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Abstract

The financial markets have experienced a technology revolution, which has led to

various innovations such as the advent of limit order books, the increased use of

social media in investment decisions, and the expansion of FinTech services. This

dissertation investigates market manipulation and machine-human interactions in

the context of the technology revolution in the modern finance industry.

Chapter 2 introduces a novel machine learning technique, Q-learning, as a learning

tool to a dynamic limit order market (LOM) to examine how order book infor-

mation and learning affect the strategic trading behaviour of bounded rational

traders. In equilibrium, informed traders favour limit (resp. market) orders when

the magnitude of mispricing is small (resp. large). In contrast, uninformed traders

tend to “chase the trend”, that is, submit market buys (resp. sells) following

market buys (resp. sells) from the informed. Interestingly, informed traders can

manipulate the market by anticipating a mispricing reversal when there is small

overpricing (resp. underpricing) and a high depth imbalance at the best bid (resp.

ask). Going against their equilibrium preference of limit buys (resp. sells) due

to small mispricing, the informed use market buys (resp. sells) to trigger market

buys (resp. sells) from the uninformed to enhance execution probability and prof-

itability of later informed limit sells (resp. buys). Consequently, the profitability

of the uninformed trend-chasing market order strategy is reduced. These find-

ings suggest that informed manipulation can be learned as an equilibrium trading

strategy in a dynamic LOM.

Chapter 3 analyses how meme investing, a retail buying frenzy coordinated through

social media, affects the investment efficiency of firm managers. The buying frenzy

is modelled as a cost on (informed and manipulative) short sellers in a model where

managers learn about the quality of an investment from stock prices. Small short-

ing costs improve investment efficiency, intermediate costs may improve or harm,

while high costs and short-sale bans harm investment efficiency. This occurs as

manipulative short sellers are more sensitive to shorting costs. The buying frenzy

is also modelled as asymmetric noise trading where a noise buy is more likely to

occur than a noise sell. In the asymmetric noise trading setting, the buying frenzy

can improve investment efficiency as it induces extra cost to manipulative short

sellers.
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Chapter 4 investigates the impact of the interaction between quantitative traders

reliant on computer models and discretionary human traders on price efficiency.

Quants are modelled as traders with greater information processing capability but

weaker flexibility to adapt to market conditions than discretionary traders. The

market efficiency depends on how these effects impact the trading aggressiveness

of traders. Quants tend to trade more (resp. less) aggressively due to greater

information processing (resp. weaker flexibility), and discretionary traders take

advantage of the weaker flexibility of quants. Consequently, the price efficiency is

non-monotonic with respect to the level of quant trading.

Overall, this dissertation unveils the impact of the technology revolution on the

strategic behaviour of financial market and the corresponding market quality con-

sequences. The analysis suggests that technological developments can disrupt the

practice of market manipulation that has been in existence for centuries. The

analysis of the real economic impact of meme investing suggests that such a retail

buying frenzy can be a natural remedy to manipulative short selling and can thus

improve the investment efficiency of firm managers. In addition, the investigation

of the increased popularity of machines in trading reveals that the strategic in-

teraction between quantitative machine and discretionary human traders and the

corresponding impact of growth in quantitative investing can be decomposed into

empirically testable components primarily driven by greater information process-

ing and weaker flexibility of machines.



Contents

Statement of Originality i

Acknowledgements iii

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Chapter 2: Strategic trading and manipulation: Machine
learning in limit order markets . . . . . . . . . . . . . . . . . 2

1.1.2 Chapter 3: Buying frenzies, short selling costs and their
impact on investment efficiency . . . . . . . . . . . . . . . . 4

1.1.3 Chapter 4: Interaction of quantitative and discretionary in-
vesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Market manipulation . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Machine-human interaction in financial markets . . . . . . . 10

1.2.3 Endogenous order choices . . . . . . . . . . . . . . . . . . . 10

1.2.4 Application of machine learning in economics and finance . . 11

1.2.5 Managerial learning from stock prices . . . . . . . . . . . . . 11

1.2.6 Extensions of the Kyle model . . . . . . . . . . . . . . . . . 12

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Strategic trading and manipulation: Machine learning in limit
order markets 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Traders’ order choices . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Order book information state space . . . . . . . . . . . . . . 20

vi



vii

2.3.3 Trader objective and Q-learning . . . . . . . . . . . . . . . . 21

2.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 A benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Order book statics and stylised facts . . . . . . . . . . . . . 26

2.5 Order choices and order book states . . . . . . . . . . . . . . . . . . 28

2.5.1 Liquidity consumption and provision . . . . . . . . . . . . . 32

2.5.2 Trade/no-trade decision . . . . . . . . . . . . . . . . . . . . 32

2.5.3 Buy/sell decision . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.4 Market/limit order decision . . . . . . . . . . . . . . . . . . 34

2.5.5 Liquidity provision and information asymmetry . . . . . . . 38

2.6 Volatility and informed trading . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Limit order submission and volatility . . . . . . . . . . . . . 41

2.6.2 Limit order submission and informed trading . . . . . . . . . 43

2.7 Manipulative behaviours of informed traders . . . . . . . . . . . . . 44

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendix 2.1. Classified rules . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix 2.2. Uninformed traders’ inability to infer mispricing reversal . 52

3 Buying frenzies, short selling costs and their impact on invest-
ment efficiency 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 The benchmark model . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 The benchmark model setup . . . . . . . . . . . . . . . . . . 64

3.3.2 The benchmark equilibrium . . . . . . . . . . . . . . . . . . 65

3.4 The real effects of retail buying frenzy . . . . . . . . . . . . . . . . 69

3.4.1 A short-sale ban . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Costly short selling . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.3 Coordinated noise buys . . . . . . . . . . . . . . . . . . . . . 83

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendix 3.1. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Quantitative vs discretionary investing: Implications for market
efficiency 119

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.3 Quantitative investing and price efficiency . . . . . . . . . . 127

4.4 Opponent firm with quant department . . . . . . . . . . . . . . . . 132

4.4.1 Growth in quantitative investing by a single firm . . . . . . 134

4.4.2 Growth in quantitative investing by both firms . . . . . . . . 137

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



viii

Appendix 4.1. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix 4.2. Extension to partial strategic inflexibility . . . . . . . . . 151

5 Conclusion and future research 163

5.1 Learning to strategic trade and manipulate in limit order markets . 163

5.1.1 Order choices in limit order markets . . . . . . . . . . . . . 164

5.1.2 Informed manipulation in limit order markets . . . . . . . . 164

5.2 The influence of meme investing on manipulative short selling . . . 165

5.2.1 Meme investing as explicit short-sale constraints . . . . . . . 165

5.2.2 Meme investing as asymmetric noise trading . . . . . . . . . 165

5.3 The interaction of quantitative and discretionary investing . . . . . 166

5.3.1 Growth in quantitative investing level by individual firms
when other things equal . . . . . . . . . . . . . . . . . . . . 166

5.3.2 Growth in quantitative investing level by individual firms
with a high market quantitative investing level . . . . . . . . 167

5.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography 169



List of Figures

2.1 Convergence of traders’ learning . . . . . . . . . . . . . . . . . . . . 25

2.2 Stylised facts in the simulated order book . . . . . . . . . . . . . . . 29

2.3 Informed manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Model timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Real efficiency in the costly short selling setting . . . . . . . . . . . 83

3.3 Informational content of no trade and negative order flows with
respect to the intensity of noise buys . . . . . . . . . . . . . . . . . 91

3.4 The impact of α on the information content of orders in the NMS
equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Model timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2 Trading aggressiveness when the opponent firm is fully discretionary 129

4.3 Price efficiency with a fully discretionary opponent firm . . . . . . . 131

4.4 Price efficiency when A has a quant department and quantitative
investing level γ1 of A is fixed . . . . . . . . . . . . . . . . . . . . . 137

4.5 Price efficiency when A has a quant department and γ1, γ2 increase 138

4.6 Price efficiency with a fully quant opponent firm . . . . . . . . . . . 139

A4.1 Trading aggressiveness with partial strategic inflexibility . . . . . . 158

A4.2 Price efficiency with partial strategic inflexibility . . . . . . . . . . . 162

ix



List of Tables

2.1 Order book state frequencies in the benchmark model . . . . . . . . 27

2.2 Frequencies of E(vt)− pmt and |v̄t − pmt |/st in the benchmark model 27

2.3 The relationship between order choices and order book states in the
benchmark model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Percentage of buy orders under different states . . . . . . . . . . . . 34

2.5 Percentage of limit orders under different states . . . . . . . . . . . 35

2.6 Percentage of ALO under different depth imbalance levels . . . . . . 37

2.7 Impact of private information on liquidity provision . . . . . . . . . 39

2.8 Order aggressiveness conditional on volatility levels . . . . . . . . . 42

2.9 Order aggressiveness conditional on informed trading levels . . . . . 44

3.1 Equilibrium strategies and prices in the benchmark setting . . . . . 68

3.2 Equilibrium strategies and prices in the short-sale ban setting . . . 72

3.3 Information content of order flows in the short-sale ban setting . . . 73

3.4 Equilibrium strategies and prices in the costly short selling setting . 78

3.5 Information content of order flows in the costly short selling setting 81

3.6 Equilibrium strategies and prices in the coordinated noise buys setting 88

3.7 Information content of order flows in the coordinated noise buys
setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

x



Chapter 1

Introduction

1.1 Introduction

The advancement of technology in recent decades has brought about numerous

innovations in the modern finance industry, including the adoption of limit order

books, the increased involvement of social media in personal investment decisions,

and the growth of FinTech such as blockchain and robot advisory services. There-

fore, the impact of the technology revolution on strategic behaviours of market

participants and its effect on market quality in the modern finance industry is a

topic that continues to spark intense debate among scholars, market practition-

ers, and regulators (see, e.g., Dugast and Foucault (2018), Dugast and Foucault

(2021), Abis (2022), Malikov and Pasquariello (2022)).

This thesis aims to contribute to this ongoing debate by focusing on two impor-

tant issues in the field of market microstructure studies: market manipulation

and quantitative investing. Market manipulation, defined as the intentional de-

ception of investors by artificially affecting the supply or demand for a security by

Allen and Gale (1992), has been a long-standing practice in the financial market.

Understanding market manipulation is crucial for promoting fair and transparent

markets, protecting investors, and ensuring the stability of the financial system

(e.g., Aggarwal and Wu (2006)). This thesis investigates whether technological

developments will disrupt the practice of market manipulation that has been in

existence for several hundred years. Specifically, the thesis addresses two key

questions about market manipulation: will the shift from the traditional auction

market to the limit order market influence the form of market manipulation, and

1
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can meme investing, a retail buying frenzy coordinated on social media, be a

natural remedy to manipulative short selling?

Quantitative investing, which utilises mathematical and AI models to make auto-

mated trading decisions, has gained popularity in recent years. The market share

of machine-driven quant funds rose from 20% to over 36% between 2014 and 2019

in the US market.1 This thesis investigates whether technical development, par-

ticularly the increased popularity of machines in the finance industry, will lead

to novel types of strategic interaction between quantitative machines and discre-

tionary human traders, and influence market price dynamics. The thesis addresses

two key questions about quantitative investing: how will quantitative investing,

which relies on machine computation, and discretionary investing, which relies

on human skills, strategically interact with each other, and what are the market

efficiency implications of such strategic interaction?

This chapter provides a concise overview of the main topics covered in each chapter

of the thesis, along with an outline of the modelling approaches and key findings.

It aims to provide a comprehensive understanding of the thesis as a whole before

delving into the specifics of each chapter. Additionally, this chapter depicts the

relationship between the thesis and the relevant finance and economics literature,

with the detailed comparison of each chapter with existing papers left as a separate

section in the corresponding chapter.

1.1.1 Chapter 2: Strategic trading and manipulation: Ma-

chine learning in limit order markets

Since the beginning of trading on organised exchanges, speculators have manipu-

lated markets to profit at the expense of others. In quote-driven markets with des-

ignated market makers (DMMs), prevailing market microstructure models depict

market manipulation through the manipulative informed trader misleading other

market participants by trading occasionally in the “wrong” direction (e.g., John

and Narayanan (1997)) or introducing noise components to trades (e.g., Huddart,

Hughes and Levine (2001)). However, with the growing dominance of limit order

markets (LOMs) over quote-driven markets, new forms of market manipulation,

1 For example, see the Economist’s report on quants, “The stock market is now run by
computers, algorithms and passive managers”.

https://www.economist.com/briefing/2019/10/05/the-stockmarket-is-now-run-by-computers-algorithms-and-passive-managers
https://www.economist.com/briefing/2019/10/05/the-stockmarket-is-now-run-by-computers-algorithms-and-passive-managers
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such as spoofing, quote stuffing, and momentum ignition, have surfaced. Conse-

quently, there is a need for academics and regulators to attain a deeper theoretical

understanding of market manipulation in LOM. Towards that end, Chapter 2 of

the thesis investigates whether the equilibrium in an LOM populated by traders

who learn to trade using a novel machine learning technique is learnable, and if

market manipulation could be learned as an equilibrium strategy. Furthermore,

this chapter aims to examine how the form of manipulation in LOM would differ

from that in traditional quote-driven models.

Chapter 2 introduces a novel machine learning technique, Q-learning, to a dynamic

LOM. The continuous-time order book is populated by two types of risk-neutral

agents, informed traders who know the current fundamental value, and uninformed

traders who know the lagged fundamental value. Through trial and error, traders

learn to maximise expected cumulative payoffs of current and future periods using

Q-learning.

The belief convergence and successful replication of a selection of stylised facts in

Chapter 2 suggest that equilibrium is learnable in a dynamic LOM with informa-

tion asymmetry. Specifically, the stylised facts replicated by the converged model

include a hump-shaped order book, absence of autocorrelations of returns, and

slow decaying autocorrelations of absolute returns. Chapter 2 also shows that the

informed and the uninformed trade strategically in equilibrium and demonstrate

predictable trading patterns conditional on order book information, fundamental

volatility, and informed trading level. Informed traders prefer limit (resp. market)

orders when the magnitude of mispricing is small (resp. large), while uninformed

traders tend to “chase the trend”, that is, submit market buys (resp. sells) fol-

lowing market buys (resp. sells) from the informed.

Informed manipulation can be learned as an equilibrium trading strategy in the

dynamic LOM. Informed traders may deviate from predictable trading patterns

to manipulate the market by taking the “wrong” make-take decision. When there

is a small-in-size positive (resp. negative) mispricing along with a high depth

imbalance at the best bid (resp. ask), informed traders expect a reversal of the

mispricing at a later time. Going against the preference for limit buys (resp. sells)

due to low mispricing, informed traders opt for market buys (resp. sells) to prompt

trend-chasing uninformed traders to also place market buys (resp. sells). Due to

the manipulation of the informed, the uninformed experience a profit reduction in

trend-chasing market orders.
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This study is the first to implement a continuous-time Q-learning algorithm in

a simulated artificial stock market, and its findings suggest that Q-learning can

be used to model market manipulation in dynamic LOMs. The use of this novel

machine learning technique opens up new avenues for further research on market

manipulation and its impact on market efficiency.

1.1.2 Chapter 3: Buying frenzies, short selling costs and

their impact on investment efficiency

While Chapter 2 shows how the advent of the limit order book influences the form

of market manipulation, Chapter 3 shows that meme investing, a retail buying

frenzy coordinated through social media, could be a natural solution to manipu-

lative short selling. Trading frenzies in financial markets occur when speculators

trade en masse in one direction and result in significant price pressure. A recent

example of this phenomenon occurred in January 2021, when multiple stocks with

high short interest became popular among retail investors via social media, leading

to a significant surge in their prices. These stocks, commonly known as “meme

stocks”, allowed retail investors to coordinate their purchases through social me-

dia, resulting in substantial costs for short sellers and a consequent reduction in

short interest. Chapter 3 explores the real economic impact of such a buying

frenzy on firms’ investment efficiency.

There are two sides to short selling. On the one hand, short sellers keep prices

from overinflating, guiding capital to its best uses and improving welfare. On the

other hand, some activist short sellers engage in manipulative tactics that create

panic and destroy firm fundamentals. The dichotomy of short sellers creates a

challenge for policymakers investigating the welfare implications of short selling.

Chapter 3 extends Goldstein and Guembel (2008) to allow costly short-selling and

investigates the real investment effects of retail buying frenzy as a friction on short

sales.

The model incorporates a feedback mechanism whereby the financial market out-

comes influence the real investment value of a firm, allowing the firm manager to

glean information about the quality of potential investments from observed stock

prices. The model consists of a risk-neutral speculator (who can be positively
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informed, negatively informed, or uninformed), a noise trader, a risk-neutral mar-

ket maker, and the firm manager. After observing stock price realisations in the

financial market, the firm manager makes a decision regarding a real investment

opportunity. In the benchmark equilibrium without frictions, negatively informed

and uninformed speculators always sell in the two trading periods. While the sell

– sell strategy employed by the negatively informed speculator helps the firm man-

ager correctly reject a poor investment, the same strategy from the uninformed

speculators is manipulative because it leads the firm manager to incorrectly reject

a good investment based on non-information-driven selling pressure.

In order to investigate the real investment effects of the retail buying frenzy, Chap-

ter 3 extends the benchmark model in three ways. First, an outright short-sale

ban is modelled. Second, a cost on short selling is introduced to reflect the fact

that a retail buying frenzy increases the stock price and poses an additional cost

to short sellers. Third, we model asymmetric noise traders, who are more likely

to buy than sell.

A short-sale ban always harms both price efficiency and real efficiency relative

to the benchmark equilibrium. A short-sale ban eliminates informed (resp. ma-

nipulative) short selling, decreasing (resp. increasing) the stock price efficiency.

Additionally, a short-sale ban decreases the information content of positive order

flows. This is because positive orders may come from all types of speculators,

unlike the benchmark equilibrium where they only originate from the positively

informed speculator. Consequently, a short-sale ban brings a net price efficiency

reduction, which is then translated into an inferior investment decision by the firm

manager.

With costly short selling, we show that, as the short selling cost increases, the

uninformed short sellers are driven out of the market quicker than the manipu-

lative short sellers. Small shorting costs do not alter the short-selling intensity

of speculators, resulting in no change in price efficiency and investment efficiency

compared to the benchmark model. Intermediate shorting costs only deter manip-

ulative short selling and unambiguously improve the stock price efficiency and the

real investment efficiency. Relatively high shorting costs eliminate manipulative

short selling, but also lead the negatively informed short seller to change from

selling in both trading periods to no trade in t = 1 and sell in t = 2. Relatively

high shorting costs thus may improve or harm price efficiency and real efficiency.
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Extremely high shorting costs eliminate all short selling and are effectively the

same as a short-sale ban.

Another way to incorporate the retail buying frenzy into the benchmark model is

to model asymmetric noise trading such that they buy more often than they sell.

In this model, noise buy is more likely than noise sell in t = 2. In this chapter, we

show that such coordinated noise buys cause a cost that is specific to manipulative

short sellers and can improve price efficiency and investment efficiency. To be more

precise, increased noise buys push up the overall prices and lead the firm manager

to increase his propensity to invest. When the short selling is manipulative, a

correction of under-investment and an improvement in fundamental value occur,

resulting in a higher cost to cover the manipulative short. When the short selling

is informative, an over-investment and a deterioration in fundamental value occur,

resulting in a lower cost to cover the informed short. This mechanism imposes a

cost specific to manipulative short sellers.

In summary, Chapter 3 suggests that meme investing reduces manipulative short

selling and does not harm informed short selling for certain types of firms and

market conditions, since manipulative short sellers are more sensitive to the same

short selling cost increase and may experience extra cost increase during the retail

buying frenzy when compared with informed short sellers.

1.1.3 Chapter 4: Interaction of quantitative and discre-

tionary investing

Chapters 2 and 3 explore the potential impact of the technical revolution in the

finance industry, including the emergence of limit order book and the increased use

of social media in investment decisions, on the practice of market manipulation.

Chapter 4 builds on this argument and suggests that such technical revolution

can also generate new types of strategic interaction, particularly the interaction

between quantitative machines and discretionary human traders.

The use of advanced mathematics and technology has led to a rise in machine-

based quantitative investing, with quant funds’ market share in US increasing

from 20% to over 36% between 2014 and 2019. As quantitative investing relies on

machines and rule-based criteria, whereas traditional discretionary investing relies

on human skills, it is important to examine the strategic interaction between these
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two approaches to avoid market quality deterioration brought on by quants, such

as the Quant Meltdown of 2007.

Focusing on the fundamental trade-off between capacity and flexibility when ma-

chines replace humans in the investment industry, Chapter 4 addresses two funda-

mental questions related to the impact of the rise of quants on market dynamics.

First, what strategic interaction between discretionary and quantitative investing

will arise? Second, how does the growth in machine-based quantitative investing

impact market efficiency when such interaction exists?

Chapter 4 introduces a Kyle-type model that considers the interaction between two

investment firms, namely a fully discretionary firm (firm A) and a firm consisting

of both a quant department Q and a discretionary department D (firm B). The

model also features liquidity traders and competitive market makers as in the

standard Kyle (1985) model. The prior probability of the quant department’s

existence in firm B measures the quantitative investing level in the economy.

In the model, there are two key differentiating features of the quant and discre-

tionary trading. First, the quant department has greater information processing

capacity compared to the discretionary department. There are several reasons why

quants may be more effective than human traders in accessing information, such

as analysing data more quickly with the help of powerful computers, accessing

a wide range of data sources from news, social media, and financial statements,

and monitoring the market 24/7. The mathematical models and algorithms that

quants use are designed to analyse vast amount of data to identify patterns, trends,

and opportunities than human traders may miss. As a result, quants often have

better access to information and are able to process and interpret it more quickly

than human traders.

Despite the advantage of better information processing capacity, there are also

some limitations to quant trading. One of the main limitations is that quants

are less flexible than human traders. The fact that quants rely on algorithms

and mathematical models means they may miss out on opportunities that require

intuition and creative thinking. Additionally, quants may struggle to adapt to

sudden and unexpected changes in market conditions. That is, quants are strate-

gically less flexible compared to human traders. The quant department’s greater
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processing capacity (resp. weaker strategic flexibility) than discretionary partici-

pants is modelled as access to an additional piece of information (resp. incorrectly

believing that the opponent firm A does not react to firm B’s demand).

The increase in quantitative investing level has three impacts on the strategic in-

teraction between the two firms. First, it renders firm B more capable of extracting

fundamental information, increasing its trading aggressiveness, which is called the

“capacity enhancing effect”. Second, the higher strategic weakness implies firm B

is more inclined to overestimate the opponent’s trading aggressiveness, reducing

firm B’s trading aggressiveness, which is called the “strategy oblivion effect”. Fi-

nally, being fully discretionary, firm A tends to trade more aggressively to profit

from firm B’s increased strategic weakness, which is called the “internalising ef-

fect”. Given such strategic interaction, growth in quantitative investing reduces

(resp. increases) overall trading aggressiveness, and, thus, price efficiency when

the negative strategy oblivion effect dominates (resp. is dominated by) the other

two effects. A growth in quantitative investing can also have a non-monotonic

impact on the overall trading aggressiveness and price efficiency. If the quality of

the additional piece of information of quants is moderate, the sum of the capac-

ity enhancing and internalising effects start off smaller than the strategy oblivion

effect, but then dominate as the quantitative investing level increases.

Chapter 4 extends the model to include the setting where each of the two firms

consists of a quant department and a discretionary department and the setting

where Q incorrectly believes that the fully discretionary firm A would not strate-

gically react to B’s demand with a probability of h, but has a correct belief about

the fully discretionary firm with a probability of 1 − h. The comparison between

the extended and the baseline models shows that the impacts of a ceteris paribus

increase in firm B’s quantitative investing level on the strategic interaction and

on price efficiency stay robust to alternative more general model settings.

In addition, when firms A and B each have a quant department, aside from the

three effects described above, an increase in firm B’s quantitative investing level

causes firm A’s quant department to have a deteriorated information advantage

given more fierce competition from firm B. This effect is called the “competition

effect”. Furthermore, growth in firm B’s quantitative investing level is more likely

to decrease overall trading aggressiveness and price efficiency when firm A’s quan-

titative investing level is higher. This is due to the weakened internalising effect:
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firm A’s discretionary department puts less effort into exploiting firm B’s trading

aggressiveness reduction caused by increased strategic weakness.

Overall, Chapter 4 provides a conceptual framework that explicitly illustrates the

fundamental trade-off between capacity and flexibility in the context of machines

replacing humans in trading. It also offers novel insights into the consequen-

tial implications for market quality by analytically decomposing the impact of

machine-based quantitative investing into several quantifiable components that

are empirically verifiable.

1.2 Literature review

This section reviews the related literature on market manipulation and on machine-

human interaction in financial markets to contextualise the topics explored in

the thesis. In addition, it examines the literature on order choice problems, the

application of machine learning in economics and finance, managerial learning from

stock prices, and relevant extensions of the Kyle model to help understand the

methodologies employed in the thesis. The detailed comparisons of each chapter

with relevant papers are left as a separate section in the corresponding chapter.

1.2.1 Market manipulation

The manipulation of financial markets has been extensively studied in the litera-

ture, which categorises manipulation techniques into three forms: (i) action-based

manipulation, referring to intentionally taking actions that change the value (or

the perceived value) of the asset (e.g., Vila (1989)); (ii) information-based ma-

nipulation, referring to the act of spreading false or deceptive information or ru-

mours (e.g., Benabou and Laroque (1992), Van Bommel (2003), Eren and Ozsoylev

(2006)); and (iii) trade-based manipulation, referring to the act of manipulating

the stock price through trading activities (e.g., John and Narayanan (1997), Brun-

nermeier (2000), Huddart et al. (2001), Takayama (2021)).

Chapter 2 of this thesis analyses the third category of manipulation conducted

by informed traders. This chapter contributes to the literature by demonstrating

that informed traders in the LOM can learn to manipulate the market using make-

take decisions, rather than buy/sell and amount decisions in the existing studies
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of quote-driven markets. Chapter 3 is associated with the third category of ma-

nipulation conducted by uninformed traders and contributes to this literature by

investigating the real investment effects of a retail buying frenzy in the presence

of both informed and manipulative short sellers. For a comprehensive overview

of the literature on market manipulation, see Vives (2010), Putnins (2012), and

Putnins (2020).

1.2.2 Machine-human interaction in financial markets

The thesis is closely related to the literature on the machine-human interaction

in financial markets (see, e.g., Barbopoulos, Dai, Putnins and Saunders (2021),

Wang, Cao, Yang and Jiang (2021), Abis (2022), Coleman, Merkley and Pacelli

(2022), Malikov and Pasquariello (2022)). For instance, Abis (2022) shows that

the trade-off of capacity and inflexibility results in different investment styles (e.g.,

different macroeconomic timing and stock picking abilities) of quantitative and

discretionary mutual funds. Meanwhile, Malikov and Pasquariello (2022) evalu-

ate trading strategies and market quality outcomes, such as efficiency, liquidity,

volatility and volume in response to the entry of new quant funds or the switch

by incumbent discretionary funds to quantitative investing. Wang et al. (2021)

empirically document that the price forecasts generated by a hybrid approach com-

bining machine and human analysts outperform the forecasts of the human-only

and machine-only analysts. Coleman et al. (2022) empirically show that machine

analysts are less inclined to recommend glamour stocks and firms with potential

investment banking needs than their human counterparts.

Chapter 4 of this thesis contributes to this literature by analytically decomposing

the impact of growth in machine-based quantitative investing on strategic inter-

action among traders and on market efficiency into empirical testable components

primarily driven by the capacity enhancing effect (i.e., greater information pro-

cessing capacity) and the strategy oblivion effect (i.e., weaker strategic flexibility).

1.2.3 Endogenous order choices

The literature on order choice problems in limit order markets with information

asymmetry has been criticised for oversimplifying the order choice problems of

uninformed traders (e.g., Goettler, Parlour and Rajan (2009)). For instance, in a
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static model, Chakravarty and Holden (1995) draw the uninformed’s order from

random distributions. The uninformed order choice problems in dynamic LOM

models show dependence on exogenous parameters such as private value (e.g.,

Goettler et al. (2009), Rosu (2020)). To address this issue, Chapter 2 follows

Chiarella, He and Wei (2015) and He and Lin (2022) by building a dynamic LOM

model with endogenous order choices, thereby providing a more accurate repre-

sentation of uninformed traders’ order choices.

1.2.4 Application of machine learning in economics and

finance

The application of machine learning in economics and finance is an emerging field,

and most studies have focused on empirical analyses. These studies generally

use machine learning to extract unstructured information (e.g., Renault (2017))

or apply machine learning to test theories that imply stock return predictability

(e.g., Easley, López de Prado, O’Hara and Zhang (2021)). Chapter 2 adds to this

literature by using a novel machine-learning technique, Q-learning, in the context

of the dynamic LOM model. This approach demonstrates the potential of ma-

chine learning in theoretical frameworks, specifically by integrating reinforcement

learning with the market microstructure theory. For comprehensive surveys of this

literature, see Varian (2014), Athey (2018), and Athey and Imbens (2019).

1.2.5 Managerial learning from stock prices

The thesis is also closely related to the literature on managerial learning from stock

prices. Managerial learning occurs because stock prices aggregate information of

many different market participants who do not have direct channels for communi-

cation with the firm outside the trading process and are able to complement the

information of managers to make corporate investment decisions. For theoretical

literature, see, for example, Dow and Gorton (1997) and Subrahmanyam and Tit-

man (1999) and for empirical literature, see, for example, Chen, Goldstein and

Jiang (2007), Foucault and Fresard (2012), Aliyev, Allahverdiyeva and Putnins

(2023)). Chapter 3 theoretically examines managerial learning in the presence of

market manipulation and short-selling frictions, motivated by the retail buying

frenzy of meme stocks.



Chapter 1 12

1.2.6 Extensions of the Kyle model

The Kyle (1985) model is one of the workhorse models of market microstructure

theory that explores the impact of asymmetric information on the price forma-

tion process. Subsequent extensions of the Kyle model include risk averse in-

formed traders and market makers (Subrahmanyam (1991)), discretionary liquid-

ity traders (Admati and Pfleiderer (1988)), multiple informed traders with cor-

related information (Foster and Viswanathan (1993)), discrete actions of traders

(Goldstein and Guembel (2008)), and the impact of feedback from the financial

market on the real investment value of a firm (Goldstein and Guembel (2008)) to

name a few. Building on Goldstein and Guembel (2008), Chapter 3 extends the

Kyle model by introducing a retail buying frenzy as short sale friction. Chapter

4, on the other hand, incorporates quantitative traders into the Kyle model and

models machine-based quants’ greater information processing capacity as access

to an additional piece of information and quants’ weaker flexibility as ignorance

of the strategic impact of their own trades.

1.3 Thesis outline

The remaining sections of the thesis are divided into three primary chapters, each

focusing on a separate study exploring the following topics:

• Chapter 2: Strategic trading and manipulation in an artificial limit order

market where agents learn via reinforcement learning.

• Chapter 3: The impact of retail buying frenzies on real investment efficiency.

• Chapter 4: Implications of the interaction between quantitative investing

and discretionary investing for market quality.

Chapter 5 encompasses a summary of the thesis’s findings, presents reflections on

the discoveries made, and proposes potential directions for future research.
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Strategic trading and

manipulation: Machine learning

in limit order markets

2.1 Introduction

The ignoble history of market manipulation dates back to the foundation of the

world’s first stock market, the Amsterdam Stock Exchange, over three hundred

years ago. Existing theoretical market microstructure models tend to capture

market manipulation in a quote-driven market, where designated market makers

(DMMs) take the other side of traders’ market orders. In these models, the ma-

nipulative informed trader misleads other participants by taking the wrong action

when facing the buy/sell or amount decisions, e.g., occasionally trading in the op-

posite direction of his information (John and Narayanan (1997)) or adding noise

components to trades (Huddart et al. (2001)).

Given that limit order markets (LOM) have replaced quote-driven markets and

become the dominant form of financial market organisation, in which numerous

new types of manipulation appear, such as spoofing, quote stuffing and momentum

ignition, more theoretical insights on the market manipulation in the LOM is of

interest to academics and regulators. Towards that end, this paper introduces

Q-learning, a novel machine learning technique, to a dynamic limit order market,

and addresses the following questions: Is the equilibrium learnable in an LOM

13
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populated by bounded rational Q-learning traders? Would market manipulation

be learned as an equilibrium strategy? And if so, would our setting generate a

different form of informed manipulation compared to the traditional DMM setting?

The advantages of applying Q-learning in our model are threefold. First, it demon-

strates the potential of integrating reinforcement learning techniques (RL) into

the market microstructure theoretical framework, as an alternative belief updat-

ing rule. Traditional Bayesian updating assumes agents have adequate knowledge

of model priors (e.g., the joint distribution for fundamental value and order flow).

Reinforcement learning techniques do not make such an assumption and represent

one step towards realism. Second, with Q-learning traders who maximise expected

cumulative payoffs of current and future periods (i.e., Q-values), our model is bet-

ter able to reflect the dynamic nature of order choice problems than existing LOM

models (see, e.g., Foucault (1999), Goettler et al. (2009), Rosu (2020)) – a trader

not only factors in the impact of future traders on his current order’s payoff as in

existing dynamic models, but also considers the impact of his current order on fu-

ture market conditions and further on all his future orders’ payoffs. By considering

the two impacts simultaneously, the Q-learning traders maximise their expected

lifetime utility. Last, Q-learning allows us to fully endogenise the order choice

problems of traders, without introducing exogenous parameters such as private

value (Goettler et al. (2009)) or time preference (Rosu (2020)).

In our model, a continuous-time order book is populated by two types of risk-

neutral agents, informed traders who know the current fundamental value, and

uninformed traders who know the lagged fundamental value. A trader submits a

limit order, or a market order, or chooses not to trade upon arrival. We show that

equilibrium is learnable in a dynamic LOM with information asymmetry. Mea-

sured by Q-value criteria and average reward criteria, belief convergence of traders

is achieved. The converged model is able to replicate stylised facts documented in

the empirical LOM literature, including a hump-shaped order book (Bouchaud,

Mézard and Potters (2002)), absence of autocorrelations of returns (Cont (2001)),

and slowly decaying autocorrelations of absolute returns (Cont (2001), Schnaubelt,

Rende and Krauss (2019)).

We also show that, in equilibrium, the informed and the uninformed trade strate-

gically and demonstrate predictable trading patterns conditional on order book

information, fundamental volatility, and informed trading level. Informed traders
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submit more market (limit) orders when the mispricing is large (small), reflect-

ing increased sensitivity to execution risk. Uninformed traders “chase the trend”

and are more prone to place market buy orders following a market buy order.

Increased informed trading leads informed traders to undercut each other using

more aggressive limit but not more market orders, increases (reduces) aggressive

limit orders for the informed (uninformed), and improves efficiency and liquidity

simultaneously.

Most importantly, market manipulation can be learned as an equilibrium strat-

egy by bounded rational Q-learning traders in our model. Informed traders may

strategically violate their predictable trading patterns when facing make-take de-

cisions, in order to mislead uninformed traders. Informed manipulation emerges as

a result of the strategic interaction between traders. Informed traders anticipate

a later mispricing reversal when a small-in-size positive (negative) mispricing is

accompanied by high depth imbalance at the best bid (ask): given uninformed

traders’ preference for market buy (sell) following a market buy (sell), informed

traders go against their preference for limit buys (sells), and react strategically by

using market buys (sells) to trigger uninformed market buys (sells) and enhance

the execution probability and profitability of later informed traders’ limit sells

(buys). This strategy of the informed is both manipulative and collusive, because

informed traders confuse uninformed traders by taking the “wrong” action when

facing make-take decisions, submit market buys (sells) when they should have

submitted limit buys (sells), and sacrifice their own profit difference between limit

and market buys (sells) in exchange for profit increases of later arriving informed

traders. We thus add to the market manipulation literature by showing that

informed manipulation in the LOM can go beyond the buy/sell or amount dimen-

sion as in existing studies within the DMM setting (see, e.g., John and Narayanan

(1997), Brunnermeier (2000), Huddart et al. (2001), Takayama (2021)).

Our paper also innovates the literature of machine learning applications in finance

and economics. To the best of our knowledge, this paper is the first to implement

a continuous-time Q-learning algorithm in a simulated artificial stock market. Re-

cent studies within this strand of literature have mostly been empirical and focus

on employing machine learning techniques to construct novel variables such as

investor sentiment (e.g., Renault (2017), Easley et al. (2021), Bryzgalova, Pelger

and Zhu (2020), Gu, Kelly and Xiu (2020)). In this line of research, our work is

perhaps most relevant to Philip (2021), which applies discrete-time Q-learning to
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real-world limit order book data to determine the value of the option to cancel a

limit order. Nevertheless, given the empirical nature of Philip (2021), our work is

fundamentally different from his, and shows that reinforcement learning can be a

promising and powerful tool for theorists.

The rest of the paper proceeds as follows. Section 2.2 reviews the related literature.

Section 2.3 introduces Q-learning and the order book information classifier system

into a dynamic limit order market. Section 2.4 defines the concepts of the numer-

ical equilibrium and evaluates the model against a selection of stylised facts. Sec-

tion 2.5 investigates the role of order book information in order choices and strate-

gic trading. Section 2.6 analyses the informed traders’ and uninformed traders’

trading behaviours under different volatility regimes and different informed trad-

ing levels. Section 2.7 illustrates informed traders’ manipulative behaviours, i.e.,

strategic and deliberate violation of their predictable trading patterns, and unin-

formed traders’ reactions. Section 2.8 concludes.

2.2 Related literature

This paper is related to the literature of order choice problems in static and dy-

namic limit order markets with information asymmetry (see Parlour and Seppi

(2008) and Rosu et al. (2012) for excellent surveys). Existing static and dy-

namic LOM models with information asymmetry are prone to oversimplify the or-

der choice problems for uninformed traders for model tractability (Goettler et al.

(2009)). For static models, Chakravarty and Holden (1995) posit that the profit-

maximising informed trader can choose the order size, order type and the limit

order price, but draw the uninformed’s order from random distributions. For dy-

namic models, Goettler et al. (2009) numerically solve a continuous-time game

featured by the endogenous cancellation and endogenous information acquisition,

in which agents are endowed with positive, negative or zero private values. The or-

der choice of the uninformed relies on the private value: an uninformed trader with

a large positive (large negative) private value is more inclined to submit a market

buy (market sell). In Rosu (2020), equilibrium strategies of the uninformed are

deterministically determined by exogenously given waiting costs. In these papers,

the order choice problem of uninformed traders is either not explicitly modelled

or highly dependent on exogenous parameters (private value, patience). Relaxing

these possibly unrealistic assumptions, we contribute to this line of research by
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establishing causality from information asymmetry to differences between the in-

formed trader’s and the uninformed trader’s order choices, and also by generating

testable predictions for the empirical literature on order aggressiveness by different

trader types (see Duong, Kalev and Krishnamurti (2009) and Chiu, Chung and

Wang (2014) for institutional and individual traders; see Beber and Caglio (2005)

for high PIN and low PIN trading periods).

This paper is also related to the theoretical and empirical literature on informed

trading’s impact on liquidity in limit order market – especially on resiliency. For

empirical studies, Kempf, Mayston and Yadav (2009) examine the electronic limit

order market XETRA using market order imbalance to represent the unobserv-

able information variable, and conclude that the impacts of informed trading on

both spread resiliency and depth resiliency are strongly negative. Menkhoff, Osler

and Schmeling (2010) study the interdealer forex market for Russian rubles, and

show that the limit order submission rate of the informed is much more positively

responsive to an increase in spread, a drop in depth or a drop in cumulative depth

than that of the uninformed. They argue that informed trading is thus resiliency

improving. The two empirical studies are constrained by the extent to which their

proxies represent the information. Our work is different from them, because our

simulated data has exact identification of the informed traders and the uninformed

traders.

For theoretical studies, Rosu (2020) shows that an increase in the fraction of in-

formed traders always improves spread, has no effect on price impact, and improves

resiliency. Nevertheless, he provides no further explanations on possible underlying

channels that drive the improvement in resiliency. Our work is thus complemen-

tary to Rosu (2020) in two ways – first, by showing that the resiliency improving

effect is caused by the differences between equilibrium liquidity provision strate-

gies of the informed trader and the uninformed trader, and more fundamentally,

driven by information asymmetry; and second, by showing that more intensive

intertemporal competition between informed traders can be liquidity improving

(in terms of spread and depth), rather than liquidity deteriorating as his work.

This paper is most relevant to the literature on market manipulation (surveyed in

Vives (2010), Putnins (2012), Putnins (2020)). The growing literature categorizes

manipulation techniques into three forms: (i) action-based manipulation, which

involves taking actions that change the value (or the perceived value) of the asset

(Vila (1989)), e.g., a company manager can divest a factory to depress the stock
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value; (ii) information-based manipulation, which involves spreading misleading

information or rumours (Benabou and Laroque (1992), Van Bommel (2003), Eren

and Ozsoylev (2006)); and (iii) trade-based manipulation, which involves influenc-

ing stock price purely through trading (John and Narayanan (1997), Brunnermeier

(2000), Huddart et al. (2001), Takayama (2021)). Our work analyses the third cat-

egory of manipulation conducted by the informed. In existing REE literature on

informed trade-based manipulation, a trader with long-lived information manipu-

lates to sabotage other participants’ technical analysis if faced with ex-post trade

disclosure requirements (John and Narayanan (1997), Huddart et al. (2001)), or

future public announcements about the fundamental (Brunnermeier (2000)). In

these papers, a manipulative informed trader hides or enhances his own infor-

mation advantage, either by occasionally trading in the opposite direction of his

information (John and Narayanan (1997), Takayama (2021)), or by adding noise

components to trades (Huddart et al. (2001)), i.e., choosing the “wrong” action

when facing buy/sell or amount decisions. In contrast, in our setting, an informed

trader acts collusively and manipulates to enhance the profit of other later arriving

informed traders, by choosing the “wrong” action when facing market/limit order

decisions.

Lastly, our work contributes to the emerging literature of applying machine learn-

ing in economics and finance (see Varian (2014), Athey and Imbens (2019) and

Athey (2018) for excellent surveys). Recent studies are mainly empirical, and use

machine learning to extract unstructured information and construct novel vari-

ables such as investor sentiment (Renault (2017)) or apply machine learning to

test theories that imply stock return predictability (Easley et al. (2021), Bryz-

galova et al. (2020), Gu et al. (2020)). Our work unveils the promising future

of applying machine learning to theory, especially the possibility of integrating

reinforcement learning with market microstructure theory framework. Using rein-

forcement learning to update the agent’s belief in our dynamic LOM rather than

the traditional Bayesian updating rule enables us to relax a set of strict assump-

tions like the agent’s perfect knowledge of the model’s probability structure and

avoid using time preference and private value parameters. Fewer parametrisa-

tions can help reveal the importance and consequence of information itself, which

matters particularly in the context of market microstructure studies.
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2.3 The model

We consider a dynamic limit order market model of trading a single risky asset,

which is motivated by Goettler et al. (2009), Chiarella et al. (2015), and He and

Lin (2022). Let time to be denoted as t, where t ∈ {0,∞}. The innovations to the

fundamental value of the asset vt follow a Poisson process with parameter θ. If an

innovation takes place, the fundamental value increases or decreases by ∆ ticks

with equal probability. There are N risk-neutral traders who enter the market

randomly following a Poisson process at rate λ. Among them, NI are informed,

and NU are uninformed. When entering the market, an informed trader knows the

current fundamental value vt, while an uninformed trader only knows the lagged

fundamental value vt−τ , where τ is a positive integer. The only difference between

informed and uninformed traders is their knowledge of the fundamental value.

