
Towards an Efficient Network Intrusion

Detection System for IoT Networks

Leveraging Graph Neural Networks

by Tanzeela Altaf

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Dr. Xu Wang, Prof. Ren Ping Liu, Prof. Robin

Braun

Thesis by Compilation

School of Electrical and Data Engineering

Faculty of Engineering and IT

University of Technology Sydney

April 29, 2024

Certificate of Authorship / Originality

I, Tanzeela Altaf, declare that this thesis is submitted in fulfilment of the requirements for

the award of Doctor of Philosophy, in the School of Electrical and Data Engineering at the

University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis. This

document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Date: April 29, 2024

i

Abstract

Existing deep learning approaches are barely effective for identify new attacks in IoT traffic

because they treat network flows independently. Graph Neural Networks (GNNs) have emerged

as a promising alternative having the ability to capture the underlying network topology. How-

ever, existing approaches focus solely on either node or edge features, limiting their capacity

to fully understand the complexities of network data. This limitation impacts the performance

of NIDS in detecting new attacks, as they fail to utilize the contextual information provided

by both node and edge features. To address this, our research explores GNN mechanisms and

graph structures tailored to IoT traffic.

We introduce NE-GConv, a Directed Graph model that incorporates both node and edge fea-

tures, and a Multi-graph capable of representing comprehensive communication between IoT

nodes. NE-GConv improves upon existing methods with enhancements in algorithm input,

message aggregation, update functions, and output. Our approach enables deep inspection by

incorporating flow and packet content-related features. Additionally, our Multi-edged model

accommodates multiple edges and features, utilizing modified message-passing layers and ag-

gregation functions. We introduce novel equations to integrate multi-edge considerations into

the GNN framework. Extensive experiments, evaluated using metrics, validate the effectiveness

of our proposed models compared to state-of-the-art GNN approaches.

ii

Acknowledgements

First of all, I would like to thank God for His countless blessings, and for giving me the wisdom

and strength to accomplish this research. I extend my deepest appreciation to my perfect

parents for their unconditional love and support, for believing in me. Their profound impact

on my life cannot be overstated, and I am forever grateful for their presence and dedication.

I would like to express my deep gratitude to my supervisors; Dr. Xu Wang, for allowing me

to undertake this research and for his unceasing guidance and invaluable support, Prof. Wei

Ni, for his beneficial advice, interesting and challenging conversations that enriched my knowl-

edge, and research over the past few years, Prof. Ren Ping for believing in me and for his

unlimited support, and Prof. Robin Braun for his continuous encouragement and motivating

me all through the PhD. A very special thanks goes out to my co-author Guangsheng Yu for

his guidance and help in improving the paper writing.

The completion of this academic endeavor would not have been possible without the unwaver-

ing support and encouragement of my husband and two beloved children. I extend my heartfelt

gratitude to my siblings, whose served as a source of inspiration throughout this journey. Spe-

cial thanks is due to my brother, who graciously endured my mock presentations, attentively

providing feedback and constructive insights. Their collective contributions have been invalu-

able in shaping the outcome of this work, and for that, I am profoundly grateful. My friends

have always been there for me, without their support, I would not have come that far. Thank

you to all my friends and family for looking up to me.

Tanzeela Altaf

April 29, 2024

Sydney, Australia

iii

Contents

1 Introduction 2

1.1 Background . 2

1.1.1 Smart Home and Services . 5

1.1.2 Machine Learning and its Categories . 6

1.2 Topic and Thesis . 8

1.3 Aims, Objectives and Significance . 8

1.4 Thesis Structure . 11

2 Literature Review 13

2.1 Detection of Multiple Attack Vectors in IoT Traffic 14

2.1.1 Denial of Service (DoS) Attacks . 14

2.1.2 Man-in-The-Middle (MiTM) Attacks . 14

2.1.3 Injection Attacks . 14

2.1.4 Spoofing Attacks . 15

2.1.5 Botnet Attacks . 15

2.2 Latest Developments in Counteracting Attacks 15

2.3 Deep Learning Models for Intrusion Detection Systems 18

2.4 GNN Modelling in Cyber-space . 22

2.4.1 Overview of GNN Methods . 24

2.4.2 GNN - Use of Spectral and Spatial Convolutional Methods 25

2.4.3 GNN - Sequential Network Analysis . 29

2.5 Advancing Intrusion Detection through GNNs 33

2.6 Chapter Conclusion . 34

3 NE-GConv: A Lightweight Node Edge Graph Convolutional Network for

iv

Intrusion Detection 35

3.1 Introduction . 35

3.2 The Proposed IDS Framework. 37

3.2.1 Overview of the Graph-powered IDS . 37

3.2.2 Graph Formation . 39

3.2.3 The NE-GConv Model . 41

3.3 Experimental Results . 44

3.3.1 Dataset . 44

3.3.2 The Experimental Setup . 45

3.3.3 Experiment Steps and Metrics . 45

3.3.4 Results . 47

3.4 Conclusion . 52

4 A New Concatenated Multigraph Neural Network for IoT Intrusion Detec-

tion 54

4.1 Introduction . 54

4.2 The Proposed Framework . 57

4.2.1 Data Preprocessing . 57

4.2.2 Graph Construction . 58

4.2.3 Proposed GNN Model . 59

4.3 Experiment and Results . 65

4.3.1 Performance Evaluation Metrics . 65

4.3.2 Datasets and Experimental Setup . 66

4.3.3 Experimental Analysis . 66

4.4 Conclusion . 75

5 GNN-based Sequential Network Traffic Analysis for Botnet Detection 76

5.1 Introduction . 76

5.2 Related Work . 79

5.3 The Proposed Framework . 81

5.3.1 Data Preprocessing . 82

5.3.2 Graph Construction . 83

5.3.3 Proposed GNN Model . 84

v

5.3.4 Performance Evaluation Metrics . 87

5.3.5 Datasets . 87

5.3.6 Experimental Setup . 89

5.3.7 Results and Discussion . 89

5.4 Conclusion . 92

6 Conclusion and Future Works 94

6.1 Conclusion . 94

6.2 Future Works . 95

vi

List of Figures

3.1 An overview of the proposed IDS framework that consists of three main compo-

nents, i.e., data preparation, graph formation, and the proposed model. 37

3.2 Step by step graph structure formation. 40

3.3 The layered architecture of the model . 41

3.4 RFE Feature Ranking. 48

3.5 Test on Raspberry Pi 4 to investigate Testing Time (s) 52

4.1 Step-by-step illustration of the proposed GNN-based NIDS Framework: Raw

dataset is transformed into the processed dataset in Data Preprocessing block

as shown on the left-hand side, then the graph is constructed from S(ource)-

D(estination) IP nodes and relative edges (obtained from the left block) in Graph

Construction block (middle block). The proposed model learns the patterns of

the constructed graph in the proposed GNN Model Learning block, as shown on

the right-hand side. 56

4.2 Multi-edge graph structure depicting a small IoT network: The left panel illus-

trates the graph, complete with nodes and interconnecting edges, while the right

panel features the adjacency matrix as a heatmap. The heatmap delineates the

node connections, with varying shades of blue indicating the existence of edges

between node pairs. 58

4.3 Our proposed model architecture consists of 3 layers: Spectral layer (GCN),

Spatial layer (GAT), and Spectral layer (GCN). A multi-edge knowledge graph

is fed as model input, and link prediction is performed to detect malicious flows

in the output. 60

4.4 Accuracy score comparison of all the graph models on the datasets. 67

4.5 Precision score comparison of all the graph models on the datasets. 68

vii

4.6 Recall score comparison of all the graph models on the datasets. 69

4.7 F1-Score comparison of all the graph models on the datasets. 70

4.8 ROC-AUC score comparison of all the graph models on the datasets. 71

4.9 FAR score comparison of all the graph models on the datasets. 72

5.1 Proposed GGCN Model: Textual representation (left) and visual representa-

tion (right). The GGCN integrates graph convolutional layers with gated graph

attention mechanisms to capture local and global graph structures effectively.

Directional arrows illustrate the data flow through the framework’s stages. . . . 81

5.2 A graph showing categories of network traffic instances and their count in Mirai

dataset. 88

5.3 A graph showing categories of network traffic instances and their count in BoT

IoT dataset. 88

5.4 Performance evaluation of the proposed GGCN with other state-of-the-art GNN

models on BoT IoT dataset. 90

5.5 Performance evaluation of the proposed GGCN with other state-of-the-art GNN

models on Mirai dataset. 91

viii

List of Tables

2.1 List of studies in the literature that has used machine learning methods to address

security issues in IoT. 18

2.2 Summary of related Studies on deep learning models for IDS in IoT. 19

2.3 Summary of GNN-based NIDS in literature review 22

2.4 Summary of Graph Neural Network (GNN) approaches for intrusion detection. . 26

2.5 Summary of GNN-based Approaches for Intrusion Detection and Botnet Detection 30

3.1 Notations used in the chapter and their definitions. 38

3.2 Details of the UNSW-NB15 dataset in terms of the dataset size, the number of

malicious and normal data entries. 45

3.3 Details of training and testing datasets for a 70:30 ratio. 45

3.4 The performance of NE-GConv and other baseline GNN models on the UNSW-

NB15 dataset with different train:test ratios. 49

3.5 Evaluating computational complexity of NE-GConv and other baseline GNN

models on the UNSW-NB15 dataset with different train:test ratios. 50

3.6 Performance of NE-GConv on different attack ratios on UNSW-NB15 dataset. . 51

3.7 Performance evaluation of NE-GConv with other baseline graph models on the

ToN IoT dataset. 51

3.8 Computational overhead of NE-GConv with other baseline graph models on the

ToN IoT dataset. 52

4.1 Notations used in the chapter and their definitions 57

4.2 Details of datasets in terms of total data entries, number of malicious and normal

data entries, and the knowledge graph of each dataset. 66

4.3 Performance evaluation of the proposed Multigraph Neural Network model. . . . 66

ix

4.4 The comparison of training time and model size between our method and other

GNN models on the benchmark datasets. 73

4.5 Performance of proposed model on various train : test ratios on all the benchmark

datasets. 74

5.1 Notations used in the chapter and their definitions 82

5.2 Dataset description in terms of total data entries, number of malicious and nor-

mal data entries, and the no. of nodes and edges in each graph. 89

5.3 Performance evaluation of the proposed GGCN as a binary classifier. 90

5.4 Performance evaluation of the proposed GGCN as a multiclassifier. 92

x

Published Journal Papers

J-1. T. Altaf, X. Wang, W. Ni, R. P. Liu, R. Braun, “NE-GConv: A lightweight node edge

graph convolutional network for intrusion detection,” Elsevier: Computers Security, 2023,

(Chapter 3).

J-2. T. Altaf, X. Wang, W. Ni, G. Yu, R. P. Liu, R. Braun, “A new concatenated Multigraph

Neural Network for IoT intrusion detection,” Elsevier: Internet of Things, 2023, (Chapter

4).

Published Conference Papers

C-1. T. Altaf, R. Braun, “Roadmap to Smart Homes Security Aided SDN and M,” IEEE

Conference on Cloud and Internet of Things (CIoT), 2022, (Chapter 2).

C-2. G. Yu, Q. Wang, T. Altaf, X. Wang, X. Xu and S. Chen, “Predicting NFT Classification

with GNN: A Recommender System for Web3 Assets,” IEEE International Conference

on Blockchain and Cryptocurrency (ICBC), 2023.

1

Chapter 1

Introduction

The Internet of Things (IoT) is a leading technology that has taken markets, industries and,

business goals to a next level by introducing the idea of smart applications in every aspect of

life. It contains a vast pool of internet-enabled sensors some of which have limited capability

and operate in a specific manner only. Many manufacturers are launching devices at an ever-

increasing rate and security requirements are often an afterthought [1]. Due to the heterogeneity

and operational complexity in the design, these devices pose vulnerabilities within the network

and may lead to zero-day attacks. Therefore, maintaining the security of the IoT network is

fundamental to the successful deployment of resource-constraint devices. Existing studies in

the past decade have led to profound improvements in the development of NIDS using Artificial

Intelligence (AI), and in particular, DL [2]–[8]. However, there is need to explores the suitability

of using new and non conventional DL techniques, e.g. GNN, to build the next generation of

IDS. This thesis investigates the limitations of conventional and deep learning techniques used

in IDS and identifies the specific challenges they face in capturing network topology information.

1.1 Background

A smart home, as an integral applications of Internet of Things (IoT), allows users to conve-

niently control home devices remotely [9], [10]. It involves computing techniques to interact

with smart appliances, heating, and lighting systems, as well as recognizing user activities

through various means like voice or gesture recognition, computer vision, and human behav-

ior analysis [11]–[13]. With smart home utilities, users can remotely access and manage their

2

homes, controlling temperature sensors, lighting systems, and security cameras even from a

distance.

This revolution in smart homes aims to minimize human intervention in daily tasks and pro-

vide control of the home environment. According to an analysis by Gartner, there has been

significant growth in the sales of smart home devices [14], but the full potential is yet to be real-

ized due to a gap between consumer demands and manufacturer expectations. The devices are

often produced by different manufacturers and may have interdependencies within the home

network [15]. However, IoT-based smart homes are susceptible to cybercrimes and security

exploitation, posing a major concern as sensitive user information is transmitted through the

network. Many communications between devices lack encryption [16], and recent attacks inci-

dents highlight the exploitation of vulnerabilities and demonstrate the evolving sophistication

of cyber threats.

1. Mirai Botnet Attack (2016): This attack exploited insecure IoT devices to launch

massive Distributed Denial of Service (DDoS) attacks, causing widespread internet dis-

ruptions. The Mirai botnet infected cameras, routers, and other IoT devices by exploiting

default passwords [17].

2. BrickerBot Attack (2017): BrickerBot targeted vulnerable IoT devices with the intent

to permanently disable them. The attack exploited security weaknesses in devices such

as cameras and routers, rendering them inoperable [18].

3. VPNFilter Malware (2018): This malware infected hundreds of thousands of routers

and IoT devices worldwide. It allowed attackers to spy on network traffic, steal sensitive

data, and even launch destructive attacks [19].

4. Trickbot IoT Variant (2020): Trickbot, originally a banking trojan, expanded its

capabilities to target IoT devices. It aimed to create a botnet for launching DDoS attacks,

stealing sensitive information, and spreading malware across networks [20].

5. Ripple20 Vulnerabilities (2020): A series of 19 zero-day vulnerabilities discovered in

a popular TCP/IP stack used in many IoT devices. These vulnerabilities could allow

attackers to remotely execute code, steal data, or disrupt device functionality [21].

Once a hacker gains access to one device, they can exploit the entire network through techniques

like spoofing, eavesdropping, or flooding attacks.

3

The heterogeneous nature of smart home sensors, ranging from simple light bulbs to complex

smartphones, adds to the complexity, with no uniform standards among devices. The varying

connectivity modes and protocols of different devices present challenges for communication and

security. It is not possible to apply the same defense mechanisms to attacks in IoT as are

applied in the conventional network [1]. There is a need to devise automated security solutions

that can eliminate these evolving attacks.

ML approaches in securing IoT systems have been pivotal in enhancing intrusion detection

systems and safeguarding against cyber threats. ML algorithms, such as Support Vector Ma-

chines (SVMs), Random Forests, and k-Nearest Neighbors (k-NN), have been instrumental in

identifying patterns and anomalies in network traffic, contributing to the development of effec-

tive security frameworks. These techniques analyze historical data to classify network activity

as normal or malicious, aiding in the timely detection and prevention of potential intrusions.

Deep Learning (DL) approaches, however, have emerged as the forefront of security solutions

for IoT-based smart homes, surpassing traditional ML methods in adaptability and efficacy.

This thesis aims to address these challenges and devise robust security solutions for IoT-based

applications. The focus will be on developing automated and adaptive detection mechanisms

to counter emerging cyber threats and enhance the security and privacy of IoT networks.

Conventional DL techniques often face limitations in effectively detecting intrusions in IoT

environments due to their inability to adapt to the dynamic and complex nature of network

traffic. These techniques may struggle to capture the subtle patterns and anomalies indicative of

cyber threats, leading to higher false-positive rates and reduced accuracy in intrusion detection.

Additionally, traditional DL models may lack the flexibility to handle the diverse and evolving

attack vectors encountered in IoT networks, resulting in suboptimal performance in real-world

scenarios. By leveraging advanced ML and DL techniques, we aim to build a comprehensive

and effective security framework that can proactively detect and prevent potential intrusions

by considering the complexities of underlying network topology and intricate traffic patterns,

safeguarding users’ data and ensuring the smooth functioning of IoT systems. Through this

research, we aim to contribute to the advancement of IoT security, bridging the gap between

consumer expectations and manufacturer innovations in this rapidly evolving field.

4

1.1.1 Smart Home and Services

The purpose of this section is to explain the smart home in detail and also highlight the level

of maturity of present challenges in different services. We provide an overview of some of the

services that a smart home offers to its users by enabling remote monitoring and discuss some

of the research challenges in each sub-section. This, in turn, will give a direction to future

researchers in defining the scope of research in these areas. Security and privacy is one of the

primary issues in all of these sub-areas.

Health Monitoring and Elderly Care

Healthcare is one of the most valuable part of IoT-based smart homes which is gaining relevance

with the improvement of IT. IoT has enabled a world of possibilities: a remote health monitoring

with the aid of smart health gadgets leading to a run-time care [22], providing physicians

with online data to monitor the ongoing symptoms and conditions [23], and thus excelling

the medical processes. It is in-turn turning into a compelling answer to the requirements of

physically disable and elderly people and enabling more independent and self-controlling lives.

Different countries have carried out studies to make a smart home fully equipped with the needs

of elderly and physically hindered individuals. Remote health monitoring systems play one of

the vital role including keeping a record of blood pressure, blood glucose, heart rate, body

temperature [22], weight, pulmonary peak flow meters and other psychological information.

Apart from improving the health sector with the help of technology another key research area

in this domain is privacy and security of patients data [23]. Author insists that despite huge

claims by previous studies security and privacy is significantly overlooked and recent work is

not enough for catering this issue [24]. Medical data may be exposed to participatin entities

for the purpose of maintenance and storage i.e. third party cloud service providers which is

creating more privacy concerns as the dependencies on other parties are nearly impossible to

eliminate [25].

Smart home Energy Management

By definition, this serves to optimize energy consumption with in a smart home by allowing

its users to track, control and monitor their gas and electricity usage with the aid of energy-

management devices. Smart energy management devices may include a smart thermostat,

5

gateways, smart meter, smart switches, plugs and sensors connected to the internet.

A lot of research is going on in this domain where some of the key issue is to schedule electrical

task scheduling to manage cost while considering consumer’s preferences. one such algorithm

is presented specifying a time slot for a task to improve user comfort and manage electricity

usage [26]. Smart plugs are used to develop a facility which can turn off the home plugs from

central server when not in use [27], in addition consumer behaviour is learned by analysing the

data obtained from smart plugs.

Home Automation

The idea of home automation was first proposed in 1975 with the release of X10 technology

which allowed users to send signals over electric wiring to the home switches and eventually to

the devices telling them when to turn on. Since, signals diminished over the wires of different

polarities, it was not an ideal and fully reliable communication protocol. With the evolution of

smart home and its devices, a company named Insteon came up with technology that connected

together wireless signals and electric wiring. Over time other technologies emerged e.g. Z-wave,

Zig-Bee, Insteon, Bluetooth, Ethernet,Wifi, RS232, RS485, C-bus, UPB, KNX, EnOcean and

Thread [28] which can counter problems occurred in X10 and each comes with its own pros and

cons.

Consequently, in smart home and services, security and privacy concerns pervade across various

use cases. In health monitoring and elderly care, the challenge lies in safeguarding sensitive

patient data, as medical information transmitted through IoT devices faces risks of exposure

to third-party entities. Similarly, smart home energy management confronts issues of data

privacy, particularly concerning the collection and analysis of energy consumption patterns.

Home automation, while offering convenience, raises concerns regarding unauthorized access to

connected devices and potential breaches of personal privacy. These challenges underscore the

critical need for robust security measures to mitigate risks and ensure the integrity of IoT-based

smart home systems.

1.1.2 Machine Learning and its Categories

Machine learning is a type of Artificial Intelligence that empowers a framework to learn from

previous data rather than through explicit programming. However, machine learning is not a

6

straightforward procedure. It consists of a variety of algorithms which act as building blocks

to the whole system. Their job is to create a logic by learning from the training data and

predict outcomes close to reality.The more representative training data an algorithm ingests,

the more accurate the model is. Also, choosing a right algorithm is very important and can

be achieved by trial-and-error in most cases. Machine learning can be grouped into three main

categories [29].

Supervised Learning

Supervised learning is used in a case when a certain problem has an established set of data and

a significant information as to how that data is classified. It tends to figure out patterns in the

incoming data that can be applied to a category that define the meaning of data.

Unsupervised Learning

Unsupervised learning is applied in a case when a problem has a massive amount of unlabeled

data. This category includes a set of algorithms that can help classify this massive amount of

data based on patterns or features into groups or clusters. So, it is a process to discover the

relationship among data points.

Reinforcement Learning

Reinforcement learning is a behavioral learning model and is applied to the problems where

future actions are based on the output of present responses and next actions are required to be

determined. In order to get a precise outcome, feedback is received by algorithm after analysing

the data. As the system learns through trial and error, a sequence of successful decisions will

result in the process being “reinforced” because it best tackles the current issue.

Deep Learning

A neural network consists of set of algorithms that aspires to find links in the incoming data in

a much similar way as a human brain may operate. it contains three or more layers: an input

layer, one or many hidden layers, and an output layer. Data is fed through the input layer

and modified depending on defined weights on the nodes of hidden layer and output layers. A

neural network may comprise of hundreds or even millions of nodes connected to each other.

The typical neural network may consist of thousands or even millions of simple processing nodes

7

that are densely interconnected in one layer. The term deep learning is implied when a neural

network consists of more than one hidden layers.

1.2 Topic and Thesis

“Enhancing Intrusion Detection Systems using Graph Neural Networks: A Novel

Approach for Incorporating Network Topology in Deep Learning”

Problem Statement: IDS in the IoT face significant challenges due to the dynamic and het-

erogeneous nature of IoT environments. Traditional IDS approaches often struggle to adapt

to the complexities of IoT networks, leading to limitations in accuracy, scalability, and robust-

ness. Furthermore, the rapid proliferation of IoT devices increases the challenge of effectively

monitoring and securing network traffic against emerging cyber threats. Therefore, there is a

pressing need to enhance IDS capabilities to address these challenges and ensure the security

and integrity of IoT systems.

Hypothesis: By leveraging GNNs, a novel and promising deep learning technique, it is hy-

pothesized that IDS in IoT can be significantly improved. GNNs offer unique advantages in

capturing and analyzing complex network topologies inherent in IoT environments, allowing

for more accurate and comprehensive intrusion detection.

This thesis explores and demonstrates the potential of Graph Neural Networks (GNNs) as a

non-conventional deep learning technique for addressing the limitations of traditional machine

learning and deep learning approaches in Intrusion Detection Systems (IDS). By leveraging

the inherent graph structure designed to represent the nature of intrusion detection problems,

the research will develop and evaluate novel GNN-based architectures that effectively capture

network topology information, leading to more accurate and robust intrusion detection capabil-

ities. The findings of this study will contribute to the advancement of IDS technology, offering

insights into the suitability and practical deployment of GNNs for building the next generation

of intrusion detection solutions.

1.3 Aims, Objectives and Significance

The primary aim of this thesis is to investigate and assess the suitability of GNNs as a non-

conventional deep learning technique for enhancing IDS. The research aims to address the

8

limitations of conventional machine learning and deep learning approaches in capturing net-

work topology information, by leveraging the graph structure designed to represent the nature

of intrusion detection problems. The thesis will develop and evaluate novel GNN-based ar-

chitectures specifically tailored for IDS, with a focus on their ability to improve the accuracy

and robustness of intrusion detection in IoT network environments. Investigating and assessing

the suitability of Graph Neural Networks (GNNs) for enhancing Intrusion Detection Systems

(IDS) is crucial for several reasons. Firstly, traditional machine learning and deep learning

approaches often struggle to effectively capture the intricate network topology information in-

herent in intrusion detection problems, especially in the context of IoT network environments.

By leveraging GNNs, which are adept at understanding and processing graph-structured data,

it becomes possible to address these limitations and develop more accurate and robust intrusion

detection mechanisms.

Moreover, the adoption of GNNs in IDS has the potential to solve several critical problems

in cybersecurity. These include improving the detection of sophisticated and evolving cyber

threats, enhancing the resilience of IoT networks against malicious activities, and minimizing

the occurrence of false positives and false negatives in intrusion detection. Additionally, GNNs

offer scalability and adaptability, making them well-suited for the dynamic and heterogeneous

nature of IoT environments. By developing novel GNN-based architectures tailored for IDS, it

becomes possible to achieve higher levels of accuracy and efficiency in identifying and mitigating

security breaches in IoT networks.

