input, the given source review is represented by a word-level encoder.

The input is the embedding of each word in review text r i. Due to the difference in length

of each review, we perform zero-padding, appending to the tail by setting a fixed length

l. Since the edge set among reviews is unknown, we consider a graph-based clustering

algorithm to generate relationship R by connecting comments with similar contents. We

depict this in the following two equations:

(3.6) ∀eαβ ∈ E
(
GCi

)
,vα ∈ Ri,vβ ∈ Ri.

and,

(3.7) vα ̸= vβ, |ε (Ci)| = k · (k−1)
2

where α and β denote two linked nodes, k denotes the number of v in Gci graph, and E

and ε used to denote the graph edge sets. Let the affinity M incorporate the similarity

between review node embeddings given by the following equation:

34



3.3. METHODOLOGY

(3.8) M(vα,vβ)
Ci

=D
({

rα | wα
1 ,wα

2 , · · · ,wα
e(i)

}
,
{
rβ | wβ

1 ,wβ

2 , · · · ,wβ

e(i)

})
where rα and rβ are seen as embedding vectors of each review text sequence and

D denotes the vector distance. We use matrix R = [wvα,vβ] ∈ Rn×n to represent the

relationship between any pair of nodes vα and vβ in graph Gci .

After the clustering operation, the propagation features are obtained by GCN-based

methods. As mentioned above, GCN can capture information from a node’s one-hop

and multi-hop neighbors through stacking layer-wise convolution. Given the matrix R
depicting the matrix of relationship for review nodes in graph Gci , the new d-dimensional

node feature matrix Hl ∈Rn×d represents the output clustering review embeddings: Xr.

(3.9) H(l)
N(v) =σ

(
ÃH(l−1)W(l) ·RN(v)

Ci

)
where l is the layer number, W(l) is a trainable matrix shared among all nodes at layer l.
We then choose to stack two sub-layers to derive the propagation learning representation

denoted AGG(.) and CONCAT(.). An edge is associated with relationship R and the

hidden state is updated as the concatenation of previous hidden states of the two nodes

it links to. As a result, the AGG(.) function can be written as:

(3.10) h(l)
N(v) ← AGG(l)

({
h(l−1)

r ,∀r ∈N(v) |RN(v)
Ci

= 1
})

After aggregating the neighbors’ information, we follow a combination strategy

described in [40] for the homogeneous graph as shown below:

(3.11) h(l)
v ←σ

(
W(l) ·CONCAT

(
h(l−1)

v ,h(l)
N(v)

))
3.3.3 User (Item)-related Information

User (item)-related information has been popularly used in the past [105, 117, 140],

where crucial social characteristic features have been used with faithful performance.

For example, given more metadata and attributes about the user and item level, the

model will focus on the balanced arbitration if posts are with positive or negative

emotions. We extract three types of objective features including account-based features

and transduction-based features.
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User Metadata To depict user behavior features, we use their metadata and profiles

and define a feature vector v j for each user u j. These features have also been used in

[105]. These features are:

• name of u j registered on the website

• date when u j joined, the number of u j ’s friends

• number of times u j has posted reviews

• number of cool/funny/useful review posted by u j

• location of u j

Each user feature vector v j ∈Rd is generated, where d is the number of features. It is

known that users’ behavior is crucial in detecting spam reviews, e.g., the average rating

given by reviewer, the standard deviation in rating and a feature indicating whether the

reviewer always gave only good, average or low rating [21].

Item Attributes To exploit item level features, we collect abundant attribute relativity

information from an online review website (i.e., Yelp) to identify item vector xk. The

collected attributes are listed as follows:

• number of reviews written for pk

• average rating deviation of pk

• which categories pk belongs to

• location of pk

• ratio of positive reviews against negative reviews on pk

For each item attribute, we map all discrete values into the Gaussian space and

represent them as the vector xk ∈Rm based on the three-sigma rule to avoid the sparsity

problem [13, 100].
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Transduction We consider attributes related to the transductive pattern of datasets,

such as the average number of comments or words. In most cases, spam reviews are

propagated in several fixed patterns [21]. Therefore, we use some useful data, such as

the average length of all reviews posted by u j or the average sentiment score of each

pk. Eventually, we utilize the strategy of decision-based operation [4] that unimodal

feature portions will be more predictive by a pre-trained model, as it can project the

raw features into a specialized embedding space [4]. To extract the unique information

from individual raw data fields, we employ Factorization Machine (FM) [109] to tackle

the problem of sparse data. As a result, the latent relevance among varying user-item

behavior and attributes is encoded in the embedding vector with linear complexity.

3.3.4 Fusion Module

Existing works on multiple embeddings research use concatenation as fusion [67], re-

sulting in suboptimal interactions. To tackle multiple types of interactions effectively,

we utilize an fusion process that transforms the input representations into a heteroge-

neous tensor [88]. We use three unimodal information vectors denoted as Xr, Xu and

Xp, according to the encoded representations H, v j and xk, respectively. Each vector

X is augmented with an additional feature of constant values equal to 1, denoted as

X= (X,1)T . The augmented matrix X is then projected into a multiple dimensional latent

vector space by a parameter matrix W, denoted as WTXm. Therefore, each possible

multiple feature interaction among review-user-item is computed via outer product,

T = f
(
WT · X̃m

)
, expressed as:

(3.12) T =WT · (Xr ⊗Xu ⊗Xp
)

where ⊗ denotes the outer product, X̃ is the input representation from review, user, and

item level. It is a three-fold heterogeneous tensor, modeling all possible interrelations,

i.e., review graph-aware aggregation features H, and user-item interaction outcome Xu

and Xp. These operations result in following two benefits:

• different from simple concatenation, making use of feature vector among multiple

vectors enables learning the different impacts of elements in different modalities

• reducing the dimensionality by compressing the fusion feature along with at least

three directions.
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3.3.5 Classification Model

We have obtained the graph-aware representation from review clustering networks,

user-level behavior, and item-level attribute embeddings. Each review with these modal-

ities can be represented as a heterogeneous tensor T with multiple sets. One of the

advantages of the fusion model T is that it can tackle the missing information problem

in the absence of one or two modalities. We use the heterogeneous tensor T as feature to

detect spam reviews. The fully connected layers are applied over T , and the Sof tmax(.)

function is used to convert the output values into probabilities which is commonly done

in the literature.

(3.13) ŷ=Softmax
(
Fusion

(
Hk

Ci
,Xu,Xp

))
where ŷ ∈R1×c is the vector of probabilities for all the classes used to predict the labels

of the reviews. Here we apply two-class for our detection task. We then train all the

parameters in the GDFN models by choosing the cross-entropy loss as the objective

function to optimize the classification task. The overall loss is the weighted sum of

classification loss.

3.3.6 GDFN Algorithm

We provide a detailed description of GDFN approach in Algorithm 1.

3.4 Experiments and Results

In this section, we evaluate the performance of our proposed GDFN model and compare

our model with different strong comparative methods. By conducting ablation study, we

demonstrate the preformance of the key components of our model.

3.4.1 Datasets

We evaluate our proposed method on two benchmark publicly available datasets. They

are:

• Yelp from [105] (Table 5.1), which contains three public spam review datasets

crawled from the Yelp website: YelpChi, YelpNYC, and YelpZip. The dataset com-
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Algorithm 1 GDFN training Algorithm
Data: Review Source r i, User metadata u j and Item attributes pk
Result: Prediction Label ŷ (Train a fixed number of epochs on the initial labeled and
unlabeled sets R,U and P)

1: for each stage k do
2: Step 1: Review Deep Clustering
3: Execute K-means and Laplacian calculation based on review source word
4: embedding r i and obtain affinity matrix M, relation R and clustering graph G .
5: Step 2: Graph Convolutional Networks
6: Compute each review node v of each review cluster Ci in unlabeled data.
7: for each cluster C of unlabeled set do
8: AGG(l)

({
h(l−1)

r ,∀r ∈N(v) |RN(v)
Ci

= 1
})

9: W(l) ·CONCAT
(
h(l−1)

v ,h(l)
N(v)

)
10: end for
11: Step 3: User(Item) Information
12: Compute user metadata vector uj
13: Compute user metadata vector pk
14: Early Feature-level Fusion: {uj,pk}→ {xj,xk}
15: Step 4: Late Cross Fusion
16: Calculate Fusion Tensor:
17: for each r i of all cluster data do
18: Ti =WT · (xr ⊗xu ⊗xp

)
19: end for
20: Step 5: Classification
21: Train a fixed number of epochs on the labeled spam review datasets R.
22: end for
23: return Prediction label and Accuracy based on Tensor T

prises binary labels: N representing genuine reviews and Y representing spam

reviews.

• Op_spam_v1.4 from [21] (Table 5.1), consists of truthful and deceptive hotel

reviews of 20 Chicago hotels. The label of each review in Op_spam_v1.4 was

gathered from Amazon’s popular Mechanical Turk crowdsourcing service and five

popular online review communities: Expedia, Hotels.com, Orbitz, Priceline, and

TripAdvisor. Note that reviewer features are not available for the Op_spam_v1.4

dataset.
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Table 3.2: Dataset statistics.
Dataset Yelp Op Spam

CHI NYC ZIP Positive Negative
#Users 38,063 160,225 260,277 - -

#Products 201 923 5044 20 20
#Spam Reviews 8,919 36,885 80,466 400 400

#Non-spam Reviews 58,477 322,167 528,133 400 400
%Spam 13.23% 10.27% 13.22% - -

Table 3.3: Spam detection results on whole Yelp and OpSpam Datasets in %. (Bold
indicates improvement over 10%)

Method
YelpCHI YelpNYC YelpZIP Positive OpSpam Negative OpSpam

AP AUC AP AUC AP AUC Prec. Rec. F1 Prec. Rec. F1
SVM+Ngram+BF 36.12 69.97 51.47 71.76 52.11 64.87 56.68 68.01 61.83 75.18 58.72 65.94

SpEagle 32.36 78.87 24.60 76.95 33.19 79.42 71.41 53.61 52.18 64.53 75.77 57.40
CATS 58.51 74.43 59.37 75.72 53.53 73.77 62.46 78.51 69.57 60.50 83.17 70.05

NB+Ngram 70.89 71.41 67.88 60.90 66.81 61.11 72.57 76.17 74.33 76.91 75.95 76.42
CNN 65.32 75.91 63.34 76.18 62.25 76.67 73.73 78.80 67.54 62.12 75.13 65.72

HFAN 48.87 83.24 53.82 84.78 62.35 87.28 86.96 67.31 75.88 61.17 40.00 48.37
GAS 68.90 71.02 70.09 71.67 67.02 60.00 88.65 84.61 81.53 88.60 84.87 81.63

GDFN 81.35 85.35 81.78 86.42 80.24 87.67 88.67 90.45 90.28 88.72 93.78 90.18
GDFN (+BERT) 82.39 87.69 82.46 87.85 82.91 88.05 88.75 92.83 90.75 89.82 94.90 91.62
Improvement(%) 16.22 5.34 17.65 3.62 23.70 0.88 0.11 9.72 11.30 1.38 11.82 12.24

3.4.2 Baseline Models and Settings

We compare our proposed method, GDFN, with strong state-of-the-art baseline methods,

including feature-centric and some recently proposed network-based models for spam

review detection. The comparative models are:

• NB [68]: A naive Bayes classifier [112] based on four groups of features: content

features, sentiment features, product features and meta data features

• SVM+Ngram+BF [93]: A standard n-gram (n=3) text categorization technique

applied to detect negative deceptive opinion spam with SVM classifier

• SpEagle [105]: A pair-wise Markov Random Field model defined to tackle spam

review detection task that utilized clues from metadata as well as relation data

• CNN [140]: A CNN method adopted to learn the textual information, and capture

complex global semantic features for detecting spam reviews

• CATS [142]: A Xgboost [19] model as the classifier in the detector with multiple

cross-platform independent features
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• HFAN [156]: A Hierarchical Fusion Attention Network (HFAN) to automatically

learn the semantics of reviews from user and product attribute

• GAS [67]: An end-to-end GCN-based Anti Spam (GAS) algorithm which incorpo-

rates the local context and the global context of comments with TextCNN classifier

[62] to detect spam advertisements

We also use the pre-trained BERT-base model to exploit the information encoded

in these pre-trained language models. We name this methods asGDFN (+BERT). To

this end, we use the BERT-base multilingual cased pre-trained BERT model 1, which

contains 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters. Since most

of the review text contains multiple sentences, we use BERT-as-service 2 as a sentence

encoding service, i.e., mapping a variable-length sentence to a fixed-length vector.

To compare our method with the traditional review mining methods, we have used

commonly used evaluation metrics for this task, such as Average Precision (AP), Area

Under Curve (AUC), Precision (Prec.), Recall (Rec.), and F1 measure (F1). Specifically,

for Yelp full datasets, AP and AUC are used as evaluation metrics. For Op_spam_v1.4

datasets, we evaluate Prec., Rec., and F1 scores over two categories: negative and

positive, respectively. For a fair comparison, we apply datasets with abundant metadata

and profiles including conducting a five-fold cross-validation.

Data Preparation Most of our pre-processing strategy has been widely used in the

literature [105, 156]. The maximum length of reviews in Yelp full datasets is set to 200,

and for Op_spam_v1.4 dataset, the maximum length is set to 100. We also compute some

additional features which usually have been shown to improve performance. These are

listed as below:

• Word Count of the documents – total number of words in the documents

• Character Count of the documents – total number of characters in the documents

• Average Word Density of the documents – average length of the words used in the

documents

• Puncutation Count in the Complete Essay – total number of punctuation marks in

the documents
1https://storage.googleapis.com/BERT_models
2https://github.com/hanxiao/BERT-as-service#1-download-a-pre-trained-BERT-model
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• Upper Case Count in the Complete Essay – total number of upper count words in

the documents

• Title Word Count in the Complete Essay – total number of proper case (title) words

in the documents

• Frequency distribution of Part of Speech Tags: Noun Count, Verb Count, Adjective

Count, Adverb Count and Pronoun Count.

These features are applied as source input to the model during the training process.

Model Training In the feature-based baselines, we make use of text and label. Re-

view text is transformed into feature vectors. Each word is first represented by a 300-

dimensional GloVe3 [97] embedding of the word. For the CNN-based model, we configure

200 hidden layers and “mean” aggregation operation. Moreover, the rate of dropout is

0.25, and the training iterations are set to 200 epochs, with early stopping when the

validation loss stops decreasing by 20 epochs. In the training process of the GCN-based

method, the dropout rate is 0.5, L2 loss regression is 2.5e−4. In our model training, we

adopt unsupervised learning for the clustering module and convolutional operation for

the GCN-based module.

For the clustering module, we select the top 10 clusters of the unsupervised learning

of review text, to make enough nodes for each review cluster (here we set up the minimum

node number of each cluster as 200). We provide a visualization for the distribution of

the review clustering graph in the embedding space where the figure illustrates the

embedding space learned by the spectral clustering method. In Figure 3.2, we represent

the top 10 clusters by unsupervised learning from the review source. Moreover, we utilize

k-means as our clustering method and compute the symmetric normalized Laplacian.

This visualization is conducted to prove the similarity of the review source. As shown

in Figure 3.4.2, for unimodal interactions, obviously review text modality is the most

predictive for the majority of samples, which is reasonable since the content is the

most important clue for spam review analysis. Furthermore, we have found that a

small defined number of clusters may increase the computational complexity of graph

construction and then lead to a lower clustering precision, while a large number of

clusters do not show the difference among clusters reliably, the cluster boundaries are

not very distinctive.

3https://nlp.stanford.edu/projects/glove/
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Figure 3.2: (a): Compactness measure via WSS. (b): Visualization for distributions of 10
clusters in learnt embedding space. The different colors dots represent different review
text clusters.

We utilize Within cluster Sum of Square (WSS) [27] technique as our metric for

deciding the number of clusters. As shown in Figure 3.4.2, we notice that our WSS

measure drops considerably when the number of clusters is increased from 2 to 5, and

again from 5 to 10, but the performance drop is comparatively lesser. Once we reach 10

clusters, the algorithm generally finds reliable groupings.

3.4.3 Results

Our experimental results are reported in Table 3.3. We can see that the graph-based

methods outperform feature engineering methods since the graph-based methods better

capture intricate representations of spam reviews. They are also suitable to capture

generalized features and interaction among multiple modalities.

Our method outperforms GraphSAGE [40] model, GAS [67], which justifies the

advantage of combining graph structure and hybrid fusion strategy for spam detection.

Additionally, CNN-based method cannot capture data with the graph structure, whereas

HFAN, the hierarchical fusion network ignores important propagation features for

unseen data prediction. This shows that obtaining graph structure information and

fusion strategy separately, results in lower performance on spam detection.

CNN only uses the convolutional hidden layer to capture feature vectors from Eu-

clidean structure data so it is dependent on data samples. However, the review platform

is similar to a social network. Unlike the CNN, GCNs enable the proposed model to

pay more attention to the non-Euclidean structural information of the review posts,

which helps improve our model’s performance. Further, the experiment result of the
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Table 3.4: Results of ablation study of GDFN on spam detection performance (Average
Precision in %).