Different from Goettler et al. (2009) where the trader only trades one share in

his lifetime, repeatedly visits the market if no execution, and leaves the market

forever after an execution, our Q-learning traders can repeatedly visit the market

despite all his prior executions and no executions.

2.3.1 Traders’ order choices

The set of available actions for any trader is related to his choices about trading

or no trading, market or limit order, order direction (buy or sell), and limit order

aggressiveness. When re-entering the market, the trader cancels his last limit

order if unexecuted, and optimally chooses an action that maximises his expected

cumulative payoffs given the trading history Ht, the current state of the limit order

book, and his type.

Formally, the types of buy orders submitted can be defined as follows. A market

buy order (mb) is a request to complete the transaction immediately at the best

ask. An extremely aggressive limit buy order (ealb) lies within the spread and

is posted at at − 1, a price that is one tick below the best ask at. A moderately

aggressive limit buy order (alb) lies within the spread and is posted at bt+1, a price

that is one tick above the best bid bt. An ordinary limit buy order (lb) is at the

best bid bt. An unaggressive limit buy order (ulb) is at bt − 1, one tick below the

best bid. The market sell order (ms), extremely aggressive limit sell order (eals),

moderately aggressive limit sell order (als), and ordinary limit sell order (ls) can
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be defined analogously. A trader can also choose not to trade (nt). In summary,

the trader’s action space contains 11 actions: let Ab = {mb, ealb, alb, lb, ulb}, and
As = {ms, eals, als, ls, uls}, then the action space is A = Ab ∪ As ∪ {nt}.

2.3.2 Order book information state space

A limit order book Lt = {lit}∞i=1 contains the history of order book information at

time t, lit, consisting of a backlog of unexecuted limit orders at each discrete price

level, pi, with the standard price-time priorities for limit order execution. The con-

tinuous information state space of the limit order book is discretised as a finite set

of states denoted as C = {(st, E(vt)−pmt , Rt, bt, at, d
a
t−db, Da

t −Db
t , LTt)

j}Jj=1. State

variables are the spread condition st, the expected fundamental minus midprice

E(vt) − pmt , Rosu’s signal Rt = |v̄t − pmt |/st, the current best bid bt, the current

best ask at, the depth imbalance measured at the best ask and bid dat −dbt , the cu-
mulative depth imbalance measured at the whole sell side and buy side Da

t −Db
t ,

the last trade direction LTt. The expected fundamental value equals vt for the

informed and equals vt−τ for the uninformed. Rosu’s signal is the level of mispric-

ing observed, in which v̄t = vt for the informed and v̄t = (1/N)
∑t

t′ = t−L+1 pt′ , a

moving average price of the past L periods, for the uninformed.

For computational tractability, state variables are further discretised using the

classifier system developed in Chiarella et al. (2015) and He and Lin (2022). Ap-

pendix 2.1 reports the classified rules (CRs) of the classifier system. A feasible

state a trader may encounter is a vector of the values of state variables. For in-

stance, a possible value of st is “30”, where “3” denotes that the current spread

is larger than 2, and “0” denotes that the order book is not empty; a possible

value of E(vt)− pmt is “1”, which means the expected fundamental is higher than

the midprice; a possible value of Rosu’s signal Rt = |v̄t − pmt |/st is “1”, which

means the mispricing measure is between 0 and 0.5; a possible value of bt (or at) is

“0”, which means the current bid (or ask) equals the last bid (or ask); a possible

value of dat − dbt (or D
a
t − Db

t ) is “1”, which means the depth at the best ask (or

at the whole sell side) is larger than the best bid (or at the whole buy side); a

possible value of LTt is “1”, which means the last trade is buyer-initiated; the

resulting state vector is thus “301100111”. After applying the classifier rules, the

final discretised state space is composed of 14580 feasible states.
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For dynamical strategic trading in LOM with such a large number of state vari-

ables, it becomes extremely challenging to have an analytic solution. In this pa-

per, we solve the trading game numerically by formalising the limit order book’s

evolution through time as a Markov Decision Process (MDP) and applying the Q-

learning algorithm (Watkins (1989)), a reinforcement learning technique, to obtain

the traders’ equilibrium beliefs about the expected cumulative payoffs of possible

state-action combinations.

2.3.3 Trader objective and Q-learning

The Markov Decision Process of the limit order book is characterised by a 4-tuple

(C,A,P(c′|c, a), ρ(c, a)). As defined before, C is the set of feasible states of the

order book, and A is a trader’s action space. P(c′|c, a) is an unobserved Markov

probability transition matrix, which determines new order book state c′ ∈ C at the

trader’s next entry given his current action a ∈ A and the current order book state

c ∈ C. ρ(c, a) is an underlying reward rate that is constant for each state-action

combination. ρ(c, a) and the time it takes to transfer from c to c′ (i.e., the time

elapsed since the trader’s current entry and until his next entry) jointly determine

the reward r observed by the trader when he re-enters the market.

By viewing the order book’s evolution through time as an MDP, we can formulate

the trader’s dynamic optimization problem. Each trader has a type (I, β), where

I represents his information type (informed or not). As in Goettler et al. (2009),

β is a discount rate that reflects the cost of market monitoring until a limit order’s

execution and the opportunity costs like delaying trades in other assets if the

trader is implementing a portfolio strategy. The reward r for a trader whose buy

order was executed at time t before his re-entry is the difference between the

fundamental value vt and the price he paid, or the order profit. The reward r for

an executed sell order can be defined analogously. The reward associated with

no execution or no order placement is 0. Formally, when re-entering the market,

conditional on his last order placement decision, a trader receives:

r =





vt − pt if he executes a buy order at t

pt − vt if he executes a sell order at t

0 if he has no execution or submission

(2.1)
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Let Qπ(c, a) represent the discounted cumulative rewards that can be expected

(i.e., expected cumulative payoffs) if action a is taken in state c, and a given

strategy π is followed thereafter:

Qπ(c, a) =
∑

c′∈C
Pr(c′|c, a)

∫ ∞

0

∫ ∆t

0

e−βsρ(c, a)dsdF (∆t)

+
∑

c′∈C
Pr(c′|c, a)

∫ ∞

0

e−β∆tQπ(c
′, a′)dF (∆t),

(2.2)

where Pr(c′|c, a) is an element of the transition matrix P, and ∆t is the random

time between the trader’s two consecutive entries, of which the CDF is denoted

as F (∆t). Since both the informed and uninformed enter the market randomly

following a Poisson process at a rate λ, ∆t follows an exponential distribution with

mean 1/λ. For the optimal strategy π∗, we have:

π∗(c, a) =max
π

(∑

c′∈C
Pr(c′|c, a)

∫ ∞

0

∫ ∆t

0
e−βsρ(c, a)dsdF (∆t)

+
∑

c′∈C
Pr(c′|c, a)

∫ ∞

0
e−β∆tQπ(c

′, a′)dF (∆t)

) (2.3)

Q∗(c, a) =
∑

c′∈C
Pr(c′|c, a)

∫ ∞

0

∫ ∆t

0
e−βsρ(c, a)dsdF (∆t)

+
∑

c′∈C
Pr(c′|c, a)

∫ ∞

0
e−β∆tmax

a′∈A
Q∗(c′, a′)dF (∆t)

=E
(∫ ∞

0

∫ ∆t

0
e−βsρ(c, a)dsdF (∆t)

+

∫ ∞

0
e−β∆tmax

a′∈A
Q∗(c′, a′)dF (∆t)

∣∣∣∣Ct = c, At = a

)
.

(2.4)

Note that Q∗(c, a) ≡ Qπ∗(c, a). The last two lines of Eq.(2.4) are two forms of Bell-

man optimality equations for the trader’s continuous time dynamic optimisation

problem. If Markov probability transition matrix P and the underlying reward rate

ρ(c, a) were known, the value function Q∗(c, a) can be explicitly solved from the

Bellman optimality equations for any state-action combination (c, a), as there are

the same numbers of equations and unknowns. Without such perfect knowledge,

both informed and uninformed traders are thus assumed to learn their equilib-

rium beliefs about expected cumulative payoffs and optimal strategies conditional

on their information sets using Q-learning, a model-free reinforcement learning

algorithm.
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Based on Eq.(2.4), the Q-learning iteration procedure includes the following four

steps. (i) Arbitrarily initialize the value function Q∗ for every state, every action.

(ii) After observing the current state c, a trader chooses the best action a given

current belief with probability 1−ε, and chooses an inferior action with probability

ε/10 (there are 11 feasible actions). He trembles to avoid local optima. (iii) Upon

next entry, the trader observes reward r and the new state c′ ∈ C, and updates his

belief for the value function following the rule depicted by Eq.(2.5),

Q(k+1)(c, a) = Q(k)(c, a) + α

(
1− e−β∆t

β
ρ(c, a) + e−β∆t max

a′∈A
Q(k) (c′, a′)−Q(k)(c, a)

)
, (2.5)

where ∆t is the realised value of time between two entries. 1/β · (1− e−β∆t)ρ(c, a)

is the observed reward r. k is the number of times action a has been chosen in

state c by traders of the same type, and α is the learning rate. (iv) Repeat the

previous two steps until traders’ beliefs converge.

2.4 Equilibrium

This section illustrates the equilibrium concept in our trading game, characterised

by Q-value convergence and average reward convergence criteria, using a bench-

mark parametrisation. The benchmark equilibrium results allow us to investigate

informed and uninformed traders’ order choices conditional on various order book

states in later sections. In equilibrium, informed traders trade on mispricing sig-

nals. The converged model demonstrates statistical properties consistent with

empirical data including hump-shaped mean depth profiles, absence of autocorre-

lations of returns, and slowly decaying autocorrelations of absolute returns.

2.4.1 A benchmark

For illustrative purposes, we regard each trading period as 1 minute and 360

trading periods as a 6-hour trading day, and set benchmark parameter values as

follows. We choose the total number of traders populated in the market to be

N = 1000, where NI = 150 are informed and NU = 850 are uninformed. Informed

and uninformed traders do not differ in trading speed, with the same returning

rate of 1/60 and make an order choice 6 times every trading day. The uninformed’s

information lag τ = 180, which corresponds to half a trading day. We set the tick
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size to 1, and the initial fundamental value to v0 = 5000 ticks (say, i.e., $50). The
expected time between innovations about fundamental value is set to 1 minute,

i.e., θ = 1. After an innovation occurs, the fundamental value will either go up or

down by ∆ = 4 ticks with equal probability.

As for Q-learning belief updating, the learning rate is set to max (0.0003, 1/(n+ 1))

for all traders, where n represents the number of trading rounds (the “trad-

ing round” concept here is equivalent to the “training episode” concept in ma-

chine learning literature, and each round consists of 360,000 trading periods). All

traders, despite their information types, have the same continuous discount rate

of β = 0.05 and tremble rate of ϵ = 0.01.

2.4.2 Convergence criteria

We consider that a numerical equilibrium is reached if both the convergence of

Q-values and the convergence of traders’ average rewards (order profits) are sat-

isfied. Intuitively, the convergence of traders’ estimates of expected cumulative

payoffs (Q-values) mirrors the fixed point problem in REE models. Moreover,

the convergence of traders’ average rewards is a more stringent criterion than the

convergence of Q-values given the dynamic feedback mechanism between trading

behaviours and limit order book: it requires that both the informed’s and unin-

formed’s strategies stabilise, and it also requires that the order book settles into

equilibrium states, such that the traders can obtain equilibrium rewards from each

interaction with the order book. Formally, the equilibrium concept and the two

corresponding in-sample convergence criteria are defined as follows.

Definition 2.1. A numerical equilibrium of the limit order market under Q-

learning, defined by informed and uninformed traders’ beliefs about their own cu-

mulative payoffs and corresponding optimal strategies, is considered to be reached

after the n-th trading round for sufficiently large n when the following two criteria

are satisfied:

• Q-value criterion: The correlation of Q-values of active trading strategies

between the n-th and the (n+1)-th rounds reaches 0.999;

• Average reward criterion: The correlation of traders’ average rewards be-

tween the n-th and the (n+1)-th rounds reaches 0.999.
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(A) Informed traders

(B) Uninformed traders

Figure 2.1: Convergence of learning in the benchmark model.
The figure shows the convergence results of the benchmark model. Panels (A)
and (B) show the convergence of the informed’s and the uninformed’s learning,
respectively. The horizontal axis corresponds to the number of trading rounds,
and each round consists of 360,000 trading periods. For the Q-value convergence
criterion, uninformed traders’ learning converges faster than informed traders’
learning (uninformed convergence: round 24; informed convergence: round 40);
For the average reward convergence criterion, the two types of traders’ learning
converges simultaneously at round 59.

We simulate the model under the benchmark parametrisation for 100 rounds and

check for convergence along with the training. The convergence results are re-

ported in Figure 2.1. The horizontal axis is trading round n, and the vertical

axis is the correlation coefficient of Q-values (blue solid line) and the correlation

coefficient of average rewards (green dashed line) over two adjacent rounds.
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Panel (A) shows the convergence of the informed’s learning. Panel (B) shows the

convergence of the uninformed’s learning. On the Q-value criterion, the unin-

formed converge to their equilibrium beliefs at round 25 with a correlation coeffi-

cient of 99.92%, while the informed converge to their equilibrium beliefs at round

41 with a correlation coefficient of 99.91%. Uninformed traders learn faster be-

cause there are more of them in the trading crowd (850 out of 1000). As expected,

the average reward criterion is satisfied at round 60, which is 19 rounds later than

when all traders have formed their optimal strategies.

2.4.3 Order book statics and stylised facts

After the benchmark model reaches the equilibrium, we fix traders’ Q values,

disallow the tremble, and simulate for another 1000 trading days (360,000 trading

periods). We report overall frequencies of all order book state variables in Table

2.1, except for E(vt)− pmt and Rosu’s signal. As shown in the table, the buy side

and the sell side of the order book are symmetric and on average quite balanced

over the whole 1000 trading-day simulation.

Since informed and uninformed traders mainly differ in observations of E(vt)−pmt
and Rosu’s signal due to information asymmetry in terms of fundamental value,

we report frequencies of the two state variables by trader types separately in Table

2.2. The informed’s observations on the difference between expected fundamental

value and midprice justify the usage of midprice as a proxy for contemporal funda-

mental value in the existing empirical literature (see, e.g., Beltran, Grammig and

Menkveld (2005), Chacko, Jurek and Stafford (2008)). For him, E(vt) is equal to

vt, and he is observing vt−pmt > 0 and vt−pmt < 0 of roughly the same probability,

i.e., 49.57% and 49.66%, meaning that the current midprice is very close to the

current fundamental value. On the other hand, for the uninformed, E(vt) is equal

to vt−180, and he is observing vt−180 − pmt > 0 and vt−180 − pmt < 0 of relatively

different probability, i.e., 48.96% and 49.79%, meaning that the current midprice

is relatively far from the lagged fundamental value.

The relatively large differences between the uninformed trader’s and the informed

trader’s observation frequencies of Rosu’s signal indicate that Rosu’s signal might

be an inaccurate mispricing signal for the uninformed trader (since he is estimating

v̄t, using moving average past prices, while for the informed v̄t = vt).



Table 2.1: Order book state frequencies for all traders in the benchmark model.
The table shows the frequencies (in percentage) of spread st, bid trend bt − bt−1, ask trend at − at−1, depth
imbalance dat −dbt , and cumulative depth imbalance Da

t −Db
t for all traders based on the converged benchmark

model. The frequencies of bid trend, ask trend, depth imbalance, cumulative depth imbalance, and last trade
direction reflect the symmetry of buy and sell sides.

Spread: st Bid trend: bt − bt−1 Ask trend: at − at−1

= 1 = 2 > 2 emp. > 0 < 0 = 0 > 0 < 0 = 0

53.01 17.17 27.94 1.87 4.05 4.09 91.86 4.39 4.39 91.24

Depth imbalance: dat − dbt Cumulative depth imbalance: Da
t −Db

t Last trade direction: LTt

> 0 < 0 = 0 > 0 < 0 = 0 > 0 < 0

37.71 38.81 23.48 49.05 49.82 1.13 49.44 50.56

Table 2.2: Frequencies of E(vt)− pm
t and |v̄t − pm

t |/st for informed and uninformed traders in
the benchmark model.
The table shows the frequencies (in percentage) of expected fundamental minus midprice E(vt) − pmt and
Rosu’s signal |v̄t − pmt |/st for informed and uninformed traders, respectively, in the converged benchmark
model. The large difference between uninformed and informed traders’ observation frequencies of Rosu’s
signal indicates that it is an inaccurate mispricing signal for uninformed traders.

Expected fundamental value: E(vt) Rosu’s signal: |v̄t − pmt |/st
> pmt < pmt = pmt ⩽ 0.5 ⩽ 1.5 ⩽ 2.5 ⩽ 3.5

49.57 49.66 0.77 5.59 12.40 8.17 6.26

48.96 49.79 1.25 33.02 29.47 11.90 6.41

27
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We now evaluate our model based on stylized facts documented in the empirical

LOM literature (Cont (2001), Bouchaud et al. (2002), Schnaubelt et al. (2019)),

including (i) a hump-shaped order book, (ii) absence of autocorrelations of returns,

and (iii) slowly decaying autocorrelations of absolute returns.

During 360,000 trading periods simulated using the converged benchmark model,

we record the order book every 100 trading periods. The average order book shape

is then calculated using the mean depths of the 3600 snapshots. We record the price

series period by period and calculate the log returns accordingly. The resulting

average order book shape, the autocorrelations of returns, and the autocorrelations

of absolute returns are depicted in Figure 2.2.

As shown in Panel (A) of Figure 2.2, our order book has a “hump” located at

one tick away from the best bid (ask), with average depth increases from the best

bid (ask) to the second-best bid (ask), then subsequently decreases. In particular,

the average depth at the best bid (ask) is 4.38 (4.44), and at the second-best bid

(ask) is 5.09 (4.93). Panel (B) suggests that autocorrelations (ACs) of returns are

only negative for the initial 3 lags, reflecting the bid-ask bounce, and then quickly

approach 0. Panel (C) indicates that the ACs of absolute returns are slowly

decaying from 0.26 to around 0.05 even with 30 lags, reflecting long memory. All

three stylised effects are reproduced in the paper.

2.5 Order choices and order book states

In this section, we first characterise the equilibrium liquidity provision and con-

sumption roles of traders using unconditional probabilities for each order type, and

then show how order book information impact uninformed and informed traders’

trading behaviours, and hence the consequent implication on market quality. In

our model, informed (uninformed) traders place more (less) aggressive quotes out

of their liquidity supply when depth at the same-side best quote is large, consis-

tent with empirical findings of Aitken, Almeida, Harris and McInish (2007) and

Chiu et al. (2014) about institutional and individual traders’ order aggressiveness

strategies, and which, to date, have not been depicted by theoretical studies.

Panels (A) and (B) in Table 2.3 report the unconditional and conditional proba-

bilities of trader’s order choices based on order book states. The probabilities of

nt are scaled by two for ease of comparison. Since the buy side and the sell side

are quite symmetric, we only report on the buy side.
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(A) Hump-shaped order book
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(B) Absence of ACs of returns
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(C) Slowly decaying ACs of absolute returns

Figure 2.2: Stylised facts in the simulated order book.
The figure shows the stylized facts in the simulated order book. Panel (A) shows
the order book’s mean depth profile generated by the converged benchmark
model. Green bars represent the buy side, and blue bars represent the sell side.
The depth of each price level is recorded every 100 trading periods for the 20
best quotes on both sides. Panel (B) shows the absence of autocorrelations
(ACs) of price returns in the converged model. Panel (C) shows the slowly
decaying ACs of absolute returns in the converged model.
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Table 2.3: The relationship between order choices and order book states in the benchmark model.
The table shows the unconditional and conditional probabilities of order choices based on feasible values of all state variables. Panels (A) and
(B) show order choices of informed and uninformed traders, respectively. Given the symmetry, only buy side probabilities are reported. The
probabilities of not trading are scaled by two for ease of comparison.

Panel A: Informed traders

Conditional probability (%)

Spread: st
Expected fundamental

value: E(vt)
Rosu’s signal: |v̄t − pmt |/st Bid trend: bt − bt−1

Order type = 1 = 2 > 2 emp. > pmt < pmt = pmt ⩽ 0.5 ⩽ 1.5 ⩽ 2.5 ⩽ 3.5 > 3.5 > 0 < 0 = 0

mb 32.32 21.91 12.23 4.84 49.04 0.11 0.28 0.13 4.27 14.90 16.35 32.01 27.21 6.57 25.08

ealb - 9.89 6.38 11.50 7.40 0.05 0.17 0.12 1.22 5.67 5.51 4.04 1.75 11.86 3.42

alb - - 4.27 8.39 2.56 0.03 0.57 1.38 4.07 2.52 1.87 0.57 0.53 3.18 1.24

lb 4.49 1.71 2.01 5.07 6.56 0.13 0.74 0.62 1.89 1.26 2.30 4.16 5.81 3.45 3.21

ulb 1.67 1.17 0.85 2.79 2.65 0.13 0.83 0.25 0.55 1.04 0.98 1.71 2.12 1.21 1.36

nt 10.61 14.85 22.4 14.89 15.65 13.27 46.60 47.21 35.99 24.58 22.07 6.24 12.62 15.85 14.75

Ask trend: at − at−1 Depth imbalance: dat − dbt Cumulative depth imbalance: Da
t −Db

t Last trade direction: LTt

Order type > 0 < 0 = 0 > 0 < 0 = 0 > 0 < 0 = 0 Buy Sell

mb 14.87 23.10 24.88 31.17 18.11 23.96 22.94 26.21 9.01 33.50 15.53

ealb 10.28 1.47 3.51 6.10 2.18 2.34 3.83 3.65 0.50 3.59 3.80

alb 2.88 1.57 1.21 1.20 1.13 1.70 1.16 1.43 1.22 0.91 1.66

lb 3.44 3.55 3.32 5.40 1.30 3.35 3.16 3.46 4.61 3.79 2.88

ulb 1.38 2.50 1.34 2.14 0.65 1.40 1.33 1.45 0.98 1.68 1.10

nt 17.72 12.20 14.68 14.52 14.14 15.95 14.69 14.40 28.89 15.46 13.97

Unconditional probability (%)

mb: 24.41 elb: 3.70 alb: 1.29 lb: 3.33 ulb: 1.39 nt: 14.71

30



Panel B: Uninformed traders

Conditional probability (%)

Spread: st
Expected fundamental

value: E(vt)
Rosu’s signal: |v̄t − pmt |/st Bid trend: bt − bt−1

Order type = 1 = 2 > 2 emp. > pmt < pmt = pmt ⩽ 0.5 ⩽ 1.5 ⩽ 2.5 ⩽ 3.5 > 3.5 > 0 < 0 = 0

mb 9.61 8.59 4.29 3.85 9.21 6.60 1.47 6.69 8.27 9.45 10.96 7.11 11.49 6.31 7.74

ealb - 7.68 4.18 3.80 3.37 1.78 0.45 3.43 2.79 2.35 1.37 1.23 1.84 5.03 2.48

alb - - 4.46 3.80 1.99 0.66 0.06 2.25 1.29 0.65 0.42 0.47 1.50 2.29 1.27

lb 7.07 4.39 3.69 3.35 9.08 2.18 0.09 4.77 5.84 6.02 6.28 6.14 8.13 4.13 5.55

ulb 5.96 4.23 3.52 3.45 9.15 0.76 0.03 4.38 4.92 5.21 5.36 5.57 5.16 3.88 4.97

nt 27.65 25.22 30.55 33.05 28.19 27.60 47.92 28.81 27.59 26.38 25.84 29.73 23.47 23.87 28.54

Ask trend: at − at−1 Depth imbalance: dat − dbt Cumulative depth imbalance: Da
t −Db

t Last trade direction: LTt

Order type > 0 < 0 = 0 > 0 < 0 = 0 > 0 < 0 = 0 Buy Sell

mb 14.18 10.21 7.46 8.30 7.04 8.40 7.54 7.92 16.84 10.15 5.58

ealb 8.77 1.40 2.34 2.69 2.43 2.57 2.54 2.61 1.37 3.30 1.84

alb 3.83 1.26 1.21 1.15 1.30 1.60 1.39 1.25 1.03 1.50 1.14

lb 4.28 5.90 5.64 5.14 6.25 5.24 5.51 5.66 5.81 6.16 5.04

ulb 3.94 5.32 4.96 3.79 6.16 4.73 4.89 4.98 4.79 4.95 4.91

nt 21.89 21.51 28.70 28.01 28.47 27.84 27.98 28.50 19.88 27.81 28.48

Unconditional probability (%)

mb: 7.84 elb: 2.56 alb: 1.32 lb: 5.59 ulb: 4.93 nt: 28.14

31
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2.5.1 Liquidity consumption and provision

On liquidity provision and consumption, based on unconditional probabilities re-

ported in the last rows of the two panels in Table 2.3, we can see that informed

traders use more market orders (24.41%) than limit orders (9.71%), and unin-

formed traders use less market orders (7.84%) than limit orders (14.40%).

Also, the fraction of market (limit) orders informed traders contribute to all orders

submitted by all trader types is 15.24% (6.06%), and the fraction of market (limit)

orders uninformed traders contribute to all orders submitted by all trader types is

27.74% (50.95%). On average, informed traders mainly consume liquidity, while

uninformed traders mainly provide liquidity. Nevertheless, informed traders can

switch to endogenous liquidity provision when the spread is large or the mispricing

signal is large.

2.5.2 Trade/no-trade decision

The scaled unconditional probability of nt of informed traders is 14.71%, and that

of uninformed traders is 28.14%, meaning that uninformed traders choose to not

trade for more than half of the time due to their information disadvantage. Our re-

sults indicate that E(vt)−pmt , |v̄t − pmt |/st are more important for informed traders

to decide between trading and not trading than for uninformed traders, while unin-

formed traders are more reliant on bid trend and ask trend than informed traders

are. Additionally, the impacts of dat − dbt on informed traders’ and uninformed

traders’ trading interests are of opposite directions. Non-zero depth imbalance at

the best quote motivates informed traders but discourages uninformed traders to

trade.

We now elaborate on informed and uninformed traders’ differences in trade/no-

trade decisions conditional on order book information using Table 2.3. When

E(vt)− pmt changes from 0 to greater than (smaller than) 0, the probability of nt

of informed traders drops from 46.60% to 15.65% (13.27%), while the probability

of nt of uninformed traders does not decrease as much (from 47.92% to 28.19% or

27.60%).

When |v̄t − pmt |/st increases from (0, 0.5] to (3.5,+∞), the probability of nt for the

informed monotonically decreases from 47.21% to 6.24%, while the probability of
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nt for uninformed traders first decreases from 28.81% to 25.84% then increases back

to 29.73%. Due to inaccurate observations, uninformed traders barely profit from

observed fundamental directional movements or enlarged mispricing compared to

informed traders.

When dat −dbt changes from 0 to greater than (smaller than) 0, the probability of nt

of informed traders drops from 15.95% to 14.52% (14.14%), while the probability

of nt of uninformed traders increases from 27.84% to 28.01% (28.47%). A pos-

sible explanation is that the informed have a better ability than the uninformed

to profit from picking off stale quotes during sudden directional changes of fun-

damental value. More specifically, dat − dbt > 0 is very likely to be observed when

the fundamental value’s long-run decreasing trend ceases and suddenly starts to

rise, during which times, an informed traders’ most likely action type is a market

buy (his probability of placing market buy if dat − dbt > 0 is 31.17%), while the

uninformed traders are most likely to sell.

As for bid trend and ask trend, uninformed is more reliant on these to profit from

trade since the lack of correct directional information about the fundamental value,

their trading interests unambiguously increase with any directional movements in

bid trend or ask trend, while the same is not true for the informed traders.

2.5.3 Buy/sell decision

Our results indicate that E(vt) − pmt is most important for informed traders’

buy/sell decisions, while uninformed traders’ buy/sell decisions are more reliant on

bid trend and ask trend than those of informed traders. Additionally, the impacts

of dat − dbt on informed traders’ and uninformed traders’ buy/sell decisions are of

opposite directions. To elaborate on informed and uninformed traders’ differences

in buy/sell decisions conditional on order book information, we calculate condi-

tional probabilities of traders’ buy orders out of all orders under feasible states,

and results are reported in Table 2.4.

Table 2.4 indicates that informed traders learn almost perfectly to exploit their

private information advantage, and buy with a probability of 99.28% when the

asset is undervalued (when E(vt)− pmt > 0).
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Table 2.4: Percentage of buy orders under different states.
The table shows conditional probabilities of traders’ buy orders out of all orders based
on feasible values of expected fundamental minus midprice, bid trend, ask trend, depth
imbalance, cumulative depth imbalance and last trade direction. Informed traders learn
to exploit their information advantage, and uninformed traders chase the trend.

Expected fundamental

value: E(vt)
Bid trend: bt − bt−1 Ask trend: at − at−1

> pmt < pmt = pmt > 0 < 0 = 0 > 0 < 0 = 0

Informed 99.28 0.61 38.22 50.05 38.46 48.68 50.89 42.59 48.49

Uninformed 75.21 26.77 50.26 53.01 41.38 51.27 62.23 42.25 50.72

Depth imbalance:

dat − dbt

Cumulative depth

imbalance: Da
t −Db

t

Last trade direction:

LTt

> 0 < 0 = 0 > 0 < 0 = 0 Buy Sell

Informed 64.84 32.59 48.09 45.90 50.84 38.67 62.93 34.65

Uninformed 47.92 53.82 50.83 49.67 52.12 49.54 58.68 42.99

The uninformed traders learn to chase the trend due to lacking private information.

They prefer buy orders, and especially market buy orders, following a market

buy. They are more reliant on the directional movements in bid trend and ask

trend than the informed do: the informed traders have almost equal probabilities

of buying and selling when the order book is moving up (when bid trend > 0,

P(buy|informed and trade) = 50.05%; and when ask trend > 0, P(buy|informed

and trade) = 50.89%), while the uninformed traders are inclined to buy if the

order book moves up, sell if the order book moves down. Moreover, uninformed

traders’ buying probability is 53.82% when the depth at the best bid is large.

Interestingly, informed traders’ probability of buying equals 64.84% when the

depth at the best ask is large. The prior discussion of Table 2.3 shows that they

are buying using market orders under such market conditions. We argue that they

are able to infer from the imbalance at the inside bid/ask about when there are

stale quotes standing at the best bid/ask. This, again, is because they have the

correct directional information about the fundamental value. Uninformed traders

are not able to infer the possible existence of stale quotes from the imbalance at

the inside bid/ask, and in fact, have to infer directional information about the

fundamental value from dat − dbt due to the lack of private information advantage.

2.5.4 Market/limit order decision

Our results indicate that market/limit order decisions of the informed and the

uninformed have different responses to illiquidity and mispricing. A possible un-

derlying mechanism may be information asymmetry.



Table 2.5: Percentage of limit orders under different states.
The table shows conditional probabilities of traders’ limit orders out of all orders based on feasible values of state variables spread, Rosu’s signal,
depth imbalance, and cumulative depth imbalance. Informed traders increase their market order usage when mispricing is large, same-side depth
at the best quote level, and the cumulative level is large. Uninformed traders increase their market order usage when same-side depth at the
cumulative level is large. Both informed and uninformed traders respond to spread widening by submitting more limit orders, but informed
traders are more responsive than uninformed traders.

Panel A: Informed traders

Spread: st Rosu’s signal: |v̄t − pmt |/st Depth imbalance: dat − dbt
Cumulative depth

imbalance: Da
t −Db

t

Limit/All orders = 1 = 2 > 2 emp. ⩽ 0.5 ⩽ 1.5 ⩽ 2.5 ⩽ 3.5 > 3.5 > 0 < 0 = 0 > 0 < 0 = 0

Buyers 16.04 34.92 52.50 83.66 94.78 64.38 41.29 39.48 24.69 32.26 22.50 26.84 29.23 27.60 44.79

Sellers 15.95 36.82 53.16 86.27 94.90 61.93 41.28 35.88 25.22 22.09 33.04 27.66 27.57 30.17 49.67

Both sides 15.99 35.86 52.86 85.16 94.85 62.98 41.29 37.62 24.96 28.69 29.61 27.27 28.33 28.86 47.78

Panel B: Uninformed traders

Spread: st Rosu’s signal: |v̄t − pmt |/st Depth imbalance: dat − dbt
Cumulative depth

imbalance: Da
t −Db

t

Limit/All orders = 1 = 2 > 2 emp. ⩽ 0.5 ⩽ 1.5 ⩽ 2.5 ⩽ 3.5 > 3.5 > 0 < 0 = 0 > 0 < 0 = 0

Buyers 57.55 65.49 78.70 78.93 68.93 64.21 60.10 55.09 65.34 60.61 69.63 62.70 65.51 64.66 43.59

Sellers 57.93 64.97 79.34 80.31 69.43 64.70 59.06 58.17 63.82 68.99 61.22 63.37 63.89 66.29 52.36

Both sides 57.74 65.23 79.01 79.57 69.18 64.45 59.58 56.62 64.59 64.97 65.75 63.03 64.70 65.44 48.02

35
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To elaborate the role of information asymmetry on market/limit order decisions,

we calculate conditional probabilities of limit orders out of all orders under the

four discussed states, and report the results in Table 2.5.

In equilibrium, both informed and uninformed traders consume liquidity when it

is ample and supply liquidity when it is scarce. When spread increases from = 1

to > 2, the informed trader’s limit order submission rate monotonically increases

from 16.04% to 52.50%. In other words, endogenous informed liquidity provision

emerges when spread surpasses 2. As spread increases from = 1 to > 2, the unin-

formed trader’s limit order submission rate monotonically increases from 57.55% to

65.49%. Both informed and uninformed traders are more willing to submit limit

orders because the price of immediacy is high, but the response of uninformed

traders is not as strong, since for them there is another force of opposite direction

at work – the spread widening could reflect the increase in adverse selection risk,

or the intensification of information disadvantage.

In terms of Rosu’s signal, the Q-learning informed trader learns to play a thresh-

old strategy as in the REE model of Rosu (2020). His limit (market) order sub-

mission rate monotonically decreases (increases) from 94.85% (5.15%) to 24.96%

(75.01%) when observed mispricing increases, reflecting increased sensitivity to

execution risk. In particular, in Rosu (2020) the informed trader would deter-

ministically and optimally submit a buy market order if he observes mispricing

above a threshold, and deterministically and optimally submit a buy limit order

when he observes mispricing below the threshold (but positive). In our model, we

also detect a “threshold”: when |v̄t − pmt |/st moves below the (1.5, 2.5] region, the

informed trader’s limit order submission rate surpasses 50% and reaches 62.98%,

and endogenous informed liquidity provision emerges. On the other hand, when

|v̄t − pmt |/st moves beyond the (1.5, 2.5] region, the informed trader’s market order

submission rate surpasses 50% and reaches 58.71%, and he favors market order.

The uninformed trader fails to learn such a threshold strategy. When the mis-

pricing signal increases from (0, 0.5] to (3.5, +∞), the limit order submission rate

decreases at first from 69.18% to 56.62% then increases back to 64.59%. Due to

his information disadvantage, his observed mispricing is inaccurate, and he will

not treat it as an equivalent to increases in the implicit cost of non-execution.

Though informed traders submit more (less) market orders when same-side depths

at inside quote level and the cumulative level are large (small), uninformed traders

submit more (less) market orders only when same-side depth at the cumulative
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Table 2.6: Percentage of ALO under different depth imbalance levels.
The table shows conditional probabilities of traders’ aggressive limit orders out of all
limit orders based on feasible values of the state variable depth imbalance dat − dbt .
Informed (uninformed) traders increase (reduce) their ALO/LO ratio when same-side
depth at the best quote level is large.

Depth imbalance: dat − dbt
ALO/Limit orders > 0 < 0 = 0

Informed buyers 49.21 63.01 45.94

Uninformed buyers 30.08 23.11 29.49

Informed sellers 58.91 49.25 55.67

Uninformed sellers 22.41 29.08 28.21

level is large (small). The informed buyer’s limit order submission rate when

dat − dbt < 0 is 22.50%, lower than his limit order submission rates when the same

state variable equals 0 or is greater than 0, i.e., 32.26% and 26.84%. The informed

buyer’s limit order submission rate when Da
t − Db

t < 0 is 27.60%, again lower

than his limit order submission rates when the same state variable equals 0 and

when the same variable is greater than 0, i.e., 29.23% and 44.79%. As for the

uninformed buyer, his limit order submission rate with buy-side depth imbalance

at the cumulative level is (Da
t −Db

t < 0) is 64.66%, which is lower than his limit

order submission rate of 65.51% with no depth imbalance at the cumulative level,

but is higher than his limit order submission rate of 43.59% with sell-side depth

imbalance at the cumulative level. Note that the scenario of no depth imbalance at

the cumulative level has a low occurrence frequency of 1.13% and can be negligible.

We argue that the two reasons why informed and uninformed traders’ market/limit

order decisions and limit order aggressiveness have different responses to depth at

the inside level are: (i) private information moves the informed trader’s trade-off

between price risk, execution risk, and adverse selection risk more towards the

execution risk side than the uninformed trader since he has a higher implicit cost

of non-execution; and (ii) the informed trader has correct directional information

about the fundamental value, so he can learn better about execution probability

from the order book information dat − dbt than the uninformed trader can.

Further, as shown in Table 2.6, when same-side depth at inside quote level is

large, informed traders increase their ALO usage (both ealb and alb) out of all

limit orders, while uninformed traders decrease their ALO usage out of all limit

orders. This is consistent with Aitken et al.(2007)’s and Chiu et al. (2016)’s empir-

ical findings of institutional (possibly informed) and individual traders’ (possibly

uninformed) order aggressiveness strategies.
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2.5.5 Liquidity provision and information asymmetry

We now further validate the different responses of informed traders’ and unin-

formed traders’ market/limit order decisions react to order book information dif-

ferently using logistic regression, demeaned logistic regression with intercept, and

demeaned OLS regression with intercept. The results are consistent with the last

subsection and suggest that informed traders are resiliency improving. The regres-

sions are inspired by Menkhoff et al. (2010), and are mainly different from them

in the sense that our simulated data have exact identification of informed traders

and uninformed traders, while Menkhoff et al. (2010) use dealer trading activity

and dealer trading location as proxies for information.

The regressions are conducted for the informed traders and uninformed traders,

respectively, using the 360,000 trading period simulated data generated by the

converged benchmark model. The dependent variable is a dummy variable that

takes 1 when the order is a limit order and takes 0 when the order is a market

order. The independent variables are the 8 discretised order book state variables.

The demeaning is carried out on the state variables by subtracting their means.

Similar to Menkhoff et al. (2010), we make directional adjustments on the depth

imbalance variable such that it takes 1 when dbt − dat > 0 (< 0) is faced by buyer

(seller), it takes 0 when dbt − dat = 0 is faced by the buyer (seller), and it takes −1

when dbt − dat < 0 (> 0) is faced by the buyer (seller). In other words, increases of

the adjusted depth imbalance variable reflect increases in the relative magnitudes

of the depth of a trader’s own side compared to the other side. The cumulative

depth imbalance variable is adjusted similarly.

The variable E(vt)− pmt (expected fundamental minus midprice) is adjusted such

that the adjusted variable takes 1 when E (vt) − pmt = ±1, and takes 0 when

E (vt)−pmt = 0. In other words, the expected fundamental minus midprice variable

is adjusted such that it reflects whether there is any directional movement in

fundamental value: 0 indicates no movement and 1 indicates the existence of

movement. The direction of the last trade direction variable is adjusted such that

it takes 1 when a buyer (seller) observes a market buy (sell), and it takes −1 when

a buyer (seller) observes a market sell (buy). The regression results are reported

in Table 2.7.



Table 2.7: Impact of private information on liquidity provision.
The table shows regression results of market/limit order decisions on order book information. Directional adjustments are made to expected
fundamental minus midprice, bid trend, ask trend, depth imbalance, cumulative depth imbalance, and last trade direction. Informed traders are
resiliency improving according to the coefficients of spread, depth imbalance, and cumulative depth imbalance: when spread enlarges or same-
side cumulative depth decreases, both informed and uninformed increase their limit order usage, but informed traders demonstrate much stronger
responses. Additionally, when the same-side depth at best quote decreases, the informed increase limit order usage, but the uninformed increase
market order usage.

Logistic Demeaned logistic Demeaned OLS

Informed Uninformed Informed Uninformed Informed Uninformed

Spread
0.5509 0.4087 0.6823 0.3834 0.1836 0.1056

(220.170) (341.984) (222.370) (205.649) (290.210) (262.746)

Expected fundamental

minus midprice

−1.0587 0.5092 −1.8776 0.5241 −0.3710 0.1305

(−6.257) (273.793) (−11.206) (275.618) (−22.245) (321.787)

Rosu’s signal
−0.3886 0.0035 −0.1106 −0.0085 −0.0176 0.0015

(−358.913) (5.051) (−28.671) (−8.801) (−27.541) (6.413)

Bid trend
−0.1329 −0.0242 −0.1336 −0.0228 −0.0258 −0.0231

(−15.242) (−4.466) (−15.396) (−4.212) (−10.733) (−21.965)

Ask trend
−0.1311 −0.0277 −0.1301 −0.0295 −0.0296 −0.0198

(−15.372) (−5.994) (−15.330) (−6.387) (−18.080) (−19.210)

Depth imbalance
−0.2861 0.1221 −0.2931 0.1218 −0.0578 0.0338

(−95.196) (71.465) (−97.162) (71.255) (−106.464) (88.980)

Cumulative depth imbalance
−0.0456 −0.0315 −0.0498 −0.0330 −0.0085 −0.0031

(−18.096) (−21.037) (−19.698) (−22.000) (−18.567) (−9.613)

Last trade direction
−0.1994 −0.1311 −0.1996 −0.1337 −0.0460 −0.0355

(−75.075) (−83.864) (−74.839) (−85.120) (−94.281) (−104.195)

Intercept None None
−0.8344 0.6678 0.3172 0.6439

(−128.393) (414.384) (293.569) (811.870)

No. of observations 847326 2098132 847326 2098132 847326 2098132

Pseudo/Adjusted R2 0.1165 0.03694 0.1305 0.03769 0.348 0.140
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The first two columns are results from the logistic regression, the third and the

fourth columns are results from demeaned logistic regression with intercept, and

the last two columns are results from the demeaned OLS regression with inter-

cept. We focus on the logistic regressions without intercept, since the demeaned

regressions deliver quite consistent results.