In terms of security goals, this PhD thesis aims to contribute towards enhancing the overall

security posture of IoT networks. By improving the accuracy and robustness of IDS through

GNNs, the thesis seeks to fortify IoT systems against a wide range of cyber threats, thereby

safeguarding sensitive data, preserving user privacy, and ensuring the uninterrupted operation

of IoT applications and services. Furthermore, by developing advanced intrusion detection

techniques, the thesis aims to foster trust and confidence in IoT technologies among users,

regulators, and industry stakeholders.

Beyond technical impacts, the research conducted in this thesis can have significant social,

economic, and global implications. From a social perspective, enhancing the security of IoT

networks contributes to protecting individuals’ privacy and personal information, thereby fos-

tering trust in digital technologies and promoting digital inclusion. Economically, mitigating

9

the risks associated with cyber threats in IoT networks can prevent financial losses for individu-

als and organizations, as well as safeguard critical infrastructure and services. Additionally, on

a global scale, strengthening the security of IoT networks can contribute to cybersecurity efforts

worldwide, helping to mitigate the growing threats posed by cybercriminals and state-sponsored

actors. Overall, investigating and enhancing GNNs for IDS in IoT networks holds the potential

to have wide-ranging positive impacts on society, the economy, and global cybersecurity.

The main objectives of this thesis can be summarised in the following research questions:

1. How do conventional machine learning and deep learning techniques currently used in

Intrusion Detection Systems (IDS) fall short in effectively capturing network topology

information?

2. What are the fundamental principles and capabilities of GNNs as a non-conventional

deep learning technique, and how can they be harnessed to incorporate network topology

information into IDS models?

3. How can novel GNN-based architectures be designed and implemented to cater specifically

to the requirements of IDS, and how do their performance compare against traditional

machine learning and deep learning approaches on benchmark datasets?

4. What are the implications of using GNN-based IDS models in large-scale network envi-

ronments, in terms of their scalability and computational efficiency?

5. How do the proposed GNN-based IDS models perform in comparison to conventional

techniques when applied to IoT network data and diverse intrusion patterns?

Relocating the last paragraph of previously 1.0.3 into section 1.3 as suggested by the reviewer.

This thesis examines the capabilities of machine learning, deep learning and in particular GNNs

as a non-conventional deep learning technique for effectively incorporating network topology

information into IDS models. Different GNN structures are modelled based on IoT network

behaviour, and model architectures are designed and implemented to tailor the specific require-

ments of IDS. This thesis proposes a series of models to capture the interaction between IoT

devices, normal and abnormal exchange of information by employing nodes and edges in the

graph topology, use of spectral and convolutional methods, and the use of unique aggregation

and propagation mechanism in GNN learning. Results demostrate and analyze the strengths

and weaknesses of GNN-based IDS models in comparison to conventional techniques, with a

10

focus on their ability to handle network topology and adapt to different types of intrusion

patterns.

This thesis holds significant importance in the field of cybersecurity and intrusion detection. By

exploring the utilization of Graph Neural Networks, a novel deep learning technique specifically

tailored for handling graph-structured data, the research aims to bridge the gap between con-

ventional machine learning approaches and the complexities of network topology information.

The findings of this study have the potential to revolutionize intrusion detection capabilities by

providing more accurate and efficient models capable of detecting sophisticated cyber threats.

Moreover, the investigation into the interpretability and robustness of GNN-based IDS models

will contribute to the development of more trustworthy and resilient security systems. Ulti-

mately, this research’s significance lies in advancing the state-of-the-art in IDS technology and

providing valuable insights for practitioners and researchers seeking to build the next generation

of effective and adaptive intrusion detection solutions.

1.4 Thesis Structure

The thesis embarks upon an exhaustive exploration of the intersection between Internet of

Things (IoT) applications and deep learning methodologies, elucidating the landscape of in-

trusion detection within these domains. The thesis begins with an Introduction (Chapter 1),

providing background information IoT applications, and machine / deep learning categories,

followed by a delineation of the topic and thesis, as well as the aims, objectives, and significance

of the research. Chapter 2 delves into the literature review, covering topics such as detection

of multiple attack vectors in IoT traffic, latest developments in counteracting attacks, deep

learning models for IDS, and GNN modeling in cyberspace. In Chapter 3, the novelty lies in

the design of a graph structure that integrates node and edge features synergistically to identify

anomalies within IoT networks. This approach innovatively combines IP addresses and port

numbers to form nodes, while the edges encapsulate communication patterns between these

nodes. By jointly considering both node and edge features, the method effectively discerns

node anomalies, contributing a novel perspective to intrusion detection in IoT environments.

Chapter 4 introduces a pioneering approach by constructing a multigraph framework where

IP addresses serve as nodes, representing individual IoT devices. The distinguishing feature

of this methodology lies in its utilization of multi-edged communication channels to capture

11

the complexities inherent in IoT node traffic. Additionally, the integration of spectral and

spatial GNN layers, such as Graph Convolutional Networks and Graph Attention Networks,

facilitates efficient learning from the intricate graph structure, thereby enhancing the detection

of anomalies within IoT networks. In Chapter 5, a novel methodology is presented wherein a

multiedges time series graph is formulated, with IP addresses acting as nodes and multi-edged

sequential communication serving as the edge features. The innovation in this approach lies in

the utilization of sequential Graph Neural Networks, particularly Gated Graph Convolutional

Networks, to detect anomalies within IoT network traffic. By leveraging the temporal dynamics

of communication patterns, this method offers a sophisticated means of identifying anomalous

behavior, thereby contributing to the advancement of intrusion detection techniques in IoT

environments.The Conclusion (Chapter 6) summarizes the findings and contributions of the

research.

12

Chapter 2

Literature Review

In the past, many AI-based models have been developed to enhance security in the IoT. IDS-

based methods are considered an important tool for network security and information systems.

However, with emerging technologies and market trends, there is a need to update IDS to adapt

to new attacks [30]. Network Intrusion Detection Systems (NIDS) [31],[32] are a traditional

way of protecting networks from malicious activities. In general, NIDS can be classified into

two types based on detection strategy: signature-based IDS [33] and anomaly-based IDS [34].

The former analyzes network traffic looking out for specific network patterns or known attacks

and is unable to cater for unknown attacks whereas the latter is capable to detect zero-day

attacks by flagging out any network deviation from the known normal behavior, thus, effective

in determining known and unknown attacks. The downside of anomaly-based IDS is that it

suffers from a high false alarm rate. The issue is aggravated in an IoT setting where, hundreds

of devices, typically generated by different vendors and with limited operational capacity are

connected together making the overall network prone to multiple and novel attacks. Hence, con-

ventional intrusion detection techniques are not effective in controlling emerging cyber-attacks.

There is a need to modify IDS in contemplation of new network requirements. IoT systems face

various types of attacks that require a set of information exchange by hackers to compromise

or attack a device or network. Some of these attacks include Distributed Denial of Service

(DDoS), Man-in-The-Middle (MiTM), injection, spoofing, Sybil, buffer overflow, and botnet

attacks [35]. These attacks have patterns of network traffic that are characteristics of targeted

activity, e.g., a large number of devices communicating with single IP, repeated connections

to a specific IP address, unusual DNS queries or responses, and/or repeated connections to

13

different ports on the same device. These attacks can have severe consequences, including the

disruption of critical infrastructure, the compromise of sensitive data, and the loss of life. It is

therefore important to develop effective detection and mitigation strategies to protect against

these threats.

2.1 Detection of Multiple Attack Vectors in IoT Traffic

As the IoT continues to proliferate, securing IoT networks against diverse attack vectors be-

comes increasingly critical. This section explores the detection methods relevant to IoT envi-

ronments, focusing on the identification of multiple attack vectors that threaten the integrity

and security of IoT devices and networks [35]–[37].

2.1.1 Denial of Service (DoS) Attacks

DoS attacks aim to disrupt the availability of IoT devices and services by overwhelming them

with a flood of traffic or requests. Detection techniques for DoS attacks in IoT traffic often

involve monitoring network traffic patterns, identifying sudden spikes in traffic volume, and

implementing rate limiting or traffic filtering mechanisms to mitigate the impact of such attacks.

2.1.2 Man-in-The-Middle (MiTM) Attacks

MiTM attacks involve intercepting and manipulating communication between IoT devices and

their intended destinations. Detecting MiTM attacks in IoT traffic typically involves analyzing

network traffic for anomalies, such as unauthorized changes in packet headers or unexpected

routing paths. Advanced cryptographic protocols and secure communication mechanisms can

also be deployed to detect and prevent MiTM attacks.

2.1.3 Injection Attacks

Injection attacks, such as code injection or command injection, target vulnerabilities in IoT

devices or applications to execute unauthorized commands or access sensitive data. Detection

methods for injection attacks in IoT traffic often involve analyzing incoming data packets for

suspicious payloads or unexpected command sequences. Intrusion detection systems (IDSs) can

also be deployed to monitor device behavior and identify potential signs of compromise.

14

2.1.4 Spoofing Attacks

Spoofing attacks involve impersonating legitimate IoT devices or users to gain unauthorized

access to network resources or services. Detecting spoofing attacks in IoT traffic typically

involves implementing authentication mechanisms, such as digital signatures or certificate-based

authentication, to verify the identity of devices and users. Network traffic analysis can also be

used to detect anomalous behavior indicative of spoofing attempts.

2.1.5 Botnet Attacks

Botnet attacks involve compromising multiple IoT devices to create a network of bots under

the control of a malicious actor. Detecting botnet attacks in IoT traffic often involves analyzing

network behavior for patterns indicative of botnet activity, such as coordinated communication

between devices, unusual spikes in traffic, or repetitive connection attempts to known com-

mand and control servers. Machine learning algorithms can also be employed to detect botnet

behavior based on learned patterns from historical data.

In summary, detecting multiple attack vectors in IoT traffic requires a combination of tech-

niques, including network traffic analysis, anomaly detection, cryptographic protocols, and

machine learning algorithms.

2.2 Latest Developments in Counteracting Attacks

Recent developments in countering major types of attacks targeting IoT systems have also

focused on integrating advanced ML and DL techniques into security solutions. ML and DL

algorithms are being employed to enhance the detection and mitigation capabilities of IDS

against various attacks, including DDoS, MiTM, injection, spoofing, Sybil, buffer overflow, and

botnet attacks. These algorithms enable IDS to continuously learn and adapt to new attack

patterns, improving their accuracy in identifying and mitigating threats. Furthermore, ML and

DL techniques are being applied to anomaly detection algorithms to reduce false positive rates

and improve the overall performance of intrusion detection in IoT environments.

In addition to leveraging ML and DL, researchers are exploring innovative approaches to mit-

igate specific types of attacks. For example, for DDoS attacks, techniques such as flow-based

15

anomaly detection and traffic filtering are being developed to identify and block malicious

traffic in real-time [38]. Similarly, for MiTM attacks, advanced cryptographic protocols and

secure communication mechanisms are being deployed to prevent unauthorized interception

and tampering of data [39].

The security and privacy aspects of IoT-based smart homes have been a subject of extensive re-

search, particularly focusing on the application of machine learning techniques. In a paper [40],

author addressed the privacy drawbacks of smart homes by the means of traffic analysis which

can be done by intercepting traffic from gateways or by finding out profile resident‘s behaviour

through digital traces. This research work designed a utility optimal differential privacy mech-

anism to mystify adversaries from the source of traffic flows. In addition a multi-hop routing

scheme has been developed in order to preserve privacy in a hostile wireless environment. This

work takes in account network energy consumption and resource constraint IoT environment.

In this [41] emphasized the need of IoT based automation in homes and compared the existing

technologies in terms of cost and compatibility for the awareness in clients. In turn, a nodeMCU

based automation system has been implemented in which electronic switches can be controlled

by a user-friendly web through Wi-Fi technology after a simple authentication.

Authors in [42] presented a survey on conservation of energy in the automated homes based

on presence or absence of residents in the home. One of the most commonly deployed idea

in literature is based on machine learning where data from sensors is collected to predict the

mood of resident and controller makes the decision after user intervention which is making the

whole output more accurate. Whereas, authors suggested that automated control advancements

and energy conservation should go hand in hand and automated control based on human

presence/absence is merely insufficient for conserving energy. Authors in [43] developed a

framework based on machine learning which suggests a suitable action in order to conserve

energy. They also implied a layer of security by using MQTTS server. Another paper [44]

performed behavioural modelling of a home user embedded with authentication based inatural

behaviour using Recurrent Neural Network (RNN). Goals are to preserve privacy and reduce

cost and infrastructure without human inference. In another paper[45], authors explained the

work done towards data annotation for activity recognition where semi-automated approach is

focused for gathering up and manipulating data from sounds in smart homes and propose the

use of an app (ISSA) embedded with smart microphones to help distinguish sounds.

16

A research paper [46] suggested incorporating deep learning and forensics techniques into the

IoT architecture to expose botnets, emphasizing the applicability of network forensics and

highlighting the challenges in this area. Another study [47] developed an SVM-based classifier

for detecting network attacks in smart home environments, effectively differentiating between

mutation and regular codes. The proposed system demonstrates reduced complexity and timely

response in identifying network attack information. A study [48] generated real-time data from

a smart home testbed, utilizing Hidden Markov Model (HMM) for detecting abnormal behaviors

in sensors, achieving 97% accuracy in behavioral modeling. However, this approach focused

on limited and specific devices, overlooking the presence of multiple residents. [49] proposed

behavioral device templates through the fusion of statistical and machine learning techniques to

detect anomalies in smart home networks. The system identifies anomalies based on deviations

from the center of cluster developed from statistical metrics, but further work is needed to

optimize thresholds and threat scores for improved performance.

In the quest to identify the behavior of smart devices within smart environments, [50] explored

a machine learning framework utilizing network traffic characteristics. While this work does

not directly address device security, it lays the foundation for achieving security through be-

havioral modeling of devices. Additionally, [51] investigated the security and privacy of smart

home speakers, focusing on privacy leakage and voice command fingerprinting attacks, which

involve traffic analysis. However, further research is required in this domain to enhance se-

curity measures. The IOTFLA architecture, proposed by [52], leveraged federated learning in

IoT-based smart homes to enhance data security and privacy. The architecture’s merits and

demerits have been discussed in terms of implementation within the IoT ecosystem.

By analyzing these recent studies in Table 2.1, we aim to establish a foundation, which seeks

to explore innovative approaches integratingIoT and Machine Learning (ML) technologies to

enhance the security of IoT-based smart homes. Despite their promise, ML and DL techniques

also present certain downsides when applied to smart home security. One major concern is

the potential for adversarial attacks, where malicious actors can manipulate ML/DL models

by injecting specially crafted inputs to evade detection or cause false alarms. Additionally,

ML/DL models require large amounts of labeled training data to achieve high accuracy, which

may be challenging to obtain for IoT environments due to privacy and data scarcity concerns.

Moreover, ML/DL algorithms often require significant computational resources and energy

consumption, which may be impractical for resource-constrained IoT devices in smart home

17

Table 2.1: List of studies in the literature that has used machine learning methods to address

security issues in IoT.

Ref Methodology Attack Type

[46] Review on Forensics and deep learning mechanisms Bots

[47] SVM Method Network attacks (mutation code detection)

[48] Hidden Markov Model (HMM) Network anomaly detection

[49] Fusion of statistical and machine learning techniques Network anomaly detection

[50] Multi-stage machine learning algorithm IoT device type detection

[51] ML algorithms Voice command fingerprinting attack

[52] Federated learning and data aggregation Anomaly detection

[53] Supervised ML, ANN, KNN Device security and N/w security

[54] ML algorithms and DL Authentication, DoS, IDS, Malware

environments. Therefore, while ML and DL hold great potential for enhancing security in IoT

systems, careful consideration of these limitations is necessary to ensure their effective and

sustainable deployment in smart home environments.

2.3 Deep Learning Models for Intrusion Detection Sys-

tems

DL has emerged as a promising approach for enhancing the capabilities of intrusion detection

systems (IDS) in detecting and mitigating various types of cyber-attacks. DL-based IDS lever-

age neural network architectures to automatically learn and extract features from raw data,

such as network traffic or system logs, without the need for manual feature engineering. This

enables DL models to capture complex patterns and anomalies associated with different types of

attacks with high accuracy. DL-based IDS offer several advantages over conventional ML-based

IDS. Firstly, DL models can handle high-dimensional and unstructured data more effectively,

allowing them to capture subtle patterns and variations in network traffic or system behavior

that may indicate malicious activity. Additionally, DL models have demonstrated superior

performance in detecting unknown or zero-day attacks compared to traditional ML algorithms.

Furthermore, DL-based IDS can adapt and learn from new data in real-time, enabling them to

continuously improve their detection capabilities over time without manual intervention.

18

Despite their advantages, DL techniques often suffer from a high false positive rate and a

low detection rate. The two aspects are important and need attention when designing an

IDS. A study [55] put forth the design of a DAS-Collaborative Intrusion Detection Systems

(CIDS) leveraging semi-supervised algorithms in aspects of intrusion detection and false alarm

reduction. The results show effectiveness in detecting intrusion with good accuracy. Another

work [56] entailed a thorough survey focusing on deep neural network approaches and explaining

their contributions and capabilities. In [57] authors used advanced deep learning techniques for

the detection of IoT attacks while network traffic is monitored at Modbus protocol. Packets are

extracted and trained on an ensemble of LSTM (Long Short Term Memory) models and output

is further aggregated and labeled by a decision tree. In [58], deep random neural networks and

multi-layer perceptrons were combined for Industrial Internet of Things (IIoT) attack detection.

The proposed scheme showed good accuracy on the DS20S and UNSW-NB15 datasets.

Table 2.2: Summary of related Studies on deep learning models for IDS in IoT.

Ref Methodology Contributions

[55] DAS-Collaborative IDS leverag-

ing semi-supervised algorithms

for intrusion detection and false

alarm reduction.

Effective in detecting intru-

sion with good accuracy.

[56] Survey focusing on deep neural

network approaches for IDS.

Provides insights into con-

tributions and capabilities

of deep learning techniques.

[57] Uses advanced deep learning

techniques for IoT attack detec-

tion using Modbus protocol.

Utilizes ensemble of LSTM

models and decision tree for

detection.

[58] Combines deep random neural

networks and multi-layer percep-

trons for IIoT attack detection.

Shows good accuracy on

DS20S and UNSW-NB15

datasets.

Continued on next page

19

Table 2.2 – Continued from previous page

Ref Methodology Contributions

[59] Proposes an autonomous

anomaly detection model us-

ing Gated Recurrent Unit (GRU)

for compromised IoT devices.

Achieves a detection rate of

95.6% with no false alarms.

[60] Comprehensive review of machine

learning approaches for IoT net-

work security.

Highlights challenges in

applying machine learning

to resource-constrained IoT

systems.

[61], [62] Addresses computational com-

plexity in deep learning models

for IDS.

Identifies the need for ef-

ficient IDS models consid-

ering computational over-

head.

[63] Investigates SVM-based intrusion

detection system challenges in

handling online detection.

Points out the trade-off be-

tween IDS accuracy and

training time in hybrid

models.

[64] Proposes SAE-SVM hybrid

model for IDS combining ma-

chine learning and deep learning

benefits.

Utilizes deep learning for

feature selection and ma-

chine learning for fast and

accurate detection.

[65] Develops anomaly detection for

edge devices using attention-CNN

and LSTM.

Implements top-k gradient

selection criteria to reduce

communication overhead.

IoT has emerged as a prominent technology that encompasses a wide range of internet-connected

sensors/devices that are geographically dispersed and operate independently. These devices col-

lect information from the physical environment and transmit it to other devices or servers for

analysis and processing. This distributed nature enables many entry points to attacks and

vulnerabilities within the system. Previously, AI-based models have been developed with the

purpose of enhancing security in the IoT. Among these models, IDS-based techniques have been

20

recognized as a critical tool for ensuring network security and safeguarding information systems.

Nevertheless, given the rapid advancements in technology and the changes in market trends,

there exists a need to update IDS to effectively counter new and emerging cyber threats [30].

To address this, the authors in [59] proposed an autonomous anomaly detection model that uti-

lizes Gated Recurrent Unit (GRU) to identify compromised IoT devices. The proposed method

involves training the GRU model at various security gateways, each containing specific device

types, using a distributed learning approach. Under this approach, the GRU models are trained

locally, and their weights are updated using an IoT security service for aggregation. The pro-

posed model achieves a detection rate of 95.6% with no reported false alarms. Additionally, the

communication overhead is managed by training models locally several times prior to sending

updates. The current deep learning techniques used for IDS are often characterized by a high

rate of false positives and a low rate of detection. In a study [60], the authors emphasized the

significance of emerging attacks in IoT network security and provide a comprehensive review of

various machine learning approaches. However, the application of machine learning algorithms

to IoT systems poses significant challenges due to their resource constraints, which produce a

large volume of data. The incorporation of machine or deep learning in IoT systems may result

in computational complexity, as highlighted in the works by [61], [62]. Therefore, investigating

the computational overhead is critical in designing effective IDS models. Incorporating machine

learning with IoT systems leads to more computational complexity. Another review paper [63]

stated that even though a lot of efforts are made in developing a Support Vector Machine

(SVM)-based intrusion detection system, these schemes can not handle an online intrusion de-

tection system that requires periodic retraining. With the improvement in IDS accuracy and

reduction of false positives, SVM schemes require long training and testing time. Considering

the shortcomings of IDS and their types, hybrid models can be developed which benefit from

different intrusion detection methods. However, a trade-off in training time must be considered

while establishing hybrid models.

A hybrid scheme SAE (Sparse Auto Encoder)-SVM is proposed in [64] which combines the

benefits of machine learning and deep learning approaches. To improve processing time and

cost, deep learning methods were used for feature selection. On the other hand, to get fast and

accurate detection of intrusion in the network traffic, machine learning approaches in compat-

ibility with big data processing engines, e.g., Apache Spark, have been used. Time, accuracy,

detection, and cost are the utmost important metrics. The work in [65] developed anomaly de-

21

tection for edge devices in a distributed manner. Authors used the attention mechanism-CNN

(Convolutional Neural Networks) for feature selection and LSTM for the timely detection of

anomalies in an accurate manner. Moreover, the top-k gradient selection criteria are proposed

and implemented to reduce communication overhead to 50% with good model accuracy.

2.4 GNN Modelling in Cyber-space

Table 2.3: Summary of GNN-based NIDS in literature review

Ref Graph Technique Used Impact in NIDS

[66] Modified GraphSage with

edge aggregate function for

NIDS using network flow

graph.

Outperforms non-GNN ap-

proaches in four out of six

datasets.

[67] GNN with message-passing

function for learning from

host connection graphs.

Maintains baseline accuracy on

CIC-IDS2017 dataset even with

altered traffic flows.

[68] Graph-based distributed

anomaly detection scheme

with graph structure built

from flow-level information.

Enables monitoring of the en-

tire Multi-Agent System (MAS)

framework.

[59] Combination of PSI graph

and CNN classifier for IoT

botnet detection.

Effective with accuracy up to 92%

in detecting IoT botnets.

[69] Investigates the vulnerabil-

ity of PSI graph structures

to adversarial attacks.

Calls for robust defensive models

with effective algorithms.

[70] GNN framework for P2P

botnet detection using node

and topological features.

Needs improvement in reducing

false positive rate (FPR).

In all the above articles, conventional machine learning and deep learning techniques are used to

solve different issues of IDS. These techniques lack a network topology. Understanding network

22

topology benefits intrusion detection by providing valuable contextual information about the

structure and relationships within the network. Network topology refers to the arrangement

of devices and connections in a network, including information about nodes (such as routers,

switches, and hosts) and the links between them. By incorporating network topology into in-

trusion detection, analysts can gain insights into the layout of the network, the flow of traffic

between devices, and the normal behavior patterns exhibited by network components. GNN

is a new and popular deep learning sub-field due to its ability to learn on the graph structure

designed on the nature of the problem. Authors in [66] proposed a deep learning-based NIDS

using a newly emerging graph neural network. A network flow graph is generated in which

information is passed on the edges, the original GraphSage is modified by adding an edge ag-

gregate function, and Softmax is applied to predict output for tuning the detection model in

the backward propagation phase. Other model parameters include the ReLU activation func-

tion for non-linear transformation, cross-entropy loss, and ADAM optimizer with a learning

rate of 0.001. The experimental results show that their GraphSage-based NIDS performs bet-

ter than the non-GNN approaches in four out of six datasets. In [67], authors emphasized

designing graph representation of network flow to display meaningful structural flow patterns

for the development of robust and accurate NIDS. They represented network flows and their

relationships within the network in the form of a graph structure. Then, a message-passing

function was proposed to efficiently learn from host connection graphs. The model is evalu-

ated on the CIC-IDS2017 dataset and compared against other machine learning classifiers by

artificially changing flow features (packet size and inter-arrival times) relevant to the attack.