GDFN variants YelpCHI YelpNYC YelpZIP

GDFNur 75.32 73.25 76.42
GDFNir 70.49 71.59 74.50
GDFNro 69.01 67.18 69.55
GDFN(+BERT)ur 78.25 78.28 79.02
GDFN(+BERT)ir 74.21 73.80 78.42
GDFN(+BERT)ro 73.48 68.55 73.21

GCN-based model, GAS, has shown a significant fluctuation on different datasets, which

makes it less ideal and overfits in case of some input samples, e.g., GAS obtains a better

performance on OpSpam positive datasets. The proposed fusion strategy fuses extra

information from user-item level to influence the final prediction, which helps us get a

relatively stable result.

3.4.4 Ablation Study

To analyze the effect of the individual components of GDFN, we conduct an ablation study

where we consider three different components: GDFNur which includes user-review text

only, GDFNir which includes item-review only, and GDFNro which includes review text

without user and item information.

As is shown in Table 3.4, we have observed that GDFNur, GDFNir and GDFNro

cannot outperform our main model (results in Table 3.3. Meanwhile, GDFNur ’s perfor-

mance is close to that of GDFN, demonstrating that user-level information plays an

important role in spam detection. We also observe that the worst results obtained from

the variant GDFNro, but these results are still better than most of the other baseline

methods, showing the superiority of our proposed framework for spam review detection.

3.5 Conclusions and Future Work

In this chapter, we proposed a novel model named GDFN, to predict spam reviews based

on a unimodal graph to cluster similar review text for extracting aggregation-based

semantic features and then encode user (item)-level information to strengthen the final

representation. We also utilize the fusion mechanism to obtain the inherent relationship

among users, reviews, and items. To evaluate the performance of GDFN, we conducted a
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series of experiments on two public datasets, to demonstrate the superiority of the model

in comparison with state-of-the-art models.

Given the recent success of multimedia sharing platforms, the items posted on

these online social media websites contain rich multimedia information (e.g., visual and

acoustic). Exploiting these multi-modality features is an interesting future direction.

Moreover, data connections can be more complex than a pairwise relationships on the

social networks. Addressing this problem in hypergraph networks can be considered a

new research line in this field.
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4
CLICK-THROUGH RATE PREDICTION WITH

MULTI-MODAL HYPERGRAPHS

4.1 Introduction

Click-Through Rate (CTR) prediction has become one of the core components of mod-

ern advertising on many e-commerce platforms. The goal is to predict customers’ click

probability on wide range of items. Existing works on CTR prediction only focus on

modeling pairwise interactions from uni-modal features which might not lead to sat-

isfactory results. This existing gap leads to new opportunities where we can exploit

the widely available multi-modal features which is largely unexplored. Besides, they

can give complementary information to the model which alone cannot be obtained via

uni-modal modeling. AutoFIS [78] and UBR4CTR [101] are recent Factorization Ma-

chine (FM) [109] based models with multi-layer perceptron (MLP) which mainly utilize

user-item interactions features. To supplement the lack of additional information, deep

neural networks (DNNs) are also explored with automated feature engineering. For

example, DSTN [94] leverages DNNs-based method to fuse additional auxiliary data and

item information to further uncover hidden information. Although these representative

works have achieved good performance, there are still limited exploration on modeling

multi-modal features and how they could contribute towards the model performance.

Recently, the wide-spreading influence of micro-video sharing platforms, e.g., Tiktok 1

1https://www.tiktok.com/
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Figure 4.1: An illustration of multi-modal user preferences.

and Kuaishou 2 make them a popular platform for socialising, sharing and advertising

as micro-videos. These videos are compact and come with rich multimedia content from

multiple modalities, i.e., textual, visual, as well as acoustic information. Motivated by

this, we propose a novel method which addresses the limitations in current methods

and improve CTR prediction performance through micro-videos. However, modeling

multi-modal features extracted from micro-videos for CTR prediction in a holistic way

is not straightforward. First, in a typical setting of CTR prediction, the interactions

between users and items are normally sparse, and the sparsity issue becomes even more

severe (in magnitude of number of modalities) when taking into account multi-modal

features. For example, compared to uni-modal feature space, the sparsity of a dataset is

tripled when considering visual, acoustic and text features of a target item. Therefore,

effectively mitigating the sparsity issues introduced by multi-modal features without

compromising upon the performance of the model is the key to this problem.

We rely on hypergraphs to address some of the challenges. Hypergraph [10, 126]

extends the concept of an edge in a graph and can connect more than two nodes. Inspired

by the flexibility and expressiveness of hypergraphs, we use the concept to multi-modal

feature modeling, and propose a new model based on modality-originated hypergraphs by

which the sparsity issues between users and items under each modality can be alleviated.

Figure 4.1 is an example of the proposed modality-originated hypergraphs, where user u1

and user u2 both have interactions with multiple micro-videos, e.g., i1 and i2, in which

each hyperedge can connect multiple item nodes on a single edge. Compared with a

simple graph on which the degree of all edges is set to be 2, a hypergraph can encode high-

2https://www.kuaishou.com/
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Figure 4.2: Illustration of user u1’s historical view records with micro-videos, which
reflects the user’s global view interests.

order data correlation (beyond pairwise connections) using its degree-free hyperedges.

Different from various modalities, we incorporate different multi-modal information,

e.g., frames, acoustic, textual into user-item hypergraphs to help establish an in-depth

understanding of user preferences. The reason for considering using hypergraphs in our

work is due to the purpose of building modality-originated hypergraphs which can be

treated as data argumentation technique.

We also construct hypergraphs considering both user and item. In Figure 4.1, user

u1 cares more about frames of micro-video i2, whereas user u2 might be fond of the text

content. Hence, different users might have different tastes on modalities of a micro-video.

A group of users u3,u4 and u5 click micro-video i2 due to the intriguing sound tracks.

Such signals can be utilized to construct a group-aware hypergraph which is comprised

of multiple users who share the same interest for the item. Inspired by the recent success

of self-supervised learning (SSL) [81], we utilize the mutual information maximization

principle to learn the intrinsic data correlation [164] to help construct the interests-based

hypergraph where we represent a group of users with common preference on modal-

specific content. Hence, in each modality (e.g., visual), we aggregate information from

the group-aware hypergraph and incorporate them into user representations. According

to group-aware hypergraph, each user has interactions with one of the item’s modalities,

while different items can be interacted with the same user. For example, user u1 likes i1’s

frames, and u1 will pay more attention to the visual-aspect of other items. Under such

circumstances, we can also construct a homogeneous item-level hypergraph comprising

of multiple items who have certain potential modality that appeal to the same user.

Generally, user preference evolves over time, and it is hence a sequential phenomenon.

As shown in Figure 6.1, user u1 has watched swimming and cartoon videos at timestamp

N, indicating that the user has two very different interests and we cannot capture
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the user’s interests at the single time point. If at a new timestamp N +1, basketball,

football, dance and fitness videos have been selected by the same user. Then, we can

infer that this user has more interests in sports than comedy. Under such circumstances,

some researches consider users’ interest as dynamic when designing CTR systems

and have better users’ interest models such as THACIL [20]. Therefore, more user-

behavior modeling methods are proposed for tacking this problem. There are RNN-based

models [51, 75], CNN-based models [130], transformer-based models [99] and memory

network-based models [30, 159].

To tackle the aforementioned problem, we propose HyperCTR, a novel temporal

framework with user and item level hypergraphs to enhance CTR prediction. To ex-

plore the sequential correlations at different time slots, HyperCTR truncates the user

interactions based on the timestamp to construct a series of hypergraphs. With a hyper-

graph convolutional network (HGCN), HyperCTR can aggregate the correlated users

and items with direct or high-order connections to generate the dynamic embedding at

each time slot. With change happening both over time and across users, the temporal

and group-aware user embeddings are fed into a fusion layer to generate the final user

representation. The prediction of an unseen interaction can be calculated as probability

between the user and micro-video representations after MLP. We show the effectiveness

of our framework on three publicly available datasets ‚Äì Kuaishou, Micro-Video 1.7M

(MV1.7M) and MovieLens. Our key contributions are: 1) We study the dynamics of

user preference from two perspectives - time-aware and group-aware - and uncover the

importance in exploiting the information interchange on various modalities to reflect

user interests and affect CTR performance. 2) We propose a novel method HyperCTR

framework with two types of modality-originated hypergraphs to generate users and

items embeddings. Three of the unique aspects of the framework are a self-attention

layer to capture the dynamic pattern in user-item bipartite interaction networks, a

fusion layer to encode each interaction with both the temporal individual embeddings

and group-level embeddings for final user pattern modeling and the CTR probability

will be calculated by a MLP layer with the input of user- and item-level embeddings. 3)

Extensive experiments on three public datasets demonstrate that our proposed model

outperforms several state-of-the-art models. Due to anonymous requirements, the code

link is invisible until paper acceptance.
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4.2 Our Novel HyperCTR Model

4.2.1 Preliminaries

Our goal is learning user preferences from the hypergraph structure and predicting

the probability that a user clicks the recommended entities. We denote U to represent

the set of users and I represents the set of P items in an online platform. The item is

characterised by various modalities, which are visual, acoustic, and textual. We also

have historical interactions, such as “click” between users and items. We represent this

interaction as a hypergraph G (u, i), where u ∈U and i ∈ I separately denote the user and

item sets. A hyperedge, E (u, i1, i2, i3, ..., in) indicates an observed interaction between

user u and multiple items (i1, i2, i3, ..., in) where hyperedge is assigned with a weight by

W, a diagonal matrix of edge weights. We also have multi-modal information associated

with each item, such as visual, acoustic and textual features. For instance, we denote

M = {v,a, x} as the multi-modal tuple, where v, a, and x represent the visual, acoustic,

and textual modalities, respectively.

Our hypothesis is that user preference also plays an important role. A user group

y is associated with a user set Cy ∈U which can be used to represent a N-dimensional

group-aware embedding. The member of groups might change over time. For each user

u, we denote the user’s temporal behavior as Bc
u responding to the current time, and

sequential view user behavior as Bs
u according to a time slot. We further utilize K (Bc

u)

and K (Bs
u) to represent the set of items in the sequential behavior, respectively.

We explain some important terminologies below which includes temporal user-item

interaction representation, group-aware hypergraph and item hypergraphs.

• Definition 1 (Temporal User-item Interaction Representation)

Let a sequence S (u, i1, i2, i3, ...) indicate an observed interaction between user

u and multiple items (i1, i2, i3, ...) occurring during a time slot tn. We denote

EI = [e1,e2, ...] as the set of items’ static latent embeddings, which represent the

set of items a user interacts with during this time slot. Each item in current

sequence is associated with multi-modal features, which utilize Min and it contains

three-fold information about visual, acoustic and textual, denoted as vin , ain and

xin , respectively.

• Definition 2 (Group-aware Multi-Modal Hypergraph)

Let G
tn
g represent a hypergraph associated with i-th item at time slot tn. G

tn
g =

{V tn
g ,E tn

g ,Wtn
g ,Htn

g } is constructed based on the whole user-item interactions with

50



4.2. OUR NOVEL HYPERCTR MODEL

multi-modal information. V tn
g represents the nodes of individual and the correlated

item in G
tn
g , E

tn
g denoted as a set of hyperedges. We are thus creating a link to users

who have interactions with multiple modal list of items. Each G
tn
g is associated

with an incidence matrix Htn
g and it is also associated with a matrix W

tn
g , which is

a diagonal matrix representing the weight of the hyperedge E
tn
g .

• Definition 3 (Item Homogeneous Hypergraph)

There are three hyperedges in each G
tn
g , which was defined in Definition 2. Let

G
tn
i (G tn

i ⊇ {gtn
v ,gtn

a ,gtn
x }) represent a series of item homogeneous hypergraphs for

each user group member. G
tn
i = {V tn

i ,E tn
i ,Wtn

i ,Htn
i } is constructed based on each G

tn
i

and describes a set of items that a user interacts with generated in the time slot

tn. V tn
i represents the nodes of items and E

tn
i denotes a set of hyperedges, which is

creating the link to items which have interactions with a user.

The group-aware hypergraph capture group member’s preference, while item hy-

pergraphs pay more attention to item-level high-order representation. Two types of

hypergraphs are the fundamental for our temporal user-item interaction representation.

We define our multi-modal hypergraph CTR problem as follow:

• Problem 1 Click-Through Rate Prediction Given a target user intent sequence

S , and its group-aware hypergraph G
tn
g and item hypergraph G

tn
i , both of them

depending on the time sequence T, this problem can be formulated as a function

f (u,G tn
g ,G tn

i , i)→ y for a recommended item i, where denotes y the probability that

user clicks or not.

4.2.2 HYPERCTR Framework

HyperCTR framework is illustrated in Figure 6.2. The framework can be divided into four

components: temporal user behavior attention module, interests-based user hyperedge

generation module, item hypergraph construction module and prediction module. We

illustrate the sequential user-item interactions in different timestamps from short-term

and long-term granularity. The figure also shows that the target user has a pairwise

relation with one item, while the item has multi-modal features such as visual, acoustic

and textual. A user might have different tastes on modalities of an item, for example,

a user is attracted by the frames, but might turn out to be disappointed with its poor

sound tracks. Multiple modalities have varying contributions to user preferences. Each

item can be treated as most current interactions from target user and the time-aware
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selection windows capture a time slot user behavior interacting on various items. All

the short and long-term user intent and item embedding are fed into attention layer to

represent each target user preference.

From group-level aspect, most item own more than one user. We extract item informa-

tion from user-items sequential historical records and generate group-aware hyperedges.

We can see in Figure 6.2 that there are three different colored areas. Every area denotes

a hyperedge and a group of users connected by one unimodal feature in each hyperedge.

We call this hyperedge Interest-based user hyperedge, and our task is to learn a user-

interest matrix, leading to construct these hyperedges. Each hypergraph in the figure

represents a group of users interacting with same item in the current time altogether

and have different tendencies. We can then easily learn the group-aware information

to enhance individual’s representation. Besides, we have the opportunity to infer the

preference of each user to make our prediction more accurate.

According to the group-level hyperedges, we can naturally find that each item can

map to several users, while each user also has multiple interactions with various items.

Here we cluster item information to build item hyperedges. There are several layers

for each modality which extends from interests-based user hyperedges. The generation

model will then go through the whole time period. We can now easily capture each

higher-order structural relationship among items and enrich the representation of each

items.

We leverage hypergraph convolutional operators to learn rich representation captur-

ing local and higher-order structural relationships [33, 74]. In the prediction module, we

fuse group-aware user representation and sequential user representation. We then feed

into a multi-layer perceptron and output the click-through rate prediction.

4.2.2.1 Temporal User behavior Attention Module

One user’s historical interaction with items can span multiple times. A straightforward

way is to apply RNN-type methods to analyze the sequence S (u, i1, i2, i3, . . .). However,

these models fail to capture both short-term and long-term dependencies. We thus

perform a sequential analysis using the proposed temporal user behavior attention

mechanism.

Embedding Layer As depicted in Figure 6.2, the long-term user interaction can be

represented by all the items the user has interacted with in a certain time slot tn. In the

user embedding mapping stage, to depict user behaviour features, we use their metadata

and profiles and define an embedding matrix EU for each user u j. We also maintain
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Figure 4.3: The structure of HyperCTR: two views of hypergraphs are constructed based
on user-item correlations at different time slot and the Hypergraph Neural Networks is
able to capture the correlations in multi-hop connections. The attention layer can capture
dynamic pattern in interaction sequences. Both the group-aware and sequential user
embedding fuse to represent each individual, meanwhile, the target item embedding and
a set of homogeneous item-item hypergraph embeddings are considered to learn the final
prediction with the multi-layer perceptron.

an item embedding matrix MI ∈R|I |×d and a multi-modal attribute embedding matrix

MA ∈R|A |×d. The two matrices project the high-dimensional one-hot representation of an

item or multi-modal attribute to low-dimensional dense representations. Given a l-length

time granularity sequence, we apply a time-aware slot window to form the input item

embedding matrix Etn
I ∈Rl×d. Besides, we also form an embedding matrix Etn

A ∈Rk×d for

each item from the entire multi-modality attribute embedding matrix MA, where k is

the number of item modalities. The sequence representation Etn ∈Rn×d can be obtained

by summing three embedding matrices: Etn =EU +Etn
I +Etn

A .