The coefficient of spread for the informed (uninformed) is 0.5509 (0.4087), re-

flecting that both the informed traders and uninformed traders will shift to limit

orders in response to higher costs of immediacy. The smaller magnitude of the

spread variable’s coefficient for the informed is driven by the fact that the lack

of private information moves the uninformed trader’s trade-off between price risk,

execution risk, and adverse selection risk more towards the adverse selection risk

side: they would have a tendency to interpret rises in spreads as intensifications

of the adverse selection risk.

The coefficient of expected fundamental minus midprice for the informed is−1.0587,

and the coefficient of expected fundamental minus midprice for the uninformed is

0.5092. These two coefficients reflect that the informed (uninformed) are inclined

to profit by using market orders (unaggressive limit orders) when they observe any

directional movements in the fundamental value (lagged fundamental value).

The bid trend variable’s coefficient for the informed (uninformed) is −0.1329

(−0.0242), and the ask trend variable’s coefficient for the informed (uninformed)

is −0.1311 (−0.0277). When informed and uninformed buyers observe that an

order book is moving up, they tend to use market orders to improve their ex-

ecution probability. The depth imbalance variable’s coefficient for the informed

(uninformed) is −0.2861 (0.1221), and the cumulative depth imbalance variable’s

coefficient for the informed (uninformed) is −0.0456 (−0.0315). For all these four

variables, the informed trader’s responses are more negative than the uninformed

because the information advantage renders the informed traders more sensitive to

execution risk than the uninformed traders.

The last trade direction variable’s coefficient for the informed (uninformed) is

−0.1994 (−0.1311), reflecting the “diagonal effect”, a well-documented stylised

fact whereby a market buy (sell) is more likely to be followed by a market buy

(sell). For the last trade direction variable, the uninformed trader’s response is

less negative because when an uninformed seller observes a market buy, he has

a tendency to interpret it as a rise in the fundamental value only known to the



Chapter 2 41

informed, i.e., an intensification of adverse selection risk, which discourages his

usage of limit sell.

Most importantly, the informed traders are resiliency improving according to the

coefficients of spread, depth imbalance, and cumulative depth imbalance: when

spread enlarges or same-side cumulative depth decreases, both informed and un-

informed increase their limit order usage, but informed traders demonstrate much

stronger responses. Additionally, when the same-side depth at best quote de-

creases, the informed increase limit order usage, but the uninformed increase mar-

ket order usage.

2.6 Volatility and informed trading

We now show how the informed traders and the uninformed traders differ in their

limit order submission strategies when responding to the changes in fundamen-

tal volatility and the proportion of informed traders, and the ensuing impact on

market quality.

2.6.1 Limit order submission and volatility

We leave all the parameters in the benchmark parametrisation unchanged and

only alter the volatility level. The volatility regimes are δ = {2, 4, 6, 8}. We

apply the same convergence criteria as defined in Section 2.4.2, and then fix Q-

values, disallow the tremble, and simulate for another 360,000 trading periods. For

illustrative purposes, we divide the orders submitted by traders into three broad

categories, i.e., MO, ALO and NLO. MO are market orders; ALO consists of ealb,

alb, eals, and als; and NLO consists of lb, ulb, ls and uls.

Table 2.8 reports the limit order submission strategies conditional on volatility

changes. As discussed by Copeland and Galai (1983), limit order traders give

market order traders a timing option. When the volatility increases, the value of

the option increases, and spread, in general, should enlarge, and the cost of imme-

diacy increases. Consequently, the uninformed trader submits less MO (because

it is more expensive) and submits more ALO: when the volatility of fundamental

value increases from 2 to 8, the uninformed trader’s usage of MO monotonically

decreases from 34.41% to 32.65%, so he is increasing his limit order submission rate

in general. In particular, his usage of ALO monotonically increases from 18.64%
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Table 2.8: Order aggressiveness conditional on volatility levels.
The table shows the order aggressiveness strategies of informed and uninformed traders
conditional on volatility changes. When fundamental volatility increases, uninformed
traders decrease MO and increase ALO, while informed traders increase MO and de-
crease ALO.

Volatility of fundamental value 2 4 6 8

P(Spread ⩽ 2) % 71.58 57.42 52.93 52.61

Informed order choices

Market order % 73.81 74.79 76.00 76.11

Aggressive limit order % 15.68 15.39 14.13 12.99

Nonaggressive limit order % 10.51 9.82 9.86 10.90

Uninformed order choices

Market order % 34.41 33.91 33.15 32.65

Aggressive limit order % 18.64 22.71 23.27 23.33

Nonaggressive limit order % 46.95 43.39 43.58 44.02

to 23.33%. Though the increased adverse selection imposed by informed traders

should induce the uninformed trader to reduce the usage of ALO, the adverse

selection effect is outweighed by the cost of immediacy effect.

Now, as volatility increases, the private information the informed trader possesses

again moves his trade-off between price risk, execution risk, and adverse selection

more toward the execution risk side than he used to be when the volatility is at

its lowest level. His information is more valuable, and his cost of non-execution

is higher. Consequently, the informed trader increases his usage of MO due to

increased sensitivity to execution risk, reduces his usage of ALO (both due to

increases in MO and to avoid future adverse selection), and does not vary his

usage of NLO much.

As the volatility monotonically increases from 2 to 8, P(spread > 2) increases

from 28.42% to 47.39%. The informed should be more responsible for the spread

widening since they increase MO submission and reduce ALO submission. The

uninformed, compared to the informed, are liquidity improving because of their

increased ALO submission. The finding of volatility increases leading to informed’s

(uninformed’s) increased (reduced) usage of MO and reduced (increased) usage of

ALO is different from He and Lin (2022), in which both informed and uninformed

use more ALO, and is also different from Goettler et al. (2009), in which both

informed and uninformed traders submit more conservative limit orders.
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2.6.2 Limit order submission and informed trading

We leave all the parameters in the benchmark parametrisation unchanged and only

alter the fractions of informed and uninformed traders. The fractions we use are

NI :NU = {0.100:0.900, 0.125:0.875, 0.150:0.850, 0.200:0.800}. We apply the same

convergence criteria as defined in Section 2.4.2, fix Q-values, disallow the tremble,

and simulate for another 360,000 trading periods. We focus on the case when

mispricing is low, i.e., |v̄t − pmt |/st ∈ (0, 0.5].

Table 2.9 reports the limit order submission strategies conditional on informed

trading level changes. In the |v̄t − pmt |/st ∈ (0, 0.5] region, since the informed

trader observes the accurate and rather small mispricing information, his sensi-

tivity to execution risk becomes rather low. Therefore, he drastically decreases

his market order usage compared to other mispricing scenarios and becomes a “de

facto” market maker. Taking the benchmark case as an example, the informed

trader’s unconditional limit order submission rate (out of all his orders) is 28.74%,

while at the low mispricing level scenario his limit order submission rate becomes

94.84%. When informed trading levels increase from 10% to 20% at the low mis-

pricing time, the price discovery improves and decreases from 0.58 to 0.29, mainly

because the informed undercut each other and compete by using more ALO (in-

creasing its usage from 38.00% to 59.97%) but not more MO, i.e., they compete

in liquidity provision. For informed traders, there is also a weakening information

effect, caused by more informed trading and more efficient prices, which reduces

market order profit and augments the ALO usage increase brought by the compe-

tition effect. The uninformed traders respond to the informed share increases by

submitting less ALO (decreasing its usage from 31.14% to 16.08%) to avoid be-

ing picked off due to intensified information disadvantage. The spread decreases

from 1.47 to 1.36, and depth at the best quote increases from 3.16 to 5.21 be-

cause the effect of increased intertemporal competition between informed liquidity

providers outweighs the increased adverse selection risk imposed on uninformed

traders. The standard intuition that liquidity deteriorates given more adverse se-

lection is violated. In this case, the informed trader is liquidity improving due to

their increased usage of ALO.

As for welfare consequences, using the mean Q-value as the welfare measure, in-

creases in informed trader proportion decrease their welfare from 2.10 to 1.78,
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Table 2.9: Order aggressiveness conditional on informed trading levels.
The table shows the order aggressiveness strategies of informed and uninformed traders
conditional on volatility changes. When fundamental volatility increases, uninformed
traders decrease MO and increase ALO, informed traders increase MO and decrease
ALO.

Proportion of informed traders 10% 12.5% 15% 17.5% 20%

Market quality

Quoted spread 1.47 1.44 1.41 1.40 1.36

Depth at best bid 3.16 3.51 3.65 4.83 5.21

Price discovery |pt − vt| /vt % 0.58 0.48 0.37 0.33 0.29

Welfare

Informed trader 2.10 2.03 1.94 1.93 1.78

Uninformed trader −0.21 −0.15 −0.09 −0.07 −0.06

Informed order choices

Market order % 5.89 5.19 5.15 4.66 4.20

Aggressive limit order % 38.00 49.37 52.32 53.78 59.97

Nonaggressive limit order % 56.11 45.44 42.52 41.56 35.84

Uninformed order choices

Market order % 31.22 31.56 30.82 28.34 27.40

Aggressive limit order % 31.14 28.11 26.01 19.47 16.08

Nonaggressive limit order % 37.64 40.33 43.17 52.19 56.52

because they can extract less rent from their information advantage. The unin-

formed trader’s welfare becomes less negative and increases from −0.21 to −0.06,

because he free rides the price efficiency improvement brought by the intensified

informed trader competition.

In summary, in this subsection, we show that increases in informed trading in-

tensify competition among the informed and adverse selection for the uninformed,

reducing market orders and increasing (reducing) aggressive limit orders for the in-

formed (uninformed), reducing (improving) welfare for the informed (uninformed),

and improving price efficiency and market liquidity. Different from Rosu (2020),

in which the competition effect leads to larger information decay and larger slip-

page component of the spread, and hence deteriorating liquidity, we show that

intertemporal competition between the informed traders can be liquidity improv-

ing if informed traders compete by submitting more aggressive limit orders.

2.7 Manipulative behaviours of informed traders

As previously shown in Table 2.5, informed traders unambiguously favour limit

orders (market orders) when mispricing is low (high). It is thus intriguing to
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investigate when and why would informed traders, faced with low mispricing, go

against their natural tendency of using limit orders and employ market orders

instead.

Our analysis suggests that the seemingly irrational market order usage turns out

to be partially attributable to informed traders’ collusive manipulation. The in-

tuition can be expressed as follows. Taking buy side as an example, when small

positive mispricing is accompanied by high buy-side depth imbalance (dat −dbt < 0)

rather than zero depth imbalance (dat −dbt = 0), informed traders could anticipate a

mispricing reversal in the near future (mispricing direction changes from vt > pmt

to vt < pmt ), which can possibly be caused by upward price changes following

buying pressure. Given that the probability of uninformed traders placing mar-

ket buy following a market buy is 10.15% (shown in Panel (B) of Table 2.3), the

highest among all types of uninformed orders, informed traders might react by

strategically using market buys to trigger uninformed market buys, sacrifice cur-

rent profit difference between limit and market buys in exchange for enhanced

execution probability and profitability of later informed traders’ limit sells, and

collusively manipulate for the good of informed traders as a group.

To justify this intuition, when the actual mispricing varies from small positive

(vt > pmt and |vt − pmt |/st ⩽ 1.5) to large positive (vt > pmt and |vt − pmt |/st > 3.5),

we compare and contrast the following statistics of high buy-side depth imbalance

condition with those of zero depth condition, for the informed and uninformed

s respectively: (i) the probability of market buy placement at current depth,

i.e., Pplacement(MB|at current depth); (ii) the probability of limit sell placement

in the 20 orders interval after the same-group market buy at current depth , i.e.,

Pplacement(LS|after MB at current depth); (iii) the probability of limit sell execu-

tion in the 20 orders interval after observing current depth, i.e., Pexecution(LS|after
current depth); (iv) the profit per trade (PPT) of LS in the 20 orders interval

after observing current depth; (v) the profit per order (PPO) of LS in the 20

orders interval after the same-group market buy at current depth; (vi) the PPO

of uninformed MB in the 20 orders interval after observing informed MB; and

(vii) the probability of uninformed MB placement in the 20 orders interval after

observing current depth, i.e., Pplacement(MB| after current depth). For the unin-

formed, statistics (vi) and (vii) are unique to them, and their statistics (i)-(v) are

presented and discussed in Appendix 2.2.
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Blue (yellow) solid lines on the left-hand side of Figure 2.3 Panel (A) report statis-

tics (i)-(v) of informed traders under high buy-side depth imbalance condition

(zero depth imbalance condition). Blue (yellow) solid lines on the left-hand side

of Figure 2.3 Panel (B) report statistics (vi)-(vii) of uninformed traders under

high buy-side depth imbalance condition (zero depth imbalance condition). Blue

(yellow) dotted lines on the right-hand side of Figure 2.3 report the difference be-

tween these statistics of high buy-side depth imbalance condition and zero depth

imbalance condition.

We first examine informed trader behaviours shown in Panel (A). For Pplacement(MB|
at current depth), statistic (i), of informed traders, both blue and yellow solid lines

monotonically rise as mispricing enlarges, reflecting the ceteris paribus effect in

Section 2.5 that greater mispricing increases informed traders’ implicit cost of

non-execution; the blue solid line lies on top of the yellow solid line, somehow

reflecting the ceteris paribus effect in Section 2.5 that deeper depth imbalance

at the best bid/ask encourages same-side informed traders’ to jump the queue.

The difference between statistic (i) under high buy-side depth imbalance and zero

depth imbalance conditions monotonically decreases with mispricing from 0.86% to

0.31%. Current informed traders increase MB usage if small positive mispricing is

accompanied by high buy-side depth imbalance rather than zero depth imbalance.

For Pplacement(LS|after MB at current depth) and the corresponding PPO, statistics

(ii) and (v), of informed traders, both blue and yellow solid lines monotonically de-

crease as mispricing enlarges. Intuitively, the larger the current positive mispricing

is, the more likely it is that limit sells placed after the current period are going to

lose. Yellow solid lines are significantly higher than (rather close to) corresponding

blue solid lines when mispricing is no larger than 3.5 (greater than 3.5), somehow

reflecting the ceteris paribus effect in section 2.5 that deeper depth imbalance at

the best bid/ask generally tilts informed traders more towards limit rather than

market orders. The difference between statistic (ii) under high buy-side depth im-

balance and zero depth imbalance monotonically decreases with mispricing from

0.64% to 0.03%. Later informed traders increase LS usage following the current

informed MB if small positive mispricing is accompanied by high buy-side depth

imbalance rather than zero depth imbalance.

Further, when Rosu’s mispricing signal is no larger than 1.5, the difference be-

tween statistic(v) (statistic(iv)) under high buy-side depth imbalance and zero
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(i) Pplacement(MB|at current depth)

(ii) Pplacement(LS|after MB at current depth)

(iii) Pexecution(LS|after current depth)

(A) Informed traders

Figure 2.3: Informed manipulation.
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(iv) PPT of LS after current depth

(v) PPO of LS after MB at current depth

(A) Informed traders

(vi) PPO of uninformed MB after an informed MB

(vii) Pplacement(MB|after current depth)

(B) Uninformed traders

Figure 2.3: Informed manipulation (continued).
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depth imbalance reaches its peak at 2.93 ticks (1.20 ticks), and the difference be-

tween Pexecution(LS|after current depth), statistic (iii), under high buy-side depth

imbalance and zero depth imbalance conditions reaches its peak at 11.89%. Ac-

cording to Panel (A), informed traders, faced with low mispricing, despite their

natural tendency to use limit orders under low mispricing, indeed appear to use

market buys to try to trigger uninformed market buys after observing high buy-side

depth imbalance because they anticipate a later mispricing reversal, and thereby

increase the execution probability and profitability of later informed traders’ limit

sells. Though a low mispricing level combined with high buy-side depth imbal-

ance are informative about future mispricing reversal for the informed, according

to statistics (i)-(v) of the uninformed discussed in Appendix 2.1, the uninformed do

not observe the actual mispricing level and are not able to extract such mispricing

reversal related information.

We now examine how uninformed traders respond to informed manipulation by

investigating Panel (B). In terms of the PPO of uninformed MB after an informed

MB-statistic (vi), the yellow solid line is above (below) the blue solid line for rela-

tively low (high) actual mispricing, and both of two lines monotonically increase.

The high buy-side depth imbalance condition, compared to the zero depth imbal-

ance condition, reinforces uninformed traders’ tendency to interpret an informed

MB as positive mispricing that will proceed into the future: strong buying pres-

sure means current price is relatively low. An (informed) market buy observing

uninformed trader would thus use more market buy orders at high buy-side depth

imbalance than zero depth imbalance, a chasing effect. When a low mispricing

level presents and a mispricing reversal is more likely, informed traders have a

stronger motive to use market buys to mislead uninformed traders, the chasing

effect thereby results in a higher chance to get fooled and a lower statistic (vi)

for high buy-side depth imbalance observing uninformed traders than zero depth

imbalance observing peers. When a high mispricing level prevails, since the mis-

leading motive weakens and informed market buys are more “genuine”, the chasing

effect results in a higher chance to trade in the right direction and a higher statis-

tic (vi) for high buy-side depth imbalance observing uninformed traders than zero

depth imbalance observing peers. As for the two blue dotted lines, when mispric-

ing increases, the difference between uninformed MB placement probability after

high buy-side depth imbalance and zero depth imbalance monotonically decreases

from 0.67% to −0.21%, and the difference between PPO of uninformed MB after

an informed MB at high buy-side depth and zero depth imbalance monotonically
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increases from −3.38 ticks to 2.48 ticks. This indicates that high depth imbal-

ance and low mispricing observing informed traders successfully trick uninformed

traders into using more market buys than they should have. Further, informed

traders’ limit sell profit rise is at least partially achieved via reducing trend-chasing

uninformed traders’ market buy profit.

So far, what we have discussed is the scenario where the mispricing direction does

change from vt > pmt to vt < pmt . However, it is worth pointing out that even

if small positive mispricing does not result in a reversal, i.e., vt > pmt persists,

informed traders, when faced with the high buy-side depth imbalance condition

rather than the zero-depth imbalance condition, might still have a stronger incen-

tive to deviate from LB to MB at the current period, since the previously discussed

chasing effect increases trend-chasing MB usage of the uninformed and pushes up

the price, leading to a reduction in uninformed trend-chasing MB profits.

Trade-based manipulation has been widely studied in the rational expectations

literature (Huddart et al. (2001), John and Narayanan (1997), Takayama (2021)).

In these models, an informed trader, who wants to preserve his own informa-

tion advantage longer, tricks uninformed traders by choosing the “wrong” action

when facing buy/sell or amount decisions. Different from them, we contribute

to this theoretical literature by presenting a novel form of informed manipulation

originating from the inherent differences in informed and uninformed make-take

strategies, where an informed trader, who acts collusively and is willing to sac-

rifice his current profit in exchange for profit increases of later arriving informed

traders, tricks uninformed traders by choosing the “wrong” action when facing

market/limit decisions.

2.8 Conclusion

We develop a dynamic limit order book populated by informed and uninformed

traders who learn to trade via Q-learning. Q-learning enables us to fully endo-

genise traders’ order choice problems. In general, it is promising to integrate

reinforcement learning with the market microstructure theory framework and use

RL as an alternative belief updating rule, because RL enables us to relax a set of

strict assumptions, such as the agent’s perfect knowledge of model priors.

Trial-and-error learning of bounded rational agents from order book information

gives rise to strategic trading, of which a key component is predictable trading
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behaviours. With information advantage, the informed are most reliant on the

fundamental information (other than other order book information) to determine

their order choices. The informed are resiliency improving and unambiguously

favour limit (market) orders when the magnitude of mispricing is small (large).

Due to information disadvantage and learning, the uninformed “chase the trend”

and are more prone to place market buy orders following a market buy.

Most importantly, informed manipulation can be learned as an equilibrium trad-

ing strategy in our dynamic LOM, where informed deviants deliberately “deviate”

from their own predictable trading behaviours and exploit uninformed traders’ pre-

dictable trading behaviours. Given uninformed traders’ trend chasing tendency,

informed traders, who anticipate a mispricing reversal when observing both small-

in-size positive (negative) mispricing and high depth imbalance at the best bid

(ask), react by strategically going against their own preference for limit buys (sells)

and using market buys (sells) to trigger uninformed market buys (sells), sacrifice

current profit difference between limit and market buys (sells) in exchange for en-

hanced execution probability and profitability of later informed traders’ limit sells

(buys), and collusively manipulate the market for the good of informed traders

as a group. The novelty of the form of market manipulation emerging in our

dynamic LOM is that informed traders take the “wrong” action to mislead unin-

formed traders when faced with make-take decisions, instead of when faced with

buy/sell or amount decisions as in existing market manipulation studies.

Our findings that machines can learn to manipulate LOM have practical implica-

tions for investors and regulators. From the regulatory perspective, current market

manipulation legislation in most jurisdictions primarily focuses on the “intent” —

the state of mind or purpose behind the actions of suspected individuals or enti-

ties. However, this focus is more applicable to humans than to machines. Given

our analysis and the fact that machines can also learn to manipulate markets,

the current legislation needs to be amended to also include market manipulation

by machines. In addition, the surge of innovative AI and its prevalent use in

market manipulation increases the risk for long-term investors who are primarily

interested in resource allocation. To ensure market integrity, our analyses suggest

that regulators should adhere to the overarching rule that market abuse is market

abuse, regardless of whether it is from a human or a machine.
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Appendix 2.1.

Table A.2.1. classified rules (CRs) for state variable discretisation.

This table presents eight classification rules (CRs) in the classifier system based on the
spread, the expected fundamental value, the mispricing signal, order book movements,
depth imbalances, and the last trade direction. Using the classifier system, the contin-
uous state space is transformed into a discrete one that contains 14,580 possible states.

Classified rules Possible values

Spread st Current spread is equal to 1

Current spread is equal to 2

Current spread is higher than 2

Empty on buy side (emp+)

Empty on sell side (emp−)
Empty on both sides (emp+−)

Expected fundamental Expected fundamental is higher than pmt
minus midprice E(vt)− pmt Expected fundamental is lower than pmt

Expected fundamental equals pmt

Rosu’s signal
|vt−pmt |

st
Mispricing signal is in range [0, 0.5]

Mispricing signal is in range (0.5, 1.5]

Mispricing signal is in range (1.5, 2.5]

Mispricing signal is in range (2.5, 3.5]

Mispricing signal is in range (3.5, +∞)

Bid trend bt − bt−1 Current bid is higher than last bid

Current bid is lower than last bid

Current bid equals last bid

Ask trend at − at−1 Current ask is higher than last ask

Current ask is lower than last ask

Current ask equals last ask

Depth imbalance dat − dbt Depth at the best ask is higher

Depth at the best ask is lower

Depth at the best ask and best bid are equal

Cumulative depth imbalance dat − dbt Depth at the sell side is higher

Depth at the sell side is lower

Depth at the sell and buy sides are equal

Last trade direction LT t Last market order is a buy order

Last market order is a sell order
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Appendix 2.2. Uninformed traders’ inability to

infer mispricing reversal

The uninformed cannot extract mispricing reversal related information and do

not demonstrate manipulative behaviours resemble those of informed traders’.

To illustrate this, we look at Figure A2.1. For Pplacement(MB|at current depth),

statistic (i), of uninformed traders, the blue and yellow solid lines do not display

monotonicity, an artefact driven by the assumption that uninformed traders have

no access to actual mispricing. The blue solid line is below the yellow solid line,

consistent with the ceteris paribus effect in Section 2.5 that deeper depth imbalance

at the best bid/ask decreases same-side uninformed traders’ tendency to submit

market orders.

More importantly, the difference between Pplacement(MB|at current depth) of high
buy-side depth imbalance and zero depth imbalance fluctuates around −0.70%,

reflecting that uninformed traders do not discriminate between various depth im-

balance and mispricing combinations when it comes to market buy placement

probability at current period.

For Pplacement(LS|after MB at current depth), statistic (ii), of uninformed traders,

the blue and yellow solid lines again have no monotonical patterns because unin-

formed traders do not observe actual mispricing. The blue solid line is below the

yellow solid line, consistent with the ceteris paribus effect in Section 2.5 that deeper

depth imbalance at the best bid/ask decreases other-side uninformed traders’ ten-

dency to submit limit orders. This ceteris paribus effect can be justified by the

corresponding PPO of Pplacement(LS|after MB at current depth). As seen from

statistic (v), when the actual mispricing is greater than 3.5, accounting for more

than 60% of the simulated sample, the PPO of high buy-side imbalance is lower

than that of zero depth imbalance, and the difference has a nonnegligible magni-

tude of −1.79 ticks.

More importantly, the difference between Pplacement(LS|after MB at current depth)

of high buy-side depth imbalance and zero depth imbalance fluctuates around

−0.60%, reflecting that uninformed traders do not discriminate between various

depth imbalance and mispricing combinations when it comes to limit sell placement

probability after the current uninformed MB.
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Furthermore, when Rosu’s mispricing signal is no larger than 1.5, the difference

between Pexecution(LS|after current depth), statistic (iii), of uninformed traders

under high buy-side depth imbalance and zero depth imbalance is not at its highest

value. The same applies for statistic (iv) – the PPT of uninformed LS after current

depth, and statistic (v) – the PPO of uninformed LS after uninformed MB at

current depth.

To sum up, uninformed traders cannot extract mispricing reversal related infor-

mation, and do not vary current MB usage and future LS usage across different

depth imbalance and mispricing combinations.
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(i) Pplacement(MB|at current depth)

(ii) Pplacement(LS|after MB at current depth)

(iii) Pexecution(LS|after current depth)

Figure A2.1: The uninformed’s inability to infer mispricing reversal.
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(iv) PPT of LS after current depth

(v) PPO of LS after MB at current depth

Figure A2.1: The uninformed’s inability to infer mispricing reversal
(continued).
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Buying frenzies, short selling

costs and their impact on

investment efficiency

3.1 Introduction

Trading frenzies in financial markets occur when many speculators trade in the

same direction, leading to significant price pressure. For example, multiple stocks

with an excessive short interest experienced a dramatic price increase in January

2021 when retail investors coordinated to purchase the stocks using social me-

dia. As their share prices skyrocketed to new highs, a flood of media coverage

accompanied them, and their shares became known as “meme stocks”.2 The abil-

ity of individual retail investors to coordinate through social media to purchase

the “meme stocks” imposed costs on short sellers, resulting in a substantial loss

to short sellers and, consequently, a significant reduction in the amount of short

interest in these stocks.3 In this paper, we are interested in how such a buying

frenzy impacts firms’ investment efficiency.

2 Among the so-called “meme stocks”, an American video game company GameStop Corp
(“GameStop”) was a particularly extreme case. The level of short interest (the ratio of borrowed
shares to total outstanding shares) in the GameStop share was 122.97% at its peak, as reported
by SEC (2021). A short-interest ratio can exceed 100% when successive purchasers lend the
same shares multiple times.

3 For example, investors who sold GameStop short have lost around $25 billion (see O’Hara
(2021)). The amount of short interest in the GameStop share reduced to around 10% as of 15
October 2021 (see, for example, https://www.ortex.com/symbol/NYSE/GME).
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There are generally two sides to short selling. On the one hand, short sellers play

a crucial role in financial markets, keeping prices from overinflating or entering

bubbles, guiding capital to its best uses and improving welfare. On the other hand,

some activist short sellers massively bet stock prices to fall and create panic in the

market by exaggerating their statements. Such short selling is often perceived as

market manipulation. Manipulative short sellers inhibit the beneficial role of the

financial market in terms of resource allocation and destroy firm fundamentals in

a way that might benefit their trading position. This dichotomy of short sellers

makes it difficult for policymakers to investigate the welfare implications of short

selling.

In this paper, we investigate the real investment effects of retail buying frenzy as

a friction on short sales. We first develop a benchmark model in the Goldstein

and Guembel (2008) framework that extends Kyle (1985) to allow a feedback

effect. The feedback effect allows the firm manager to learn about the quality of

an investment opportunity from the stock price. To examine the real effects, we

introduce a model with four types of participants: a risk-neutral speculator (who

can be positively informed, negatively informed, or uninformed), a noise trader,

a risk-neutral market maker, and the firm manager in a four-date economy. The

speculator observes a private signal about the true state of the economy in t = 0;

the speculator and the noise trader trade with the market maker in t = 1 and

t = 2. Based on the stock price realisations in the financial market, the firm

manager makes the investment decision in t = 3.

The benchmark equilibrium as in Goldstein and Guembel (2008) features a sell –

sell strategy by the negatively informed speculator as well as the uninformed spec-

ulator. 4 While a sell – sell strategy from the negatively informed speculator helps

the firm manager to avoid a bad investment opportunity by correctly rejecting the

investment, a sell – sell strategy from the uninformed speculator leads the firm

manager to miss a good investment opportunity by incorrectly rejecting the in-

vestment. Such a manipulative strategy is profitable as the uninformed speculator

utilises the feedback mechanism (i.e., managerial learning) from market prices to

the manager’s investment. He sets up a manipulative and non-information driven

short position in t = 1 since he knows that his own selling pressure in t = 2 would

4When the speculator implements a sell – sell strategy, he sells in t = 1, and sells again in
t = 2 if his type is not fully revealed.
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lead to a rejection of a good investment opportunity, improving the profitability

of the first short position.

To investigate the real investment effects of a retail buying frenzy, we then extend

the benchmark model in three aspects. First, we introduce an outright short-sale

ban to the benchmark model, meaning that a sell order is only permissible if the

speculator has already bought the share in t = 1. The risk that retail investors

can coordinate through social media to purchase stocks leads to price distortions

that are not corrected by short sellers. Second, instead of imposing an outright

short-sale ban, we introduce a cost of short selling to reflect the fact that a retail

buying frenzy increases the stock price and introduces an additional cost on short

sellers. We then investigate the real investment effects of different levels of cost

to short selling. Third, we model asymmetric noise traders who are more likely to

buy than sell.

We first show that a short-sale ban always harms both stock price efficiency and

real investment efficiency relative to the benchmark equilibrium. On the one hand,

a short-sale ban eliminates manipulative short selling, increasing the information

content of negative order flows. On the other hand, a short-sale ban eliminates

informed short selling, decreasing the stock price efficiency. The third effect of a

short-sale ban is that it decreases the information content of positive order flows.

This is because, in the benchmark equilibrium, positive orders can only come from

the positively informed speculator, whereas in the equilibrium with a short-sale

ban, positive orders can come from other types of speculators. The second and

third effects, added together, dominate the first effect, resulting in a net reduction

in the price efficiency. The reduction in the price efficiency brought by a short-sale

ban then translates into an inferior investment decision by the firm manager.

In an extended model, we relax the strict ban on short selling and permit traders

to short the stock while incurring a cost of c. The model with costly short selling

generalises both the benchmark model and the model with a short-sale ban – a

small cost on short selling (c < c1) is equivalent to the benchmark model, and

an extremely high short selling cost (c > c5) is equivalent to the model with a

short-sale ban. We investigate two other interesting short-sale cost regions: (i)

an intermediate level of short-sale cost (c2 < c < c3) and (ii) a relatively high

short-sale cost (c4 < c < c5).
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An intermediate level of cost on short selling unambiguously improves the stock

price efficiency and the real investment efficiency relative to the benchmark equi-

librium. This occurs because an intermediate level of cost only deters manipulative

short selling given that informed short sellers anticipate greater profits from their

short selling activities compared to manipulative short sellers. The informed short

seller is less sensitive to a short-sale cost due to his information advantage. The

deterrence of manipulative short selling but not the informed improves the infor-

mation content of negative order flows, leading to a more efficient stock price and

investment decision.

A relatively high cost on short selling eliminates manipulative short selling, but

also leads the negatively informed short seller to change from a sell – sell strategy

to a no trade – sell strategy.5 A relatively high level of short-sale cost thus reduces

the information content of positive order flow in t = 1 (because no trade by

the negatively informed speculator added together with a noise buy could also

generate a positive order flow), but improves the information content of negative

order flow in t = 2 (because the manipulative short selling is eliminated). The

outcome of the opposing changes in the informativeness of different orders is that

the real investment efficiency may improve or deteriorate depending which effect

dominates. We derive the necessary and sufficient condition under which the

investment efficiency improves with a relatively high cost on short selling.

We then develop a third model without an explicit cost on short sellers, where

noise traders trade asymmetrically so that noise buys are more likely than noise

sells in t = 2. This means that a short-sale position in t = 1 bears a risk of

coordinated noise buys in t = 2. The coordinated noise buys present a trade-off

in terms of stock price efficiency and investment efficiency. On the one hand, the

increase in noise buys disguises the negatively informed speculator’s sell orders,

reducing the information content of no-trade event – we refer to this effect as the

“order flow disguising effect”.

On the other hand, the increase in noise buys pushes up the overall prices and

leads to an increase in the manager’s propensity to invest. When the short selling

is manipulative, it means a correction of underinvestment and an improvement

in fundamental value, resulting in a higher cost to cover the manipulative short.

When the short selling is informative, however, it means an overinvestment and a

5When the speculator implements a no trade – sell strategy, he does not trade in t = 1, and
sells in t = 2 if his type is not fully revealed.
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deterioration in fundamental value, resulting in a lower cost to cover the informed

short. Such a cost increase to cover the short sale is specific to the uninformed

speculator – we thus refer to this effect as the “uninformed-specific short-sale cost”.

While the order flow disguising effect harms the stock price and investment ef-

ficiency (because no trade has less information content), the uninformed-specific

short-sale cost improves the stock price and investment efficiency (because it only

applies to manipulative short sellers). We derive the necessary and sufficient con-

dition under which the uninformed-specific short-sale cost dominates the order

flow disguising effect, so that the investment efficiency is improved. We show that

in the presence of coordinated noise buys, an investment decision is more likely to

be efficient when (i) the fraction of uninformed speculator is large, (ii) the project

has a large ex-ante NPV, and (iii) the uncertainty about the profitability of the

investment is small. The rest of the paper is organised as follows. In Section 3.2,

we discuss the related literature. In Section 3.3, we develop and solve the equilib-

rium in the benchmark model. In Section 3.4, we extend the benchmark model in

three different ways and present our main results. Section 3.5 concludes.

3.2 Related literature

The paper contributes to the literature that analyses how stock prices affect corpo-

rate investment (e.g., Barro (1990), Morck, Shleifer, Vishny, Shapiro and Poterba

(1990)) and the managerial learning from stock prices (e.g., Dow and Gorton

(1997), Subrahmanyam and Titman (1999), Foucault and Gehrig (2008), Edmans,

Jayaraman and Schneemeier (2017)). Stock prices aggregate information of many

different market participants who do not have direct channels for communication

with the firm outside the trading process (e.g., Dow and Gorton (1997), Subrah-

manyam and Titman (1999)). The idea that stock prices are a useful source of

information dates back to Hayek (1945). Thus, stock prices complement the in-

formation of managers and guide them in making corporate investment decisions

(referred to as the managerial learning channel from stock prices in the extant

literature).

Empirically, it has been shown that the managerial learning from stock prices is

driven by the amount of private information in stocks (e.g., Chen et al. (2007)),

cross-listing in multiple exchanges (e.g., Foucault and Fresard (2012)), peers’ stock
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prices (e.g., Foucault and Fresard (2014), Dessaint et al. (2019)), and firms’ capital

constraints (e.g., Baker, Stein, and Wurgler (2003)). Closely related to our paper,

Aliyev, Aly and Putnins (2021) show that market manipulation also distorts the

managerial learning process from stock prices by reducing the sensitivity of cor-

porate investment to stock prices and harms firms’ future operating performance.

Consistently, we model the managerial learning process in the presence of both

manipulative and informed short sellers as in Goldstein and Guembel (2008). In

the presence of a feedback effect from the financial market to the firm’s real invest-

ment, manipulative short selling is a profitable strategy because an initial short

position leads to the rejection of a good investment opportunity (i.e., underin-

vestment), resulting in a reduction in the stock price and thereby improving the

profitability of the short position. The paper is therefore also related to the theo-

retical market manipulation literature (e.g., Allen and Gorton (1992), Vila (1989),

Benabou and Laroque (1992), Chakraborty and Yilmaz (2004), Takayama (2021)).

We contribute to this literature by investigating the real investment effects of

a retail buying frenzy in the presence of both informed and manipulative short

sellers. We model the retail buying frenzy as (i) imposing a short-sale ban to

an otherwise Goldstein and Guembel (2008) model, (ii) introducing an additional

cost to short selling, and (iii) asymmetric noise trading, in which noise buy is more

likely to occur than noise sell. All three analyses are motivated by the frenzied

retail traders piling into a blistering rally in “meme stocks” during the coronavirus

pandemic.

Our model is different from the literature that investigates the impact of short-

sale constraints without the presence of manipulative short selling. The literature

shows that short-sale constraints play a trivial role – market efficiency is always

reduced when short selling constraints bind, and the market becomes overvalued

because the informed short sellers cannot perform an important role of driving

the price back to the fundamental value (Bai, Chang and Wang (2006) and Cao,

Zhang and Zhou (2007)).

We contribute to this literature by showing that different levels of the short-sale

cost impact the price and real efficiency differently as both informed and manip-

ulative short sellers are affected by such a cost. While the reduction in informed

short selling due to short-sale constraints harms price and real efficiency, the re-

duction in manipulative short selling improves the price and real efficiency. We
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show that an outright short-sale ban unambiguously harms both price and real

investment efficiency. However, an intermediate level of short-sale cost eliminates

manipulative short selling but not informed short selling, resulting in improvement

in the stock price and real investment efficiency. To our knowledge, this paper is

the first to investigate the real investment effects of a retail buying frenzy as an

additional cost on short sellers.

We also model a retail buying frenzy as asymmetric noise trading where a noise

buy is more likely to occur than a noise sell. A large theoretical literature in market

microstructure following Glosten and Milgrom (1985) and Kyle (1985) treat noise

buys and sells as symmetric. In such a model, sellers and buyers are equally

likely to be informed, leading to a symmetric price impact. This assumption is

questionable because of factors such as short-sale constraints which make it easier

to exploit good news than bad news. Allen and Gorton (1992) show that price

manipulation is possible when noise traders trade asymmetrically. To capture the

recent retail buying frenzy, we also introduce asymmetry into noise trading as in

Allen and Gorton (1992). We show that a higher probability of noise buys gives rise

to two opposing effects (the order flow disguising effect and uninformed-specific

short-sale cost) that ultimately drive the real investment efficiency.

More broadly, our paper is related to the role of finance in terms of the broader

real economy (see, for example, Levine (2005) and Bond, Edmans and Goldstein

(2012) for an extensive survey). Research that clarifies our understanding of

the role of finance in economic growth has policy implications and shapes fu-

ture policy-oriented research (Levine (2005)). We contribute to the finance-real

economy nexus by showing how informed short selling helps firm managers to learn

from stock prices, how manipulative short selling distorts the managerial learning

process and the harms and benefits of the retail buying frenzy on firm managers’

investment decisions and the real economy. Our paper implies that natural market

forces such as the retail buying frenzy for manipulative short selling may improve

the real investment efficiency by driving out manipulative short selling.

3.3 The benchmark model

We develop the benchmark model in the Goldstein and Guembel (2008) framework

to allow the firm manager to learn about the quality of the investment opportunity
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from the stock price. The benchmark model enables us to characterise manipu-

lative short selling due to the existence of the feedback effect. The benchmark

model also provides a contrast to subsequent models that capture the impacts of

the retail buying frenzy coordinated through social media.

3.3.1 The benchmark model setup

The model consists of four dates, denoted as t ∈ {0, 1, 2, 3}, and a firm of which

shares are traded in unit supply. There are four types of participants: a risk-neutral

speculator, a noise trader, a risk-neutral market maker, and the firm manager. The

firm manager needs to make an investment decision. However, the manager faces

uncertainty over the quality of the investment opportunity and uses stock price

realisations to learn about the quality of the investment project. There are two

potential states of the firm’s investment profitability s ∈ {l, h} that each occurs

with a probability of 0.5.

In t = 0, the speculator observes a private signal s about the true state of the econ-

omy. With probability α, the signal is perfectly informative, denoted as s ∈ {l, h},
and with probability 1−α, the signal is uninformative, denoted as s = ∅. Following
Goldstein and Guembel (2008), we use the terms “positively informed speculator”

when s = h, “negatively informed speculator” when s = l, and “uninformed spec-

ulator” when s = ∅. Conditional on receiving a perfectly informative signal, the

speculator is equally likely to be positively informed or negatively informed.

Trading takes place in t = 1 and t = 2. When making trading decisions, the

speculator rationally maximises his expected profits by choosing to sell (ut = −1),

not trade (ut = 0), or buy (ut = 1), generating an order flow ut ∈ {−1, 0, 1}. The
noise trader, who is not strategic, randomly draws an action from the three actions,

each with an equal probability. We denote the noise trader’s order flow at time

t as nt. We also assume that the noise trader’s orders are serially uncorrelated,

meaning n1 and n2 are independent.

The market maker, as in Kyle (1985), quotes prices after observing the total order

flow Qt = nt + ut ∈ {−2,−1, 0, 1, 2}. The t = 1 price is the expected firm value

conditional on Q1, P1 (Q1) = E [V |Q1] and similarly, the t = 2 price is the expected

firm value conditional on Q1 and Q2, P2(Q1, Q2) = E[V |Q1, Q2]. In t = 3, the

manager makes the investment decision on a project based on price/order flow

realisations in the financial market. The firm value is V + > 0 when the manager



Chapter 3 65

encountered the high state (s = h) invests, and is V − < 0 when the manager

encountered the low state (s = l) invests. The firm value is 0 with no investment.

The manager does not have private information about the project profitability

and, analogous to Goldstein and Guembel (2008), we assume that the project has

positive ex-ante NPV, i.e., V + ⩾ −3V −. Absent further information, the firm

manager will opt to invest. Additionally, a crucial condition for the model is that

information conveyed by a sell order is sufficiently strong, i.e.,

α

2
V − + (1− α)V̄ < 0. (3.1)

Otherwise, the firm manager does not call off the investment after sell orders, and

the uninformed speculator does not impact the real investment and firm value,

resulting in no feedback between the financial market and real investment. Figure

3.1 illustrates the model timeline and the set of actions at each time t.

Figure 3.1: Model timeline.
This figure illustrates the timeline in the baseline model. In t = 0, the speculator
observes a private signal. In t = 1 and t = 2, trading occurs in the financial
market. In t = 3, the firm manager decides whether or not to invest in a project
using the information from the financial market.

3.3.2 The benchmark equilibrium

The equilibrium concept throughout the chapter is perfect Bayesian Nash equi-

librium. It is defined as follows: (i) the speculator chooses a trading strategy
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{u1(s), u2(s,Q1, u1)} that maximises his expected final payoff, (ii) the firm man-

ager chooses an investment strategy that maximises the expected value of the firm,

(iii) the market maker chooses a price-setting strategy {p1(Q1), p2(Q1, Q2)} that

breaks even in expectations, (iv) the firm manager and the market maker update

beliefs using Bayes’ theorem, and (v) all agents have rational expectations (i.e.,

each player’s belief about the other players’ strategies is correct in equilibrium).