Results show that the proposed GNN model maintains the baseline accuracy as compared to

other models that show degraded performance on altered traffic flows. In [68], a graph-based

distributed anomaly detection scheme was proposed to monitor the entire Multi-Agent System

(MAS) framework and graph structure is built by reconstructing flow-level information into

node-level. Another work in [59] presented a combination of the Population Stability Index

(PSI) graph and CNN classifier for the detection of IoT botnets. Experimental results show

effectiveness with accuracy up to 92%. Whereas, the study in [69] showed that PSI graph

structures are prone to adversarial attacks and need a defensive model designed with robust

and effective algorithms. In [70], authors proposed a framework for Peer-To-Peer (P2P) botnet

detection utilizing node features and topological features. Experimental results show that FPR

is high as 60% and needs improvement. Table 2.3 shows the summary of all the GNN based

23

NIDS in IoT networks.

Graph-structured data is beneficial for developing an effective NIDS because it allows for a more

comprehensive representation of the relationships and dependencies within a network. GNNs

have a benefit over traditional Deep Learning (DL) models when dealing with graph-structured

data, nevertheless, the GNN algorithms can benefit from the graph topology as well as the

features within. Even though GNN algorithms have shown promising results in the detection

of attacks, there is a lack of research on the joint representation of edge and node features in

network graphs with the aim to capture more network traffic relations. Existing research has

used network features at either edge or node level. However, these features have structural

relevance with the overlooked nodes or edges. This aspect of graph data representation has not

been explored fully and there is still room for improving the detection accuracy. Moreover, the

deployment of GNN-based NIDS in IoT networks has not been sufficiently addressed by the

existing research.

2.4.1 Overview of GNN Methods

GNNs have emerged as a powerful class of ML models for analyzing graph-structured data,

including network traffic data in IDS. In this section, we provide a general overview of different

GNN methods and discuss their key features.

Graph Convolutional Networks (GCNs)

GCNs are one of the most widely used GNN architectures. GCNs operate by iteratively aggre-

gating information from neighboring nodes in the graph to update node representations. This

aggregation process is performed using graph convolution operations, which allow GCNs to

capture structural information and learn representations that incorporate both local and global

graph properties [71].

Graph Attention Networks (GATs)

GATs are another popular variant of GNNs that incorporate attention mechanisms to selectively

attend to different parts of the graph during message passing. GATs assign attention weights

to neighboring nodes based on their importance, allowing them to focus on relevant information

while aggregating node features. This attention mechanism enables GATs to capture complex

24

relationships and dependencies within the graph more effectively [72].

GraphSAGE

GraphSAGE is a GNN architecture that operates by sampling and aggregating information from

neighboring nodes in the graph. Unlike traditional GCNs, which operate on the entire graph

structure, GraphSAGE uses a sampling strategy to select a subset of neighboring nodes for

aggregation, making it more scalable and efficient for large graphs. GraphSAGE also allows for

the incorporation of different aggregation functions, such as mean or max pooling, to aggregate

node features [73].

Graph Neural Networks with Recurrent Units (GRUs)

GRUs extend traditional recurrent neural networks (RNNs) to operate on graph-structured

data. GRUs leverage recurrent units to capture temporal dependencies and dynamic changes

in the graph topology over time. By incorporating recurrent units, GRUs can effectively model

sequential data and capture long-range dependencies within the graph.

Overall, these GNN methods offer powerful tools for analyzing and modeling graph-structured

data, including network traffic data in IDS. Each method has its unique features and advantages,

making them suitable for different applications and scenarios. In the subsequent sections, we

will review the application of GNN-based IDS and discuss how these methods are utilized to

improve the detection and mitigation of security threats in network environments.

2.4.2 GNN - Use of Spectral and Spatial Convolutional Methods

GNN-based NIDS has taken a research boom due to the ability to with-hold network topology

and its characteristics in the learning process. However, most of the proposed models rely either

on spatial or spectral graph convolution methods. In contrast, joining both convolution methods

in GNN frameworks can play a crucial role in learning the hidden structural representation of

IoT network traffic.

To briefly state the difference, the spectral-based approaches apply filtering on eigen decompo-

sition of the graph Laplacian matrix, enabling the Fourier transform on the graph structure.

However, this generalization assumes a fixed graph and each node’s features aggregate from

its direct neighborhood [74], [75]. The spatial-based approaches use attribute aggregation and

25

compute node representation directly by propagating information to the neighboring nodes.

Node features are transformed and aggregated by permutation invariant functions, such as

mean, sum, and max functions.

Table 2.4: Summary of Graph Neural Network (GNN) approaches for intrusion detection.

Reference Convolution

Type

Results

[76] Spatial Combination of IP and port num-

ber to represent IoT nodes and

network traffic as edges, using two

GraphSAGE layers. 1%, 3%, and

4% improvement in F1 score on

different datasets.

[77] Spatial Extension of [76] using modi-

fied Deep Graph Infomax (DGI)

and traditional machine learn-

ing algorithms in the Anomal-E

model. Improvement in attack

detection by combining machine

learning approaches with Graph-

SAGE model.

[73] Spatial Extension of E-GraphSAGE with

Residual learning and Graph

Attention Network (GAT). Im-

provement of 0.2% and 0.11%

over baseline models for detecting

malicious traffic.

Continued on next page

26

Table 2.4 – continued from previous page

Ref Convolution

Type

Results

[67] Spatial Host-connection directed graph

structure with GNN model based

on Message Passing Neural Net-

works (MPNN) for NIDS. Im-

provements in attack detection

compared to baseline ML ap-

proaches.

[78] Spectral (GCN) Knowledge graph with GCN

model for automatic botnet de-

tection and mitigation. Effective-

ness seen on datasets with larger

botnet communities.

[79] Spectral (GCN) ST-GCN based DoS attack mit-

igation and detection in SDN.

Model improved accuracy up to

nearly 10% compared to classical

models.

[80] Spectral

(CGCN)

CGCN used for cyberattack de-

tection in smart grids. Improve-

ment of approximately 7% and

9% in detection rate and false

alarm rate compared to other ML

models.

Spatial convolution-based graph learning approaches [81] performed well in intrusion detection

frameworks in the recent past. The convolution is simpler to implement and have produced

state-of-the-art results on edge-level detection. For example, in [76], a combination of IP and

port number was used to represent IoT nodes and network traffic to represent edges, whereas

the graph model consisted of two GraphSAGE layers. Results were generated on four of the

27

benchmark datasets, and F1 score was compared with state-of-the-art Machine Learning (ML)

approaches. Results showed 1%, 3% and 4% improvement in performance on different datasets.

In [77], authors extended the model in [76] to include modified Deep Graph Infomax (DGI) and

traditional machine learning algorithms comprising of PCA-based anomaly detection (princi-

pal component analysis), IF (Isolation Forest), clustering-based local outlier factor (CBLOF),

and histogram-based outlier score (HBOS) to design the Anomal-E model. The graph struc-

ture was made by turning IP-Port# combination into nodes and flows into edges. Results

were produced on two datasets, and a comparison was presented, entailing the importance of

combining machine learning approaches with the GNN model for attack detection. Results

showed improvement when machine learning algorithms were used in addition to the Graph-

SAGE model. Another extension of E-GraphSAGE was proposed in [73] that explored more

alternatives of GNN. Residual learning was combined with E-GraphSAGE and Graph Atten-

tion Network (GAT), and two separate models were proposed for detecting malicious traffic.

IP address and port numbers were combined to identify nodes, and communication was iden-

tified as edges. Experiments were performed on four datasets, and the results of the modified

E-GraphSAGE algorithm showed 0.2% improvement, and ResGAT showed 0.11% improvement

over the baseline models. The work in [67] presented a host-connection directed graph structure

to exhibit the attack patterns and employs the GNN model based on standard Message Passing

Neural Networks (MPNN) to develop an NIDS. The experiment involved testing on one of the

benchmark datasets of NIDS and showed improvements in detecting attacks as compared to

baseline ML approaches in NIDS.

Graph Convolutional Neural Networks (GCN) [71] is the most popular spectral graph convo-

lution method and has been widely used in the detection of attacks. The article [78] explored

its potential for automatic botnet detection and mitigation. The Denial of Service (DoS) at-

tack detection framework consisted of a knowledge graph with nodes representing botnets, a

12-layered GCN model, and node classification. The knowledge graph construction from the

datasets has not been described in this paper, whereas results showed that this approach is

more data-driven as effectiveness was seen on datasets with larger botnet communities only. A

Spatial-Temporal Graph Convolutional Network (ST-GCN) based DoS attack mitigation, and

detection in Software-Defined Networking (SDN) strategy was proposed in [79] that depicted

SDN switch topology and captured spatial and temporal characteristics. SDN switches were

turned into nodes with temporal features such as states of the switches, and communication

28

between switches was turned into edges. The GCN model was used to perform node classifi-

cation. Results showed that the model improved the accuracy up to nearly 10%, as compared

to classical models. Another graph embedding approach in [80] was used for cyberattack de-

tection in smart grids using CGCN (Chebyshev Graph Convolutional Network). A smart grid

graph was constructed by turning bus voltages into nodes and transformers into edges in an

undirected and weighted graph. The graph model consisted of three CGCN layers and one

deep layer. Results were generated on a synthetic dataset and showed approximately 7% and

9% improvement in detection rate and false alarm rate, compared to other ML models.

While the methods reviewed in Table 2.4 showcase promising advancements in intrusion de-

tection using Graph Neural Network (GNN) approaches, there are several downsides worth

considering. Firstly, many of these methods rely heavily on the availability of labeled training

data, which can be challenging to obtain for real-world network environments. Additionally,

the effectiveness of these methods may be limited by the quality and representativeness of the

training data, leading to potential biases or inaccuracies in the learned models. Moreover,

some GNN-based IDS approaches may suffer from scalability issues when applied to large-scale

networks, as the computational and memory requirements of GNN algorithms can increase sig-

nificantly with the size of the network graph. Furthermore, the interpretability of GNN-based

IDS models may be limited, making it difficult for security analysts to understand and interpret

the decisions made by the model. Finally, the deployment and operationalization of GNN-based

IDS approaches in practical network environments may pose logistical challenges, including in-

tegration with existing security infrastructure and compliance with regulatory requirements.

Overall, while GNN-based IDS approaches offer promising capabilities for enhancing network

security, addressing these downsides will be essential for their successful adoption and deploy-

ment in real-world scenarios.

2.4.3 GNN - Sequential Network Analysis

29

Table 2.5: Summary of GNN-based Approaches for Intrusion Detection and Botnet Detection

Ref Methodology Purpose

[70] Peer-To-Peer

(P2P) Botnet

Detection -

GNN with node

and topological

features

High False Positive Rate (FPR)

indicates a need for improved per-

formance.

[82] Sequential

Network Traf-

fic Analysis

- Pre-trained

CNN and deep

autoencoder

Used for feature extraction and

capturing temporal changes.

[83] Sequential

Network Traf-

fic Analysis -

LSTM and FCN

Designed for multi-classification

of malicious connections in intru-

sion datasets.

[84] Sequential

Network Traf-

fic Analysis -

LSTM-CNN-

based method

Introduced for insider threat de-

tection with fixed-sized feature

matrices.

[85] Sequential Net-

work Traffic

Analysis - Gated

Recurrent Unit

(GRU-BWFA)

Designed for effective detection

of Distributed Denial of Service

(DDoS) attacks.

30

Ref Methodology Purpose

[78] Botnet Detec-

tion - End-to-

end data-driven

GNN approach

Utilized for detecting Peer-To-

Peer (P2P) botnets with diverse

communication patterns.

[86] Botnet De-

tection - BD-

GNNExplainer

Proposed for evaluating the trust-

worthiness of GNN-based botnet

detection models.

[87] Botnet Detec-

tion - GNN

based model

with GNNEx-

plainer

Overcame over-smoothing issue

and enhanced network forensics

for botnet detection.

In recent past, various Graph Neural Network (GNN) architectures have been employed for

network-related tasks, particularly in the context of Network Intrusion Detection (IDS) and

anomaly detection. In [70], the authors propose a Peer-To-Peer (P2P) botnet detection frame-

work utilizing node and topological features. However, the experimental results show a high

False Positive Rate (FPR), indicating a need for improvement in the model’s performance.

Overall, these studies demonstrate the potential of GNN-based approaches in network Traf-

fic analysis for intrusion detection. While they show promising results, challenges related to

sequential attacks, multi classification need further exploration.

The existing literature consists of machine and deep learning approaches for the sequential

network traffic analysis. In [82], a pre-trained CNN model is employed to extract features from

processed data streams. An optimized deep autoencoder (DAE) is used to capture temporal

changes in the surveillance stream’s actions. They then trained their model using a quadratic

SVM to classify human activities. In another study [83], Recurrent neural networks (RNN)

is used to learn from the previous time-steps in the datasets. A deep learning model based

on LSTM (Long Short-Term Memory) and FCN (Fully Connected Network) is designed for a

multi-classification of malicious connections in intrusion datasets.

In [88], Gray Wolves Optimization (GWO) algorithm in conjunction with a wrapper feature

31

selection technique is used to optimize the binary feature space. They introduced time-variant

transfer function that adapts GWO for enhanced botnet detection accuracy in IoT environ-

ments. A novel LSTM-CNN-based method is introduced in [84] for insider threat detection.

The method involves initial extraction of temporal behavioral features by feeding single-day

user action sequences into the LSTM model. Subsequently, the extracted features are trans-

formed into fixed-sized feature matrices, which are then used in a CNN-based classification

model for the final detection of insider threats. In [85], a Gated Recurrent Unit based on

Bidirectional Weighted Feature Averaging (GRU-BWFA) classifier is designed for effectively

detecting Distributed Denial of Service (DDoS) attacks and capturing the time series events.

Recent papers have explored the integration of GNNs in botnet detection tasks due to their

ability to capture botnet topology. In this study [78], an end-to-end data-driven approach is

utilizing GNNs to detect Peer-To-Peer (P2P) botnets. To comprehensively evaluate the auto-

mated detection method, synthetic or real botnet topologies are overlaid with diverse commu-

nication patterns on large-scale real background traffic graphs, generating datasets for analysis.

In [86], a method BD-GNNExplainer (GNN-based botnet detection) is proposed to evaluate the

trustworthiness of GNN-based botnet detection models. BD-GNNExplainer extracts the most

contributing data to the GNN’s decision, quantifying a score that expresses interpretability, ul-

timately guiding model optimization and providing a guideline to enhance the understandability

of the botnet detection methodology. In another paper [87], a GNN based botnet detection

model is proposed to overcome over-smoothing issue and enhance network forensics. Further-

more, GNNExplainer and saliency maps are integrated to identify suspicious network flows

and botnet nodes, enhancing the transparency and interpretability of the detection process for

automatic network forensics – features that are lacking in existing botnet detection literature.

The related work in botnet detection using GNNs has demonstrated notable advancements

in capturing graph patterns and improving detection accuracy. However, a significant gap in

the existing literature lies in the lack of exploration regarding the utilization of Gated Graph

Convolution neural network for detecting botnets in network traffic. It is a powerful variant of

GNN that excels in capturing the sequential nature of botnet activities, which is essential for

detecting dynamic and evolving botnet behaviors in real-time network traffic. This specific gap

in the research indicates an unexplored avenue to leverage the sequential information inherent

in botnet activities through Gated GNN based models. By modelling a Gated GNN based

framework for the detection of botnet attacks leads to a more robust and efficient methods for

32

combating evolving botnet threats in the dynamic landscape of IoT networks. The methods

reviewed in this section for intrusion detection and botnet detection using GNN approaches

exhibit several potential downsides. Firstly, some of these methods may suffer from a high

false positive rate (FPR), as observed in the Peer-To-Peer (P2P) botnet detection approach

[70]. This indicates a need for improved performance to reduce false alarms and enhance the

accuracy of detection. Secondly, scalability may be a concern for some methods, particularly

those that rely on computationally intensive GNN architectures or large-scale network datasets.

As the size and complexity of network environments increase, scalability becomes increasingly

important to ensure efficient and effective detection of security threats.

2.5 Advancing Intrusion Detection through GNNs

Traditionally, NIDSs using ML lack topological information critical for attack determination.

Recent studies applying GNNs in NIDSs offer basic graph structures capturing partial node com-

munication. In contrast, our proposed GNN-based NIDS improves upon existing approaches by

processing multi-edges with multi-dimensional features in the graph structure. Our Multigraph

GNN model combines spectral and spatial convolution methods to address multiple edges and

features, enhancing network representation.

Moreover, we present a comprehensive GNN-based NIDS model that is capable of capturing

relations in the network graph and combines both the node and edge features to pick out

abnormal behavior in the traffic. Our approach offers to minimize multiple attack vectors by

including node as well as edge information to capture the complex relationship and nuances of

the IoT network traffic. We use IP address and Port number combination to represent the IoT

sessions as nodes, and network flows to represent the exchange of communication as edges. The

node features represent the application-level information specific to packet content, whereas,

edge features represent the network-level information. In this way, complete information is

defined on the graph structure. As a result, our proposed NE-GConv model combats and

mitigates multiple attack vectors and is sensitive to changes in the application and network

layer as compared to the existing research. Moreover, we also investigate the computational

requirement of our NIDS and its performance in the resource constraint environment. To keep

the balance between the model performance and the computational needs, we keep the model

design simple containing the least number of hidden units and selected features. In this way,

33

our research develops an effective and novel method by combining node and edge features while

suppressing the design complexity for the detection of anomalous behavior in IoT networks.

2.6 Chapter Conclusion

This chapter reviewed literature related to this thesis and laid a solid foundation for the follow-

ing chapters. To be specific, this chapter summarized and compared the latest research progress

about DL models, i.e., attack defense models in network traffic, their overall performance while

focusing computational overhead and false alarm rates, GNN modelling in cyberspace, explo-

ration of graph structures implied and type of convolutional methods used in the graph models.

This chapter also identified the gap between research targets and existing researches and pointed

out key research points of this thesis.

34

Chapter 3

NE-GConv: A Lightweight Node Edge

Graph Convolutional Network for

Intrusion Detection

3.1 Introduction

With the hype in Artificial Intelligence (AI), a lot of research analysis has come forth in recent

years aiming to improve the detection performance of the machine and deep learning models in

new attack types [3], [89]. However, fewer studies have focused on the deployment challenges

of IDS in IoT systems. Deep learning models, in general, are complex in nature and require

significant resources in terms of computational cost and memory. IoT systems offer a limit

to these characteristics. Until recently and to the best of our knowledge, no clear model has

been laid out to determine the optimal threshold and trade-off of accuracy and implementation

needs of IDS for resource constraint devices.

In this chapter, we propose a novel GNN-based NIDS framework that offers a larger attack

surface management and a lightweight model. In view of large attack surface management, we

incorporate a graph structure that is equipped with both the node and edge features, thereby,

making the graph model sensitive to the changes at both levels. On the other hand, we focus on

keeping the overall framework lightweight by reducing dimensionality in the feature selection

unit and designing a shallow two-layer graph convolutional model, thereby, reducing the overall

computational complexity and paving way for the deployment in resource-constraint networks.

35

Our framework is capable of improving the detection of attacks by exploiting the structural

characteristics of attacks with high accuracy and reduced complexity. The key contributions of

this research are as follows:

• We present a new graph structure to capture network traffic relations in a comprehensive

way, where nodes are referred as hosts and edges as the communication between nodes.

The network data features have a structural association with either the nodes or the

edges. We refer to network packet content/application level features as node features and

network flows as edge features, respectively. This captures the traffic characteristics of

hosts and flow connections within the network graph structure.

• We propose a two-layer Node Edge-Graph Convolutional (NE-GConv) model which is

sensitive to the intrusions in the node and edge features. A new aggregation function

is defined to learn, aggregate, and generalize from node and edge features (payload and

flows) in the message-passing phase of NE-GConv.

• We develop a lightweight IDS framework for meeting the deployment needs of resource-

constraint devices. The IDS framework employs the Recursive Feature Elimination (RFE)

algorithm to select the minimum set of input features for the NE-GConv and implements

an efficient two-layer architecture in the NE-GConv.

In the end, we give a detailed analysis of our proposed model by comparing it with several

other state-of-the-art GNN models on the datasets evaluating accuracy, precision, recall, F1,

AUROC, False Positive Rate (FPR), model size, and running time. Until recently and to

the best of our knowledge, this is the first work that investigates the computing resources

required for GNN-based NIDS by testing the implementation in the Raspberry Pi device. The

experimental results demonstrate the effectiveness of the proposed approach.

The research questions answered in this chapter are as follows.

• How does incorporating both node and edge features in a graph structure improve the

performance of IDS in IoT systems?

• What impact does reducing dimensionality and employing a shallow two-layer graph

convolutional model have on the computational complexity and deployment feasibility of

IDS in resource-constrained networks?

• How does the proposed NE-GConv model compare with existing GNN models in terms

36

of detection accuracy, precision, recall, F1-score, AUROC, FPR, model size, and running

time?

The rest of the chapter is organized as follows. Section 5.3 illustrates the design of our proposed

framework and implementation of the layered architecture of the proposed model. Section 4.3

presents experimental results and a comparative analysis of the model.

3.2 The Proposed IDS Framework.

Figure 3.1: An overview of the proposed IDS framework that consists of three main components,

i.e., data preparation, graph formation, and the proposed model.

In this section, we present the design of our graph-powered IDS that consists of three main

components: Data preparation, Graph formation, and Proposed model as given in Fig. 3.1.

In addition, we introduce the layered architecture of the proposed NE-GConv model in detail.

Table. 5.1 summarizes the notations used in the rest of the chapter.

3.2.1 Overview of the Graph-powered IDS

Graph-powered IDS combines NIDS and DPI (Deep Packet Inspection) on the NE-GConv

algorithm. It monitors the host- and flow- behavior and classifies the network flows into normal

or malicious. Our framework consists of the following components:

1. Data pre-processing unit: It is responsible for pre-processing the raw dataset before it is

sent to the graph-forming unit. This unit performs label encoding and standardization

of categorical and numerical features to better adapt to training. It is further divided

37

Notation Definition

Aϵ Featured adjacency vector of edge

E Set of edges

|E| Number of edges

ϵij The edge between nodes vi and vj

Fv The node feature matrix

FE The edge feature matrix

fvi Feature vector of node vi

fϵij Feature vector of the edge ϵij

G The graph

h(·) Input to output transformation function

K Number of classes

L Cross-entropy loss

NG(vi) Neighborhood of node vi

|V| Number of nodes

V Set of nodes

WGCN The hidden weight matrix

X Model input set of data

X FE The edge feature matrix in train/test set

X Fv The node feature matrix in the train/test set

Y The ground truth label

Ỹ The predicted output

Table 3.1: Notations used in the chapter and their definitions.

into three steps. Step 1: Data cleaning: Data is cleaned by removing nulls, nans, and

replacing missing values. Step 2: Categorical feature mapping: The categorical features

such as protocol, service, and state are encoded using label encoding. Step 3: Numerical

feature mapping: All features are then passed through standard scalar for normalization.

This preserves the relative importance of each feature, and the algorithm is less likely to

overfit and be biased towards features with significant values.

38

2. Graph forming unit: This unit is responsible for the formation of a graph structure G

that can carry node features Fv and flow features FE . This enables the integration of host

and network IDS in the model design.

3. Feature selection unit: This unit performs the feature selection task by filtering out the

best features from the raw dataset using the RFE technique [90].

4. Training unit: This unit trains the proposed model based on the graph neural net-

work into identifying anomalies. Considering that there are m number of observations

(x1, y1), · · · , (xm, ym) for training a network intrusion detection model. The input set is

referred as X that includes network node features X Fv and the network edge features X FE .

The corresponding labels to input train set X FE for edge classification are: Y ∈ Rm,1.

Consider an input sample xi ∈ Rb from train set X FE where i is i-th input observation and

b is the dimension of edge features, then the label is termed as yi ∈ R1. For K number

of classes, the model is optimized by reducing the loss function L.

L = − 1

m

m∑
i=1

K∑
k=1

Yi,k log Ỹi,k, (3.1)

where, m is the total number of observations, Yi,k is 1 if observation i is in class k and 0

otherwise, Ỹi,k is the predicted probability that observation i is in class k and L is cross

entropy loss. We use the supervised learning method to train the model and label each

input as normal or malicious. Yk and Ỹk are closely monitored for optimization during

the training phase and loss is reduced.

5. Evaluating unit: This unit is responsible for testing and evaluation of the proposed trained

model. For n test examples, model predictions Ỹ are given by

Ỹ = h(G),

Ỹ = h(X Fv ,Aϵ),
(3.2)

where h(·) is the model transformation function that maps the input X Fv and Aϵ to Ỹ ,

X Fv is node feature matrix and Aϵ is featured adjacency matrix in the test set.

3.2.2 Graph Formation

We propose a hybrid model that integrates host features and flow features into the IDS frame-

work by defining a graph structure capable of handling both node and edge characteristics.

