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Abstract
As one of the prevalent methods to achieve automation sys-
tems, Imitation Learning (IL) presents a promising perfor-
mance in a wide range of domains. However, despite the
considerable improvement in policy performance, the corre-
sponding research on the explainability of IL models is still
limited. Inspired by the recent approaches in explainable arti-
ficial intelligence, we proposed a model-agnostic explaining
framework for IL models called R2RISE. R2RISE aims to ex-
plain the importance of frames with respect to the overall pol-
icy performance. It iteratively retrains the black-box IL model
from the randomized masked demonstrations and uses the
conventional evaluation outcome environment returns as the
coefficient to build an importance map. We also conducted
experiments to investigate three major questions concerning
frames’ importance equality, the effectiveness of the impor-
tance map, and connections in importance maps from differ-
ent IL models. The result shows that R2RISE distinguishes
important frames from the demonstrations effectively. Code
is available from https://anonymous.4open.science/r/ExIL.

Introduction
Recent advances in Imitation Learning (IL), which lever-
ages external demonstrations to reproduce the desired be-
haviours, demonstrate a promising performance in fields like
3D gameplay (Scheller, Schraner, and Vogel 2020), robotics
(Yu et al. 2018), and automatic driving (Codevilla et al.
2019). Despite their success, most research in IL focuses
on applying complex Deep Neural Network (DNN) mod-
els, such as convolutional neural networks (CNN) and gen-
erative adversarial networks (GAN), to achieve high perfor-
mance across different conditions. However, less attention is
given to explaining what information the trained agents have
learned from the external demonstrations. Consequently, IL
methods are increasingly becoming less interpretable, pos-
ing an open challenge in combining IL and Explainable Ar-
tificial Intelligence (XAI).

On the other hand, XAI has garnered attention from the
research community in recent years, particularly in the field
of computer vision. Methods like LIME have been proposed
to explain image predictions (Ribeiro, Singh, and Guestrin
2016). As the concept of explainability gradually spreads
to other domains, it has also found its way into reinforce-
ment learning. For instance, Shu et al. (2017) introduced hi-

erarchical policies to explain complex tasks by decomposing
top-level policies into several lower-level actions. Madumal
et al. (2020) aim to explain model-free reinforcement learn-
ing using causality models to address questions like ”Why
(not) action A?” Xie et al. (2022) introduce an innovative
framework that employs one of IL methods called Adversar-
ial Inverse Reinforcement Learning to furnish comprehen-
sive explanations for the decisions made by a reinforcement
learning model and captures the model’s intuitive tendencies
by summarizing its decision-making process. In contrast, re-
search investigating the combination of explainability and
imitation learning is relatively recent.

Pan et al. (2020) proposed a model-specific method called
xGAIL, which leverages existing XAI methods to explain
single action predictions made by the state-of-the-art IL
method, Generative Adversarial Imitation Learning (GAIL)
(Ho and Ermon 2016). Before xGAIL’s introduction, the IL
research community had explored features in image inputs,
but the significance of explainability had not been explicitly
highlighted. For example, Brown et al. (2019) utilized atten-
tion maps of input image frames to validate the effectiveness
of the learning process. De Haan et al. (2019a) pointed out
that IL agents could learn incorrect causal correlations be-
tween expert behaviors and irrelevant input features. These
methods, including xGAIL, demonstrate the significance of
features in individual image frames within trajectories for
models to learn desired behaviors. However, most IL meth-
ods are evaluated based on policy performance in the envi-
ronment rather than analysing a single behavior prediction
for a given state, and the aforementioned methods do not as-
sess the importance of individual frames within input trajec-
tories. The question arises: do the input image frames have
identical importance, and if not, how can frames’ importance
be distinguished concerning overall policy performance?”

To tackle these problems, we attempt to explain the in-
put demonstrations as a whole by proposing a novel explain-
ing method called Remove and Retrain via Randomized In-
put Sampling for Explanation (R2RISE), which iteratively
masks random frames in the demonstrations and evaluates
the performance of the agents trained by the masked inputs.
The intuition is that the input demonstrations are regarded
as a single image, and frames in the demonstrations are re-
garded as pixels. In this case, existing XAI and computer
vision methods could be directly applied to investigate the



importance of frames instead of features in a single frame.
R2RISE combines the existing methods RISE (Petsiuk, Das,
and Saenko 2018) and ROAR (Hooker et al. 2019), and
achieves model-agnostic explanations for IL models with
various architectures.