Attention Layer We develop the sequential user behavior encoder by utilizing atten-

tion mechanism. We proposed to use self-attention layer, i.e., transformer which has also

been applied in time series prediction [104]. In constrast to CNN, RNN-based approaches

and Markov Chains-based models [60], we adopt self-attention as the basic model to

capture the temporal pattern in user-items interaction sequence. A self-attention module
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generally consists of two sub-layers, i.e., a multi-head self-attention layer and a point-

wise feed-forward network. The multi-head self-attention mechanism has been adopted

for effectively extracting the information selectively from different representation sub-

spaces [164] and defined as:

(4.1) MultiHead(Q,K ,V )= Concat ( head 1, . . . , head h)WO

(4.2) head i = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
where the projections are parameter matrices WQ

i ∈Rd×dk , WK
i ∈Rd×dk , WV

i ∈Rd×dv

and WO ∈Rhdv×d. The attention function is implemented by scaled dot-product operation:

(4.3) Attention(Q,K ,V )= softmax
(

QKTp
dk

)
V

where (Q = K =V )=E are the linear transformations of the input embedding matrix,

and 1p
dk

is the scale factor to avoid large values of the inner product, since the multi-head

attention module is mainly build on the linear projections.

In addition to attention sub-layers, we applied a fully connected feed-forward network,

denoted as FFN(.), which contains two linear transformations with a ReLU activation in

between.

(4.4) FFN(x)= ReLU (0, xW1 +b1)W2 +b2

where W1,b1,W2,b2 are trainable parameters.

4.2.2.2 Hypergraph Convolution Network (HGCN)

At each time slot, we aim to exploit the correlations among users and items for their

high-order rich embeddings, in which the correlated users or items can be more complex

than pairwise relationship, which is difficult to be modeled by a graph structure. On

the other hand, the data representation tends to be multi-modal, such as the visual,

text and social connections. To achieve that, each user should connect with multiple

items with various modality attributes, while each item should correlated with several

users. This naturally fits the assumption of the hypergraph structure for data modeling.

Compared with simple graph, on which the degree for all edges is mandatory to be 2, a

hypergraph can encode high-order data correlation using its degree-free hyperedges [33].
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In our work, we construct a G (u, i) to present user-item interactions over different time

slots. Then, we aim to distill some hyperedges to build user interest-based hypergraph

G
tn
g and item hypergraph G

tn
i to aggregate high-order information from all neighborhood.

We concatenate the hyperedge groups to generate the hypergraph adjacent matrix H.

The hypergraph adjacent matrix H and the node feature are fed into a convolutional

neural network (CNN) to get the node output representations. We build a hyperedge

convolutional layer f (X,W,Θ) as follows:

(4.5) X(l+1) =σ
(
D−1/2

v HWD−1
e H⊤D−1/2

v X(l)Θ(l))
where define X,Dv,De and Θ is the signal of hypergraph at l layer, σ denotes the

nonlinear activation function. The GNN model is based on the spectral convolution on

the hypergraph.

4.2.2.3 Prediction Module and Losses

We want to incorporate both user sequential embeddings and group-aware high-order

information for a more expressive representation of each user in the sequence. We propose

the fusion layer to generate the representation of user u at tn. Existing works on multiple

embeddings use concatenation as fusion [67], resulting in suboptimal interactions. We

utilize the fusion process that transforms the input representations into a heterogeneous

tensor [88, 125, 152]. We use the user sequential embedding Etn and group-aware

hypergraph embedding Etn
g . Each vector E is augmented with an additional feature of

constant value equal to 1, denoted as E= (E,1)T . The augmented matrix E is projected

into a multi-dimensional latent vector space by a parameter matrix W, denoted as WTEm.

Therefore, each possible multiple feature interaction between user and group-level is

computed via outer product, T = f
(
WT · Ẽm

)
, expressed as:

(4.6) TU =WT · (Etn ⊗Etn
g

)
Here ⊗ denotes outer product, Ẽm is the input representation from user and group level.

It is a two-fold heterogeneous user-aspect tensor TU , modeling all possible interrelation,

i.e., user-item sequential outcome embeddings Etn and group-aware aggregation features

Etn
g .

When predicting the CTR of user for items, we take both sequential user embedding

and item embedding into consideration. We calculate the user-level probability score y to
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a candidate item i, to clearly show how the function f works. The final estimation for

the user CTR prediction probability is calculated as:

(4.7) ŷ= f (eu, ei;Θ)

where eu and ei denote user and item-level embeddings, respectively. f is the learned

function with parameter Θ and implemented as a multi-layer deep network with three

layers, whose widths are denoted as {D1,D2, . . . ,DN} respectively. The first and second

layer use ReLU as activation function while the last layer uses sigmoid function as

Sigmoid(x)= 1
1+e−x . As for the loss function, we take an widely used end-to-end training

approach, Cross Entropy Loss[32, 106, 162], and it is formulated as:

(4.8) L(eu, ei)= y logσ( f (eu, ei))+ (1− y) log(1−σ( f (eu, ei)))

where y ∈ {0,1} is ground-truth that indicates whether the user clicks the micro-video or

not, and f represents the multi-layer deep network.

4.2.3 Hypergraph Generation Modules

We aim to distill the user-level hypergraph group to enhance the representations of

input data. We adopt a pre-training way to learn user group latent preference correlation

to different modalities from items. However, as model trained is prone to suffer from

unlabelled data problem, there is no explicit information to associate user and each

item’s modality. We further incorporate additional self-supervised signals with mutual

information to learn the intrinsic data correlation [81, 164].

4.2.3.1 Interest-based User Hypergraph Generation Modeling

We aim to utilize self-supervised learning for the user-interest matrix F ∈RL×d, where L
denote the user counts and d denote the number of multi-modalities according to items.

We trained the weights {θa,θb,θc} for each modalities. We define {α,β,γ} to denote the

degree of interest of each modalities from the item features. A threshold δ was applied to

measure which modality contributes the most for user-item interaction. We first maxi-

mize the mutual information between users u and item’s multi-modal attributes M tn
in

.

For each user and item, the metadata and attributes provide fine-grained information

about them. We aim to fuse user and multimodal-level information through modeling

user-multimodal correlation. It is thus expected to inject useful multi-modal informa-

tion into user group representation. Given an item i and the multi-modal attributes
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embedding matrix Mtn
i i
∈R|A |×d, we treat user, item and its associated attributes as three

different views denoted as EU , Etn
I and Etn

A . Each Etn
A is associated with a embedding

matrix Mk ∈ M tn
in

= {vtn
in

,atn
in

, xtn
in

}. We design a loss function by the contrastive learning

framework that maximizes the mutual information between the three views. Following

Eq 4.8, we minimize the User Interest Prediction (UIP) loss by:

(4.9) LUIP
(
u, i,EA i

)= Ea j∈EAi

[
f
(
u, i,a j

)− log
∑

ã∈EA\EAi
exp( f (u, i, ã))

]
where we sample negative attributes ã that enhance the association among user, item

and the ground-truth multi-modal attributes, "\" defines set subtraction operation. The

function f (·, ·, ·) is implemented with a simple bilinear network:

(4.10) f
(
u, i,a j

)=σ
[(

E⊤
I ·WUIP ·EA j

)
·EU

]
where WUIP ∈Rd×d is a parameter matrix to learn and σ(.) is the sigmoid function. We

define the loss function LUIP for a single user, which will can be extended over the user

set in a straightforward way. The outcome from f (.) for each user can be constructed as a

user-interest matrix F and compared with the threshold δ to output the L-dimensions

vector v ∈R1×L.

4.2.3.2 Item Hypergraph Construction

We exploit how to transform a sequential user-item interactions into a set of homogeneous

item-level hypergraph. We construct a set of homogeneous hypergraphs GI , from node

sets I as follow:

(4.11) GI = {GI,group,GI,1, . . . ,GI,Q}

where GI, j = {I,E I, j}, and E I, j denote hyperedges in GI, j. Note that all the homogeneous

hypergraphs in GI share the same node set I. For a node i ∈ I, a hyperedge introduced in

E I, j of GI, j, which connects to {i|i ∈ I, (u, i) ∈ ETn}, i.e., the vertices in I that are directly

connected to u by ETn in time period Tn. According to Figure 6.2, in the user-item

sequential interaction network, the user u clicks three items v, which corresponds to

a hyperedge that connects these three items in the homogeneous hypergraph GI . The

special homogeneous hypergraph GI,group ∈GI are defined as G
(
I,

⋃k
j=1 E I, j

)
. Note that

the cardinalities of hyperedge sets in the constructed hypergraph are: |E I, j| ≤ |U | and

|E I,group| ≤ k|U | for j ≤ k. The total number of hyperedges in the homo-hypergraph is

proportional to the number of nodes and edge types in the input sequence: O(k(|I|+ |V |)).
Thus, the transformation easily scales to large inputs.
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4.2.3.3 Information Augmentation

The increasing data sparsity problem is one of our main motivations in tackling with

CTR prediction task. To address the interaction sparsity problem, some information

augmentation methods have been proposed [83, 149], however, they only consider in

the case of single modality and cannot handle the scenarios with multi-modal features.

We propose two data augmentation strategies, which use user behavior information

and item multi-modal information to learn the subgraph embedding. We transform the

initial user-item heterogeneous hypergraph into two homogeneous hypergraphs from the

perspective of users and items respectively.

User Behavior Information Augment Strategy We have utilized temporal user

interaction logs to represent user-level embedding. However, the heterogeneous nature

between users and items aggravates the difficulty in network information fusion. A

common observation is that the user usually interacts with only a small number of

items while an item can only be exposed to a small number of users, which results in

a sparse user-item network and limits the effectiveness of embedding representation.

To mitigate the issue, we utilize the self-supervised user interest matrix F to build the

user-user homogeneous graphs, which contains multiple hyperedges, and is regarded as

hypergraph. It is denoted as G
tn
g mentioned in Definition 2.

Item Multi-modal Information Augment Strategy It is a common observation

that if two users both link to the same modality of items, then they have some common

interest [158]. We are thus motivated to add an edge between them in G
tn
g . Similarly, if

some items link to the same set of users, they share the same target user group. We thus

add an hyperedge between them in G
tn
i .

According to the two information augmentation strategies, we transform the first-

order neighbor relations of user-item to second-order neighbor relations of user-user and

item-item, and represent the complex relationship as a multiple hypergraph structure.

Compared with single hop neighbors, in our case nodes have more hop neighbors, which

can be used to alleviate the problem of graph sparsity. The items in each hyperedge

in G
tn
i maintain some intrinsic attribute correlation due to which they connect with

the same user preference. Adding edge information while aggregating information from

neighbor nodes can exchange heterogeneous topology information between G
tn
g and G

tn
i .

The information fusion processes on the two graphs are interdependent.
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Table 4.1: Statistics of the dataset. (v, a and t denote the dimensions of visual, acoustic,
and textual modalities, respectively.)

Dataset #Items #Users #Interactions Sparsity v. a. t.
Kuaishou 3,239,534 10,000 13,661,383 99.98% 2048 - 128
MV1.7M 1,704,880 10,986 12,737,619 - 128 128 128

Movielens 10,681 71,567 10,000,054 99.63% 2048 128 100

4.3 Experiments and Results

4.3.1 Experimental Settings

4.3.1.1 Datasets

Existing CTR prediction models mostly utilize unimodal datasets [77, 81, 101, 121]. In

contrast, we introduce multiple modalities into CTR prediction. As mentioned above,

micro-video datasets contain rich multimedia information and include multiple modali-

ties - visual, acoustic and textual. We experimented with three publicly available datasets

which are summarized in Table 4.1.

Kuaishou: This dataset is released by the Kuaishou [75]. There are multiple in-

teractions between users and micro-videos. Each behaviour is also associated with a

timestamp, which records when the event happens.

Micro-Video 1.7M: This dataset was proposed in [20]. The interaction types in-

clude “click” and “unclick”. Each micro-video is represented by a 128-dimensional visual

embedding vector of its thumbnail. Each user’s historical interactions are sorted in

chronological order.

MovieLens: The MovieLens dataset is obtained from the MovieLens 10M Data3. We

assume that a user has an interaction with a movie if the user gives it a rating of 4 or 5.

We use ResNet[42], VGGish [50] and Sentence2Vector [84] to handle the visual features,

acoustic modality and textual information respectively.

4.3.1.2 Baseline Models

We compare our model with strong baselines from both sequential CTR prediction and

recommendation. Our comparative methods are: 1) GRU4Rec [51] based on RNN. 2)

THACIL [20] is a personalized micro-video recommendation method for modeling user’s

historical behaviors. 3) DSTN [94] learns the interactions between each type of auxiliary

3http://files.grouplens.org/datasets/movielens/
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data and the target ad, to emphasize more important hidden information, and fuses

heterogeneous data in a unified framework. 4) MIMN [99] is a novel memory-based multi-

channel user interest memory network to capture user interests from long sequential

behavior data. 5) ALPINE [75] is a personalized micro-video recommendation method

which learns the diverse and dynamic interest, multi-level interest, and true negative

samples. 6) AutoFIS [78] automatically selects important 2nd and 3rd order feature

interactions. The proposed methods are generally applicable to many factorization models

and the selected important interactions can be transferred to other deep learning models

for CTR prediction. 7) UBR4CTR [101] has a retrieval module and it generates a query

to search from the whole user behaviors archive to retrieve the most useful behavioral

data for prediction.

4.3.1.3 Parameter Settings

We randomly split all datasets into training, validation, and testing sets with 7:2:1 ratio,

and create the training triples based on random negative sampling. For testing set, we

pair each observed user-item pair with 1000 unobserved micro-videos that the user has

not interacted with before.

For our baseline methods, we use the implementation and settings provided in their

respective papers. More details show as follow items and Table 4.2.

• GRU4Rec We applies GRU to model user click sequence for reproduce this model.

We represent the items using embedding vectors rather than one-hot vectors.

• THACIL The number of micro-videos per user is set to 160. The temporal block

size is set to 20. For users having more items than 160, we just preserve as much

as 160 items. For users having less items, we pad all-zero vectors to augment.

• DSTN We set the dimension of the embedding vectors for each feature as 10, be-

cause the number of distinct features is huge. We set the number of fully connected

layers in DSTN is 2, each with dimensions 512 and 256.

• MIMN Layers of FCN (fully connected network) are set by 200 × 80 × 2. The

number of embedding dimension is set to be 16. The number of hidden dimension

for GRU in MIU is set to be 32. We take AUC as the metric for measurement of

model performance.
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Table 4.2: Parameter Settings

Methods #Batch size #Dropout #Learning rate
GRU4Rec 200 0.1 0.05
THACIL 128 0.2 0.001

DSTN 128 0.5 0.001
MIMN 200 0.2 0.001

ALPINE 2048 0.3 0.001
AutoFIS 2000 0.6 0.005

UBR4CTR 200 0.5 0.001

• ALPINE We utilized the 64-d visual embedding to represent the micro-video. The

length of users‚Äô historical sequence is set to 300. If it exceeds 300, we truncated

it to 300; otherwise, we padded it to 300 and masked the padding in the network.

• AutoFIS We implement the two-stage algorithm AutoFIS to automatically select

important low-order and high-order feature interactions with FM-based model.

• UBR4CTR The datasets are processed into the format of comma separated features.

A line containing user, item and context features is treated as a behavior document.

In HyperCTR and all its variants use Adam optimizer. For training, we randomly

initialize model parameters with a Gaussian distribution and use the ReLU as the

activation function. We then optimized the model with stochastic gradient descent (SGD).

We search the batch size in 128, 256, 512, the the latent feature dimension in 32, 64, 128,

the learning rate in 0.0001, 0.0005, 0.001.0.005, 0.01 and the regularizer in 0, 0.00001,

0.0001, 0.001, 0.01, 0.1. As the findings are consistent across the dimensions of latent

vectors, we have shown the result of 64, a relatively large number that returns good

performance whose details can be found sensitivity analysis.

4.3.1.4 Evaluation Metrics

We evaluate the CTR prediction performance using two widely used metrics. The first

one is Area Under ROC curve (AUC) which reflects the pairwise ranking performance

between click and non-click samples. The other metric is log loss. Log loss is to measure

the overall likelihood of the test data and has been widely used for the classification

tasks [107, 108].
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Table 4.3: The overall performance of different models on Kuaishou, Micro-Video 1.7M
and MovieLens datasets in %.

Method
Kuaishou MV1.7M MovieLens

AUC Logloss AUC Logloss AUC Logloss
GRU4Rec 0.7367 0.5852 0.7522 0.6613 0.7486 0.6991
THACIL 0.6640 0.5793 0.6842 0.6572 0.6720 0.6791
DSTN 0.7722 0.5672 0.7956 0.6492 0.8008 0.6162
MIMN 0.7593 0.5912 0.7486 0.6862 0.7522 0.6751
ALPINE 0.6840 0.5632 0.7130 0.6591 0.7390 0.6163
AutoFIS 0.7870 0.5756 0.8010 0.5404 0.7983 0.5436
UBR4CTR 0.7520 0.5710 0.8070 0.5605 0.8050 0.5663
HYPERCTR 0.8120 0.5548 0.8670 0.5160 0.8360 0.5380
Improv.(%) 3.18% 1.49% 7.43% 4.51% 3.85% 1.03%

4.3.2 Quantitative Performance Comparison

Table 6.2 presents the AUC score and Logloss values for all models. When different

modalities re used, all models show an improved performance when the same set of

modalities containing visual, acoustic and textual features are used in MV1.7M and

MoiveLens(10M). We also note that: (a) the performance of our model has improved

significantly compared to the best performing baselines. AUC is improved by 3.18%,

7.43% and 3.85% on three datasets, respectively, and Logloss is improved by 1.49%,

4.51% and 1.03%, respectively; and (b) the improvement in our model demonstrates that

the unimodal features do not embed enough temporal information which the baselines

cannot exploit effectively. The baseline methods cannot perform well if the patterns that

they try to capture do not contain multi-modal features in the user-item interaction

sequence.

