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Abstract—This article presents 3-D printed non-interleaved 

reflective metasurfaces (MSs), which support millimeter-wave 

(mm-wave) dual-band spin-decoupled quadruplex channels with 

independent beam-shaping. The MS's unit cell (UC) is made of a 

cross-bar structure mounted on a circular-shaped patch antenna, 

which connects to short-ended time delay lines (TDLs). 

Pancharatnam-Berry (P-B) and dynamic phases are used to 

decouple the two spin states. Specifically, rotating the top cross-

bar structure and adjusting its size provides the high-band's P-B 

and dynamic phases. Rotating the circular patch antenna and 

adjusting the length of the TDL introduce the P-B phase and 

dynamic phase for the low band, respectively. In addition, the 

mutual interference between the dual bands is minimal. The size 

of the non-interleaved UC is only 4 mm, corresponding to 0.33 

and 0.48 free space wavelength of the center frequency for low-

band (25-GHz) and high-band (36-GHz), respectively. For proof 

of concept, an MS generating orbit angular momentum (OAM) 

with different topological charges in four channels is fabricated 

and measured. Furthermore, in addition to the independent 

wavefront shaping, the energy distribution ratio in the reflected 

co-pol and cross-pol channels can also be independently 

controlled over dual-band under a circularly polarized incident 

wave. An MS, which generates near-field focusing with different 

energy distributions ratio in dual bands, is fabricated and 

experimentally verified for demonstration. The MS samples are 

prototyped using a multi-material 3-D printing technique on a 

single substrate. 

 
Index Terms—3-D printing, dual-band, energy distribution, 

metasurface, multiplexing, spin-decoupled. 

 

I.  INTRODUCTION 

ETASURFACES (MSs) are composed of two-

dimensional periodic subwavelength metal/dielectric 

unit cells (UCs) that can manipulate the amplitude, phase, and 

polarization states of the electromagnetic (EM) wave in the 

desired manners [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], 

[11], [12], [13], [14], [15]. Unlike conventional devices where 

phase accumulation depends on wave propagation, MSs 

generate strong light-matter interaction to produce abrupt 

phase change with ultrathin thickness [16], [17], [18]. 

Pancharatnam–Berry (P-B) phase is one of the common 

methods to manipulate the phase of the circularly polarized 

wave by simply rotating the half-wave plate (HWP) based UC 

[19], [20], [21], [22], [23]. The phase-shifting for the two spin 

states, i.e., the left-hand circularly polarization (LHCP) and 

the right-hand circularly polarization (RHCP) waves, show 

opposite tendencies. The absolute phase-shifting values are 

twice the rotation angles. By combing the dynamic phase and 

P-B phase, LHCP and RHCP can be fully decoupled, paving 

the way to the high-efficient polarization-multiplexed 

communication system [24], [25], [26], [27], [28], [29], [30], 

[31], [32], [33], [34]. Signal multiplexing methods are widely 

used in microwave and optical wireless communications, 

including space, angle, polarization, frequency, and orbital 

angular momentum multiplexing. Traditional systems require 

source coding and physical circuits to implement these 

multiplexing, which complicates the hardware design and 

software. The MS-enabled space-frequency-polarization-

division multiplexed modulations have been recognized as a 

new architecture to improve channel capacity and space 
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Fig. 1. Basic configuration of the dual-band spin-

decoupled non-interleaved MS for multi-mode OAM 

generation. 
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utilization [35], [36]. The popular strategy in the literature to 

achieve frequency-polarization multiplexed function use either 

interleaved elements or stacking multiple structures with 

frequency-selective-surface (FSS) in between. For example, 

the frequency and wavevector multiplexed spin-decoupled 

MSs were reported by interleaving split rings and cross-bar 

structures [37]. K-/Ka dual band spin decoupled reflectarray 

was reported by interleaving two different patch antennas 

connected with microstrip phase delay lines [38]. However, 

interleaved configuration usually results in the large size of the 

UC, which restricts the MS’s performance, e.g., beam steering 

angle. In addition, too small a UC may give rise to strong 

mutual interference between the dual bands. To eliminate the 

mutual interference, stacking UCs in different layers with FSS 

between them can be a good choice [39],[40]. For example, 

spin-decoupled reflectarray independently operating at Ku / 

Ka dual-band was reported by using double-layer FSS [40]. 

