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Abstract

Davidson and Beaver (1977) extended the Bradley–Terry model to incorporate the possible

effect of position within a choice set on the choices made in paired comparisons experiments.

In this paper we further extend the Davidson and Beaver result to choice sets of any size.

Under a mild restriction we show that designs optimal for the multinomial logit model are

still optimal when position effects are included in the model. We also show how designs

balanced for carry–over effects of all orders can be used to construct designs with a diagonal

information matrix for attribute effects. The theoretical results in this paper assume that

we assume the null hypothesis of equal merits, but also discuss the consequences of unequal
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merits using an example.

1 Introduction

Discrete choice experiments (DCEs) have been used in areas such as health economics,

transportation, marketing, and public policy to model decision making behaviour. Louviere

et al. (2000) and Train (2003) provide a comprehensive introduction to the area.

In a DCE we present a series of choice sets to each respondent. Each choice set contains

a number of options from which the respondent is asked to choose the option that they think

is best. We assume that each choice set contains the same number of options, and that each

respondent is presented with the same series of choice sets.

One area that has not received much attention in the DCE literature is how to design for

and model the structure of the options within a choice set. That is, how does the position of

an option within a choice set affect the probability that the option is selected? Where this

problem has been considered, the options have usually been labelled. Chrzan (1994) reports

on three studies which between them investigate the importance of choice set order, order

of items within choice sets and order of attributes within items. He concludes:

Choice set order (Study 1) influences attribute utilities but neither to a prac-

tically important extent nor in a predictable pattern. Attribute order (Study 3)

influences utilities in choice-based conjoint analysis but, as for ratings-based con-

joint analysis, in no predictable pattern. Profile [item] order (within choice sets)

did not influence utilities for generic attributes in the “branded” profile toaster

design used in Study 2 but produced statistically and practically significant (but

unpatterned) effects for brands.

van der Waerden et al. (2006) also found that the order within the choice set was significant

when running experiments with branded alternatives, while Wickelmaier and Choisel (2006)

found that order was important for 7 of the 9 attributes that they investigated in a generic

DCE, and always favoured the second position.
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The most extensive investigations into position effects occur in the literature on paired

comparisons experiments, where choice sets have two options each. According to David

(1988), the possibility that the order of presentation might influence the selections made was

raised by Fechner as early as 1860. The question of how to design to balance for possible

position effects was considered by various authors whose work David summarises. David goes

on to say that it appears to be sufficient to balance for position effects “unless the effects are

large or are of interest in themselves”(p. 143). When the effects are of interest, Davidson

and Beaver (1977) propose a modification of the Bradley–Terry model that incorporates the

order that the options are presented within each pair.

Position effects are also used in other areas. DCEs formed from a number of paired

comparisons are clearly related to tournaments, with “position” corresponding to playing

“at home” or “away”. DCEs in which choice sets have m objects in them, and in which the

relative position of the objects will be incorporated into the model, are closely related to block

designs that are balanced for carry-over effects of all orders. Such designs were developed

by Williams (1949) and Bugelski (1949) for animal feeding trials and modifications of these

designs have also been used to design taste-testing experiments by Wakeling and MacFie

(1995).

Position effects have also been considered in the context of questionnaires. Both question

order and order of response categories within multiple choice questions have been established

to influence the conclusions drawn (see Kalton et al. (1978) and Schuman et.al (1981) for

example).

In this paper we aim to develop a model that incorporates position effects into DCEs with

a fixed, but arbitrary, number of options in each choice set. In the next section we introduce

some definitions and notation that we need. In Section 3 we introduce an extension to the

multinomial logit model to incorporate position effects, based on the work in Davidson and

Beaver (1977). In Section 4 we prove results that give optimal designs for the estimation

of main effects of the attributes plus contrasts of the position effects when this extended

model is used, and attributes may take any number of levels. We also use an example to
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investigate the efficiency of the designs that are optimal under the null hypothesis of equal

merits when the merits are unequal. In Section 5 we prove results that give optimal designs

for the estimation of main effects plus two–factor interactions of the attributes and contrasts

of the position effects when this model is used and all attributes are binary. In Section 6 we

consider an alternative design approach based on the designs that are balanced for carry–over

effects of all orders.

2 Definitions and Notation

In this section we introduce some concepts and notation that will be useful when discussing

the design and analysis of DCEs with position effects. We begin by introducing some basic

notation, then we introduce the multinomial logit model and the Davidson–Beaver posi-

tion effects model. We conclude this section by discussing how we can modify the design

properties discussed in Street and Burgess (2007) to accommodate position effects.

In a DCE we present a collection of N choice sets to each of the s respondents. We

say that each choice set contains m options. For each option, we present an item that is

described by k attributes. These attributes are properties of the item that we would like to

test to see if they affect the selections made. Attribute q may take one of `q levels, labelled

by 0, 1, . . . , `q − 1. Then there are L =
∏k

q=1 `q distinct items, each of which are described

as a k–tuple of attribute levels.

If the DCE is set up as above, then we may use the multinomial logit model (MNL

model) to estimate the attribute effects using the selections made by the respondents. Under

the MNL model, the probability that item Ti is selected from the unordered choice set

C = {Ti1 , Ti2 , . . . , Tim} is

P (Ti|{Ti1 , Ti2 , . . . , Tim}) =
πi∑m
i=1 πia

,

where πia is the merit of the item Tia . We are usually interested in estimating contrasts of

the entries in γγγ = ln(πππ), where πππ contains the merits of each of the L items. We then express
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the utility of an item Ti for respondent α as Uiα = γi + εiα. In choice sets of size m = 2 the

MNL model coincides with the Bradley–Terry model (Bradley and Terry (1952)).

The Davidson–Beaver model extends the Bradley–Terry model to incorporate position

effects. In this model we multiply the merit of an item, πi say, by a parameter ψa to

incorporate the effect of the item being presented in position a of the choice set1. So the

probability that item Ti1 is selected from the ordered choice set C = (Ti1 , Ti2) is

P (Ti1|(Ti1 , Ti2)) =
ψ1πi1

ψ1πi1 + ψ2πi2
,

and the probability that Ti2 is selected from the ordered choice set C = (Ti1 , Ti2) is

P (Ti2|(Ti1 , Ti2)) =
ψ2πi2

ψ1πi1 + ψ2πi2
.