Our main contribution is summarized as follows: 1) We
propose a model-agnostic method to explain IL models; 2)
We extend a novel perspective to explain IL with respect to
the whole input dataset instead of a specific frame; 3) We
investigate the connection between agents’ overall perfor-
mance and demonstration frames;

Preliminaries
To better illustrate our approach, we first introduce the re-
lated literature in XAI: RISE (Petsiuk, Das, and Saenko
2018) and ROAR (Hooker et al. 2019), followed by a review
of existing research related to explainable imitation learning.

Randomized Input Sampling for Explanation
(RISE) & RemOve And Retrain (ROAR)
Randomized Input Sampling for Explanation (RISE) is a
state-of-the-art XAI method proposed by Petsiuk et al.
(2018) to explain black-box models in image classification.
RISE stands out for its simplicity and generality. Unlike
other popular XAI approaches that rely on gradient calcula-
tions of image classification outputs, RISE probes the target
model by randomly masking the input image under a pre-
defined degradation level and recording the resulting proba-
bility for the target class. This process is repeated multiple
times, and the recorded probabilities for each pixel are lin-
early combined to generate an importance map. This map
identifies the most influential regions in the input image for
the target decision. In the context of IL, which typically re-
quires multiple demonstrations to train the model, we can
consider whole demonstrations as a single image where the
frames could be regarded as pixels. Here, the trajectory’s
length becomes the image width, and the number of tra-
jectories represents the image height. In this regard, RISE
becomes significant for explaining IL and identifying the
most influential frames for policy training. However, using
the output probability as the coefficient to accumulate the
importance map does not align with the traditional IL evalu-
ation approach, where the overall environment return is used
to assess the model’s performance. To adapt RISE for con-
ventional IL evaluation, optimizations are required.

On the other hand, RemOve And Retrain (ROAR), pro-
posed by Hooker et al., offers a reliable evaluation of feature
importance for a wide range of XAI methods. By substitut-
ing certain pixels, estimated to be important, with fixed un-
informative values and then retraining a new model, ROAR
determines the model’s sensitivity to pixel removal. If the
model demonstrates a sharp degradation in performance due
to the removal, it suggests that the proposed model is more
accurate. The authors argue that the retraining process is es-
sential to ensure low variance in performance, as machine
learning models commonly assume similarity between train-
ing and test distributions. However, it is important to note
that ROAR serves as an evaluation framework for XAI meth-

ods, aiming to achieve a more robust evaluation of these
methods. Nevertheless, ROAR itself does not possess the
capability to determine feature importance directly. Conse-
quently, applying ROAR directly to explain IL becomes un-
feasible. However, we can draw on the intuition of ROAR,
which involves retraining several models under the same re-
moval rate, to obtain more robust results in the context of
IL explanation. Moreover, since conventional IL evaluation
involves representing the performance of the trained model
as returns from a dynamic environment, training the model
once with fixed image observations and masks is not appro-
priate. The ROAR framework allows for masking the sam-
ples before training the model, enabling the explanation of
IL models while utilizing conventional evaluation methods.

Explainable Imitation Learning
The literature on the combination of XAI and IL remains
limited at present (Zheng et al. 2022). They can be broadly
categorized into two approaches aimed at achieving better
explainability. The first approach involves leveraging white-
box models, wherein existing neural network architectures
are replaced with models possessing intrinsic interpretabil-
ity. Alternatively, the learned policy is represented in a hi-
erarchical structure to enhance interpretability. For instance,
Leech (2019) proposed a learning framework that combines
IL with logical automata, representing problems as compact
finite state automata with human-interpretable logic states.
Bewley et al. (2020), on the other hand, modeled the behav-
ior policy of a trained black-box agent using a decision tree
generated from analyzing its input-output statistics. Zhang et
al. (2021) leveraged a hierarchical framework to decompose
the complex task, explaining the model’s decision-making
process and analyzing the causes of failure.