4.3.3 HyperCTR Component Analysis

4.3.3.1 Role of Multimodality

To explore the effect of different modalities, we compare the results on different modalities

on the three datasets, as shown in Table 4.4. We make the following observations: 1)

Our main method outperforms those with single-modal features on three datasets. It

demonstrates that representing users with multi-modal information achieves a better

performance. It also demonstrates that the construction of hyperedges can capture

user’s modal-specific preference from graph information. 2) The visual-modal is the

most effective one among three modalities. It can be naturally understood that if a user

clicks what to watch, one usually pays more attention to the visual information than
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Table 4.4: Performance in terms of AUC & Logloss w.r.t different modalities on the three
datasets in %.

Method
Kuaishou MV1.7M MovieLens

AUC Logloss AUC Logloss AUC Logloss
multi-modal 0.8120 0.5548 0.8670 0.5160 0.8360 0.5380
visual-modal 0.8110 0.5560 0.8567 0.5167 0.8259 0.5376
acoustic-modal - - 0.8260 0.5171 0.8134 0.5373
textual-modal 0.7720 0.5756 0.8158 0.5175 0.8123 0.5364
(-) hypergraph 0.8034 0.5554 0.8137 0.5426 0.8064 0.5673

other modality. 3) The acoustic-modal shows more important information for user click

compared with the textual features. This is expected as the background music is more

attractive to users. 4) Textual modality contributes least towards click-through rate

prediction. However, in MovieLens data corpus, this modality has smaller gap with the

other modalities. This is because the text in MovieLens is highly related to the content.

4) Compared with GCN, our proposed model achieved better performance in all datasets.

As shown in Table 4.4, based on Kuaishou datasets, when only two features are used for

hypergraph, our model can still obtain slight improvement. With more features in the

other two datasets, our model achieves much better performance compared with GCN.

This phenomenon is consistent with our argument that when multi-modal features are

available, hypergraph has the advantage of combining such multi-modal information in

the same structure by its flexible hyperedges.

4.3.3.2 Role of HGCN Layers

To explore how the high-order connections in the hypergraph can help to uncover hidden

item correlations and thus contribute to the final prediction. We compare the performance

of HyperCTR by varying the number of hypergraph convolutional layers. As shown in

Figure 4.4, when we apply only one convolution layer for our sequential model, each node

embedding aggregates only information from others connected with them directly by the

hyperedge. Our model performs poorly in all three datasets. By stacking three HGCN

layers, it can bring in significant improvement compared with a model with just one

convolution layer. We can infer that HGCN are useful options for extracting expressive

item semantics and it is important to take the high-order neighboring information in

hypergraph into consideration. On Kuaishou and MV1.7M, since the data is very sparse,

it is not necessary to further increase the number of convolutional layers. Three HGCN

layers are enough for extracting the user- and item-level semantics at different time slots.

On MovieLens, more convolutional layers can further improve the embedding process.
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Figure 4.4: Performance comparison with different number of HGCN layers under AUC

This demonstrates the effectiveness of hypergraph and HGCN in modeling the temporal

user and item correlations.

4.3.3.3 Role of Time Granularity

An important parameter which can effect the performance of HyperCTR is the granular-

ity of the time slot. According to Figure 4.5, we show the performance of the proposed

model by varying the granularity from 1 month to 18 months. When the granularity is

small, we find that the model cannot achieve the best performance since the interactions

are extremely sparse and not sufficient for building up a set of expressive user and item

embeddings. While enlarging the granularity, we find that the performance of HyperCTR

is increasing in all the datasets. In Kuaishou datasets, it reaches the best performance

when the time granularity is set to half a year. However, for MovieLens, the optimized

granularity is almost one year since the item in MovieLens is movie, it propagation

speed is relatively slow and the impact time is relatively long. In MV1.7M datasets,

the optimized granularity is around three months, which is smaller than that for the

other datasets since the micro-video sharing platform attracts more interactions for each

time slot for the temporal user preference representations. If we further enlarge the

granularity, the performance will decrease since it underestimates the change of user

preference and may introduce noise to the model.
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Figure 4.5: Performance comparison with various time granularity under AUC

4.3.4 HyperCTR Model Parameter Study

4.3.4.1 Hyperparametr Sensitivity Analysis

We study sensitivity of HyperCTR on the key hyperparameters using the three public

datasets. The hyper-parameters play important roles in HGCN-based model, as they

determine how the node embeddings are generated. We conduct experiments to analyze

the impact of two key parameters which are the embedding dimension d and the size

of sampled neighbors set for each node. According to Figure 4.6, we can note that: 1)

When d varies from 8 to 256, all evaluation metrics increase in general since better

representations can be learned. However, the performance becomes stable or slightly

worse when d further increases. This may due to over-fitting. 2) When the neighbor

size varies from 5 to 40, all evaluation metrics increase at first as suitable amount of

neighborhood information are considered. When the size of neighbors exceeds a certain

value, performance decreases slowly which may due to irrelevant neighbors. The most

ideal neighbor size is in the range of 15 to 25.

4.3.4.2 Scalability Analysis

As GCN-based networks are complex and contain such a large number of nodes in the

real world application scenario, it is necessary for a model being feasible to be applied in

the large-scale datasets. We investigate the scalability of HyperCTR model optimized by

gradient descent, which deploys multiple threads for parallel model optimization. Our

experiments are conducted in a computer server with 24 cores and 512GiB memory. We

run experiments with different threads from 1 to 24. We depict in Figure 5.4 the speedup
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Figure 4.6: Impact of embedding dimension (top row) and sampled neighbor size (bottom
row)

ratio vs. the number of threads. The speedup ratio is very close to linear, which indicates

that the optimization algorithm of the HyperCTR is reasonably scalable.

4.3.4.3 Model Training

To depict our model training process, we plot the learning curves of HyperCTR, as shown

in Figure 4.8. The three subfigures are the AUC curves of the multi-modal hypergraph

framework when training on three datasets. Every epoch of the x-axis is corresponding

to the iteration over 5% of the training set.

4.4 Related Work

CTR prediction Learning the effect of feature interactions seems to be crucial for

accurate CTR prediction. Factorization Machines (FMs) [9, 109] are proposed to model

pairwise feature interactions in terms of the vectors corresponding to the involved fea-

tures. AutoFIS [78] and UBR4CTR [101] further improve FM by removing the redundant

66



4.4. RELATED WORK

Speedup Ratio

T
he

 n
um

be
r 

of
 th

re
ad

s
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Figure 4.8: Learning process of HyperCTR.

feature interactions and retrieving a limited number of historic behavior that are most

useful for each CTR prediction target. However, a FM-based model considers learning

shallow representation, and it thus is unable to model the features faithfully. Deep Neu-

ral Networks (DNNs) are exploited for CTR prediction in order to automatically learn

feature representations and higher-order feature interactions. DSTN [94] integrates

heterogeneous auxiliary data (i.e., contextual, clicked and unclicked ads) in a unified
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framework based on the DNN model. Further, the other stream of models focus more

on mining temporal patterns from sequential user behavior. GRU4Rec [51] is based on

RNN. It is the first work which uses the recurrent cell to model sequential user behavior.

MIMN [99] applies the LSTM/GRU operations for modeling users’ lifelong sequential

behavior.

Exploiting multi-modal representation Some works focus on the multi-modal

representation in the area of multi-modal CTR prediction. Existing multi-modal repre-

sentations have mostly been applied to recommender systems and have been grouped

into two categories: joint representations and coordinated representations [141]. Joint

representations usually combine the uni-modal information and project into the same

representation space [14, 22, 23, 25, 160]. Although, visual or textual data and are

increasingly used in the multi-modal domain [72], they are suited for situations where

all of the modalities are present during inference, which is hardly guaranteed in social

platforms. Different from the joint representations, the coordinated models learn sepa-

rate representations for each modality but coordinate them with constraints [141]. Since

the modal-specific information is the factor for the differences in each modality signals,

the model-specific features are inevitably discarded via similar constrains. In contrast,

we introduce a novel model which respectively models the information augmentation

and group-aware network problems to address the limitations in existing works.

Graph Convolution Network Our proposed model uses the GCNs technique to

represent the users and items, which has been popularly used for modeling the social

media data. In [40] the authors proposed a general inductive framework which leverages

the content information to generate node representation for unseen data. In [154] the

authors developed a large-scale deep recommendation engine on Pinterest for image

recommendation. In their model, graph convolutions and random walks are combined to

generate the representations of nodes. In [7] the authors proposed a graph auto-encoder

framework based on message passing on the bipartite interaction graph. However, these

methods cannot model the multi-modal data including cases where data correlation

modeling is not straightforward [33].

4.5 Conclusion

In this chapter, we model temporal user preferences and multi-modal item attributes

to enhance the accuracy of CTR prediction. We design a novel HGCN-based framework,

named HyperCTR, to leverage information interaction between users and micro-videos
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by considering different modalities. We also refine user presentation from two aspects:

time-aware and group-aware. With the stacking of hypergraph convolution networks, a

self-attention and the fusion layer, our proposed model provides more accurate modeling

of user preferences, leading to improved performance.
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5
SIMPLIFYING GRAPH-BASED COLLABORATIVE

FILTERING FOR RECOMMENDATION

5.1 Introduction

Recommendation systems conduct personalized information to assist users in finding

information of their interests and alleviate information overload. Collaborative filtering

(CF) represents the techniques that learn user/item embeddings from their historical

interactions and has been widely applied in various domains, such as online shopping

and social media.

Since the interactions can naturally be modeled as graphs, recent studies have

leveraged Graph Convolutional Networks (GCNs) to learn node representations. GCN-

based models can exploit higher-order connectivity between users and items and have

achieved impressive recommendation performance. PinSage and M2GRL are examples

of successful applications of GCNs in industrial applications.

Despite the promising performance, existing GCN-based CF models are becoming

more sophisticated than ever, aiming to capture higher-order collaborative signals. Such

complicated models are difficult to train with large graphs and bring efficiency and

scalability challenges, which hinder their adoption in broad applications. Moreover, it

can be time-consuming for CF to train GCN-based models through message passing (i.e.,

neighborhood aggregation) on large graphs; and simplifications done by LightGCN [49]

and SGC [144] do not help much. Until now, how to improve the efficiency of GCN models
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Figure 5.1: Illustrations of training of standard GCN (left) and Simplifying Graph-based
Collaborative Filtering(SGCF) (right). Standard GCN needs to recurrently perform N-
layers message passing to get the final embeddings for training with a large-scale graph
structure Goriginal . At the same time, SGCF only has one layer with a condensed graph
Gcondensed and removes other operations like self-connection, feature transformation, and
nonlinear activation, largely improving training efficiency and helping real deployment.

while retaining their effectiveness on recommendation is still an open problem.

We address the necessity of feature transformation and nonlinear activation in GCN-

based recommendation, aiming to accelerate GCNs in propagation on large-scale datasets.

Given that GCN-based CF models are burdensome with many operations unjustified,

we derive the simplest linear model that could precede GCNs. To this end, we reduce

the excess complexity of GCNs by repeatedly removing the non-linearities between

GCN layers and collapsing the resulting function into a single linear transformation.

Specifically, we devise a graph partition-based algorithm to generate a model that is easy

to implement, train and aggregate the multi-layer node information efficiently on large

graphs. We empirically show that the final linear model exhibits comparable or superior

performance to GCNs on various tasks while being more computationally efficient and
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fitting significantly fewer parameters. We illustrate the above idea using a toy example

in Figure 6.1.

We make the following contributions in this paper:

• We empirically reduce the excessive complexity of GCNs by repeatedly removing

the nonlinearities between GCN layers and collapsing the resulting function into a

single linear transformation.

• We propose Simplifying Graph-based Collaborative Filtering(SGCF), which largely

simplifies the model design by including only the most essential components in

GCN for more efficient recommendations. We offer an effective partition technique

for reducing the scale of input graph structure to avoid infinite layers of explicit

message passing for efficient recommendations.

• Our extensive experiments on four benchmark datasets show that SGCF achieves

significant improvements over state-of-the-art GCN-based CF model. Notably,

SGCF attains up to 10% improvement in NDCG@20 and more than 10x speed-

up in training over our baselines on the Amazon-Books dataset. To allow for

reproduciblility, we will release the source code and benchmark settings of SGCF

at Github.

5.2 Preliminaries

Following SemiGCN [64], We define a graph as G=< V ,E>, where V denotes the set of

nodes and E denotes the edge e i jbetween node i and node j. We use A to denote the

adjacency matrix—ai j = 1 if an edge exists from node i to node j; and ai j = 0 otherwise. To

ease Illustration, we use A= [i|ai j = 1] to denote the one-hop set of nodes, Ã= D̃− 1
2 AD̃− 1

2

the normalized adjacency matrix with added self loops, where D̃ is the degree matrix of

Ã. Ã=A+IN is the adjacency matrix of the graph with added self-connections, where I
is the identity matrix.

5.2.1 Graph Convolutional Networks

For each node v ∈ V , we use e0
i to denote the node initial embedding, which is usually the

feature vector xi of node i, in which e0 = xi. In a graph G , the main idea of GCNs is to

stack L steps in a recursive message passing or feature propagation operation to learn

node embedding [61]. Specifically, for each node i at the step, it is computed recursively
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with following three steps: feature propagation, feature transformation and non-linear

transition.

Feature propagation For each node i, the feature aggregation operation aggregate

the embeddings from graph neighbors Ni and its own embedding ek
i at previous layer l.

As the focus of this work is not to design more sophisticated feature aggregation function,

we follow the widely used feature aggregation function proposed in Kipf et al. [64], which

is empirically effective and has been adopted by many GCN variants:

(5.1) H
(k+1) = D̃−1/2ÃD̃−1/2Hk

where the features H at k-th layer, feature propagation output H layer can be regarded

as the Laplacian smoothing on the features at previous layer.

Feature transformation and nonlinear transition After the local smoothing,

a GCN layer is identical to a standard multi-layer perceptron (MLP). Each layer is

associated with learned weight W(k), and the smoothed hidden feature representations

are transformed linearly. Finally, a nonlinear activation function such as ReLU(.) =
max(0, ·) is applied pointwisely before outputting feature representation H(k). In totally,

the representation updating rule of the k-th layer is:

(5.2) H(k) ←ReLU
(
H

(k)
W(k)

)
The pointwise nonlinear transformation of the k-th layer is followed by the feature

propagation of the (k+1)-th layer.

5.2.2 Graph Convolutional based Recommendation

In a recommender system, there are two sets of entities: a user set U with M users

and an item set I with N items. As implicit feedback is the most common form in many

recommender systems, we focus on implicit feedback based CF in this work, and it is

easy to extend the proposed model for rating prediction in CF. Users show ratings to the

items with a rating matrix R ∈RM×N , with rui=1 denotes user u likes item i, otherwise

it equals 0. The rating matrix is a key to the success of recommendation performance.

With the huge success of GCNs, researchers attempted to formulate recommendation as

a user-item bipartite graph, and adapted GCNs for recommendation. NGCF [138] are

specifically designed under the CF settings. Given ratings of users to items, the user-item

bipartite graph is denoted as G=<U∪ I,A>, with A is constructed from the rating matrix
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R as:

(5.3) A=
[

R 0N×M

0M×N RT

]

Let E ∈R(M+N)×D denote the free embedding matrix of users and items. By feeding the

free embedding matrix E into GCNs with bipartite graph G , i.e., ∀i ∈U∪I , h0
i = e i. Then,

GCNs iteratrively perform with embedding propagation step in Eq.(1) and nonlinear

transformation with Eq.(2), each user’s or item’s embeddings can be updated in the

iterative process. Therefore, the final embedding Hk explicitly injects the up to K-th

order collective connections between users and items. All the parameters can be learned

in an end-to-end framework.

5.2.3 Graph Partition Technique

A naive approach for the initialization of network embedding is by random, which assigns

random numbers in R for the initial embedding of each node in the graph. However,

this approach disregards the structure of the input graph, rendering it unsuitable for

network embedding. Inspired by the graph partition base algorithm, we aim to describe

the sketch of the input graph G = < V ,E> using the partitioning of G , which are then

processed as the initial embedding of each node in V . A partitioning P of G divides V

into k disjoint subsets, denoted by P =V1, V2, . . . , Vk, where k is a user defined number.