We now characterise the equilibrium strategies of the speculator in the benchmark

model. Lemma 3.1 shows the best response of the negatively informed speculator

(s = l) along with that of the uninformed speculator (s = ∅). To derive the best

responses of negatively informed and uninformed speculators, we fix the positively

informed speculator’s strategy profile as to buy in t = 1 and buy again in t = 2 if

his type is not revealed. Throughout the paper, we follow the same reasoning to

characterise the best responses of negatively informed and uninformed speculators.

Lemma 3.1. Suppose that the positively informed speculator’s strategy profile is

to buy in t = 1 and buy again in t = 2 if his type is not revealed, the following

holds in t = 2:

(i) When Q1 perfectly reveals a speculator’s information or reveals that he is not

informed of the high state, then he is indifferent between buy, sell, and no

trade.

(ii) When Q1 reveals that the speculator is not informed of the low state, then

the best response in t = 2 of the uninformed speculator is to sell.

(iii) When Q1 reveals that the speculator is not uninformed, then the best response

in t = 2 of negatively informed speculator who buys or does not trade in t = 1

is to sell.

(iv) When Q1 does not reveal the speculator’s type, then the best response in t = 2

of the uninformed speculator who does not trade in t = 1 is to not trade, the

best response in t = 2 of uninformed speculator who sells in t = 1 is to sell,

and the best response in t = 2 of the negatively informed speculator is to sell.

The best responses in t = 2 characterised in Lemma 3.1 pin down four candidate

equilibriums. In each candidate equilibrium, we calculate the market prices as the

expected firm values conditional on order flows given the hypothesised speculator

strategies. We then calculate each type of speculator’s total profit in these can-

didate equilibriums and show that the benchmark equilibrium with manipulative
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short selling (formally defined in Proposition 3.2) is the one with no profitable

deviation. Table 3.1 shows the equilibrium strategies of the speculator and the

equilibrium prices of the market maker.

In the benchmark equilibrium, in t = 3, the firm manager chooses not to invest

if the order flow suggests that the speculator can not be positively informed,

and invests otherwise. This means that, given the equilibrium best responses in

Lemma 3.1, the firm chooses not to invest for any Q2 following Q1 ∈ {−2,−1}
and for Q2 ∈ {−2,−1} following Q1 ∈ {0, 1}. The firm manager chooses to

invest otherwise. The equilibrium prices in t = 2 are expected investment profit,

conditional on t = 1 and t = 2 order flows, and equilibrium prices in t = 1 is the

expected t = 2 price, conditional on t = 1 order flow.

We now formally characterise the benchmark equilibrium in Proposition 3.2. The

benchmark equilibrium features both a manipulative and informed short selling

in t = 1. Such an equilibrium allows us to determine the impact of retail buying

pressure (in the form of an additional cost on short sellers or a short-sale ban in the

extreme and coordinated noise trading) on the informed and manipulative short

sellers, and consequently on market prices and firm value in subsequent models.

Proposition 3.2. An equilibrium where the positively informed speculator buys in

both periods if his type is not revealed exists only if the negatively informed spec-

ulator and the uninformed speculator sells in t = 1 and sells (resp. is indifferent

between buy/sell/no trade) in t = 2 if Q1 is non-negative (resp. negative).

Note that manipulative short selling occurs only if the uninformed speculator im-

plements a sell – sell strategy. With the feedback effect, the uninformed speculator

sets up a short position in t = 1 since he knows that his own selling pressure in

t = 2 would lead to the rejection of an investment opportunity, improving the

profitability of the first short position. The manipulative short selling in t = 1

impacts the investment’s ex-ante efficiency and hence the expected firm value.

Corollary 3.3 establishes the expected firm value in the benchmark equilibrium.

Corollary 3.3. In the benchmark equilibrium, the real efficiency (i.e., the expected

value of the firm) is given by

REbenchmark =
(1− α)V̄

9
+
αV −

18
+
αV +

2
, (3.2)

where V̄ = 1
2
V + + 1

2
V − > 0 is the ex-ante NPV of the investment opportunity.



Table 3.1: Equilibrium strategies and prices in the benchmark setting.
This table reports the equilibrium strategies of the speculator and the equilibrium prices of the market maker. Panel (A) shows the
equilibrium strategies of the speculator in t = 1 and 2. Panel (B) shows the equilibrium prices of the market maker in t = 1 and 2.

Panel (A): Benchmark equilibrium strategies

Equilibrium strategy in t = 1

u1(s = h) 1

u1(s = l) −1

u1(s = ∅) −1

Equilibrium strategy in t = 2

Q1 = −2 Q1 = −1 Q1 = 0 Q1 = 1 Q1 = 2

u2(s = h) Not applicable Not applicable 1 {−1, 0, 1} {−1, 0, 1}
u2(s = l) {−1, 0, 1} {−1, 0, 1} −1 Not applicable Not applicable

u2(s = ∅) {−1, 0, 1} {−1, 0, 1} −1 Not applicable Not applicable

Panel (B): Benchmark equilibrium prices

Round 1 of trading Round 2 of trading

P1(0) =
V̄
3 + α

3 V
+ P2(0, 0) = V̄

P1(1) = P1(2) = V + P2(0, 1) = P2(0, 2) = V +

P1(−1) = P1(−2) = 0 P2(0,−1) = P2(0,−2) = 0

P2(1, ·) = P2(2, ·) = V +

P2(−1, ·) = P2(−2, ·) = 0

68
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3.4 The real effects of retail buying frenzy

We now modify the benchmark model in three different ways. First, we introduce

an outright short-sale ban to the benchmark model. This allows us to investigate

the real effects of a short-sale ban in a model in which both informed and ma-

nipulative short sellers are present. This is different from the models with only

informed short sellers that show that the market efficiency is always reduced when

short selling constraints bind, and the market becomes overvalued because the

informed short sellers cannot perform an important role of driving the price back

to the fundamental value (e.g., Bai et al. (2006) and Cao et al. (2007)).

Second, instead of imposing an outright short-sale ban, we introduce a monetary

cost c to short selling, to reflect the fact that the retail buying pressure increases

the stock price and introduces an additional cost on short sellers, and investigate

the real effects of different levels of cost to short selling. The model with a short

selling cost generalises both the benchmark model and the model with a short-

sale ban – in this setting, c = 0 is equivalent to the benchmark model, and an

extremely high short selling cost c is equivalent to the model with a short-sale ban.

Third, we explicitly increase the probability of noise buys in the benchmark model

to capture the real investment effects of coordinated noise buys. We assume the

noise trader buys with a probability of (1+δ)/3, sells with a probability of (1−δ)/3,
or does not trade with a probability of 1/3. The magnitude of the coordinated

noise buys is determined by the coordination coefficient 0 ⩽ δ ⩽ 1. Glosten and

Milgrom (1985), Kyle (1985) and the large subsequent literature treat noise traders

as symmetric, that is, equally likely to be buyers and sellers. By introducing an

asymmetry into noise trading in Glosten and Milgrom (1985), Allen and Gorton

(1992) demonstrate an example of price manipulation. The manipulative short

selling in our setting occurs because of the feedback loop between the financial

market and firm value. The coordinated buying pressure in our model, however,

pushes up the market prices compared to the benchmark model and ultimately

act as a cost on short sellers. All three models aim to capture different dimensions

of the transitory retail buying frenzy.

3.4.1 A short-sale ban

In this setting, we describe an equilibrium derivation in an economy where a short-

sale is prohibited. The only difference of this setting from the benchmark is that
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a sell order is only permissible if the speculator has already bought the share in

t = 1. This means that the total potential order flow that the market observes in

t = 1 is Q1 ∈ {−1, 0, 1, 2} and in t = 2 is Q2 ∈ {−2,−1, 0, 1, 2}.

Similar to the benchmark model, we first characterise the best responses of the neg-

atively informed and uninformed speculators when the positively informed specu-

lator’s strategy profile is to buy in t = 1 and buy again in t = 2 if his type is not

fully revealed.6 We replace the subgame with the corresponding best responses of

the negatively informed and uninformed speculators, leading to several candidate

equilibriums. In the candidate equilibriums, the negatively informed speculator

selects between a buy – sell strategy and a no trade – no trade strategy, and the

uninformed speculator selects between a strategy that buys in t = 1 and a no

trade – no trade strategy.7 We search for the short-sale ban equilibrium by check-

ing these candidate equilibriums and excluding the ones that have a profitable

deviation. Lemma 3.4 shows the best responses of the negatively informed and

uninformed speculators with a short-sale prohibition.

Lemma 3.4. In the presence of a short-sale ban, suppose that positively informed

speculator implements a buy – buy strategy, the following holds in t = 2:

(i) When Q1 perfectly reveals a speculator’s information or reveals that he is not

informed of the high state, then the speculator is indifferent between buy, sell

(if he has an initial position), and no trade.

(ii) When Q1 reveals that the speculator is not informed of the low state, then

the best response t = 2 of the uninformed speculator is to sell.

(iii) When Q1 reveals that the speculator is not uninformed, then the best response

in t = 2 of the negatively informed speculator is to sell.

(iv) When Q1 does not reveal anything, the negatively informed speculator sells

if he has an initial position, or does not trade if he does not trade in t = 1,

and the uninformed speculator does not trade in t = 2 if he does not trade

in t = 1.

6This strategy profile is hereinafter reffered to as a buy – buy strategy.
7When the speculator adopts a buy – sell strategy, he buys in t = 1, and sells in t = 2. When

the speculator adopts a no trade – no trade strategy, he does not trade in t = 1, and does not
trade in t = 2 if his type is not fully revealed.



Chapter 3 71

In the presence of a short-sale prohibition, the uninformed speculators are not

allowed to choose a manipulative sell – sell strategy as in the benchmark model.

Instead, they can choose a buy – sell strategy, but they refrain from that strategy

since no trade – no trade is more profitable. Based on the above best responses,

Proposition 3.5 characterises the short-sale ban equilibrium in which the negatively

informed and uninformed speculators chooses to not trade in t = 1 and t = 2.

Proposition 3.5. In the presence of a short-sale ban, an equilibrium where the

positively informed speculator buys in both periods if his type is not revealed exists

only if the negatively informed or the uninformed speculator does not trade in t = 1

and does not trade (resp. indifferent between buy and no trade) in t = 2 if Q1 ̸= −1

(resp. Q1 = −1).

In our model, the short-sale ban alters the equilibrium behaviours of the specu-

lators compared to the benchmark equilibrium. Table 3.2 reports the equilibrium

strategies and corresponding stock prices, where the equilibrium prices are the

expected firm value given the observed order flow as before.

The changes in the equilibrium strategies of the speculators change the information

content of order flows, thereby impacting the stock price efficiency. A short-

sale ban eliminates both the informed and manipulative short selling. On the

one hand, the elimination of manipulative short selling leads to an increase in

the price efficiency. On the other hand, a short-sale ban eliminates the negative

informed speculator’s short selling and decreases the price efficiency by deterring

the negative information from being impounded in prices. An additional effect that

the short-sale ban has is that it decreases the information content of the positive

order flow. In the benchmark equilibrium, positive order flows can only come

from the positively informed (s = h) speculator, and are fully revealing, whereas

in the short-sale ban equilibrium positive order flows can come from other types

of speculators, reducing the informativeness of the positive order flows.

We formalise the above intuition about the informational effect of a short-sale

ban using conditional probabilities. We define the information content of negative

order flow in t = 1 as Pr(s = l|Q1 < 0) and in t = 2 as Pr(s = l|Q1 = 0, Q2 < 0).

The information content of no-trade in t = 1 is 1−Pr(s = l|Q1 = 0) and in t = 2 is

1− Pr(s = l|Q1 = Q2 = 0). Similarly, the information content of a positive order

flow in t = 1 is 1− Pr(s = l|Q1 > 0) and in t = 2 is 1− Pr(s = l|Q1 = 0, Q2 > 0).



Table 3.2: Equilibrium strategies and prices in the short-sale ban setting.
This table reports the equilibrium strategies of the speculator and equilibrium prices of the market maker in the setting where short
selling is prohibited. Panel (A) shows the equilibrium strategies of the speculator in t = 1 and 2. Panel (B) shows the equilibrium
prices of the market maker in t = 1 and 2.

Panel (A): Short-sale ban equilibrium strategies

Equilibrium strategy in t = 1

u1(s = h) 1

u1(s = l) 0

u1(s = ∅) 0

Equilibrium strategy in t = 2

Q1 = −1 Q1 = 0 Q1 = 1 Q1 = 2

u2(s = h) Not applicable 1 1 {−1, 0, 1}
u2(s = l) {0, 1} 0 0 Not applicable

u2(s = ∅) {0, 1} 0 0 Not applicable

Panel (B): Short-sale ban equilibrium prices

Round 1 of trading Round 2 of trading

P1(0) = P1(1) =
2V̄
3 + α

6 V
+ P2(0, 0) = P2(0, 1) = P2(1, 0) = P2(1, 1) = V̄

P1(2) = V + P2(0, 2) = P2(1, 2) = V +

P1(−1) = 0 P2(0,−1) = P2(1,−1) = 0

P2(2, ·) = V +

P2(−1, ·) = 0

72



Table 3.3: Information content of order flows in the short-sale ban setting.
The table shows the information content of order flows in the short-sale ban equilibrium and compares it with that of the benchmark
equilibrium in t = 1 and 2. The information content of positive order flow is given by 1−Pr(s = l|Q1 > 0), the information content
of no trade is given by 1 − Pr(s = l|Q1 = 0), and the information content of negative order flow is given by Pr(s = l|Q1 < 0). The
information content of the no-trade and negative order flows in the short-sale ban setting is the same as that of the benchmark
model. A short-sale ban impedes the positive information from getting impounded into the price and reduces the information
content of the positive order flow relative to the benchmark equilibrium.

Order flow informativeness in t = 1

Positive order flow

1− Pr(s = l|Q1 > 0)

No-trade

1− Pr(s = l|Q1 = 0)

Negative order flow

Pr(s = l|Q1 < 0)

Benchmark equilibrium 1 1 − α
2

α
2−α

Short-sale ban equilibrium 2
2+α 1− α

2
α

2−α

Order flow informativeness in t = 2

Positive order flow

1− Pr(s = l|Q1 = 0, Q2 > 0)

No-trade

1− Pr(s = l|Q1 = 0, Q2 = 0)

Negative order flow

Pr(s = l|Q1 = 0, Q2 < 0)

Benchmark equilibrium 1 1 − α
2

α
2−α

Short-sale ban equilibrium 2
2+α 1− α

2
α

2−α

73
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Table 3.3 contrasts the informativeness of the order flows in the benchmark and

short-sale ban equilibrium. The table shows that positive order flows in the short-

sale ban equilibrium reveal less information than they do in the benchmark equi-

librium, reducing from 1 to 2/(2 + α). Interestingly, no trade and negative order

flows in the benchmark and the short-sale ban equilibrium have the same informa-

tiveness. The intuition for the unchanged informativeness of no trade and negative

order flows is that the harmful effect of the eliminated informed short selling and

the beneficial effect of the eliminated manipulative short selling cancel each other

out for these two types of order flows.

In our model, the firm manager’s ability to learn from the stock price (i.e., the

managerial learning) about the quality of the investment opportunity changes the

firm value. The changes in the informativeness of the order flows and the resulting

changes in the stock price efficiency should then translate into the changes in the

real investment efficiency of the firm due to the feedback effect. Corollary 3.6

shows the expected firm value given all trading game participants’ strategies in

the presence of a short-sale ban and how it compares to the benchmark model.

Corollary 3.6. (i) In the presence of a short-sale ban, the real efficiency (i.e.,

the expected value of the firm) is given by

REssban =
αV +

2
+

2αV −

9
+

4(1− α)V̄

9
. (3.3)

(ii) A short-sale ban always harms the real efficiency.

The corollary quantifies the expected firm value in the presence of a short-sale

ban. Comparing Eq.(3.3) to Eq.(3.2) reveals that an outright short-sale ban always

harms the firm value due to the unambiguous drop in the price efficiency relative to

the benchmark model. This means that an extremely large implicit cost imposed

on (both informed and manipulative) short sellers due to the extreme transitory

retail buying pressure results in the price and real investment inefficiency. To

investigate the real investment effects of varying levels of cost on short sellers

instead of an outright short-sale ban, we next explicitly introduce a linear cost on

short sellers.
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3.4.2 Costly short selling

To relax the outright short-sale ban, we now introduce a cost c > 0 per unit of

shorting position. This is to reflect that retail buying pressure in fact pushes the

market prices up and imposes an additional cost on short selling. In practice,

many short-sale constraints impose an additional cost on short sellers but are less

restrictive than an outright ban. When the short selling cost is extremely high, the

costly short selling model resembles the model with a short-sale ban, and when

the short selling cost is extremely low, the model appears like the benchmark

model. Thus, the costly short selling model enables us to compare the benchmark

equilibrium, the short-sale ban equilibrium, and the equilibrium with a costly short

selling. Lemma 3.7 characterises the best responses of the speculators in the costly

short selling model.

Lemma 3.7. Let a1, a2, a3, and a4 be given respectively by Eqs.(A3.1.8), (A3.1.5),

(A3.1.7), and (A3.1.6) in the Appendix. In the presence of a short selling cost

c > 0, suppose that the positively informed speculator implements a buy – buy

strategy, the following holds in t = 2:

(i) When Q1 perfectly reveals a speculator’s information or reveals that he is not

informed of the high state, then the speculator is indifferent between buy and

no trade.

(ii) When Q1 reveals that the speculator is not informed of the low state, then

the uninformed speculator sells (resp. does not trade) in t = 2 if c < a2

(resp. c > a2).

(iii) When Q1 reveals that the speculator is not informed of the high state, then

the negatively informed speculator as well as the uninformed speculator are

indifferent between buy and no trade.

(iv) When Q1 reveals that the speculator is not uninformed, then the negatively

informed speculator buying in t = 1 sells (resp. does not trade) in t = 2 if

c < a4 (resp. c > a4) and the negatively informed speculator not trading in

t = 1 sells (resp. does not trade) in t = 2 if c < a3 (resp. c > a3).

(v) When Q1 does not reveal the speculator’s type, the uninformed speculator not

trading in t = 1 also does not trade in t = 2, and the uninformed speculator

selling in t = 1 sells again (resp. does not trade) in t = 2 if c < a1 (resp.

c > a1); the negatively informed speculator buying in t = 1 sells (resp. does
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not trade) in t = 2 if c < a4 (resp. c > a4), the negatively informed speculator

not trading in t = 1 sells (resp. does not trade) in t = 2 if c < a3 (resp.

c > a3), and the negatively informed speculator selling in t = 1 sells again

(resp. does not trade) in t = 2 if c < a1 (resp. c > a1).

The equilibrium is obtained through the following procedure. We first dissect the

range of short selling cost c into four regions: (i) (0, a1), (ii) (a1, a2), (iii) (a2, a3),

and (iv) (a3,+∞). Then, in each region, we replace the subgame in t = 2 with

corresponding best responses. Finally, we determine the range of c for each type

of equilibrium by imposing that there is no profitable deviation for the speculator.

When the positively informed speculator implements a buy – buy strategy, four

equilibrium outcomes can arise:

• Benchmark equilibrium: both the negatively informed and uninformed spec-

ulator sell in both trading rounds.

• No manipulative shorting (NMS) equilibrium: the speculator sells in both

trading rounds when he receives s = l, and the speculator does not trade in

both trading rounds if Q1 = 0 (does not trade in t = 1 and sells in t = 2 if

Q1 = 1) when he receives s = ∅.

• Reduced informed and no manipulative shorting (RINMS ) equilibrium: the

speculator does not trade in t = 1 and sells in t = 2 when he receives s = l,

and does not trade in both trading rounds when he receives s = ∅.

• Short-sale ban (SSB) equilibrium: both negatively informed and uninformed

speculators choose to not trade in t = 1 and t = 2.

Proposition 3.8 shows how the equilibrium outcomes vary with the different levels

of short selling cost. Threshold values of short selling cost in the proposition are:

c1 =
α

9
V + − V + − V −

18
, (3.4)

c2 =
α

9
V + − α

9(2− α)

(
V + − V̄

)
, (3.5)

c3 =
α

6
V + − α

6(2− α)

(
V + − V̄

)
, (3.6)

c4 =
α (V + − V −)

6
, (3.7)

c5 =
V + − V −

6
. (3.8)
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Proposition 3.8. Let c1, c2, c3, c4 and c5 be given respectively by Eqs.(3.4),

(3.5), (3.6), (3.7) and (3.8). In the presence of a short selling cost c > 0, the

trading game has the following equilibria in which the positively informed speculator

implements a buy – buy strategy:

(i) When c < c1, the only equilibrium is the benchmark equilibrium.

(ii) When c2 < c < c3, the only equilibrium is the NMS equilibrium.

(iii) When c4 < c < c5, the only equilibrium is the RINMS equilibrium.

(iv) When c > c5, the only equilibrium is the SSB equilibrium.

Proposition 3.8 (i) suggests that with a small cost on short selling (c < c1), the

equilibrium features both informed and manipulative short selling as in the bench-

mark model. This is intuitive because with a small cost on short selling, it is still

profitable for the uninformed speculator to engage in the manipulative short sell-

ing. However, the proposition also shows that the uninformed speculator is more

sensitive to short selling cost compared to the negatively informed speculator. An

intermediate level of cost on short selling (c2 < c < c3) eliminates the manip-

ulative short seller but does not impact the informed short seller.8 A relatively

high cost on short selling (c4 < c < c5) also impacts the informed short seller,

leading him to change from the sell – sell strategy in the NMS equilibrium to the

no trade – sell strategy in the RINMS equilibrium. Finally, an extremely high cost

(c > c5) eliminates both informed and manipulative short selling, leading to the

equilibrium in the presence of a short-sale ban. Table 3.4 shows the equilibrium

strategies and the corresponding prices for each type of equilibrium.

To further explain the changes in the equilibrium strategies of the speculators,

let’s consider the extreme case in which the speculators who are not positively

informed choose between sell – sell and no trade – no trade strategies. By selling

in t = 1 and selling again in t = 2 if not revealed, the uninformed short seller’s

expected profit is

8Note that in the NMS equilibrium, the fact that uninformed speculator does not trade in
t = 1 and sells in t = 2 if Q1 = 1 does not imply a manipulative short selling. When Q1 = 1, the
uninformed speculator simply takes the benefit of his information advantage compared to the
market maker as he knows Q1 = 1 is due to the noise trader (since he has not traded) but the
market maker was not aware of that. Manipulative short selling occurs when the uninformed
speculator implements a sell – sell strategy. In fact, no trade – sell strategy by the uninformed
speculator occurs without the feedback effect.



Table 3.4: Equilibrium strategies and prices in the costly short selling setting.
This table reports the equilibrium strategies of the speculator and equilibrium prices of the market maker in the costly short selling
setting. Panels (A) and (C) show the strategies of the speculator in t = 1 and 2 in the “No manipulative short” (NMS ) equilibrium
and “Reduced informed and no manipulative short” (RINMS ) equilibrium, respectively. Panels (B) and (D) show the prices quoted
by the market maker in t = 1 and 2 in the NMS equilibrium and RINMS equilibrium. The “Short-sale ban” (SSB) equilibrium has
been discussed before and is thus neglected here.

Panel (A): Strategies in the NMS equilibrium

Equilibrium strategy in t = 1

u1(s = h) 1

u1(s = l) −1

u1(s = ∅) 0

Equilibrium strategy in t = 2

Q1 = −2 Q1 = −1 Q1 = 0 Q1 = 1 Q1 = 2

u2(s = h) Not applicable Not applicable 1 1 {−1, 0, 1}
u2(s = l) {0, 1} {0, 1} −1 Not applicable Not applicable

u2(s = ∅) Not applicable {0, 1} 0 −1 Not applicable

Panel (B): Prices in the NMS equilibrium

Round 1 of trading Round 2 of trading

P1(0) =
V̄
3 + α

6 V
+ P2(0, 0) = V̄

P1(1) =
α

2−αV
+ + 2(1−α)

2−α V̄ P2(0, 1) = P2(0, 2) = V +, P2(0,−1) = P2(0,−2) = 0

P1(2) = V + P2(1, 0) =
α

2−αV
+ + 2(1−α)

2−α V̄

P1(−2) = P1(−1) = 0 P2(1, 1) = P2(1, 2) = V +, P2(1,−1) = P2(1,−2) = V̄

P2(2, ·) = V +

P2(−2, ·) = P2(−1, ·) = 0

78



Table 3.4: Equilibrium strategies and prices in the costly short selling setting (continued).

Panel (C): Strategies in the RINMS equilibrium

Equilibrium strategy in t = 1

u1(s = h) 1

u1(s = l) 0

u1(s = ∅) 0

Equilibrium strategy in t = 2

Q1 = −1 Q1 = 0 Q1 = 1 Q1 = 2

u2(s = h) Not applicable 1 1 {−1, 0, 1}
u2(s = l) {0, 1} −1 −1 Not applicable

u2(s = ∅) {0, 1} 0 0 Not applicable

Panel (D): Prices in the RINMS equilibrium

Round 1 of trading Round 2 of trading

P1(0) = P1(1) =
2−2α

3 V̄ + α
3 V

+ P2(0, 0) = P2(1, 0) = V̄

P1(2) = V + P2(0, 1) = P2(1, 1) =
α

2−αV
+ + 2(1−α)

2−α V̄

P1(−1) = 0 P2(0, 2) = P2(1, 2) = V +

P2(0,−1) = P2(0,−2) = P2(1,−1) = P2(1,−2) = 0

P2(2, ·) = V +

P2(−1, ·) = 0

79
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Ps=∅ =
1

3
P1(0) +

1

9
P2(0, 0)

︸ ︷︷ ︸
Shorting proceeds

− 2

9
V̄

︸︷︷︸
Disadvantage

− 4

3
c, (3.9)

whereas the negatively informed short seller’s expected profit is

Ps=l =
1

3
P1(0) +

1

9
P2(0, 0)

︸ ︷︷ ︸
Shorting proceeds

− 2

9
V −

︸ ︷︷ ︸
Advantage

− 4

3
c. (3.10)

The shorting proceeds terms in Eqs.(3.9) and (3.10) represent the revenue arising

from setting up short positions. The second terms are the expected covering costs

of the short position in the benchmark economy, i.e., the products of the proba-

bility of accepting the investment opportunity and the expected firm value if the

manager invests. While the second term decreases the uninformed speculator’s

expected trading profit, it increases the informed speculator’s expected trading

profit. This is because the informed has an information advantage over the unin-

formed speculator. Given this information advantage, the informed short sellers

are driven out of the market slower than the manipulative short sellers.

We now examine the effects of short selling cost on the information content of

order flows. Table 3.5 compares the probabilities of a given signal conditional on

the order flow in the costly short selling model with those of the benchmark. Not

surprisingly, the informativeness of the no trade (Q1 = 0, Q2 = 0) is the same

as the benchmark, since the market maker and the firm manager do not learn

anything with zero order imbalance. When the short-sale cost is intermediate and

NMS equilibrium holds, we observe an improvement in the information content of

negative order flow in the costly short selling setting (α) compared to the bench-

mark ( α
2−α

). This occurs because NMS equilibrium eliminates the manipulative

short selling, but does not impact the informed short selling.

When the short-sale cost is relatively high and RINMS equilibrium holds, the

price efficiency is deteriorated in t = 1 and improved in t = 2. It deteriorates in

t = 1 because the informativeness of the positive order flow is reduced (due to the

positive possibility that the negatively informed speculator can generate Q1 = 1),



Table 3.5: Information content of order flows in the costly short selling setting.
This table shows the information content of order flows in the costly short selling equilibriums: “No manipulative short” (NMS )
equilibrium and “Reduced informed and no manipulative short” (RINMS ) equilibrium, and compares them with that of the bench-
mark equilibrium. The “Short-sale ban” (SSB) equilibrium has been discussed before and is thus neglected here. The information
content of positive order flow is given by 1−Pr(s = l|Q1 > 0), the information content of no trade is given by 1−Pr(s = l|Q1 = 0),
and the information content of negative order flow is given by Pr(s = l|Q1 < 0). No-trade events have the same information content
in all four equilibriums. The NMS equilibrium (resp. the SSB equilibrium) has more informative (resp. less informative) order
flows than the benchmark equilibrium. The RINMS equilibrium is associated with an reduction in informativeness in t = 1, and an
improvement in informativeness in t = 2.

Order flow informativeness in t = 1

Positive order flow

1− Pr(s = l|Q1 > 0)

No-trade

1− Pr(s = l|Q1 = 0)

Negative order flow

Pr(s = l|Q1 < 0)

Benchmark equilibrium 1 1 − α
2

α
2−α

NMS equilibrium 1 1− α
2 α

RINMS equilibrium 2
2+α 1− α

2
α

2−α

Order flow informativeness in t = 2

Positive order flow

1− Pr(s = l|Q1 = 0, Q2 > 0)

No-trade

1− Pr(s = l|Q1 = 0, Q2 = 0)

Negative order flow

Pr(s = l|Q1 = 0, Q2 < 0)

Benchmark equilibrium 1 1 − α
2

α
2−α

NMS equilibrium 1 1− α
2 α

RINMS equilibrium 1 1− α
2 α

81



Chapter 3 82

whereas the informativeness of the no trade and negative order flows remain the

same as the benchmark. It improves in t = 2 because the informativeness of the

negative order flow increases due to eliminated manipulative shorting, whereas the

informativeness of the no trade and positive order flows remain the same as the

benchmark. When the short-sale cost is extremely high, the SSB equilibrium is

associated with an unambiguous drop in the price efficiency as in Subsection 3.4.1.

The changes in the information content of order flows and the stock price efficiency

translate into changes in the real investment efficiency of the firm due to the

managerial learning from the stock price. Corollary 3.9 shows the expected firm

value given all trading game participants’ strategies in the presence of a linear

short selling cost and how it compares to the benchmark model.

Corollary 3.9. (i) In the NMS equilibrium, the real efficiency (i.e., the expected

value of the firm) is given by

RENMS =
αV +

2
+
αV −

18
+

5(1− α)V̄

9
. (3.11)

(ii) The NMS equilibrium always improves the real efficiency.

(iii) In the RINMS equilibrium, the real efficiency is given by

RERINMS =
αV +

2
+
αV −

9
+

4(1− α)V̄

9
. (3.12)

(iv) The RINMS equilibrium improves the real efficiency if and only if the condition
αV −
18

+ 3(1−α)V̄
9

> 0 holds.

Corollary 3.9 suggests that the NMS equilibrium always improves the real effi-

ciency because the price efficiency always improves compared to the benchmark

due to the elimination of manipulative short selling. Thus, the manager learns

more from the stock price, improving the quality of the investment decision. The

corollary also suggests that the RINMS equilibrium may improve or deteriorate

the real efficiency depending on whether the reduced information content of posi-

tive Q1 or improved information content of negative Q2 has a dominating impact

on the investment decision.

Figure 3.2 provides a numerical example of the real efficiency in different equi-

libriums. Panel (A) illustrates four equilibriums when α = 0.9, V + = 3, and

V − = −1, whereas Panel (B) illustrates the same when α = 0.75, V + = 3, and
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V − = −1. In both panels, the NMS equilibrium has a higher real investment ef-

ficiency and the SSB equilibrium has a lower real investment efficiency compared

to the benchmark. Panel (A) (resp. Panel (B)) illustrates the case in which the

RINMS equilibrium improves (resp. deteriorates) the real investment efficiency.

(A)

(B)

Figure 3.2: Real efficiency in the costly short selling setting.
This figure illustrates numerical examples of the real efficiency in the costly short
selling equilibriums: (i) Benchmark equilibrium, (ii) No manipulative short-
ing (NMS ) equilibrium, (iii) Reduced informed and no manipulative shorting
(RINMS ) equilibrium, and (iv) Short-sale ban (SSB ) equilibrium. Panel (A)
illustrates the real efficiency when α = 0.9, V + = 3, and V − = −1, and Panel
(B) illustrates the same when α = 0.75, V + = 3, and V − = −1.

3.4.3 Coordinated noise buys

We now consider the model in which the noise trader submits {1, 0,−1} with the

probability of {1/3, 1/3, 1/3} in t = 1 as in the benchmark model and submits

the same orders with the probability of {(1 + δ)/3, 1/3, (1− δ)/3} in t = 2, where

0 ⩽ δ ⩽ 1. Now, the noise trader in t = 2 is more likely to be a buyer than a
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seller, and δ captures the intensity of coordinated noise buy. This means that a

short position in t = 1 bears an additional risk of coordinated noise buy in t = 2.

We first get an intuitive understanding of how an increased probability of noise

buys influences the speculators’ expected profits. Intuitively, increased buying

pressure should push up the overall prices, and decrease the managers’ ex-ante

probability of observing negative order flows, leading to an increase in the man-

ager’s propensity to invest in the project. If the speculator is a manipulative short

seller, it means a correction of underinvestment and an improvement in fundamen-

tals, resulting in a higher cost to cover the manipulative short. If the speculator

is an informed short seller, it means an overinvestment and a deterioration in fun-

damentals, resulting in a lower cost to cover the informed short. That is to say,

an increased probability of noise buys reduces the profitability of the manipula-

tive shorts but increases that of the informed shorts. More formally, Lemma 3.10

characterises the best responses of speculators.

Lemma 3.10. In the presence of coordinated noise buys, suppose that positively

informed speculator implements a buy – buy strategy, the following holds in t = 2:

(i) When Q1 perfectly reveals a speculator’s information or reveals that he is

not informed of the high state, then the speculator is indifferent between buy,

sell, and no trade.

(ii) When Q1 reveals that the speculator is not informed of the low state, then

the uninformed speculator sells in t = 2.

(iii) When Q1 reveals that the speculator is not uninformed, then the negatively

informed speculator has a best response in t = 2 of selling.

(iv) When Q1 does not reveal the speculator’s type, the negatively informed spec-

ulator has a best response in t = 2 of selling; the uninformed speculator does

not buy in t = 2, and does not trade in t = 2 if he does not trade in t = 1.

Given the best responses characterised in Lemma 3.10, we obtain the equilib-

rium as follows. First, we replace the subgame in t = 2 with the corresponding

best responses and pin down several candidate equilibriums. Second, we exclude

the candidate equilibriums that have a profitable deviation for the speculator re-

gardless of the value of δ. Finally, we calculate the range of δ for the remaining

candidate equilibriums by imposing that the given equilibrium strategy is more

profitable than any possible alternative strategy. When the positively informed
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speculator implements a buy – buy strategy and 0 ⩽ δ ⩽ 1, three equilibrium

outcomes can arise:

• Benchmark equilibrium: the negatively informed speculator as well as the

uninformed speculator all sell in both trading rounds.

• Reduced informativeness and manipulative shorting (RIMS ) equilibrium:

the negatively informed speculator as well as the uninformed speculator all

sell in both trading rounds, but the information content of a no-trade event

is lower than the benchmark equilibrium.

• No manipulative shorting (NMS ) equilibrium: the speculator sells in both

trading rounds when he receives s = l and the speculator does not trade in

both trading rounds if Q1 = 0 (does not trade in t = 1 and sells in t = 2 if

Q1 = 1) when he receives s = ∅.

Proposition 3.11 shows how equilibrium outcomes and speculator behaviours vary

with noise trader buying intensity δ. Threshold values of noise trader buying in-

tensity in the proposition are:

δ1 =
2αV + − V + + V −

V + + αV + − V − , (3.13)

δ2 = −α− α
√
G+ αη + 2α2η + 2α2 + 4

2 (3α+ 3αη − α2η − α2 + 2)
, (3.14)

δ3 =
3αη − 2η − 2α+ 2α2η + 5α2 +

√
E

6α2η − 2αη + 6α2
, (3.15)

δ4 ≡
√
α (17α+ 8η + 18αη + 5αη2 + 4η2)− α− αη

4α+ 2αη
. (3.16)

where η is a function of V + and V −, and G and E are functions of η and informed

fraction α, and are expressed as follows

V + ≡ −(1 + η)V −, (3.17)

G = (1 + η)
(
25η − 4α− 4αη + 4α2η + 4α2 + 49

)
, (3.18)

E = 16α4η2 + 56α4η + 49α4 + 8α3η2 − 10α3η

− 44α3 − 23α2η2 + 48α2η + 4α2 − 4α2η + 8αη + 4.
(3.19)



Chapter 3 86

Proposition 3.11. Let δ1, δ2, δ3, and δ4 be given respectively by Eqs.(3.13),

(3.14), (3.15), and (3.16). The trading game has the following equilibria in which

the positively informed speculator buys in t = 1 and buys again in t = 2 if his type

is not revealed:

(i) When δ = 0, the only equilibrium is the benchmark equilibrium.

(ii) When 0 < δ < min{δ1, δ2}, the only equilibrium is the RIMS equilibrium.

(iii) When δ > max{δ3, δ4}, the only equilibrium is the NMS equilibrium.

Proposition 3.11 shows that when the intensity of coordinated noise buy is suffi-

ciently low, 0 < δ < min{δ1, δ2}, the RIMS equilibrium that we obtain is similar

to the benchmark equilibrium, in which both the negatively informed speculator

who knows s = l and the uninformed speculator who knows s = ∅ sell in t = 1

and t = 2 if his type is not revealed. The only difference between the RIMS and

the benchmark equilibrium is that the information content of a no-trade event in

the RIMS is lower than the benchmark equilibrium.9 This occurs because the

increase in noise buys disguises the negatively informed speculator’s sell orders –

we refer to this effect as the the “order flow disguising effect”. In the benchmark

equilibrium, after observing no trade, {Q1 = 0, Q2 = 0}, the probability of s = l

is given by α/2, whereas in the RIMS equilibrium it is given by αk/2, where

k =
1 + δ

1 + δ(1− α)
> 1. (3.20)

Therefore, the informativeness of no trade, {Q1 = 0, Q2 = 0}, is reduced from

1−α/2 in the benchmark equilibrium to 1−αk/2 in the RIMS equilibrium. Since

∂k/∂δ > 0, the larger the intensity of coordinated noise buy δ is, the stronger the

order flow disguising effect is in the RIMS equilibrium.

Proposition 3.11 also shows that when the intensity of coordinated noise buy is

sufficiently high, δ > max{δ3, δ4}, the NMS equilibrium applies. In the NMS equi-

librium, the negatively informed speculator still submits sell – sell orders, whereas

the strategy of not trading in t = 1, and selling (resp. not trading) in t = 2 if

Q1 = 1 (resp. Q1 = 0) is observed for the uninformed speculator. It is not surpris-

ing that increased intensity of coordinated noise buy eliminates only manipulative

shorts, but not the informed shorts. This is because the expected profits of a sell –

9The information content of order flows other than {Q1 = 0, Q2 = 0} in the RIMS equilibrium
remains the same as the benchmark equilibrium, and there are no changes in the speculator’s
equilibrium trading strategy and price efficiency.
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sell strategy by the uninformed and negatively informed speculator is, respectively,

given by

Ps=∅ =
1

3
P1(0) +

1

9
P2(0, 0)

︸ ︷︷ ︸
Shorting proceeds

− 2

9
V̄

︸︷︷︸
Disadvantage

− 2δ

3
V̄

︸︷︷︸
Covering cost

increase

, (3.21)

Ps=l =
1

3
P1(0) +

1

9
P2(0, 0)

︸ ︷︷ ︸
Shorting proceeds

− 2

9
V −

︸ ︷︷ ︸
Advantage

− 2δ

3
V −

︸ ︷︷ ︸
Covering cost

reduction

. (3.22)

The shorting proceeds term is computed using the equilibrium prices reported

in Table 3.6. Both the shorting proceeds and the information advantage (resp.

disadvantage) term for the informed (resp. uninformed) short sellers are as defined

in Subsection 3.4.2. The third term in Eqs.(3.21)-(3.22) represents the amount the

short seller pays to close out his existing short positions due to the increase in δ.

Since ∂Shorting proceeds/∂δ < 0 and covering cost for the uninformed increases

in δ, ∂Ps=∅/∂δ < 0. That means an increase in the intensity of coordinated

noise buys always reduces the profitability of manipulative short selling. However,

depending on the relative magnitudes of ∂Shorting proceeds/∂δ and the covering

cost reduction, the expected profit of the negatively informed speculator can be

either increasing or decreasing in δ.

Table 3.7 compares the information content of order flows in different equilibriums.

The informativeness of no-trade in the NMS equilibrium, 1 − α(1 + δ)/2, is still

lower than that of the benchmark, 1 − α/2. The order flow disguising effect in

the NMS equilibrium is still increasing in δ as in the RIMS equilibrium. Different

from the RIMS equilibrium, however, the NMS equilibrium features an increased

informativeness of the negative order flows. This is because of a feedback loop

between the financial market and the manager’s decision to invest or not. When

the speculator is uninformed of the economic state, a relatively high noise buying

intensity δ leads to a feedback from the market to the manager to correct under-

investment due to the fewer occurrences of negative order flows and the feedback

from the manager to the market to increase the cost to cover the manipulative

shorts due to improved fundamentals and, thus, a reduction in manipulative shorts



Table 3.6: Equilibrium strategies and prices in the coordinated noise buys setting.
This table reports the equilibrium strategies of the speculator and equilibrium prices of the market maker in the coordinated noise
buys setting. Panel (A) and (C) show the strategies of the speculator in t = 1 and 2 in the “Reduced informed and no manipulative
short” (RIMS ) equilibrium and “No manipulative short” (NMS ) equilibrium, respectively. Panel (B) and (D) show the prices
quoted by the market maker in t = 1 and 2 in the RIMS equilibrium and NMS equilibrium, respectively.

Panel (A): Strategies in the RIMS equilibrium

Equilibrium strategy in t = 1

u1(s = h) 1

u1(s = l) −1

u1(s = ∅) −1

Equilibrium strategy in t = 2

Q1 = −2 Q1 = −1 Q1 = 0 Q1 = 1 Q1 = 2

u2(s = h) Not applicable Not applicable 1 {−1, 0, 1} {−1, 0, 1}
u2(s = l) {−1, 0, 1} {−1, 0, 1} −1 Not applicable Not applicable

u2(s = ∅) {−1, 0, 1} {−1, 0, 1} −1 Not applicable Not applicable

Panel (B): Prices in the RIMS equilibrium

Round 1 of trading Round 2 of trading

P1(0) =
α
2 V

+ + (1+δ)(1−α)
3 V̄ + (1+δ)α

6 V − P2(0, 0) =
(1−δ)αV ++(1+δ)αV −+2(1+δ)(1−α)V̄

1+αδ−δ

P1(1) = P1(2) = V + P2(0, 1) = P2(0, 2) = V +

P1(−1) = P1(−2) = 0 P2(0,−1) = P2(0,−2) = 0

P2(1, ·) = P2(2, ·) = V +

P2(−1, ·) = P2(−2, ·) = 0

88



Table 3.6: Equilibrium strategies and prices in the coordinated noise buys setting (continued).