In this situation, we can express the utility of item Ti when presented in position a of the

choice set, as Uiaα = τa + γi + εiaα, where τa = ln(ψa). So the position effect acts as an

additional effect in the model independently of the attribute effects.

To discuss designs where position is important we need to modify the way we describe

the designs. For example, a choice set with items 1, 2 and 3 (in that order) will be different

from the choice set with items 2, 3 and 1 (in that order). For the optimal designs described

in Street and Burgess (2007), these two choice sets are equivalent, but if position effects are

of interest they are no longer equivalent. So we need to extend the family of competing

designs. We still use the D–optimality criterion to assess designs, so we are searching for

the design that maximises the determinant of the Fisher information matrix.

Since the models used here are nonlinear in their parameters, we also need to specify

a prior distribution for the parameters in order to compare designs. We assume a point

prior distribution with all merits equal to 1. Other design criteria, and other priors, have

been used when designing choice experiments; see Kessels et al. (2006) for a discussion. In

1In fact, Davidson and Beaver (1977) assume that ψ1 = 1 and ψ2 = ψ, thereby reducing the number of

position parameters to one. To make the generalisation more intuitive, we do not make this assumption and

estimate contrasts of the position main effects instead.
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Section 4, we look at an example and we find that the design which is optimal under the

null hypothesis of equal merits is also optimal for some other values of π.

In this paper we will partition the set of all possible ordered choice sets of size m by using

the set of differences between the items in the m–set. This difference vector generalises the

difference vector introduced by Burgess and Street (2005) so that it contains not only the

difference between the elements but also the location of that difference.

Consider the ordered m–set G = (ggg1, ggg2, . . . , gggm), where ggga = (ga,1, ga,2, . . . , ga,k). We can

use this m–set to describe a choice set. In particular, if ggg1 = 000, we call G a starter choice

set. To describe G, we define ddda,b for each pair of positions a and b to be a vector of length k

with a 0 in position q if ga,q = gb,q and a 1 in position q otherwise. We call ddda,b a difference,

and collect the differences for each pair of entries in G to from an ordered difference vector,

vvvG = (ddd1,2, ddd1,3, . . . , dddm−1,m).

The set of all possible ordered choice sets with m distinct items gives rise to several

possible ordered difference vectors. We denote the set of these ordered difference vectors

by {vvv1, vvv2, . . . , vvvJ}, where there are J distinct ordered difference vectors in total. For the

class of competing designs we assume that all choice sets with a particular ordered difference

vector appear equally often in the experiment. The m–sets associated with a particular

ordered difference vector can themselves be partitioned into sets such that all of the m–sets

within a set of the partition can be written as the sum of a k–vector of levels and an ordered

m–set with ggg1 = (00 . . . 0). Since the elements in an m–set are ordered, this representation

is unique. We let Pvvvj be the set of all starter choice sets with difference vector vvvj.

Thus our class of competing designs consists of all designs that are constructed from all

of the starter choice sets in one or more Pvvvj . This is similar to the idea of difference families

(or supplementary difference sets) used to construct block designs (see Abel (2006)) and is

also closely related to the idea of a starter design to which are added elements from a set of

generators, as described in Burgess and Street (2005). Here each set of generators in Burgess

and Street (2005) corresponds to a starter choice set and the starting design is the complete

factorial. We have chosen to change the focus of our discussion from starting designs to
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starter choice sets since the order of the elements within each choice set is important when

we include position effects in the model, and as yet we have no results about the behaviour

of choice designs that arise from the addition of elements from a fractional design, even if it

is regular and of known resolution.

Consider the L choice sets that arise from starter choice set G. The choice set with −ggga
in the first position of the choice set will be the only choice set with starter choice set G

which has 00 . . . 0 in position a of the choice set, since ggga + xxx = 000 if and only if xxx = −ggga. It

follows that, for each starter choice set, 00 . . . 0 will appear in each position of the choice set

once.

Finally, we define a series of constants that describe the choice experiment, as did Burgess

and Street (2005). Let ivvvj indicate whether or not all choice sets with ordered difference

vector vvvj appear in the experiment. We also let cvvvj ,a be the number of choice sets containing

the item 00 . . . 0 in position a of the choice set and with ordered difference vector vvvj, and

let xvvvj ;ddd,a,b be the number of times the difference ddd = (d1, . . . , dk) appears as the difference

between the items in positions a and b in the ordered difference vector vvvj (i.e. Tia +ddd = Tib).

Finally, let yddd,a,b be the proportion of all choice sets that contain a particular pair with

difference ddd in positions a and b of the choice set, so

yddd,a,b =
1

N
∏k

q=1(lq − 1)dq

∑
vvvj

cvvvj ,aivvvjxvvvj ;ddd,a,b. (1)

We illustrate this terminology in Example 1.

Example 1. Consider an experiment with two 2–level attributes, and with choice sets of

size 3. An example of a possible design for such an experiment is given in Table 1. There

are J = 6 possible ordered difference vectors, which are shown in Table 2. The first entry in

each difference vector is the difference between the first and second items in the choice set,

the second entry is the difference between the first and third items in the choice set, and the

third entry is the difference between the second and third items in the choice set.

The experiment in Table 1 contains all choice sets with ordered difference vector vvv1 and

no others. Therefore ivvv1 = 1, and ivvvj = 0 for all of the other difference vectors. The item 00
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Option 1 Option 2 Option 3

0 0 0 1 1 0

0 1 0 0 1 1

1 0 1 1 0 0

1 1 1 0 0 1

Table 1: An example of a design with two 2–level attributes.

vvv1 (01, 10, 11)

vvv2 (01, 11, 10)

vvv3 (10, 01, 11)

vvv4 (10, 11, 01)

vvv5 (11, 01, 10)

vvv6 (11, 10, 01)

Table 2: Possible ordered difference vectors for the experiment in Example 1.
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appears in each position once, and hence cvvv1,1 = 1, cvvv1,2 = 1, and cvvv1,3 = 1. Since the choice

sets with difference vector vvv1 have difference (01) between positions 1 and 2 of the choice set,

xvvv1;(01),1,2 = 1. None of the choice sets have difference (00), (10), or (11) between positions 1

and 2 of the choice set, so xvvv1;(00),1,2 = xvvv1;(10),1,2 = xvvv1;(11),1,2 = 0. Looking at the other pairs

of positions, we have xvvv1;(10),1,3 = xvvv1;(11),2,3 = 1, and all other xvvv1;ddd,a,b = 0. Since each pair

with difference (01) appears as a difference between positions 1 and 2 of the choice set in

exactly once choice set we have y(01),1,2 = 1
4
, as there are four choice sets in total. Similarly

y(10),1,3 = 1
4

and y(11),2,3 = 1
4
. The remaining yddd,a,b terms are all equal to 0 since xvvv1;ddd,a,b = 0

in each case.