On the other hand, research related to analyzing pixel-
wise explainability focuses on CNN structures in IL mod-
els, which are widely used to capture features from im-
age inputs. Drawing from existing studies in XAI and com-
puter vision, model explainability is commonly represented
as heatmaps, enabling the analysis of the model’s decision-
making process. For instance, Pan et al. (2020) endeav-
ored to explain the state-of-the-art GAIL model (Ho and
Ermon 2016) through a model-specific explanation method
called xGAIL. Their approach was validated on a passenger-
seeking problem that involved spatial-temporal data, suc-
cessfully elucidating individual decision-making based on
extracted frames. While xGAIL provided local and global
explanations for a well-trained GAIL model, it possesses
certain limitations. Firstly, Its input data type is restricted
to geographical data, and the explanation framework is less
likely to be applicable to other IL models since xGAIL
is model-specific. Furthermore, xGAIL transforms the IL
problem into an image classification problem, resulting in
the extraction and analysis of limited frames from abundant
inputs. Consequently, individual decision-making is evalu-
ated from a single image (frame), which might not offer an
intuitive understanding of the IL problem in its entirety. In
a dynamic environment, this approach might lack a compre-
hensive overall explanation with respect to the policy per-
formance, and the generated explanations may be biased as



Figure 1: A diagrammatic representation of a single iteration of R2RISE. The input demonstrations are subject to element-wise
multiplication (denotes as

⊙
) with a random mask which creates a masked demonstration, with greyed frames indicating those

which are masked. Subsequently, the masked demonstration is used to train a black box IL model. The trained model interacts
with the test environment to obtain returns, the mean of which is element-wise multiplied with the initial mask and accumulated
to the existing importance map.

a substantial amount of information from the demonstrations
gets filtered out during frame extraction.

R2RISE
To overcome the above-mentioned limitations, we propose
a model-agnostic explanation method for imitation learning
called R2RISE. In the interest of maintaining generality, we
do not introduce the Markov Decision Process in this paper,
as it is unnecessary for those model-free IL methods that do
not evaluate the environment dynamics. R2RISE combines
the merits of RISE and ROAR, aligning with prevalent IL
problem settings and examining the importance of frames in
relation to overall policy performance.

We first review how to distinguish pixels’ importance us-
ing randomized masks for the image classification problem.
For a given image I with the size of H × W , we create
a random binary mask m with the same size of I and do
an element-wise multiplication between image I and mask
m (denoted as I

⊙
m). The masked images are then fed

into the black-box model (denoted as f(I
⊙

m)). The im-
portance of pixels is defined as the expected score over
all possible masks M = {m0,m1, ...,mi} conditioned on
the event that pixel is observed (denoted as M(λ) = 1,
if the pixel is masked, then M(λ) = 0), i.e. SI,f (λ) =
EM [f(I

⊙
m)|M(λ) = 1]. By rewriting the above equa-

tion as a summation over mask m and empirically estimat-
ing it using Monte Carlo sampling, the saliency map can be
computed as a weighted sum of random masks and normal-
ized by the expectation of M :

SI,f (λ) ≈
1

E[M ] ·N

N∑
i=1

f(I
⊙

mi) ·mi(λ). (1)

Since the above formulation does not need any assump-
tions or information from the target model, this could be
used to explain black-box models. The intuition is that when

f(I
⊙

m) is high, it indicates that the mask observes im-
portant pixels. However, directly applying the above method
to IL is inappropriate since applying a fixed mask on a dy-
namic environment frame-by-frame is not reasonable. Ad-
ditionally, IL methods commonly evaluate policy networks
through interactions with the environment rather than feed-
ing them with another dataset. In this case, if the model
needs to be well-trained in advance, the conventional IL
evaluation method becomes inapplicable, making it imprac-
tical to obtain frame-wise importance for all input trajecto-
ries. To address the aforementioned issues, we draw inspira-
tion from the concept of ROAR, which can not distinguish
the feature importance but allows masking samples before
training the model. Our approach involves retraining mul-
tiple models using diverse masked datasets, and we accu-
mulate the environment returns of these models to create a
frame-wise importance map.

Like most imitation learning methods, we assume the
testing data has a similar distribution as training data,
and the input demonstrations Dn are optimal. This could
ensure evaluation fairness for a wide range of IL mod-
els. The demonstrations Dn consist of multiple trajecto-
ries, and each trajectory could be represented as either
a sequence of state-action pairs or observations. In this
work, we represent the trajectory as a sequence of state-
action pairs, i.e. Dn = {τ1, τ2, ..., τn}, where τi∈[1,n] =
{(s1, a1), (s2, a2), ..., (st, at)}. The black-box imitation
learning model trains a policy (denoted as πDn

(a|s)) on the
input demonstrations Dn, then interacts with the environ-
ment and obtains returns R. For the finite horizon T, the ex-
pected return could be represented as the accumulation of
the return at each time step, i.e.