However, these MSs with stacked configurations need at least 

three printed circuit board (PCB) laminates, which require a 

complicated and time-consuming manual assembly process 

and alignment, making industrial-level mass production and 

mounting a real challenge. Recently, a non-interleaved MS 

achieving dual-band dual CP holographic images was 

demonstrated [41]. Nevertheless, only 1-bit resolution is 

adopted to implement the UC.  Meanwhile, state-of-the-art 

reflective MSs mainly focus on the co-polarization channel 

beam-shaping due to the nature of the P-B phase. However, a 

cross-polarization channel is inevitable when the UC does not 

function as a perfect HWP. Actually, it is desirable that the 

MS functions as an energy route [42], which can redistribute 

input energy to co-polarization and cross-polarization 

channels and independently shape their wavefronts 

simultaneously.  

    As for fabrication, most state-of-the-art microwave MSs are 

fabricated using PCB. Though PCB is a mature technology, it 

is not cost-effective to fabricate some sophisticated structures, 

such as multi-layered designs with penetrating vias.  Usually, 

an additional bonding technique is required to provide a robust 

connection between layers. The conductor and dielectric joint 

3-D printing technique was recently demonstrated to address 

these issues, providing the designer with more flexibility 

[43],[44]. The multi-layered MS can be printed with fewer 

constraints, especially the number of layers and the distance 

between adjacent layers. In addition, the one-stop printing 

enables the MS to be fast prototyped in an additive way rather 

than subtracting manner with less cost and waste.  

     This article presents 3-D printed non-interleaved reflective 

millimeter-wave (mm-wave) MSs for dual-band spin-

decoupled quadruplex channel with independent beam-

shaping. A schematic illustration of the MS function is shown 

in Fig. 1.  The MS's UC is made of a cross-bar structure 

mounted on a circular-shaped patch antenna that connects to 

time delay lines (TDLs). Because of the unique structure of 

the UC, the mutual interference between the dual bands is 

minimal. Therefore, P-B and dynamic phases can be applied to 

both bands to decouple the spin states simultaneously. For 

proof of concept, MS that generates orbital angular 

momentum (OAM) with different topological charges in 

frequency-polarization multiplexed channels is fabricated and 

measured first. Then, in addition to the independent wavefront 

shaping, an MS, which generates near-field focusing with 

controllable energy distributions in the reflected co-

polarization and cross-polarization over dual-band under 

LHCP incident wave, is fabricated and experimentally verified. 

The MS samples are prototyped by using the conductor and 

dielectric joint multi-material 3-D printing technique. 