3 The Generalised Davidson–Beaver Position Effects

Model

In this section we consider a generalisation of the MNL model so that it accommodates

position effects; choice sets can be of any fixed size. This generalisation is analogous to

Davidson and Beaver’s generalisation of the Bradley–Terry model. We first set up the model

and then give the information matrix for the estimation of the parameters in the model.

In the Davidson–Beaver position effects model we multiply the merit of the item in

position a of the choice set by an effect, ψa, that incorporates the effect of position. For an

arbitrary choice set size m, we define ψ1, ψ2, . . . , ψm to be the effect of an item appearing in

positions 1, 2, . . . ,m respectively on the probability of selection. We then multiply the merit

of the item in position a of the choice set by ψa in the same way as the Davidson–Beaver

position effects model. Then the probability of choosing an item Ti, which is presented in

position a of the ordered choice set C = (Ti1 , Ti2 , . . . , Tim), so Ti = Tia , is

P (Tia|C) =
ψaπia∑m
b=1 ψbπib

.

To ensure identifiability we impose the constraint
∏m

a=1 ψa = 1. We call this model the gen-

eralised Davidson–Beaver position effects model. For respondent α, the probability density
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function for the response to the ordered choice set C = (Ti1 , Ti2 , . . . , Tim) is

fC,α(wwwC,α,πππ,ψψψ) =

∏m
a=1(ψaπia)

wia|C,α

(
∑m

b=1 ψbπib)
nC

,

where wia|C,α is an indicator variable that equals 1 if the item in position a of the choice set

is selected and 0 otherwise, wwwC,α is a vector containing the wia|C,α terms for each item, nC is

the number of times choice set C appears in the experiment, and ψψψ = (ψ1, ψ2, . . . , ψm).

Following El–Helbawy et al. (1994), we let Λ(πππ,ψψψ) be the information matrix for
√
sNγ̂γγ

and
√
sNψ̂ψψ. Thus Λ(πππ,ψψψ) contains minus the expected values of the second derivatives of

the log–density function, where the differentiation is with respect to the entries in γγγ and the

entries in ψψψ. Then we partition Λ(πππ,ψψψ) into four blocks

Λ(πππ,ψψψ) =

 Λγγ(πππ,ψψψ) Λψγ(πππ,ψψψ)

Λγψ(πππ,ψψψ) Λψψ(πππ,ψψψ)

 .
Λγγ(πππ,ψψψ) is an L×L matrix that contains minus the expected value of the second derivatives

of the log–density function with respect to two entries in γγγ. Λψψ(πππ,ψψψ) is an m×m matrix

that contains minus the expected value of the second derivatives of the log–density function

with respect to two entries in ψψψ. Λγψ(πππ,ψψψ) and Λψγ(πππ,ψψψ) contains minus the expected value

of the second derivatives of the log–density function with respect to one entry in γγγ and one

entry in ψψψ.

El-Helbawy and Bradley (1978) states that, under some mild regularity conditions, the

(i, j)th entry of the information matrix without position effects is

Λ(πππ)i,j =
∑
C

nC
N
Eπ
(
∂ ln(fC,α(πππ,www))

∂πi

∂ ln(fC,α(πππ,www))

∂πj

)
πiπj.

Then by differentiating the log–density function, and substituting the expectations, variances

and covariances of the entries in wwwC,α, we obtain

Λγγ(πππ,ψψψ)ij =
∑

C|Ti,Tj∈C

nC
N

−ψaiψajπiπj
(
∑m

b=1 ψbπib)
2
,
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Λγγ(πππ,ψψψ)ii =
∑

C|Ti∈C

nC
N

ψaiπi((
∑m

b=1 ψbπib)− ψaiπi)
(
∑m

b=1 ψbπib)
2

,

Λγψ(πππ,ψψψ)ia =
∑

C|Ti∈C

nCπi
N

(
δTi in pos a(

∑
b6=a ψbπib)

(
∑m

b=1 ψbπib)
2

− (1− δTi in pos a)ψaiπia
(
∑m

b=1 ψbπib)
2

)
,

Λψψ(πππ,ψψψ)a1a2 =
∑
C

nC
N

−πia1πia2
(
∑m

b=1 ψbπib)
2
, and

Λψψ(πππ,ψψψ)aa =
∑
C

nC
N

πia((
∑m

b=1 ψbπib)− ψa)
ψa(
∑m

b=1 ψbπib)
2

,

where ψai is the position effect parameter for the position that Ti occupies in choice set C,

and δTi in pos a is an indicator variable that equals 1 if item Ti appears in position a of choice

set C and is 0 otherwise.