Panel (C): Strategies in the NMS equilibrium

Equilibrium strategy in t = 1

u1(s = h) 1

u1(s = l) −1

u1(s = ∅) 0

Equilibrium strategy in t = 2

Q1 = −2 Q1 = −1 Q1 = 0 Q1 = 1 Q1 = 2

u2(s = h) Not applicable Not applicable 1 1 {−1, 0, 1}
u2(s = l) {0, 1} {0, 1} −1 Not applicable Not applicable

u2(s = ∅) Not applicable {0, 1} 0 −1 Not applicable

Panel (D): Prices in the NMS equilibrium

Round 1 of trading Round 2 of trading

P1(0) =
α
2 V

+ + (2+δ)(1−α)
3 V̄ + (1+δ)α

6 V − P2(0, 0) =
(1−δ)α

2 V + + (1+δ)α
2 V − + (1− α)V̄

P1(1) =
α

2−αV
+ + 2(1−α)

2−α V̄ P2(0, 1) =
αV ++2(1−α)(1+δ)V̄

2−α+2δ−2αδ

P1(2) = V + P2(0, 2) = V +, P2(0,−1) = P2(0,−2) = 0

P1(−2) = P1(−1) = 0 P2(1, 0) =
α(1−δ)V ++2(1−α)(1+δ)V̄

2−α+2δ−3αδ

P2(1, 1) = P2(1, 2) = V +, P2(1,−1) = P2(1,−2) = V̄

P2(2, ·) = V +

P2(−2, ·) = P2(−1, ·) = 0
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Table 3.7: Information content of order flows in the coordinated noise buys setting.
This table shows the information content of order flows in the coordinated noise buys equilibriums: “Reduced informativeness and
no manipulative short” (RIMS ) equilibrium and “No manipulative short” (NMS ) equilibrium, and compares them with that of the
benchmark equilibrium. The information content of positive order flow is given by 1 − Pr(s = l|Q1 > 0), the information content
of no trade is given by 1 − Pr(s = l|Q1 = 0), and the information content of negative order flow is given by Pr(s = l|Q1 < 0).
Positive order flows have the same information content in all three equilibriums. The RIMS equilibrium results in less informative
order flows than the benchmark. The NMS equilibrium is associated with more (resp. less) informative negative order flows (resp.
no-trade events).

Order flow informativeness in t = 1

Positive order flow

1− Pr(s = l|Q1 > 0)

No-trade

1− Pr(s = l|Q1 = 0)

Negative order flow

Pr(s = l|Q1 < 0)

Benchmark equilibrium 1 1 − α
2

α
2−α

RIMS equilibrium 1 1− α
2

α
2−α

NMS equilibrium 1 1− α
2 α

Order flow informativeness in t = 2

Positive order flow

1− Pr(s = l|Q1 = 0, Q2 > 0)

No-trade

1− Pr(s = l|Q1 = 0, Q2 = 0)

Negative order flow

Pr(s = l|Q1 = 0, Q2 < 0)

Benchmark equilibrium 1 1 − α
2

α
2−α

RIMS equilibrium 1 1− α(1+δ)
2(1+δ−δα)

α
2−α

NMS equilibrium 1 1− α(1+δ)
2

2α−αδ
2+αδ−2δ
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Figure 3.3: Informational content of no trade and negative order flows
with respect to the intensity of noise buys.
This figure provides a numerical example of order flow informativeness in t = 2
when α = 0.96 and V + = −3V −. The light blue line is the informativeness
of no-trade (Q2 = 0) in the benchmark equilibrium. The dashed black line is
the informativeness of no-trade (Q2 = 0) in the “Reduced informed and ma-
nipulative short” equilibrium. The dashed purple line is the informativeness of
no-trade (Q2 = 0) in the “No manipulative short” equilibrium. The dark blue
line represents the informativeness of negative order flow (Q2 < 0) in the bench-
mark and the RIMS equilibriums. The dashed grey line is the informativeness
of negative order flow (Q2 < 0) in the NMS equilibrium.

and a rise in the information content of negative order flows. Such a cost increase

to cover the short sale is specific to the uninformed speculator – we therefore refer

to this effect as the “uninformed-specific short-sale cost”. Figure 3.3 illustrates a

numerical example of the information content of order flows in t = 2 when α = 0.96

and V + = −3V −.

The discussion about the information content of order flows and consequently the

manager’s ability to learn from prices have implications for the real investment

efficiency. For the RIMS equilibrium, the informational efficiency is always worse

than the benchmark equilibrium. Accordingly, one may reasonably expect a de-

crease in the quality of investment decision and the real investment efficiency in

the RIMS equilibrium. For the NMS equilibrium, however, the real investment ef-

ficiency can increase or decrease relative to the benchmark equilibrium because the

informativeness of negative order flows increases (i.e., uninformed-specific short-

sale cost), whereas the informativeness of a no-trade event decreases (i.e., order

flow disguising effect). Corollary 3.12 formally shows the real investment efficiency

in different equilibriums.
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Corollary 3.12. (i) In the RIMS equilibrium, the real investment efficiency (i.e,

the expected firm value) is given by

RERIMS =
αV +

2
+
α(1 + δ)V −

18
+

(1− α)(1 + δ)V̄

9
. (3.23)

(ii) The RIMS equilibrium always harms the real efficiency.

(iii) In the NMS equilibrium, the real investment efficiency is given by

RENMS =
αV +

2
+
α(1 + δ)V −

18
+

(1− α)(5 + δ)V̄

9
. (3.24)

(iv) The NMS equilibrium improves the real efficiency if and only if

(1− α)(4 + δ)V̄

9
+
αδ(V̄ − U)

18
> 0, (3.25)

where U = V + − V̄ is the measure of uncertainty.

(v) The real efficiency change in the NMS equilibrium relative to the benchmark

equilibrium (i.e., RENMS − REbenchmark) decreases in the fraction α of informed

speculator, increases in the ex-ante NPV of the project (V̄), and decreases in the

uncertainty about the profitability of the investment (U).

Corollary 3.12 shows that the RIMS equilibrium (δ < min {δ1, δ2}) always harms

real efficiency. This occurs as the RIMS equilibrium is associated with a decrease

in the price informativeness due to the order flow disguising effect and the resulting

overinvestment after no-trade events. The corollary derives the condition under

which the uninformed-specific short-sale cost dominates the order flow disguising

effect in the NMS equilibrium (δ > max{δ3, δ4}), resulting in the improvementin

the real efficiency. The corollary additionally shows for what types of conditions,

the uninformed-specific short-sale cost dominates the order flow disguising effect in

the equilibrium. The uninformed-specific short-sale cost is more likely to dominate

the order flow disguising effect when (i) the fraction of uninformed speculator (1−
α) is large, (ii) the project has a large ex-ante NPV (V̄ ), and (iii) the uncertainty

about the profitability of the investment (U) is small.

First, when the fraction of the uninformed speculator is large (i.e., α is small),

the benchmark equilibrium is associated with more manipulative shorting and

the improvement in the information content of negative order flows due to the

uninformed-specific short-sale cost is thus stronger than the deterioration in the
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(A)

(B)

Figure 3.4: The impact of α on the information content of orders in
the NMS equilibrium.
Panel (A) shows the change in the information content of no trade and negative
order flows in the “No manipulative short” equilibrium relative to the bench-
mark equilibrium in t = 2. The parameter setting of the solid lines are α = 0.96
and V + = −3V −; the parameter setting of the dashed lines are α = 0.94 and
V + = −3V −. Panel (B) shows the change in the information content of the
negative order flow in the NMS equilibrium relative to the benchmark in t = 1
when V + = −3V −.

information content of no trade due to the order flow disguising effect (see Figure

3.4). The grey dashed line in the figure is higher than the grey solid line, implying

that a smaller α enlarges the improvement in the information content of Q2 < 0 in

the NMS equilibrium relative to the benchmark equilibrium. The purple dashed

line is above the purple solid line, implying that a smaller α weakens the decrease
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in the information content of Q2 = 0 in the NMS equilibrium relative to the

benchmark equilibrium. Also, the black dashed line in Panel (B) is downward-

sloping, implying that enlarges the improvement in the information content of

Q1 < 0 in the NMS equilibrium relative to the benchmark equilibrium. Therefore,

firms with a high uninformed trading fraction or a small informed trading fraction

tend to improve the quality of the manager’s investment decision following the

transitory retail buying frenzy.

Second, the investment project having a higher ex-ante NPV means a higher loss

in the expected firm value associated with successful manipulative short selling.

Thus, firms with high growth opportunities also tend to improve the quality of

investment decisions following a retail buying frenzy. Finally, managers tend to

learn more from the financial markets and improve real investment efficiency dur-

ing the normal conditions (i.e., when the uncertainty about the profitability of the

investment is small).

3.5 Conclusion

In this paper, we develop a model in the presence of both manipulative and in-

formed short sellers to explain how a transitory retail buying frenzy (as short-sale

friction) impacts the market and real investment efficiency. We use three differ-

ent extensions of an otherwise Goldstein and Guembel (2008) model to conduct

our analysis. We first introduce a short-sale ban to the model and show that a

short-sale ban always harms the real investment efficiency. We then introduce a

short-sale cost and show that an intermediate level of short-sale cost improves the

investment efficiency, whereas a relatively high cost on short selling may improve

or deteriorate the investment efficiency. An extremely large short-sale cost always

jams the managers’ learning from the stock price and harms the quality of his

investment decisions as in the short-sale ban.

We also model a retail buying frenzy as asymmetric noise trading such that noise

buys are more likely than noise sells. We show that asymmetric noise trading gives

rise to two opposing effects on the informativeness of order flows: the order flow

disguising effect and uninformed-specific short-sale cost. The order flow disguising

effect harms the investment efficiency, whereas the uninformed-specific short-sale

cost improves it. We show that uninformed-specific short-sale cost is more likely
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to dominate the order flow disguising effect so that the investment efficiency is

improved when (i) the fraction of the uninformed speculator is large, (ii) the

project has a large ex-ante NPV, and (iii) the uncertainty about the profitability

of the investment is small.

Our analysis offers insights into the regulation of short selling as well as meme

investing. Regulation of short-selling is a delicate balancing activity for regulators

since an extremely high short-sale cost, driving out manipulative and informed

shorting altogether, deteriorates real efficiency. Different levels of short-sale cost

can also be thought of as different intensities of price run-ups driven by the retail

buying frenzies. An intermediate level of short-sale cost, corresponding to an

intermediate increase in the stock price, improves the investment efficiency because

it only deters manipulative shorting. These efficiency improvements in the short-

sale cost model and the asymmetric noise trading model suggest that regulations

investigating retail buying frenzies in meme stocks for potential involvement in

pump and dump schemes and seeking to prevent such activities need to be carefully

curated.
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Appendix 3.1. Proofs

In this Appendix, we prove our main results. The proofs of Lemma 3.1 and

Proposition 3.2 are omitted for brevity as they respectively follow from the proofs

of Lemma 3.7 and Proposition 3.8 when the cost of short sales is zero. Throughout

the derivations, the possible information sets after t = 1 order flow Q1 are:

(i). Q1 perfectly reveals the speculator’s type;

(ii). Q1 reveals that he is not negatively informed;

(iii). Q1 reveals that he is not positively informed;

(iv). Q1 reveals that he is not uninformed;

(v). Q1 does not reveal any new information.

Proof of Corollary 3.3. The expected firm value follows from the expected

firm value of each type of speculator in equilibrium. The benchmark equilibrium

strategies of speculators who are not positively informed are sell – sell strategies,

and the benchmark equilibrium strategy of the positively informed speculator is

a buy – buy strategy. For the negatively informed speculator implementing the

sell – sell strategy, the expected firm value (before trading occurs) is V −
9
. For the

uninformed speculator who has a sell – sell strategy, the expected firm value is V̄
9
.

For the positively informed speculator who has a buy – buy strategy, the expected

firm value is V +. Given the probability of the positively informed speculator and

the probability of the negatively informed speculator are both α
2
, and that of the

uninformed speculator is 1− α, the expected firm value (or the real efficiency) in

the benchmark equilibrium follows as

REbenchmark =
αV +

2
+
αV −

18
+

(1− α)V̄

9
. (A3.1.1)

■

Proof of Lemma 3.4. We investigate the best responses of the negatively in-

formed and uninformed speculators for the possible information sets after the order

flow in t = 1.
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(i). When Q1 perfectly reveals the speculator’s type, the price equals the specu-

lator’s expected firm value, and all actions generate zero profit. Hence, the

speculator shows indifference between buying, selling (if he has an initial

position), and not trading.

(ii). When Q1 reveals that the speculator is not negatively informed, the firm

always invests, and t = 2 strategy is independent of t = 1 order flow. Conse-

quently, we only need to check profit in t = 2. Suppose that the uninformed

speculator’s strategy for this information set is to sell in t = 2. Then, his t =

2 trading profit is 1
3

(
P2 (·, 0)− V̄

)
+ 1

3

(
P2 (·,−1)− V̄

)
+ 1

3

(
P2 (·,−2)− V̄

)
.

Substituting the prices P2 (·, 0), P2 (·,−1), and P2 (·,−2) leads the unin-

formed speculator’s profit in t = 2 to α
2−α

V +− V −
6

> 0. If he deviates from

selling to not trading, his profit in t = 2 is 0. If he deviates from selling

to buying, his profit in t = 2 is V̄ −
(
1
3
P2 (·, 0) + 1

3
P2 (·, 1) + 1

3
P2 (·, 2)

)
=

V̄ − 2
3
V + − 1

3
α

2−α
V + − 1

3
2(1−α)
2−α

V̄ < 0. Hence, he does not have an incentive

to deviate.

(iii). When Q1 reveals that the speculator is not positively informed, the firm’s

manager cancels the investment due to the expected NPV loss suggested

by Eq.(3.1). Since the expected firm value and prices are 0 after any order

flow realisation, the negatively informed and uninformed speculators are

indifferent between all three actions.

(iv). When Q1 reveals that the speculator is not uninformed, action in t = 2 will

affect profit in t = 1 due to possible divestment. We therefore calculate the

total profit rather than the profit in t = 2.

Let’s assume that, within this information set, the strategy adopted by the

uninformed speculator is to sell in t = 2. The negatively (resp. posi-

tively) informed speculator generates the order flow of Q2 = {−2,−1, 0}
(resp. Q2 = {0, 1, 2}), and the market maker sets P2 (·, 0) = V̄ , P2 (·, 1) =
P2 (·, 2) = V + and P2 (·,−1) = P2 (·,−2) = 0. For the negatively in-

formed speculator, selling in t = 2 is associated with a total profit of
1
3
P2 (·, 0) − P1 (·) =1

3
V̄ − P1 (·). If he deviates to buying, the total profit is

2V − −P1 (·)− 1
3
P2 (·, 0)− 1

3
P2 (·, −1)− 1

3
P2 (·,−2) = 2V − − P1 (·)− 1

3
V̄ .

If he deviates to not trading, the total profit is 2
3
V − − P1 (·). No deviation

is superior to selling in t = 2.

Let’s assume that, within this information set, the strategy adopted by the

uninformed speculator is to not trade in t = 2 instead. The positively (resp.
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negatively) informed speculator generates the order flow of Q2 = {0, 1, 2}
(resp. Q2 = {−1, 0, 1}), and the market maker sets P2 (·, 0) = P2 (·, 1) = V̄ ,

P2 (·, 1) = V −, and P2 (·, 2) = V +. The negatively informed speculator’s

total profit when not trading in t = 2 is 2
3
V − − P1 (·). The deviation to

selling gives rise to a total profit of 1
3
P2 (·, 0) − P1 (·). Q2 = {−1,−2} is

off-equilibrium and can lead to divestment. The deviation to buying gives

rise to a total profit of 2V − − 1
3
P2 (·, 0)− 1

3
P2 (·, 1)− 1

3
P2 (·, 2)− P1 (·) =

5
3
V

−− 2
3
V +−P1 (·). Since 1

3
V̄ − P1 (·) > 2

3
V −−P1 (·) > 5

3
V −− 2

3
V̄ −P1 (·),

it is profitable for the negatively informed speculator to deviate from not

trading to selling in t = 2.

Finally, let’s assume that the negatively informed speculator’s strategy when

reaching the information set is to buy in t = 2. Because period-2 order flow

does not seperate the negatively informed speculator who knows s = l from

the positively informed speculator who knows s = h, P2 (·, 0) = P2 (·, 1) =
P2 (·, 2) = V̄ . The negatively informed speculator, by buying in t = 2, earns

a total profit of 2V − − 1
3
P2 (·, 0)− 1

3
P2 (·, 1)− 1

3
P2 (·, 2)− P1 (·) = 3

2
V − −

1
2
V +− P1 (·). If he deviates to selling, the total profit is 1

3
P2 (·, 0)−P1 (·) =

1
3
V̄ − P1 (·). If he deviates to not trading, the total profit is V − − P1 (·).

Since 1
3
V̄ − P1 (·) > V − − P1 (·) > 3

2
V − − 1

2
V + − P1 (·), both selling and

not trading are profitable deviations for the negatively informed speculator

who buys a unit of stock in t = 2. Consequently, at the information set of

scenario (iv), the negatively informed speculator’s best response in t = 2 is

to sell.

(v). When Q1 does not reveal any new information about the speculator’s type,

we split the analysis of the negatively informed speculator’s best responses

into two cases: (a) he buys in t = 1; (b) he does not trade in t = 1. In (a),

following a similar argument as in scenario (iv), one can easily show the neg-

atively informed speculator in t = 2 has a best response of selling. In (b), as-

sume that instead of not trading, the negatively informed speculator’s strat-

egy is to buy in t = 2. He can’t sell at this node because of no initial position.

He then earns a total profit of 2V −− 1
3
P2 (·, 0)− 1

3
P2 (·, 1)− 1

3
P2 (·, 2)− P1 (·) <

0. By deviating and not trading in t = 2, he secures a total profit of 0. When

the order flow Q1 does not reveal the trader’s type, a negatively informed

speculator sells if he places a buy order in t = 1, or does not trade if he does

not trade in t = 1. For the uninformed speculator, we show it is optimal for

him to not trade in t = 2 if he does not trade in t = 1. Suppose instead, he

buys in t = 2, his total profit is V̄ − 1
3
P2 (·, 0) − 1

3
P2 (·, 1) − 1

3
P2 (·, 2) =
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V̄ − 1
3
V̄ − 1

3

(
α

2−α
V + + 2(1−α)

2−α
V̄
)
− 1

3
P2 (·, 1) < 0, where P2 (·, 1) equals

(resp. is greater than) V̄ if negatively informed speculator chooses to not

trade (resp. sell) in t = 2.

■

Proof of Proposition 3.5. Best responses from Lemma 3.1 pin down four candi-

date equilibriums in Table A3.1. Column 1 of the tables show speculator’s types,

and columns 2-3 show order flow in t = 1 and t = 2. We show that only candidate

equilibriums 3 has no profitable deviations.

(a). In candidate equilibrium 1, we have the following prices P2 (0, 0) = P2 (1, 0) =

V̄ , P2 (0,−1) = P2 (1,−1) = 0, P2 (0,−2) = P2 (1,−2) = 0, P2 (0, 1) =

P2 (1, 1) =
α

2−α
V + + 2−2α

2−α
V̄ and P2 (0, 2) = P2 (1, 2) = V +. Period-1 price

P1 (0) is expected period-2 prices:

P1(0) =
2∑

i=−2

Pr (Q2 = i | Q1 = 0)P2(0, i)

=
α

6
V + +

1

3
V̄ +

(
1

3
− α

6

)(
α

2− α
V + +

2− 2α

2− α
V̄

)
.

(A3.1.2)

P1 (1) equals P1(0), whereas P2(2, 0) =
α

2−α
V ++2(1−α)

2−α
V −, P2 (2, 1) = P2 (2, 2) =

V +, and P2 (2,−1) = P2 (2,−2) = 0. Period 1 price for the order flow of

Q1 = 2 is P1 (2) =
1
3
P2 (2, 0)+

2
3

α
2−α

V +. The buy – sell strategy profit of the

speculator who is negatively informed can be calculated as follows: When

Q1= 0, the negatively informed speculator who buys in t = 1 and sells in

t = 2 has a total profit of 1
3
P2 (0, 0) +

1
3
P2 (0,−1) + 1

3
P2 (0,−2)− P1 (0) =

−α
6
V + −

(
1
3
− α

6

) (
α

2−α
V + + 2−2α

2−α
V̄
)
< 0. When Q1 = 1, he has a to-

tal profit of 1
3
P2 (1, 0) +

1
3
P2 (1,−1) + 1

3
P2 (1,−2) − P1 (1) = −α

6
V + −(

1
3
− α

6

) (
α

2−α
V + + 2−2α

2−α
V̄
)
< 0. When Q1 = 2, he has a total profit of

1
3
P2 (2, 0) +

1
3
P2 (2,−1) + 1

3
P2 (2,−2) − P2 (1) = 1

3
P2(2, 0) − 1

3
P2(2, 0) −

2
3

α
2−α

V + = −2
3

α
2−α

V + < 0. Therefore, the negatively informed speculator is

willing to deviate to the action of not trading in both periods to secure a

profit of 0, meaning that candidate equilibrium 1 cannot sustain.

(b). In candidate equilibrium 2, we have P2(1, 0) = P2(1, 1) = V̄ , P2(1, 2) = V +,

and P2(1,−1) = P2(1,−2) = 0. Period 1 price P1(1) = α
6
V + + 1

3
V̄ + α

3
V̄ .

For Q1 = 0, we have P2(0, 0) = P2(0, 1) = V̄ , P2(0, 2) = V +, P2(0,−1) = 0,
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and P2(0,−2) = V̄ . Period 1 price P1(0) = 2
3
V̄ + α

6
V +. For Q1 = 2,

P2(2, 0) = α
2−α

V + + 2(1−α)
2−α

V̄ , P2(2, 1) = P2(2, 2) = V +, and P2(2,−1) =

P2(2,−2) = V̄ . Period 1 price P1(2) = α
2−α

V + + 2(1−α)
2−α

V̄ . The buy –

sell strategy profit of the uninformed speculator is as follows: When Q1 =

0, the uninformed speculator who buys in t = 1 and sells in t = 2 has

a total profit of 1
3
P2(0,−2) + 1

3
P2(0,−1) + 1

3
P2(0, 0) − P1(0) = 1

3
V̄ + 0 +

1
3
V̄ − 2

3
V̄ − α

6
V + = −α

6
V + < 0. When Q1 = 1, he has a total profit

of 1
3
P2(1,−2) + 1

3
P2(1,−1) + 1

3
P2(1, 0) − P1(1). When Q1 = 2, he has a

total profit of 1
3
P2(2,−2) + 1

3
P2(2,−1) + 1

3
P2(2, 0) − P1(2) = −α

3
V̄ − α

6
V +

= 2
3
V̄ − 2

3

(
α

2−α
V + + 2(1−α)

2−α
V̄
)
< 0. Therefore, the uninformed speculator has

an incentive to not trading in both periods to secure a profit of 0, meaning

that candidate equilibrium 2 cannot sustain.

(c). In candidate equilibrium 4, if the uninformed speculator implements a buy –

buy strategy, he has a profit of 2V̄ − 1
2
P2(0, 0)− 1

3
P2(0, 1)− 1

3
P2(0, 2)−p1(·) =

5
3
V̄ − 4−2α

3

(
α

2−α
V + + 2−2α

2−α
V̄
)
− 1

3

(
αV + + (2− 2α)V̄

)
. If the uninformed

speculator implements a buy – sell strategy, he obtains a profit of 0−P1(·) <
0. If the uninformed speculator implements a buy – no trade strategy, he

obtains a profit of 2
3
V̄ − P1(·) = V̄

2
−
(

α
2−α

V + + 2−2α
2−α

V̄
) (

1
3
− α

6

)
− α

6
V + < 0.

All traders buying in t = 1 cannot be an equilibrium, because the uninformed

speculator is willing to to deviate to no trade in both periods to secure a

profit of 0. Candidate equilibrium 3 is the only Nash equilibrium in which

nobody has an incentive to deviate.

■

Proof of Corrollary 3.6. The equilibrium strategies in the short-sale ban set-

ting of the speculators who are not positively informed are no trade – no trade

strategies, and the positively informed speculator is a buy – buy strategy. For the

negatively informed speculator that implements a no trade – no trade strategy,

the condition expectation of the firm value is 4V −
9

. For the uninformed speculator

that implements a no trade – no trade strategy, the expected firm value is 4V̄
9
.

For the positively informed speculator that implements a buy – buy strategy, the

conditional expectation of the firm value is V +. Given that the probability of the

positively informed speculator together with that of the negatively informed spec-

ulator both equal α
2
, and that of the uninformed speculator is 1−α, the expected

firm value (or the real efficiency) in the short-sale ban equilibrium follows as

REssban =
αV +

2
+

2αV −

9
+

4(1− α)V̄

9
. (A3.1.3)
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Table A3.1. Candidate equilibriums in the short-sale ban setting

This table reports the speculators’ strategies in the candidate equilibriums in the
short-sale ban setting. Column 1 is the speculator’s type, and columns 2-3 are the
orders in t = 1 and t = 2. In the table, NT stands for not trade.

Candidate equilibrium 1

Speculator t = 1 order t = 2 order

s = h Buys Buys

s = l Buys Sells

s = ∅ NT NT if not fully revealing

Candidate equilibrium 2

Speculator t = 1 order t = 2 order

s = h Buys Buys

s = l NT NT if not fully revealing

s = ∅ Buys Sells

Candidate equilibrium 3

Speculator t = 1 order t = 2 order

s = h Buys Buys

s = l NT NT if Q1 does not reveal that

s = ∅ NT he is not s = h speculator

Candidate equilibrium 4

Speculator t = 1 order t = 2 order

s = h Buys Buys

s = l Buys Sells

s = ∅ Buys Buys, sells, or NT
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It then follows from the difference of Eqs. (A3.1.3) and (A3.1.1) that the short-sale

ban always harms real efficiency, since

REssban −REbenchmark =
3(1− α)V̄

9
+

3αV −

18
< 0. (A3.1.4)

■

Proof of Lemma 3.7. Similar to the proof of Lemma 3.4, we show the best

responses of the negatively informed and uninformed speculators for the possible

information sets after the order flow in t = 1.

(i). When Q1 perfectly reveals the speculator’s type, the price equals the specu-

lator’s expected firm value, and all actions generate zero profit. Hence, the

speculator shows indifference between buying and not trading.

(ii). When Q1 reveals that the speculator is not negatively informed, the firm

always invests, and t = 2 strategy is independent of t = 1. Consequently,

we only need to check the profit in t = 2. Suppose that the uninformed

speculator’s strategy for this information set is to sell in t = 2. Trading profit

earned in t = 2 by him is then given by 1
3

(
P2(·, 0)− V̄

)
+ 1

3

(
P2(·,−1)− V̄

)
+

1
3

(
P2(·,−2)− V̄

)
− c = α

2−α
V +−V −

6
− c. Deviation to not trading yields a

profit of 0. Deviation to buying yields V̄ −
(
1
3
P2(·, 0)+ 1

3
P2(·, 1)+ 1

3
P2(·, 2)

)
=

V̄ − 1
3

(
α

2−α
V + + 2(1−α)

2−α
V̄
)
− 2

3
V + < 0. The uninformed speculator does not

deviate from selling as long as c < a2, where

a2 =
α

2− α

V + − V −

6
. (A3.1.5)

Suppose that the uninformed speculator’s strategy for this information set is

to buy in t = 2. His profit in t = 2 is V̄−
(
1
3
P2(0, 0) +

1
3
P2(0, 1) +

1
3
P2(0, 2)

)
=

V̄ − α
2−α

V +− 2(1−α)
2−α

V̄ . The uninformed speculator never buys under this sce-

nario. Hence, when Q1 reveals that the speculator is not informed of the low

state, the uninformed speculator sells (resp. not trade) in t = 2 if c < a2

(resp. c > a2).

(iii). When Q1 reveals that the speculator is not positively informed, both the

actions of buying and not trading can generate a profit of 0 due to the can-

cellation of the investment. Negatively informed and uninformed speculators

are indifferent between buy and no trade.
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(iv). When Q1 reveals that the speculator is not uninformed, we first consider the

case that the negatively informed speculator buys in t = 1. Let’s assume

the negatively informed speculator’s strategy for this information set is to

sell in t = 2. He earns a gross trading profit of: 1
3
P2(·, 0) − P1(·) − c =

1
3
V̄ − P1(·) − c. Deviation to not trading leads to a gross trading profit

of 2
3
V − − P1(·). Deviation to buying gives rise to a gross trading profit of

2V − − P1(·) − 1
3
P2(·, 0) − 1

3
P2(·, 1) − 1

3
P2(·, 2) = 11

6
V − − 5

6
V + − P1(·). He

does not deviate from selling as long as 1
3
V̄ − c > 2

3
V −, which is equivalent

to c < a4, where

a4 =
V +

6
− V −

2
. (A3.1.6)

Let’s assume the negatively informed speculator’s strategy when reaching

this information set is to buy in t = 2. His total trading profit is then

2V −−P1(·)− 1
3
P2(·, 0)− 1

3
P2(·, 1)− 1

3
P2(·, 2) = 3

2
V −− 1

2
V +−P1(·). Deviating

to not trading gives rise to a profit of 2
3
V − − P1(·), which is always superior

than buying in t = 2. Buying in t = 2 cannot be the best response for

the negatively informed speculator who buys in t = 1. Let’s assume his

strategy when reaching this information set is to not trade in t = 2. His

total trading profit is then given by 2
3
V −−P1(·). Deviation to selling results

in a profit of 1
3
V̄ − P1(·) − c. Deviation to buying results in a profit of

2V −−P1(·)− 1
3
P2(·, 0)− 1

3
P2(·, 1)− 1

3
P2(·, 2) = 5

3
V −− 2

3
V +−P1(·). He does

not deviate from not trading as long as 2
3
V − > 1

3
V̄ − c, which is equivalent

to c > a4. Hence, when Q1 reveals that the speculator is not uninformed,

the negatively informed speculator who buys in t = 1 sells (resp. does not

trade) in t = 2 if c < a4 (resp. c > a4).

Now, consider the case he does not trade in t = 1. The negatively informed

speculator is comparing between buying in t = 2 with a profit of V − −
1
3
P2(·, 0)− 1

3
P2(·, 1)− 1

3
P2(·, 2) < 0, selling in t = 2 with a profit of 1

3
P2(·, 0)−

1
3
V − − c and not trading with a trading profit of 0. Hence, when Q1 reveals

that the speculator is not uninformed, the negatively informed speculator

who buys in t = 1 sells (resp. does not trade) in t = 2 if 1
3
V̄ − 1

3
V − − c < 0

⇔ c < a3 (resp. c > a3), where

a3 =
V +

6
− V −

6
. (A3.1.7)

(v). When Q1 does not reveal any new information about the speculator’s type,
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the best responses of the negatively informed speculator who buys one unit

or chooses to not trade in t = 1 follow from the derivation in (iv). For

the negatively informed speculator who sells in t = 1, the profit of buying

in t = 2 is P1(·) − c − 1
3
P2(·, 0) − 1

3
P2(·, 1) − 1

3
P2(·, 2), the profit of not

trading in t = 2 is P1(·) − 2
3
V − − c, and the profit of selling in t = 2 is

P1(·) + 1
3
P2(·, 0) − 2

3
V − − 2c. Buying in t = 2 is strictly dominated by not

trading in t = 2. Hence, when Q1 does not reveal the speculator’s type, the

negatively informed speculator who sells in t = 1 sells (resp. does not trade)

in t = 2 if 1
3
V̄ − 2

3
V − − 2c > −2

3
V − − c, which is equivalent to c < a1 (resp.

c > a1), where

a1 =
1

3
V̄ . (A3.1.8)

The derivation of uninformed best responses under this scenario is as follows.

First, consider the case that the negatively informed speculator chooses to

sell in t = 2, and the uninformed speculator chooses to sell in t = 1. If

the uninformed speculator’s best response in t = 2 is to buy, the corre-

sponding trading profit is P1(·) − c − 1
3
P2(·, 0) − 1

3
P2(·, 1) − 1

3
P2(·, 2), with

P2(·, 0) = V̄ and P2(·, 1) = P2(·, 2) = α
2−α

V + + 2(1−α)
2−α

V̄ . Deviation to

selling in t = 2 is profitable if and only if P1(·) + 1
3
P2(·, 0) − 2

3
V̄ − 2c >

P1(·)− c− 1
3
P2(·, 0)− 1

3
P2(·, 1)− 1

3
P2(·, 2) ⇔ c < 2

3

(
α

2−α
V + + 1−α

2−α
V −). Devi-

ation to not trading is associated with the trading profit of P1(·)− 2c− 1
3
V̄

which strictly dominates buying. If his strategy in t = 2 is to not trade,

the trading profit is P1(·)− c− 2
3
V̄ . Deviation to sell gives P1(·)− 2c− 1

3
V̄ .

The deviation to buying yields P1(·)− c− 1
3
P2(·, 0)− 1

3
P2(·, 1)− 1

3
P2(·, 2) =

P1(·) − c − 1
3
V̄ − 1

3
V + − 1

3

(
α

2−α
V + + 2(1−α)

2−α
V̄
)
which is strictly worse than

not trading. The uninformed speculator doesn’t deviate from not trading

when −c− 2
3
V̄ > −2c− 1

3
V̄ ⇔ c > a1. If his strategy in t = 2 is to sell, the

trading profit is P1(·)−2c− 1
3
V̄ . Buying is a profitable deviation if and only

if P1(·) − c − 2
3
V + − 1

3
V̄ > P1(·) − 2c − 1

3
V̄ ⇔ c < 2

3
V +. The uninformed

speculator has no incentive to deviate from selling to not trading if and only

if 2c + 1
3
V̄ < c + 2

3
V̄ ⇔ c < a1. When the negatively informed speculator

does not trade in t = 2, the derivation of the t = 2 best response of the unin-

formed speculator who sells in t = 1 follows from the above procedure, with

slightly different prices, and draws the same conclusion about the cutoff of c,

surpassing which leads to a preference of not trading over submitting sell or-

ders in t = 2. Hence, the uninformed speculator who sells in t = 1 sells again

(resp. not trade) in t = 2 if c < a1 (resp. c > a1). Finally, we prove that the
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uninformed speculator who does not trade in t = 1 also does not trade in

t = 2. The profit of not trading in both periods is 0. The profit of chooses

to not trade in t = 1 then buy in t = 2 is V̄ − 1
3
P2(·, 0)− 1

3
P2(·, 1)− 1

3
P2(·, 2).

The former equation never surpasses 0: Q2 = 2 implies the non-existence of

negatively informed speculator and P2(·, 2) > V̄ ; furthermore, P2(·, 1) > V̄

(P2(·, 1) = V̄ ) as long as the negatively informed speculator sells (does not

trade) in t = 2. The profit of not trading in t = 1 and then selling in t = 2

is 1
3

(
P2(·, 0)− V̄

)
− c < 0.

■

Proof of Proposition 3.8. To start with, we show that neither the negatively

informed nor the uninformed speculator buys in t = 1. Conditional on reaching

information sets (ii) or (v) and the speculator is uninformed and buys in t = 1,

selling in t = 2 leads to a profit of 1
3
P2(·, 0) − P1(·) − c < 0; not trading in t = 2

leads to a profit of 2
3
V̄ − P1(·) < 0. To show that P1(·) > 2

3
V̄ , we know that

P1(·) = Pr(Q2 = 0|Q1 = ·)P2(·, 0) + Pr(Q2 = 1|Q1 = ·)P2(·, 1) + Pr(Q2 = 2|Q1 =

·)P2(·, 2) > 1
3
V̄ + α

6
V̄ + α

6
V + > 2

3
V̄ . Thus, an uninformed speculator never buys

in t = 1 due to the negative profit entailed. Conditional on reaching information

sets (iv) or (v) and the speculator knows s = l (i.e., is negatively informed) and

buys in t = 1, selling in t = 2 results in a profit of 1
3
P2(·, 0) − P1(·) − c < 0, not

trading results in a profit of 2
3
V − − P1(·) < 0. Thus, a speculator informed about

the low state never buys in t = 1 due to the negative profit entailed.

(a). When c ∈
[
0, V̄

3

)
, candidate equilibrium 1.1 has the following strategy pro-

file: the positively informed speculator buys in t = 1 and buys in t =

2 if his type is not fully revealed (otherwise, indifferent between buying

and not trading in t = 2); the negatively informed speculator does not

trade in t = 1, and sells (is indifferent between buying and not trading)

in t = 2 if Q1 ̸= −1(if Q1 = −1); the uninformed speculator sells in

t = 1, and sells (is indifferent between buying and not trading) in t = 2

if Q1 = 0 (if Q1 ̸= 0).The corresponding prices are P2(1, 0) = P2(0, 0) = V̄ ,

P2(0, 1) = P2(0, 2) = V +, and P1(0) = 1
3
V̄ + α

3
V +. The correspond-

ing trading profit of the negatively informed speculator who no trade –

sell is 1
3

(
1
3
P2(0, 0)− V −

3
− c
)
+ 1

3

(
1
3
P2(1, 0)− V −

3
− c
)
. The best devia-

tion for him is sell – sell, which yields 1
3

(
1
3
P2(0, 0) + P1(0)− 2

3
V −) − 4

3
c.
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The negatively informed speculator thus does not deviate if and only if
1
9
P2(1, 0) >

1
3
P1(0) − 2

3
c ⇔ c > α

6
V +. However, α

6
V + > 1

3
V̄ , this candi-

date equilibrium is invalid.

Candidate equilibrium 1.2 in this region has the following strategy profile:

the positively informed speculator implements a buy – buy strategy; the

negatively informed speculator does not trade in t = 1, and sells (is indiffer-

ent between buying and not trading) in t = 2 if Q1 ̸= −1(if Q1 = −1); the

uninformed speculator does not trade in t = 1 and does not trade (is indif-

ferent between buying and not trading) in t = 2 if Q1 ̸= −1 (if Q1 = −1).

Following a similar vein as in candidate equilibrium 1.1, one can show that

candidate equilibrium 1.2 is invalid.

Candidate equilibrium 1.3 in this region is the benchmark equilibrium, with

the following prices: P2(0, 0) = V̄ , P2(0, 1) = P2(0, 2) = V +, P1(0) =
V̄
3
+

α
3
V +, P1(1) = P1(2) = V +, and P1(−1) = P1(−2) = 0. The profit of nega-

tively informed speculator who sell – sell is 1
3

(
1
3
P2(0, 0) + P1(0)− 2

3
V −)− 4

3
c.

The best deviation for him is no trade – sell, which yields the trading profit of
1
3

(
1
3
P2(0, 0)− V −

3
− c
)
+ 1

3

(
1
3
P2(1, 0)− V −

3
− c
)
. The negatively informed

speculator does not deviate if and only if 1
9
P2(1, 0) <

1
3
P1(0)− 2

3
c, equivalent

to c < α
6
V + − V +−V −

12
. The equilibrium profit of uninformed speculator who

sell – sell is 1
3

(
1
3
P2(0, 0) + P1(0)− 2

3
V̄
)
− 4

3
c. The best deviation for him

is “no trade in t = 1, and sell (no trade) in t = 2 if the order flow sug-

gests that not negatively informed (does not reveal or exclude any type)”,

which generates 1
3

(
1
3
P2(1, 0)− V̄

3
− c
)
. The uninformed speculator does not

have a profitable deviation from the benchmark equilibrium if and only if
1
3
P2(1, 0)− c < P1(0)− 4c, equivalent to c < c1. c1 is defined in Eq.(A3.1.9).

We know that c1 <
V̄
3
and V + ⩾ −3V − is a sufficient condition for c1 > 0

to hold. Combining Eqs.(A3.1.8) and (A3.1.9), the unique equilibrium when

c < c1 is the benchmark equilibrium.

c1 =
α

9
V + − V + − V −

18
. (A3.1.9)

Candidate equilibrium 1.4 in this region is NMS equilibrium, with following

prices: P2(0, 0) = V̄ , P2(1, 0) = P2(0, 1) = α
2−α

V + + 2(1−α)
2−α

V̄ , P2(1, 1) =

P2(1, 2) = P2(0, 2) = V +, P2(−1, ·) = P2(−2, ·) = 0, and P1(0) = α
3
V + +

2
3
V̄ − αV̄

3
. The equilibrium profit of negatively informed speculator who
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sell – sell is 1
3

(
1
3
P2(0, 0) + P1(0)− 2

3
V −), and his alternative strategy of no

trade – sell generates 1
3

(
1
3
P2(0, 0)− V −

3
− c
)
+ 1

3

(
1
3
P2(1, 0)− V −

3
− c
)
. The

negatively informed speculator does not have an incentive to deviate if and

only if 1
9
P2(1, 0) <

1
3
P1(0)− 2

3
c, equivalent to c < c3, where

c3 =
α

6
V + − α

6(2− α)

(
V + − V̄

)
. (A3.1.10)

The profit of the uninformed speculator who “no trade in t = 1, and sell

(no trade) in t = 2 if Q1 suggests that not negatively informed (does not

reveal anything)” is 1
3

(
1
3
P2(1, 0)− V̄

3
− c
)
. His alternative strategy of sell –

sell gives rise to 1
3

(
1
3
P2(0, 0) + P1(0)− 2

3
V̄
)
− 4

3
c. The uninformed speculator

does not has an incentive to deviate if and only if 1
3
P2(1, 0)− c > P1(0)− 4c,

which is equivalent to c > c2. c2 is defined by Eq.(A3.1.11). Given that

c2 >
α
9
V + − V +−V −

18
and c3 <

V̄
3
, combining Eq.(A3.1.10) and Eq.(A3.1.11),

the unique equilibrium when c2 < c < c3 is NMS.

c2 =
α

9
V + − α

9(2− α)

(
V + − V̄

)
. (A3.1.11)

(b). When c ∈
(

V̄
3
, α
2−α

V +−V −
6

)
, candidate equilibrium 2.1 has the following strat-

egy profile: the positively informed speculator implements a buy – buy

strategy, the negatively informed speculator implements a sell – no trade

strategy, whereas the uninformed speculator does not trade in t = 1, and

sells (does not trade) in t = 2 if Q1 = 1 (Q1 = 0). The corresponding

prices are P2(0, 0) = P2(0, 1) = V̄ , P2(0, 2) = V +, P1(0) =
2
3
V̄ + α

6
V +, and

P2(1, 0) = α
2−α

V + + 2(1−α)
2−α

V̄ . The negatively informed speculator’s profit

from sell – no trade is 1
3

(
P1(0)− 2

3
V −) − c. The deviation to strategy

no trade – sell leads to 1
3

(
1
3
P2(1, 0)− 1

3
V − − c

)
+ 1

3

(
1
3
P2(0, 0)− 1

3
V − − c

)
.

There’s no deviation for the negatively informed speculator if and only if
1
3

(
P1(0)− 2

3
V −)−c > 1

3

(
1
3
P2(1, 0)− 1

3
V − − c

)
+ 1

3

(
1
3
P2(0, 0)− 1

3
V − − c

)
⇔

c < V̄
3
+ αV +

6
− 1

3

(
α

2−α
V + + 2(1−α)

2−α
V̄
)
. As the term on the right hand side of

this inequality is smaller than V̄
3
, candidate equilibrium 2.1 is invalid.