39

Network dataset is mapped into a directed graph G consisting of the set of nodes V , the set

of edges E , node features Fv and edge features FE . Graph nodes V are the communication

endpoints/hosts referring to the application layer processes, and node features Fv are the host-

specific observations, e.g., payload fields. Edges E are the links between two endpoints directed

from the source to the target node. The edge features FE are selected from flow fields, e.g.,

duration, packet count, and arrival time. The graph structure G is crucial to the analysis of

network and host intrusions. The closer the graph structure is to the real network, the better

will be the model’s ability to identify intrusions. Since an attack may take place at the host

and network level, it is critical to include both edge and node features for the identification of

anomalies.

Given a network traffic dataset, a graph can be described as G (V , E , Fv, FE), where V is the set

of nodes and E is the set of edges in the graph G. Let vi denote the i-th node in the graph. Fv

is the |V| × a-dimensional node feature matrix; Fv ∈ R|V|,a, where | · | denotes cardinality and

a is the number of features of a node. Then, the i-th row of Fv is denoted by fvi which is an

a-dimensional feature vector of node vi; fvi = [f vi
1 , · · · , f vi

a].

Figure 3.2: Step by step graph structure formation.

The edge from node vi to node vj is denoted by εij such that εij ∈ E . Each edge has a b-

dimensional vector that defines the nature of the link. The feature vector of edge εij is denoted

by fεij = [f
εij
1 , · · · , f εij

b]. FE ∈ R|E|,b is the edge feature matrix where |E| is the number of edges

in the graph and b is the number of features of an edge. The featured adjacency matrix of

graph G is a |V| × |V|-dimensional matrix termed as Aε. Aεij = 0, if there is no edge between

vi and vj; εij /∈ E and 0 is a b-dimensional vector of all zeros whereas Aεij = fεij , if εij ∈ E . For

40

any node vi, its neighborhood can be denoted by NG(vi) = {vj|vj ∈ V and εij ∈ E}. The edge

and node features are extracted from the dataset and Aε is defined in the graph formation step

as given in Fig. 3.2. In the graph forming unit, graph nodes are built by pairing IP addresses

and Port numbers to represent hosts. Edges are the connections from source to target nodes.

Next, graph adjacency matrix Aε is built based on the link of nodes with each other. Aε is a

square matrix in which rows and columns refer to the nodes in the graph and the matrix values

represent the nature of connection in form of edge feature, e.g.,fεij∀εij ∈ E . The first column of

the adjacency matrix is the source node and the second is the target node to which an edge is

present, e.g., each row contains (Source-node, Target-node, [Edge-features]). We define

Fv as payload-related fields and FE as flow-related fields from the dataset.

3.2.3 The NE-GConv Model

The proposed model (NE-GConv) is an improvement of the GConv model [71] that takes the

host and network features in a two-layer GConv model and classifies edges into normal and

malicious. The graph knowledge is built in the graph formation step and is sent into the NE-

GConv model. The layered architecture of the proposed NE-GConv model is given in Fig. 3.3.

Figure 3.3: The layered architecture of the model

The layered architecture takes the form:

h(Fv,Aε) = (Aε ReLU(D(Aε FvW
GCN(1)))WGCN(2)), (3.3)

41

whereWGCN(1) andWGCN(2) are the weight matrices of hidden layers 1 and 2. D is the dropout

function [91] and ReLU is the activation function [92] in the model. WGCN(1)∈ Ra,H where a

is the dimension of node features and H is the dimension of the first hidden layer. Similarly,

WGCN(2)∈ RH,O where O is the dimension of the second hidden layer which is also the output

layer in the proposed model. (3.3) summarises a two-layer NE-GConv model where Fv and Aϵ
are fed as model inputs. Consider x = Aϵ FvWGCN(1), then the dropout function D can be

expressed as d ◦ x such that d ∈ {0, 1}a,H , and ◦ is element-wise product. d ◦ x will drop x

with a probability p in such a way that its dimensions are retained. The ReLU function on

any matrix x can be defined as below:

ReLU(x) = max(0, x)

i.e.,

ReLU(xij) = max(0, xij) =

 xij, if xij > 0

0, if xij < 0.

(3.4)

The input to NE-GConv, as shown in Algo. 1, consists of a graph G with |V| number of nodes,

|E| number of edges, the feature vectors Fv, FE . The feature vectors are passed to initialize

embeddings as given in step 1 and 2 of Algo. 1. Essentially, a graph neural network operates

on the message-propagation/passing mechanism. Typically, the message-passing function only

considers node features for aggregation. It is essential to modify the standard GConv model

to include edge features to achieve a co-effect of node and edge features in the model. The

improvement in the message-passing function is shown in step 4. Fvi is the node feature matrix

of central node vi, Fvj is the neighboring node feature matrix and Fϵij is edge features between

node vi and vj, then, the aggregation function AGG is given as:

AGG(Fvi , Fvj , Fϵij) =
∑

vj∈NG(vi)
⋃
(vi)

Fϵij ◦ Fvj , (3.5)

where, ◦ is element-wise multiplication. A key difference is treating self-node features, neigh-

boring node features and the corresponding edge features together for getting a co-effect of

all the features in the detection of attacks. With hvi
0 denoting node features of node vi, hvj

0

denoting neighboring node features and zij
0 denoting edge features from node vi to node vj,

aggregated embeddings created are described in step 4. In step 5, node embeddings h̃1vi of node

vi at layer 1 is calculated by applying the model’s trainable parameters W 1 and b1 on the ag-

gregated message. The drop-out technique is applied to regularise and make the overall model

42

Algorithm 1: NE-GConv Algorithm
Input:

Graph G (V, E ,Fv ,FE)

Node features Fv

Edge features FE

Output:

Edge embedding zij ∀ϵij ∈ E ,

▷Initialization

1 h0vi
← Fvi

: ∀vj ∈ NG(vi),

2 z0ij ← Fϵij : ∀ϵij ∈ E ,

▷Node Embedding in Layer 1

3 for ∀vi ∈ V do

4 h̃1vi
← AGG

(
h0vi

, h0vj
, z0ij : ∀vj ∈ NG(vi)

)
,

5 h̃1vi
← D(W 1 × h̃1vi

+ b1),

6 h1vi
← ReLU(h̃1vi

),

7 z1i ← h1vi
,

▷Node Embedding in Layer 2

8 for ∀vi ∈ V do

9 h̃2vi
← AGG

(
h1vi

, h1vj
, z1ij : ∀vj ∈ NG(vi)

)
,

10 h2vi
← ReLU(W 2 × h̃2vi

+ b2),

11 z2i ← h2vi
,

▷Edge Embedding

12 for ϵij ∈ E do

13 zij = ψ
(
concat(z1i , z

1
j) + concat(z2i , z

2
j)
)

return zij

less likely to overfit training data. The node embeddings are updated by passing through the

ReLU function, as shown in step 6 and are saved in a separate variable in step 7. We repeat the

same steps for layer 2 as given in 8, 9, 10, and 11, except for the use of the drop-out function.

To extract edge features from node embedding, we perform column-wise concatenation of z1i and

z2i . To optimize the model and deal with over-smoothing issue [93] in graph operations, initial

node embedding z1i is added in the final embedding z2i as given in steps 12 and 13. Our aim is

to keep computational complexity low. Therefore, the final output of the algorithm is in the

shape of edge classification rather a packet-level classification. Edge classification is performed

by passing the sum of initial and final embedding through ψ layer as given in (3.6) and steps

43

12 and 13 of the algorithm. We represent wψ as weight, concat(z1i , z
1
j) + concat(zi

2, zj
2) as the

input and bψ as the bias, then the linear feed forward layer ψ becomes

ψ(concat(z1i , z
1
j) + concat(zi

2, zj
2)) =

wψ × (concat(z1i , z
1
j) + concat(zi

2, zj
2)) + bψ,

(3.6)

Key differences to the original GConv [91] algorithm are in regards to the algorithm input,

message aggregation, update functions, and output. Our algorithm offers the ability to include

flow features and packet content-related features for deep inspection. The algorithm has 2

hidden layers. At each layer, node embeddings are updated by aggregating features. Finally,

the edge information is predicted by applying ψ− transformation on each updated edge. For

supervised binary classification, we then evaluate the cross-entropy error over all the labeled

examples.

3.3 Experimental Results

3.3.1 Dataset

The UNSW-NB15 [94] is an IDS dataset generated in the Cyber Range Lab of the Australian

Centre for Cyber Security in 2015 that overcomes the shortcomings in the IDS benchmark

datasets by including emerging attacks and IoT traffic. The dataset has modern attacks and

new patterns of normal traffic and is quite suitable for NIDS evaluation settings [95]. The

total number of records in the dataset are given in Table 3.2 and are stored in four CSV files,

namely, UNSW-NB15 1.csv, UNSW-NB15 2.csv, UNSW-NB15 3.csv, and UNSW-NB15 4.csv.

It contains 49 attributes, including a label category to identify traffic as normal and malicious.

The dataset includes a variety of packet-based features and flow-based features. The attributes

are further categorized into five main categories: Flow features (1-5), Basic features (6-18),

Content features (19-26), Time features (27-35), Additional features (36-47), and labeled fea-

tures (48-49). In this experiment, we use flow features (1-5) to generate a graph structure,

Basic features (6-18) to represent edge features, and Content features (19-26) to represent node

features. This, in turn, increases the ability of the proposed model to manage attack detection

from several attack vectors at once. The packet-based features assist in the examination of the

payload, whereas flow-based features assist in the examination of packet flow and make the

classification analysis computationally less expensive.

44

Dataset Total Data Normal Data Malicious Data

UNSW-NB15 [94] 2539431 2218211 321220

Table 3.2: Details of the UNSW-NB15 dataset in terms of the dataset size, the number of

malicious and normal data entries.

3.3.2 The Experimental Setup

To test and verify the effectiveness of our experiment on the joint use of node and edge fea-

tures in NIDS we use supervised classification. In all of these experiments, nodes correspond

to application layer processes/hosts and edges to (directed) network flow. Node features are

the elements of packet content that contribute to understanding the malicious possibilities as-

sociated with payload, and edge features correspond to the elements of network connection

attributes. All the experiments and data acquisition steps are performed on Google Colab Pro

with PyTorch 1.13.1 and Intel(R) Xeon(R) CPU @ 2.20GHz. Python libraries, e.g., Pandas,

cikit-learn, imblearn, NetworkX, and PyTorch-Geometric (PyG), are used. For the imple-

mentation of different models i.e., GConv [71], GraphSAGE [96], GatedGraphConv [97] and

EGConv [98], PyG’s in-built functions are used.

Datasets Train dataset Test dataset Training Nodes Training Edges Testing Nodes Testing Edges Ratio

UNSW-NB15 [94] 1777601 761830 519049 601787 519425 602224 7:3

Table 3.3: Details of training and testing datasets for a 70:30 ratio.

3.3.3 Experiment Steps and Metrics

Several typical experiments are conducted to evaluate the performance and complexity of GNN

in the development of NIDS using the UNSW-NB15 dataset. We perform the following test

steps:

• Perform feature selection using RFE on the datasets and find out the best possible min-

imum set of features aiming to capture maximum relevance from the dataset in feature

selection.

• Form an IP: Port number paired graph structure for network traffic scenario, design a

two-layered NE-GConv model as explained in Section 3.3.

45

• Pass in the adjacency matrix, node and edge features to NE-GConv model, and train and

evaluate on the test dataset.

• Design node classifiers from state-of-the-art GNN models e.g., GraphSAGE, EGConv

and GatedGraphConv keeping the same graph structure, layer architecture, and hyper-

parameters, train and evaluate as is done for NE-GConv.

Subsequently, we analyze the comparison of the other GNN models with the proposed NE-

GConv model. The following metrics are considered for the performance evaluation of the

proposed approach:

1. Accuracy (ACC): This is a measure of correctly classified observations out of all data

observations and is given by Tp+Tn
Tp+Fp+Tn+Fn

. Here, Tp is true positive, Tn is true negative,

Fp is false positive, and Fn is false negative.

2. Precision: This is a measure of how precise a model is in correctly predicting positives

(Tp) out of all the predicted positives (Tp + Fp), and is given by Tp
Tp+Fp

.

3. F1-Score: This is a function of precision and recall and is used where there is imbalanced

data. It is given by (2× Precision×Recall
Precision+Recall

).

4. Recall: This is a measure of how many true positives a model predicts out of all the

actual positives, and is given by Tp
Tp+Fn

.

5. False Alarm Rate (FAR): This is a measure of how many normal data points are

classified as malicious and is given by Fp

Tn+Fp
.

6. Area Under the Receiver Operating Characteristics (AUROC): This is a measure

of the rank correlation between predictions and actual labels roc. The higher the score,

the better the model’s ability to classify positive and negative class points. It summarizes

the precision-recall curve.

7. Training Time: The training time is a measure of how quickly the model is capable to

distinguish classes in time. The lesser the training time, the faster the model learns.

8. Testing Time: The lesser the testing time, the faster the model picks out the anomalies.

9. Memory: This is the measure of memory consumption of a model in bytes.

10. FPR: This is a measure of false alarms/positives given by the model.

46

3.3.4 Results

The experiments are carried out by identifying the best set of edge features. The dataset has

8 node features and 13 edge features. The node features consist of payload related fields such

as: Source TCP window advertisement (swin): This feature indicates the window size

advertised by the source TCP during the communication session. While not directly related

to payload content, the window size can impact the flow and transmission of payload data

by influencing the rate at which data is sent and acknowledged. Destination TCP window

advertisement (dwin): Similar to swin, this feature represents the window size advertised by

the destination TCP. It affects the flow and transmission of payload data by determining the

amount of data that can be sent without acknowledgment from the destination. Source TCP

sequence number (stcpb): This feature denotes the sequence number assigned to the packets

transmitted by the source TCP. While not directly encoding payload content, sequence num-

bers are crucial for reconstructing the order of payload data at the receiver end. Destination

TCP sequence number (dtcpb): Analogous to stcpb, dtcpb represents the sequence num-

ber assigned to packets by the destination TCP. It assists in reconstructing the payload data

and ensuring its integrity during transmission. Mean of the flow packet size transmitted

by the source (smeansz): This feature calculates the average packet size transmitted by the

source node within the flow. While not directly encoding payload content, variations in packet

size can provide insights into the characteristics and nature of the payload data being transmit-

ted. Mean of the flow packet size transmitted by the destination (dmeansz): Similar

to smeansz, dmeansz calculates the average packet size transmitted by the destination node

within the flow. It helps in understanding the characteristics of the payload data received by

the destination node. Depth into the connection of HTTP request/response transac-

tion (trans depth): This feature measures the depth or level of interaction within an HTTP

request/response transaction. While not directly encoding payload content, the transaction

depth can indicate the complexity and nature of the payload data being exchanged.Content

size of the data transferred from the server’s HTTP service (res bdy len): This

feature quantifies the size of the content transferred from the server’s HTTP service in the

payload. It directly relates to the payload content and provides insights into the volume and

nature of the data being exchanged between the client and server. These features collectively

provide valuable information about the characteristics, behavior, and content of the payload

data exchanged between network nodes during communication sessions. While some features

47

directly encode payload content, others offer insights into the flow, structure, and context of

the payload data, contributing to the overall understanding and analysis of network traffic.

To match the dimensions of node features and for the best results, the 8 best features are

selected from the edge features. The experiments are run to analyze the performance metrics

of the proposed model on the selected features. The best features according to RFE have a

ranking of one as shown in Fig. 3.4.

Figure 3.4: RFE Feature Ranking.

A Comparison Study with Varying Train:Test Ratios

All graph models are tested against varying train:test ratios to investigate the stability and

generalizability of the proposed model. The GNN models are tested as node classifiers and are

compared with the proposed NE-GConv model. From the results in Table 3.4, it is clear that

all graph models perform well under varying train:test ratios. The best results are achieved

at the 70:30 train:test ratio across most of the metrics, at which, FPR reduces to 2.36% and

accuracy reaches 97.64%. The proposed NE-GConv improves performance up to 2%−4% than

GraphSAGE in accuracy, precision, recall and F1 scores, whereas, FPR is reduced to almost

half at varying train:test ratios. The high performance of NE-GConv as given in Table 3.4 on

the test data in all the metrics confirms that our model is making accurate predictions while

suppressing false positives and false negatives. High F1 and AUROC scores across varying

ratios confirm the model’s ability to classify positives from negatives well.

We conducted an in-depth analysis of the computational complexity of various graph mod-

els, focusing on training time, testing time, and model size, as detailed in Table 3.5. The

results demonstrate that NE-GConv exhibits superior performance metrics despite its slightly

longer training and testing times compared to GraphSAGE and EGConv. Notably, NE-GConv

48

achieves this while maintaining the smallest model size among the architectures evaluated. The

increased training and testing times observed with NE-GConv can be attributed to its unique

capability to learn from both edge and node features during the training process, whereas other

graph models exclusively utilize node features. This additional computational overhead asso-

ciated with NE-GConv is expected given its broader feature set. However, it is important to

emphasize that despite these modest increases in time, NE-GConv remains significantly faster

than GatedGraphConv while still delivering robust performance in anomaly detection tasks.

These findings underscore the efficiency and effectiveness of NE-GConv as a promising model

for various applications, particularly those requiring compact model sizes and competitive com-

putational performance.

Graph Model Ratio
Training

ACC%

Testing

ACC%
Precision% Recall% F1% AUROC FPR

NE-GConv

60:40 98.55 96.70 97.30 96.70 96.92 0.91 0.0330

70:30 98.75 97.64 97.93 97.64 97.76 0.88 0.0236

80:20 98.63 96.52 96.36 96.52 96.42 0.84 0.0348

GraphSAGE

60:40 93.61 95.34 95.33 95.34 95.32 0.94 0.0466

70:30 94.40 95.17 95.23 95.18 95.19 0.95 0.0482

80:20 93.31 94.51 94.52 94.52 94.51 0.94 0.0548

EGConv

60:40 89.28 85.44 87.95 85.45 84.27 0.79 0.1455

70:30 88.19 91.83 92.68 91.84 91.61 0.89 0.0861

80:20 83.03 62.17 72.00 62.17 52.59 0.56 0.3783

GatedGraphConv

60:40 97.09 93.40 93.59 93.40 93.28 0.91 0.0660

70:30 96.98 95.37 95.51 95.38 95.40 0.96 0.0462

80:20 97.31 96.01 96.09 96.02 96.03 0.96 0.0398

Table 3.4: The performance of NE-GConv and other baseline GNN models on the UNSW-NB15

dataset with different train:test ratios.

NE-GConv Performance with Varying Attack Ratios

The attack ratio in UNSW-NB15 dataset is 7:1, where, 7 refers to the proportion of normal

data entries and 1 to the malicious data entries. To check the influence of attack ratio on the

model, another experiment is performed in which the UNSW-NB15 training dataset is adjusted

using sampling-strategy imblearn to have different attack ratios, i.e., 4:1, 2:1, and 1:1, in such

a way that the number of malicious entries in the training dataset remain fixed to 224854,

49

Graph Model Ratio Model Size (B) Training Time (s) Testing Time (s)

NE-GConv

60:40

4096

1585.27 3.70

70:30 1586.95 2.97

80:20 1538.59 2.26

GraphSAGE

60:40

5120

785.56 2.31

70:30 785.08 1.85

80:20 796.94 1.56

EGConv

60:40

7168

1358.06 2.22

70:30 1412.05 1.95

80:20 1338.66 1.56

GatedGraphConv

60:40

10240

8898.01 5.54

70:30 8069.77 4.69

80:20 8131.62 4.49

Table 3.5: Evaluating computational complexity of NE-GConv and other baseline GNN models

on the UNSW-NB15 dataset with different train:test ratios.

whereas normal entries are under-sampled. The performance of NE-GConv for different attack

ratios is presented in Table 3.6. Results demonstrate that our model is not overly influenced

by the changes in the attack ratio. There is slight fluctuation in the training accuracy when

the attack ratio is changed from 7:1 to 4:1 to 2:1 and 1:1. As can be seen from the table that

the training accuracy reduces with the size of the training dataset. The testing dataset is kept

fixed to 30% of the original dataset that contains 665464 normal entries and 96366 malicious

entries. The testing accuracy is found stable between 97-98%, even though the model is trained

on different attack ratios. High performance achieved on the testing dataset under varying

attack ratios further validates that our model is able to learn the distinguishing features of

malicious traffic effectively, and low FPR, high F1 and AUROC scores determine that model

is not biased towards attack prevalence in the training dataset.

Evaluation on the ToN IoT Dataset

To show the model’s ability to generalize on different datasets, we run the experiment on the

ToN IoT dataset [99]. The dataset contains 461043 total entries, out of which 300000 are

normal, and 161043 are malicious. The dataset is passed through pre-processing and graph

50

Attack

Ratio

Normal

in Training

Training

ACC%

Testing

ACC%
Precision% Recall% F1% AUROC FPR

7:1 1552747 98.75 97.64 97.93 97.64 97.76 0.88 0.0236

4:1 899416 98.01 98.21 98.38 98.21 98.28 0.91 0.0179

2:1 449708 97.14 97.73 98.15 97.73 97.88 0.91 0.0227

1:1 224854 96.87 97.36 98.23 97.36 97.65 0.95 0.0264

Table 3.6: Performance of NE-GConv on different attack ratios on UNSW-NB15 dataset.

formation steps before training and testing. The training dataset contains 322730 entries, and

the testing dataset contains 138311 entries following the 70:30 split ratio. Model evaluation

is done on the testing dataset and is presented in Tables 3.7 and 3.8. Table 3.7 shows the

performance of graph models, confirming the superiority of NE-GConv on the ToN IoT dataset.

The NE-GConv performs well in all metrics as compared to other models, with the best accuracy

of 88%.

A high accuracy on the ToN IoT and UNSW-NB15 datasets indicates that the model is able

to generalize well by making correct predictions most of the time. Table 3.8 shows that NE-

GConv offers a smaller model size, and the training time and the testing time of the proposed

NE-GConv are less than EGConv and much less than the GatedGraphConv.

Graph Model
Training

ACC%

Testing

ACC%
Precision% Recall% F1% AUROC FPR

NE-GConv 93.26 88.38 91.75 88.38 88.88 0.92 0.1162

GraphSAGE 86.68 61.30 63.70 61.30 62.06 0.60 0.3870

EGConv 90.49 51.45 57.29 51.46 52.51 0.53 0.4854

GatedGraphConv 77.65 69.05 78.96 69.05 59.70 0.56 0.3095

Table 3.7: Performance evaluation of NE-GConv with other baseline graph models on the

ToN IoT dataset.

Testing on IoT Devices

To investigate the computing resources of NE-GConv, it is evaluated on Raspberry Pi 4 with

8 GB RAM that further uses python 3.9 and PyTorch version 1.13.1 to test the model. After

setting up the python environment with the required dependencies of PyTorch, the trained

51

Graph Model Model Size (B) Training Time (s) Testing Time (s)

NE-GConv 4096 262.72 0.76

GraphSAGE 5120 140.76 0.66

EGConv 7168 337.73 0.71

GatedGraphConv 12288 6719.15 3.26

Table 3.8: Computational overhead of NE-GConv with other baseline graph models on the

ToN IoT dataset.

Figure 3.5: Test on Raspberry Pi 4 to investigate Testing Time (s)

proposed model is deployed on the Raspberry Pi device and evaluated on the UNSW-NB15

testing dataset for the 70:30 train:test ratio. An experiment consisting six independent tests is

carried out on the testing dataset containing 519425 nodes and 602224 edges as given in Fig. 3.5.

Results show that the NE-GConv model can process 309.3 MB of data while consuming a peak

memory usage of 2.46 GB and occupying one out of the four CPU cores in 6.18 - 6.98 seconds

and achieves the same performance in each test as given in Table 3.4 for the 70:30 ratio.

This test confirms the credibility of NE-GConv that it is not only efficient for high computing

resources but also for resource constraint platforms.

3.4 Conclusion

In this chapter, we presented a novel and lightweight NIDS exploiting the potential of graph

neural networks. The findings can be summarized as below.

52

• Incorporating both node and edge features in a graph structure enhances the performance

of IDS in IoT systems. This finding suggests that capturing both node and edge char-

acteristics allows for a more comprehensive representation of network traffic relations,

leading to improved detection accuracy and sensitivity to network intrusions.

• Reducing dimensionality and employing a shallow two-layer graph convolutional model

significantly reduces the computational complexity and facilitates deployment in resource-

constrained networks. This finding indicates that implementing techniques such as Recur-

sive Feature Elimination for feature selection and designing a lightweight architecture in

the NE-GConv model can effectively address the challenges of deploying IDS in resource-

constrained environments without sacrificing detection performance.

• Comparative analysis of the proposed NE-GConv model with state-of-the-art GNN mod-

els demonstrates its effectiveness in various performance metrics. This finding highlights

the superiority of the NE-GConv model in terms of detection accuracy, precision, recall,

F1-score, AUROC, and False Positive Rate, validating its potential as a robust solution

for intrusion detection in IoT systems.