If we assume, as did Davidson and Beaver (1977), the null hypothesis of equal merits for

each of the items and that the entries in ψψψ are left unspecified, then Λ(πππ,ψψψ) simplifies. That

is, if we assume that πππ = jjj = πππ0, where jjj is a vector of 1s of length L, we obtain

Λγγ(πππ0,ψψψ)ij = − 1

Ψ1

m∑
a=1

∑
b6=a

ψaψbλTi in pos a,Tj in pos b,

Λγγ(πππ0,ψψψ)ii =
1

Ψ1

m∑
a=1

ψa

( m∑
b=1

ψb − ψa
)
λTi in pos a,

Λγψ(πππ0,ψψψ)ia =
1

Ψ1

∑
b 6=a

ψb(λTi in pos a − λTi in pos b),

Λψψ(πππ0,ψψψ)a1a2 = − 1

Ψ1

, and

Λψψ(πππ0,ψψψ)aa =
(
∑m

b=1 ψb)− ψa
ψaΨ1

,

where Ψ1 = (
∑m

b=1 ψb)
2
, λTi in pos a = nC

N
× δTi in pos a, and λTi in pos a,Tj in pos b = λTi in pos a ×

δTj in pos b. We notice that under the null hypothesis the entries in Λψψ(πππ0,ψψψ) depend only

on the entries in ψψψ. Therefore Λψψ(πππ0,ψψψ) is independent of the design, for a fixed choice set

size.
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4 Optimal Designs for Attribute Main Effects and Po-

sition Effects

In this section we prove results that give optimal designs when the generalised Davidson–

Beaver position effects model is used. We show that, under a mild restriction, the optimal

designs for the estimation of the main effects of the attributes using the MNL model are also

optimal for the generalised Davidson–Beaver position effects model for the corresponding

effects, under the null hypothesis of equal merits.

We are usually interested in the estimation of contrasts of the entries in γγγ and ψψψ, such as

the attribute main effects. Thus we define B to be a matrix of contrast coefficients such that

B(γ1, . . . , γL, ψ1, . . . , ψm)T are the effects that we are interested in estimating. In this paper

we will not estimate any contrasts that involve both entries in γγγ and entries in ψψψ. Thus we

have

B =

 Bγ 000

000 Bψ

 ,
where Bγ contains the coefficients of the contrasts of the entries in γγγ and Bψ contains the

coefficients of the contrasts of the entries in ψψψ. We let

Bγ =


B1

...

Bk

 , where Bq =


bbbq1
...

bbbq`q−1

 ,
and bbbqj is a row vector that contains the contrast coefficients of the jth contrast of the main

effect of the qth attribute. Let Bqj ,x be the entry in the jth contrast for the main effect of

attribute q corresponding to the xth level of this attribute, and let Bqj ,[i] be the entry in the

jth contrast for the main effect of attribute q corresponding to the level of Ti for attribute q.

We let C(πππ,ψψψ) be the information matrix for the estimation of the contrasts in Bγγγγ and

Bψψψψ. From the definitions above, C(πππ,ψψψ) = BΛ(πππ,ψψψ)BT , and we partition C(πππ,ψψψ) in the
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same way as we partitioned Λ(πππ,ψψψ) to obtain

C(πππ,ψψψ)=

 BγΛγγ(πππ,ψψψ)BT
γ BγΛγψ(πππ,ψψψ)BT

ψ

BψΛψγ(πππ,ψψψ)BT
γ BψΛψψ(πππ,ψψψ)BT

ψ

=

 Cγγ(πππ,ψψψ) Cγψ(πππ,ψψψ)

Cψγ(πππ,ψψψ) Cψψ(πππ,ψψψ)

 .
In the next result we give a design constraint that allows the main effects of the at-

tributes to be estimated independently of the contrasts of the position effects under the null

hypothesis of equal merits.

Lemma 1. Let Bγγγγ be the main effects contrasts. Then under the null hypothesis of equal

merits, Cγψ(πππ,ψψψ) = 000 if each of the levels of each attribute appears in each position of the

DCE equally often.

Proof. We consider a generic term in the product of the first two matrices in the expression

for Cγψ(πππ,ψψψ), BγΛγψ(πππ,ψψψ). The rows of this matrix are labelled by the main effects of the

attributes, and the columns are labelled by the positions in a choice set. Consider the entry

of BγΛγψ(πππ,ψψψ) corresponding to the jth contrast for the main effect of the qth attribute and

position a of the choice set. We have

(BγΛγψ(πππ0,ψψψ))qja =
1

Ψ1

L∑
i=1

∑
b6=a

ψbBqj ,[i](λTi in pos a − λTi in pos b)

=
1

Ψ1

`q−1∑
x=0

∑
b 6=a

ψbBqj ,x

( ∑
C|att q=x in pos a

λC −
∑

C|att q=x in pos b

λC

)
.

Then (BγΛγψ(πππ0,ψψψ))qja = 0 if λatt q=x in pos a − λatt q=x in pos b = 0 for all attribute levels

0 ≤ x ≤ `q − 1 and b 6= a. If this is the case for all attributes then BγΛγψ(πππ,ψψψ) = 000, and

thus Cγψ(πππ,ψψψ) = 000.

The next result expresses Λγγ(πππ0,ψψψ) in terms of the ordered difference vectors introduced

in Section 2. At this point it is also necessary to incorporate our knowledge about which

pairs of items have a given difference so we define Dddd to be an L× L (0, 1) matrix with a 1

in position (i, j) if and only if items Ti and Tj have difference ddd.
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Theorem 1. Under the null hypothesis of equal merits,

Λγγ(πππ0,ψψψ) =
Ψ2

Ψ1

zIL −
1

Ψ1

∑
ddd

m∑
a=1

∑
b 6=a

ψaψbyddd,a,bDddd,

where Ψ2 =
∑m

a=1

∑
b6=a ψaψb, and z = 1

N

∑
vvvj
cvvvj ivvvj .

Proof. We can write λTi in pos a = 1
N

∑
j cvvvj ivvvj = z. Hence

Λγγ(πππ0,ψψψ)ii =
1

NΨ1

∑
vvvj

m∑
a=1

(
cvvvj ivvvjψa

( m∑
b=1

ψb − ψa
))

=
Ψ2

Ψ1

× z.

To express Λγγ(πππ,ψψψ)ij in terms of the difference vectors used we first need to determine the

number of choice sets that have Ti in position a and Tj in position b.

As each of the L k–tuples is added in turn to the starter choice sets, there are Lcvvvj possible

choice sets with difference vector vvvj, and there are Lcvvvj ivvvj choice sets with difference vector

vvvj in the experiment. Hence there are L
∑

vvvj
cvvvj ivvvj choice sets in the experiment in total. It

follows that the number of choice sets in the DCE with difference ddd between positions a and

b of the choice set is L
∑

vvvj
cvvvj ivvvjxvvvj ;ddd,a,b. Thus we need to determine the number of pairs of

items with difference ddd.