R(πDn) = E[
T∑

t=0

rt|πDn ]. (2)

In this work, we assess the model’s performance by measur-
ing its cumulative environment returns instead of the faith-



fulness of the learned policies compared with the demonstra-
tors, which aligns with the prevalent evaluation approaches
used in most IL methods and ensures the generality of
R2RISE.

The discussion we have so far motivated us to propose a
frame-wise explanation method for IL called R2RISE. By
regarding the demonstrations D as a single image, where
the number of demonstrations is the image height H, and
the length of the demonstration is the image width T , we
could investigate the frame-wise importance by iteratively
applying numerous randomized masks on the demonstra-
tions and accumulating the environment returns from the
black-box IL models trained on the masked demonstration.
R2RISE hypothesises that the importance of each frame is
not identical and iteratively removes random frames based
on the predefined degradation level. The modified dataset
Dn = D

⊙
mi is used to retrain an IL model. The re-

trained IL model then constantly interacts with the environ-
ment to obtain the accumulative return, and R2RISE finally
compute the linear combination of the returns to obtain the
saliency map (See Figure 1). Assuming the number of gen-
erated masks is N , and the return of each mask is the av-
erage return from J rounds of interaction with the environ-
ment, the computation of the saliency map is similar to equa-
tion (1). We also partitioned the trajectories into snippets to
decrease the number of frame combinations. This enabled
us to repeat distinct combinations multiple times under the
high degradation level, thus amplifying the importance be-
tween frames. To cater to the setting of IL, we substitute the
f(I

⊙
m) in equation (1) with equation (2):

SDn,f (λ) ≈
1

E[M ] ·N

N∑
i=1

R(πDi
) ·mi(λ) (3)

=
1

E[M ] ·N

N∑
i=1

E[
T∑

t=0

rt|πDi
] ·mi(λ) (4)

=
1

E[M ] ·N · J

N∑
i=1

J∑
j=0

T∑
t=0

rt ·mi(λ) (5)

where Di = D
⊙

mi, and

mi(λ) =

{
0, if the frame is masked,
1, if the frame is observed.

As the formula presented, R2RISE also does not require any
information from the IL models, such that R2RISE could be
used as a model-agnostic method to explain IL. We summa-
rize the above process of R2RISE in Algorithm 1.

To evaluate the effectiveness of R2RISE, we conduct tests
using three diverse IL methods: Behavioral Cloning (BC)
(Bain and Sammut 1999), Generative Adversarial Imita-
tion Learning (GAIL) (Ho and Ermon 2016), and Behav-
ioral Cloning from Observation (BCO) (Torabi, Warnell, and
Stone 2018). In BC, the control policy is obtained under a
supervised learning fashion, directly mapping states to ac-
tions. On the other hand, GAIL learns the policy through
an iterative adversarial process involving a generator G that
produces fake data distributions and a discriminator D that

Algorithm 1: R2RISE
Input: demonstration dataset D, target IL model f
Parameter: number of randomized masks N , degradation
level l, size of each grid in mask z
Output: an importance map SD,f

1: Initialize masks M based on the number of randomized
masks N , degradation level l and size of each grid in
mask z.

2: Initialize blank importance map SD,f with the same
shape as D.

3: for mi in M do
4: Randomly initializes the black-box model f .
5: Obtain masked demonstrations by element-wise mul-

tiplication Dn = D
⊙

mi.
6: Train black-box model f with the masked demonstra-

tions Dn and obtain policy πDn
.

7: Evaluate policy πDn
by interacting with environment

repeatedly and obtain average return R̄.
8: Update importance map via element-wise addition,

SD,f ← SDn,f

⊕
(R̄

⊙
mi)

9: end for
10: return importance map SD,f

distinguishes between the fake data distribution and the ex-
pert distribution. In contrast to the previous two methods,
BCO does not require action labels. It employs an inverse
dynamic model to estimate actions from two adjacent input
image frames and iteratively optimizes both the policy net-
work and the inverse dynamic model. These methods differ
significantly in how they learn the policy, the network struc-
tures they employ, and BCO even uses a different type of
input. Our objective is to validate the generality of R2RISE
across this diverse model selection.