53

Chapter 4

A New Concatenated Multigraph

Neural Network for IoT Intrusion

Detection

4.1 Introduction

Few existing studies [100] in other areas than NIDS and cyber-security refer to the problem of

predicting multiple types of edges between nodes in their GNN model design. These researches

demonstrate the importance and potential of multi-edge classification in various domains and

the development of novel and effective methods to solve this problem. In contrast to these

approaches, we propose a novel GNN framework capable of considering a variable number of

multi-edges between any pair of nodes implying multi-dimensional edge features. Our model

is not limited to a constant / fixed number of edges to do edge classification, bringing an

advancement not only in NIDS but also in GNN edge classification in general.

Recent studies on GNN-based NIDS considered a basic graph structure consisting of an IP-

Port number pair as a node and a network flow as an edge [73], [76], [77]. The existing

graph structures are limited to directional or non-directional types that can not capture full

communication between a pair of nodes and may release some network flows. In contrast, We

propose a multi-edge-based graph structure that seizes full communication between a pair of

nodes. There is a lack of research on the design of the GNN model handling multi-edges in their

architecture. We propose new functions and equations to update the existing GNN model to

54

include multi-edges and multi-dimensional edge features in the proposed algorithm. These steps

have been updated from the original message passing layers by taking into account the total

number of edges, and the edge feature between pair of nodes in the functions, e.g., aggregation

functions and attention function. Moreover, the existing GNN models in NIDS have used

either spectral convolution or spatial convolution methods only. We propose a concatenated

GNN model that is capable of learning underlying spectral and spatial information in the

graph structure. Results demonstrate the effectiveness of our model by showing performance

improvement of up to 2-5% across all metrics.

In this chapter, we propose a new framework for GNN-based NIDS, which includes all the

topological patterns of the knowledge graph and combines both spectral and spatial convolution

methods to learn effectively the characteristics of attacks. The framework addresses the over-

smoothing issue by treating each layer with different key operations in the node updating step.

Moreover, we present a more natural graph structure by enabling multiple edges between a

pair of nodes formed by source and destination IP addresses. The rest of the communication is

captured in multiple edges. As a result, full traffic gets sealed in the graph structure without any

leaky information. We demonstrate that this solution is effective in the detection of malicious

behavior in the traffic. With an aim to overcome the shortcomings of recent studies in GNN-

based NIDS, the key contributions of this research are summarized as follows:

• We propose an improved network graph structure capable of processing multi-edges with

multi-dimensional edge features in the graph structure, thereby allowing to capture of the

complete exchange of information between any pair of nodes. Nodes are represented by

source and destination IP addresses, and communication between devices is represented

as multiple adjacent edges and the multi-dimensional edge feature matrix.

• We develop a new concatenated GNN framework that allows the incorporation of spectral

and spatial convolution methods to learn all the spectral and spatial characteristics of

underlying graph geometry. We propose new functions and equations to include multi-

edges in the proposed model design. Our approach is especially helpful in learning graph

geometry and traffic patterns in complex networks.

We evaluate our proposed model on well-known public benchmark datasets and compare results

using several performance metrics. Our joint spectral and spatial convolution approach using

the multi-edge graph is tested against spectral-only and spatial-only graph models, implying the

55

Figure 4.1: Step-by-step illustration of the proposed GNN-based NIDS Framework: Raw

dataset is transformed into the processed dataset in Data Preprocessing block as shown on

the left-hand side, then the graph is constructed from S(ource)-D(estination) IP nodes and

relative edges (obtained from the left block) in Graph Construction block (middle block). The

proposed model learns the patterns of the constructed graph in the proposed GNN Model

Learning block, as shown on the right-hand side.

same multi-edge graph at the input. Results demonstrate that our proposed model outperforms

the other graph models primarily due to the added capability of the proposed model to address

both the spectral and spatial geometrical aspects of the complex multi-edge knowledge graph.

The research questions explored are as follows.

• How does the proposed GNN framework for NIDS improve upon existing approaches by

considering multi-edge classification and multi-dimensional edge features?

• What impact does incorporating both spectral and spatial convolution methods have on

the effectiveness of the GNN-based NIDS framework in learning the characteristics of

attacks?

• How does the improved network graph structure, capable of processing multi-edges with

multi-dimensional edge features, enhance the detection capabilities of the proposed GNN-

based NIDS framework?

The rest of the chapter is organized as follows. Section 4.2 illustrates the design of our proposed

framework and its layered architecture. Section 4.3 presents detailed experimental results,

comparison and evaluation of the model.

56

4.2 The Proposed Framework

In this section, we describe the stages of the proposed GNN-based NIDS that integrates spectral

and spatial domains into a coherent framework to benefit from the proposed graph structure

fully. The overall framework consists of three stages: Data Pre-processing, Graph Construction

and the Proposed GNN Model for the detection of abnormal behaviors in the network traffic

as illustrated in Fig. 4.1. Table 4.1 summarizes the notations and their definitions used in the

chapter.

Notation Definition

A The adjacency matrix

Â The normalized Laplacian adjacency matrix

D̃ The diagonal degree matrix

E The set of edges

|E| The number of edges

eijr The r-th edge from vi to vj

FV The node feature matrix

FE The edge feature matrix

g(·) Input to output transformation function

Gm The multigraph

Nvi The multi-edge neighborhood of node vi

Rij Total number of edges from vi to vj.

U Non-linear activation function

V The set of nodes

|V| The number of nodes

W g The GCN weight matrix

W att The GAT weight matrix

Table 4.1: Notations used in the chapter and their definitions

4.2.1 Data Preprocessing

The initial phase of the proposed framework involves pre-processing the data, which entails

various tasks such as data transformation, data cleaning, categorical feature encoding, and data

57

normalization. The pre-processing unit begins by transforming the source and destination IP

addresses into small integer values, which replaces each unique IP address with a unique integer.

This conversion not only reduces the computational load resulting from long IP addresses, but

also ensures that the learning process is independent of the fixed IP addresses. Subsequently,

the data is thoroughly cleansed by removing any Null and Nan values to avoid ambiguity caused

by unknown values. The next step involves encoding the categorical features using a categorical

encoder, and normalizing the numerical features using a standard scalar, thereby rendering the

dataset ready for the next phase of the proposed framework.

Figure 4.2: Multi-edge graph structure depicting a small IoT network: The left panel illustrates

the graph, complete with nodes and interconnecting edges, while the right panel features the

adjacency matrix as a heatmap. The heatmap delineates the node connections, with varying

shades of blue indicating the existence of edges between node pairs.

4.2.2 Graph Construction

To model a knowledge graph close to the nature of a real IoT network, we propose to construct

a multigraph structure denoted by Gm = (V , E , FV , FE) where V = (v1, · · · , vN) is a set of N

IoT nodes identified by their IP addresses, and E = {eijr, ∀i, j, r} collects edges signifying the

network flows between pairs of IoT nodes as shown in Fig. 4.2. Let Rij denote the number

of edges from vi to vj, and eijr (1 ≤ r ≤ Rij) denotes the r-th edge feature. The nodes

and edges have their feature matrices to exhibit their nature and properties in the knowledge

graph and are denoted by FV and FE , respectively. FV is an N ×K-dimensional feature matrix

(FV ∈ RN,K) where K is the number of node features. The i-th element of FV , i.e., Fvi , collects

the node features of node vi. FE is a |E| ×K-dimensional feature matrix (FE ∈ R|E|,K) where

| · | is the cardinality and K is the number of features of each edge. The edge features of edge

eijr are collected in Feijr ∈ R1,K . The edge features are the flow features of the IoT network

58

dataset, and node features are denoted as all ones with similar dimensions as edge features

as [76]. This approach is used to avoid errors such as mismatched dimensions and to keep edge

feature values (traffic flows) significant during the graph embedding process.

The adjacency matrix A of a multigraph Gm is an N × N -dimensional matrix where matrix

elements correspond to the multiplicity of the existing edges. The element at the i-th row and

j-column aij = 0, when there is no edge from vi to vj; eijr /∈ E . aij = Rij, when Rij edges exist

from vi to vj. The multi edge neighborhood of node vi denoted by Nvi , is a set of all the nodes

connected to vi, Nvi = {vj|eijr ∈ E}, 1 ≤ r ≤ Rij.

In the constructed graph, there could be more than one edge between a pair of nodes in the case

of multiple network flows between the same pair of IoT hosts having different source-destination

port#. Our IP-as-node multigraph design can link network flows related to the same host (IP

address) rather than losing this connection in the flows of the same IP as in the other models,

e.g., [76]. Our design can also capture all the network flows without lossy aggregation of network

flows between a pair of hosts. Nevertheless, the multigraph design makes the overall knowledge

graph complex in nature and requires a novel combination of GNN algorithms.

4.2.3 Proposed GNN Model

The key feature of the proposed intrusion detection model is its ability to cater to multiple edges

and their features, and its concatenated architecture design with modified message-passing

layers and aggregation functions. We propose new equations to include multi-edges in the

proposed GNN model as given in the Algo. 2 The proposed model is based on a cross-domain

approach to connect the spectral and spatial graph convolution methods to optimize the learning

of geometric patterns of the multi-edged graph structure posing as an IoT network. It is

a common practice to combine several graph layers in one model to investigate the node’s

depth. After knowledge graph construction, it is passed through the spectral and spatial graph

convolution learning methods to learn from the multi-dimensional multi-edge features and graph

dynamics implicitly and explicitly. We propose a spectral-spatial-spectral graph model in which

GCN [71] represents the spectral and GAT [72] represents the spatial layer. The proposed model

consists of three layers with a GAT layer stacked in between two GCN layers to learn inherent

graph characteristics in depth.

The embeddings learn the graph topology and its properties using GCN in the first-hop neigh-

59

Figure 4.3: Our proposed model architecture consists of 3 layers: Spectral layer (GCN), Spatial

layer (GAT), and Spectral layer (GCN). A multi-edge knowledge graph is fed as model input,

and link prediction is performed to detect malicious flows in the output.

bors. The embeddings formed are then weighed using edge features and updated through the

attention mechanism around the second-hop neighborhood. Lastly, embeddings are updated

by learning topological properties around the third-hop neighborhood in the third layer. This

method offers improved performance compared to the standard GNN models consisting of the

same graph layers and computing the same graph convolution and filters in each hop. In ad-

dition, it prevents over-smoothing of edge features as we include edge features in the attention

mechanism only. The rest of the two layers update node embeddings from multi-edge graph

topology.

The layered architecture of the proposed GNN model is illustrated in Fig. 4.3 and is expressed

as:

g(Fv, FE ,A) = ÂU
(
AFEU

(
ÂFVW

g
1

)
W att

2

)
W g

3 , (4.1)

where, W g
1 , W

att
2 and W g

3 are the weight matrices of the hidden layers 1, 2, 3, and are trained

using the gradient descent. W g
1∈ RK,H1 , where, K is the dimension of node and edge features

and H1 is the dimension of the first hidden layer. Similarly, W att
2 ∈ RH1,H2 , where, H2 is the

dimension of second hidden layer, and W g
3∈ RH2,O3 , where, O3 is the dimension of the third

layer. Â is the normalized Laplacian representation of adjacency matrix A and can be given

by

Â = D̃−1/2ÃD̃−1/2. (4.2)

Here, Ã = A + IN , and IN ∈ RN,N is the identity matrix, D̃ii =
∑

vj
Ã is the diagonal

node degree matrix of the adjacency matrix, and D̃
−1/2
ii is the inverse of the square root of

60

D̃. U denotes a non-linear activation function, i.e., ReLU [92] in this chapter. Equation (4.1)

summarizes the three-layered GNN propagation that requires FV , A and FE as the model

inputs. In the first layer, the proposed model learns from the underlying graph structure

by eigen decomposition of the graph Laplacian matrix and graph nodes are updated using

the mean aggregation of edge weight and initial node features divided by node degrees. The

aggregation operation is followed by a non-linear activation function U . The second layer

applies an attention mechanism to learn the importance of each node vj for the central node vi

w.r.t edge features between them, unlike treating all nodes equally as is in GCN. The attention

coefficients are computed from the updated node representations from layer 1 and initial edge

features, using the addition aggregation function and non-linear activation U . Layer 3 of the

proposed model applies GCN to recompute features in the third hop neighborhood by learning

about the eigen decomposition of the graph structure again and is updated in the same way as

layer 1. The proposed model layers generate node embeddings using the multi-edge adjacency

matrix and the edge features.

61

Algorithm 2: Multigraph Neural Network Algorithm
Input:

Graph Gm
Multi edge Adjacency matrix A

Node features matrix FV

Edge features FE

Output:

Edge embedding zijr, ∀eijr ∈ E

▷Initialization

1 h0vi
← Fvi

, ∀vi ∈ V ,

2 z̃0ijr ← Feijr , ∀eijr ∈ E ,

▷Node Embedding in Layer 1

3 for ∀vi ∈ V , do

4 h̃1vi
←

∑
vj∈Nvi

⋃
vi

∑
r∈[1,Rji]

h0
vj√
d̂id̂j

,

5 h1vi
← ReLU(W g

1 × h̃1vi
+ bg1),

▷Node Embedding in Layer 2

6 for ∀vi ∈ V , do

7 for ∀vj ∈ Nvi

⋃
vi and r ∈ [1, Rji] do

8 ϵjir ← ATT(h1vi
, h1vj

, z̃0jir),

9 h̃2vi
←

∑
vj∈Nvi

⋃
vi

∑
r∈[1,Rji]

(h1vj
◦ ϵjir),

10 h2vi
← ReLU(W att

2 × h̃2vi
+ batt2),

▷Node Embedding in Layer 3

11 for ∀vi ∈ V , do

12 h̃3vi
←

∑
vj∈Nvi

⋃
vi

∑
r∈[1,Rji]

h2
vj√
d̂id̂j

,

13 h3vi
←W g

3 × h̃3vi
+ bg3,

▷Edge Embedding

14 for ∀vi ∈ V , do

15 for r ∈ [1, Rji] do

16 zijr = MLP(h3vi
||h3vj

),

return zijr

The input of Algo. 2 consists of a multi-edge graph Gm with node features FV set to all ones

{1, . . . , 1} for each node and edge features FE to Rij parallel edge features. The node and edge

features are initialized with the pre-processed knowledge graph values.

Layer 1 spans steps 3, 4, and 5. In the first layer, the input adjacency matrix is transformed

into normalized Laplacian matrix Â as given in (4.2). The spectral convolution is achieved by

62

the multiplication of neighboring node features, edge weight, and the central node features in

the spectral neighborhood Ñvi , and their aggregation around the neighborhood. Step 4 shows

the first aggregated node embedding, where, h0vi is the initial node feature matrix of node vi,

h0vj is neighboring node feature matrix, and d̂i = 1 +
∑

vj∈Nvi
eijr. In step 5, node embedding

h̃1vi of node vi is calculated by applying the trainable parameters W g
1 and bg1 on the aggregated

message and updated using the ReLU function. The aggregation function AGG is given as:

AGG(hlvi , h
l
vj
, Rij) =

∑
vj∈Nvi

⋃
vi

∑
r≤Rji

hlvj√
d̂id̂j

, (4.3)

where, l is the layer number, d̂i = 1 +
∑

vj∈Nvi
Rij. In step 5, node embedding h̃1vi of node vi

is calculated by applying model’s trainable parameters W g
1 and bg1 on the aggregated message

and updating using ReLU function.

Layer 2 starts by applying the attention mechanism ATT on the node and edge features that

consists of a single layer feed-forward linear neural network and is expressed in (4.4), where

the attention function α is subject to the restriction α : RK × RK′ → R, where RK is the

dimension of input node features and RK′
is the dimension of parameterized weight matrix of

the attention function W att
2 ∈ RK′

.

ATT(hvi , hvj , z̃ijr) =

exp(LeakyReLU(α(W att
2 h1vi ||W

att
2 h1vj ||W

att
2 z̃0ijr))∑

∀vm∈Nvi

∑
q≤Rmi

exp(LeakyReLU(W att
2 h1vi ||W

att
2 h1vm ||W att

2 z̃0miq))
.

(4.4)

Learnable attention coefficients ϵijr are computed by passing h1vi , h
1
vj

and z̃0ijr through the

attention function α in the step 8. It determines the importance of node vj features to node vi

by considering the source and destination node embeddings and the multi-edge features between

them. We upgrade Steps 7 and 8 to include edge features and adjusted it for multiple edges.

An attention score depends on the multiple edge features to obtain the structural information

computed via attention score in second-hop neighbors. In addition, Leaky-ReLU [101] (with

negative input slope = 0.2) nonlinearity function is applied, followed by a softmax function to

have a common scaling and normalized coefficients across the entire neighborhood. The node

information is aggregated with the attention coefficients using the addition aggregation in step

8, where ◦ is element-wise multiplication. The result is passed through the ReLU function to

update layer 2 in step 9.

Layer 3 recomputes features by learning the graph structure in the same way as layer 1 in steps

11, 12 and 13. The multi edge embedding is computed by concatenating layer 3 features h3vi

63

and h3vj and passing through an MLP function [102] in steps 14 and 15.

MLP(h3vi ||h
3
vj
) = Wmlp × (h3vi ||h

3
vj
) + bmlp, (4.5)

where || is the concatenation operation, Wmlp is the weight, and bmlp is the bias.

GNNs have gained popularity in various domains due to their ability to learn from graph-

structured data, e.g., social network analysis, molecular and chemical analysis, cyber-security,

and traffic and transportation networks. The proposed model has the potential to be generalized

and presents a new viewpoint for a wide range of tasks involving the same characteristics and

graph structure, aiming to predict edge properties with appropriate modifications and tuning.

For example, in social network graph, individuals are represented as nodes and the relation

between them is represented as edges. These relations can be of various types, e.g., friendships,

family ties, work relationships. Often, individuals in a social network can have multiple types

of relationships with each other, resulting in a graph with multiple edges between nodes. Edge

classification in social network graph can involve predicting the type of relationship between

two individuals connected by the edges. Our proposed model can be applied to such scenarios

where the graph structure consists of multi-edges and edge classification is a requirement. The

node and edge feature matrix dimensions need to be matched to avoid uncertainty during the

training process. Pre-processing steps and model hyperparameters, e.g., the number of hidden

units, optimizer, learning rate, and activation functions, may need adjustments for better results

on other tasks.

The proposed model is inspired by the approach in prior work [76] that considers a simple IoT

graph and runs it through the E-GraphSAGE model with some adjustments on the inclusion

of edge features. The node features are considered as all ones and edge features are the rep-

resentation of network flows. Edge classification is performed to classify the network flows as

normal or malicious. We take this approach a step further and build a multi-edge-based edge

classifier with modified equations and functions, e.g., steps 4, 7, 8, 9, 12, 15, and 16 in Algo. 3.

These steps have been updated from the original message passing layers by taking into account

Rij and eijr : (r ∈ [1, Rij]), which are the total number of edges, and eijr : (r ∈ [1, Rij]) denotes

the r-th edge feature from vi to vj in all the functions, e.g., aggregation functions and attention

function. The proposed model takes in multi-edged graph data, which is a novel IoT network

design. Then, spectral and spatial convolution operations are combined in the form of GCN and

GAT layers. The message-passing layers are adjusted to include multiple edges with relevant

64

multi-dimensional features. This improves the GNN model’s ability to capture more complex

dependencies and traffic patterns of IoT network graphs as compared to the existing studies in

GNN.

4.3 Experiment and Results

This section describes the benchmark datasets used and the experimental evaluation of the

datasets. A comparison study is carried out to show the efficiency of the proposed framework

and the baseline models in this domain.

4.3.1 Performance Evaluation Metrics

The proposed model addresses a classification task. For the evaluation of the proposed model

in the detection of attacks, the following classification metrics are considered:

• Accuracy: This is a measure of correctly classified observations out of all data observa-

tions, and is given by Tp+Tn
Tp+Fp+Tn+Fn

. Here, Tp is True Positive, Tn is True Negative, Fp is

False Positive, and Fn is False Negative.

• Precision: This is a measure of how precise a model is in correctly predicting positives

(Tp) out of all the predicted positives (Tp + Fp), and is given by Tp
Tp+Fp

.

• F1-Score: This is a function of Precision and Recall, and is used where there is imbal-

anced data, and is given by (2× Precision×Recall
Precision+Recall

).

• Recall: This is a measure of how many True Positives a model predicts out of all the

actual positives, and is given by Tp
Tp+Fn

.

• False Alarm Rate (FAR): This is a measure of how many normal data points are

classified as malicious and is given by Fp

Tn+Fp
.

• Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) Score:

This is a measure of the rank correlation between predictions and actual labels roc. The

higher the score, the better the model’s ability to classify positive and negative class

points. It summarizes the Precision-Recall curve.

65

4.3.2 Datasets and Experimental Setup

The datasets used to evaluate the proposed model are Ton IoT [99], BoT IoT [103], NF-Ton

IoT [104], and NF-BoT IoT [104]. These are the most widely used datasets for the detection of

attacks in IoT network traffic. We purposely include the recently developed variants of UNSW

datasets [104] that are the NetFlow versions of already existing datasets (NF-Ton IoT and

NF-BoT IoT). The datasets are preprocessed and transformed into knowledge graphs. The

knowledge graph is equipped with nodes, edges and features, and the details of each knowledge

graph, along with the dataset sizes before knowledge graph construction, are given in Table 4.2.

The knowledge graphs are mapped to split 70% of edges for training and 30% for testing for

the evaluation process. All the experiments are carried out on Google Colab with server specs

as Intel(R) Xeon(R) CPU @ 2.20GHz running Python v3.7, Pytorch Geometric v1.12.1 and

CUDA 113.

Datasets Total Data Normal Data Malicious Data No. of Nodes No. of Edges Ratio

Ton IoT [99] 461043 300000 161043 11536 461043 7:3

BoT IoT [103] 659363 430 658933 84 659363 7:3

NF-Ton IoT [104] 1379274 270279 1108995 1478 1379274 7:3

NF-BoT IoT [104] 600100 13859 586241 129 600100 7:3

Table 4.2: Details of datasets in terms of total data entries, number of malicious and normal

data entries, and the knowledge graph of each dataset.

Datasets Accuracy % Precision F1-Score Recall % ROC-AUC FAR

Ton IoT 99.55 0.9950 0.9955 99.50 1.00 0.0144

BoT IoT 99.96 0.9996 0.9995 99.96 0.79 0.0004

NF-Ton IoT 99.28 0.9929 0.9928 99.29 0.98 0.0071

NF-BoT IoT 98.91 0.9886 0.9874 98.91 0.75 0.0109

Table 4.3: Performance evaluation of the proposed Multigraph Neural Network model.

4.3.3 Experimental Analysis

The experimental analysis is based on the binary classification results of the proposed model on

all four datasets. The model hyper-parameters are set to 32 hidden units, Adam optimizer [105]

with 0.01 learning rate, and Cross Entropy Loss function [106] in the training process. Table 4.3

66

presents comprehensive results of our intrusion detection model on each of the benchmark

datasets. Results show that the proposed model performs exceptionally well across all the

performance metrics in all the datasets. The high F1 and ROC-AUC scores determine the

strength and stability of our proposed model across imbalanced datasets. The potential factors

contributing to the variation in ROCAUC are disparities in data quality and class distribution.

To address the specific challenge of data imbalance in GNNs, it’s essential to acknowledge

that traditional oversampling and undersampling techniques may not be suitable due to their

potential to introduce multiple edges with the same features, which can disrupt the learning

process. Therefore, it’s imperative to devise tailored strategies to tackle this issue effectively.

Different evaluation approaches are considered to distinguish the significance of the proposed

model. Firstly, an experimental setting is designed to compare the effectiveness of hybrid

convolution in our model with other spectral-only and spatial-only convolution models. The

comparison is presented in Figs. 4.4 to 4.9. A three-layered GCN model represents the spectral

convolution, and a three-layered GAT model represents the spatial convolution method. We

purposefully choose GCN and GAT models as they also form the layer combination in our

proposed model. This comparison with these models is recorded under a similar experimental

setup as the proposed model. All the datasets are tested on three-layered spectral or spatial

models with a multi-edge graph structure at the input. In addition, we also present a comparison

with other state-of-the-art GNN studies such as [76] by listing down their results in the table

as mentioned in their papers.

Figure 4.4: Accuracy score comparison of all the graph models on the datasets.

Fig. 4.4 plots the accuracy of the proposed GNN model and its counterparts on each of four

datasets: Ton IoT, BoT IoT, NF-Ton IoT, and NF-BoT IoT at x-axis and the accuracy score

67

at y-axis. Fig . 4.4 demonstrates the superior performance of the proposed Multigraph Neu-

ral Network model, achieving the best accuracy across all four datasets: 99.55% on Ton IoT,

99.96% on BoT IoT, 99.28% on NF-Ton IoT, and 98.91% on NF-BoT IoT. While E-GraphSAGE

exhibits commendable performance, however, it falls short of the proposed model’s superior per-

formance. Despite achieving similar accuracy to the proposed model on the BoT IoT dataset,

almost all evaluated models reach 99.9% accuracy. The GCN model displays consistent per-

formance with over 95% accuracy across all datasets, whereas the GAT model excels only on

the BoT IoT (99.96% accuracy) and NF-BoT IoT (97.96% accuracy) datasets but underper-

forms on Ton IoT (54.48% accuracy) and NF-Ton IoT (81.3% accuracy). This discrepancy

may be attributed to the relative balance of the latter two datasets compared to the others.