How many Tj exist with difference ddd from Ti? If dq = 0 then all such Tj have the same

level for attribute q as Ti has. If dq = 1 then any such Tj must not have the same level for

attribute q as Ti has. So there are `q − 1 possible entries in position q and so the number of

items with difference ddd from Ti is Γddd =
∏k

q=1(`q − 1)dq .

If items Ti and Tj have difference ddd, the proportion of choice sets in the experiment that

contain Ti in position a and Tj in position b is

yddd,a,b =
1

NΓddd

∑
vvvj

cvvvj ivvvjxvvvj ;ddd,a,b.

Hence the matrix containing the off–diagonal entries of Λγγ(πππ,ψψψ) is

− 1

Ψ1

m∑
a=1

∑
b 6=a

ψaψb
∑
ddd

yddd,a,bDddd.

The result follows.
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We use this expression for Λγγ(πππ0,ψψψ) to show that Cγγ(πππ0,ψψψ) is block diagonal when

main effects and position effects are of interest.

Theorem 2. Let Bγγγγ be the main effects contrasts of the attribute effects. Then Cγγ(πππ0,ψψψ)

is block diagonal when the generalised Davidson–Beaver position effects model is used.

Proof. Let P`q ,eq be an `q × `q (0, 1) matrix with a 1 in position (t1, t2) if the difference

between the two levels is t2 − t1 = eq. Then P`1,e1 ⊗ P`2,e2 ⊗ . . . ⊗ P`k,ek will give the pairs

that have T2 − T1 = (e1, e2, . . . , ek). Let αeee,a,b be the number of times eee = (e1, e2, . . . , ek)

appears as a difference between the items in positions a and b of the choice set. Then

Cγγ(πππ0,ψψψ) =
1

NΨ1

[(∑
e1

. . .
∑
ek

∑
a6=b

αeee,a,bψaψb

)
Bγ

(
P`1,0 ⊗ P`2,0 ⊗ . . .⊗ P`k,0

)
BT
γ

−
∑
e1

. . .
∑
ek

∑
a6=b

αeee,a,bψaψbBγ

(
P`1,e1 ⊗ P`2,e2 ⊗ . . .⊗ P`k,ek

)
BT
γ

]
.

However Corollary 6.4.1 of Street and Burgess (2007) shows that both

Bγ

(
P`1,0 ⊗ P`2,0 ⊗ . . .⊗ P`k,0

)
BT
γ and Bγ

(
P`1,e1 ⊗ P`2,e2 ⊗ . . .⊗ P`k,ek

)
BT
γ

are block diagonal matrices, so Cγγ(πππ0,ψψψ) is also block diagonal.

This theorem allows us to consider only the block diagonal entries of Cγγ(πππ0,ψψψ), which

correspond to the main effects for a single attribute. In addition, Lemma 1 states that if

each of the levels of each attribute appear in each position of the DCE equally often then

Cγψ(πππ0,ψψψ) = 000, and therefore C(πππ0,ψψψ) is block diagonal.

The next theorem gives an expression for the block diagonal entry of Cγγ(πππ0,ψψψ) which

corresponds to the main effects of attribute q.

Theorem 3. Under the null hypothesis of equal merits, the block diagonal entry of the

information matrix corresponding to the main effect of attribute q is

`q
NΨ1(`q − 1)

∑
vvvj

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|dq=1

xvvvj ;ddd,a,bI`q−1.
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Proof. Since

BqDdddB
T
q =

Γddd(−1)dq

(`q − 1)dq
I`q−1,

(Burgess and Street (2005)), the qth block of the block diagonal matrix Cγγ(πππ0,ψψψ) is given

by

BqΛγγ(πππ0,ψψψ)BT
q = Bq

[
Ψ2

Ψ1

zIL −
1

Ψ1

∑
ddd

Dddd

∑
a6=b

yddd,a,bψaψb

]
BT
q

=
Ψ2

Ψ1

zI`q−1 −
1

Ψ1

∑
ddd

∑
a6=b

yddd,a,bψaψb
Γddd(−1)dq

(`q − 1)dq
I`q−1.

By substituting in the expressions for z and yddd,a,b, we obtain

BqΛγγ(πππ0,ψψψ)BT
q =

1

Ψ1

∑
ddd

∑
a6=b

ψaψbyddd,a,b
Γddd
(
(`q − 1)dq − (−1)dq

)
(`q − 1)dq

I`q−1

=
`q

NΨ1(`q − 1)

∑
j

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|dq=1

xvvvj ;ddd,a,bI`q−1,

as required.

Using the result in Theorem 3, the determinant of C(πππ0,ψψψ) is

det(C(πππ0,ψψψ)) =
k∏
q=1

 `q
NΨ1(`q − 1)

∑
vvvj

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|dq=1

xvvvj ;ddd,a,b

`q−1

× det(Cψψ(πππ0,ψψψ)),

where det(Cψψ(πππ0,ψψψ)) depends on m but is independent of the design chosen.

We use this expression to extend the result in Theorem 1 of Burgess and Street (2005)

to find the optimum value of det(C(πππ0,ψψψ)) when the generalised Davidson–Beaver position

effects model is used.

Theorem 4. The D–optimal design for the estimation of main effects of the attributes and

contrasts of the position effects is given by the set of choice sets where at least one difference

vector vvvj has a non–zero ivvvj , each pair of positions contains each non–zero difference equally

16



often, and for each vvvj present, and for each attribute q, the sum of the differences is equal to

Sq =



(m2 − 1)/4, `q = 2 and m is odd,

m2/4, `q = 2 and m is even,

(m2 − (`qx
2 + 2xy + y))/2, 2 < `q < m,

m(m− 1)/2, `q ≥ m,

where positive integers x and y satisfy the equation m = `qx + y for 0 ≤ y < `q − 1. The

maximum possible value for the determinant of the information matrix is

det(C(πππ0,ψψψ)OPT) =
k∏
q=1

[
2Sq`qΨ2

Lm(m− 1)Ψ1(`q − 1)

]`q−1

× det(Cψψ(πππ0,ψψψ)).