Experiment
In this section, we conduct a series of experiments and ad-
dress the following questions: (1) Is the importance between
frames identical? (2) Can R2RISE distinguish the impor-
tance between frames? (3) Are there connections between
the importance map obtained from different IL models?

Setup
We implemented experiments with NVIDIA Quadro RTX
5000 GPU, and three different IL models, BC, GAIL, and
BCO, were evaluated on three OpenAI Gym Atari tasks:
BeamRider, Breakout, and SpaceInvaders(Brockman et al.
2016). In BeamRider and SpaceInvaders, the agent controls
a warplane to shoot down enemies while avoiding their at-
tacks; in Breakout, the agent operates a bottom paddle to
bounce a ball and break the upper bricks.

Similar to recent IL methods, we leverage the proximal
policy optimization (PPO) (Schulman et al. 2017) algo-
rithm from the OpenAI baselines (Dhariwal et al. 2017),
utilizing default parameters and reward function, to gener-
ate expert demonstrations. The observations with the size of
84 × 84 × 3 and actions between the PPO agents and the



task environment are recorded as “trajectories.” These tra-
jectories, generated from checkpoint 1400, serve as expert
demonstrations. To avoid the “causal confusion” problem
(models build wrong causal relationships with irrelevant pat-
terns) (De Haan, Jayaraman, and Levine 2019b) and ensure
the fairness of our evaluation, we mask the indicators (such
as scoring broad) in frames and ensure the same demonstra-
tions as input for different IL models.

Regarding the parameter setting, we generate 20 trajec-
tories with a fixed length of 1000 for each IL model. Five
random seeds and five levels of percentage degradations
l = [10, 30, 50, 70, 90] are pre-defined for evaluation. We
propose to retrain 100 models with 100 different random-
ized masks. Each mask contains 20*100 grids, which means
that every single trajectory is cut into 100 snippets, and
each snippet assigns the same importance to 10 continuous
frames. The retrained model is tested from 20 trials, and the
average return of each trial, multiplied element-wisely with
the random mask, is then linearly combined to generate the
accumulated importance map.

Is the importance between frames identical?
Remember that we hypothesize that the importance of
frames is different, so we validate this hypothesis by ap-
plying several randomized masks on the same demonstra-
tion and comparing the performance of the trained model.
If the outcomes present noticeable deviations, then it can be
inferred that the contributions between frames vary. To fur-
ther this idea, we divide each trajectory into ten segments of
equal length and randomly assign either a value of 0 or 1 to
each segment. We control the number of 1s and 0s to ensure
equal input data amount across trials. Regions assigned 0 are
removed, and then the preprocessed demonstrations are used
as input to train the relevant models. The trained model’s
performance was evaluated based on the average environ-
ment returns from ten trials. This process iterates ten times,
and we get Table 1. Here, the numbers outside the brackets
represent the average environment returns from 20 evalua-
tion episodes, while the numbers inside the brackets denote
the standard deviation.

From Table 1, it becomes evident that performance de-
viations exist not only across different models (ANOVA:
Beamrider: F=14, p < .000; breakout: F=14.02, p < .000;
SpaceInvaders: F=15.69, p < .000) but also from trial to
trial. For a given model type, the performance spectrum
spans significantly from the best to the worst, indicating that
the frames do not have identical contributions toward the
policy performance. Compared to GAIL and BC, the perfor-
mances of BCO fluctuate significantly, which indicates BCO
is more sensitive to the important frames than the other two
algorithms. Notably, in the context of the BeamRider task,
both BC and GAIL exhibit analogous trends when applying
identical masks on input trajectories, prompting inquiries
into potential correlations among importance maps derived
from diverse models. Upon confirming inherent frame dis-
parities, we introduce R2RISE to extract importance maps
for given trajectories. Figure 2a depicts importance maps
obtained through BC (with additional algorithms detailed
in the supplemental material). The x-axis denotes trajec-

Table 1: Variation in Model Performance Across Ten Trials.