II. METASURFACE FOR QUADRUPLEX CHANNEL                                 

INDEPENDENT BEAM-SHAPING 

A. Meta-Atom Design and Principle 

The configuration of the UC is shown in Fig. 2, which 

consists of five conductor layers (35 μm, h1) with a total 

thickness of 1.5mm, corresponding to 0.125 free space 

wavelength at 25 GHz. The conductor layers are implemented 

by nanoparticle silver ink, and the dielectric layer is 

implemented using ultraviolet (UV) curable acrylates ink 

(dielectric constant=2.8, loss tangent=0.012). An anisotropic 

cross-bar structure is mounted on the top of the circular-

shaped patch antenna. The cross-bar structure is resonant at 

the high-band (center frequency: 36 GHz). Thus, the dynamic 

phase can be achieved by varying the patch size. Meanwhile, 

rotating the cross-bar structure (θ1) introduces P-B phase in 

the high band. Thus, the LHCP and RHCP beams can be 

decoupled by combining the two uncorrelated phase-shifting 

methods. Note the circular-shaped patch antenna functions as 

the ground of the cross-bar structure in the high band. In 

contrast, the circular-shaped dual-polarized patch antenna 

receives the EM-wave in the low-band (center frequency: 25 

GHz) and induces it into the TDLs, which are shorted to the 

bottom ground. Then, the energy is reflected and re-radiated 

into the free space. Hence, LHCP and RHCP in the low-band 

can be decoupled by adjusting the TDLs’ length (dynamic 

phase) and rotating the patch antenna and the TDLs (θ2, P-B 

phase). It is worth mentioning that though different structures 
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Fig. 2. Configuration and dimensions of the UC. (Not 

scaled in the z-direction). h1=0.035mm, h2=0.43 mm, 

h3=0.535 mm, h4=0.5 mm, r1=1.7 mm, d1=0.26 mm, d2=0.6 

mm, Px=4 mm, Py=4 mm. 
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can implement patch antenna, the circular-shaped patch is 

adopted because of its rotation symmetry feature. In other 

words, the possible effects on the high-band due to the rotation 

of the patch can be minimal since the circular ground is 

rotation symmetry. The size of the meta-atom is only 4 mm 

along the x- and y-direction, corresponding to 0.33 and 0.48 

free space wavelength of center frequency for low-band (25-

GHz) and high-band (36-GHz), respectively. 

 To independently manipulate the LHCP (|𝐿⟩=[1 𝑖]/√2) and 

RHCP (|𝑅⟩=[1 -𝑖] / √2 ), the MS should provide two 

uncorrelated phase profiles, namely, 𝜑L(𝑥,𝑦) for LHCP and 

𝜑R(𝑥,𝑦) for RHCP. For the LHCP and RHCP input, we can 

design a birefringent surface where the output polarization 

state can be |𝑅⟩* and (|𝐿⟩*, where * denotes the complex 

conjugate of input polarization states. Therefore, the original 

system can be expressed as [31]: 

     

( , )
1 1

( , ) Li x y
J x y e

i i

   
=   

−         
for LHCP             (1)

 

                

( , )
1 1

( , ) Ri x y
J x y e

i i

   
=   

−        
for RHCP.         (2)

 
Combining (1) and (2), the Jones Matrix can be expressed as:    
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Then, the Jones matrix 𝐽(𝑥,𝑦) can be decomposed into the 

canonical form [31]: 
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Here, P can be regarded as a rotation matrix for the matrix 

Λ. Thus, the dynamic phase-shifting and the rotation angle 

of the UC (θ) can be calculated as:  

 
( , ) [ ( , ) ( , )] / 2x L Rx y x y x y  = +

                       
(5)
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Fig. 4. Configuration of the eight-level cross-bar structure 

for high-band spin-decoupling. 
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Fig. 5. Reflection magnitudes of the eight-level UCs for 

high-band spin-decoupling. 
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Fig. 6. (a) Reflection phases of the eight-level UCs. (b) 

Co-polarization reflection phase of UC I at 36 GHz. 
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Fig. 3. Reflection phase of the meta-atom along x-

polarization and y-polarization at 25 GHz with different 

values of lx. (ly is fixed at 2.2 mm) 
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( , ) [ ( , ) ( , )] / 2y L Rx y x y x y   = + −
                  

(6)
 

    
( , ) [ ( , ) ( , )] / 4L Rx y x y x y  = −

  
.    

                 
(7)

 
This requires the UCs to provide π phase retardation between 

the x and y-polarized incident waves and provide dynamic 

phase covering 2π phase-shifting to achieve the independent 

manipulation of the LHCP and RHCP. 

Numerical simulation is carried out to verify the meta-atom. 

The reflection phase at the high-band by varying the length of 

the cross-shaped patch (lx) along the x-direction is given in 

Fig. 3. It is seen that more than 320° phase-shifting can be 

achieved for the reflected x-polarized channel (Rxx) by 

adjusting lx from 1.6 mm to 2.8 mm while phase-shifting for 

the reflected y-polarized channel (Ryy) is near constant. 