Proof. To maximise det(C(πππ0,ψψψ)), we must maximise

k∏
q=1

 `q
NΨ1(`q − 1)

∑
vvvj

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|dq=1

xvvvj ;ddd,a,b

`q−1

,

and so we must maximise

`q
NΨ1(`q − 1)

∑
vvvj

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|dq=1

xvvvj ;ddd,a,b,

for each q. Given our assumption that each pair of positions contains each non–zero difference

equally often we obtain

m∑
a=1

∑
b6=a

ψaψb
∑
ddd|dq=1

xvvvj ;ddd,a,b =
2

m(m− 1)

∑
ddd|dq=1

xvvvj ;ddd ×Ψ2,

where Ψ2 is independent of the design used. By substitution, we obtain∑
vvvj

cvvvj ivvvj
∑
a6=b

ψaψb
∑
ddd|dq=1

xvvvj ;ddd,a,b =
2Ψ2

m(m− 1)

∑
vvvj

cvvvj ivvvj
∑
ddd|dq=1

xvvvj ;ddd.

Theorem 1 in Burgess and Street (2005) shows that
∑

ddd|dq=1 xvvvj ;ddd is maximised when it is

equal to Sq. By observing this result, and that
∑

vvvj
cvvvj ivvvj = N

L
, we have

1

N

∑
vvvj

cvvvj ivvvj
∑
ddd|dq=1

xvvvj ;ddd =
Sq
L
,

17



and hence

det(Cγγ(πππ0,ψψψ)OPT) =
k∏
q=1

[
2Sq`qΨ2

Lm(m− 1)Ψ1(`q − 1)

]`q−1

.

Since all of the ordered choice sets with a particular difference vector appear in the DCE

equally often, each of the levels for each attribute will appear in each position equally often,

and hence Cγψ(πππ0,ψψψ) = 000 by Lemma 1. For a given m, Cψψ(πππ0,ψψψ) is constant across all

designs, and thus

det(C(πππ0,ψψψ)OPT)=
k∏
q=1

[
2Sq`qΨ2

Lm(m− 1)Ψ1(`q − 1)

]`q−1

× det(Cψψ(πππ0,ψψψ)),

as required.

The expression in Theorem 4 allows us to determine whether other designs are optimal

for the estimation of the attribute main effects and contrasts of the position effects when

using the generalised Davidson–Beaver position effects model. Since the number of choice

sets obtained from this construction can be very large, the next result gives optimal designs

with fewer choice sets. This characterisation is based on Theorem 3 of Burgess and Street

(2005).

Theorem 5. Consider the collection of starter choice sets Gf = {gggf,1 = 000, gggf,2, . . . , gggf,m},

for f = 1, . . . , ζ, where gggf,i 6= gggf,j for i 6= j. Let gggf,i = (gf,i,1, gf,i,2, . . . , gf,i,k), i = 1, . . . ,m.

Suppose that the multiset of differences for attribute q from positions a and b, which is

{±(gf,a,q − gf,b,q)|f = 1, . . . , ζ}, contains each non–zero difference modulo `q equally often.

Then the ordered choice sets obtained by adding each element of the complete factorial in

turn to Gf , for f = 1, . . . , ζ, are optimal for the estimation of main effects of the attributes

and contrasts of the position effects, provided that there are as few zero differences as possible

in each multiset.

Proof. We know

BqΛγγ(πππ0,ψψψ)BT
q =

`q
NΨ1(`q − 1)

∑
vvvj

cvvvj ivvvj

m∑
a=1

∑
b 6=a

∑
ddd|dq=1

ψaψbxvvvj ;ddd,a,bI`q−1,

18



from Theorem 3, substituting for yddd,a,b, and simplifying. Using the assumption that the

multiset of differences for any two positions, a and b say, contains each non–zero difference

equally often, we obtain

m∑
a=1

∑
b6=a

xvvvj ;ddd,a,bψaψb =
2

m(m− 1)
αq,a,bΨ2.

LetGf have difference vector vvvf = (dddf,1,2, dddf,1,3, . . . , dddf,m−1,m) with dddf,a,b = (df,a,b,1, . . . , df,a,b,k).

Then αq,a,b =
∑ζ

f=1 df,a,b,q. Substituting for αq,a,b in BqΛγγ(πππ0,ψψψ)BT
q , and simplifying, gives

BqΛγγ(πππ0,ψψψ)BT
q =

2`qαq,a,bΨ2

NΨ1m(m− 1)
I`q−1.

We see that the determinant of this block will be maximised when αq,a,b is maximised.

Each non–zero difference must occur in each pair of positions equally often. Thus, for

attribute q, each of the `q−1 non–zero differences appears as a difference αq,a,b times between

positions a and b in the collection of starter choice sets. Since each item is added to each

starter choice set in turn, there are L(`q − 1)αq,a,b non–zero differences for attribute q in the

choice experiment. Counting the differences in the N choice sets we have

L(`q − 1)αq,a,b = SqN,

and rearranging we get

2`qαq,a,bΨ2

NΨ1m(m− 1)
=

2`qSqΨ2

LΨ1m(m− 1)(`q − 1)
.

The right–hand side of the equation above is the same as the entry corresponding to attribute

q in the expression in Theorem 4. Thus this design is optimal for the estimation of main

effects of the attributes and contrasts of the position effects.

We now illustrate this theorem with an example.

Example 2. Consider an experiment with two 5-level attributes and with choice sets of

size 3. Suppose that we construct a design using the starter choice sets (00, 11, 22) and

(00, 22, 44). Then the multiset of differences for the first attribute from positions 1 and 2 is
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{±1,±2} ≡ {1, 2, 3, 4}. Each non–zero difference appears once. Similarly, it is straightfor-

ward to check that each non–zero difference appears once for each pair of positions for both

of the attributes.

The information matrix for the estimation of main effects of the attributes plus contrasts

of the position effects has determinant

det(C(πππ0,ψψψ)) =
(ψ1ψ2 + ψ1ψ3 + ψ2ψ3) 8

300000000ψ1ψ2ψ3 (ψ1 + ψ2 + ψ3)17 .

We now compare the determinant above to the optimal determinant as given by The-

orem 4. Since `1 = `2 = 5 and m = 3, we have S1 = S2 = 3, and det(Cψψ(πππ0,ψψψ)) =

1/(3ψ1ψ2ψ3(ψ1 + ψ2 + ψ3)). Then

k∏
q=1

(
2Sq`qΨ2

Lm(m− 1)Ψ1(`q − 1)

)`q−1

=
2∏
q=1

(
2× 3× 5×Ψ2

25× 3× 2×Ψ1 × 4

)4

=
Ψ8

2

208Ψ8
1

.