The results indicate that the unique design of the proposed Multigraph Neural Network model

effectively combines the advantages of GCN and GAT, ultimately enhancing accuracy. Fig. 4.5

Figure 4.5: Precision score comparison of all the graph models on the datasets.

plots each GNN model on the datasets used on the x-axis vs precision score (%) on the y-axis.

The comparison shows that the proposed model achieves high precision across all four datasets:

99.50% on Ton IoT, 99.96% on BoT IoT, 99.29% on NF-Ton IoT, and 98.86% on NF-BoT

IoT, which confirms proposed model’s ability to detect false positives effectively. Although the

E-GraphSAGE model achieves 100% performance on all four datasets, it is important to con-

sider that it has significantly lower accuracy than proposed model especially on Ton IoT and

NF-BoT IoT datasets, which suggests that E-GraphSAGE may be making many false negative

predictions. Hence, E-Graph may not be able to generalize well to new data and might be

overfitting the data. The GCN model shows consistent performance across all datasets, with

its best performance on the BoT IoT dataset. However, it is outperformed by the proposed

68

model on all datasets. The GAT model performs well on the BoT IoT dataset but poorly on the

Ton IoT dataset, suggesting model’s relatively poor ability to generalize well and distinguish

false positives.

Figure 4.6: Recall score comparison of all the graph models on the datasets.

Fig. 4.6 plots GNN models and the datasets on the x-axis vs the Recall score on the y-axis. The

comparison shows that our model surpasses all the other GNN models on recall score across all

datasets with 99.50% on Ton IoT, 99.96% on BoT IoT, 99.29% on NF-Ton IoT, and 98.91% on

NF-BoT IoT, indicating its effectiveness on these cases. The E-GraphSAGE model performs

low on the Ton IoT and NF-BoT IoT datasets with 97.86% and 93.43%, which indicates that

the E-Graph is failing to identify a significant portion of the minority class (malicious traffic),

which can be critical on the determination of few attacks. The GCN model exhibits consistent

performance across all datasets. It performs particularly well on the BoT IoT and NF-Ton IoT

datasets. However, it is outperformed by the proposed model on most of the datasets. The

GAT model shows variable performance but performs relatively poorly on the Ton IoT dataset

with 54.48% indicating its limited capability to generalize across various datasets.

Fig. 4.7 shows another plot depicting performance evaluation in terms of F1 score. The proposed

model outshines other graph models on all the datasets with 99.00%, 99.95%, 99.28%, and

98.74% on Ton IoT, BoT IoT, NF-Ton IoT, and NF-BoT IoT, respectively, indicating its

effectiveness in these cases. The E-GraphSAGE model does not perform well on the NF-Bot

IoT datasets, this could be an indication of overfitting or a flaw in the evaluation process that

the E-GraphSAGE cannot effectively capture the patterns in the minority class as good as

the proposed model. The GCN model exhibits consistent performance across all datasets. It

69

performs particularly well on the BoT IoT dataset, with only marginal differences on the Ton

IoT dataset. However, it cannot compete wiht the proposed model on all datasets. The GAT

model achieves good F1 scores on the BoT IoT dataset but performs relatively poorly on the

Ton IoT dataset showing that it has inconsistent performance for different datasets and can

not generalize well to new data.

Figure 4.7: F1-Score comparison of all the graph models on the datasets.

The ROC-AUC results are also presented in Fig. 4.8, showing graph models and different

datasets on the x-axis and the score on the y-axis. Results demonstrate that our proposed

model has high ROC-AUC score than all the other models across all the datasets, validating

our model’s distinguished performance among others in discriminating between the positive

and negative samples. The GCN model exhibits varying performance across the datasets.

It performs well on the Ton IoT dataset, although not as well as the proposed model. On

the NF-Ton IoT and NF-BoT IoT datasets, GCN model performance is moderate, and it is

outperformed by the proposed model. Its performance on the BoT IoT dataset is relatively

weak, with an ROC-AUC of 0.5, indicating random chance. The GAT model shows relatively

poor performance across all datasets. It has the lowest ROC-AUC on the Ton IoT and NF-Ton

IoT datasets, with a value of 0.5, indicating that its predictions are no better than random

chance. Its performance on the BoT IoT and NF-BoT IoT datasets is slightly better but still

considerably lower than the proposed model. This demonstrates proposed model’s ability to

efficiently learn from the graph topology and structure in addition to the features than the rest.

This metric is missing in E-GraphSAGE [18] results and discussion.

Fig. 4.9 shows that the proposed model demonstrates low FAR across all four datasets: Ton

70

Figure 4.8: ROC-AUC score comparison of all the graph models on the datasets.

IoT, NF-Ton IoT, BoT IoT, and NF-BoT IoT with values 0.0144, 0.0071, 0.00041, and 0.0109,

indicating its effectiveness in reducing false alarms. All models achieve the highest FAR scores

on the Ton IoT dataset, which is the most balanced among the four, containing 300,000 normal

data entries and 161,043 malicious data entries. This demonstrates that reducing the FAR

on this dataset poses a significant challenge. Nevertheless, the proposed model attains the

lowest FAR of 0.0144, while the FAR scores of other models, including E-GraphSAGE, are

approximately 0.02. The E-GraphSAGE model performs well on other datasets. The GCN

model exhibits varying FAR across the datasets. It performs better than the GAT model on all

datasets, but its FAR is higher in most cases than the proposed models. The GAT model has

the highest FAR on the Ton IoT and NF-Ton IoT datasets, indicating poor performance. On

the BoT IoT and NF-BoT IoT datasets, its FAR is lower but still not as low as the proposed

model. As confirmed by results in Fig. 4.9, our model is capable to limit false alarms on

intrusion detection.

Results show the effectiveness of the hybrid convolution approach for intrusion detection in

all the benchmark datasets as compared to spatial-only and spectral-only approaches. The

proposed model is shown to have lower precision than E-GraphSAGE [76] in three datasets,

recall score in one out of four datasets. The FAR of the proposed model is moderately higher

in two out of four datasets as compared to one of the other graph models (E-GraphSAGE),

whereas, the proposed model closely follows [76] in performance despite its complex graph

geometry. This difference is the bare minimum in comparison, considering the fact that the

graph structure and the proposed graph model designed in our research are highly complex in

nature, whereas the knowledge graphs in otherwise the proposed studies are unable to capture

full information.

71

Figure 4.9: FAR score comparison of all the graph models on the datasets.

Overall, the proposed model achieves high accuracy on all the datasets, ranging from 98.91%

to 99.96% on the four benchmark datasets. Precision and Recall values are also quite high,

with precision ranging from 98.86% to 99.96% and recall ranging from 98.91% to 99.96%. This

suggests the model has a low false positive rate and a high true positive rate and is accurately

identifying positive samples while avoiding false positives. The F1-score, which is a measure

of the model’s accuracy, is also high, ranging from 98.74% to 99.95%. The high F1 scores

suggest that the model has a good balance between precision and recall, which is crucial for

NIDS, where false positives or false negatives can have significant consequences. The False

Alarm Rate (FAR) is relatively low, ranging from 0.00041 to 0.0144, indicating that the model

is effective at minimizing false alarms. The ROC-AUC values show that the models have a high

level of discrimination between positive and negative classes, with values ranging from 0.75 to

1.00, making it a reliable tool for identifying malicious traffic. The results indicate that our

proposed model performs exceptionally well on all the datasets and is a valuable advancement

in the field of NIDS.

The proposed model is also evaluated on the UNSW NB-15 dataset [107], which is a benchmark

public NIDS dataset capturing IoT traffic characteristics. The proposed model achieves a test

accuracy of 98.88%, precision of 98.89%, recall of 98.88%, F1 score of 98.88%, AUC-ROC

score of 0.91, and FPR of 0.0112. The result proves that the proposed model can perform

exceptionally well across all metrics on other datasets possessing similar characteristics as multi-

edges structure and that its performance is not restricted to the characteristics of a particular

dataset.

72

Datasets Metrics Proposed Model GCN Model [71] GAT Model [72]

Ton IoT
Train Time (s) 0.9673 0.9147 1.1576

Model Size (B) 24576 23552 26624

BoT IoT
Train Time (s) 1.7804 1.4639 2.2738

Model Size (B) 25088 24064 27136

NF-Ton IoT
Train Time (s) 2.8994 2.4131 3.442

Model Size (B) 22016 20992 24064

NF-BoT IoT
Train Time (s) 1.1607 1.1341 1.5317

Model Size (B) 22016 20992 26624

Table 4.4: The comparison of training time and model size between our method and other

GNN models on the benchmark datasets.

In Table 4.4, we compare Training-time/Epoch in seconds and model size in bytes for all the

graph models on the datasets. Specifically, all codes run on Google Colab in Pytorch Geometric

with the same experimental settings (see Section 4.3). The Epoch range varies across datasets

but is the same across all the GNN models on each dataset such as Epoch is 4500 for Ton

IoT, 1500 for NF-Ton IoT, 2000 for NF-BoT IoT and 300 for BoT IoT. The python time

module, time.time(), is called at the beginning and end of the training process to evaluate the

training time. The python module torch.cuda.memory allocated() is called to determine the

GNN model sizes in bytes.

The proposed model demonstrates competitive training times across all four datasets. In the

Ton IoT and NF-BoT IoT datasets, it takes slightly longer to train than the GCN model, but

its training time is shorter than the GAT model. The GCN model generally has the shortest

training time among the three models, with the exception of the NF-Ton IoT dataset, where

the proposed model trains faster. The GAT model takes the longest time to train across all

datasets.

The proposed Model has a moderate model size across all datasets. In all cases, its model size

is larger than the GCN Model but smaller than the GAT model. The GCN model has the

smallest model size among the three models for all datasets. The GAT model has the largest

model size in all datasets.

73

In conclusion, the proposed model demonstrates competitive performance in terms of training

time and model size across all datasets. While the GCN model has the advantage of shorter

training times and smaller model sizes, the proposed model offers a good balance between these

factors and the performance metrics discussed in previous observations. The GAT model, on

the other hand, has longer training times and larger model sizes, which may be a disadvantage

when considering resource constraints and deployment scenarios. The high performance of the

Dataset Train:Test Ratio Test Accuracy Precision Recall F1 AUC-ROC FPR

Ton IoT

60:40 96.66 96.83 96.66 96.67 0.97 0.0334

70:30 99.55 99.50 99.00 99.50 1 0.0144

80:20 97.27 97.39 97.27 97.28 0.98 0.0273

BoT IoT

60:40 99.95 99.95 99.95 99.94 0.78 0.0005

70:30 99.96 99.96 99.95 99.96 0.79 0.00041

80:20 99.96 99.96 99.96 99.96 0.79 0.0004

NF-Ton IoT

60:40 99.85 99.85 99.85 99.85 1 0.0015

70:30 99.28 99.29 99.28 99.29 0.981 0.0071

80:20 99.37 99.37 99.37 99.37 0.98 0.0063

NF-BoT IoT

60:40 98.43 98.32 98.43 98.07 0.66 0.0157

70:30 98.91 98.86 98.74 98.91 0.75 0.0109

80:20 97.74 97.79 97.74 96.63 0.5 0.0226

Table 4.5: Performance of proposed model on various train : test ratios on all the benchmark

datasets.

proposed model on all four datasets for the varying train : test ratio across performance metrics,

e.g., accuracy, precision, recall and F1, suggests that our proposed model is overall stable to

these changes and is capable enough to generalize well as long as train dataset is representative

of the population and the distribution is similar across normal and abnormal subsets of the

data. This can be confirmed by relatively poor AUC-ROC scores in BoT IoT and NF-BoT

IoT datasets, which are highly imbalanced datasets as can be seen in Table 4.5. The BoT

IoT dataset contains only 430 normal data points out of a total of 659363 data points, whereas

NF-BoT IoT contains 13859 normal data points out of 600100 total data points. This limits the

model’s capability to differentiate positives from negatives. It is also observed in the Ton IoT

dataset that when the training set is smaller (60:40), the model does not have enough data to

learn the patterns of each class in the training set, resulting in lower generalization performance

on the test set (96%). Overall, these results suggest that the proposed GNN NIDS model is an

74

effective framework for detecting network intrusions. The proposed model is stable to varying

train : test ratios having good generalizability.

4.4 Conclusion

In this chapter, we proposed a novel framework for NIDSs that has implied GNN to learn from

the multi-edge features as well as the hidden patterns of the graph structure for the detection

of attacks.

• The proposed GNN framework for NIDS advances existing approaches by addressing the

challenge of multi-edge classification and incorporating multi-dimensional edge features.

This allows for a more comprehensive representation of network traffic relations, enabling

the model to capture the complete exchange of information between any pair of nodes.

• Incorporating both spectral and spatial convolution methods in the GNN-based NIDS

framework facilitates effective learning of the spectral and spatial characteristics of un-

derlying graph geometry. This approach mitigates the over-smoothing issue and improves

the model’s ability to detect anomalous behavior in network traffic.

• The improved network graph structure significantly enhances the detection capabilities of

the proposed GNN-based NIDS framework by capturing the full communication between

nodes without any leaky information. Experimental results demonstrate the effectiveness

of the proposed approach, showing performance improvement across all metrics compared

to existing models.

75

Chapter 5

GNN-based Sequential Network Traffic

Analysis for Botnet Detection

5.1 Introduction

With the expansion of Internet of Things (IoT) ecosystem, it is foreseen that a substantial

portion—approximately 52%—of these devices will comprise low-cost and low-maintenance

massive IoT devices, which can perform simple tasks and lack the ability to run complex real-

time algorithms for attack detection and prevention [108]. As a consequence, IoT devices are

frequently vulnerable to attackers [109]–[111], with Denial of Service (DoS) attacks being a

common type, accounting for approximately 20% of all attacks targeting the IoT [112]. With

the rapid growth of IoT systems, the threat landscape has witnessed a surge in emerging bot-

net attacks, posing significant challenges to Intrusion Detection Systems (IDS). Conventional

deep learning and machine learning techniques, while effective in certain domains, have strug-

gled to effectively capture the intricate patterns and dynamics of IoT botnet attacks due to

the absence of inherent graph-like structures in their methodologies. However, Graph Neural

Networks (GNNs) [113] have emerged as a promising solution for structured data analysis in

various domains, such as social media and recommendation systems, enabling the exploitation

of underlying graph structures in data representations. Given that network traffic inherently

possesses underlying topology, it can be naturally expressed as nodes and edges, leveraging

network flow information for improved botnet detection. GNNs are particularly well-suited for

this task, as they excel in capturing and learning from graph-structured data, allowing for a

76

more comprehensive representation of complex and interconnected network behavior.

One of the key advantages of GNNs in botnet detection lies in their ability to handle the

sequential nature of botnet attacks. Botnets often exhibit dynamic and evolving behaviors

over time, which conventional methods struggle to model effectively. GNNs, however, can

inherently capture temporal dependencies by aggregating information from neighboring nodes

in sequential order. This sequential nature of botnet attacks can be depicted in the architecture

of GNNs, facilitating the detection of sophisticated and evasive botnet activities in real-time

network traffic. The incorporation of GNNs into the domain of botnet detection opens up

promising strategies for enhanced accuracy and adaptability, which otherwise are crucial in

countering ever-evolving cyber threats in IoT networks.

In this chapter, we propose a novel sequential Gated Graph Convolutional Neural Network

(GGCN) framework specifically designed for botnet detection in IoT network environments

that takes sequential network flows as input and learns the relation between them using Gated

mechanism. By harnessing the capabilities of GNNs in representing network traffic as graph

structures and handling the sequential dynamics of botnet attacks, we aim to improve the

accuracy and efficiency of attack detection in emerging IoT botnet threats.

The proposed GGCN architecture allows the model to iteratively update and refine node embed-

dings based on information propagated from neighboring nodes and edge attributes representing

network traffic, enabling a deeper understanding and analysis of sequential network behavior.

The proposed intrusion detection model presents the key contributions aimed at enhancing

botnet detection in IoT network environments as below:

• We propose a time-stamped multi-edge graph structure representing network traffic flows

provided by edge attributes, enabling to discern the temporal dynamics of bot network.

This unique feature enables the model to uncover hidden patterns and dependencies in

the data, leading to more accurate and timely detection of sophisticated botnet activities.

• We propose a sequential graph learning framework that comprises of time-sequenced edges

and features in a multi-edged graph structure, and a two-layered gated graph model with

modified message-passing layers and aggregation functions to effectively handle time-series

traffic characteristics. This novel design provides the model with a deeper understanding

of relation of edges in time underlying network topology. By efficiently capturing complex

dependencies and patterns in the graph data, our model can better distinguish different

77

types of attacks and make accurate predictions.

We demonstrate the efficacy of our approach in capturing the intricacies of botnet behavior

and its superiority over conventional deep learning and machine learning techniques for IoT

botnet detection through extensive experimental evaluations on diverse datasets. Our work

contributes to the growing body of research on applying GNNs to cybersecurity and reinforces

the significance of topology-aware approaches in combating the evolving landscape of cyber

attacks.

This study diverges from our earlier research endeavors, where we introduced various graph

structures for NIDS in IoT networks. For instance, in [114], we integrated both node and

edge attributes within a directed graph structure. Each node represented an application layer

process through the combination of IP:Port# pairs, while edge attributes conveyed network

layer characteristics and node attributes captured application layer attributes. In [115], we

escalated the intricacy of the graph structure to encompass multi-edges with multi-dimensional

edge features. Here, IoT devices were portrayed as nodes, and inter-node communication was

depicted through multiple edges, each possessing corresponding features. In this contribution,

we propose a temporal sequencing of multiple edges to capture the sequential dynamics of

botnet attacks. Additionally, we extend the original GGCN layers to encompass temporally

sequenced multiple edge features within the message passing and aggregation mechanisms.

The research questions are as follows.

• How does the sequential nature of attacks manifest in graph structures, and what are the

key temporal patterns and dependencies that characterize these attacks?

• What methodologies can be employed to represent the sequential dynamics of attacks in

graph structures, considering both node and edge attributes, to create a sequential graph?

• How do different graph-based models, such as GGCNs, perform in capturing the sequential

nature of attacks and detecting anomalous behavior in network traffic represented as

sequential graphs?

78

5.2 Related Work

In recent times, various GNN architectures have been employed for network-related tasks, par-

ticularly in the context of IDS and anomaly detection. In [66], the authors propose a deep

learning-based NIDS using a newly emerging graph neural network. They generate a net-

work flow graph where information is passed on the edges, modifying the original GraphSage

by incorporating an edge aggregate function and using Softmax for prediction during back-

ward propagation. The results demonstrate that their GraphSage-based NIDS outperforms

non-GNN approaches in four out of six datasets. Similarly, in [67], the focus is on designing

graph representations of network flows to capture meaningful structural flow patterns, aiming

to develop robust and accurate NIDS. They propose a message-passing function for efficient

learning from host connection graphs. Evaluation on the CIC-IDS2017 dataset reveals that the

proposed GNN model maintains baseline accuracy even when subjected to artificially altered

traffic flows, whereas other models show degraded performance. In [68], the authors propose

a graph-based distributed anomaly detection scheme for monitoring the entire Multi-Agent

System (MAS) framework. They construct a graph structure by transforming flow-level in-

formation into node-level representation. Finally, in [70], the authors propose a Peer-To-Peer

(P2P) botnet detection framework utilizing node and topological features. However, the exper-

imental results show a high False Positive Rate (FPR), indicating a need for improvement in

the model’s performance. Overall, these studies demonstrate the potential of GNN-based ap-

proaches in network Traffic analysis for intrusion detection. While they show promising results,

challenges related to sequential attacks, multi classification need further exploration.

The existing literature consists of machine and deep learning approaches for the sequential

network traffic analysis. In [82], a pre-trained CNN model is employed to extract features from

processed data streams. An optimized deep autoencoder (DAE) is used to capture temporal

changes in the surveillance stream’s actions. They then trained their model using a quadratic

SVM to classify human activities. In another study [83], Recurrent neural networks (RNN) is

used to learn from the previous time-steps in the datasets. A deep learning model based on

LSTM (Long Short-Term Memory) and FCN (Fully Connected Network) is designed for a multi-

classification of malicious connections in intrusion datasets. in [88], Gray Wolves Optimization

(GWO) algorithm in conjunction with a wrapper feature selection technique is used to optimize

the binary feature space. They introduced time-variant transfer function that adapts GWO for

79

enhanced botnet detection accuracy in IoT environments. A novel LSTM-CNN-based method

is introduced in [84] for insider threat detection. The method involves initial extraction of

temporal behavioral features by feeding single-day user action sequences into the LSTM model.

Subsequently, the extracted features are transformed into fixed-sized feature matrices, which are

then used in a CNN-based classification model for the final detection of insider threats. In [85],

a Gated Recurrent Unit based on Bidirectional Weighted Feature Averaging (GRU-BWFA)

classifier is designed for effectively detecting Distributed Denial of Service (DDoS) attacks and

capturing the time series events.

Recent papers have explored the integration of GNNs in botnet detection tasks due to their

ability to capture botnet topology. In this study [78], an end-to-end data-driven approach is

utilizing GNNs to detect Peer-To-Peer (P2P) botnets. To comprehensively evaluate the auto-

mated detection method, synthetic or real botnet topologies are overlaid with diverse commu-

nication patterns on large-scale real background traffic graphs, generating datasets for analysis.

In [86], a method BD-GNNExplainer (GNN-based botnet detection) is proposed to evaluate the

trustworthiness of GNN-based botnet detection models. BD-GNNExplainer extracts the most

contributing data to the GNN’s decision, quantifying a score that expresses interpretability, ul-

timately guiding model optimization and providing a guideline to enhance the understandability

of the botnet detection methodology. In another paper [87], a GNN based botnet detection

model is proposed to overcome over-smoothing issue and enhance network forensics. Further-

more, GNNExplainer and saliency maps are integrated to identify suspicious network flows

and botnet nodes, enhancing the transparency and interpretability of the detection process for

automatic network forensics – features that are lacking in existing botnet detection literature.

The related work in botnet detection using GNNs has demonstrated notable advancements

in capturing graph patterns and improving detection accuracy. However, a significant gap in

the existing literature lies in the lack of exploration regarding the utilization of Gated Graph

Convolution neural network for detecting botnets in network traffic. It is a powerful variant of

GNN that excels in capturing the sequential nature of botnet activities, which is essential for

detecting dynamic and evolving botnet behaviors in real-time network traffic. This specific gap

in the research indicates an unexplored avenue to leverage the sequential information inherent in

botnet activities through Gated GNN based models. By introducing into the botnet detection

domain, the interoperability and effectiveness of the botnet detection process can improve,

leading to more robust and efficient methods for combating evolving botnet threats in dynamic

80

IoT network environments.

Figure 5.1: Proposed GGCN Model: Textual representation (left) and visual representation

(right). The GGCN integrates graph convolutional layers with gated graph attention mecha-

nisms to capture local and global graph structures effectively. Directional arrows illustrate the

data flow through the framework’s stages.

5.3 The Proposed Framework

This section presents a detailed description of the proposed GNN-based botnet detection. Our

proposed system incorporates a time-series multi-edged-graph structure and a GGNN model for

learning the complex patterns in time and underlying topology, thus paving ways for enhanced

botnet detection. The overall framework comprises three stages, namely, Data Preprocessing,

Graph Construction, Proposed Model and the Output, as illustrated in Fig.5.1. Table 5.1

81

summarizes the notations and their definitions used in the chapter.

Notation Definition

A The adjacency matrix

E The set of edges

|E| The number of edges

eijr The r-th edge from vi to vj

FV The node feature matrix

FE The edge feature matrix

Gm The multigraph

Nvi The multi-edge neighborhood of node vi

Rij Total number of edges from vi to vj.

U Non-linear activation function

V The set of nodes

|V| The number of nodes

W gru The GRU weight matrix

Table 5.1: Notations used in the chapter and their definitions

5.3.1 Data Preprocessing

The data pre-processing utilizes existing knowledge and techniques to streamline the proposed

research process and build on previous work [76], [114], [115]. Additionally, the datasets are

converted into time series Firstly, the source and destination IP addresses are transformed

into small integer values replacing each unique IP address with a unique integer to save the

computational load due to long IP addresses originally present in the dataset and to make the

learning process independent of the fixed IP addresses. Data is then cleansed from Null and

Nan values to avoid ambiguity due to unknown values. The feature encoding is done using a

categorical encoder for the categorical features, and a standard scalar for the numerical features

in order to normalize them. The dataset is now ready to be moved into stage 2 of the proposed

framework.