Therefore, an eight-level UC is designed to achieve high-band 

spin-decoupling. Their dimensions are given in Fig. 4. The co-

polarization reflection magnitudes of the eight-level UC under 

CP incident wave are shown in Fig. 5. The co-polarization 

reflection magnitudes are between 0.8 to 0.9 over most of the 

band. The co-polarization reflection phases of the eight-level 

UC are shown in Fig. 6 (a), which covers the required 2π 

dynamic phase shifting. Note that the dimensions of element 

V (VI/VII/VIII) are the same as element I (II/III/IV), but 

rotated with an angle of 90°. Therefore, their reflection 

2.23mm

0.4 mm

2.59mm

0.82 mm 1.25 mm

2.9mm

1.9 mm

3.2 mm 0.4 mm

2.23mm 2.59mm 2.9mm 3.2 mm

0.82 mm 1.25 mm 1.9 mm

000 001 010 011 100 101 110 111
x

y
z

Fig. 7. Eight-level UC with different lengths of TDLs to achieve low-band spin-decoupling. (Not scaled in the z-direction) 
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Fig. 8. Reflection magnitudes of the eight-level UCs. 
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Fig. 9. (a) Reflection phases of the eight-level UCs. (b) 

Co-polarization reflection phase at 25 GHz. 
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Fig. 10. (a) Reflection phases of UC (000) in low-band 

when the size of the cross-bar structure is varied. (b) 
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magnitudes are the same, but the phase-shifting value has a 

180° difference due to the P-B phase. The co-polarization 

reflection phase when UC I is rotated is given in Fig. 6 (b). 

The phase-shifting of the reflected co-polarization channels 

under RHCP and LHCP incident waves show opposite 

tendencies, and the absolute values are twice the rotation 

angle. 

 As for the low band, dynamic phase-shifting is achieved by 

adjusting the length of TDLs. Eight-level UCs, marked as 000 

to 111, are designed for low-band spin-decoupling. Their 

dimensions are given in Fig. 7. The co-polarization reflection 

magnitudes of the eight-level UC under the CP incident wave 

in the low band are shown in Fig. 8. The co-polarization 

reflection magnitudes are above 0.8 over most of the band. 

The reflection performance is stable in both bands when the 

incident angles increase up to 30-degree. The co-polarization 

reflection phases of the eight-level UC are shown in Fig. 9 (a), 

which satisfies 2π dynamic phase shifting. Again, the 

dimensions of element 100 (101/110/111) are the same as 

element 000 (001/010/011), but rotated with an angle of 90°. 

Therefore, their reflection magnitudes are the same, but the 

phase-shifting value has a 180° difference due to the P-B 

phase. The co-polarization reflection phase when UC 000 is 

rotated is given in Fig. 9 (b). The phase-shifting of the 

reflected co-polarization channels reveals an opposite 

tendency, and the absolute values are equal to twice the 

rotation angle. Then, the mutual interference between the 

dual-band is investigated. Fig. 10 (a) shows the reflection 

phase at the low band when the cross-bar structure’s size 

varies from I to VI. The reflection phase in the low-band is 

nearly constant regardless of the size of the top cross-bar 

structure. Meanwhile, rotating the cross-bar structure does not 

affect the low-band phase-shifting, as shown in Fig. 10 (b). 

Fig. 11 (a) shows the reflection phase at the high band when 

the lengths of the TDLs are varied from 000 to 111. The 

maximum reflection phase difference between curves is less 

than 35°. Meanwhile, rotating the antenna in the bottom does 

not affect the high-band phase-shifting, as shown in Fig. 11 

(b). Therefore, the size and rotation angles of the cross-bar and 

patch antenna can be independently adopted to decouple the 

LHCP and RHCP in high-band and low-band, respectively.  
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Fig. 11. (a) Reflection phases of UC (I) in high-band when 

TDL’s length is varied. (b) Reflection phases of UC (I) in 

high-band when the circular patch antenna is rotated. 
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B. Metasurface Design and Results. 