Then the optimum value of the determinant of the information matrix for the estimation of

main effects of the attributes and contrasts of the position effects is

det(C(πππ0,ψψψ)OPT) =
Ψ8

2

208Ψ8
1

× 1

3ψ1ψ2ψ3(ψ1 + ψ2 + ψ3)

=
(ψ1ψ2 + ψ1ψ3 + ψ2ψ3) 8

300000000ψ1ψ2ψ3 (ψ1 + ψ2 + ψ3)17 .

Since this is equal to det(C(πππ0,ψψψ)) for the design constructed from two starter choice sets,

this design is optimal for the estimation of main effects of the attributes plus contrasts of the

position effects when the generalised Davidson–Beaver position effects model is used.

It is difficult to be specific about the minimum number of starter choice sets required

in Theorem 5. The example used two starter choice sets and gave 50 choice sets in total,

whereas 3600 choice sets would be required using the construction in Theorem 4, since there

are 144 starter choice sets with difference (11, 11, 11). If all the `q ≥ m are equal, then at

most `q − 1 starter choice sets are required for the construction in Theorem 5. It is clearly
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Figure 1: The range of parameter values where the design {(00, 11), (11, 00), (01, 10), (10, 01)}

is optimal.

impractical to present that many choice sets to respondents, so we need to consider methods

for constructing smaller designs.

One way to obtain a smaller design is to construct a small near–optimal design, which

will contain fewer choice sets. Methods for doing this are given in Chapter 8 of Street and

Burgess (2007). The other method that is used in practice is to partition the choice sets into

versions of a suitable size and present respondents with one of the versions. We would then

conduct analysis on the aggregate results.

We conclude this section with a small example that illustrates the performance of the

designs investigated here for non–zero attribute effects.

Example 3. Consider an experiment with two 2–level attributes and choice sets of size

2. The design that is optimal by Theorem 5 is {(00, 11), (11, 00), (01, 10), (10, 01)}. By

calculating det(C(πππ,ψψψ)) for various values of the attribute main effects and the position

main effect for each of the possible designs, we can find a region of parameter values where

the optimal design under the null hypothesis is still optimal. This region is given in Figure

1.
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We can also look at the D–efficiency of the above design for particular sets of parameter

values. Figure 2(a), (b) and (c) give contour plots of the D–efficiencies for the design above

for a range of main effect values when the position main effect is 0, 1 and 2 respectively.

We can see that the design that is optimal under the null hypothesis is still optimal for

reasonably small effect sizes. As the position effect increases, the region where this design

is still optimal becomes smaller. We can see that the D–efficiency decreases as the main

effects become larger in absolute value. This decrease is faster when the position effect is

also larger.

5 Optimal Designs for Attribute Main Effects plus Two–

Factor Interactions and Position Effects

In this section we find optimal 2k designs for the estimation of main effects plus two–factor

interactions of the attributes, and contrasts of the position effects, when m ≥ 2. Burgess

and Street (2003) prove results that gave such designs in the absence of position effects.

In this section, we generalise the class of competing designs considered in Burgess and

Street (2003) to take position into account. The unordered difference vectors in Burgess and

Street (2003) are for binary attributes only, and contain the number of attributes that differ

in their levels for each pair of items in the choice set. Thus we define an entry of the ordered

difference vector corresponding to the positions a and b to be the number of attributes in

which the items in these positions differ. Hence the entries in the ordered difference vector

vvv are now the sum of the entries in each ddda,b.

We let xvvvj ;i,a,b be the number of times that there are i attributes at different levels between

the items in positions a and b of the choice set. Thus we have xvvvj ;i,a,b =
∑

ddd|
∑
q dq=i

xvvvj ;ddd,a,b.

Next we express Λγγ(πππ0,ψψψ) in terms of xvvvj ;i,a,b, cvvvj , ivvvj , and some Dk,i matrices. We let

Dk,i be a (0, 1) matrix of order 2k with a 1 in position (x, y) if the items Tx and Ty differ in

the levels of i attributes. Street et al. (2001) and Burgess and Street (2003) have used these

Dk,i matrices to obtain useful expressions for the determinant of the information matrix
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(a) (b)

(c)

Figure 2: The D–efficiencies for the design {(00, 11), (11, 00), (01, 10), (10, 01)} when the

position effect is 0 (a), 1 (b), and 2 (c).
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when the MNL model is used.

We begin by finding the proportion of choice sets where item Ti appears in position a of the

choice set and item Tj appears in position b of the choice set, denoted by λTi in pos a,Tj in pos b.

In Section 4 we showed that the number of choice sets with difference ddd for the pair of

positions a and b was equal to L
∑

vvvj
cvvvj ivvvjxvvvj ;ddd,a,b. Thus the number of choice sets where

the items in positions a and b differ in the levels of i of the attributes is

L
∑

ddd|
∑
q dq=i

∑
vvvj

cvvvj ivvvjxvvvj ;ddd,a,b = L
∑
vvvj

cvvvj ivvvjxvvvj ;i,a,b.

There are
(
k
i

)
items that differ from Tj in the levels of i of the attributes, since we can

select i of the k attributes to differ. Then the proportion of choice sets that contain a

particular pair of items that differ in the levels of i of the attributes is

yi,a,b =
1

N

(
k

i

)−1∑
vvvj

cvvvj ivvvjxvvvj ;i,a,b,

which, after simplification, gives

Λγγ(πππ0,ψψψ) =
1

Ψ1

m∑
a=1

∑
b 6=a

k∑
i=1

ψaψbyi,a,b

((
k

i

)
IL −Dk,i

)
.