Given a node v ∈ V , let V ′ ∈P be the partition where v resides, denoted by p(v)= V ′. We

call the neighbors in the same partition are internal nodes, while the others are external

nodes. Moreover, a node v ∈ V is a border node of G , if v has at least one neighbor n ∈ N(v)

whose partition is different from the one of v, namely p(v) ̸= p(n). Let Vb be the set of

border nodes of G . The border sub-graph Gb with respect to P is the induced sub-graph

of G constructed on Vb.

5.3 Method

5.3.1 Overall Structure of Our Model

In this part, we propose Simple Graph Convolutional Collaborative Filtering with graph

partition techniques which is a general GCN-based CF model for recommendation. The

overall architecture of SGCF is shown in Figure 6.2. SGCF advances current GCN-based

model with two characteristics: (a) At each layer of the feature propagation step, we
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Figure 5.2: The overall architecture of our proposed mode. The graph process illustrates
the procedure of embedding propagation with different hop. The partition algorithm
works in several iterations with different hops k (left bottom). In each iteration the up-
dating of the embedding of each node can be achieved in a k-layer computing framework.
The final condensed graph feed into our simplified GCF model.

use a simplified linear embedding propagation without any nonlinear activation and

linear transformations; (b) for accelerating the network embedding and improve the

performance of the algorithms on both effectiveness and efficiency, we propose a graph

resizing technique to recursively partition a graph into several small-sized sub-graphs to

capture the internal and external structural information of nodes, and then compute the

network embedding with low-order propagation process in a condensed graph.

5.3.2 Simplified Embedding Propagation

In traditional MLP’s, deeper layers allow for more expressive features because they allow

for feature hierarchies, such as features in the second layer building on top of features

in the first layer. In GCNs, the layers have another important function: in each layer

the hidden representations are averaged among neighbors that are one hop away. This

implies that after k-layers a node obtains feature information from all nodes that are

k-hops away in the graph. This effect is similar to convolutional neural networks, where
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depth increases the receptive field of internal features [41]. Although convolutional

networks can benefit substantially from the increased depth [54], typically MLPs obtain

little benefit beyond 3 or 4 layers.

We hypothesize that the non-linearity between GCN layers is not critical - but that

the majority of the benefit arises from the local averaging. We therefore remove the

nonlinear transition functions between each layer.

Given the user-item bipartite graph as formulated in Eq.(3), let E ∈R(M+N)×D denote

the free embeddings of users and items, with the first M rows of the matrix, i.e., E1:M is

the user embedding sub-matrix, and EM+1:M+N is the item embedding sub-matrix. Then,

our model takes the embedding matrix as input:

(5.4) E0 =E

which resembles the embedding based models in CF. Notably, different from GCN based

tasks with node features as fixed input data, the embedding matrix is unknown and

needs to be trained our model. Following the theoretical elegance with graph spectral

connections and empirical competing results of SGC, at each iteration step k+1, we

assume the embedding Ek+1 is a nonlinear aggregation of the embedding matrix Ek at

the previous layer k as:

(5.5) Ek+1 =SEkWk

where S = D̃−1/2ÃD̃−1/2 denotes the normalized adjacency matrix with added self loop,

Wk is the nonlinear transformation. Further, Eq.(5) with matrix form is equivalent to

modeling each user u’s and each item i’s update embedding as:

(5.6)
[
Ek+1

]
u
= ek+1

u =
[

1
du

ek
u +

∑
j∈Ru

1
d j ×du

ek
j

]
Wk

(5.7)
[
Ek+1

]
i
= ek+1

i =
[

1
di

ek
i +

∑
u∈Ri

1
di ×du

ek
u

]
Wk

which di(du) is the diagonal degree of item i (user u) in the user-item bipartite graph G .

Ru (and Ri) is neighbors of node user or item in graph G .

5.3.3 Model Prediction with Condensed Graph

With a predefined depth K , the nonlinear embedding propagation would stop at the K-th

layer with output of the embedding matrix EK . For each user (item), eK
u (eK

i ) captures the
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up to K-th order bipartite graph similarity. Then, many embedding based recommenda-

tion models would predict the preference ŷui as the inner product between user and item

latent vectors as:

(5.8) ŷui =< eK
u ,eK

i >

which <,> denotes the vector inner product operation.

Most existing GCN based variants, as well as GCN based recommendation models,

achieve the best performance with K=2 [43]. The overall trend for these GCN variants

is that: (1) the performance increases as K increases from 0 to 1, (2) and drops quickly

as K continues to increase. In fact, most recommended scenarios have large-scale input

networks and the user-item graph will become more complicated. It will cause each

node eu or e i has multiple neighbor hops (K >= 2). However, as k increases from 0 to

K , the node embeddings at deeper layers tend to be over smoothed, i.e., they are more

similar with less distinctive information. Meanwhile, stacking multiple layers of message

passing likely introduces uninformative, noisy, or ambiguous relationships, which could

largely affect the training efficiency and effectiveness. This problem not only exists in

GCNs, but is much more severe in CF with very sparse user behavior data for model

learning. To alleviate the problem, we utilize the graph partition techniques to reduce

the scale of the input network and construct the condensed graph.

To construct the condensed graph Gc=(Vc, Ec), we first obtain a partitioning P of

G , denoted by P = {V1,V2, . . . ,Vk} where k is a user-defined number. The goal of graph

partition is (k,σ)-balanced where 0<σ< 1, and it satisfies the constraint:

(5.9) max
1≤i≤k

|Vi| ≤ (1+σ)
[|V |

k

⌉
and minimizes the size of edge-cut as:

(5.10)
⋃

1≤i, j≤k

{
(v,u) ∈E | v ∈ Vi,u ∈ V j

}
However, the (k,σ)-balanced graph partition is a NP-hard problem [11]. To deal with

this issue, we are motivated by the GPA algorithm [76] for graph partitioning, which has

adopted in practice and costs a running time complexity O(|V +|E|+klogk|). Based on

P , we construct the condensed graph Gc of G by creating an condensed node va for each

sub-graph V ′ ∈ P and connecting two condensed nodes va and ua with an condensed

edge (va,ua) of a weight w(va,ua). Then, the number of condensed nodes in Gc is k, i.e.,

the number of partitions of G . Besides, the number of condensed edges of Gc is bounded

by the size of edge cut.
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Algorithm 2 Condensed Graph Propagate
Input graph: G =< V ,E>, the embeddings ec of Gc condensed graph, and the threshold
δ

Result: The set e i of initial embedding of each node v ∈ V

initialization: Let e i(v)= ec((cv)) for each node v ∈ V

1: While △ > δ

2: for each node v ∈ V do
3: Let eavg(v)= 1

|N(v)|
∑

u∈N(v) e i(u)
4: Compute e′i(v)= 1

2

(
e i(v)+ eavg(v)

)
5: end for
6: Let △ = 1

|V |
∑

v∈V
∥∥e′i(v)− e i(v)

∥∥ ;
7: for e doach node v ∈ V

8: let e i(v)= e′i(v)
9: end for

10: return e i

One crucial issue remaining is how to decide k. On one hand, if k is small, then one

condensed node would be pertinent to a lot of nodes in the input graph G . As such, the

initial embedding of each node in G inherited from the corresponding abstract node

would lose the power of effectiveness. On the other hand, if k is large, then the condensed

graph Gc would be large too. Therefore, it would be highly expensive to compute the

network embedding on Gc, which increase the overall cost of the initialization phase. To

reach a good balance, we set k = ⌈p|V | ⌉, which is a sufficiently large number but much

smaller than |V |, that works well in practise.

In addition, to compute the condensed graph embedding of Gc, a naive approach is

to let the initial embedding of each node v equal the embedding of the corresponding

condensed node c(v). However, this approach would suffer from the issue where the nodes

pertinent to the same condensed node have the same initial embeddings, rendering this

method ineffective. For addressing this issue, we utilize a iterative approach where each

node update its own embedding based on the embeddings of its neighbors until the

convergence is reached. This means specifically, in each iteration, each node v ∈ V first

aggregates the embeddings of v’s neighbors, which results in the average embedding

eavg(v). Then, we update v’s embeddings as the aggregation of eavg and its own embed-

ding e iv. The reason is that the embedding of each node should be close to its neighbors

in the graph. Moreover, Algorithm 2 shows the procedure of embedding propagation.

Consider a graph G=< V ,E>, the condensed graph Gc of G , and the network embedding

ec of Gc.

Based on the above condensed input graph, we argue that: instead of directly utiliz-
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ing the original user-item bipartite network, we perform the preference learning with

condensed graph as: ŷui =< ek
u,ek

i >. We hypothesize that it is easier to optimize the

condensed rating, and the condensed graph learning could help to alleviate the over

smoothing effect with deeper layers. Based on the condensed preference prediction in

above, we have:

(5.11)

ŷui = ŷk−1
ui +< ek

u,ek
i >

= ŷk−2
ui +< ek−1

u ,ek−1
i >+< ek

u,ek
i >

= ŷ0
ui+< e1

u,e1
i >+ . . .+< ek

u,ek
i >

=< e0
u
∥∥e1

u
∥∥ . . .

∥∥∥ek
u, e0

i

∥∥∥e1
i ∥ . . .∥ek

i > .

The above equation is equivalent to concatenate embedding of each layer to form the

final embedding of each node. This is quite reasonable as each node‚Äôs sub-graph varies,

and recording each layer‚Äôs representation to form the final embedding of each node is

more informative.

5.3.4 Model Learning

The trainable parameters of our model are only the embeddings of the first-order layer,

such as W=E(0). In other words, the model complexity is same as the standard matrix

factorization (MF). We adopt the ranking based loss function in Bayesian Personalized

Ranking (BPR) [111], which a pairwise loss that encourages the prediction of an observed

entry to be higher than its unobserved counterparts:

(5.12) min
W

L(R,R̂)=
M∑

a=1

∑
(i, j)∈Da

− ln(s(r̂ai − r̂a j))+λ∥W∥2

where λ controls the L2 regularization strength. We employ the Adam SGD [63] op-

timizer and use it in a mini-batch manner. We are aware of other advanced negative

sampling strategies which might improve the SGCF training, such as the hard negative

sampling [110] and adversarial sampling [29]. We leave this extension in the future

since it is not the focus of this work. Note that we do not introduce dropout mechanisms,

which are commonly used in GCNs and NGCF. The reason is that we do not have feature

transformation weight matrices in SGCF, thus enforcing L2 regularization on the embed-

ding layer is sufficient to prevent over fitting. This showcases SGCF‚Äôs advantages of

being simple ‚Äî it is easier to train and tune than NGCF which additionally requires to

tune two dropout ratios, such as node dropout and message dropout, and normalize the

embedding of each layer to unit length. Moreover, there is one crucial issue remaining in
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the network embedding learning on the condensed graph Gc which is the configuration of

hyperparameters in the random walk based algorithm, i.e., the number of random walks

and the length of a random walk. To cope with this issue, we utilize a pre-processing

phase which trains a regression model that takes into account both the hyperparameters

and the statistics of the condensed graphs. As such, given an condensed graph Gc, we

are able to infer from the model the suitable hyperparameters for Gc with a slight cost,

as explained shortly.

5.3.5 Model Analysis

Detailed Analysis of Model Based on the prediction function in Eq.(11), we observe

that SGCF is not a deep neural network but a wide linear model. The linearization

has several advantages: First, as SGCF is built on the recent progress of SGC, it is

theoretically connected as a low pass filter of graph on the spectral domain [144]. Second,

with the linear embedding propagation and partition graph learning, SGCF is much

easier to train compared to nonlinear GCN based models. Last but not least, we obtain

the initialization of the embedding for each node in the graph by computing the network

embedding on the condensed graph, which is much smaller than the input graph, and

then propagating the embedding among the nodes in the input graph. Instead, we could

resort to stochastic gradient descent for model learning. Therefore, SGCF is much more

time efficient compared to classical GCN based models.

Connections with Existing Work We compare the key characteristics of our proposed

model with three closely related GCN based recommendation models: PinSage [95],

NGCF, and LightGCN. NGCF and LightGCN are both the first few attempts that

also use a residual prediction function by taking each user (item)’s embedding as a

concatenation of all layers’ embeddings. However, the authors simply use this “trick”

without any detailed explanation. We empirically show the reason why taking the output

of the last layer embedding fails for CF, and show using residual prediction is equivalent

to concatenate all the layer’s embeddings as the final embedding of each node in the

user-item bipartite graph. For PinSage, it has a lower time complexity compared to

its deep learning based counterparts (e.g., NGCF) as this model designed a sampling

technique in feature aggregation process.
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5.4 Experiments

We first compare SGCF with various state-of-the-art CF methods to demonstrate its

effectiveness and high efficiency. We also perform detailed parameter studies to justify

the rationality and effectiveness of the design choice of SGCF.

5.4.1 Experimental Setup

5.4.1.1 Datasets

We utilize four publicly available datasets, including Yelp2018, Amazon-Books, Gowalla 1,

and MovieLens to conduct our experiments, as many recent GCN-based CF models [16,

46, 47, 49, 120, 138, 139, 145] are evaluated on these four datasets. We closely follow

these GCN-based CF studies and use the same data split as them. Table 5.1 shows the

statistics of the used datasets.

Yelp2018: This dataset is adopted from the 2018 edition of the Yelp challenge. Where

in, the local businesses like restaurants and bars are viewed as the items. We use the

same 10-core setting in order to ensure data quality. Amazon-Books: Amazon-books is a

widely used dataset for product recommendation [48]. We select Amazon-Books from the

collection. Similarly, we use the 10-core setting to ensure that each user and item have

at least ten interactions. Gowalla: is a location-based social networking website where

users share their locations by checking-in. The friendship network is undirected and

was collected using their public API, and consists of 196,591 nodes and 950,327 edges.

MovieLens: The MovieLens dataset is obtained from the MovieLens 10M Data 2. We

assume a user has an interaction with a movie if the user gives it a rating of 4 or 5.

5.4.1.2 Baselines

In total, we compare SGCF with three types of the stat-of-the-art models, covering

MF-based methods, metric learning-based approaches and GCN-based models.

MF-based methods: MF-BPR [85] a pairwise method that exploits different types of

feedback with an extended sampling method. ENMF [87]) an Efficient Adaptive Trans-

fer Neural Network (EATNN) for social-aware recommendation. Metric learning-based

method - CML [52]. Networking embedding methods: DeepWalk [98] learns embed-

dings via the prediction of the local neighborhood of nodes, sampled from random walks

1http://www.gowalla.com/
2http://files.grouplens.org/datasets/movielens/
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on the graph. LINE [129] is suitable for arbitrary types of information networks: undi-

rected, directed, and/or weighted. Node2Vec [38] is a state of art graph representation

learning method. It utilizes random walk to capture the proximity in the network and

maps all the nodes into a low-dimensional representation space which preserves the

proximity. GCN-based methods: NGCF achieves the target by leveraging high-order

connectivities in the user-item integration graph. NIA-GCN [124] can explicitly model

the relational information between neighbor nodes and exploit the heterogeneous nature

of the user-item bipartite graph. LR-GCCF [16] is a general GCN based CF model for

recommendation. LightGCN learns user and item embeddings by linearly propagating

them on the user-item interaction graph, and uses the weighted sum of the embeddings

learned at all layers as the final embedding and DGCF [153] considers user-item rela-

tionships at the finer granularity of user intents and generates disentangled user and

item representations to get better recommendation performance.

5.4.1.3 Evaluation Metrics

Given a user, a top-K item list recommendation algorithm provides a list of ranked

item lists according to the predicted preference of them. To assess the ranked lists with

respect to the ground-truth lists set of what users actually interacted with, we adopt

three evaluation metrics: Normalized Discounted Cumulative Gain (NDCG) [56] at 20

(NDCG@20), Hit Ratio at 20 (HR@20) and recall at 20 (Recall@20).

5.4.1.4 Parameter Settings

We implement our SGCF model in Tensorflow3. There are two important parameters

in our model: 1) the dimension D of the user and item embedding matrix E, and 2)

the regularization parameter λ in the objective function (Eq.12). The embedding size

is fixed to 64 for all models. In our proposed SGCF model, we try the regularization

parameter λ in the range [0.0001,0.001,0.01,0.1] and find λ = 0.01 reaches the best

performance. We adopt Gaussian distribution with 0 mean 10−4 standard deviation to

initialize embeddings. There are several parameters in the baselines, for fail comparison,

all the parameters in the baselines are also tuned to achieve the best performance.

3https://www.tensorflow.org/
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Table 5.1: Statistics of the datasets.

Dataset #Users #Items #Interactions Density
Amazon-Books 52,643 91,599 2,984,108 0.062 %

MovieLens-10M 71,567 10,681 10,000,054 0.371 %
Gowalla 29,858 40,981 1,027,370 0.084 %
Yelp2018 31,668 38,048 1,561,406 0.130 %

Table 5.2: Overall performance comparison. Improv. denotes the relative improvements
over the best GNN-based baselines.