    The MS is designed to collimate the EM wave from the feed 

and generate OAM with different topological charges for the 

LHCP and RHCP incident waves in low-band and high-band, 

respectively. The feed position is located at (x=-30mm, 

y=0mm, and z=70mm). To collimate the spherical wave from 

the feed and generate OAM simultaneously, the phase profile 

of RLL, RRR in low-band and high-band can be respectively 

expressed as: 

           
( , ) ( 0)LL iR x y k R l l=  +  =

     
for low-band (8)

 

               
( , ) ( 1)RR iR x y k R l l=  +  =

       
for low-band (9)

 

              
( , ) ( 2)LL iR x y k R l l=  +  =

   
for high-band (10)

 

             
( , ) ( 3)RR iR x y k R l l=  +  =

    
for high-band (11)

 
where k is the free-space wavenumber. Ri is the distance from 

the feed phase center to the ith element. l is the topological 

charge number of OAM, and φ is the azimuthal angle around 

the beam axis. The OAM modes are selected as l=0 for the 

low-band LHCP channel, l=1 for the low-band RHCP channel, 

l=2 for the high-band LHCP channel, l=3 for the high-band 

RHCP channel. Therefore, the final required aperture phase 

can be obtained, as shown in Fig. 12. Then, based on the 

required aperture phase for the four different channels, we can 

calculate the corresponding dynamic phase and P-B phase. 

Specifically, the dynamic phase can be achieved by adjusting 

the size of the cross-bar structure and the P-B phase can be 

achieved by properly rotating the cross-bar structure for the 

high-band, as shown in Fig. 13 (a). As for the low-band, the 

dynamic phase is obtained by adjusting the length of TDLs 

and the P-B phase is obtained by rotating the circular patch 

and TDLs, as shown in Fig. 13 (b). Then, the corresponding 

MS can be designed, which consists of 18 ×18 UCs with an 

aperture size of 80mm×80mm.  

    Although the MS consists of five conductor layers with 

vias, it can be easily and conveniently fabricated using the 

conductor and dielectric joint 3-D printing technique with a 

single-layered compact form factor. The comprehensive, 

advanced 3-D printing system provides industrial-level 

around-the-clock printing of electronic circuitry. It prints 

electronic circuits and systems precisely by combining an 

exceptionally precise inkjet deposition printer with dedicated 

nano-inks. The printing resolution is 18μm along x- and y-

direction and 10μm along z-direction. During the printing, a 

0.75–1.4 μm near-infrared radiation (NIR) lamp and a 395 nm 

UV lamp are turned on to sinter the silver ink and cure the 

acrylate ink, respectively, with temperatures between 140°C to 

170°C, as illustrated in Fig. 14. The printed sample is shown 

in Fig. 15. The 3-D printing technology is suitable for 

fabricating multi-layer structures with blind vias (e.g., more 

than 10 metal layers), which cannot be easily achieved using 

nozzle

0.75–1.4 μm 

Infrared 

ray

395 nm 

ultraviolet 

ray

nozzle Silver ink

Acrylate ink 

x
y

z

Platform
 

Fig. 14. MS under printing. 
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                        (a)                                       (b) 

Fig. 15. (a) Top view of the MS. (b) Assembling view of 

the MS. 

 

Feed

CP 

probe

MS

VNA
Controller

Computer

2D 

scanning

Absorber

d

θs

 
Fig. 16. The measurement setup (d is set as 120 mm). 
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Fig. 17. Simulated and measured near-field intensity and 

phase. (Intensity is in dB scale) 
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conventional PCB technique. The printing time will not 

increase much when the number of layers increases since 

designs can be printed at one-stop. However, much more time 

will be used in multi-layer PCB fabrication since the bonding 

process takes additional time.  