Beamrider Breakout SpaceInvaders

expert demo 735.0 (115.29) 34.7 (5.91) 679.5 (102.29)

BC

min 573.2 (216.21) 4.2 (3.24) 330.8 (168.46)

medium 641.0 (151.82) 13.1 (5.95) 424.5 (183.23)

max 732.1 (209.66) 25.8 (10.01) 529.5 (160.01)

without M 1884.2 (670.66) 15.6 (6.83) 486.7 (197.14)

GAIL

min 290.4 (167.77) 3.3 (2.60) 275.6 (99.17)

medium 382.8 (126.78) 4.6 (2.82) 353.1 (160.61)

max 440.8 (176.73) 6.8 (2.11) 441.3 (201.72)

without M 387.5 (156.95) 8.1 (2.75) 361.6 (135.6)

BCO

min 88.0 (59.03) 2.9 (2.56) 59.5 (34.02)

medium 333.3 (139.22) 8.0 (4.49) 117.5 (85.69)

max 710.4 (203.06) 13.4 (5.69) 460.4 (74.18)

without M 598.0 (136.57) 16.8 (8.57) 203.0 (59.42)
aWithout M denotes policy performance without
masking.

tory length, while the y-axis represents trajectory count, and
grayscale shading indicates relative importance. A lighter
shade implies higher importance. Likewise, the importance
maps generated by R2RISE highlight frame disparities, con-
sistent with Table 1 findings. However, there is no dis-
cernible pattern, suggesting a discrete rather than clustered
distribution of important frames along trajectories. Figure
2b illustrates the frames that have been identified as impor-
tant components within the demonstrations. In the context
of BeamRider and SpaceInvaders, models prioritize actions
related to destroying enemy flights, while Breakout models
emphasize rebounding of upper blocks, sidewalls, and the
paddle. These extracted frames provide a lens through which
the model’s learning process can be investigated, enhancing
comprehension of the underlying “causes” influencing the
overall policy performance.

Can R2RISE distinguish the importance between
frames?
This section investigates the effectiveness of R2RISE. The
abovementioned hypothesis validation indicates that the im-
portance between frames varies. To obtain a map indicat-
ing the importance of frames, we implement R2RISE. How-
ever, the quality of the generated maps needs to be prop-
erly evaluated. In this case, we adopt similar causal metrics
used by Petsiuk et al. (2018), insertion and deletion, where
the availability of the ‘cause’ will significantly influence the
model’s decision-making and performance. Under the sce-
nario of image classification tasks, deleting the causal pixels
will lead to a sharp drop in accuracy if the model gets well
explained. In our experiment, we leverage similar intuition
and expect the removal of the important frames would lead
to a worse performance while limiting the amount of input
data to be the same. To achieve this, we transform the gen-
erated importance map into a mask according to different
degradation levels and replace the map with either 1s or 0s,
depending on the degradation level.



(a) Importance maps of BC obtained by R2RISE. (b) Frames identified as important in the Atari domain.

Figure 2: Importance maps and the corresponding extracted sample frames that are recognized as important.

Figure 3: Validations of the effectiveness of R2RISE. The
lines and the error bars represent the mean performance and
standard deviation of the model trained from a certain per-
centage of the most important (or least important) frames.

Figure 3 shows the changes in policy performance using
different percentages of the most important (or least im-
portant) frames. The x-axis is the percentage of data used
to train the model, and the y-axis is the environment re-
turns. The solid lines are the average returns from 10 tri-
als each with 20 evaluation episodes using the same trans-
formed mask and demonstrations, the error bar is the stan-
dard deviation. From Figure 3, we can observe that the mod-
els trained with the most important frames perform better
when the input data is relatively limited for all tasks (Beam-
Rider (50%): t=2.9971, p < .01; Breakout (50%): t=4.6522,
p < .01; SpaceInvaders (10%): t=3.2414, p < .01), which
meets our expectations. In addition, with more training data
fed into the network, the standard deviation enlarges, likely
due to the presence of redundant information, the informa-
tiveness of frames varies even within the same grid. In the
context of the BeamRider task (refer to Figure 3 (a)), the
model with important frames performs better than the model
trained with the least important frames. The performance
deviation at the beginning of the figure is relatively small,
we think the reason is that the model is more sensitive to
the amount of data than to the availability of the important
frames. From the end of this figure, it can be seen that the
performance deviation increases, indicating that the identi-
fied top important frames significantly determine the upper
bound of the model’s performance and removing these top
influential frames results in a sharp decrease. For task Break-
out and SpaceInvaders (see Figure 3 (b) and 3 (c)), it can be
seen that the model trained with important frames at least
slightly outperforms its counterpart lacking such frames,
particularly in scenarios with limited input data. This obser-
vation underscores the extraction of more valuable knowl-
edge from frames identified as important, thus confirming
the effectiveness of R2RISE. However, as the dataset size
increases, the performance of the two models begins to con-
verge. We suspect this phenomenon is attributed to the ad-
dition of more ordinary or redundant frames to the dataset,
potentially leading to the convergence or even negative im-



Figure 4: Deviation between importance maps in Breakout.