Candidate equilibrium 2.2 in this region has the following strategy profile:

the positively informed speculator implements a buy – buy strategy, the neg-

atively informed and the uninformed speculator implements a sell – no trade

strategy. The corresponding prices are P2(0, 0) = P2(0, 1) = V̄ , P2(0, 2) =

P2(1, 0) = V +, and P (0) = 2
3
V̄ + α

6
V +. To avoid a profitable deviation of the
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negatively informed speculator from sell – no trade to no trade – sell, we have
1
3

(
P1(0)− 2

3
V −)−c > 1

3

(
1
3
P2(1, 0)− 1

3
V − − c

)
+ 1

3

(
1
3
P2(0, 0)− 1

3
V − − c

)
⇔

c < 1
3
V̄ + α

6
V + − V +

3
. As the term on the right hand side is smaller than V̄

3
,

candidate equilibrium 2.2 is invalid.

Candidate equilibrium 2.3 in this region has the following strategy profile:

the positively informed speculator implements a buy – buy strategy, the

negatively informed speculator implements a no trade – sell strategy, and

the uninformed speculator implements a sell – no trade strategy. The cor-

responding prices are P2(0, 0) = P2(1, 0) = V̄ , P2(0, 1) =
α

2−α
V + + 2(1−α)

2−α
V̄ ,

P2(1, 1) = V + and P1(0) =
2−α
3
V̄ + α

3
V +. The negatively informed speculator

does not deviate from no trade – sell if and only if 1
3

(
1
3
P2(1, 0)− 1

3
V − − c

)
+

1
3

(
1
3
P2(0, 0)− 1

3
V − − c

)
> 1

3

(
P1(0)− 2

3
V −) − c ⇔ c >

α(V +−V −)
6

. As
α(V +−V −)

6
is greater than α

2−α
V +−V −

6
, candidate equilibrium 2.3 is invalid.

Candidate equilibrium 2.4 in this region has the following strategy profile:

the positively informed speculator implements a buy – buy strategy, the

negatively informed speculator implements a no trade – sell strategy, and

the uninformed speculator does not trade in t = 1, and sells (does not trade)

in t = 2 if Q1 = 1 (Q1 = 0). The corresponding prices are P2(0, 0) =

P2(1, 0) = V̄ , P2(1, 1) = P2(0, 1) =
α

2−α
V + + 2(1−α)

2−α
V̄ , P2(1, 2) = P2(0, 2) =

V +, and P1(0) =
2−α
3
V̄ + α

3
V +. Following a similar procedure as candidate

equilibrium 2.3, one can show that the negatively informed speculator is

not able to profitably deviate from no trade – sell to sell – no trade if and

only if c >
α(V +−V −)

6
. As

α(V +−V −)
6

is greater than α
2−α

V +−V −
6

, candidate

equilibrium 2.4 is invalid.

(c). When c ∈
(

α
2−α

V +−V −
6

, V
+−V −
6

)
, given t = 2 best responses defined in

Lemma 3.7, the negatively informed speculator chooses between sell – no

trade and no trade – sell, and the uninformed speculator chooses between

sell – no trade and no trade – no trade. Therefore, the strategy profile of

candidate equilibrium 3.1 is : the positively informed speculator implements

a buy – buy strategy, the negatively informed speculator implements a sell

– no trade strategy, and the uninformed speculator implements a no trade –

no trade strategy. The strategy profile of candidate equilibrium 3.2 is: the

positively informed speculator implements a buy – buy strategy, the neg-

atively informed speculator implements a sell – no trade strategy, and the

uninformed speculator implements a sell – no trade strategy. The strategy

profile of candidate equilibrium 3.3 is: the positively informed speculator
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implements a buy – buy strategy, the negatively informed speculator imple-

ments a no trade – sell strategy, and the uninformed speculator implements

a sell – no trade strategy. None of these three candidate equilibriums are

valid in the given region of c.

Candidate equilibrium 3.4 is the RINMS equilibrium. The corresponding

prices are listed in Table 3.4. The negatively informed speculator com-

pares the equilibrium profit of no trade – sell, 1
3

(
1
3
P2(1, 0)− 1

3
V − − c

)
+

1
3

(
1
3
P2(0, 0)− 1

3
V − − c

)
, with the profit of sell – no trade, 1

3

(
P1(0)− 2

3
V −)−

c. The negatively informed speculator does not profitably deviate if and only

if
(
1
3
P2(1, 0)− 1

3
V −) +

(
1
3
P2(0, 0)− 1

3
V −) >

(
P1(0)− 2

3
V −) − c, equivalent

to c > c4, where

c4 =
α (V + − V −)

6
. (A3.1.12)

The uninformed speculator compares the profit of no trade – no trade, with

the profit of his alternative strategy sell – no trade, 1
3

(
P1(0)− 2

3
V̄
)
− c. The

uninformed speculator does not deviate if and only if 1
3

(
P1(0)− 2

3
V̄
)
−c > 0,

equivalent to

c >
α (V + − V −)

18
. (A3.1.13)

Combining Eqs.(A3.1.12) and (A3.1.13), as other candidate equilibriums in

c ∈
(

α
2−α

V +−V −
6

, V
+−V −
6

)
are invalid, it is proved the only Nash equilibrium

is the RINMS equilibrium, when

c4 < c <
V + − V −

6
≡ c5. (A3.1.14)

(d). When c ∈
(

V +−V −
6

,+∞
)
, given t = 2 best responses defined in Lemma

3.7, both the negatively informed and the uninformed speculator chooses

between sell – no trade and no trade – no trade. Candidate equilibrium 4.1

in this region of c is: the positively informed speculator employs a buy – buy

strategy, the negatively informed speculator employs a sell – no trade strat-

egy, and the uninformed speculator no trade – no trade. The corresponding

prices are P2(0, 0) = P2(0, 1) = V̄ , P2(0, 2) = V +, P2(1, 0) = P2(1, 1) =
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α
2−α

V + + 2(1−α)
2−α

V̄ , P2(1, 1) = V +, and P1(0) =
2
3
V̄ + α

6
V +. The negatively

informed speculator possess no profitable deviation from sell – no trade to no

trade – no trade if and only if 1
3

(
P1(0)− 2

3
V −)−c < 0 ⇔ c < α

18
V ++ V +−V −

9
.

As the term on the right hand side is smaller than V +−V −
6

, candidate equi-

librium 4.1 is invalid.

Candidate equilibrium 4.2 in this region of c is: the positively informed

speculator opts to buy – buy, the negatively informed speculator opts to

no trade – no trade, and the uninformed speculator opts to sell – no trade

strategy. Candidate equilibrium 4.3 in this region of c is: the positively

informed speculator opts to buy – buy strategy, the negatively informed

speculator and the uninformed speculator both opt to sell – no trade. For

these two candidate equilibriums, P1(0) =
2
3
V̄ + α

6
V +, and the uninformed

speculator does not deviate from sell – no trade to no trade – no trade if

and only if 1
3

(
P1(0)− 2

3
V̄
)
− c > 0 ⇔ c < α

18
V + < V +−V −

6
. Candidate

equilibrium 4.2 and candidate equilibrium 4.3 are invalid.

Candidate equilibrium 4.4 is the short sale ban equilibrium, in which P1(0) =
2
3
V̄ + α

6
V +. The negatively informed speculator’s equilibrium trading profit

of no trade – no trade is 0. His best deviation is sell – no trade, which

generates 1
3

(
P1(0)− 2

3
V −)− c.

c >
α

18
V + +

V + − V −

9
, (A3.1.15)

c >
α

18
V +. (A3.1.16)

He does not deviate if and only if 1
3

(
P1(0)− 2

3
V −) − c < 0, equivalent to

Eq.(A3.1.15). The uninformed speculator does not deviate from no trade –

no trade to sell – no trade if and only if 1
3

(
P1(0)− 2

3
V̄
)
−c < 0, equivalent to

Eq.(A3.1.16). Combining the two equations, given that all other candidate

equilibriums associated with c ∈
(

V +−V −
6

,+∞
)
are invalid, we proved: when

c > V +−V −
6

≡ c5, the only equilibrium is the SSB equilibrium.

■

Proof of Corollary 3.9. (i) In the NMS equilibrium, the uninformed speculator

does not trade in t = 1, does not trade in t = 2 if Q1 = 0, and sells in t = 2

if Q1 = 1. The negatively informed speculator has a sell – sell strategy, and

the positively informed speculator has a buy – buy strategy. The expected firm
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value conditional on the speculator being uninformed is 5V̄
9
: Q2 < 0 following

Q1 = 1 does not lead the manager to cancel the investment as it fully reveals

the uninformed speculator’s type. The expected firm value conditional on the

speculator being negatively informed is V −
9

and being positively informed is V +.

The expected firm value in the NMS equilibrium then follows as

RENMS =
αV +

2
+
αV −

18
+

5(1− α)V̄

9
. (A3.1.17)

(ii) The NMS equilibrium always improves the real investment efficiency since

RENMS −REbenchmark =
4(1− α)V̄

9
> 0. (A3.1.18)

(iii) When the RINMS equilibrium sustains, the uninformed speculator employs a

no trade – no trade strategy, the negatively informed speculator employs a no trade

– sell strategy, and the positively informed speculator has a buy – buy strategy.

The expected firm value conditional on the speculator being uninformed is 4V̄
9
.

The expected firm value conditional on the speculator being negatively informed

is 2V −
9

. The expected firm value conditional on the speculator being positively

informed is V +. The expected firm value in the RINMS equilibrium is

RERINMS =
αV +

2
+
αV −

9
+

4(1− α)V̄

9
. (A3.1.19)

(iv) The RINMS equilibrium raises the real investment efficiency if and only if

RERINMS −REbenchmark =
αV −

18
+

3(1− α)V̄

9
> 0. (A3.1.20)

■

Proof of Lemma 3.10. We show the best responses of the negatively informed

and uninformed speculators at the possible information sets after the order flow

in t = 1 in the presence of asymmetric noise buys.

(i). When Q1 perfectly reveals the speculator’s type, then the speculator is in-

different between buy, sell, and no trade.

(ii). When Q1 reveals that the speculator is not negatively informed, we only

consider the profit in t = 2 since the manager always invests when reaching

this information set. Suppose that the uninformed speculator’s strategy
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when reaching this information set is to sell in t = 2. His t = 2 trading

profit is then calculated as below

1 − δ

3

(
P2(·, 0) − V̄

)
+

1

3

(
P2(·,−1) − V̄

)
+

1 + δ

3

(
P2(·,−2) − V̄

)
=

α(1 − δ)V + + 2(1 − α)(1 + δ)V̄

3α(1 − δ) + 6(1 − α)(1 + δ)

−
1

3
V̄ > 0. (A3.1.21)

Deviation to not trading gives rise to a zero date-2 profit. Deviation to

buying leads to

V̄ −
(

1 − δ

3
P2(·, 0) +

1

3
P2(·, 1) +

1 + δ

3
P2(·, 2)

)
= V̄ −

1 − δ

3

(
α(1 − δ)V + + 2(1 − α)(1 + δ)V̄

α(1 − δ) + 2(1 − α)(1 + δ)

)

−
2 + δ

3
V

+
< 0.

(A3.1.22)

The uninformed speculator therefore does not deviate from selling in t =

2. Now suppose that the uninformed speculator’s best response for this

information set is to buy. We then have

P2(·, 0) = P2(·, 1) = P2(·, 2) =
α

2− α
V + +

2(1− α)

2− α
V̄ . (A3.1.23)

The profit in t = 2 is V̄ −
(
1
3
P2(·, 0) + 1

3
P2(·, 1) + 1

3
P2(·, 2)

)
= V̄ −P2(·, 1) < 0,

so that the uninformed speculator does not buy in t = 2. Finally, suppose

that the uninformed speculator’s strategy for this information set is to not

trade. We then have P2(·, 0) = α(1−δ)V ++2(1−α)V̄
α(1−δ)+2(1−α)

. The profit from not trading

in t = 2 is 0. By deviating to selling, the uninformed speculator earns a profit

of

1 + δ

3

(
P2(·, 0)− V̄

)
=

1 + δ

3

(
α(1− δ)V + + 2(1− α)V̄

α(1− δ) + 2(1− α)
− V̄

)
> 0. (A3.1.24)

Hence, when Q1 reveals that the speculator is not informed of the low state,

the uninformed speculator sells in t = 2.

(iii). When Q1 reveals that the speculator is not positively informed, buying, sell-

ing and not trading all generate zero profit given the investment cancellation.

Negatively informed and uninformed speculators are indifferent between all

three actions. We combine (i) and (iii) in the main body of the paper.

(iv). When Q1 reveals that the speculator is not uninformed, we first consider

the case that the negatively informed speculator buys in t = 1. By selling

in t = 2, his total profit is 1+δ
3
P2(·, 0) − P1(·). By not trading in t = 2,

his total profit is 2+δ
3
V − − P1(·). By buying in t = 2, his total profit is

2V − −P1(·)− 1−δ
3
P2(·, 0)− 1

3
P2(·, 1)− 1+δ

3
P2(·, 2). Selling strictly dominates
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not trading and buying since 1+δ
3
P2(·, 0) > 0 > 2+δ

3
V − > 2V −− 1−δ

3
P2(·, 0)−

1
3
P2(·, 1) − 1+δ

3
P2(·, 2). Now consider the case that the negatively informed

speculator does not trade in t = 1. By selling in t = 2, his total profit

is 1+δ
3

(P2(1, 0)− V −). By not trading in t = 2, his total profit is 0. By

buying in t = 2, his total profit is V − − 1−δ
3
P2(·, 0)− 1

3
P2(·, 1)− 1+δ

3
P2(·, 2).

Selling strictly dominates not trading and buying since 1+δ
3

[P2(1, 0)− V −] >

0 > V − − 1−δ
3
P2(·, 0)− 1

3
P2(·, 1)− 1+δ

3
P2(·, 2). Hence, when Q1 reveals that

the speculator is not uninformed, the negatively informed speculator’s best

response in t = 2 is to sell.

(v). When Q1 does not reveal any new information, the derivation of t = 2 best

responses for the negatively informed who buys or does not trade in t = 1

directly follow from the derivation in scenario (iv). For the negatively in-

formed speculator who sells in t = 1, if he buys in t = 2, his total profit is

P1(·) − 1+δ
3
P2(·, 2) − 1

3
P2(·, 1) − 1−δ

3
P2(·, 0). If he does not trade in t = 2,

his total profit is P1(·) − 2+δ
3
V −. If he sells in t = 2, his total profit is

P1(·)+ 1+δ
3
P2(·, 0)− 2+2δ

3
V −. Selling strictly dominates buying and not trad-

ing as 1+δ
3
P2(·, 0) − 2+2δ

3
V − > −2+2δ

3
V − > 0 > −1+δ

3
P2(·, 2) − 1

3
P2(·, 1) −

1−δ
3
P2(·, 0). Hence, when Q1 does not reveal the speculator’s type, the neg-

atively informed speculator’s best response in t = 2 is to sell.

We then derive uninformed speculator behaviors at the information set (v).

For the uninformed speculator who buys in t = 1, if he buys again in t = 2,

his total profit is 2V̄ −P1(·)− 1−δ
3
P2(·, 0)− 1

3
P2(·, 1)− 1+δ

3
P2(·, 2). If he sells in

t = 2, his total trading profit in the two trading periods is 1+δ
3
P2(·, 0)−P1(·).

If he chooses to not trade in t = 2, his trading profit in the two trading

periods is 2+δ
3
V̄−P1(·). Not trading strictly dominates selling as P2(·, 0) < V̄ .

To show the negatively informed speculator who buys in t = 1 does not

trade in t = 2, suppose that by way of contradiction that he buys in t = 2.

Because the positively informed speculator buys and the negatively informed

speculator sells in t = 2, we have P2(·, 0) = (1−δ)αV ++(1+δ)αV −+2(1−δ)(1−α)V̄
2α+2(1−δ)(1−α)

,

and P2(·, 1) = P2(·, 2) = α
2−α

V ++ 2(1−α)
2−α

V̄ . Substituting P2(·, 0), P2(·, 1) and
P2(·, 2) into the profit difference between buying and not trading obtains

2V̄ −
1 − δ

3
P2(·, 0) −

1

3
P2(·, 1) −

1 + δ

3
P2(·, 2) − P1(·) −

( 2 + δ

3
V̄ − P1(1)

)
=

(
(δ − 1)2

3α + 6δ − 6αδ − 6
+

1

3α − 6
−

δ

2
+

1

3

)
V

+
+

(
1 − 2δ + δ2 + 2αδ − 2αδ2

3α + 6δ − 6αδ − 6
−

α − 1

3α − 6
−

δ

6
+

2

3

)
V

−
, (A3.1.25)
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where

(δ − 1)2

3α + 6δ − 6αδ − 6
+

1

3α − 6
−

δ

2
+

1

3
<

(δ − 1)2

3α − 6
−

δ

2
+

1

3
+

1

3α − 6
< −

1 − 2δ + δ2

6
−

1

6
−

δ

2
+

1

3
< 0, (A3.1.26)

and

1− 2δ + δ2 + 2αδ − 2αδ2

3α + 6δ − 6αδ − 6
− α− 1

3α− 6
− δ

6
+
2

3
> −1

3
−1

6
− δ

6
+
2

3
> 0. (A3.1.27)

Therefore, the negatively informed speculator who buys in t = 1 does not

buy in t = 2 and in fact does not trade in t = 2.

For the uninformed speculator who sells in t = 1, buying in t = 2 gives rise

to P1(1) − 1+δ
3
P2(·, 2) − 1

3
P2(·, 1) − 1−δ

3
P2(·, 0) < P1(·) − 1+δ

3
V̄ − 1

3
V̄ − 0 =

P1(·) − 2+δ
3
V̄ , not trading in t = 2 gives rise to P1(·) − 2+δ

3
V̄ , and selling

in t = 2 gives rise to P1(1) +
1+δ
3
P2(0, 0) − 2+2δ

3
V̄ . While not trading in

t = 2 is strictly dominated by not trading, the uninformed speculator who

sells in t = 1 may either prefer not trading or selling in t = 2, depending

on the parameter ranges. For the uninformed speculator who does not trade

in t = 1, not trading in t = 2 yields a total profit of 0. Buying in t = 2

yields a total profit of V̄ − 1−δ
3
P2(·, 0) − 1

3
P2(·, 1) − 1+δ

3
P2(·, 2) < 0, where

P2(·, 2) = V + and P2(·, 1) > V̄ . Selling in t = 2 yields a total profit of
1+δ
3

(
P2(·, 0)− V̄

)
, where P2(·, 0) < V̄ . Hence, when Q1 does not reveal a

speculator’s type, the uninformed speculator does not buy in t = 2, and does

not trade in t = 2 if he does not trade in t = 1.

■

Proof of Proposition 3.11. To start with, we demonstrate that neither the

negatively informed speculator nor the uninformed speculator buys in t = 1. For

the negatively informed speculator reaching information set (iv), his best response

is to sell in t = 2, and the profit from buy – sell is 1+δ
3
P2(·, 0)−P1(·) = 1+δ

3
P2(·, 0)−

1
3
P2(·, 0) − 1

3
1
2
P2(·, 1) − 1+δ

3
1
2
P2(·, 2) = δ

3
P2(·, 0) − 1

6
V + − 1+δ

6
V + < 0. For the

negatively informed speculator reaching information set (v), his best response is

to sell in t = 2, and his profit from buy – sell given that the uninformed speculator

chooses to not trade in t = 2 is 1+δ
3
P2(·, 0) − P1(·) = 1+δ

3
P2(·, 0) − 1

3
P2(·, 0) −(

1
3
α
2
+ 1+δ

3
(1− α)

)
P2(·, 1) − 1+δ

3
α
2
P2(·, 2) = δ

3
P2(·, 0) −

(
α
6
+ (1+δ)(1−α)

3

)
P2(·, 1) −

(1+δ)α
6

P2(·, 2) < 0, where P2(·, 0) < V̄ , P2(·, 1) > V̄ and P2(·, 2) = V +. His

profit from buy – sell if the uninformed speculator sells in t = 2 is 1+δ
3
P2(·, 0) −
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1+δ−αδ
3

P2(·, 0) − α
6
P2(·, 1) − (1+δ)α

6
P2(·, 2) = αδ

3
P2(·, 0) − 2α+αδ

6
V + < 0. While the

negatively informed speculator receives a negative profit from buying in t = 1, no

trade – no trade guarantees a profit of 0, he thus does not buy in t = 1.

For the uninformed speculator reaching information set (ii), his best response is

to sell in t = 2, and his earns profit, from buy – sell, of 1+δ
3
P2(·, 0) + 1

3
P2(·,−1) +

1−δ
3
P2(·,−2) − P1(·) = 1+δ

3
P2(·, 0) + 2−δ

3
V̄ −

(
α

2−α
V + + 2(1−α)

2−α
V̄
)
< 0, where

P2(·, 0) < α
2−α

V + + 2(1−α)
2−α

V̄ . For the uninformed speculator reaching informa-

tion set (v), his best response is to not trade in t = 2, and his profit from buy

– no trade is 2+δ
3
V̄ − P1(·) < 0, where P1(·) = α

2
V + + (2+δ)(1−α)

3
V̄ + (1+δ)α

6
V −.

While the uninformed speculator receives a negative profit if he buys in t = 1, no

trade – no trade guarantees a profit of 0, he thus does not buy in t = 1. Recall

that in Lemma 4, the uninformed speculator who sells in t = 1 may either sell

in t = 2 or not trade in t = 2 if Q1 does not reveal that he’s not positively in-

formed, depending on parameter values. However, a sell – no trade strategy by the

uninformed speculator does not cause the manipulative short selling equilibrium.

Hereafter, to remain comparability with prior models, we consider the case where

the uninformed speculator who sells in t = 1 sells again in t = 2 if Q1 does not

reveal that he’s not positively informed.

In the increased noise buying setting, there are four candidate equilibriums. Can-

didate equilibrium 1 is: the positively informed speculator employs a buy – buy

strategy, the negatively informed speculator employs a no trade – sell strategy, and

the uninformed speculator employs a sell – sell strategy. Candidate equilibrium

2 is: the positively informed speculator employs a buy – buy strategy, the nega-

tively informed speculator employs a no trade – sell strategy, and the uninformed

speculator employs a no trade – no trade strategy. Candidate equilibrium 3 is the

RIMS equilibrium. Candidate equilibrium 4 is the NMS equilibrium.

(a). In candidate equilibrium 1, P2(1, 0) = V̄ − δV +

2
+ δV −

2
and P1(0) =

1+δ
3
V̄ +

δ
3
V + − αδ

6
V +. By not trading in t = 1 and selling (resp. showing indif-

ference between all three actions) in t = 2 if Q1 = 0, 1 (resp. if Q1 =

−1), the negatively informed speculator receives 1
3

(
1+δ
3

(P2(1, 0)− V −)
)
+

1
3

(
1+δ
3

(P2(0, 0)− V −)
)
. His best deviation is sell – sell, which yields a

profit of 1
3

(
P1(0) +

1+δ
3
P2(0, 0)− 2+2δ

3
V −). The negatively informed spec-

ulator does not deviate from no trade – sell if and only if 1+δ
3
P2(1, 0) >

P1(0) ⇔ δ(1 + δ) (V + − V −) < (αδ − 2α)V +, which never holds for any
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δ ∈ [0, 1]. Candidate equilibrium 1 is not sustainable in the increased noise

buying setting.

(b). In candidate equilibrium 2, P2(1, 0) = (1− δ) α
2
V ++(1+ δ)α

2
V −+(1−α)V̄ ,

P1(0) = α
2
V + + (2+δ)(1−α)

3
V̄ + (1+δ)α

6
V −. The negatively informed spec-

ulator again does not deviate from no trade – sell to sell – sell if and

only if 1+δ
3
P2(1, 0) > P1(0) ⇔ δ

3

(
(1− δ)α

2
V + + (1 + δ)α

2
V − + (1− α)V̄

)
>

α
6
V ++ 1+δ

3
(1−α)V̄ + 1+δ

3
α
2
V +, which never holds for any δ ∈ [0, 1]. Candidate

equilibrium 2 is not sustainable in the increased noise buying setting.

(c). In the RIMS equilibrium, the prices are P2(1, 0) = P2(0, 2) = P2(0, 1) = V +,

P2(0, 0) =
(1−δ)αV ++(1+δ)αV −+2(1+δ)(1−α)V̄

2α+2(1+δ)(1−α)
, and P1(0) =

αV +

2
+ 1+δ

3
(1− α)V̄ +

(1+δ)α
6

V −. The profit of the negatively informed speculator who sell – sell

is 1
3

(
P1(0) +

1+δ
3
P2(0, 0)− 2+2δ

3
V −). His alternative strategy of no trade –

sell yields 1
3

(
1+δ
3

(P2(1, 0)− V −)
)
+ 1

3

(
1+δ
3

(P2(0, 0)− V −)
)
. He does not

deviate if and only if P1(0) +
1+δ
3
P2(0, 0)− 2+2δ

3
V − > 1+δ

3
(P2(1, 0)− V −) +

1+δ
3

(P2(0, 0)− V −). Rearranging terms, we have δ < 3P1(0)
P2(1,0)

− 1, which is

equivalent to

δ < δ1 ≡
2αV + − (V + − V −)

(V + − V −) + αV +
. (A3.1.28)

When V + ≥ −3V − and α > 2
3
, 2αV +−(V + − V −) = (2α− 1)V +−V − > 0,

meaning that δ1 > 0; 2 (2αV + − (V + − V −))−(V + − V −)−αV + = 3αV +−
3V + + 3V − < 0, meaning that δ1 <

1
2
.

On the other hand, the equilibrium profit of the uninformed speculator who

has a sell – sell strategy is 1
3

(
P1(0) +

1+δ
3
P2(0, 0)− 2+2δ

3
V̄
)
. His alternative

strategy is “no trade in t = 1, and sell (no trade) in t = 2 if the order flow

suggests that he is not negatively informed (does not reveal or exclude any

type)”, leading to a profit of 1
3
1+δ
3

(
P2(1, 0)− V̄

)
. He has no incentive to de-

viate if 1
3

(
P1(0) +

1+δ
3
P2(0, 0)− 2+2δ

3
V̄
)
> 1

3
1+δ
3

(
P2(1, 0)− V̄

)
. Rearranging

terms, we have

P1(0) +
1 + δ

3
P2(0, 0)−

1 + δ

3
P2(1, 0)−

1 + δ

3
V̄ > 0 ⇔

(
−α2V + + 3αV + − 2V −) δ2 +

(
2α2V + + αV + − 4V −) δ − 2V − − 2αV +

(6α− 6)δ − 6
> 0 ⇔

δ < δ2 ≡ −α− α
√

(η + 1) (25η − 4α− 4αη + 4α2η + 4α2 + 49) + αη + 2α2η + 2α2 + 4

2 (3α+ 3αη − α2η − α2 + 2)
. (A3.1.29)
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where η ∈ R+ is defined by V + = −(1 + η)V −. Taking first order derivative

in respect to η, we have ∂δ2
∂η

> 0, indicating limη→2 δ2 < δ2 < limη→+∞ δ2.

We also have limη→2 δ2 = α
√
36α2−36α+297−3α−6α2−4

−6α2+18α+4
> 1

5
and limη→+∞ δ2 =

2α+1−
√

(4α2−4α+25)

2(α−3)
<

√
217−7
14

for α > 2
3
.

(d). In the NMS equilibrium, the prices ar P2(1, 0) =
α(1−δ)V ++2(1−α)(1+δ)V̄

α(1−δ)+2(1−α)(1+δ)
, P2(0, 0) =

(1−δ)α
2

V ++ (1+δ)α
2

V −+(1−α)V̄ , and P1(0) =
αV +

2
+ (2+δ)(1−α)

3
V̄ + (1+δ)α

6
V −.

The negatively informed speculator shows no deviation from his equilib-

rium strategy of sell – sell to the alternative strategy of no trade – sell if

P1(0) +
1+δ
3
P2(0, 0) − 2+2δ

3
V − > 1+δ

3
(P2(1, 0)− V −) + 1+δ

3
(P2(0, 0)− V −).

Rearranging terms, we obtain

P1(0) >
1 + δ

3
P2(1, 0) ⇔

(Aδ2 +Bδ + C)

D
> 0 ⇔

δ > δ3 ≡
3αη − 2η − 2α + 2α2η + 5α2 +

√
E

6α2η − 2αη + 6α2
, (A3.1.30)

where A = αV ++αV −−3α2V +, B = 3αV +−2V −−2V ++5αV −+2α2V +−
3α2V −, C = 2αV −−2V −−2V ++α2V +−α2V −, D = (18α− 12) δ+6α−12,

and E = 16α4η2+56α4η+49α4+8α3η2−10α3η−44α3−23α2η2+48α2η+4α2−
4α2η+8αη+4. As

∂ 3αη−2η−2α+2α2η+5α2

6α2η−2αη+6α2

∂η
> 0, δ3 > limη→2

3αη−2η+2α+2α2η+5α2

6α2η−2αη+6α2 =
9α2+4α−4
18α2−4α

> 1
2
for any 2

3
< α ⩽ 1. The uninformed speculator does not deviate

from his equilibrium strategy of “no trade in t = 1, and sell (no trade) in

t = 2 if the order flow suggests that he is not negatively informed (does

not reveal or exclude any type)” to no trade – sell if 1
3
1+δ
3

(
P2(1, 0)− V̄

)
>

1
3

(
P1(0) +

1+δ
3
P2(0, 0)− 2+2δ

3
V̄
)
, which is equivalent to

(
αV −

6
− αV +

6

)
δ2 +

(
αV +

6
− V +

3
− V −

3
+
αV −

3
+

2(1− α)V̄

3

)
δ

− V +

6
− V −

6
+
αV +

2
+
αV −

6
+

2(1− α)V̄

3
< 0 ⇔

δ > δ4 ≡
√

α (17α+ 8η + 18αη + 5αη2 + 4η2)− α− αη

4α+ 2αη
>

1

2
. (A3.1.31)

■



Chapter 3 118

Proof of Corollary 3.12. (i) In the RIMS equilibrium, the uninformed specu-

lator and the negatively informed speculator have a sell – sell strategy, and the

positively informed speculator has a buy – buy strategy. The expected firm value

for the uninformed speculator is (1+δ)V̄
9

. The expected firm value for the negatively

informed speculator is (1+δ)V −

9
. The expected firm value for the positively informed

speculator is V +. The real investment efficiency in the RIMS equilibrium then

follows as

RERIMS =
αV +

2
+
α(1 + δ)V −

18
+

(1− α)(1 + δ)V̄

9
. (A3.1.32)

(ii) The RIMS equilibrium always harms the real investment efficiency since

RERIMS −REbenchmark =
(1− α)δV̄

9
+
αδV −

18
< 0. (A3.1.33)

(iii) In the NMS equilibrium, the uninformed speculator does not trade in t = 1,

does not trade in t = 2 if Q1 = 0, sells in t = 2 if Q1 = 1. The negatively informed

speculator has a sell – sell strategy and the positively informed speculator has

a buy – buy strategy. The expected firm value for the uninformed speculator is
(5+δ)V̄

9
. The expected firm value for the negatively informed speculator is (1+δ)V −

9
.

The expected firm value for the positively informed speculator is V +. The real

investment efficiency in the NMS equilibrium then follows as

RENMS =
αV +

2
+
α(1 + δ)V −

18
+

(1− α)(5 + δ)V̄

9
. (A3.1.34)

(iv) The NMS equilibrium improves the real efficiency if and only if

RENMS −REbenchmark =
(1− α)(4 + δ)V̄

9
+
αδ(V̄ − U)

18
> 0. (A3.1.35)

■



Chapter 4

Quantitative vs discretionary

investing: Implications for market

efficiency

4.1 Introduction

Advances in mathematics and technology, from quantum physics to machine learn-

ing algorithms such as deep neural networks, have led to a breed of tech-savvy

investors known as “quants” taking over the global financial markets in recent

years.10 Quantitative investing relies on machines and makes trading decisions

using rule-based criteria, whereas traditional discretionary investing relies on hu-

man skills. Despite the rising regulatory concern over machine-based quantitative

investing, academic research about the impact of quants on market quality is

scant.11 This paper thus aims to address the following two questions: Given the

differences in the decision-making process of machines and humans, what strategic

interaction between discretionary and quantitative investing will arise? And, with

10Quantitative hedge funds now account for 27% of U.S. stock trades ( see, for example,
https://www.wsj.com/articles/the-quants-run-wall-street-now-1495389108). Quanti-
tative investment products also become increasingly accessible to retail investors via the popu-
larity of quantitative mutual funds and online backtesting platforms such as Quantopian (Beggs,
Brogaard and Hill-Kleespie (2021)).

11In 2021, The Securities and Exchange Commission announced charges against Sergei Pole-
vikov, a former quantitative analyst, for perpetrating a front-running scheme that generated illicit
profits of over 8.5 million USD, see https://www.sec.gov/news/press-release/2021-186.
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the presence of such strategic interaction, how does the growth in machine-based

quantitative investing impact market efficiency?

Machines are less susceptible to incentive and sentiment bias and possess a greater

capacity to process information compared to humans due to their fast computing

speed. But machines are not impeccable and may involve the risks of overfitting

and crowding, as well as weaker flexibility to adapt to ever-changing market condi-

tions than humans given their inherent reliance on fixed rules. Motivated by Abis

(2022), we focus on the fundamental trade-off between capacity and flexibility

when machines replace humans in the investment industry.

This paper builds a Kyle-type model populated by a fully discretionary investment

firm, an investment firm composed of a quant department and a discretionary de-

partment, and liquidity traders, as well as competitive market makers. The two

firms are referred to as firms A and B. Before trading takes place, nature de-

termines if the quant department Q or discretionary department D of firm B is

present. The prior probability of the quant department’s existence measures the

quantitative investing level in the economy. The quant department’s greater infor-

mation processing capacity (resp. weaker strategic flexibility) than discretionary

participants is modelled as access to an additional piece of information (resp. igno-

rance of the strategic impact of its own trades). Discretionary participants observe

the component v1 of security’s liquidation value v = v1 + v2, whereas the quant

department additionally observes a noisy signal θ2 of the component v2. Reflecting

the strategic weakness of the quant, Q incorrectly believes that the opponent firm

would not strategically react to the demand of firm B. Our modelling of strategic

inflexibility of the quant is in the spirit of Malikov and Pasquariello (2022) but

technically different from them. In Malikov and Pasquariello (2022), the inflexi-

bility of the quant is modelled as adherence to a backtested trading strategy with

constant parameters. Instead, we model the strategic inflexibility of Q as an incor-

rect belief about the opponent firm’s equilibrium strategy and allow Q to choose

a strategy that optimises its expected trading profit with such misbelief.

We find that the strategic interaction between the two investment firms is impacted

in three ways as the quantitative investing level increases. First, this increase

renders firm B more capable of information processing and extracting the noisy

signal θ2. Firm B thereby trades more aggressively on θ2 given its enhanced

information advantage in inferring v2, which is the “capacity enhancing effect”.

Second, being more likely to ignore the fully discretionary firm’s strategic response,
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firm B is more inclined to overestimate the opponent’s trading aggressiveness on

v1. Firm B thereby trades less aggressively with respect to v1 given its increased

strategic weakness, which is the “stratey oblivion effect”. Finally, being fully

discretionary, firm A trades more aggressively on v1 in order to profit from firm B’s

increased strategic weakness. This change in firm A’s trading behaviour effectively

internalises firm B’s trading aggressiveness reduction on v1, and is referred to as

the “internalising effect”.

Given such strategic interaction, growth in quantitative investing reduces overall

trading aggressiveness and thus price efficiency for low-quality signal θ2 since the

negative strategy oblivion effect dominates, whereas it increases trading aggres-

siveness and price efficiency for high-quality signal θ2 since the negative strategy

oblivion effect is dominated. Interestingly, for moderate-quality signal θ2, growth

in quantitative investing has a non-monotonic impact on overall trading aggres-

siveness and price efficiency.

We extend our analysis to include the setting where each of the two firms consists

of a quant department and a discretionary department (see Section 4.4) and the

setting where the quant department Q incorrectly believes that the fully discre-

tionary firm A would not strategically react to B’s demand with a probability of

h, but has correct belief about the fully discretionary firm with a probability of

1−h (see Appendix 4.2). The comparison between the extended and the baseline

models shows that the impacts of a ceteris paribus increase in firm B’s quantita-

tive investing level on the strategic interaction and on price efficiency are robust

to different model settings. In the extended model where firms A and B each

have a quant department, aside from the capacity enhancing effect, the strategy

oblivion effect, and the internalising effect, a ceteris paribus increase in firm B’s

quantitative investing level additionally causes firm A to have deteriorated infor-

mation advantage with regard to θ2 given increased competition from firm B. The

resulting trading aggressiveness reduction on θ2 by firm A is referred to as the

“competition effect”.

Moreover, growth in quantitative investing level by firm B is more prone to de-

crease the overall trading aggressiveness and harm price efficiency when the oppo-

nent firm’s quantitative investing level is higher due to the weakened internalising

effect: firm A’s discretionary department would put less effort into exploiting firm

B’s trading aggressiveness reduction on v1.
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Overall, our theory explicitly models the fundamental trade-off between capac-

ity and flexibility when machines replace humans and sheds new light on the re-

lated market quality consequences. First, we analytically decompose the impact of

growth in machine-based quantitative investing on overall trading aggressiveness

and market efficiency into components driven by the capacity enhancing effect,

the strategy oblivion effect, the internalising effect, and the competition effect.

Given such decomposition, it is possible to test the four channels empirically.12

Our theory additionally provides an alternative explanation to Farboodi, Matray,

Veldkamp and Venkateswaran (2022)’s empirical observation that big data growth

corrodes price informativeness for the universe of publicly traded U.S. stocks but

enhances price informativeness for S&P 500 stocks. While Farboodi et al. (2022)

attribute the price informativeness divergence to different average size growth rates

of S&P 500 and non-S&P 500 stocks, our model suggests that different relative

magnitudes of the capacity enhancing effect to the strategy oblivion effect of S&P

500 and non-S&P 500 stocks could be another driver for this divergence. Second,

our model implies that regulators and practitioners should pay close attention to

the potentially harmful growth in quantitative investing if there is a myriad of

Artificial Intelligence ETFs and other quantitative products.

The rest of the paper is organised as follows. In Section 4.2, we discuss the related

literature. In Section 4.3, we solve for the equilibrium in the benchmark model. In

Section 4.4, we extend the benchmark model to the setting where each investment

firm has a quant department. Section 4.5 concludes.

4.2 Related literature

Our paper contributes to several strands of literature. First, our finding con-

tributes to the emerging literature on the machine-human interaction in financial

markets (see, e.g., Barbopoulos et al. (2021), Wang et al. (2021), Abis (2022),

Coleman et al. (2022), Malikov and Pasquariello (2022)). Abis (2022) shows that

the trade-off of capacity and inflexibility results in different investment styles of

12The data on quantitative and discretionary investors are not readily available, making the
manual collection of such data necessary (e.g., Beggs et al. (2021)). There are also no straight-
forward proxies for the strategic inflexibility of quants, though Abis (2022) demonstrate that
the inflexibility of quants can result in a weak ability to time macroeconomic shocks. In this
chapter, we focus on the theory of interaction between quants and discretionary investors and
its implications for market efficiency and leave the empirical analysis for future work.
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quantitative and discretionary mutual funds. In the model of Abis (2022), com-

pared with quant funds, discretionary funds possess a higher macroeconomic tim-

ing ability and a lower stock picking ability and hold less diversified portfolios.

Malikov and Pasquariello (2022) analyse the trading strategies and market qual-

ity outcome including efficiency, liquidity, volatility, and volume both when new

quant funds enter and when incumbent discretionary funds switch to quantitative

investing. They model the incumbent’s transition to quantitative investing as in-

creased adherence to the backtested strategy. Wang et al. (2021) empirically train

a machine-only AI analyst and a man + machine analyst, and show that the price

forecasts of the man + machine analyst outperform the forecasts of the human-

only and machine-only analysts, since combining AI’s computational power and

the human art of interpreting soft information can generate synergy. Coleman

et al. (2022) find empirical evidence that machine analysts are less inclined to rec-

ommend glamour stocks and firms with potential investment banking needs than

human analysts are. Our work innovates this line of research by explicitly mod-

elling the fundamental trade-off between capacity and flexibility when machines

replace humans, and analytically decomposing the impact of growth in machine-

based quantitative investing on strategic interaction and market efficiency into

empirically testable components primarily driven by the capacity enhancing effect

and the strategy oblivion effect.

Our paper is also broadly related to theoretical studies about the influence of

irrational traders on price evolution (see, e.g., De Long, Shleifer, Summers and

Waldmann (1990), Gervais and Odean (2001), Hirshleifer, Subrahmanyam and

Titman (2006), Kogan, Ross, Wang and Westerfield (2006), Pouget, Sauvagnat

and Villeneuve (2017)). According to De Long et al. (1990), bullish noise traders

bear more systematic risk than rational investors do, and thus earn higher expected

returns and survive in the long run as the market rewards risk taking. Hirshleifer

et al. (2006) show that irrational traders can influence underlying cash flows due

to the feedback effect and thus earn higher profits than rational informed traders

do. Kogan et al. (2006) suggest that irrational traders (pessimistic traders and

strongly optimistic traders), who take bets on extremely unlikely states, can give

rise to significant price impact even when their wealth is negligible. Gervais and

Odean (2001) propose a model with traders becoming overconfident via learning

from the successes and failures of their past price predictions. They show that

both volume and volatility increase with a trader’s overconfidence. Pouget et al.

(2017) build a model in which some traders are prone to confirmatory bias and
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ignore information inconsistent with their prior views, and find that such bias

yields excess volume, excess volatility, as well as momentum. We add to this line

of research by modelling the quant’s strategic inflexibility, a form of irrationality,

as an incorrect belief about the opponent firm’s equilibrium strategy.

We also contribute to the literature on how FinTech adoption affects market ef-

ficiency. In the big data literature, increased computing power may only benefit

the information corporation of large firms (Farboodi et al. (2022)), and may cause

imprecise signals to crowd out precise signals and harm efficiency (Dugast and

Foucault (2018)). Moreover, high dimensional learning problems, coupled with

data abundance, can distort conventional efficiency measures (Martin and Nagel

(2022)). In the algorithmic trading (AT) literature, AT benefits efficiency if its liq-

uidity provision raises informed profits (Hendershott, Jones and Menkveld (2011)),

and harms efficiency if back-running erodes information rents (Weller (2018)). We

contribute to this literature by analysing the price efficiency impacts of quantita-

tive investing, a relatively underexplored subset of algorithmic trading.13

4.3 The model

We consider a Kyle-type model where quantitative and discretionary traders co-

exist. The model enables us to study the interaction between quantitative and

discretionary traders and its impact on price efficiency.