   The sample is measured by a near-field measured system, as 

shown in Fig. 16. To reduce the blockage issue of the feed, the 

feed probe is offset at an angle of 23°. The loss due to the feed 

blockage is estimated to be around 0.3 dB. Considering the 

trade-off between the spillover efficiency, illumination 

efficiency and the illuminating angle at the edges, the feed 

position is optimized and the final value of θs (subtended angle 

between the maximum path and the minimum path) is finally 

selected as 56°. The MS covers the -10 dB edge taper of the 

feed, which is the typical value for edge taper [21]. The 

aperture efficiencies are 30% and 23% for the low-band and 

high-band, respectively, comparable to the state-of-the-art 

dual-band reflectarrays. The LHCP and RHCP probe are 

located 120 mm (d) away from the MS to record the intensity 

and phase. The distance (d) can be different values. 

Nevertheless, as the OAM beam is divergent, and the 

divergence of higher-order beams tends to be more significant 

than that of lower-order OAM beams, the scanning area must 

be sufficiently large for a very large distance to capture the 

magnitude and phase information for the OAM beams. In this 

regard, we choose a distance of 120 mm with 2500 pixels to 

capture the magnitude and phase information for all the 

higher-order OAM beams with acceptable measurement time. 

The simulated and measured near-field intensity and phase at 

24 GHz and 36 GHz are shown in Fig. 17. The operating 

frequency band is from 23 GHz to 26 GHz for the low-band 

and from 35 GHz to 37 GHz for the high band. To directly 

observe the radiation performance versus operating frequency, 

we provide the supporting video where the performance of the 

MS can be directly viewed with frequency changes. As can be 

seen, the patterns will be gradually distorted when the 

frequency gradually shifts from central to edge frequencies. 

III. METASURFACE FOR SPIN-DECOUPLED CHANNELS 

WITH CONTROLLABLE ENERGY DISTRIBUTION 

    This section will demonstrate that the energy distributions 

and wavefront in the co-polarization and cross-polarization 

can be independently controlled over dual-band by the 

proposed MS. 

A. Principle and Meta-Atom Design 

    The Jones matrix of the reflective birefringent MS can be 

expressed as: 

          
0 1 0

00

x

x

y
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j
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where Δφ is the reflection phase retardation along the x- and y-

direction. When the meta-atom rotates with an angle of θg, the 

Jones matrix can be expressed as: 
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Considering the LHCP wave as the input, the output E-fields 

in the reflection space can be written as:  

                                        

2

1 2
( )

2

1 12 2
(1 ) (1 )

4 4

gx x

out g

ii ii i

E R
i

e e e e e
i i

  



 

 
=   

 

   
= +   + −      

−   
.
     (14) 

It is seen that energy distribution between the co-polarization 

and cross-polarization depends on the propagation phase 

retardation along fast and slow axes (Δφ). Meanwhile, the 

reflected RHCP phase solely depends on the dynamic phase 

(δx), and the reflected LHCP phase depends on the dynamic 

phase (δx) and P-B phase (rotation angle θ). This is 

understood that the P-B phase only exists with spin flips, i.e., 

the LHCP incident wave to the reflected LHCP wave. The 

three parameters, i.e., Δφ, δx, and θ can be adjusted separately. 

Therefore, we can achieve the completely decoupled LHCP 

and RHCP channels with an arbitrarily controlled energy 

distribution ratio. 

    To evaluate the ratio of the power between the reflected co-

polarization channel (LHCP) and cross-polarization channel 

(RHCP), we define the energy distribution ratio (EDR) as: 
2

2

2

|1 |
tan ( )

|1 | 2

j
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e
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Fig.18. Eight-level UC with different lengths of TDLs to achieve low-band spin-decoupling with controllable EDR 

(Δφ=135°). (Not scaled in the z-direction) 
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The value of the EDR can be from zero to infinite depending 

on the propagation phase retardation along fast and slow axes 

(Δφ). Note that the Δφ is equal to 180° for both bands in 

Section II. Therefore, all energy exists in the reflected co-

polarization channel. Here, the Δφ is set as 90° and 135° for 

the high-band and low-band, respectively. Hence, the EDRs 

are 1 and 5.83 for the high-band and low-band, respectively. 