82

5.3.2 Graph Construction

To model an IoT communications graph containing botnet traffic, we construct a multi-graph

Gm to represent the topology of an IoT network. The graph comprises nodes V representing IoT

devices and edges ET representing device communication at time T = [t0, t1, . . . , tT]. Formally,

we define Gm = (V , ET , FV , FET), where V = (v1, . . . , vN) is a set of N IoT nodes identified

by their IP addresses, and ET = {eijr} collects r ∈ [1, Rji]
T number of edges representing

network flows between pairs of IoT nodes over time, and Rji is the maximum number of edge.

The network flows in ET are time-series, capturing the temporal dynamics of communications

between devices.

Let FV and FE denote the feature matrices associated with nodes and edges, respectively, to

characterize their properties within the constructed graph. The feature matrix FV is N × K

dimensional (FV ∈ RN×K), where K represents K-dimensional node features. The feature

matrix FET represents the edge features of the sequential network flows and has dimensions of

|ET | × K (FET ∈ R|ET |,K). Here, | · | denotes the cardinality of the multi-edge set ET , and K

represents the number of features associated with each edge. Specifically, the features of edge

eijr are collected in the matrix Feijr ∈ R1,K . In contrast, the node features are represented by

matrices of all ones, matching the dimensions of the edge features, which ensures consistent

dimensions and preserves the significance of edge feature values, such as traffic flows, during the

graph embedding process. In this representation, the graph Gm captures the evolving nature of

IoT device communication by incorporating time series network flows, while the feature matrix

FET provides additional information about the characteristics and properties of time-series edges

in the IoT network.

The adjacency matrix A of a multigraph Gm is an N × N -dimensional matrix. The matrix

elements correspond to the multiplicity of existing edges over time. For the element at the i-th

row and j-th column, aij, the following conditions apply: If there is no edge from node vi to vj

at any time step, i.e., eijr /∈ ET for all r ∈ [1, Rji]
T , then aij = 0. If there are Rij edges from

node vi to vj over time, then aij = Rij. Furthermore, the multi-edge neighborhood of node vi,

denoted by N vi, is defined as the set of all nodes connected to vi through any of its edges and

can be expressed as Nvi = {vj|eijr ∈ ET}, where r ∈ [1, Rji]
T .

This graph considers the time series nature of the edge features in the adjacency matrix A,

capturing the evolving connectivity patterns of the multigraph Gm over multiple time steps.

83

5.3.3 Proposed GNN Model

The key feature of the proposed botnet detection model is its ability to cater for time-series

traffic characteristics in its architecture with modified message-passing layers and aggregation

functions. We propose a graph structure that depicts a time series of network flows and a novel

GGCN architecture with improved message passing mechanism to include sequential multi-

edged features in the proposed GNN model as given in Algo. 3. Our model effectively exploits

the underlying topology of network traffic, represented as nodes and edges, to address the

unique challenges of botnet detection in IoT environments. This sequential analysis aligns well

with the inherent nature of botnet activities in network traffic.

The proposed botnet detection model comprises two GGCN layers to learn the meaningful

representations from the underlying topology, and the sequential relationships in edges by

considering the corresponding edge features. The layered architecture of the proposed GGCN

model is illustrated in Fig. 5.1 and is expressed as:

Gm(Fv, FET ,A) = AFVFETU (AFVFETW
gru
1)W gru

2 , (5.1)

where, W gru
1 and W gru

2 are the weight matrices of the hidden layers 1 and 2, respectively, and

are trained using the gradient descent. W gru
1 ∈ RK,H1 , and, K is the dimension of node and edge

features and H1 is the dimension of the first hidden layer. Similarly, W gru
2 ∈ RH1,O2 , and, O3 is

the dimension of the third layer. A is the sparse adjacency matrix and can be represented as

A ∈ RKN×2KN . A belongs to the set of real numbers (R) and has a shape of KN × 2KN . U

denotes a non-linear activation function, i.e., ReLU [92]. For a matrix H, ReLU can be given

by

ReLU(H) = max(0,H)

i.e.,

ReLU(Hij) = max(0, Hij) =

Hij, if Hij > 0

0, if Hij < 0.

(5.2)

Equation (5.1) summarizes the forward pass of two-layered GGNN propagation that takes as

input the node features FV , adjacency matrix A and, the time dependent edge features FET .

In the first layer, the proposed model learns from the underlying graph structure and network

84

traffic information by concatenating the features of neighboring nodes and the corresponding

edge features, and passes them through a linear layer. The aggregated messages are combined

with the current node embeddings using a Gated Recurrent Unit (GRU) cell. This process

iterates until the desired number of layers is reached. The number of layers in the GGCN

determines the depth and complexity of the model’s architecture. Each layer allows the network

to iteratively update and refine the node embeddings based on the information propagated from

neighboring nodes and the edge attributes representing network traffic. The activation function

U (e.g., ReLU) applied in the first layer helps introduce non-linearity and capture complex

relationships in the data. In the second layer, both the updated node features from the first layer

and the edge features continue to contribute to the overall graph embedding. The edge features

contain information about the relationships and attributes associated with the connections

between nodes, such as network traffic patterns or communication characteristics. These edge

features provide additional context and fine-grained details to refine the node embeddings. The

node features, on the other hand, are set as all ones. They may act as a bias or constant

term during the graph convolution operations. Combining the updated node features and

edge features in the second layer allows the GGCN to capture and integrate both the global

graph structure and the local edge-level information. Since the edge attributes contain time-

dependent information (e.g., time-stamped network traffic flows), the model can capture the

temporal dynamics of the network. Overall, the model can learn representations that capture

the complex interplay between nodes and their connections, enhancing its ability to understand

and analyze sequential network behavior.

85

Algorithm 3: Sequential GGCN Algorithm
Input: Graph Gm
Multi-edge adjacency matrix A

Node features matrix FV

Edge features FET

Output: Edge embedding zijr, ∀eijr ∈ ET

▷Initialization

1 h̃vi ← Fvi , ∀vi ∈ V

2 z̃ijr ← Feijr , ∀eijr ∈ ET

▷Node Embedding

3 for ∀vi ∈ V do

4 h̃vi
← h̃vi

∥0

5 for l ∈ num.layers do

6 for ∀vj ∈ Nvi

⋃
vi and r ∈ [1, Rji]

T do

7 m
(l)
vi ← ϕ(z̃

(l)
ijr∥h̃

(l)
vj)

8 h̃
(l)
vi ← GRU(m

(l)
vi , h̃

(l)
vi)

9 Apply dropout: h̃
(l)
vi ← Dropout(h̃

(l)
vi , 0.3)

▷Edge Embedding

for ∀vi ∈ V do

for r ∈ [1, Rji]
T do

z̃ijr ← MLP(h̃vi ∥ h̃vj)

return zijr

The input of Algo. 3 consists of a multi-edge graph Gm with node features FV set to all ones

{1, . . . , 1} for each node and edge features FET to Rij parallel edge features. Steps 1 and 2 are

the initialization steps and copy node and edge features into the first hidden states.

The node embedding spans Step 3 through to Step 8. In Step 4, the node features are combined

with a zero vector to initialize the hidden states for all the nodes in the graph. Then, in Steps 7

and 8, the proposed model iterates over the specified number of layers to create messages m
(l)
vi for

all the nodes and multiple edges in the graph. In each layer, the node features are transformed

using a weight matrix, followed by message passing and aggregation operations. The message

passing in Step 7 concatenates the features of neighboring nodes and the corresponding edge

features, and passes them through a linear layer. The aggregated messages are combined

with the current node embeddings using a GRU cell as shown in Step 8. The hidden states

are updated using the GRU operation, incorporating both the aggregated messages and the

86

previous hidden states in Step 9. This process iterates until the desired number of layers

(num.layers) is reached to capture complex dependencies and patterns in the graph data.

Step 9 applies dropout technique [91] between two GGCN layers in order to remove overfitting

during the learning process.

The edge embeddings are retrieved from the concatenation of neighbouring node embeddings

as shown in Steps 11 and 12, that returns all edges between them and, MLP [102] is applied to

learn more expressive and informative representations of edges. This transformed representation

of the edge features is utilized for edge classification tasks. The MLP captures higher-level

features and interactions between the connected nodes, which provides valuable information for

distinguishing different types of edges or making predictions about their properties or labels.

5.3.4 Performance Evaluation Metrics

The multi-classification task at hand is effectively tackled by the proposed model. To assess the

model’s performance in detecting attacks, the evaluation comprises of the following classification

metrics:

• Accuracy: This metric quantifies the proportion of accurately classified observations

among all the data instances.

• Precision: This metric quantifies the precision of the model in accurately predicted

positive instances out of all the instances predicted as positive.

• Recall: This metric quantifies the ratio of correctly predicted True Positives by a model

among all the actual positive instances.

• F1-Score: The F1-Score is a metric that combines Precision and Recall, commonly

utilized in scenarios involving imbalanced data.

• False Alarm Rate (FAR): The False Alarm Rate is a metric that evaluates the number

of normal data points that are incorrectly classified as malicious.

5.3.5 Datasets

The evaluation of the proposed model involves the utilization of two prominent datasets, namely

BoT IoT [103] and Mirai [116]. These datasets hold significant prominence in the domain of

botnet detection considering IoT network traffic.

87

Figure 5.2: A graph showing categories of network traffic instances and their count in Mirai

dataset.

The Mirai [116] dataset comprises multiple classes of network traffic instances, with Normal

traffic representing the majority at 136,488 instances. It also includes instances of ACKFlood-

ing (75,632), SYNFlooding (64,646), and HTTPFlooding (10,464), each showcasing distinct

patterns of network activity as shown in Fig. 5.2. This distribution offers an opportunity to

explore and analyze various types of IoT network flooding attacks, along with a substantial rep-

resentation of normal traffic, facilitating the development and evaluation of effective intrusion

detection strategies.

Figure 5.3: A graph showing categories of network traffic instances and their count in BoT IoT

dataset.

The BoT IoT [103] dataset comprises diverse classes of network traffic instances, including

576,884 instances of DDoS attacks, 91,082 instances of Reconnaissance activities, 477 instances

classified as Normal traffic, and 79 instances categorized as Theft events as shown in 5.3.

This distribution showcases the prevalence of DDoS attacks and Reconnaissance activities,

while highlighting the relatively limited occurrence of Normal and Theft classes. This dataset

provides a valuable opportunity to explore the detection and classification of botnet attacks in

88

IoT traffic, with a focus on modeling sequential patterns and capturing the nuanced behavior

of different attack types.

5.3.6 Experimental Setup

Prior to model evaluation, the datasets undergo preprocessing and transformation into multi-

edged graphs. Each graph is enriched with nodes, edges, and associated features. Comprehen-

sive details pertaining to each knowledge graph, including dataset sizes prior to knowledge graph

construction, are tabulated in Table 5.2. To facilitate the evaluation process, the knowledge

graphs are mapped to split the edges, allocating 70% for training and the remaining 30% for

testing. The experiments are conducted on Google Colab, employing server specifications en-

Datasets Total Data No. of Nodes No. of Edges Ratio

Mirai [116] 201061 11536 201061 7:3

BoT IoT [103] 659363 84 659363 7:3

Table 5.2: Dataset description in terms of total data entries, number of malicious and normal

data entries, and the no. of nodes and edges in each graph.

compassing an Intel(R) Xeon(R) CPU @ 2.00GHz, Python version 3.10.12, Pytorch Geometric

version 2.4.0, and CUDA 118.

5.3.7 Results and Discussion

We begin by presenting the results of our analysis focused on binary classification. This involves

distinguishing between normal attacks and malicious network activity. Next, we extend the

experiment derive results from our experiments involving multiclass classification. Here, the

focus shifts to identifying various specific types of attacks associated with each network flow.

Binary Classification results

Table 5.3 showcases the performance achieved by our proposed GGCN model as binary classifier

by comprehensively displaying the results of each metric for the two benchmark datasets under

consideration. The GGCN model demonstrates remarkable performance on the Mirai dataset,

achieving an accuracy of 99.99%. This underscores its competence in distinguishing between

89

Datasets Accuracy% Precision Recall% F1-Score FPR AUC ROC

Mirai 99.99 0.9999 99.99 0.9999 0.0001 1.00

BoT IoT 99.25 0.9993 99.25 0.9956 0.0075 1.00

Table 5.3: Performance evaluation of the proposed GGCN as a binary classifier.

benign and malicious network activities. The model achieves high precision and recall rates of

0.9999 and 99.99%, respectively, along with F1-Score of 0.9999 with an FPR of 0.0001. The

results indicate model’s robustness in minimizing false alarms. The AUC ROC score of 1.00

substantiates its effective class discrimination. Similarly, when applied to the BoT IoT dataset,

the GGCN model maintains its efficacy as a binary classifier, achieving an accuracy of 99.25%.

It showcases precision and recall rates of 0.9993 and 99.25%, respectively, underlining its skill

in identifying true positives and capturing a substantial proportion of actual positive instances.

Although the FPR is relatively higher at 0.0075 compared to the Mirai dataset, indicating a

slightly elevated false positive tendency, the AUC ROC score of 1.00 still attests to the model’s

robust discriminatory capacity.

Figure 5.4: Performance evaluation of the proposed GGCN with other state-of-the-art GNN

models on BoT IoT dataset.

Fig. 5.4 presents results from a binary classification task comparing the proposed model and

the Multiedged model [115] on the BoT IoT dataset. The dataset, characterized by a skewed

distribution of instances across attack types. The proposed model achieves a notable accuracy

of 98.88%, showcasing its proficiency in distinguishing between normal and malicious traffic.

This accuracy underscores the model’s effectiveness in distinguishing between normal and mali-

cious traffic instances. The proposed model achieves a notable accuracy of 98.88%, showcasing

90

its proficiency in distinguishing between normal and malicious traffic. Precision, recall, and

F1-Score values for the proposed model are consistently high, standing at 98.97%, 98.88%, and

98.90%, respectively. While the Multiedged model outperforms in terms of accuracy, it is es-

sential to recognize that the proposed model’s performance metrics are strong and competitive.

Further investigation and potential fine-tuning may reveal insights into enhancing the proposed

model’s accuracy, aiming to close the performance gap of 1.08% with the Multiedged model in

the binary classification.

Figure 5.5: Performance evaluation of the proposed GGCN with other state-of-the-art GNN

models on Mirai dataset.

Fig. 5.5 presents the comparative analysis on the Mirai dataset. The proposed model demon-

strates a superior overall performance. With an accuracy of 80.40%, outperforming the Mul-

tiedged model, which achieves an accuracy of 74.58%. The precision of the proposed model

(81.21%) is also higher than that of the Multiedged model (79.17%), indicating a better ability

to correctly classify instances, while the recall of the proposed model (80.40%) surpasses that

of the Multiedged model (74.58%), highlighting a stronger capability to capture instances of

interest.

Furthermore, the F1-Score of the proposed model (78.87%) underscores its balanced precision

and recall, surpassing the Multiedged model’s F1-Score of 73.88%.

In the context of capturing the sequential nature of attacks, the proposed model exhibits

enhanced performance metrics, indicating its effectiveness in discerning nuanced patterns within

the Mirai dataset. This comparative analysis supports the proposition that the proposed model,

with its numerical superiority, is better suited for capturing the sequential attack nature in the

context of IoT network traffic, outperforming the Multiedged model in this specific task.

91

Multiclass Classification results

Datasets Accuracy % Precision F1-Score Recall % FAR

BoT IoT 98.86 0.9895 0.9888 98.86 0.0114

Mirai 76.70 0.9002 0.8170 76.70 0.2330

Table 5.4: Performance evaluation of the proposed GGCN as a multiclassifier.

Table 5.4 shows that our botnet detection model on shows promising performance on different

datasets. For the BoT IoT dataset, the GNN model achieves an accuracy of 98.86%, indicating

that it can accurately classify normal and different attack types in the network traffic data.

The precision of 0.9895 indicates that the model has a high ability to correctly identify true

positive instances among the predicted positive cases. The F1-score of 0.9888 suggests a good

balance between precision and recall. The recall of 98.86% indicates that the model effectively

captures true positive instances. However, the False Alarm Rate (FAR) of 0.0114 shows that

there is still a small proportion of false positive predictions.

Our model achieves an accuracy of 76.70% on Mirai dataset. The precision of 0.9002 suggests

that the model identifies a considerable number of true positive instances. The F1-score of

0.8170 indicates a trade-off between precision and recall. The recall of 76.70% indicates that

the model captures a significant portion of true positive instances. The relatively high FAR of

0.2330 indicates a proportion of false positives in the predictions.

5.4 Conclusion

In this chapter, we have proposed a novel intrusion detection model to enhance botnet detection

in IoT network environments. The key contributions of our research lie in the following aspects:

• We introduced a sequential architecture with modified message-passing layers and aggre-

gation functions, enabling effective time-series traffic analysis. This capability allows our

model to capture and analyze the temporal dynamics of network flow data, leading to

real-time detection of dynamic and evolving botnet behaviors.

92

• We developed a GGCN architecture with multi-edge features, providing the model with

a deeper understanding of the underlying multi-graph structure of the network topology.

By efficiently capturing complex dependencies and patterns in the graph data, our model

can better distinguish different types of edges and make accurate predictions.

• Our model effectively leverages GGCN’s superior capability in handling graph-structured

data, specifically addressing the unique challenges of botnet detection in IoT environ-

ments. The sequential analysis aligns well with the inherent nature of botnet activities

in network traffic.

• We incorporated temporal dependency modeling, utilizing time-stamped network traffic

flows from edge attributes to discern the temporal dynamics of the network. This unique

feature enables our model to uncover hidden patterns and dependencies in the data,

leading to more accurate and timely detection of sophisticated botnet activities.

• Extensive evaluations demonstrated that our GGCN-based intrusion detection model out-

performs traditional deep learning and machine learning approaches, achieving higher ac-

curacy and precision in detecting botnet attacks. Overall, our proposed model presents a

robust and efficient solution for sequential botnet detection in IoT networks, contributing

to enhancing the security and resilience of IoT environments.

93

Chapter 6

Conclusion and Future Works

6.1 Conclusion

In conclusion, this thesis set out to explore the potential of GNNs as a non-conventional deep

learning technique for enhancing IDS. The research objectives were achieved through a compre-

hensive investigation into the limitations of conventional machine learning and deep learning

techniques in capturing network topology information and the evaluation of GNNs’ capabilities

to address these challenges.

The findings of this study reveal that conventional techniques often fall short in effectively cap-

turing the intricate network topology crucial for robust intrusion detection. In contrast, GNNs

demonstrated their suitability by leveraging graph structures designed to represent the nature

of intrusion detection problems. The developed GNN-based architectures showed promising

performance improvements in accurately detecting intrusions and adapting to diverse intrusion

patterns on benchmark datasets. The comparative analysis against conventional techniques

demonstrated the superiority of GNNs in handling network topology and addressing the intri-

cacies of intrusion detection.

Overall, the significance of this research lies in its contribution to advancing the field of intrusion

detection, offering valuable insights into the potential of Graph Neural Networks as the next

generation of IDS models. The demonstrated effectiveness, scalability, and interpretability of

GNN-based solutions provide practitioners and researchers with a promising framework for

developing more accurate and adaptive intrusion detection systems, ultimately strengthening

94

cybersecurity measures in an increasingly interconnected and vulnerable digital landscape.

6.2 Future Works

There are several avenues for future work and research that can further enhance and extend

the findings of this thesis.

1. Enhanced Graph Representation: Investigate advanced techniques to improve the rep-

resentation of network data as graphs. This could involve incorporating temporal in-

formation, handling dynamic and evolving networks, and exploring graph augmentation

strategies to handle missing or noisy data effectively.

2. Heterogeneous Graphs: Explore the application of GNNs on heterogeneous graphs, where

nodes and edges may have different types and attributes. Develop techniques to handle the

complexity of diverse network entities and relationships in intrusion detection scenarios.

3. Transfer Learning and Few-shot Learning: Investigate techniques for transferring knowl-

edge from well-labeled datasets or adapting GNN-based NIDS to new, unseen network

environments with limited labeled data. Few-shot learning approaches could be explored

to train the model with minimal samples from new attack types.

4. Adversarial Robustness: Evaluate the robustness of GNN-based NIDS against adversarial

attacks, developing defense mechanisms to mitigate the impact of adversarial perturba-

tions and ensuring the reliability of the system in real-world settings.

5. Federated Learning for Distributed NIDS: Explore the application of federated learning

to train GNN-based NIDS across multiple distributed network devices or organizations,

enabling collaborative intrusion detection while maintaining data privacy.

6. Combination with Traditional Techniques: Investigate the integration of GNN-based

NIDS with traditional signature-based or anomaly-based detection methods to create

hybrid systems that leverage the strengths of both approaches.

95

Bibliography

[1] E. Bertino, K. K. R. Choo, D. Georgakopolous, and S. Nepal, “Internet of things (IoT):

Smart and secure service delivery,” ACM Transactions on Internet Technology, vol. 16,

no. 4, pp. 1–8, 2016, issn: 15576051. doi: 10.1145/3013520.

[2] H. Ahmetoglu and R. Das, “A comprehensive review on detection of cyber-attacks: Data

sets, methods, challenges, and future research directions,” Internet of Things, vol. 20,

p. 100 615, 2022, issn: 2542-6605. doi: https://doi.org/10.1016/j.iot.2022.

100615.

[3] A. Thakkar and R. Lohiya, A Review on Machine Learning and Deep Learning Per-

spectives of IDS for IoT: Recent Updates, Security Issues, and Challenges. Springer

Netherlands, 2021, vol. 28, pp. 3211–3243, isbn: 0123456789. doi: 10.1007/s11831-

020-09496-0.

[4] T. Altaf and R. Braun, “A roadmap to smart homes security aided sdn and ml,” in

2022 5th Conference on Cloud and Internet of Things (CIoT), 2022, pp. 129–136. doi:

10.1109/CIoT53061.2022.9766525.

[5] X. Wang, K. Zheng, X. Niu, B. Wu, and C. Wu, “Detection of command and control

in advanced persistent threat based on independent access,” in 2016 IEEE Interna-

tional Conference on Communications (ICC), 2016, pp. 1–6. doi: 10.1109/ICC.2016.

7511197.

[6] C. Wu, K. Zheng, X. Wang, X. Niu, and T. Lu, “Computing adaptive feature weights

with pso to improve android malware detection,” in Security and Communication Net-

works, 2017, p. 14. doi: 10.1155/2017/3284080.

[7] H. Yixun, K. Zheng, X. Wang, and Y. Yang, “Worm-hunter: A worm guard system

using software-defined networking,” in KSII Transactions on Internet and Information

Systems, vol. 11, 2016. doi: 10.1155/2017/3284080.

96

[8] X. Wang, K. Zheng, X. Niu, B. Wu, and C. Wu, “Detection of command and control

in advanced persistent threat based on independent access,” in 2016 IEEE Interna-

tional Conference on Communications (ICC), 2016, pp. 1–6. doi: 10.1109/ICC.2016.

7511197.

[9] W. Li, T. Logenthiran, V. T. Phan, and W. L. Woo, “Implemented IoT-based self-

learning home management system (SHMS) for Singapore,” IEEE Internet of Things

Journal, vol. 5, no. 3, pp. 2212–2219, 2018, issn: 23274662. doi: 10.1109/JIOT.2018.

2828144.

[10] T. Liang, B. Zeng, J. Liu, L. Ye, and C. Zou, “An unsupervised user behavior prediction

algorithm based on machine learning and neural network for smart home,” IEEE Access,

vol. 6, pp. 49 237–49 247, 2018, issn: 21693536. doi: 10.1109/ACCESS.2018.2868984.

[11] H. D. Mehr, “Human Activity Recognition in Smart Home With Deep Learning Ap-

proach,” 2019 7th International Istanbul Smart Grids and Cities Congress and Fair

(ICSG), pp. 149–153,

[12] F. D. Jivani, M. Malvankar, and R. Shankarmani, “A Voice Controlled Smart Home

Solution with a Centralized Management Framework Implemented Using AI and NLP,”

Proceedings of the 2018 International Conference on Current Trends towards Converging

Technologies, ICCTCT 2018, pp. 1–5, 2018. doi: 10.1109/ICCTCT.2018.8550972.

[13] Suraj, I. Kool, D. Kumar, and S. Barma, “Visual Machine Intelligence for Home Automa-

tion,” Proceedings - 2018 3rd International Conference On Internet of Things: Smart

Innovation and Usages, IoT-SIU 2018, pp. 1–6, 2018. doi: 10.1109/IoT-SIU.2018.

8519915.

[14] F. Elizalde, “Hype Cycle for the Connected Home , 2018,” Gartner, Tech. Rep. 30 July,

2018.

[15] P. K. Sharma, J. H. Park, Y. S. Jeong, and J. H. Park, “SHSec: SDN based Secure

Smart Home Network Architecture for Internet of Things,” Mobile Networks and Ap-

plications, vol. 24, no. 3, pp. 913–924, Jun. 2019, Publisher: Springer New York LLC,

issn: 15728153. doi: 10.1007/s11036-018-1147-3.