4.3.1 Model setup

Three groups of participants trade risky security: (i) market makers, (ii) noise

traders, and (iii) two investment firms (firms A and B). The liquidation value v of

the security is given by v = v1+v2, where v1 and v2 are independent and identically

distributed normal variables with mean zero and variance Σ0. Investment firms

are composed of a discretionary department D and a quant department Q. The

discretionary department observes v1 and trades akin to the rational Kyle (1985)

13According to Hasbrouck and Saar (2013), AT can be divided into two categories, proprietary,
i.e., quantitative, and agency algorithms. Agency algorithms are used by buy-side institutions
to minimise the price impact of executing trades when implementing changes in their investment
portfolios. Agency algorithms are non-fundamental oriented, e.g., the VWAP execution algo-
rithm. Proprietary algorithms can be either non-fundamental-oriented (e.g., liquidity provision
and back-running) or fundamental-oriented.
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insider. The quant department additionally observes a noisy signal θ2 = v2 + ϵ

with ϵ ∼ N (0, σ2
ϵ ) about the second component of the liquidation value.

We first investigate the case where firm A is entirely discretionary, and firm B

has a discretionary department D and a quant department Q. The next section

solves the model for the general case where both firms have both departments.

The model has three dates, t ∈ {0, 1, 2}, as illustrated in Figure 4.1. At t = 0,

nature determines which department of firm B is in the market. The probability of

the quant department’s presence is γ, whereas the probability of the discretionary

department’s presence is 1−γ, where 0 ⩽ γ ⩽ 1 measures the level of quantitative

investing. The realisation of department Q’s or department D’s presence is only

observed by firm B.

Figure 4.1: Model timeline.
This figure illustrates the timeline in the baseline model. In t = 0, nature
determines which department of firm B presents. In t = 1, trading occurs for
firms A, B and noise traders. In t = 2, the security is liquidated.

The trading date is t = 1. Let us denote the price and aggregate order flow at

t = 1 as p and w, respectively. We first assume that traders rationally conjecture

the price function as p = λ · ω. Given the conjectures about the pricing schedule

p = λ · ω and the opponent’s demand of xj shares, trader i ∈ {A,D,Q} endowed

with the information set ϕi submits xi shares of market orders to maximise the

expected trading profits, i.e.,

E [(v − p(ϕi, xi, xj))xi|ϕi, xi] . (4.1)

For the discretionary departments, ϕA = ϕD = v1. For the quant department,

ϕQ = {v1, θ2}. The additional signal θ2 captures the greater information processing

capacity of the quant department. The quality of the additional signal is q =
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Σ0/(Σ0 + σ2
ϵ ). Although the quant department has greater information processing

capacity, it is strategically weaker than the discretionary department. To capture

the strategic weakness of the quant department, we assume that it ignores the

competition from itself can reduce the trading aggressiveness of firm A. While

the actual demand of firm A is xA = E(v|ϕA)
2λ

− E(xB |ϕA)
2

, the quant department

perceives the demand of firm A as xA = E(v|ϕA)
2λ

. This means that the strategically

weaker quant department ignores its strategic impact on the opponent.

Noise traders trade according to their liquidity or hedging needs exogenous to

the model. We assume they demand u ∼ N(0,Σ0) units for simplicity. Market

makers observe the aggregate order flow (sum of all traders’ demands) as ω =

xA + γ · xQ + (1− γ) · xD + u. They are risk neutral and competitive. Therefore,

their equilibrium pricing rule satisfies weak market efficiency and allows them to

break even in expectation, i.e., p = E[v|ω].

4.3.2 Equilibrium

The equilibrium concept throughout the chapter is perfect Bayesian Nash equi-

librium.14 It is defined as follows: (i) the trader i chooses a trading strategy

xi(ϕi, E(xj)) that maximises his expected trading profit based on the expectation

of opponent’s demand E(xj), (ii) the market maker chooses a pricing strategy p(ω)

that breaks even in expectation, (iii) the traders and market makers use Bayes’

theorem to form beliefs.

To derive the equilibrium, we start with optimization problems defined in Eq.(4.1)

and derive the first-order conditions. Solving the maximisation problem of firm A

yields its best response xA = αAv1, with

αA =
1

2λ
− γαQ

2
− (1− γ)αD

2
. (4.2)

Solving the maximisation problem faced by the quant department of firm B yields

its best response xQ = αQv1 + βQθ2, with

αQ =
1

4λ
, βQ =

q

2λ
. (4.3)

14The linear equilibrium in our model exists uniquely because we adopt the Kyle (1985) frame-
work, and particularly because we assume normality of the exogenous random variables.
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Solving the maximisation problem faced by the discretionary department of firm

B yields its best response xD = αDv1, with

αD =
1

2λ
− αA

2
. (4.4)

Combining Eqs.(4.2)-(4.4) with λ = cov(v, ω)/var(ω) gives a system of five equa-

tions and five unknowns (λ, αA, αQ, βQ, αD). The following proposition gives the

solution to the system, which summarises the equilibrium outcomes in the economy

with a discretionary and a quantitative firm.

Proposition 4.1. There is a unique linear equilibrium if an investment firm is

fully discretionary, and the other firm has a quantitative investing intensity of γ.

The equilibrium pricing rule of market makers is characterised by p = λω, and

the equilibrium trading strategies of traders A, Q, and D are given by xA = αAv1,

xQ = αQv1 + βQθ2, and xD = αDv1, with

λ =

√
(γ + 4)(γ + 2)

4(γ + 3)2
+

qγ(2− γ)

4
, (4.5)

αQ =
1

4λ
, αD =

γ + 4

4λ(γ + 3)
, (4.6)

βQ =
q

2λ
, αA =

γ + 2

2λ(γ + 4)
. (4.7)

4.3.3 Quantitative investing and price efficiency

We now analyse how the growth in quantitative investing affects the trading ag-

gressiveness of investment firms and consequently, affects informational efficiency

of the price. We normalise the trading aggressiveness of each firm on each signal

by dividing 1/3λ, which is the trading aggressiveness of the firms if both were fully

discretionary, leading to

α̃A =
3γ + 6

2γ + 6
, α̃B =

3

γ + 3
, β̃B =

3qγ

2
. (4.8)

Define the overall trading aggressiveness as τ ≡ α̃A + α̃B + β̃B. The following

proposition identifies the effects of growth in quantitative investing on overall

trading aggressiveness.
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Proposition 4.2. When quantitative investing level γ increases, the impact on

overall trading aggressiveness τ hinges on the trade-off among:

(i) The positive capacity enhancing effect by the quantitative firm B, implying

B trades more aggressively on θ2 due to increased capacity, and is given by

∂β̃B
∂γ

=
3q

2
. (4.9)

(ii) The negative strategy oblivion effect by the quantitative firm B, implying B

trades less aggressively on v1 due to increased inflexibility, and is given by

∂α̃B

∂γ
= − 3

(γ + 3)2
. (4.10)

(iii) The positive internalising effect by the fully discretionary firm A, implying

A trades more aggressively on v1 to exploit increased inflexibility of B, and

is given by
∂α̃A

∂γ
=

3

2(γ + 3)2
. (4.11)

An increase in the quantitative investing level γ increases both information pro-

cessing capacity and strategic inflexibility. On the one hand, higher information

processing capacity permits firm B a higher access to θ2 and a higher information

advantage in inferring v2. We refer to the resulting increase in firm B’s trading

aggressiveness on θ2 as the capacity enhancing effect. On the other hand, higher

strategic inflexibility makes firm B become more likely to overestimate the trading

aggressiveness of firm A. We refer to the resulting decrease in firm B’s trading

aggressiveness on v1 as the strategy oblivion effect. Additionally, the fully discre-

tionary firm A tries to exploit firm B’s increased strategy oblivion by increasing

its trading aggressiveness on v1, leading to the internalising effect.

Corollary 4.3 analytically describes how these three effects vary with q and γ.

Figure 4.2 graphically illustrates the three effects for different values of q. Panels

(A)-(C) show these effects for q = 0.04, 0.09 and 0.12, respectively. We combine

Figure 4.2 with Corollary 4.3 to analyse the net impact of growth in γ on overall

trading aggressiveness under different parameter settings.

Corollary 4.3. The magnitude of the capacity enhancing effect increases in signal

quality q. The magnitude of the strategy oblivion effect decreases in quantitative

investing level γ at a faster rate than the magnitude of the internalising effect does.
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(A)

(B)

(C)

Figure 4.2: Trading aggressiveness when the opponent firm is fully
discretionary.
This figure illustrates the derivatives of trading aggressiveness measures with
respect to quantitative investing level γ in the setting of fully discretionary
firm R when: (i) q is low; (ii) q is moderate; and (iii) q is high. Panel (A)
illustrates the derivatives when q = 0.04, Panel (B) illustrates the derivatives
when q = 0.09, and Panel (C) illustrates the same when q = 0.12. The other
parameter value is Σ0 = 1. Among all panels, the blue dashed line is the
absolute value of the strategy oblivion effect, and the purple line is the sum of
the capacity enhancing effect and the internalising effect.

0 0.2 0.4 0.6 0.8 1
γ

0.15

0.21

0.26

0.31

0.36
|∂α̃B/∂γ|
∂(˜βB + α̃A)/∂γ

0 0.2 0.4 0.6 0.8 1
γ

0.15

0.21

0.26

0.31

0.36
|∂α̃B/∂γ|
∂(˜βB + α̃A)/∂γ

0 0.2 0.4 0.6 0.8 1
γ

0.15

0.21

0.26

0.31

0.36
|∂α̃B/∂γ|
∂(˜βB + α̃A)/∂γ



Chapter 4 130

According to the above corollary, the positive capacity enhancing effect is strength-

ened when q increases. Consistently, for low quality θ2 as in Panel (A) of Figure

4.2, the sum of the positive effects is surpassed by the absolute value of the negative

strategy oblivion effect, implying that an increase in quantitative investing level

decreases the overall trading aggressiveness for any γ. For high quality θ2 as in

Panel (C) of Figure 4.2, the sum of the positive effects exceeds the absolute value

of the negative strategy oblivion effect, implying that an increase in quantitative

investing level increases the overall trading aggressiveness for any γ.

Corollary 4.3 also states that an increase in γ decreases the magnitude of the

strategy oblivion effect. This result is intuitive. Consider two extreme cases of γ =

0 and γ → 1: the same amount of increase in γ should lead to a stronger marginal

effect on firm B’s trading aggressiveness on v1 when γ = 0 than when γ → 1, since

the increase at γ = 0 represents an initial deviation from full rationality which

fundamentally alters firm B’s trading behaviour. Also, an increase in γ dampens

the strategy oblivion effect more than it dampens the internalising effect. As a

consequence, for moderate quality θ2 as shown in Panel (B) of Figure 4.2, the sum

of the two positive effects starts off smaller than the absolute value of the strategy

oblivion effect if γ is small but would dominate if γ increases further, which means

the overall trading aggressiveness first decreases then increases when γ increases.

Additionally, an increase in q does not affect the curve representing the strat-

egy oblivion effect, and shifts up the curve representing the sum of the capacity

enhancing effect and the internalising effect without changing its shape. This is

because the capacity enhancing effect is linear in q, while the other two effects are

independent of q.

As trading is the sole channel that impounds information into prices in the model,

changes in trading aggressiveness should naturally translate into changes in price

efficiency. Following Kyle (1985) and its extant extensions (e.g., Subrahmanyam

(1991), Holden and Subrahmanyam (1992), and Yang and Zhu (2020)), the price

efficiency measure we use throughout the paper is var(v|p)−1. In the baseline

equilibrium, the price efficiency is thus given by the following equation:

PE baseline =
2γ + 6

(3γ − 3qγ − qγ2 + 8)Σ0
. (4.12)

Proposition 4.4 shows the price efficiency impact of growth in quantitative trading

when a firm is fully discretionary and the other has a quant department.
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Proposition 4.4. When quantitative investing level γ increases, the effect on

price efficiency depends on the quality of the additional signal obtained by the

quant department:

(i) When 0 < q ≤ q1, price efficiency decreases with quantitative investing level.

(ii) When q1 < q < q2, price efficiency decreases if quantitative investing level is

below the threshold value γ̄, and increases otherwise.

(iii) When q ≥ q2, price efficiency increases with quantitative investing level.

The sign of the price efficiency impact rests with the value of signal quality q.

When signal θ2 is of low quality (q ≤ q1), growth in quantitative investing always

harms price efficiency due to the unambiguous drop in overall aggressiveness for

any γ. When signal θ2 is of high quality (q > q2), growth in quantitative investing

always improves price efficiency. When signal θ2 is of moderate quality, growth in

quantitative investing initially harms price efficiency, then improves price efficiency

if γ increases beyond the threshold γ̄ and the sum of capacity enhancing, strategy

oblivion and internalising effects turns from smaller than to greater than zero.

Figure 4.3 provides numerical examples of the proposition.

Figure 4.3: Price efficiency with a fully discretionary opponent firm.
This figure illustrates the price efficiency impact of growth in quantitative in-
vesting level γ in the setting of fully discretionary firm A when: (i) q is low;
(ii) q is moderate; and (iii) q is high. The black dashed line, the blue line, and
the grey dashed line plot the price efficiency as a function of γ for q = 0.04,
q = 0.09, and q = 0.12, respectively. The other parameter value is Σ0 = 1.
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4.4 Opponent firm with quant department

Thus far, firm A has been assumed to be fully discretionary and there is a monopoly

for quantitative technology. In reality, quantitative funds are on the rise and face

fierce competition among each other (Abis (2022), Farboodi et al. (2022)). To

relax the rather unrealistic assumption about a fully discretionary opponent firm,

we analyse a symmetric model in which each firm has a quant department in this

section.

Consider now that firm A is also composed of a quant department Q1 and a dis-

cretionary department D1, different from being fully discretionary in the baseline

model. Let firm B’s quant department be denoted as Q2, and its discretionary

department be denoted as D2. At t = 0, the nature determines which department

presents for each firm. The probability of the presence of firm A’s quant depart-

ment is γ1, whereas the probability of the presence of firm B’s quant department

is γ2, with 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1.

All traders know that the pricing schedule at t = 1 takes the form of p = λ′ω.

The demands of D1, Q1, D2 and Q2 are xD1, xQ1, xD2, and xQ2, respectively.

Since the opponent firm A is no longer fully discretionary, both firm A’s and firm

B’s ex-ante demand is a weighted sum of demands from their own quant and

discretionary departments:

xA = γ1xQ1 + (1− γ1)xD1, (4.13)

xB = γ2xQ2 + (1− γ2)xD2. (4.14)

If present in the market, trader D2 endowed with v1 optimally chooses xD2 to

maximise the expected trading profit defined by Eq.(4.15), whereas trader Q2

endowed with v1 and θ2 optimally chooses xQ2 to maximise the expected trading

profit defined by Eq.(4.16):

E [(v − p(v1, xD2, xR))xD2|v1] , (4.15)

E [(v − p(v1, xQ2, xM))xQ2|v1, θ2] . (4.16)
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The optimisation problem of D1 is symmetric with respect to the optimisation

problem of D2, and the optimisation problem of Q1 is symmetric with respect

to the optimisation problem of Q2. While the actual demand of D1 is xD1 =
E(v|v1)

2λ
−E(xB |v1)

2
, the strategically inflexible quant department Q2 incorrectly thinks

xD1 takes the following form:

xD1 =
E(v|v1)

2λ
. (4.17)

Similarly, while the actual demand of Q1 is xQ1 =
E(v|v1, θ2)

2λ
−E(xM |v1, θ2)

2
, the strate-

gically inflexible quant department Q2 incorrectly thinks xQ1 takes the following

form:

xQ1 =
E(v|v1, θ2)

2λ
. (4.18)

As usual, market makers consider the aggregate order flow ω as the sum of the

order flows submitted by firm A, firm B, and a group of noise traders:

ω = γ1xQ1 + (1− γ1)xD1 + γ2xQ2 + (1− γ2)xD2 + u. (4.19)

Market makers again follow the weak market efficiency rule defined by p = E[v|ω]
and set a price that allows them to break even in expectation. The following

proposition summarises equilibrium outcomes in the extended economy in which

each firm has a quant department.

Proposition 4.5. Consider an economy in which the two firms each have a quant

department. Equilibrium pricing rule of market makers is characterised by p =

λ′ω, and equilibrium trading strategies of traders Q1, D1, Q2, and D2 are given by

xQ1 = αQ1v1 + βQ1θ2, xD1 = αD1v1, xQ2 = αQ2v1 + βQ2θ2, and xD2 = αD2v2 with

λ′ =

√
(γ1 + γ2 − 2γ1γ2 + 4)(γ1 + γ2 + 2)

4(γ1 + γ2 − γ1γ2 + 3)2
+ qη(1− η), (4.20)

αQ1 = αQ2 =
1

4λ′ , αD1 =
γ1 + 2γ2 − γ1γ2 + 4

4λ′(γ1 + γ2 − γ1γ2 + 3)
, (4.21)

βQ1 =
2q − qγ2

4λ′ , αD2 =
γ2 + 2γ1 − γ1γ2 + 4

4λ′(γ1 + γ2 − γ1γ2 + 3)
, (4.22)

βQ2 =
2q − qγ1

4λ′ , η ≡ γ1 + γ2 − γ1γ2
2

. (4.23)
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Note that, when γ1 or γ2 approaches zero, the extended economy would degenerate

to the baseline economy. Based on the equilibrium trading strategies defined by

Proposition 4.5, normalised trading aggressiveness measures of firm A on signals

v1 and θ2 and of firm B on the similar two signals can be derived as:

α̃ ′
A =

3γ2 − 3γ1γ2 + 6

2(γ1 + γ2 − γ1γ2 + 3)
, β̃ ′

A =
3qγ1(2− γ2)

4
, (4.24)

α̃ ′
B =

3γ1 − 3γ1γ2 + 6

2(γ1 + γ2 − γ1γ2 + 3)
, β̃ ′

B =
3qγ2(2− γ1)

4
. (4.25)

4.4.1 Growth in quantitative investing by a single firm

We now turn to analysing the ceteris paribus impacts of growth in quantitative

investing by firm B. As before, we define the overall trading aggressiveness τ ′ as

the sum of the four normalised trading aggressiveness measures. The following

proposition demonstrates the implications of growth in quantitative investing on

overall trading aggressiveness in the extended economy where firm A also has a

quant department.

Proposition 4.6. Consider an economy in which the two firms each have a quant

department. When quantitative investing level γ2 of firm B increases, the impact

on overall trading aggressiveness τ ′ hinges on the trade-off among:

(i) The positive capacity enhancing effect by investment firm B, which is given

by
∂β̃ ′

B

∂γ2
=

3q(2− γ1)

4
. (4.26)

(ii) The negative strategy oblivion effect by investment firm B, which is given by

∂α̃ ′
B

∂γ2
= − 3γ1 + 3

(γ1 + γ2 − γ1γ2 + 3)2
. (4.27)

(iii) The positive internalising effect by the opponent firm A, which implies D1

trades more aggressively on v1 to exploit increased inflexibility of B, and is

given by
∂α̃ ′

A

∂γ2
=

3− 3γ21
2(γ1 + γ2 − γ1γ2 + 3)2

. (4.28)
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(iv) The negative competition effect by the opponent firm A, which implies Q1

trades less aggressively on θ2 due to increased competition, and is given by

∂β̃ ′
A

∂γ2
= −3qγ1

4
. (4.29)

Proposition 4.6 suggests the key result in the baseline model and in the extended

model featured by partial strategic inflexibility (see Appendix 4.2) continues to

hold if both firms have a quant department.

An increase in quantitative investing level γ2 again causes (i) firm B trade more

aggressively on θ2 since B benefits from exploiting the higher capacity of process-

ing θ2, (ii) firm B to trade less aggressively on v1 since B is more strategically

inflexible and more likely to overestimate the trading aggressiveness of the oppo-

nent firm, and (iii) firm A to trade more aggressively on v1 as its discretionary

department internalises the reduced aggressiveness on v1 by B. Aside from the

capacity enhancing effect, the strategy oblivion effect, and the internalising effect

discussed in Section 4.3 and Appendix 4.2, an increase in γ2 also makes firm A’s

information advantage with regard to θ2 become less valuable due to increased

competition from firm B, and thus renders firm A to trade less aggressively on

θ2. We refer to this trading aggressiveness reduction by firm A as the competi-

tion effect. Corollary 4.7 analytically depicts how these four effects on trading

aggressiveness vary with q and γ2.

Corollary 4.7. Consider an economy in which two firms each have a quant depart-

ment. The magnitude of the capacity enhancing effect increases in signal quality

q at a faster rate than the magnitude of the competition effect. The magnitude

of the strategy oblivion effect decreases in quantitative investing intensity γ2 at a

faster rate than the magnitude of the internalising effect does.

The above results again mirror the findings in Corollary 4.3. The positive capac-

ity enhancing effect is strengthened more by an increment in q than the negative

competition effect is, whereas the other two effects are independent of q. There-

fore, for high q, the positive capacity enhancing effect (resp. the negative strategy

oblivion effect) is more likely to dominate, and the net impact of an increase in

quantitative investing level γ2 on overall trading aggressiveness is positive (resp.

negative). The negative strategy oblivion effect is weakened more by an increment

in γ2 than the positive internalising effect is. Therefore, for moderate q, the neg-

ative strategy oblivion effect may dominate with low γ2 but no longer dominates
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when drastically weakened by the further increase in γ2, and the overall trading

aggressiveness is hump-shaped in γ2. The graphical comparison between the sum

of the positive effects and the sum of the absolute values of the negative effects

when q are at low, moderate and high levels would demonstrate similar patterns

as Figure 4.2. Thus, for brevity, we do not report the graphical comparison here.

Driven by the above changes in trading aggressiveness, the price efficiency impli-

cations of increases in γ2 in this extended economy resemble the price efficiency

implications γ in the baseline economy, though the threshold values determining

if q is low, or moderate, or high are different between the two economies. The

equilibrium price efficiency measure in the economy where each firm has a quant

department is specified by the following equation:

PE both quants =
4η + 6

(3γ1 + 3γ2 − 2γ1γ2 + 8− 4qη2 − 6qη) Σ0
. (4.30)

The following proposition formally summarises the price efficiency impact of growth

in quantitative investing by firm B when both firms may contain quant depart-

ments, and Figure 4.4 graphically illustrates the proposition.

Proposition 4.8. Consider an economy in which the two firms each have a quant

department. When quantitative investing level γ2 increases, the effect on price

efficiency depends on the magnitude of signal quality q:

(i) When 0 < q ≤ q3, price efficiency decreases with quantitative investing level.

(ii) When q3 < q < q4, price efficiency decreases if quantitative investing level is

below the threshold value γ̄ ′, and increases if otherwise.

(iii) When q ≥ q4, price efficiency increases with quantitative investing level.

Recall that, when γ = 0 in the baseline model (see Figure 4.3), the price efficiency

stays the same despite the variations in the signal quality n. Nevertheless, when

γ2 = 0 and γ1 > 0 in the current model (see Figure 4.4), the price efficiency would

vary if the signal quality γ varies. The two different observations can be explained

by the differences in trading behaviours when firm A is fully discretionary and

when firm A has a quant department.

More specifically, in models with a fully discretionary opponent firm A, zero quan-

titative investing level γ by firm B effectively means no active trading on signal θ2.

The signal quality thus becomes irrelevant in terms of market outcomes in such
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Figure 4.4: Price efficiency when A has a quant department and quan-
titative investing level γ1 of A is fixed.
This figure illustrates the price efficiency impact of growth in quantitative in-
vesting level γ2 when γ1 is fixed in the setting that firm A also has a quant
department. The figure plots the price efficiency as a function of γ2. The black
dashed line corresponds to q = 0.28, that is, low q. The blue line corresponds
to q = 0.32, that is, moderate q. The grey dashed line corresponds to q = 0.37,
that is, high q. The other parameter values are Σ0 = 1 and γ1 = 0.5, meaning
that the opponent firm A’s quant department presents in the market with a
probability of 0.5.

a setting. If firm A is no longer fully discretionary, despite the zero quantitative

investing level by firm B, the quant department of firm A is naturally more willing

to trade on signal θ2 when the signal is more precise (i.e., larger q), which gives

rise to higher price efficiency.

4.4.2 Growth in quantitative investing by both firms

In the last subsection, we analysed the trading aggressiveness and price efficiency

implications of an increase in the quantitative investing level of firm B, while

keeping the quantitative investing level of firm A fixed. What is the impact on

price efficiency in the extended economy when both firms experience a rise in

quantitative investing levels? To answer this question, we analyse the second-

order cross partial derivatives of α̃ ′
A and the price efficiency measure with respect

to γ1 and γ2, and summarise the results in the following corollary.

Corollary 4.9. (i) The internalising effect brought by an increase in the quanti-

tative investing level γ2 of firm B is decreasing in γ1.
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(ii)The derivative of price efficiency with respect to the quantitative investing level

γ2 of firm B is decreasing in γ1.

An increase in the quantitative investing level of firm B is more likely to decrease

the overall trading aggressiveness and harm price efficiency with an increase in the

quantitative investing level of firm A than without. Recall from the last subsection

that the discretionary department of firm A internalises the reduction in firm B’s

trading aggressiveness on v1 given growth in firm B’s quantitative investing level,

that is, ∂ α̃ ′
A/∂γ2 > 0. According to part (i) of Corollary 4.9, if firm A has a higher

quantitative investing level, its discretionary department would put less effort into

(B)

Figure 4.5: Price efficiency when A has a quant department and γ1
and γ2 increase.
The figure illustrates how the relationship between price efficiency and γ2 varies
if γ1 is increased instead of fixed. Panel (A) plots the second-order partial
derivatives of α̃ ′

A on γ2 and γ1. Panel (B) plots the second-order partial deriva-
tives of price efficiency with respect to γ2 and γ1 when q = 0.5 and Σ0 = 1.
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internalising such trading aggressiveness reduction brought by the growth in firm

B’s quantitative investing level, that is, ∂2α̃ ′
B/∂γ2 ∂γ1 < 0. According to part (ii)

of Corollary 4.9, the price efficiency impact of the growth in firm B’s quantitative

investing level is more likely to be negative when firm A’s quantitative investing

level is high than when it is low.

Figure 4.5 graphically illustrates the corollary for any combinations of γ1 and γ2.

To further depict the possible detrimental effect of growth in firm B’s quatitative

investing level γ2 on price efficiency when firm A’s quantitative investing level is

high, we plot price efficiency with respect to γ2 when γ1 = 1 for three different levels

of q, i.e., q = 0.1, q = 0.5 and q = 0.9, in Figure 4.6. The downward sloping curves

in the figure, together with Eq.(A4.1.29), suggest that price efficiency is always

harmed by increases in quantitative level investing level γ2 when the opponent

firm has a quant department but no discretionary department.

(A)

Figure 4.6: Price efficiency when the opponent firm has a quant de-
partment but no discretionary department.
This figure illustrates the price efficiency impact of growth in quantitative in-
vesting level γ2 when firm A has a quant department but no discretionary de-
partment. The figure plots the price efficiency as a function of γ2. The black
dashed line corresponds to q = 0.1, the blue line corresponds to q = 0.5, and the
grey dashed line corresponds to q = 0.9. The other parameter value is Σ0 = 1.

One may interpret the quantitative investing level of firm A as the market quan-

titative investing level excluding firm B. When the market quantitative investing

level is already high, regulators and practitioners should pay close attention to

increased reliance on quantitative investing by individual firms as such reliance

might jeopardise market quality. The findings from both the analytic results and
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the numerical examples in this subsection indicate that implementing the pol-

icy intervention of reducing quantitative investing activities should benefit price

efficiency in markets where such activities are extremely prevalent.

4.5 Conclusion

With advancements in technology and access to large amounts of data, quantita-

tive investing has become increasingly popular in recent years. We build a concise

model that allows for different quantitative investing levels of investment firms

in financial markets. We show that a firm’s quantitative investing level increase

may result in four strategic effects. First, the capacity enhancing effect means the

firm has greater computing power and becomes better at extracting information,

increasing the firm’s trading aggressiveness. Second, the strategy oblivion effect

means the firm has weaker strategic flexibility and is more likely to over-estimate

the trading aggressiveness of other traders, decreasing the firm’s trading aggres-

siveness. Third, the internalising effect suggests that discretionary opponents of

the firm exploit the weaker strategic flexibility and trade more aggressively. Fi-

nally, the competition effect refers to the trading aggressiveness reduction of the

opponent firm due to more fierce competition on quantitative technology. Conse-

quently, price efficiency can be non-monotonic in the quantitative investing level.

In our model, growth in quantitative investing level by individual firms is more

likely to harm price efficiency when the market quantitative investing level is al-

ready high, as discretionary traders are less likely to be present in the market to

internalise trading aggressiveness reduction brought by increased strategic inflex-

ibility.

By decomposing the impact of growth in machine-based quantitative investing

on overall trading aggressiveness and the market efficiency into empirical testable

components primarily driven by the capacity enhancing effect and the strategy

oblivion effect, our theory deepens the understanding of the channels through

which machine-human interaction may drive the financial market outcome.
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Appendix 4.1. Proofs

In this Appendix, we prove our main results. The proofs of Propositions 4.1,

4.2, 4.4 and Corollary 4.3 are omitted for brevity as they respectively follow from

the proofs of Propositions 4.5, 4.6, 4.8 and Corollary 4.7 when the quantitative

investing level of firm A is zero.

Proof of Proposition 4.5. The quant department of firm B observes {v1, θ2} and
chooses xQ2 to maximise the expected profit E [(v1 + v2 − λ′xQ2 − λ′xA) xQ2|v1, θ2].
Using the quant department Q2’s incorrect conjectures about firm A’s trading

strategies as defined in Eqs.(4.10) and (4.11), we can compute the first-order con-

dition (FOC), which delivers

xQ2 =
v1 + E (v2|θ2)

2λ′ − E (γ1xQ1|v1, θ2)
2

− E((1− γ1)xD1|v1, θ2)
2

=
v1

4λ′ +
(2− γ1)qθ2

4λ′ .

(A4.1.1)

Therefore, the quant department Q2 has a linear equilibrium trading strategy

xQ2 = αQ2v1+βQ2θ2, with the values of αQ2 and βQ2 satisfy the following equation:

αQ2 =
1

4λ′ and βQ2 =
2q − qγ1

4λ′ . (A4.1.2)

Since the optimisation problems of the quant departments of firm A and firm B are

symmetric, equilibrium trading strategies of the two quant departments are also

symmetric. The quant department Q1 has a linear equilibrium trading strategy

xQ1 = αQ1v1 + βQ1θ2. Substituting γ1 on the right hand side of Eq.(A4.1.2) with

γ2, we know that the values of αQ1 and βQ1 satisfying the following equation:

αQ1 =
1

4λ′ and βQ1 =
2q − qγ2

4λ′ . (A4.1.3)

The discretionary department of firm B observes only v1 and chooses xD2 to max-

imise the E [(v1 + v2 − λ′xD2 − λ′xA) xD2|v1]. Taking the FOC of D2’s profit with

respect to xD2 and rearranging terms yields

xD2 =
v1

2λ′ −
E (γ1xQ1|v1, θ2)

2
− E((1− γ1)xD1|v1, θ2)

2

=
v1

2λ′ −
γ1v1

8λ′ − (1− γ1)xD1

2
.

(A4.1.4)
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Since the optimisation problems of the discretionary departments of firm A and

firm B are symmetric, equilibrium trading strategies of the two discretionary de-

partments are also symmetric. The strategy of D1 should satisfy

xD1 =
v1

2λ′ −
γ2v1

8λ′ − (1− γ2)xD2

2
. (A4.1.5)

Combining Eqs.(A4.1.4) and (A4.1.5), the discretionary departments D2 and D1

have linear equilibrium trading strategies xD2 = αD2v1 and xD1 = αD1v1, with:

αD2 =
(4 + γ2 + 2γ1 − γ1γ2)

4λ′(γ1 + γ2 − γ1γ2 + 3)
, (A4.1.6)

αD1 =
(4 + γ1 + 2γ2 − γ2γ1)

4λ′(γ1 + γ2 − γ1γ2 + 3)
. (A4.1.7)

We now turn to the market maker’s decision. The market maker considers the

aggregate order flow ω takes the form of ω = γ1xQ1 + (1− γ1)xD1 + γ2xQ2 + (1−
γ2)xD2+u and sets p = E(v|ω) = λ′ω. Given that λ′ = cov(v, ω)/var(ω), we have:

λ′ =
(γ1αQ1 + (1− γ1)αD1 + γ2αQ2 + (1− γ2)αD2)Σ0 + q(γ1βQ1 + γ2βQ2)Σ0

(γ1αQ1 + (1− γ1)αD1 + γ2αQ2 + (1− γ2)αD2)2Σ0 + q(γ1βQ1 + γ2βQ2)2Σ0 +Σ0
. (A4.1.8)

Multiplying both sides of Eq.(A4.1.8) by λ′ and rearranging terms, we know that

the above equation is equivalent to

λ′
2
(γ1αQ1 + (1− γ1)αD1 + γ2αQ2 + (1− γ2)αD2)

2 + qλ′
2
(γ1βQ1 + γ2βQ2)

2

+ λ′
2
= λ′(γ1αQ1 + (1− γ1)αD1 + γ2αQ2 + (1− γ2)αD2) + qλ′(γ1βQ1 + γ2βQ2).

(A4.1.9)

Substituting Eqs.(A4.1.2), (A4.1.3), (A4.1.6), and (A4.1.7) into Eq.(A4.1.9), we

can explicitly solve for the value of λ′, which is

λ′ =

√
(γ1 + γ2 − 2γ1γ2 + 4)(γ1 + γ2 + 2)

4(γ1 + γ2 − γ1γ2 + 3)2
+ qη(1− η), (A4.1.10)

where η is defined as a function of γ1 and γ2:

η ≡ (γ1 + γ2 − γ1γ2)/2. (A4.1.11)

The equilibrium values of (λ′, αQ2, βQ2, αQ1, βQ1, αD2, αD1) are thus given by

Eqs.(A4.1.2), (A4.1.3), (A4.1.6), (A4.1.7) and (A4.1.10).

■
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Proof of Proposition 4.6. Let ψ ≡ 1/3λ′, the normalised trading aggressiveness

measure of firm B on signal θ2 can be calculated as β̃ ′
B = γ2βQ2/ψ = 3λ′γ2βQ2,

which leads to

β̃ ′
B = 3λ′γ2 ·

2q − qγ1
4λ′

=
3qγ2(2− γ1)

4
.

(A4.1.12)

The first-order derivative of β̃ ′
B with respect to γ2 is thus

∂β̃ ′
B

∂γ2
=

3q(2− γ1)

4
· ∂γ2
∂γ2

=
3q(2− γ1)

4
.

(A4.1.13)

The normalised trading aggressiveness measure of firm B on signal v1 can be

calculated as α̃ ′
B = (γ2αQ2 + (1− γ2)αD2)/ψ = 3λ′γ2αQ2 + 3λ′(1− γ2)αD2, which

leads to

α̃ ′
B = 3λ′γ2 ·

1

4λ′ + 3λ′(1− γ2) ·
γ2 + 2γ1 − γ1γ2 + 4

4λ′(γ1 + γ2 − γ1γ2 + 3)

=
3γ1 − 3γ1γ2 + 6

2(γ1 + γ2 − γ1γ2 + 3)
.

(A4.1.14)

The first-order derivative of α̃ ′
B with respect to γ2 is thus

∂α̃ ′
B

∂γ2
=

3((γ1 + γ2 − γ1γ2 + 3)(−γ1)− (γ1 − γ1γ2 + 2)(1− γ1))

2(γ1 + γ2 − γ1γ2 + 3)2

= − 3γ1 + 3

(γ1 + γ2 − γ1γ2 + 3)2
.

(A4.1.15)

The normalised trading aggressiveness measure of firm A on signal θ2 can be

calculated as β̃ ′
A = γ1βQ1/ψ = 3λ′γ1βQ1, which leads to

β̃ ′
A = 3λ′γ1 ·

2q − qγ2
4λ′

=
3qγ1(2− γ2)

4
.

(A4.1.16)

The first-order derivative of β̃ ′
A with respect to γ2 is thus

∂β̃ ′
A

∂γ2
=

3qγ1
4

· ∂(2− γ2)

∂γ2

= − 3qγ1
4

.

(A4.1.17)
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The normalised trading aggressiveness measure of firm A on signal v1 can be

calculated as α̃ ′
A = (γ1αQ1 + (1− γ1)αD1)/ψ = 3λ′γ1αQ1 + 3λ′(1− γ1)αD1, which

leads to

α̃ ′
A = 3λ′γ1 ·

1

4λ′ + 3λ′(1− γ1) ·
γ1 + 2γ2 − γ1γ2 + 4

4λ′(γ1 + γ2 − γ1γ2 + 3)

=
3γ2 − 3γ1γ2 + 6

2(γ1 + γ2 − γ1γ2 + 3)
.

(A4.1.18)

The first-order derivative of α̃ ′
A with respect to γ2 is thus

∂α̃ ′
A

∂γ2
=

3((γ1 + γ2 − γ1γ2 + 3)(1− γ1)− (γ2 − γ1γ2 + 2)(1− γ1))

2(γ1 + γ2 − γ1γ2 + 3)2

=
3− 3γ21

2(γ1 + γ2 − γ1γ2 + 3)2
.

(A4.1.19)

Therefore, for γ1 ∈ [0, 1] and γ2 ∈ [0, 1], we have ∂β̃ ′
B/∂γ2 > 0, ∂α̃ ′

B/∂γ2 < 0,

∂β̃ ′
A/∂γ2 ≤ 0 (the equal sign holds only when γ1 = 0), ∂α̃ ′

A/∂γ2 ≥ 0 (the equal

sign holds only when γ1 = 1).

■

Proof of Corollary 4.7. Using Eq.(A4.1.13) and taking the derivative of the

capacity enhancing effect with respect to the signal quality q, we obtain

∂2β̃ ′
B

∂γ2 ∂q
=

3(2− γ1)

4
· ∂q
∂q

=
3(2− γ1)

4
.

(A4.1.20)

We thus have ∂2β̃ ′
B/∂γ2 ∂q > 0, which, combined with ∂β̃ ′

B/∂γ2 > 0, means that

the magnitude of the capacity enhancing effect is intensified by increased signal

quality q.

Using Eq.(A4.1.17) and taking the derivative of the competition effect with respect

to the signal quality q, we obtain

∂2β̃ ′
A

∂γ2 ∂q
= −3γ1

4
· ∂q
∂q

= −3γ1
4

.

(A4.1.21)
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We thus have ∂2β̃ ′
A/∂γ2 ∂q ≤ 0 (the equal sign holds only when γ2 = 0), which,

combined with ∂β̃ ′
A/∂γ2 < 0, means that the magnitude of the competition effect

is intensified by increased signal quality q. Furthermore, we know that

∂2β̃ ′
B

∂γ2 ∂q
−
∣∣∣∣∣
∂2β̃ ′

A

∂γ2 ∂q

∣∣∣∣∣ =
3

2
. (A4.1.22)

By Eq.(A4.1.22), the magnitude of the capacity enhancing effect increases in signal

quality q at a faster rate than the magnitude of the competition effect does.

Using Eq.(A4.1.15) and taking the derivative of the strategy oblivion effect with

respect to the quantitative investing level γ2 yields

∂2α̃ ′
B

∂γ2 ∂γ2
= −(3 + 3γ1) ·

(
− 2

(3 + γ1 + γ2 − γ1γ2)3

)
· ∂(3 + γ1 + γ2 − γ1γ2)

∂γ2

=
6(1 + γ1)(1− γ1)

(γ1 + γ2 − γ1γ2 + 3)3
.

(A4.1.23)

Since ∂2α̃ ′
B/∂γ2 ∂γ2 ≥ 0 (the equal sign holds only when γ1 = 1) and ∂α̃ ′

B/∂γ2 <

0, the magnitude of the strategy oblivion effect is weakened by the increased

quantitative investing level γ2.

Using Eq.(A4.1.19) and taking the derivative of the internalising effect with respect

to the quantitative investing level γ2 yields

∂2α̃ ′
A

∂γ2 ∂γ2
=

(3− 3γ21)

2
· −2(1− γ1)

(γ1 + γ2 − γ1γ2 + 3)2

= − 3(1− γ1)
2(1 + γ1)

(γ1 + γ2 − γ1γ2 + 3)2
.

(A4.1.24)

Since ∂2α̃ ′
A/∂γ2 ∂γ2 ≤ 0 and ∂2α̃ ′

A/∂γ2 ≥ 0 (the equal signs hold only when γ2 =

1), the magnitude of the internalising effect is weakened by the increased quan-

titative investing level γ2. Furthermore, combining Eqs.(A4.1.22) and (A4.1.23),

we know that

∂2α̃ ′
B

∂γ2 ∂γ2
−
∣∣∣∣
∂2α̃ ′

A

∂γ2 ∂γ2

∣∣∣∣ =
3(1 + γ1)

2(1− γ1)

(γ1 + γ2 − γ1γ2 + 3)3
> 0. (A4.1.25)

By Eq.(A4.1.25), the magnitude of the strategy oblivion effect decreases in quan-

titative investing level γ2 at a faster rate than the magnitude of the internalising

effect does.

■
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Proof of Proposition 4.8. The covariance between the fundamental value v and

the price p can be calculated as following

cov(v, p) = cov(v1 + v2, λ
′γ1αQ1v1 + λ′(1− γ1)αD1v1 + λ′γ2αQ2v1 +

λ′γ1βQ1θ2 + λ′γ2βQ2θ2)

=
γ1 + γ2 − 2γ1γ2 + 4

2(γ1 + γ2 − γ1γ2 + 3)
Σ0 +

q(γ1 + γ2 − γ1γ2)

2
Σ0.

(A4.1.26)

Because λ = cov(v, ω)/var(ω), we get cov(v, p) = var(p). Using the projection

theorem, the conditional variance var(v|p) is

var(v|p) = var(v)− cov(v, p)2

var(p)

= 2Σ0 −
γ1 + γ2 − 2γ1γ2 + 4

2(γ1 + γ2 − γ1γ2 + 3)
Σ0 −

q(γ1 + γ2 − γ1γ2)

2
Σ0.

(A4.1.27)

The first-order derivative of the price discovery measure var(v|p)−1 with respect

to the quantitative investing level γ2 satisfies

∂PEboth quants

∂γ2
= − 1

var(v1 + v2|p)2
· ∂var(v|p)

∂γ2

= − 1

var(v1 + v2|p)2
(

(1 + γ1)
2

2(γ1 + γ2 − γ1γ2 + 3)2
+ q(

γ1
2

− 1

2
)

)
Σ−1
0

∝ −
(

(1 + γ1)
2

2(γ1 + γ2 − γ1γ2 + 3)2
+ q(

γ1
2

− 1

2
)

)
.

(A4.1.28)

To determine the sign of the derivative of the price efficiency with respect to γ2,

we discuss the following two scenarios, i.e., γ1 = 1 and 0 ≤ γ1 < 1.

(i) If γ1 = 1 and firm A is fully quantitative, we have the following relationships:

(1 + γ1)
2

2(γ1 + γ2 − γ1γ2 + 3)2
> 0 and

γ1
2

− 1

2
= 0. (A4.1.29)

Substituting Eq.(A4.1.29) into Eq.(A4.1.28) yields ∂PEboth quants/∂γ2 < 0 for any

γ2. That is, price efficiency always decreases with the quantitative investing level

γ2 when γ1 = 1.