Model
Amazon-Books Yelp2018 Gowalla MovieLens-10M

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
ENMF 0.0334 0.0279 0.0614 0.0525 0.1532 0.1351 0.2345 0.2098
CML 0.0413 0.0313 0.0621 0.0536 0.1639 0.1298 0.1725 0.1536

MF-BPR 0.0324 0.0259 0.0539 0.0432 0.1623 0.1346 0.2134 0.2135
DeepWalk 0.0347 0.0266 0.0478 0.0382 0.1042 0.0741 0.1351 0.1047
Node2Vec 0.0412 0.0307 0.0448 0.0361 0.1020 0.0711 0.1476 0.1190

LINE 0.0412 0.0321 0.0547 0.0445 0.1336 0.1057 0.2338 0.2232
NGCF 0.0345 0.0261 0.0580 0.0478 0.1571 0.1337 0.2515 0.2513

LR-GCCF 0.0336 0.0264 0.0560 0.0345 0.1521 0.1286 0.2230 0.2131
LightGCN 0.0412 0.0314 0.0651 0.0529 0.1824 0.1548 0.2573 0.2423
NIA-GCN 0.0371 0.0289 0.0589 0.0492 0.1361 0.1116 0.2361 0.2243

DGCF 0.0423 0.0325 0.0654 0.0534 0.1843 0.1563 0.2640 0.2504
SGCF 0.0466 0.0358 0.0683 0.0561 0.1862 0.1580 0.2787 0.2642
Improv. 10.16 % 10.15 % 4.43 % 4.66 % 1.03 % 1.08 % 5.57 % 5.51 %

Table 5.3: Efficiency comparison with full training time

Model Epoch Count Time per Epoch Totally Time
MF-BPR 25 33s 13.75 m

LR-GCCF 170 70s 3h 30m
ENMF 85 135s 3h 11m

LightGCN 55 850s 12h 58m
SGCF 64 36s 38.4 m

5.4.2 Quantitative Performance Comparison

Our experimental results are reported in Table 6.2. We have several observations: 1)

SGCF consistently outperforms all baseline approaches across all four datasets. In

particular, SGCF hugely improves over the strongest GCN-based baseline on Amazon-

Books by 10.16% and 10.15% by using Recall@20 and NDCG@20 respectively. The results

of significance testing indicates that our improvements over the current strongest GCN-

based baseline are statistically significant. In particular, SGCF show the effectiveness of

modeling the information passing of a graph. NGCF is the baseline that captures higher-

order user-item bipartite graph structure. It performs better than most baselines. Our

proposed SGCF model consistently outperforms NGCF, thus showing the effectiveness
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of modeling the user preference by the residual preference prediction and the linear

embedding propagation. Compared with other baselines, SGCF can leverage powerful

graph convolution to exploit useful and deeper collaborative information in graphs.

These advantages jointly lead to the superiority of SGCF than compared state-of-the-art

models. 2) In total, network embedding models perform worse than GCN-based models,

especially on Gowalla. The reason might be that the powerful graph convolution is

more effective than traditional random walk in many network embedding methods, to

capture collaborative information for recommendation. 3) Since SGCF is a special fixed

filter on the graph spectral domain, its architecture is orthogonal to some stat-of-the-art

models (e.g., SGC). Therefore, similar to low-pass-type filters, SGCF can be deemed as

an effective and efficient CF framework which is possible to be incorporated with other

methods. such as enabling disentangled representation for users and items as DGCF, to

achieve better performance.

5.4.3 Efficiency Comparison

As highlighted in Section 3.5, SGCF is endowed with high training efficiency for CF due

to its concise and unified designs. In this section, we further empirically demonstrate the

superiority of SGCF on training efficiency compared with other CF models, especially

GCN-based models. To be specific, we select MF-BPR, ENMF, LightGCN, and LR-GCCF

as the competitors, which are relatively efficient models in their respective categories. To

be more convincing, we compare their training efficiency from two aspects: 1) The total

training time and epochs for achieving their best performance. 2) Training them with the

same epochs to see what performance they can achieve. Note that Table 5.3 shows that

the training speed (i.e., Time per Epoch) of SGCF is close to MF-BPR, which empirically

justifies our analysis that the time complexities of SGCF and MF are on the same level.

SGCF needs 64 epochs to converge which is much less than LR-GCCF and LightGCN,

leading to only 38.4 minutes for total training. Finally, SGCF has around 20x, 5x, 5x

speedup compared with LightGCN, LR-GCCF, and ENMF respectively, demonstrating

the big efficiency superiority of SGCF.

Moreover, Table 5.4 shows that when SGCF converges (i.e., train the fixed 64 epochs),

the performances of all the other compared models are much worse than SGCF. That

is to say, SGCF can achieve much better performance with less time, which further

demonstrates the higher efficiency of SGCF that the other GCN-based CF models.
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Table 5.4: Efficiency comparison with same epochs. All models are trained with the fixed
64 epochs except MF-BPR. Since MF-BPR needs less than 64 epochs to converge, we
report its actual training time.

Model Training Time Recall@20 NDCG@20
MF-BPR 16m 0.0342 0.0264
ENMF 2h45m 0.0357 0.0281

LR-GCCF 1h25m 0.0314 0.0191
LightGCN 1h41m 0.0345 0.0264

SGCF 43m 0.0682 0.0561

Figure 5.3: (left): Error-bar of user embedding similarity. (right): Error-bar of item
embedding similarity. Comparisons with and without graph partition process structure
under different layers depth k on Amazon-Books dataset.

5.4.4 SGCF Model Component Analysis

To explore the effect of different components in SGCF model, we design a simplified

version that removes the graph partition module in our framework. We call the simplified

version model as LGCF. For LGCF and SGCF, with each predefined depth k, we calculate

the cosine similarity of each pair of nodes (i.e., users and items) between their k-layer

output embedding, i.e., ek for each node of the graph. The statistics of the mean and

variance of user-user (item-item) embedding similarities are shown in Figure 5.3. It

obviously shows our proposed model has larger variance of the user-user cosine similarity

compared to its counterparts LGCF that does not perform condensed graph learning.

This empirically validates that the condensed graph learning could partially alleviate

the over smoothing issue, and achieves better performance. Please note that, the overall

trend on the other three dataset is similar, and we do not illustrate it due to page limit.
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Table 5.5: Performance of HR@20 and NDCG@20 with different depth k

Model
Amazon-Books Gowalla

HR@20 NDCG@20 HR@20 NDCG@20
k=0 0.0284 0.0219 0.1379 0.1126
k=1 0.0317 0.0242 0.1506 0.1245
k=2 0.0327 0.0248 0.1504 0.1246
k=3 0.0337 0.0255 0.1518 0.1561
k=4 0.0341 0.0324 0.1496 0.1241
k=5 0.0340 0.0356 0.1504 0.1249

5.4.5 SGCF Model Parameter Study

5.4.5.1 Parameter Analysis

We would analyze the influence of the recursive label propagation depth k, and a detailed

analysis of the learned embeddings of the preference prediction with condensed input

graph in SGCF. Table 5.5 shows the results on SGCF with different k values. Specially,

the layer-wise propagation part disappears when k=0, i.e., our proposed model degen-

erates to BPR. As can be observed from Table 5.5, when k increase from 0 to 1, the

performance increase quickly on both datasets. For Amazon-Books, the best performance

reaches with four propagation depth. Meanwhile, our model reaches the best performance

when k=3 on Gowalla.

5.4.5.2 Scalability Analysis

As GCN-based networks are complex and contain such a large number of nodes in the

real world application scenario, it is necessary for a model being feasible to be applied

in the large-scale datasets. We investigate the scalability of SGCF model optimized by

gradient descent, which deploys multiple threads for parallel model optimization. Our

experiments are conducted in a computer server with 12 cores and 128GiB memory. We

run experiments with different threads from 1 to 20. We depict in Figure 5.4 the speedup

ratio vs. the number of threads. The speedup ratio is very close to linear, which indicates

that the optimization algorithm of the SGCF is reasonably scalable.

5.5 Related Work

In this section, we briefly review some representative GCN-based methods and their

efforts for model simplification toward recommendation tasks. With the development and

86



5.5. RELATED WORK

Figure 5.4: Scalability of SGCF

success of GCN in various machine learning areas, there appears a lot of users and items

could be naturally formed to a user-item bipartite graph and adapted GCNs for recom-

mendation [43, 45, 49, 79, 138, 165]. Earlier works on GCN based models relied on the

spectral theories of graphs, and are computationally costly when applying in real-world

recommendation. Some of recent works on GCN based recommendation models focused

on the spatial domain [64]. PinSage was designed for similar item recommendation

under the content based model, with the item feature xv and the item-tiem correlation

graph as the inputs. GC-MC [7] and NGCF are specifically designed under the CF setting.

Although NGCF achieves good performance compared with previous non-GNN based

methods, its heavy designs limit its efficiency and full exertion of GCN. To model the

diversity of user intents on items, Wang et al. [153] devise Disentangled Graph Col-

laborative Filtering (DGCF) [139], which considers user-item relationships at the finer

granularity of user intents and generates disentangled user and item representations to

get better recommendation performance.

Although GCN-based recommendation models have achieved impressive performance,

their efficiencies are still unsatisfactory when facing large-scale recommendation sce-

narios. How to improve the efficiency of GCNs and reserve their high performance for

recommendation becomes a urgency research problem. Recently, Dai et al. [26] and Gu

et al. [39] extend fixed-point theory on GNN for better representation learning. Liu

et al. [80] propose UCMF that simplifies GCN for the node classification task. Wu et

al. [144] find the non-necessity of nonlinear activation and feature transformation in

GCN, proposing a simplified GCN (SGCN) model by removing these two parts. Inspired

by SGC, He et al. [49] devise LightGCN for recommendation by removing nonlinear

activation and feature transformation too. However, its efficiency is still limited by the

time-consuming message passing. Qiu et al. [102] demonstrate that many network em-
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bedding algorithms with negative sampling can be unified into the MF framework which

may be efficient, however,their performances still have a gap between that of GCNs.

We are inspired by these instructive studies, and propose SGCF for both efficient and

effective recommendation.

5.6 Conclusion

In this chapter, we revisited the current GCN-based recommendation models and pro-

posed an SGCF model for CF-based recommendation. SGCF consists of two main parts:

First, with the recent progress of simple GCNs, we empirically removed the non-linear

transformations in GCNs, and replaced it with linear embedding propagation. Second, to

reduce the over smoothing effect introduced by higher layers of graph convolutions, we

designed a condensed graph learning process for the input network. Extensive experi-

mental results clearly showed the effectiveness and efficiency of our proposed model. In

the future, we will explore better integration of different layers’ representations with

well-defined deep neural architectures to further enhance CF-based recommendation.
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6
A TOPIC-CONTROLLABLE KEYWORDS-TO-TEXT

GENERATOR WITH KNOWLEDGE BASE NETWORK

6.1 Introduction

A keyword-to-text generation (K2T) problem seeks to create sentence-level texts that look

like humans with only a few given keywords. Numerous application scenarios, including

the generation of stories, reports, dialogue responses, second language, and other uses,

have relied heavily on it [66, 118, 119]. A great deal of interest has been drawn to K2T

because of its enormous potential in practical use and scientific research. Despite this,

two problems remain to be solved in K2T: 1) the neglect of controllable text generation

from unorder keywords and 2) the underutilization of topic-aware information.

An appropriately executed K2T generator should be able to generate a variety of

vivid and varied sentences when keywords are used. However, existing work tends to

produce generic and uncontrollable texts [116, 134, 151]. They ignore the information

produced by text that is subject to topic control, which is one of the reasons. Our ability

to produce text that is far more varied and fascinating is enhanced by modeling and

controlling the subject matter that can be controlled by the generated text. As shown

in Figure 6.1, given the keywords“Basketball”, “Exercise” and “Game”, the “without

topic-controllable” models generate flat sentences. Meanwhile, the topic-controllable

model generates controllable statements such as “The NBA is a game loved by basketball

fans all over the world, and basketball is also a great exercise.” when given the topic
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Basketball

Exercise

Game

With order

Without Topic factor

Basketball is a kind of  exercise and an important game 
for many people.

Basketball
Exercise

Game

Input Keywords

With un-order

Topic Info. : “NBA”

Topic Info. : “Nike”

Topic Info. : “Weather”

The NBA is a game loved by basketball fans all over the 
world, and basketball is also a great exercise.

The major outlet for basketball kit, Nike, has been 
promoting the exercise of basketball and has sponsored 
many basketball games.

It's not a good weather for outdoor exercise, such as 
playing basketball outside. But it's great for watching 
basketball games at home.

Output Text

Figure 6.1: Examples of comparison between the generated text from ordered keywords
with topic control and from un-ordered keywords without topic control. We show the first
three sentences for each generated text and denote topic words in blue and keywords in
black bold. Sentences without topic factor are showed in green text box.

of “NBA”, and generates phrases such as “The major outlet for basketball kit, Nike,

has been promoting the exercise of basketball and has sponsored many basketball

games.” when given the topic of “Nike”. Additionally, topic control is critical to the K2T

generation process, which aims to generate a variety of sentences. The search space for

the generation model multiplies exponentially when the topic polarity for each sentence

is controlled as the number of words increases. For the task of K2T generation, therefore,

the ability to manage topics is essential to enhance diversity at the discourse level.

The fact that we humans rely heavily on our common sense knowledge when asked to

write sentences with some keywords and related topics should also be taken into account.

Because of this, K2T generation relies heavily on the proper utilization of knowledge.

Early cutting-edge approaches based on fixed templates used a set of keywords and

partial speech as input. [89]. Nevertheless, they disregard the network structure of the

knowledge base, which only makes reference to concepts in the knowledge network [18]

and neglects to consider their correlations, as well as the topic-controllable information.

Due to this restriction, conceptions become dissociated from each other. As an illustra-

tion, given two keyword corpus inputs, delight, antonym, sadness, and delight, part of,

emotion] about the topic word “delight”, simply use the neighboring concepts sadness and

emotion as a complement to the input information. While “emotion”, which is a hypernym
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to “delight”, is a hypernym that can be learned from their correlations(edges) in the

knowledge network, their approach fails to recognize that “sadness” has the opposite

meaning from “delight”. Intelligently, the lack of information about the relationships

between concepts in a knowledge network makes it difficult for a model to construct

useful and informative texts.

This article explores a novel topic-controllable keywords-to-text generator with a

topic information network decoder called TC-K2T that is based on a proposed conditional

language encoder framework in order to address the aforementioned issues. As part of

our model’s encoder and decoder, we inject topic-controllable information to control text

content from unordered keywords in order to control the subject from two perspectives:

word-level and sentence-level. The label of each topic is provided by a topic classifier

during training process. Based on ConceptNet [122], a large-scale common sense knowl-

edge base, the model recovers a topic knowledge network in order to fully utilize the

information. Instead of preserving the network structure of the knowledge base [150],

we provide a novel Topic Attention (TA) mechanism that is distinct from many existing

methods. In order for future generations to benefit from structured, topic-controllable,

connected data from networks, the TA conducts an in-depth review of knowledge net-

works. As a result, we employ adversarial training based on multi-label discriminator

to make the generated text more closely related to the topic-controllable information

and to include all input keywords. Depending on how much the output covers the given

keywords, the discriminator rewards the generator.

In conclusion, we make the following significant contributions:

• We propose a novel topic-controllable keywords-to-text generator using the con-

ditional language framework that is capable of producing high-quality text and

controlling the subject. According to our knowledge, we are the first to apply topic-

controllable information to the task of keyword-to-text generation and demonstrate

the potential of our model to generate diverse text by controlling the topic at the

sentence level.

• We propose an innovative Topic Attention (TA) mechanism and use a topic knowl-

edge network to enhance our decoder. TAs make the most of the structured, aggre-

gated subject data from the subject knowledge network, they are able to produce

text that is more pertinent and informative.

• With the aid of extensive experiments, we validate that our model accurately

controls the topic for text generation and outperforms cutting-edge methods in
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both automatic and human annotation.

6.2 Related Work

A growing portion of research is being done on text generation as people rely more

and more on automatic text generation in their daily lives. A fundamental model for

generating text is the Seq2Seq model, which is based on attention. Among the tasks

for text generation that the attention-based Seq2Seq model is effective at, are neural

machine translation, abstract text summarization, dialogue generation, etc. In general,

the Seq2Seq model has developed into one of the most well-known text generation

frameworks.

RNNs are the foundation of the majority of Seq2Seq models, but recent research has

led to frameworks based on CNNs and attention systems. In neural machine translation,

the transformer has produced cutting-edge results and is rapidly becoming a popular

framework for sequence-to-sequence learning as a result of its excellent performance and

high efficiency. A transformer-based pre-trained language model called BERT is proposed

to perform natural language processing tasks with the most sophisticated performance.

6.2.1 Controllable Text Generation

A challenging task in the development of natural languages is the automatic generation of

text. For the first time, K.Uchimoto et al. [131] came up with a framework for generating

sentences based on n-grams and dependency trees. They created the framework solely for

the Japanese people. For generating the context before and after a single keyword input

in Chinese, a recurrent neural network RNN-based model [127] was recently employed.