The corresponding dimensions of the UC for the low-band and 

high-band are given in Figs. 18 and 19, respectively. 

B. MS Design and Results 

    The MS is designed to collimate the EM-wave from the 

feed and focus on different positions for the LHCP and RHCP 

incident waves in low-band and high-band, respectively. 
Specifically, the focal points are set as (40mm, 0mm, 120mm), 

(0mm, -40mm, 120mm), (0mm, -40mm, 120mm), and (0mm, 

40mm, 120mm) for the co-polarization and cross-polarization 

channels in the high-band and low-band, respectively. The 

phase profile of RLL, RRL for the low-band and high-band can 

be respectively expressed as: 

( , )LL i LLi lowR x y k R k R −=  + 
      for low-band  (16) 

( , )RL i RLi lowR x y k R k R −=  + 
      for low-band  (17) 

( , )LL i LLi highR x y k R k R −=  + 
     for high-band  (18) 

( , )RL i RLi highR x y k R k R −=  + 
     for high-band  (19) 

where RLLi-low and RRLi-low represent the focal point to the ith 

element for the reflected LHCP and RHCP channels under the 

LHCP incident wave in the low-band. RLLi-high and RRLi-high 

represent the focal point to the ith element for the reflected 

LHCP and RHCP channels under the LHCP incident wave in 

the high-band.   

   Based on the equations (12) to (19), the corresponding 

dynamic and P-B phase masks for low-band and high-band are 

given in Fig. 20. The printed sample is shown in Fig. 21. The 

simulated and measured near-field intensity at 25 GHz and 36 

GHz are shown in Fig. 22. It is seen that the reflected energy 

is near equally distributed in co-polarization and cross-

polarization at 36 GHz under LHCP incident wave, while 

most of the energy is focused in the reflected co-polarization 

channel and only a small portion is located in cross-

polarization channel at 25 GHz.  

    Table I compares the key features of the proposed work 

with state-of-the-art dual-band spin-decoupled MSs. 

Interleaving two different structures, with each operating at a 

single frequency band, is a convenient approach to achieve 

dual-band spin-decoupling with small lateral sizes [35],[36]. 

Nevertheless, the periods of the UC are usually large, which 

might affect the MS performance, such as beam scanning 

angle. Stacking UCs into different layers with FSS ensures a 

small period with low mutual interference [39],[40]. However, 

the designs require multiple PCB layers with large lateral size. 

The proposed non-interleaved UC features a small period and 

low mutual interference. The multi-layered configuration can 

be fast-prototyped in a single-layer substrate. However, it is 

also worth mentioning that because the phase-shifting depends 

on the resonance, achieving the broadband spin decoupled 

beam-shaping is difficult for the current design. More 

specifically, the high-band phase-shifting is based on the 
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Fig.19. Configuration of the eight-level cross-bar structure 

for high-band spin-decoupling with controllable EDR. 
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Fig.20. (a) Phase masks for high-band. (b) Phase masks for 

low-band. 
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Fig. 21. (a) Top view of the MS. (b) Assembling view of 

the MS. 
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cross-bar’s resonance. As for the low band, although the 

phase-shifting depends on the length of strip lines (less 

dispersive), the circular-shaped patch antenna is still based on 

resonance. Therefore, the operating bandwidth cannot be 

sufficiently wide due to its resonant nature. Improving the 

bandwidth over dual-band will be valuable future work. 

IV. CONCLUSION 

In summary, 3-D printed non-interleaved reflective MSs 

supporting mm-wave dual-band spin-decoupled quadruplex 

channels with independent beam-shaping were demonstrated. 

In addition, it is also demonstrated that the energy 

distributions and wavefront in the co-polarization and cross-

polarization can be independently controlled in dual-band by 

the proposed MS. The strategy will find broader applications 

in the future reconfigurable intelligent surfaces (RIS) system if 

the energy distributions can be dynamically controlled. 
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