(ii) If 0 ≤ γ1 < 1 and firm A has a discretionary department, ∂PEboth quants/∂γ2 >

0 holds if and only if
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−
(

(1 + γ1)
2

2(γ1 + γ2 − γ1γ2 + 3)2
+ q(

γ1
2

− 1

2
)

)
> 0

⇐⇒ γ2 >
1 + γ1

(1− γ1)
√
q (1− γ1)

− 3 + γ1
1− γ1

≡ γ̄ ′.
(A4.1.30)

Under similar parameter settings, ∂PEboth quants/∂γ2 < 0 holds if and only if

−
(

(1 + γ1)
2

2(γ1 + γ2 − γ1γ2 + 3)2
+ q(

γ1
2

− 1

2
)

)
< 0

⇐⇒ γ2 <
1 + γ1

(1− γ1)
√
q (1− γ1)

− 3 + γ1
1− γ1

≡ γ̄ ′.
(A4.1.31)

Note that for γ̄ ′ to lie inside of (0,1), the value of q must satisfy the following

inequality:

0 <
1 + γ1

(1− γ1)
√
q (1− γ1)

− 3 + γ1
1− γ1

< 1

⇐⇒ q >
(1 + γ1)

2

16(1− γ1)
≡ q3 and q <

(1 + γ1)
2

(3 + γ1)2(1− γ1)
≡ q4.

(A4.1.32)

Therefore, when q3 < q < q4, price efficiency decreases (resp. increases) with the

quantitative investing level γ2 if γ2 is below (resp. above) the threshold γ̄ ′. When

q < q3, we have γ̄ ′ > 1, which means ∂PEboth quants/∂γ2 < 0 for any γ2. When

q = q3, we have γ̄ ′ = 1 and thus γ2 ≤ γ̄ ′ and ∂PEboth quants/∂γ2 ≤ 0, of which

the equal signs hold for γ2 = 1. Consequently, when 0 < q ≤ q3, price efficiency

decreases with the quantitative investing level γ2 of firm B.

When q > q4, we have γ̄ ′ < 0, which means ∂PEboth quants/∂γ2 > 0 for any γ2.

When q = q4, we have γ̄ ′ = 0 and thus γ2 ≤ γ̄ ′ and ∂PEboth quants/∂γ2 ≤ 0, of

which the equal signs hold for γ2 = 0. Consequently, when q ≥ q4, price efficiency

increases with the quantitative investing level γ2 of firm B.

Substituting γ1 = 0 into Eq.(A4.1.32), we obtain the values of q1 and q2 in Propo-

sition (4.4) as shown in Eq.(A4.1.33):

q1 ≡
1

16
and q2 ≡

1

9
. (A4.1.33)

■

Proof of Corollary 4.9. We determine the sign of the second-order cross partial

derivative of α̃ ′
A with respect to γ1 and γ2 as follows:
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∂2α̃ ′
A

∂γ2 ∂γ1
=

3

2
(1− γ21) ·

(
− 2(1− γ1)

(3 + γ1 + γ2 − γ1γ2)3

)

= − 3(1− γ1)(1− γ21)

(3 + γ1 + γ2 − γ1γ2)3
< 0.

(A4.1.34)

The second-order cross partial derivative of the price efficiency measure satisfies

the following:

∂PEboth quants

∂γ2 ∂γ1
=

2

var(v|p)3 · ∂var(v|p)
∂γ1

· ∂var(v|p)
∂γ2

− 1

var(v|p)2 · ∂var(v|p)
∂γ2∂γ1

∝ 2

var(v|p) ·
∂var(v|p)

∂γ1
· ∂var(v|p)

∂γ2
− ∂var(v|p)

∂γ2∂γ1
.

(A4.1.35)

We can derive that 2
3
Σ−1

0 ⩽ var(v|p)−1 ⩽ 8
7
Σ−1

0 . Taking first-order derivatives of

conditional variance var(v|p) with respect to quantitative investing levels γ1 and

γ2, we have

∂var(v|p)
∂γ1

=

(
(1 + γ2)

2

2 (γ1 + γ2 − γ1γ2 + 3)2
+ q

(
γ2
2

− 1

2

))
Σ0, (A4.1.36)

∂var(v|p)
∂γ2

=

(
(1 + γ1)

2

2 (γ1 + γ2 − γ1γ2 + 3)2
+ q

(
γ1
2

− 1

2

))
Σ0. (A4.1.37)

From Eqs.(A4.1.36) and (A4.1.37), we can determine the value range of ∂var(v|p)/∂γ1
and ∂var(v|p)/∂γ2 as−15

32
Σ0 ⩽ ∂var(v|p)/∂γ1 ⩽ 1

8
Σ0 and−15

32
Σ0 ⩽ ∂var(v|p)/∂γ2 ⩽

1
8
Σ0. The second-order cross partial derivative of var(v|p) is

∂var(v|p)
∂γ2∂γ1

=

(
q

2
+

2 (1 + γ1) (1 + γ2)

(γ1 + γ2 − γ1γ2 + 3)3

)
Σ0. (A4.1.38)

To determine the sign of the second-order cross partial derivative of the price

efficiency measure, consider the following five scenarios: (i) ∂var(v|p)/∂γ1 < 0

and ∂var(v|p)/∂γ2 > 0, (ii) ∂var(v|p)/∂γ1 < 0 and ∂var(v|p)/∂γ2 < 0, (iii)

∂var(v|p)
/∂γ1 > 0 and ∂var(v|p)/∂γ2 < 0, (iv) ∂var(v|p)/∂γ1 > 0 and ∂var(v|p)/∂γ2 > 0,

and (v) ∂var(v|p)/∂γ1 or ∂var(v|p)/∂γ2 = 0.

(i) If ∂var(v|p)/∂γ1 < 0 and ∂var(v|p)/∂γ2 > 0, as 2(var(v|p))−1 > 0, −∂var(v|p)
/∂γ1∂γ2 < 0, and (∂var(v|p)/∂γ1)(∂var(v|p)/∂γ2) < 0 , we can easily obtain that

∂PEboth quants/∂γ2γ1 is negative.
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(ii) If ∂var(v|p)/∂γ1 < 0 and ∂var(v|p)/∂γ2 < 0, since 2
3
Σ−1

0 ⩽ var(v|p)−1 ⩽ 8
7
Σ−1

0

and 0 < −2∂var(v|p)/∂γ1 ⩽ 15
16
Σ0, we have the following relationship:

2

var(v|p) ·
∂var(v|p)

∂γ1
· ∂var(v|p)

∂γ2
− ∂var(v|p)

∂γ2∂γ1

⩽ −15

14

∂var(v|p)
∂γ2

− ∂var(v|p)
∂γ1∂γ2

= −15

14

(
(1 + γ1)

2

2 (γ1 + γ2 − γ1γ2 + 3)2
+

qγ1 − q

2

)
Σ0

−
(
q

2
+

2γ1 + 2γ2 + 2γ1γ2 + 2

(γ1 + γ2 − γ1γ2 + 3)3

)
Σ0

≡ s.

(A4.1.39)

From Eq.(A4.1.39), ∂s/∂q = (1 − 15γ1)Σ0/28. If γ1 ⩾ 1/15, we have ∂s/∂q ⩽ 0,

and thus

s ⩽ s|q=0 = −(1 + γ1)(60γ1 + 71γ2 − 15γ21γ2 + 15γ21 + 101)

28(γ1 + γ2 − γ1γ2 + 3)3
Σ0

< −Σ0

28
< 0.

(A4.1.40)

If γ1 < 1/15, we have ∂s/∂q > 0 and thus the following inequality:

s ⩽ s|q=1 = −(1 + γ1)(60γ1 + 71γ2 − 15γ21γ2 + 15γ21 + 101)

28(γ1 + γ2 − γ1γ2 + 3)3
Σ0 + (

1

28
− 15γ1

28
)Σ0

< − 1

28
Σ0 +

1

28
Σ0 −

15γ1
28

Σ0 < 0.

(A4.1.41)

According to Eq.(A4.1.40) and Eq.(A4.1.41), we know that ∂PEboth quants/∂γ2γ1

is negative when ∂var(v|p)/∂γ1 < 0 and ∂var(v|p)/∂γ2 < 0.

(iii) If ∂var(v|p)/∂γ1 > 0 and ∂var(v|p)/∂γ2 < 0, as 2(var(v|p))−1 > 0, −∂var(v|p)
/∂γ1∂γ2 < 0, and (∂var(v|p)/∂γ1)(∂var(v|p)/∂γ2) < 0, we can easily obtain that

∂PEboth quants/∂γ2γ1 is negative.

(iv) If ∂var(v|p)/∂γ1 > 0 and ∂var(v|p)/∂γ2 > 0, as 4
3
Σ−1

0 ⩽ 2(var(v|p))−1 ⩽
16
7
Σ−1

0 and 0 < (∂var(v|p)/∂γ1)(∂var(v|p)/∂γ2) ⩽ 1
64
Σ2

0, we have the following

relationship:
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2

var(v|p) ·
∂var(v|p)

∂γ1
· ∂var(v|p)

∂γ2
− ∂var(v|p)

∂γ2∂γ1

⩽
1

28
Σ0 −

(
q

2
+

2γ1 + 2γ2 + 2γ1γ2 + 2

(γ1 + γ2 − γ1γ2 + 3)3

)
Σ0

<
1

28
Σ0 −

1

16
Σ0 < 0.

(A4.1.42)

(v) If ∂var(v|p)/∂γ1 = 0 or ∂var(v|p)/∂γ2 = 0, we have ∂PEboth quants/∂γ2 ∂γ1 =

−(var(v|p))−2∂var(v|p)/∂γ2∂γ1 < 0.

Based on the discussion of the above five scenarios, it is proved that ∂PEboth quants

/∂γ2 ∂γ1 < 0 for all combinations of γ1, γ2, and q.

■
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Appendix 4.2. Partial strategic inflexibility

In the baseline model, we assume a fully discretionary firm and a firm with a

quant department. The quant department is assumed to have complete strategic

inflexibility, i.e., it completely ignores that its price impact can reduce the trading

aggressiveness of the fully discretionary firm. In this Appendix, we relax the

assumption of complete strategic inflexibility and extend to the more general case

of partial strategic inflexibility. For proportion h of the quant department Q’s

orders, Q incorrectly ignores that the fully discretionary firm A reacts to the

corresponding price impact by reducing trading aggressiveness, where 0 < h ≤ 1.

Denote the market maker’s pricing function as p = λ∗ω, Q now thinks the demand

of firm A takes the following form:

xA =
E(v|ϕA)

2λ∗ − (1− h)E(xB|ϕA)

2
. (A4.2.1)

All other setups remain the same as in the baseline model. The following propo-

sition summarises the equilibrium outcomes in the economy with partial strategic

inflexibility.

Proposition 4.10. Consider an economy with partial strategic inflexibility. Equi-

librium pricing rule of market makers is characterised by p = λ∗ω, and equilib-

rium trading strategies of traders A, Q, and D are given by xA = α∗
Av1, xQ =

α∗
Qv1 + β∗

Qθ2, and xD = α∗
Dv1, with

λ∗ =

√
(γh+ 4)(γh+ 2)

4(γh+ 3)2
+

nγ(2− γ)

4
, (A4.2.2)

α∗
Q =

γh− h+ 4

4λ∗(γh+ 3)
, α∗

D =
γh+ 4

4λ∗(γh+ 3)
, (A4.2.3)

β∗
Q =

q

2λ∗ , α∗
A =

γh+ 2

2λ∗(γh+ 3)
. (A4.2.4)

Proof. Using the quant department Q’s incorrect conjectures about firm A’s trad-

ing strategies as defined in Eq.(A4.2.1), we can compute the FOC of Q’s maximisa-

tion problem about the expected trading profit E [(v1 + v2 − λ∗xQ − λ∗xA) xQ|v1, θ2],
which gives
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xQ =
v1 + E (v2|θ2)

2λ∗ − E (xA|v1, θ2)
2

=
v1 + qθ2

2λ∗ − E(v|ϕA)

4λ∗ +
(1− h)E(xB|ϕA)

4

=
v1 + qθ2

2λ∗ − hv1
4λ∗ − (1− h)xA

2
.

(A4.2.5)

The FOC of D’s maximisation problem about its expected trading profit E
(
v1 +

v2 − λ∗xD − λ∗xA) xD|v1
)
leads to

xD =
v1
2λ∗

− xA
2
. (A4.2.6)

The FOC of firm A’s maximisation problem about its expected trading profit

E(v1 + v2 − λ∗xB − λ∗xA) xA|v1) gives rise to

xA =
v1
2λ

− E(γxQ|v1)
2

− E((1− γ)xD|v1)
2

=
v1
2λ∗ −

γα∗
Qv1

2
− (1− γ)xD

2
.

(A4.2.7)

Combining Eqs. (A4.2.5), (A4.2.6), and (A4.2.7), we know that





α∗
Q =

1

2λ∗ − h

4λ∗ − (1− h)α∗
A

2

α∗
D =

1

2λ∗ − α∗
A

2

α∗
A =

1

2λ∗ −
γα∗

Q

2
− (1− γ)α∗

D

2
.

(A4.2.8)

Based on the above equation system, we can express αA, αD, and αQ as functions

of λ∗:

α∗
Q =

γh− h+ 4

4λ∗(γh+ 3)
, (A4.2.9)

α∗
D =

γh+ 4

4λ∗(γh+ 3)
, (A4.2.10)

α∗
A =

γh+ 2

2λ∗(γh+ 3)
. (A4.2.11)

From Eq.(A4.2.5), the aggressiveness of the quant department on θ2 subjects to

β∗
Q =

q

2λ∗ . (A4.2.12)
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The market maker considers the aggregate order flow ω as ω = xA + γxQ + (1 −
γ)xD + u. The price p = E(v|ω) = λ∗ω is characterised by

λ∗ =
(α∗

A + γα∗
Q + (1− γ)α∗

D)Σ0 + qγβ∗
QΣ0

(α∗
A + γα∗

Q + (1− γ)α∗
D)

2Σ0 + qγβ∗
Q
2Σ0 +Σ0

. (A4.2.13)

Multiplying both sides of Eq.(A4.2.13) by λ∗ and rearranging terms, we know that

the above equation is equivalent to

λ∗
2
(α∗

A + γα∗
Q + (1− γ)α∗

D)
2 + nλ∗

2
(γβ∗

Q)
2

+ λ∗
2
= λ∗(α∗

A + γα∗
Q + (1− γ)α∗

D) + nλ∗γβ∗
Q.

(A4.2.14)

Substituting Eqs.(A4.2.9)-(A4.2.12) into Eq.(A4.2.14), we can explicitly solve for

the value of λ∗, which is

λ∗ =

√
(γh+ 4)(γh+ 2)

4(γh+ 3)2
+

qγ(2− γ)

4
. (A4.2.15)

The equilibrium values of (λ∗, α∗
Q, β

∗
Q, α

∗
D, α

∗
A) are thus given by Eqs.(A4.2.9)-

(A4.2.12) and (A4.2.15).

■

The normalised trading aggressiveness measures of firm A on signal v1, and of firm

B on signals v1 and θ2 are derived as:

α̃∗
A =

3γh+ 6

2γh+ 6
, α̃∗

B =
3

γh+ 3
, β̃∗

B =
3qγ

2
. (A4.2.16)

Define the overall trading aggressiveness as τ∗ ≡ α̃∗
A + α̃∗

B + β̃∗
B, the following

proposition identifies the effects of growth in quantitative investing on overall

trading aggressiveness with partial strategic inflexibility.

Proposition 4.11. Consider an economy with partial strategic inflexibility. When

quantitative investing level γ increases, the impact on overall trading aggressiveness

τ ∗ again hinges on the trade-off among:
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(i) The positive capacity enhancing effect by the quantitative firm B, which is

given by
∂β̃∗

B

∂γ
=

3q

2
. (A4.2.17)

(ii) The negative strategy oblivion effect by the quantitative firm B, which is

given by
∂α̃∗

B

∂γ
= − 3h

(γh+ 3)2
. (A4.2.18)

(iii) The positive internalising effect by the fully-discretionary firm A, which is

given by
∂α̃∗

A

∂γ
=

3h

2(γh+ 3)2
. (A4.2.19)

Proof. Define ψ2 ≡ 1/3λ∗, the normalised trading aggressiveness measure of firm

B on signal θ2 is β̃ ∗
B = γβQ/ψ2 = 3λ∗γβQ, which yields

β̃ ∗
B = 3λ∗γ · q

2λ∗
=

3qγ

2
. (A4.2.20)

The first-order derivative of β̃ ∗
B with respect to γ is thus

∂β̃∗
B

∂γ
=

3q

2
. (A4.2.21)

The normalised trading aggressiveness measure of firm B on signal v1 is α̃ ∗
B =

(γαQ + (1− γ)αD)/ψ2, which can be calculated as

α̃ ∗
B = 3λ∗γ · γh− h+ 4

4λ∗(γh+ 3)
+ 3λ∗(1− γ) · γh+ 4

4λ∗(γh+ 3)
=

3

γh+ 3
. (A4.2.22)

The first-order derivative of α̃ ∗
B with respect to γ is thus calculated as follows

∂α̃ ∗
B

∂γ
= − 3

(γh+ 3)2
· ∂(γh+ 3)

∂γ

= − 3h

(γh+ 3)2
.

(A4.2.23)

The normalised trading aggressiveness measure of the fully discretionary firm A

on signal v1 is α̃ ∗
A = αA/ψ2, which can be calculated as

α̃ ∗
A = 3λ∗ · γh+ 2

2λ∗(γh+ 3)

=
3γh+ 6

2γh+ 6
.

(A4.2.24)
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The first-order derivative of α̃ ∗
A with respect to γ is thus

∂α̃ ∗
A

∂γ
=

3

2
· (γh+ 3)h− (γh+ 2)h

(γh+ 3)2

=
3h

2(γh+ 3)2
.

(A4.2.25)

Therefore, for γ ∈ [0, 1], we have ∂β̃ ∗
B/∂γ > 0, ∂α̃ ∗

B/∂γ < 0, and ∂α̃ ∗
A/∂γ > 0.

With partial strategic inflexibility and as quantitative investing level γ increases,

firm B trades more aggressively on signal θ2 and less aggressively on signal v1,

while firm A trades more aggressively on signal v1.

■

Proposition 4.11 suggests the key result in the baseline model remains valid with

partial strategic inflexibility. That is, the growth in quantitative trading still

gives rise to the positive capacity enhancing effect, the negative strategy oblivion

effect and the positive internalising effect. Note that, the strategy oblivion effect

∂α̃∗
B/∂γ and the internalising effect ∂α̃∗

A/∂γ are independent of signal quality q

and approach zero when inflexibility degree h approaches zero, while the capacity

enhancing effect ∂β̃∗
B/∂γ is independent of h.

Corollary 4.12. Consider an economy with partial strategic inflexibility. The

magnitude of the capacity enhancing effect increases in signal quality q. The mag-

nitude of the strategy oblivion effect increases in inflexibility degree h at a faster

rate than the magnitude of the internalising effect does. The magnitude of the

strategy oblivion effect decrease in quantitative investing intensity γ at a faster

rate than the magnitude of the internalising effect does.

Proof. Using Eq.(A4.2.17) and taking the derivative of the capacity enhancing

effect with respect to the signal quality q, we have

∂2β̃ ∗
B

∂γ ∂q
=

3

2
. (A4.2.26)

The second-order derivative ∂2β̃ ∗
B/∂γ ∂q > 0 again suggests that the positive ca-

pacity enhancing effect is intensified by increased signal quality q.
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Using Eq.(A4.2.23) and taking the derivative of the strategy oblivion effect with

respect to the inflexibility degree h, we have

∂2α̃∗
B

∂γ ∂h
= −3

(
1

(γh+ 3)2
− 2γh

(γh+ 3)3

)

= −3(3− γh)

(γh+ 3)3
.

(A4.2.27)

Using Eq.(A4.2.25) and taking the derivative of the internalising effect with respect

to the inflexibility degree h, we have

∂2α̃∗
A

∂γ ∂h
=

3

2

(
1

(γh+ 3)2
− 2γh

(γh+ 3)3

)

=
3(3− γh)

2(γh+ 3)3
.

(A4.2.28)

The second-order derivative ∂2α̃ ∗
A/∂γ ∂h > 0 implies that the positive internalising

effect is intensified by increased inflexibility degree h. Based on Eqs.(A4.2.27) and

(A4.2.28), we know that

∣∣∣∣
∂2α̃∗

B

∂γ ∂h

∣∣∣∣−
∂2α̃ ∗

A

∂γ ∂h
=

3(3− γh)

2(γh+ 3)3
> 0. (A4.2.29)

By Eq.(A4.2.29), the magnitude of the strategy oblivion effect increases in inflexi-

bility degree h at a faster rate than the magnitude of the internalising effect does.

Using Eq.(A4.2.23) and taking the derivative of the strategy oblivion effect with

respect to the quantitative investing level γ gives

∂2α̃∗
B

∂γ ∂γ
= −3h

(
− 2h

(γh+ 3)3

)

=
6h2

(γh+ 3)3
.

(A4.2.30)

Since ∂2α̃ ∗
B/∂γ ∂γ > 0, the negative strategy oblivion effect is weakened by in-

creased quantitative investing level γ. Using Eq.(A4.2.25) and taking the deriva-

tive of the internalising effect with respect to the quantitative investing level γ

gives

∂2α̃∗
A

∂γ ∂γ
=

3h

2

(
− 2h

(γh+ 3)3

)

= − 3h2

(γh+ 3)3
.

(A4.2.31)
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Since ∂2α̃ ∗
A/∂γ ∂γ < 0, the negative strategy oblivion effect is weakened by in-

creased quantitative investing level γ. Based on Eqs.(A4.2.30) and (A4.2.31), we

know that
∂2α̃∗

B

∂γ ∂γ
−
∣∣∣∣
∂2α̃∗

A

∂γ ∂γ

∣∣∣∣ =
3h2

(γh+ 3)3
> 0. (A4.2.32)

By Eq.(A4.2.32), the magnitude of the strategy oblivion effect decreases in quan-

titative investing level γ at a faster rate than the magnitude of the internalising

effect does.

■

Corollary 4.12 describes in detail how these three effects vary with q,γ, and h.

Two notable observations emerge from Corollary 4.12. First, the monotonicity

of the three effects with regard to q and γ remain qualitatively unchanged com-

pared with Corollary 4.3. In particular, an increase in q intensifies the capacity

enhancing effect, i.e., ∂2β̃∗
B/∂γ ∂q > 0. Second, a rise in h intensifies the strategy

oblivion effect more than it intensifies the internalising effect, i.e., ∂2α̃∗
B/∂γ ∂h < 0,

∂2α̃∗
A/∂γ ∂h > 0 and − ∂2α̃∗

B/∂γ ∂h > ∂2α̃∗
A/∂γ ∂h. The rationale behind the in-

tensification of the strategy oblivion effect brought by a rise in h can be stated

as follows. When the technology implemented by the quant department becomes

more reliant on fixed rules, we can reasonably expect that a certain increment of

∆γ at any level of γ brings a larger increment in total strategic inflexibility and

thus an intensified strategy oblivion effect ∂α̃∗
B/∂γ.

Based on the above discussion, we conjecture the net impact of growth in quan-

titative investing on overall trading aggressiveness is more likely to be beneficial

when q is high or h is low due to the capacity enhancing effect’s dominance, and is

more likely to be harmful when q is low or h is high due to the strategy oblivion ef-

fect’s dominance. Figure A4.1 graphically illustrates the three effects for different

combinations of q and h, which helps us validate the conjecture. Panels (A)-(C)

illustrate the case of varying q while keeping h fixed, and demonstrate similar pat-

terns to Figure 4.2. Panels (D)-(F) illustrate the case of varying h while keeping

n fixed.

In Panel (D) with low h, the absolute value of the negative strategy oblivion effect

lies below the sum of the positive effects, and the overall trading aggressiveness is

improved by growth in quantitative investing level. In Panel (E) with moderate

h, the sum of the positive effects and the absolute value of the negative strategy

oblivion effect are both shifted upward compared with their values when h is low,

since ∂2α̃∗
B/∂γ ∂h < 0 and ∂2α̃∗

A/∂γ ∂h > 0. The former upward shift is smaller than



(A) (B) (C)

(D) (E) (F)

Figure A4.1: Trading aggressiveness with partial strategic inflexibility.
This figure illustrates the derivatives of trading aggressiveness measures with respect to quantitative investing level γ in the setting with
partial strategic inflexibility. Panels (A)-(C) illustrate the case of varying q while keeping h = 0.5 fixed. We assume q = 0.04 in Panel
(A), q = 0.047 in Panel (B), and q = 0.057 in Panel (C). Panels (D)-(F) illustrate the case of varying h while keeping q = 0.0611 fixed.
We assume h = 0.32 in Panel(D), h = 0.76 in Panel (E), and h = 0.96 in Panel (F). The other parameter value is Σ0 = 1. Among all
panels, the blue dashed line is the absolute value of the strategy oblivion effect, and the purple line is the sum of the capacity enhancing
effect and the internalising effect.

158

0 0.2 0.4 0.6 0.8 1
γ

0.12

0.16

0.2
|∂α̃∗

B/∂γ|
∂(˜β∗

B + α̃∗
A)/∂γ

0 0.2 0.4 0.6 0.8 1
γ

0.12

0.16

0.2
|∂α̃∗

B/∂γ|
∂(˜β∗

B + α̃∗
A)/∂γ

0 0.2 0.4 0.6 0.8 1
γ

0.12

0.16

0.2
|∂α̃∗

B/∂γ|
∂(˜β∗

B + α̃∗
A)/∂γ

0 0.2 0.4 0.6 0.8 1
γ

0.08

0.16

0.26
|∂α̃∗

B/∂γ|
∂(˜β∗

B + α̃∗
A)/∂γ

0 0.2 0.4 0.6 0.8 1
γ

0.15

0.21

0.26
|∂α̃∗

B/∂γ|
∂(˜β∗

B + α̃∗
A)/∂γ

0 0.2 0.4 0.6 0.8 1
γ

0.15

0.24

0.33
|∂α̃∗

B/∂γ|
∂(˜β∗

B + α̃∗
A)/∂γ



Chapter 4 159

the later upward shift because − ∂2α̃∗
B/∂γ ∂h > ∂2α̃∗

A/∂γ ∂h. Therefore, the ab-

solute value of the strategy oblivion effect is closer to the sum of the positive

effects than when h is low, and intersects with the sum of the positive effects. As

− ∂2α̃∗
B/∂γ ∂γ < ∂2α̃∗

A/∂γ ∂γ < 0, we observe that the sum of the positive effects is

initially smaller but then greater than the absolute value of the negative strategy

oblivion effect. For moderate h, the overall trading aggressiveness decreases with

the quantitative investing level if γ is small, and increases with the quantitative

investing level if γ is large. In Panel (F) with high h, given ∂2α̃∗
B/∂γ ∂h < 0 and

∂2α̃∗
A/∂γ ∂h > 0, the absolute value of the strategy oblivion effect moves up further

compared with when h is moderate, and lies above the sum of the positive effects.

Interestingly, unlike changes in q, changes in h do alter the shapes of the curve

representing the absolute value of the strategy oblivion effect and the curve rep-

resenting the sum of the two positive effects. This is because neither the strategy

oblivion effect nor the internalising effect is linear in h.

The discussion about trading aggressiveness has implications on price efficiency.

The equilibrium price efficiency measure in the economy with partially strategic

inflexibility is specified by the following equation:

PE partial inflexibility =
2γh+ 6

(3γh− 3qγ − qγ2h+ 8)Σ0
. (A4.2.33)

Proposition 4.13 shows the price efficiency impact of growth in quantitative trading

when a firm is fully discretionary and another firm’s quant department is partially

inflexible.

Proposition 4.13. Consider an economy with partial strategic inflexibility. When

quantitative investing level γ increases, the effect on price efficiency depends on

the relative magnitude of signal quality q and inflexibility degree h:

(i) When 0 < q/h ≤ a1, price efficiency decreases in quantitative investing level.

(ii) When a1 < q/h < a2, price efficiency decreases if quantitative investing level

is below the threshold value γ̄∗, and increases if otherwise.

(iii) When q/h ≥ a2, price efficiency increases in quantitative investing level.
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Proof. The covariance between the fundamental value v and the price p in the

setting of partial strategic inflexibility can be calculated as follows:

cov(v, p) = cov(v1 + v2, λ
∗αAv1 + λ∗γαQv1 + λ∗(1− γ)αDv1 + λ∗γβQθ2)

=
γh+ 4

2γh+ 6
Σ0 +

qγ

2
Σ0.

(A4.2.34)

Because cov(v, p) = var(p), the conditional variance var(v|p) can be calculated

via the projection theorem as follows:

var(v|p) = var(v)− cov(v, p)2

var(p)

= 2Σ0 −
γh+ 4

2γh+ 6
Σ0 −

qγ

2
Σ0.

(A4.2.35)

According to the chain rule, the first-order derivative of the price discovery measure

var(v|p)−1 with respect to the quantitative investing level γ satisfies

∂PEpartial inflexibility

∂γ
= − 1

var(v1 + v2|p)2
· ∂var(v|p)

∂γ

= − 1

var(v1 + v2|p)2
(

h

2(γh+ 3)2
− q

2

)
Σ−1

0

∝ −
(

h

2(γh+ 3)2
− q

2

)
.

(A4.2.36)

Based on Eq.(A4.2.29), the derivative ∂PEpartial inflexibility/∂γ > 0 holds if and

only if

−
(

h

2(γh+ 3)2
− q

2
)

)
> 0 ⇐⇒ γ >

1√
qh

− 3

h
≡ γ̄∗. (A4.2.37)

Similarly, the derivative ∂PEpartial inflexibility/∂γ < 0 holds if and only if

−
(

h

2(γh+ 3)2
− q

2
)

)
< 0 ⇐⇒ γ <

1√
qh

− 3

h
≡ γ̄∗. (A4.2.38)

The value range of n such that γ̄∗ lie inside of (0,1) can be derived as follows:

0 <
1√
qh

− 3

h
< 1 ⇐⇒ q

h
>

1

(3 + h)2
≡ a1 and

q

h
<

1

9
≡ a2. (A4.2.39)
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Consequently, when a1 < q/h < a2, the price efficiency decreases (resp. increases)

with the quantitative investing level γ if γ is below (resp. above) the threshold

value of γ̄ ∗.

When q/h < a1, we obtain γ̄
∗ > 1, which means that ∂PEpartial inflexibility/∂γ < 0.

When q/h = a1 and γ̄ ∗ = 1, we have γ ≤ γ̄ ∗ and ∂PEpartial inflexibility/∂γ ≤ 0, of

which the equal signs stand for γ = 1. As a result, when 0 < q/h ≤ a1, the price

efficiency decreases with the quantitative investing level γ.

When q/h > a2, we obtain γ̄
∗ < 0, which means that ∂PEpartial inflexibility/∂γ > 0.

When q/h = a2 and γ̄ ∗ = 0, we have γ ≥ γ̄ ∗ and ∂PEpartial inflexibility/∂γ ≥ 0,

of which the equal signs stand for γ = 1. As a result, when q/h ≥ a2, the price

efficiency decreases with the quantitative investing level γ.

■

If the ratio of q/h is low (0 < q/h ≤ a1), indicating low q or high h, the price

efficiency is harmed by growth in quantitative investing, because the strategy

oblivion effect dominates, and the aggregate trading aggressiveness deteriorates.

If the ratio of q/h is high (q/h ≥ a2), indicating high q or low h, the price efficiency

is improved by growth in quantitative investing, because the capacity enhancing

effect dominates, and the aggregate trading aggressiveness is enhanced. If the

ratio of q/h is high (q/h ≥ a2), indicating high q or low h, the price efficiency

is improved by growth in quantitative investing, because the capacity enhancing

effect dominates, and the aggregate trading aggressiveness is enhanced.

If the ratio of q/h is moderate (a1 < q/h < a2), the hump shape of price efficiency

in γ is consistent with the trading aggressiveness changes implied by Panels (B)

and (E) of Figure A4.1. The price efficiency is initially amplified by growth in

quantitative investing when γ is lower than the threshold value γ̄ but then di-

minished by growth in quantitative investing if γ increases beyond γ̄. Figure A4.2

provides numerical examples of the proposition under the same parameter settings

as Figure A4.1.
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(A)

(B)

Figure A4.2: Price efficiency with partial strategic inflexibility.
This figure illustrates the price efficiency impact of growth in quantitative in-
vesting level γ in the setting of partial strategic inflexibility. Panel (A) illustrates
the case of varying q while keeping h = 0.5 fixed. We let the grey dashed line
correspond to q = 0.04, the blue line correspond to q = 0.047, and the black
dashed line correspond to q = 0.057 in Panel (A). Panel (B) illustrates the case
of varying h while keeping q = 0.0611 fixed. We let the grey dashed line corre-
spond to q = 0.32, the blue line correspond to q = 0.76, and the black dashed
line correspond to q = 0.96 in Panel (B). The other parameter value is Σ0 = 1.

0 0.2 0.4 0.6 0.8 1

γ

0.746

0.748

0.750

0.752

0.754

P
ri
ce

effi
ci
en
cy

Decreasing

Non−monotonic

Increasing

Low q

Moderate q

High q

0 0.2 0.4 0.6 0.8 1

γ

0.742

0.746

0.750

0.754

0.759

P
ri
ce

effi
ci
en
cy

Decreasing

Non−monotonic

Increasing

Low h

Moderate h

High h



Chapter 5

Conclusion and future research

The technology revolution in finance has given rise to numerous innovations, in-

cluding the introduction of limit order books, the increased involvement of so-

cial media in personal investment decisions, and the expansion of FinTech ser-

vices. This thesis analyses the impact of the technology revolution on strategic

behaviours of market participants and its effect on market quality in the modern

finance industry, focusing on two important issues in the field of market microstruc-

ture studies: market manipulation and quantitative investing.

The thesis addresses two questions about market manipulation: Could the tran-

sition from the traditional auction market to the limit order market alter the

form of market manipulation, and could meme investing, a retail buying frenzy

coordinated on social media, reduce manipulative short selling? The thesis also

addresses two questions about quantitative investing: How will quantitative in-

vesting, driven by machine computation, and discretionary investing, driven by

human skills, strategically interact with each other, and what are the relevant

market efficiency implications?

5.1 Learning to strategic trade and manipulate

in limit order markets

Chapter 2 introduces Q-learning, a novel machine learning technique, as a learning

tool to a dynamic limit order market (LOM) to investigate how order book infor-

mation and learning impact the strategic trading behaviours of bounded rational

traders. Q-learning fully endogenises traders’ order choice problems. Overall, this

163
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chapter shows the great potential of integrating reinforcement learning (RL) with

the market microstructure theory framework and adopting RL as an alternative

belief updating rule, since the usage of RL relaxes a set of strict assumptions like

the agent’s perfect knowledge of model priors.

5.1.1 Order choices in limit order markets

Trial-and-error learning based on order book information of bounded rational

agents leads to strategic trading, which is featured by predictable trading be-

haviours. Informed traders primarily depend on fundamental information (as op-

posed to other order book information) to determine their order choices. Informed

traders improve market resiliency and prefer limit (or market) orders when mis-

pricing is small (or large). Uninformed traders, owing to their information disad-

vantage, learn to “chase the trend” and have a greater tendency to place market

buy orders after observing a previous market buy.

5.1.2 Informed manipulation in limit order markets

The analysis in Chapter 2 shows that informed manipulation can be learned as

an equilibrium trading strategy in the dynamic LOM, where informed traders

deliberately stray from their usual predictable trading behaviours to exploit unin-

formed traders’ predictable trading behaviours. Anticipating a mispricing reversal

when small-in-size positive (negative) mispricing is accompanied by high depth

imbalance at the best bid (ask), manipulative informed traders strategically act

against their own preference for limit buys (sells) and use market buys (sells) to

trigger trend-chasing uninformed market buys (sells), enhancing execution proba-

bility and profitability of later informed traders’ limit sells (buys). A novel form of

market manipulation is presented in our dynamic LOM, in which informed traders

take the “wrong” action facing make-take decisions to mislead uninformed traders,

as opposed to taking the “wrong” action facing buy/sell or amount decisions as in

traditional quote-driven models.
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5.2 The influence of meme investing on manip-

ulative short selling

A Kyle-type model with both manipulative and informed short sellers is devel-

oped in Chapter 3 to explain how meme investing, i.e., a retail buying frenzy (as

short-sale friction), impacts the market and real investment efficiency. To model

the retail buying frenzy, an otherwise Goldstein and Guembel (2008) model is

extended to include the settings of explicit short-sale constraints and asymmetric

noise trading. Manipulative short selling is profitable as it drives down the firm

value via the feedback effect from the financial market to real investment. Chapter

3 shows that meme investing can be a natural remedy to manipulative short selling

and does not harm informed short selling for certain types of firms and market

conditions.

5.2.1 Meme investing as explicit short-sale constraints

Explicit short sale constraints settings in Chapter 3 include costly short selling

and a short-sale ban. An intermediate level of short-sale cost enhances investment

efficiency, whereas a relatively high cost has mixed effects on investment efficiency.

An extremely large short-sale cost can impede managers’ ability to learn from stock

prices and compromise the quality of their investment decisions, similar to what

happens when a short-sale ban is implemented.

5.2.2 Meme investing as asymmetric noise trading

Chapter 3 also models a retail buying frenzy as asymmetric noise trading such that

noise buys are more likely than noise sells. Asymmetric noise trading results in

two opposing effects on the informativeness of order flows, namely the order flow

disguising effect and the uninformed-specific short-sale cost effect. The former

effect harms investment efficiency, whereas the latter effect improves it. The latter

effect arises since the increase in noise buys pushes up overall prices and increases

the manager’s investment propensity and imposes a covering cost that is caused

by the correction of underinvestment and is specific to the uninformed trader. The

uninformed-specific short-sale cost effect is more likely to prevail over the order
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flow disguising effect, thereby improving investment efficiency when (i) the fraction

of uninformed speculator is large, (ii) the ex-ante NPV of the project is large, and

(iii) the uncertainty about the profitability of the investment is small.

5.3 The interaction of quantitative and discre-

tionary investing

The strategic interaction of quantitative and discretionary investing is formalised

in Chapter 4 through a Kyle-type model populated by a fully discretionary in-

vestment firm, an investment firm composed of a quant and a discretionary de-

partment, liquidity traders, as well as competitive market makers. The analysis is

further extended to the setting in which two firms each consist of a quant and a

discretionary department and the setting in which partial strategic inflexibility is

present. In essence, Chapter 4 deepens the understanding of the channels through

which human-machine interaction may influence financial market outcomes by

breaking down the impact of growth in machine-based quantitative investing into

empirically testable components, including the capacity enhancing effect and the

strategy oblivion effect. Finally, an additional competition effect arises in the

setting where both firms have quant departments, referring to the trading ag-

gressiveness reduction of the opponent firm due to more fierce competition on

quantitative technology.

5.3.1 Growth in quantitative investing level by individual

firms when other things equal

A ceteris paribus increase in a firm’s quantitative investing level could lead to

various strategic effects in the three aforementioned model settings. First, the

capacity enhancing effect implies increased computing power and improved infor-

mation extraction capabilities of the firm, leading to a rise in the firm’s trading

aggressiveness. Second, the strategy oblivion effect renders the firm more strate-

gically inflexible and more inclined to overestimate the trading aggressiveness of

other traders, leading to a decrease in the firm’s trading aggressiveness. Third, the

internalising effect implies the firm’s discretionary opponents take advantage of the
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weaker strategic flexibility by trading more aggressively. Consequently, increased

quantitative investing level can have a non-monotonic effect on price efficiency.

5.3.2 Growth in quantitative investing level by individual

firms with a high market quantitative investing level

Accompanied by a high market quantitative investing level (i.e., a high quanti-

tative investing level of the opponent firm), an increase in a firm’s quantitative

investing level is more likely to harm price efficiency. This is due to the diminished

internalising effect, with which discretionary traders are less likely to be present

in the market to internalise trading aggressiveness reduction brought by increased

strategic inflexibility.

5.4 Final remarks

To analyse the implications of technological developments in financial markets, the

methodologies used in this thesis involve applying reinforcement learning to market

microstructure theory and modelling feedback effect from financial markets to real

economy in the presence of costly short selling, and modelling the interaction of

quantitative and discretionary investing.

Future research may focus on specific tactics of market manipulation such as spoof-

ing, a more realistic form of market manipulation in limit order markets, using

reinforcement learning agents. Spoofing is a manipulative practice that involves

placing one or more limit orders on a particular side of the limit order book, with

the intention of revoking these orders before they are executed. The primary ob-

jective of this tactic is to deceive the market by creating a false impression of

buying or selling interest, with the aim of influencing other traders’ order sub-

mission decisions. Researchers can utilize the reinforcement learning agents to

comprehend when and how spoofing emerges as an optimal trading strategy, as

well as the impact spoofing has on other trading strategies, and more importantly,

what market designs are more susceptible to spoofing.

Future research may undertake empirical analysis to explore the impact of machine-

based quants replacing human discretionary traders on price efficiency. Since the

thesis provides an analytical decomposition of the impact of growth in machine-

based quantitative investing on the strategic interaction of humans and machines
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and on market efficiency into empirically testable components primarily driven by

capacity and flexibility channels, our theoretical framework of quantitative invest-

ing growth can provide a foundation for such empirical research to examine these

channels.

Future research can also shed light on the topics of welfare and market qual-

ity consequences of alternative data, i.e., data used by investors to evaluate a

company that is not within their traditional data sources. Well-known examples

of alternative data include unstructured text and imagery from news feeds, so-

cial media, online communities, communications metadata, satellite imagery, and

geospatial information. Since alternative data has only recently been applied to

investment analysis, traders are likely to be unsure about how reliable such data

is upon obtaining it. One possible direction to formalise the topic is to extend

standard market microstructure models to allow the speculators to learn about

data reliability over time through trading history.

While there are various avenues for future research to expand upon the theoretical

groundwork laid out in the thesis, it’s important to acknowledge the limitations

of the current research. One constraint of Chapter 2 pertains to the realism of

the trader objective, particularly in relation to the trading profit of reinforcement

learning traders. Currently, this profit is defined as the difference between the

fundamental value and the executed price for a buyer, and the difference between

the executed price and the fundamental value for a seller. A more realistic ap-

proach to defining trading profit would involve considering the price differential

between when the trader opens and closes positions. Chapter 3 is constrained

by the possibility that there might be additional factors at play beyond the ob-

served heightened short-sale frictions associated with retail investor coordination

via social media. Chapter 4 is similarly constrained by the relatively idealized

assumptions of the model. While we simulate a Kyle-type financial market in-

volving two investment firms, real-world financial markets encompass a multitude

of traders and are characterized by greater competitiveness. Additionally, quan-

titative and discretionary traders may exhibit varying abilities to diversify across

different securities, a nuance not captured in our single-asset model.

The financial market microstructure is constantly evolving as technology develop-

ments never stop. This thesis provides only a brief overview of recent developments

and is inevitably limited in scope, and additional research is necessary to gain a

deeper understanding of future challenges and issues in financial markets.
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