Methods for managing style for tasks involving text generation have been the subject

of some research. Artificial inputs that can be used to generate controlled text have

received considerable attention in the text-to-text domain [59]. Another recently proposed

approach is the controllable plug-n-play language model developed by Dathathri et

al. [28]. Although their generator is able to generate fluent output based on the control

specification, the generation process is still open-ended and may not adhere to any

user-desired syntax. An alternative framework for variational auto-encoder (VAE) [53],

which offers minimal control options, including sentiment, has been created. According

to Ghosh et al. [36], a method can be employed to determine the degree of emotional

content in generated sentences. Moreover, since the system relies heavily on actual
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textual data annotated with these categories and has a fixed set of emotion categories, it

is unable to accept certain approaches. The linguistic properties of a text are controlled by

a language model that is influenced by a particular style in a similar effort by Ficler and

Goldberg [34]. As a result, there are several possible styles, including theme, sentiment,

professional, and descriptive, that they use in the movie-review industry. Although the

system lacks the ability to transform data, these styles may require only a small number

of values to which the generated text ought to adhere. In the context of modern English

texts, Jhamtani et al. [57] investigate an approach to applying Shakespearean English

style. In order to replace words by copying the style, the model employs an external

dictionary of stylistic words; this might not always maintain the intended meaning.

6.2.2 Topic-controllable Generation

A wide variety of research initiatives on topic controlled generation employ templates

to control the direction of the sentences generated. Using templates provided in the

form of “sparse” trees that are frequently used in a language, Iyyer et al. [55] propose

syntactically controlled paraphrase network (SCPN). By relying on well-formed sentences

and the accompanying complete parse trees, the system is unable to transform the input

into data (shown by keywords). The fact that the system can accept input templates is

noteworthy because they are both syntactically rigid and difficult to interpret. Chen et

al. [17] proposes an approach that uses a sentence as a syntactic example rather than

requiring an external parser. Although this system can take up keywords in any order, it

is not intended to accept data/keywords for input (different from our system). Recently, a

method [137] inspired by the data-to-text generation dataset generated sentences given

a structured record, and a reference sentence. For fidelity to the structured material,

manipulating the reference text (by rewriting, adding, or deleting portions of the text) is

a different task. Our analysis reveals that keywords are not organized, even ordered, and

may require morphological, syntactic, and numerical transformations (such as number,

tense, and aspect change); as a result, it is not feasible to modify, add to, or delete

portions of text Similar to the aforementioned, Laha et al. [65] proposes a modular

system that converts input from structured data (tables) into canonical form, develops

straightforward sentences from canonical data, and ultimately combines sentences to

produce a coherent and fluent paragraph statement. This approach, which involves table

row representations as a collection of binary relationships (or triples), differs from ours

in terms of task size.
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Table 6.1: Notations

Notation Description
N the number of input keywords
K keywords array K = [k1,k2, · · · ,kN]
S output sentences array [s1, s2, · · · , sM]
T topic sequence array T = [T1,T2, · · · ,TM]
S1:i−1 the previous sentences as context
KL(q||p) the KL annealing technique
sof tmax(.) the softmax operation
c control code
s the context S encoded as [s1, s2, · · · , si−1]
N the prior network
q query vector
Wα the weight matrices

As far as we are aware, there are still numerous challenges in translating order-

invariant keywords into natural language text without subject-aware information.

6.2.3 Problem Formulation

In this section, we first introduce some fundamental concepts that are necessary to

understand our model. The notations used in this paper are summarized in Table 6.1.

Moreover, we formulate the problem of automatic controllable language generation.

The objective of the task is to build a system that can generate topic-aware sentences

automatically based on the input keywords. Given the keywords represented as an input

sequence of words k = [k1,k2, · · · ,kN] ∈ K , the objective of the system is to generate the
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Figure 6.2: Our topic-controllable keywords-to-text generation framework.
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topic-aware sentences s = [s1, s2, · · · , sM] ∈ S, a sequence of words describing the topic.

6.3 Framework Architecture

For generating topic-aware text from keywords, the framework takes as input a set of

N keywords denoted K = [k1,k2, · · · ,kN], and aims to generate text with M sentences

[s1, s2, · · · , sM] corresponding to keyword sets K . In addition, in this research, we provide

a topic sequence T = [T1,T2, · · · ,TM], each of which corresponds to a specific sentence in

text. Entities or virtualities can be used for each topic.

The sentence-by-sentence process is used to create a continuous paragraph of text.

After generating the first sentence s1 based solely on the keyword sets K , the model

continues to generate the following sentence using all the previously generated sentences

and keyword sets until the entire text is finished. In this paper, the preceding phrases

are represented as S1:i−1.

The overall architecture is given in Figure 6.2, where ⊕ represents the vector concate-

nation operation. The KL(q||p) represents the KL annealing technique. Topic sequence

T denotes subject control. The orange solid arrows represent the TA process at each

decoding step. The text generated by the TC-K2T generator is fed into the topic switching

decision modules. The output gray blocks representing the given text are generated after

a sof tmax(.) operation.

Based on a Knowledge-Guided CVAE (kgCVAE [161] strategy consisting of an encoder

and an enhanced topic knowledge network decoder), we have developed our TC-K2T

generator. Keywords, topic sequences, and context are encoded by the encoder and are

viewed as conditional variables c. A latent variable is then calculated from c using

a recognition network (during training) or a previous network (during inference). A

topic knowledge network and topic related information are connected by the decoder to

create texts. Through effective use of the topic knowledge network, TA is utilized at each

decoding step to enhance input topic information.

As part of the training process, we take the following two steps: (1) Train the TC-K2T

generator with the kgCVAE loss; and (2) Next, we give a topic-controllable information

discriminator to evaluate the performance of the TC-K2T generator. In order to further

enhance the TC-K2T generator’s effectiveness, we utilize adversarial training to train

both the generator and the discriminator occasionally.
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6.4 Topic-controllable Keywords-to-text model

6.4.1 Encoder Part

In a vector of some size, the keyword encoder aims to capture contextual represen-

tations of each keyword. In addition, it should be ensured that the encoding process

is insensitive to the order of the input keywords. Using the last hidden states of the

forward and backward Gate Recurring Unit(GRU) [24] as our utterance encoder, we

utilize a bidirectional GRU to produce input sets in a vector of fixed size. We use the

utterance encoder to encode the keyword sets K into uk = [
−→
hk,

←−
hk],hk ∈ Rd, which d is

the vector dimension. The next sequence Si is also encoded by utterance encoded as

ui = [
−→
hi,

←−
hi], hi ∈ Rd. According to the context encoder, inspired by [161], we utilize a

strategy of multi-layer encoding. For each sentence, firstly, in context S1:i−1 is encoded

by utterance encoder to get a fixed-size vector. By doing so, the context S1:i−1 is encoded

as stext = [s1, s2, · · · , si−1]. Once this has been accomplished, a 1-layer forward GRU is

used to encode sentence representations stext into a final state vector sc ∈R.

We then concatenate sc, uk and e(t) (the embedding of topic information label), and

define the conditional vector as c = [e(t)|sc,uk]. Since we assume z follows isotropic

Gaussian distribution, the recognition network qφ(z|si, c) and the prior network pθ(z|c)

follow N (µ,σ2I) and N (µ′,σ′2I), respectively. I is identity matrix and then we have:

(6.1)

[
µ,σ2]=MLPrecognition (si, c)[

µ′,σ′2]=MLPprior (c).

We then use the reparametrization trick [161] to obtain samples of z either from

N (z|µ,σ2I) predicted by the training recognition network or N (z|µ′,σ′2I) predicted by

the testing prior network.

6.4.2 Topic-controllable Decoder

In general, Seq2Seq models can produce sentences that are generic and meaningless. An

enhanced topic knowledge network decoder is proposed to produce more meaningful text.

The decoder is based on a 1-layer GRU network with initial state s0 =Wd[z, c, e(t)]+bd.

Wd and bd are trainable decoder parameters and e(t) is the embedding topic as mentioned

above. As shown in Figure 6.2, we built the decoder with a topic knowledge network

to incorporate commonsense knowledge from ConceptNet 1 [123]. A semantic network

1https://conceptnet.io
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called ConceptNet is intended to assist computers understand the meanings of words

that people utilize. As triples of the start, connection label, and end nodes, this type of

network is represented. Relationship exists between the end node and the start node. We

use word vectors to represent start and end concepts and learn a trainable vector vrel for

the relation, which is randomly initialized. Our approach consists of learning trainable

vectors for relation that are randomly initialized and using word vectors to represent

start and end concepts. Using each word in the keyword sets as a query, ConceptNet is

used to locate a subnetwork that forms the topic knowledge network. After that, we use

the Topic Attention (TA) mechanism to read from the topic knowledge network at each

generation stage.

It is essential for the success of our work that external expertise is used properly,

as already stated. TA takes as input the retrieved topic knowledge network and query

vector q to produce a network vector NET t. We set q= [dt−1, c, z], where dt−1 represents

the hidden state of the decoder for step t−1, c is the conditional vector and sample z
from the recognition network.

Our algorithm calculates the correlation score between each of the triples in the

network and q during decoding, at each stage t. After that, the weighted sum of all the

neighboring concepts to the topic terms is calculated using the correlation score to create

the final network vector NET t.

According to reports, neighboring things are those that are directly connected to topic

terms. We denote the embedding of nth neighboring concept as on, then NET t can be

defined as:

(6.2) NET t =
N∑

n=1
αnon

In order to capture important information, we put an attention on our decoding process,

the attention weights on query are computed by:

(6.3)
exp( fn)∑N
j=1 exp

(
f j

)
where

(6.4) fα = (Wαq)T tanh
(
Wαvrel

n + on

)
A weight matrix for queries, relationships, start entities, and end entities is represented

by Wα. Additionally, adjacent concepts, which are the start/end ideas in their triples, fall

under the category on. The correlation between the query q and the neighboring concept
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on is represented by the matching score fα. It can measure the topic relationship between

the i-th word in the source and the j-th target word to be predicted. In essence, it makes

up a network vector NET t by combining adjacent concepts of topic words. Be aware that

different weight matrices are utilized to distinguish between the neighbouring concepts

in various positions (in start or in end). This distinction is necessary, for instance, in the

light of two triples of knowledge (Opera House, part of, Sydney) and (Sydney , part of,

Australia). The concepts Opera House and Australia have different meanings for Sydney

despite the fact that they are both adjacent concepts to Sydney with the same connection

component. We need to model this difference in the weight matrices set Wα.

In order to calculate the final chance of generating a word, the following steps must

be taken:

(6.5) P t = softmax(Wo [dt; e(t); NETt]+bo) ,

where dt is the decoder state at t step and Wo ∈Rdall×|V |,b0 ∈R|V | are trainable decoder

parameters, dall is the dimension of [dt; e(t); NETt] and |V | is vocabulary size.

A strong correlation needs to be established between the generated text and keywords

and topic terms. We use a soft switcher to figure out if a word should be generated as the

target word by using λ j ∈ [0,1]:

(6.6) λ j = sigmoid(Wλ[e(t)])

with Wλ being learnable parameter. This section also contains information that can be

controlled by topics e(t) to guide the switch selection. Further, the sigmoid probability

distribution over (m+1) classes [143]. According to the (m+1)th index, the probability

that the sample is the generated text is represented by the score. The likelihood of it

being a real text with the jth topic is represented by the score on the jth index.

6.4.3 Model Training

Throughout this section, we discuss the two-step training method. The first one is similar

to a conventional kgCVAE model. The loss of our TC-K2T generator −logp(Y |c) can be

defined as:

(6.7)

−L (θ;φ; c;Y )kgcvae =LKL +Ldecoder

=KL
(
qφ(z |Y , c)∥pθ(z | c)

)
−Eqφ(z|Y ,c) (log pD(Y | z, c))
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This parameter list includes θ and φ for the recognition network and the prior network,

respectively. Intuitively, Ldecoder maximizes the sentence generation probability after

sampling from the recognition network, while LKL minimizes the distance between the

prior and the recognition network. Our adversarial training between the generator and

the topic label discriminator described above begins after training the TC-K2T generator

with equation 6.7, inspired by SeqGan [155]. Additional information is provided to the

reader using the SeqGan approach due to page restrictions. Besides, we use the annealing

trick and BOW-loss equation to alleviate the vanishing latent variable problem in VAE

training.

6.5 Experiments

Throughout this section, we discuss the dataset, evaluation metrics, all baselines, and

settings in more detail.

6.5.1 Datasets

We conducted experiments on the Quora corpus 2. Experiments were done on the datasets,

which is between 30 and 120 words in length. In light of the frequency of each keyword,

we choose words from the NOUN, VERB, ADJECTIVE, and ADVERB categories as

input keywords and remove uncommon keywords. There are 30,000 and 3,000 test sets

for training and testing, respectively. As the validation setting, we utilized 12% of the

training samples to tune the hyperparameters.

Our method of introducing topic labels involved manually annotating items with

100 categories, such as sports, beauty, and so on, using 3000 sentences. To fine-tune our

manually labeled training set, we utilize the topic model proposed by Zandie et al. [157],

which achieves an accuracy of 0.87 on the test set. By using an automatic topic extractor

during training, the target topic label s is calculated. The direction of each text that is

generated is controlled by user input of any topic labels throughout inference.

6.5.2 Settings

In order to implement topic embeddings, we utilize 120-dim pre-trained word embeddings

with 32 dimensions. The vocabulary size is 50,000 and the batch size is 64. Selecting

the hyperparameter values uses a manually tuned procedure, and the criteria chosen
2https://www.kaggle.com/competitions/quora-question-pairs/data
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Table 6.2: Automatic and human annotations result. In human annotation, four level
(L4 - L1) to quantify : topic-consistency, novelty, text-diversity, fluency and informative.
The best performance is highlighted with underline.

Automatic evaluation Human annotation
Methods BLEU Dist-1 Dist-2 Consis. PPL(T) PPL(D) Novelty L4 L3 L2 L1
S2SA-MMI [148] 6.07 4.81 21.64 9.20 147.04 143.11 67.98 0.13 0.23 0.38 0.26
TRANS [89] 6.32 5.01 22.03 26.51 134.23 144.47 71.23 0.19 0.34 0.21 0.26
CONCAT [89] 7.01 5.12 22.54 35.54 141.45 156.91 72.45 0.27 0.23 0.25 0.25
TAV [31] 6.52 5.32 22.43 16.57 131.67 148.52 69.45 0.23 0.18 0.29 0.30
NMT [2] 7.12 5.31 22.67 32.67 128.63 149.34 72.34 0.28 0.21 0.24 0.27
CTEG [150] 9.72 5.92 23.07 39.32 127.27 142.37 73.39 0.31 0.18 0.31 0.20
TC-K2T(w/o-Topic) 10.01 5.64 23.21 44.12 119.55 140.45 78.26 0.36 0.22 0.21 0.21
TC-K2T(R-Topic) 9.98 5.86 23.11 42.01 122.81 133.81 80.12 0.42 0.27 0.17 0.14
TC-K2T(Pro-Topic) 12.01 6.01 23.08 42.63 123.14 134.63 78.87 0.45 0.24 0.19 0.12

is BLEU. We employ GRUs with a hidden size of 512 and a hidden size of 300 for both

encoders and decoders. We develop the model with Tensorflow framework 3. With a

total parameter count of 72 MiB, our model parameters were randomly selected over a

uniform distribution [0.1, 0.1]. We pre-train our model for 65 epochs with the Maximum

Likelihood estimation model [157] and adversarial training [29] for 20 epochs. Our model

is pre-trained with the Maximum Likelihood estimation model for 65 epochs and with

adversarial training for 20 epochs. The average runtime for our model is 35 hours on

an Intel(R) i7 CPU @ 2.50GHz, 512GB RAM and 2 NVIDIA 1060Ti-16GB GPUs. The

optimizer is Adam [63] with 10−3 learning rate for pre-training and 10−5 for adversarial

training. In addition, to prevent overfitting [86] with the dropout rate of 0.2 and gradients

to the maximum norm of ten, we use dropout on the output layer. The average length of

the generated text is 56.2, and greedy search is used in our model’s decoding strategy.

6.5.3 Evaluation metrics

Both human annotations and automatic evaluation are employed by us in order to

thoroughly assess the generated text.

BLEU [96]: By measuring word overlap between ground truth and generated sen-

tences, the BLEU score is frequently used in machine translation, conversation, and

other text generation tasks.

Distinct-1 & distinct-2: Several distinct bigrams and unigrams were taken into

account in the responses generated. Furthermore, we split the numbers by the total

number of unigrams and largerams using [69]. We define metrics as distinct-1 and

distinct-2, respectively, for both numbers and ratios. Using both metrics, one can assess
3https://github.com/tensorflow/tensorflow
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how informative and varied the text produced is. In addition, high numbers indicate that

the produced text is lengthy, and high numbers and high ratios indicate that there is a

lot of content in it.