[16] M. Serror, M. Henze, S. Hack, M. Schuba, and K. Wehrle, “Towards in-network security

for smart homes,” ACM International Conference Proceeding Series, 2018. doi: 10.

1145/3230833.3232802.

[17] B. Krebs. “Mirai botnet.” Accessed: [Insert Date]. ().

97

[18] Radware. “Brickerbot: The iot kill switch that ensures your devices stay off.” Accessed:

[Insert Date]. ().

[19] “Alert (ta18-145a) - russian state-sponsored cyber actors targeting network infrastruc-

ture devices.” Accessed: [Insert Date], US-CERT. ().

[20] “Trickbot targets iot devices.” Accessed: [Insert Date], Dark Reading. ().

[21] “Ripple20.” Accessed: [Insert Date], JSOF. ().

[22] A. Alelaiwi, M. M. Hassan, and M. Z. A. Bhuiyan, “A secure and dependable connected

smart home system for elderly,” Proceedings - 2017 IEEE 15th International Confer-

ence on Dependable, Autonomic and Secure Computing, 2017 IEEE 15th International

Conference on Pervasive Intelligence and Computing, 2017 IEEE 3rd International Con-

ference on Big Data Intelligence and Compu, vol. 2018-Janua, pp. 722–727, 2018. doi:

10.1109/DASC-PICom-DataCom-CyberSciTec.2017.126.

[23] A. Algarni, “A Survey and Classification of Security and Privacy Research in Smart

Healthcare Systems,” IEEE Access, vol. 7, pp. 101 879–101 894, 2019, issn: 2169-3536.

doi: 10.1109/access.2019.2930962.

[24] M. Talal, A. A. Zaidan, B. B. Zaidan, et al., “Smart Home-based IoT for Real-time and

Secure Remote Health Monitoring of Triage and Priority System using Body Sensors:

Multi-driven Systematic Review,” Journal of Medical Systems, vol. 43, no. 3, 2019, issn:

1573689X. doi: 10.1007/s10916-019-1158-z.

[25] U. Mustafa, E. Pflugel, and N. Philip, “A Novel Privacy Framework for Secure M-Health

Applications: The Case of the GDPR,” Proceedings of 12th International Conference on

Global Security, Safety and Sustainability, ICGS3 2019, pp. 1–9, 2019. doi: 10.1109/

ICGS3.2019.8688019.

[26] Y. Hamouda, “Optimal home energy management for smart home using random bit

climbing,” 2019.

[27] A. Srinivasan, K. Baskaran, and G. Yann, “IoT Based Smart Plug-Load Energy Conser-

vation and Management System,” 2019 IEEE 2nd International Conference on Power

and Energy Applications (ICPEA), pp. 155–158, 2019. doi: 10.1109/icpea.2019.

8818534.

[28] H. Lin and N. W. Bergmann, “IoT privacy and security challenges for smart home

environments,” Information (Switzerland), vol. 7, no. 3, 2016, issn: 20782489. doi: 10.

3390/info7030044.

98

[29] P. Langley and J. G. Carbonell, Approaches to machine learning. 1984, vol. 35, pp. 306–

316, isbn: 9781119454953. doi: 10.1002/asi.4630350509.

[30] H. Huang, Z. Fang, X. Wang, Y. Miao, and H. Jin, “Motif-preserving temporal network

embedding,” IJCAI International Joint Conference on Artificial Intelligence, vol. 2021-

Janua, pp. 1237–1243, 2020, issn: 10450823. doi: 10.24963/ijcai.2020/172.

[31] M. K. Asif, T. A. Khan, T. A. Taj, U. Naeem, and S. Yakoob, “Network Intrusion

Detection and its strategic importance,” BEIAC 2013 - 2013 IEEE Business Engineering

and Industrial Applications Colloquium, pp. 140–144, 2013.

[32] D. E. Denning, “An intrusion-detection model,” in IEEE Symposium on Security and

Privacy, 1986, pp. 118–118. doi: 10.1109/SP.1986.10010.

[33] H. Gascon, A. Orfila, and J. Blasco, “Analysis of update delays in signature-based net-

work intrusion detection systems,” Computers and Security, vol. 30, no. 8, pp. 613–624,

2011, issn: 01674048. doi: 10.1016/j.cose.2011.08.010.

[34] P. Garćıa-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anomaly-

based network intrusion detection: Techniques, systems and challenges,” Computers and

Security, vol. 28, no. 1-2, pp. 18–28, 2009, issn: 01674048. doi: 10.1016/j.cose.2008.

08.003.

[35] B. K. Mohanta, D. Jena, U. Satapathy, and S. Patnaik, “Survey on iot security: Chal-

lenges and solution using machine learning, artificial intelligence and blockchain tech-

nology,” Internet of Things, vol. 11, p. 100 227, 2020, issn: 2542-6605.

[36] K. Kaur and J. Ayoade, “Analysis of ddos attacks on iot architecture,” in 2023 10th

International Conference on Electrical Engineering, Computer Science and Informatics

(EECSI), 2023, pp. 332–337. doi: 10.1109/EECSI59885.2023.10295766.

[37] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the internet of things: A review,” in

2012 International Conference on Computer Science and Electronics Engineering, vol. 3,

2012, pp. 648–651. doi: 10.1109/ICCSEE.2012.373.

[38] M. S. E. Sayed, N.-A. Le-Khac, M. A. Azer, and A. D. Jurcut, “A flow-based anomaly

detection approach with feature selection method against ddos attacks in sdns,” IEEE

Transactions on Cognitive Communications and Networking, vol. 8, no. 4, pp. 1862–

1880, 2022. doi: 10.1109/TCCN.2022.3186331.

99

[39] Z. Cekerevac, Z. Dvorak, L. Prigoda, and P. Čekerevac, “Internet of things and the man-

in-the-middle attacks – security and economic risks,” MEST Journal, vol. 5, pp. 15–5,

Jul. 2017. doi: 10.12709/mest.05.05.02.03.

[40] J. Liu, C. Zhang, and Y. Fang, “EPIC: A Differential Privacy Framework to Defend

Smart Homes Against Internet Traffic Analysis,” IEEE Internet of Things Journal,

vol. 5, no. 2, pp. 1206–1217, 2018, issn: 23274662. doi: 10.1109/JIOT.2018.2799820.

[41] H. K. Singh, S. Verma, S. Pal, and K. Pandey, “A step towards Home Automation

using IOT,” 2019 Twelfth International Conference on Contemporary Computing (IC3),

pp. 1–5, 2019. doi: 10.1109/ic3.2019.8844945.

[42] J. J. Padmini, A. A. Selva Jothi, and R. Harikrishnan, “Advancement Of Home Appli-

ances For Home Automation Using Human Detection,” 2019 3rd International confer-

ence on Electronics, Communication and Aerospace Technology (ICECA), pp. 368–371,

2019. doi: 10.1109/iceca.2019.8822140.

[43] A. Basu, A. Nandy, M. Biswas, R. N. Sharma, and R. Biswas, “Home Automation Using

Energy Usage,” 2018 6th Edition of International Conference on Wireless Networks &

Embedded Systems (WECON), pp. 73–78, 2019. doi: 10.1109/wecon.2018.8782049.

[44] Sonia, “Recognizing Humans from Their Behavioral Patterns,” 2019 IEEE International

Conference on Pervasive Computing and Communications Workshops, PerCom Work-

shops 2019, pp. 718–721, 2019. doi: 10.1109/PERCOMW.2019.8730570.

[45] M. Garcia-Constantino, J. Beltran-Marquez, D. Cruz-Sandoval, et al., “Semi-Automated

Annotation of Audible Home Activities,” 2019 IEEE International Conference on Per-

vasive Computing and Communications Workshops, PerCom Workshops 2019, pp. 40–

45, 2019. doi: 10.1109/PERCOMW.2019.8730729.

[46] N. Koroniotis, N. Moustafa, and E. Sitnikova, “Forensics and Deep Learning Mechanisms

for Botnets in Internet of Things: A Survey of Challenges and Solutions,” IEEE Access,

vol. 7, pp. 61 764–61 785, 2019, issn: 21693536. doi: 10.1109/ACCESS.2019.2916717.

[47] S. Hou and X. Huang, “Use of Machine Learning in Detecting Network Security of Edge

Computing System,” 2019 4th IEEE International Conference on Big Data Analytics,

ICBDA 2019, pp. 252–256, 2019. doi: 10.1109/ICBDA.2019.8713237.

[48] S. Ramapatruni, S. N. Narayanan, S. Mittal, A. Joshi, and K. Joshi, “Anomaly Detection

Models for Smart Home Security,” 2019 IEEE 5th Intl Conference on Big Data Security

on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart

100

Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS),

pp. 19–24, 2019. doi: 10.1109/bigdatasecurity-hpsc-ids.2019.00015.

[49] G. Spanos, K. M. Giannoutakis, K. Votis, and D. Tzovaras, “Combining Statistical and

Machine Learning Techniques in IoT Anomaly Detection for Smart Homes,” 2019 IEEE

24th International Workshop on Computer Aided Modeling and Design of Communi-

cation Links and Networks (CAMAD), pp. 1–6, 2019, issn: 23784873. doi: 10.1109/

camad.2019.8858490.

[50] A. Sivanathan, H. H. Gharakheili, F. Loi, et al., “Classifying IoT Devices in Smart

Environments Using Network Traffic Characteristics,” IEEE Transactions on Mobile

Computing, vol. 18, no. 8, pp. 1745–1759, 2019, issn: 15580660. doi: 10.1109/TMC.

2018.2866249.

[51] S. Kennedy, H. Li, C. Wang, H. Liu, B. Wang, and W. Sun, “I Can Hear Your Alexa:

Voice Command Fingerprinting on Smart Home Speakers,” 2019 IEEE Conference on

Communications and Network Security (CNS), pp. 232–240, 2019. doi: 10.1109/cns.

2019.8802686.

[52] U. M. Aivodji, S. Gambs, and A. Martin, “IOTFLA : A Secured and Privacy-Preserving

Smart Home Architecture Implementing Federated Learning,” pp. 175–180, 2019. doi:

10.1109/spw.2019.00041.

[53] L. Cui, S. Yang, F. Chen, Z. Ming, N. Lu, and J. Qin, “A survey on application of

machine learning for Internet of Things,” International Journal of Machine Learning and

Cybernetics, vol. 9, no. 8, pp. 1399–1417, 2018, issn: 1868808X. doi: 10.1007/s13042-

018-0834-5.

[54] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine Learning in IoT Secu-

rity: Current Solutions and Future Challenges,” pp. 1–23, 2019. arXiv: 1904.05735.

[55] W. Li, W. Meng, and M. H. Au, “Enhancing collaborative intrusion detection via

disagreement-based semi-supervised learning in IoT environments,” Journal of Net-

work and Computer Applications, vol. 161, no. February, 2020, issn: 10958592. doi:

10.1016/j.jnca.2020.102631.

[56] S.-W. Lee, H. Mohammed sidqi, M. Mohammadi, et al., “Towards secure intrusion detec-

tion systems using deep learning techniques: Comprehensive analysis and review,” Jour-

nal of Network and Computer Applications, vol. 187, p. 103 111, 2021, issn: 10848045.

doi: 10.1016/j.jnca.2021.103111.

101

[57] M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K. K. R. Choo, and R. M. Parizi,

“An Ensemble of Deep Recurrent Neural Networks for Detecting IoT Cyber Attacks

Using Network Traffic,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8852–8859,

2020, issn: 23274662. doi: 10.1109/JIOT.2020.2996425.

[58] Z. E. Huma, S. Latif, J. Ahmad, et al., “A Hybrid Deep Random Neural Network

for Cyberattack Detection in the Industrial Internet of Things,” IEEE Access, vol. 9,

pp. 55 595–55 605, 2021, issn: 21693536. doi: 10.1109/access.2021.3071766.

[59] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R. Sadeghi,

“Dı̈ot: A federated self-learning anomaly detection system for iot,” 2019 IEEE 39th In-

ternational Conference on Distributed Computing Systems (ICDCS), pp. 756–767, 2018.

[60] S. M. Tahsien, H. Karimipour, and P. Spachos, “Machine learning based solutions for

security of Internet of Things (IoT): A survey,” Journal of Network and Computer

Applications, vol. 161, no. February, 2020, issn: 10958592. doi: 10.1016/j.jnca.2020.

102630. arXiv: 2004.05289.

[61] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos detection for consumer

internet of things devices,” in 2018 IEEE Security and Privacy Workshops (SPW), 2018,

pp. 29–35.

[62] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits

of deep learning,” 2020.

[63] M. Mohammadi, T. A. Rashid, S. H. Karim, et al., “A comprehensive survey and taxon-

omy of the SVM-based intrusion detection systems,” Journal of Network and Computer

Applications, vol. 178, no. January, p. 102 983, 2021, issn: 10958592. doi: 10.1016/j.

jnca.2021.102983.

[64] S. N. Mighan and M. Kahani, “A novel scalable intrusion detection system based on

deep learning,” International Journal of Information Security, no. 0123456789, 2020,

issn: 16155270. doi: 10.1007/s10207-020-00508-5.

[65] Y. Liu, S. Garg, J. Nie, et al., “Deep anomaly detection for time-series data in industrial

iot: A communication-efficient on-device federated learning approach,” IEEE Internet of

Things Journal, vol. 8, no. 8, pp. 6348–6358, 2021. doi: 10.1109/JIOT.2020.3011726.

[66] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-graphsage: A

graph neural network based intrusion detection system for iot,” in NOMS 2022-2022

IEEE/IFIP Network Operations and Management Symposium, IEEE, 2022, pp. 1–9.

102

[67] D. Pujol-Perich, J. Suarez-Varela, A. Cabellos-Aparicio, and P. Barlet-Ros, “Unveiling

the potential of graph neural networks for robust intrusion detection,” SIGMETRICS

Perform. Eval. Rev., vol. 49, no. 4, pp. 111–117, Jun. 2022, issn: 0163-5999.

[68] A. Protogerou, S. Papadopoulos, A. Drosou, D. Tzovaras, and I. Refanidis, “A graph

neural network method for distributed anomaly detection in IoT,” Evolving Systems,

vol. 12, no. 1, pp. 19–36, 2021, issn: 18686486. doi: 10.1007/s12530-020-09347-0.

[69] “Adversarial Attack and Defense on Graph-based IoT Botnet Detection Approach,”

3rd International Conference on Electrical, Communication and Computer Engineering,

ICECCE 2021, no. June, pp. 12–13, 2021. doi: 10.1109/ICECCE52056.2021.9514255.

[70] Y. Yang and L. Wang, “LGANet: Local Graph Attention Network for Peer-to-Peer

Botnet Detection,” Proceedings - 2021 3rd International Conference on Advances in

Computer Technology, Information Science and Communication, CTISC 2021, pp. 31–

36, 2021. doi: 10.1109/CTISC52352.2021.00013.

[71] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” in International Conference on Learning Representations (ICLR), 2017.

[72] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph

attention networks,” in International Conference on Learning Representations, 2018.

[73] L. Chang and P. Branco, “Graph-based Solutions with Residuals for Intrusion De-

tection: The Modified E-GraphSAGE and E-ResGAT Algorithms,” Nov. 2021, arXiv:

2111.13597.

[74] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral

graph theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–

150, 2011, issn: 1063-5203.

[75] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on

graphs with fast localized spectral filtering,” in Proceedings of the 30th International

Conference on Neural Information Processing Systems, ser. NIPS’16, Barcelona, Spain:

Curran Associates Inc., 2016, pp. 3844–3852, isbn: 9781510838819.

[76] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-graphsage: A

graph neural network based intrusion detection system for iot,” in NOMS 2022-2022

IEEE/IFIP Network Operations and Management Symposium, 2022, pp. 1–9. doi: 10.

1109/NOMS54207.2022.9789878.

103

[77] E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, “Anomal-e: A self-supervised

network intrusion detection system based on graph neural networks,” Knowledge-Based

Systems, vol. 258, p. 110 030, 2022, issn: 0950-7051. doi: https://doi.org/10.1016/

j.knosys.2022.110030.

[78] J. Zhou, Z. Xu, A. M. Rush, and M. Yu, “Automating botnet detection with graph neural

networks,” AutoML for Networking and Systems Workshop of MLSys 2020 Conference,

2020.

[79] Y. Cao, H. Jiang, Y. Deng, J. Wu, P. Zhou, and W. Luo, “Detecting and mitigat-

ing DDoS attacks in SDN using spatial-temporal graph convolutional network,” IEEE

Transactions on Dependable and Secure Computing, pp. 1–1, 2021. doi: 10.1109/TDSC.

2021.3108782.

[80] O. Boyaci, M. R. Narimani, K. Davis, and E. Serpedin, “Cyberattack detection in large-

scale smart grids using chebyshev graph convolutional networks,” in 2022 9th Interna-

tional Conference on Electrical and Electronics Engineering (ICEEE), 2022, pp. 217–

221. doi: 10.1109/ICEEE55327.2022.9772523.

[81] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” in Neural Information Processing Systems (NIPS), 2017.

[82] M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F. A. Khan, and S. Anwar, “Static

malware detection and attribution in android byte-code through an end-to-end deep

system,” Future Generation Computer Systems, vol. 102, pp. 112–126, 2020, issn: 0167-

739X. doi: https://doi.org/10.1016/j.future.2019.07.070.

[83] S. K. Sahu, D. P. Mohapatra, J. K. Rout, K. S. Sahoo, Q.-V. Pham, and N.-N. Dao, “A

lstm-fcnn based multi-class intrusion detection using scalable framework,” Computers

and Electrical Engineering, vol. 99, p. 107 720, 2022, issn: 0045-7906. doi: https://

doi.org/10.1016/j.compeleceng.2022.107720.

[84] F. Yuan, Y. Cao, Y. Shang, Y. Liu, J. Tan, and B. Fang, “Insider threat detection with

deep neural network,” in Computational Science – ICCS 2018, Y. Shi, H. Fu, Y. Tian,

et al., Eds., Cham: Springer International Publishing, 2018, pp. 43–54, isbn: 978-3-319-

93698-7.

[85] P. Rajasekaran and V. Magudeeswaran, “Malicious attacks detection using gru-bwfa

classifier in pervasive computing,” Biomedical Signal Processing and Control, vol. 79,

104

p. 104 219, 2023, issn: 1746-8094. doi: https://doi.org/10.1016/j.bspc.2022.

104219.

[86] X. Zhu, Y. Zhang, Z. Zhang, D. Guo, Q. Li, and Z. Li, “Interpretability evaluation of

botnet detection model based on graph neural network,” in IEEE INFOCOM 2022 -

IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),

2022, pp. 1–6. doi: 10.1109/INFOCOMWKSHPS54753.2022.9798287.

[87] W. W. Lo, G. Kulatilleke, M. Sarhan, S. Layeghy, and M. Portmann, “Xg-bot: An

explainable deep graph neural network for botnet detection and forensics,” Internet of

Things, vol. 22, p. 100 747, 2023, issn: 2542-6605. doi: https://doi.org/10.1016/j.

iot.2023.100747.

[88] M. Alazab, “A discrete time-varying greywolf iot botnet detection system,” Computer

Communications, vol. 192, pp. 405–416, 2022, issn: 0140-3664. doi: https://doi.org/

10.1016/j.comcom.2022.06.016.

[89] M. Macas and C. Wu, “Review: Deep learning methods for cybersecurity and intru-

sion detection systems,” in 2020 IEEE Latin-American Conference on Communications

(LATINCOM), 2020, pp. 1–6. doi: 10.1109/LATINCOM50620.2020.9282324.

[90] I. GUYON, S. JASON WESTON, S. Barnhill, and V. Vapnik, “Gene selection for cancer

classification using Support Vector Machines,” Machine Learning, vol. 46, pp. 389–422,

2002, issn: 16113349. doi: 10.1007/978-3-540-88192-6_8.

[91] N. Srivastava, G. Hinton, I. Sutskever, A. Krizhevsky, and R. Salakhutdinov, “Dropout:

A Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learn-

ing Research, 2014, issn: 03702693. doi: 10.1016/0370-2693(93)90272-J.

[92] W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and improving convolu-

tional neural networks via concatenated rectified linear units,” 33rd International Con-

ference on Machine Learning, ICML 2016, vol. 5, pp. 3276–3284, 2016. arXiv: 1603.

05201.

[93] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, vol. 2016-Decem, pp. 770–778, 2016, issn: 10636919.

[94] “UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-

NB15 network data set),” 2015 Military Communications and Information Systems Con-

ference, MilCIS 2015 - Proceedings, pp. 1–6, 2015.

105

[95] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of network-

based intrusion detection data sets,” Computers and Security, vol. 86, pp. 147–167, 2019,

issn: 01674048. doi: 10.1016/j.cose.2019.06.005. arXiv: 1903.02460.

[96] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” Advances in Neural Information Processing Systems, vol. 2017-Decem, no. Nips,

pp. 1025–1035, 2017, issn: 10495258. arXiv: 1706.02216.

[97] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph sequence neural net-

works,” 4th International Conference on Learning Representations, ICLR 2016 - Con-

ference Track Proceedings, no. 1, pp. 1–20, 2016.

[98] S. A. Tailor, F. L. Opolka, P. Liò, and N. D. Lane, “Adaptive Filters and Aggregator

Fusion for Efficient Graph Convolutions,” 2021.

[99] N. Moustafa, “A new distributed architecture for evaluating AI-based security systems at

the edge: Network TON IoT datasets,” Sustainable Cities and Society, vol. 72, p. 102 994,

2021, issn: 2210-6707.

[100] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggregated graph neural

network for heterogeneous graph embedding,” in WWW, 2020.

[101] A. L. Maas, “Rectifier nonlinearities improve neural network acoustic models,” in Pro-

ceedings of the 30th International Conference on Machine Learning, 2013.

[102] R. Collobert and S. Bengio, “Links between perceptrons, MLPs and SVMs,” ser. ICML

’04, Banff, Alberta, Canada: Association for Computing Machinery, 2004, p. 23, isbn:

1581138385. doi: 10.1145/1015330.1015415.

[103] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. P. Turnbull, “Towards the development

of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-

IoT dataset,” Future Gener. Comput. Syst., vol. 100, pp. 779–796, 2019.

[104] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “Netflow datasets for machine

learning-based network intrusion detection systems,” in Big Data Technologies and Ap-

plications, Z. Deze, H. Huang, R. Hou, S. Rho, and N. Chilamkurti, Eds., Cham: Springer

International Publishing, 2021, pp. 117–135, isbn: 978-3-030-72802-1.

[105] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” in

International Conference on Learning Representations, 2018.

106

[106] D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal Statistical

Society: Series B (Methodological), vol. 20, no. 2, pp. 215–232, 1958. doi: https://doi.

org/10.1111/j.2517-6161.1958.tb00292.x.

[107] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set),” in 2015 Military Communications

and Information Systems Conference, MilCIS 2015 - Proceedings, Institute of Electrical

and Electronics Engineers Inc., Dec. 2015, isbn: 978-1-4673-7008-0. doi: 10 . 1109 /

MilCIS.2015.7348942.

[108] Cisco, Cisco Annual Internet Report (2018–2023), https://www.cisco.com/c/en/

us/solutions/collateral/executive-perspectives/annual-internet-report/

white-paper-c11-741490.htm, [Online], Mar. 2020.

[109] M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating critical security issues of the

iot world: Present and future challenges,” IEEE Internet of Things Journal, vol. 5, no. 4,

pp. 2483–2495, 2018.

[110] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet

of things: Architecture, enabling technologies, security and privacy, and applications,”

IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[111] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and privacy issues in

internet-of-things,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1250–1258, 2017.

[112] S. Benzarti, B. Triki, and O. Korbaa, “A survey on attacks in internet of things based

networks,” in 2017 International conference on engineering & MIS (ICEMIS), IEEE,

2017, pp. 1–7.

[113] J. Zhou, G. Cui, S. Hu, et al., “Graph neural networks: A review of methods and ap-

plications,” AI Open, vol. 1, pp. 57–81, 2020, issn: 2666-6510. doi: https://doi.org/

10.1016/j.aiopen.2021.01.001.

[114] T. Altaf, X. Wang, W. Ni, R. P. Liu, and R. Braun, “Ne-gconv: A lightweight node edge

graph convolutional network for intrusion detection,” Computers Security, vol. 130,

p. 103 285, 2023, issn: 0167-4048.

[115] T. Altaf, X. Wang, W. Ni, G. Yu, R. P. Liu, and R. Braun, “A new concatenated multi-

graph neural network for iot intrusion detection,” Internet of Things, vol. 22, p. 100 818,

2023, issn: 2542-6605.

107

[116] K. S. Kalupahana Liyanage, D. M. Divakaran, R. P. Singh, and M. Gurusamy, Nss mirai

dataset, 2020. doi: 10.21227/t970-nd64. [Online]. Available: https://dx.doi.org/

10.21227/t970-nd64.

108