Figure 5: Average reward learning curves of GAIL trained
with different masks. The blue, orange and grey lines are
trained with the masks extracted from the importance map
obtained using BC, GAIL and random, respectively.

pact on policy performance.

Are there connections between the importance map
obtained from different IL models?
Remember that we observed a similar trend between GAIL
and BC in BeamRider tasks when applying identical masks
on input trajectories, this prompt us to examine the connec-
tions between IL models. In this section, we investigate the
question: does the importance map obtained by one model
have connections to another model? To this end, we pro-
pose two approaches to explore intrinsic connections be-
tween models. The first attempt directly compares the im-
portance maps by projecting the values into the same range
and calculating element-wise deviation (see Figure 4). The
larger the deviation is, the whiter the output image should be.
From Figure 4, we can observe that most grids are close to
black, which indicates both models assigned similar impor-
tance to these grids. The second attempt involves generating
a mask from an importance map generated by one model
and applying that mask to the same demonstrations to train
another model. The underlying assumption is that if there
are connections between models’ importance maps, the im-
portant frames identified by one model should work well on
another model, leading to improved performance compared
to a randomized mask on the frames. Figure 5 displays the
average returns of BCO using four types of masks, it can be
seen that when applying the mask obtained from BCO, the

model BCO performs better across most checkpoints com-
pared to other masks, which suggests R2RISE does distin-
guish important frames from the input trajectories. Regard-
ing masks derived via BC and GAIL, we can see the perfor-
mance is still better than the randomized masks, this high-
lights a degree of similarity in the importance maps obtained
from different IL models, which is consistent with the con-
clusion drawn from the first attempt.

Limitations
Several intriguing challenges await further exploration. Cur-
rently, the framework relies on a single trial to train the
model, achieving robustness through substantial randomized
masks. Ensembling IL models could further ensure low vari-
ance for each given mask. In addition, computation inten-
siveness is another limitation. The performance and robust-
ness of R2RISE heavily rely on the number of masks used
to generate the importance map, so that the time taken to ob-
tain a satisfactory explanation is closely linked to the time
spent on training the target model once. If the target model
requires days to train, it would not be practical to retrain hun-
dreds of times. Improving time efficiency while preserving
the model-agnostic property remains an open challenge for
R2RISE. Investigating the relationship between global ex-
planations and the frames that are recognized as important is
another interesting future direction. Although we observed
similar patterns in the extracted frames from different trials
and models, it is still unsafe to claim these patterns could be
the global explanations for a given task. Further research is
needed to provide theoretical proof for the connections.

Conclusion
This paper introduced a model-agnostic explaining frame-
work for imitation learning called R2RISE. It distinguishes
the frames’ importance in relation to the overall policy per-
formance. It iteratively applies numerous randomized masks
on the demonstrations and retrains the black-box IL model
from the masked demonstration. Similar to conventional IL
methods, model evaluation is measured via accumulated re-
turns from the environment. We leverage these accumulated
returns as a coefficient to multiply with the mask and linearly
combine the multiplied masks to obtain the importance map
of the frames. Experiments have shown that the importance
of frames is not equal, and R2RISE can successfully dis-
tinguish important frames from the demonstrations, offering
valuable insights to probe IL models for better explanations.

References
Bain, M.; and Sammut, C. 1999. A framework for be-
havioural cloning. In Machine Intelligence 15, 103–129.
Oxford University Press.

Bewley, T.; Lawry, J.; and Richards, A. 2020. Modelling
agent policies with interpretable imitation learning. In Inter-
national Workshop on the Foundations of Trustworthy AI In-
tegrating Learning, Optimization and Reasoning, 180–186.
Springer.



Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.

Brown, D.; Goo, W.; Nagarajan, P.; and Niekum, S. 2019.
Extrapolating beyond suboptimal demonstrations via inverse
reinforcement learning from observations. In International
conference on machine learning, 783–792. PMLR.

Codevilla, F.; Santana, E.; López, A. M.; and Gaidon, A.
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