Consistency [150]: Using all the keystrokes entered, a suitable text should surround

a particular topic closely. For the purpose of evaluating the topic consistency of the

output, we use a multi-label classifier pretrain. Higher scores on "Consistency" indicate

that the generated texts are more closely related to the given topics. Taking into account

the input topics T, the topic consistency of the generated text ŷ is defined as:

(6.8) Consistency( ŷ | x)=ϕ(x, x̂)

where ϕ is Jaccard similarity function and x̂ is topics predicted by a pre-trained multi-

label classifier.

Perplexity: following [73], we employ perplexity as an evaluation metric. Perplexity

is defined by Eqa.( 6.9). Higher generation performance is associated with a lower

perplexity rating. The purpose of this work is to determine when training will end using

PPL(D). For five validation scenarios, if the perplexity stops decreasing and the difference

is less than 2.0, we think the algorithm has reached an agreement and the training is

terminated. In the test data, we use PPL(T) to evaluate the ability of various models to

be produced.

(6.9) PPL = exp

{
− 1

N

N∑
i=1

log(p (Yi))

}

Novelty [150]:Our analysis of novelty took into account the difference between output

and text with similar subjects in the training corpus. Increased "Novelty" scores indicate

that the text in the output corpus is more distinct from that in the training corpus.

Precision, Recall & F1: For the purpose of determining the accuracy of theme

control, these metrics are used. A valid result can be obtained if the topic labels on the

generated sentences are consistent with the ground truth. We predict topic labels using

the topic classifier.

Human annotation:For the purpose of evaluating the quality of the created text

of various models, we also employ human annotators. A total of three annotators with

extensive Quora knowledge are invited to participate in the evaluation. Random shuffling

and pooling of text created by different models is performed for each annotator. Test

messages are reviewed by annotators who evaluate the quality of the text according to

the following criteria:
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Level-4 (L4): The generated text shows the topic consistency and novelty. Meanwhile,

the text represents not only the text-diversity, but also the natural and fluent degree.

Level-3 (L3): The output text has a clear topic-aware direction and the sentence

pattern is natural and smooth.

Level-2 (L2): The output text is just natural and informative.

Level-1 (L1): The text is difficult to understand, and is either semantically irrelevant

or disfluent.

6.5.4 Baseline

Based on previous state-of-the-art text generation approaches, we make the following

baseline measurements:

S2SA-MMI: With an attention mechanism in a standard Seq2Seq model, it performs

at its best in [70]. We utilized the bidirectional-MMI decoder and, in accordance with the

paper’s suggestions, set the hyperparameter λ to 0.5.

TRANS: keywords can only be entered without requiring any controllable opera-

tions [89].

NMT [2]: The purpose of this paper is to describe a neural machine translation that

uses an encoder-decoder framework based on LSTM and only accepts keywords as input

without any topic control mechanisms.

CONCAT [89]: Words and templates are concatenated as input by the transformer-

based framework.

TAV [31]: All topic embeddings’ average topic semantics is used to create each word

using an LSTM. The semantic correlation between each topic word and output of the

generator is modeled using an attention mechanism that extends LSTM.

CTEG [150]: To improve the generation process, a combination of common sense

knowledge and adversarial training was suggested. This work achieves state-of-the-art

performance on the topic-to-essay generation task.

6.5.5 Quantitative Performance Comparison

As shown in Table 6.2, we list automatic and human evaluation results. We provide three

different versions of our model for a comprehensive comparison. (a) “TC-K2T(w/o-Topic)”

means that we do not attach any topic information to the model. (b) “TC-K2T(R-Topic)”

means that we randomly set the topic information for each generated text. (c) “TC-
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Table 6.3: Text quality analysis results, “w/o AT” represents without adversarial training.
“w/o TGA” represents without TA. T-Con.(topic-consistency), Nov.(novelty), T-div.(text-
diversity) and Flu.(Fluency) represents different text quality. Full model shows TC-
K2T(Pro-Topic) in this table.

Methods BLEU T-Con. Nov. T-div. Flu.
Full model 12.01 3.92 3.26 4.01 3.81
w/o TA 10.32 3.61 3.18 3.89 3.39
w/o AT 9.72 3.31 3.51 3.92 3.54

Table 6.4: Topic control analysis. “w/o En-topic” represents to remove the topic embedding
in the encoder process and “w/o De-topic” represents to remove from the decoder. Full
model represents TC-K2T(R-Topic) in this table.

Methods Pre. Recall F1
Full model 0.71 0.69 0.68
w/o En-topic 0.53 0.52 0.53
w/o De-topic 0.56 0.63 0.62
w/o TA 0.63 0.65 0.64

Table 6.5: Given keywords "Cabbage", "Vegetable", "Diet" and "Option", and set a topic
word "Health". We generated an text according to the topic with keywords.

Input keywords: Cabbage, Option, Vegetable, Diet
Input Topics: Health
Output text:
Cabbage is a leafy green vegetable that is often overlooked, but
it is actually quite healthy. Cabbage is a good source of vitamins
C and K, as well as fiber and antioxidants. Additionally, cabbage
has been shown to have a number of health benefits, including
reducing the risk of cancer, improving heart health, and aiding
in Digestion. So if you’re looking for a healthy vegetable to add
to your diet, cabbage is a great option.

K2T(Pro-Topic)” represents how we set the high frequency topic information used for

sentence generation. The results in Table 6.2 show the following conclusions:

• Whether it is with hot topics, random topics, or without topic, all variants of our

models outperform the baselines in all evaluation metrics, demonstrating the

proposed TC-K2T model’s capacity to generate better texts than baseline models.

• The superiority of our model architecture can be seen in the comparison of TC-

K2Ts (w/o-Topic) and baselines. Based on human annotation results, TC-K2T(Pro-

Topic) performs best on level-4 metrics. Most significantly, there has been an
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improvement in text diversity. We achieve this improvement with our kgCVAE

architecture because sampling a continuous latent variable serves as our sentence

representation. Compared to baselines, this sampling procedure introduces more

randomness.

• The “L4” texts exhibit a 0.29 increase in TC-K2T(R-Theme) compared to S2SA-

MMI, while the “L1” texts display a 0.12 decrease. Compared to TC-K2T(w/o-Topic),

TC-K2T(R-Topic) performs better, demonstrating that topic content contributes

more to text quality than bias probability in generation.

• Thermal topic information is used by TC-K2T(Pro-Theme), which performs well

in BLEU with a score of 12.01. In other metrics, TC-K2T(Pro-Theme) does not

significantly outperform other TC-K2T models, according to our analysis. These

results demonstrate that our suggested model is more appropriate for the text

set because of the hot topic information of the target texts, although there is no

obvious improvement for other important indicators such as Distinct, Consistency,

and Perplexity.

• When the topic information is removed, we find it intriguing that TC-K2T(w/o-

Topic) achieves the best topic-consistency score. However, the effect of this interfer-

ence is trivial because we believe that topic labels may somehow interfere with the

subject information in the latent variable. For automated evaluation, we find that

the topic consistency for TC-K2T(w/o-Topic) and TC-K2T(Pro-Topic) drops by only

1.49 (44.12 vs 42.63), which is completely acceptable for a model that can handle

subjects.

6.5.6 Text Quality Analysis

Both ablated versions of our main model are trained to better comprehend how each

component of our model contributes to the task: 1) removing adversarial training - “w/o

AT”, 2) removing TA - “w/o TA”. Moreover, we employ a memory network [122] in the “w/o

TA” experiment that incorporates ConceptNet concepts but does not take into account

their correlation. All models use frequency topic words. According to the findings in

Table 6.3, the human annotation and BLEU scores of the ablation study are presented. A

score for the generated text is obtained using [1 : 5] using four metrics (Novelty, Fluency,

Topic-Consistency, and Text-Diversity) in order to assess the quality of the text. In order
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to offer annotators a reference, we use the TF-IDF features of topic words to find the 20

training samples that are most similar for "novelty".

With the exception of the topic attention layer, we find that the full model and "w/o

TA" both have lower model performance in all metrics. In instance, topic-consistency

dropped by 0.31, demonstrating that concepts with stronger connections to subject

words receive greater attention during generation when the relationship between those

concepts and the topic words is explicitly learned. TA is an expansion of the information

contained in the external knowledge network, resulting in a drop of 0.08 in novelty. As a

result, the text output is more novel and informative. The TA provides our model with

the benefit of selecting a concept that is more appropriate in the topic knowledge network

in the current context, which results in a 0.42 decrease in fluency. In addition, the BLEU

decreases to 1.69, demonstrating TA’s contribution to our model’s ability to better fit the

dataset by modeling the connections between topic words and nearby concepts.

We find that adversarial training can improve BLEU, topic consistency, and fluency

by comparing the complete model and the “w/o AT”. As a result, the discriminative signal

increases the topic consistency and authenticity of the texts that are generated.

6.5.7 Topic Control Analysis

Our focus in this section is on whether the model properly regulates the topic and

how each component influences our topic control performance. Our model is trained in

three ablated versions: 1) without topic information in the encoder, 2) without subject

information in the decoder, and 3) without TA. We randomly sampled 120 texts in our

test set with 510 sentences. Instead of using frequent topic words, all topic inputs are

randomly given in this section. Predicting the topic is relatively straightforward because

there are times when these types of terminology can be directly related to context

consistency. To generate sentences based on arbitrary information about the topic, we

employ a more difficult experimental setting.

According to Table 6.4, removing the topic embedding from the encoder or decoder

has the greatest impact on control performance, and the topic embedding in the encoder

is the most significant, since removing it results in the greatest decline. It demonstrates

that learning correlations between concepts in the topic knowledge network enhances the

model’s ability to control topics even though TA does not directly impose topic information.

For example, when giving information about a “sports” topic, concepts related to the

relationship "basketball games" are more likely to gain attention, because concepts
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with the relationship "basketball games" have a certain probability of matching "sports"

meaning.

6.5.8 Case Study

In this section, we present a case study of the texts we have actually created. Table 6.5

presents an instance of our output text with a random topic sequence. Keywords are

shown in blue and topic-controllable words are shown in red. As we learn, the output text

is closely related to the topic words in addition to covering all the input keywords. The

TA assists us in developing our model, which makes full use of common sense knowledge.

For example, “fiber and antioxidants” and “reducing the risk of cancer” are correlation

concepts related to the topic words "Health".

6.6 Conclusions and Future Work

This chapter proposes a novel topic-controllable text generator with an enhanced decoder

for topic knowledge networks called TC-K2T model, which is the first attempt at the

challenging task of keywords-to-text generation.

The chapter focuses on generating coherent and topic-relevant text from keywords,

leveraging a knowledge base network to ensure the accuracy and contextual relevance of

the generated content. This ability to control the topic of generated text has significant

implications for user behavior analysis.

On the other hand, our thesis theme centers around analyzing user behavior through

graph-structured representations. Graphs are effective in capturing the intricate relation-

ships and patterns within user data, providing valuable insights into user preferences

and behaviors. These insights can, in turn, inform the keywords and topics that are fed

into the topic-controllable keywords-to-text generator.

By combining the topic-controllable text generation capabilities of the chapter’s

approach with the user behavior analysis techniques of the thesis’s theme, we can

create a more comprehensive understanding of user preferences and needs. This, in

turn, can lead to more personalized and effective user experiences, as well as improved

decision-making based on a deeper understanding of user behavior.

In conclusion, the chapter provides insights into how advancements in structured

information utilization can enhance both text generation and user behavior analysis.
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Considering the recent success of multimedia sharing platforms, the content posted

on these online social media websites contains a wealth of multimedia information

(e.g., text and images). A fascinating future course would involve exploiting these multi-

modality features. In addition, extending our model to address multimodal generation

by introducing topic interaction and label information can be considered a new research

line in this field.
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CONCLUSION AND FUTURE WORK

7.1 Conclusion

User behavior analysis has always been a hot issue in scientific research. The automatic

feature extract and powerful representative ability of graph-structured learning make

it an important learning machine for handling various downstream tasks, such as

prediction problems and information generation tasks. This thesis has proposed a series

of deep learning methods based on graph-based representation techniques. It first

focused on the spam review detection problem and introduced Graph-aware Deep Fusion

Networks (GDFN) that utilizes information from relevant metadata (review text, features

of users, and items) and relational data (network) to capture the semantic information

from their complex heterogeneous interactions via graph convolutional networks. Then,

it designed a temporal framework with user and item level hypergraphs to enhance CTR

prediction. Further, it simplified the GCN-based CF models from two aspects: remove

non-linearities operations and utilized the condensed graph. Finally, it explored the

topic-controllable keywords-to-text generator with a user information network to help

improve the generated language is more in line with user preferences.

The first and foremost contribution of this thesis is the combination of graph-based

methods in user behaviour modeling. It will both structured and unstructured data

within a predictive model to provide meaning insights to user behaviour. This novel

approach would directly contribute to the current literature of in both user behaviour

and graph-structured representation research fields. It will help e-commerce platforms
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with better consumer understanding and user experiences.

Online spam review detection In this thesis, we propose a novel graph-based

model, namely Graph-aware Deep Fusion Networks (GDFN) that utilizes information

from all metadata (review text, features of users and items) as well as relational data

(network) to capture the semantics from their complex heterogeneous interactions via

graph convolutional networks. Besides, GDFN also uses a novel fusion technique to

synthesize low and high-order interactions with propagated information across multiple

review-related sub-graphs.

Click-through rate Prediction We propose a model to exploit the temporal user-

item interactions to guide the representation learning with multi-modal features, and

further predict the user click rate of the micro-video item. We design a Hypergraph

Click-Through Rate prediction framework (HyperCTR) built upon the hyperedge notion

of hypergraph neural networks, which can yield modal-specific representations of users

and micro-videos to better capture user preferences. We construct a time-aware user-item

bipartite network with multi-modal information and enrich the representation of each

user and item with the generated interests-based user hypergraph and item hypergraph.

GCN Simplification We empirically reduce the excessive complexity of GCNs by

repeatedly removing the nonlinearities between GCN layers and collapsing the resulting

function into a single linear transformation. Further, the proposed model, SGCF, which

largely simplifies the model design by including only the most essential components in

GCN for more efficient recommendations. We offer an effective partition technique for

reducing the scale of input graph structure to avoid infinite layers of explicit message

passing for efficient recommendations.

Natural Language Generation We propose a novel topic-controllable keywords-to-

text generator using the conditional language framework that is capable of producing

high-quality text and controlling the subject. According to our knowledge, we are the

first to apply topic-controllable information to the task of keyword-to-text generation

and demonstrate the potential of our model to generate diverse text by controlling the

topic at the sentence level. In addition, an innovative Topic Attention (TA) mechanism

and a topic knowledge network was used to enhance our decoder. TAs make the most of

the structured, aggregated subject data from the subject knowledge network, they are

able to produce text that is more pertinent and informative.
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7.2 Future Work

Although this study involves several contributions to the advancement of graph-based

methods, some experts argue that graph learning is almost a block box model hence

lacking interpretability and theoretical support. Therefore, there are still many improve-

ments and concerns that need to be addressed in the graph learning research. The

following research directions could serve as worthwhile future study:

• Improving interpretability: Developing methods and techniques to enhance the

interpretability of graph learning models is crucial. This could involve devising

visualization techniques, feature importance analysis, or model explanation meth-

ods specific to graph-based models. By gaining a better understanding of the inner

workings of these models, researchers can increase the trust and transparency in

the results they provide.

• Theoretical foundations: Building a strong theoretical foundation for graph learning

is essential to ensure its validity and generalizability. This could involve exploring

the mathematical principles and statistical properties behind graph-based meth-

ods. Establishing rigorous theoretical frameworks can provide a solid basis for

understanding the behavior of these models and enable researchers to make more

informed decisions about their applicability in different scenarios.

• Robustness and generalization: Investigating the robustness and generalization

capabilities of graph learning models is an important aspect to consider. Under-

standing how these models perform under different conditions, such as varying

graph structures, noise levels, or data distribution shifts, will help assess their

reliability and enable the development of more robust algorithms.

• Incorporating domain knowledge: Integrating domain knowledge into graph learn-

ing models can greatly enhance their effectiveness and applicability. This could

involve designing algorithms that combine graph-based techniques with expert

knowledge or incorporating prior information about the underlying problem into

the learning process. By incorporating domain knowledge, researchers can provide

more meaningful and domain-specific insights from the graph data.

• Scalability and efficiency: Addressing the scalability and efficiency challenges

associated with graph learning is another important research direction. Developing

algorithms that can handle large-scale graphs or process data in a computationally
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efficient manner is essential for real-world applications of graph-based methods.

Exploring parallel processing techniques, distributed computing frameworks, or

graph partitioning strategies can aid in tackling these challenges effectively.

By exploring these research directions, future studies can contribute to overcoming

the limitations of graph learning methods, fostering their interpretability, refining their

theoretical foundations, and enhancing their practical utility. Through these endeavors,

graph learning can continue to evolve into a more mature and robust field, offering

valuable insights and solutions in various domains.
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