Street et al. (2001) show that for a 2k experiment

Bk,MDk,i =

[(
k − 1

i

)
−
(
k − 1

i− 1

)]
Bk,M , and

Bk,TDk,i =

[(
k − 2

i

)
− 2

(
k − 2

i− 1

)
+

(
k − 2

i− 2

)]
Bk,T ,

where Bk,M is a matrix that containing the contrast coefficients for the attribute main ef-

fects and Bk,T is a matrix containing the contrast coefficients for the attribute two–factor

interactions in a 2k experiment. Then

Bk,MΛγγ(πππ0,ψψψ)Bk,M =
2

Ψ1

m∑
a=1

∑
b6=a

k∑
i=1

ψaψbyi,a,b

(
k − 1

i− 1

)
Ik, and

Bk,TΛγγ(πππ0,ψψψ)Bk,T =
4

Ψ1

m∑
a=1

∑
b6=a

k∑
i=1

ψaψbyi,a,b

(
k − 2

i− 1

)
Ik(k−1)/2,
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since (
k

i

)
−
(
k − 1

i

)
+

(
k − 1

i− 1

)
= 2

(
k − 1

i− 1

)
, and(

k

i

)
−
(
k − 2

i

)
+ 2

(
k − 2

i− 1

)
−
(
k − 2

i− 2

)
= 4

(
k − 2

i− 1

)
.

This also gives Bk,MΛγγ(πππ0,ψψψ)Bk,T = 000, and Bk,TΛγγ(πππ0,ψψψ)Bk,M = 000. Thus Cγγ(πππ0,ψψψ) is a

diagonal matrix.

The following result gives conditions for Cγψ(πππ0,ψψψ) to be 000, when attribute main effects

plus two–factor interactions and contrasts of the position effects are of interest.

Lemma 2. Let Bγγγγ be the main effects contrasts and the two–factor interaction contrasts.

Then under the null hypothesis of equal merits Cγψ(πππ0,ψψψ) = 000 if each pair of levels for each

pair of attributes appears equally often in each position of the choice set.

Proof. Consider a generic term in BγΛγψ(πππ0,ψψψ). The rows of this matrix are labelled by the

main effects and the two–factor interactions of the attributes. The columns of this matrix

are labelled by positions in the DCE.

Consider the entry of BγΛγψ(πππ0,ψψψ) where the row corresponds to the jth component of

the main effect of attribute q and the column corresponds to the ath position of the choice

set. By Lemma 1 we have (BγΛγψ(πππ0,ψψψ))qja = 0 since each pair of levels appears equally

often in each pair of positions, and hence there is equal replication of levels for each attribute

in each position.

Now suppose that the row corresponds to the jth component of the two–factor interaction

between attributes q1 and q2, and that the column corresponds to position a of the choice
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set. Then

(BγΛγψ(πππ0,ψψψ))(q1q2)ja

=
1

Ψ1

L∑
i=1

∑
b 6=a

ψbB(q1q2)j ,[i]

 ∑
C|Ti in pos a

λC −
∑

C|Ti in pos b

λC



=
1

Ψ1

`q1−1∑
x1=0

`q2−1∑
x2=0

∑
b 6=a

ψbB(q1q2)j ,(x1x2)

 ∑
C|att q1=x1 and
att q2=x2 in pos a

λC−
∑

C|att q1=x1 and
att q2=x2 in pos b

λC

 .

Therefore (BγΛγψ(πππ0,ψψψ))(q1q2)ja will equal 0 if, for all x1 and x2,

λatt q1=x1,att q2=x2 in pos a − λatt q1=x1,att q2=x2 in pos b = 0,

for b 6= a. If this is true for all pairs of attributes q1 and q2 then BγΛγψ(πππ0,ψψψ) = 000. Hence

Cγψ(πππ0,ψψψ) will equal 000, as required.

By assuming that the conditions of Lemma 2 apply, the determinant of the information

matrix for the estimation of main effects plus two–factor interactions of the attributes and

contrasts of the position effects is

det(C(πππ0,ψψψ)) =

[
2

Ψ1

m∑
a=1

∑
b 6=a

k∑
i=1

ψaψbyi,a,b

(
k − 1

i− 1

)]k

×

[
4

Ψ1

m∑
a=1

∑
b 6=a

k∑
i=1

ψaψbyi,a,b

(
k − 2

i− 1

)]k(k−1)/2

× det(Cψψ(πππ0,ψψψ)).

We now use the same method as in Burgess and Street (2003) to find the maximum

value of this determinant, and hence the D–optimal design. We assume that each differ-

ence appears in each position equally often, so yi,a,b = yi for all 1 ≤ a, b ≤ m. Then∑m
a=1

∑
b 6=a ψaψbyi,a,b = Ψ2yi, and thus

det(C(πππ0,ψψψ))

=

(
Ψ2

Ψ1

)k+
k(k−1)

2

×

[
2

k∑
i=1

yi

(
k − 1

i− 1

)]k
×

[
4

k∑
i=1

yi

(
k − 2

i− 1

)] k(k−1)
2

× det(Cψψ(πππ0,ψψψ)).
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Theorem 6. Under the null hypothesis of equal merits, the D–optimal design for the es-

timation of main effects plus two–factor interactions of the attributes and contrasts of the

position effects is given by designs where

yi = yi,a,b =


1
2k

(
k+1
k/2

)−1
where k is even and i = k/2, k/2 + 1,

1
2k

(
k

(k+1)/2

)−1
where k is odd and i = (k + 1)/2,

0 otherwise,

for all 1 ≤ a, b ≤ m.

Proof. The proof of this theorem is very similar to the proof of Theorem 2 in Burgess and

Street (2003). Since (Ψ2/Ψ1)k+k(k−1)/2 × det(Cψψ(πππ0,ψψψ)) is a function of the entries in ψψψ

only, and thus independent of the selection of the design for a given choice set size, we need

to maximise [
2

k∑
i=1

yi

(
k − 1

i− 1

)]k
×

[
4

k∑
i=1

yi

(
k − 2

i− 1

)]k(k−1)/2

,

subject to the constraint 1
2k

∑k
i=1

(
k
i

)
yi = 1.

As in the proof of Theorem 2 of Burgess and Street (2003), we can restate this problem

as maximising the function f = AB(k−1)/2 subject to the constraint
∑k

i=1

(
k
i

)
xi = 1, where

A = 2k
∑k

i=1

(
k−1
i−1

)
xi, B = 2k

∑k
i=1

(
k−2
i−1

)
xi, and xi = 2kyi. Street et al. (2001) show that this

constrained function is maximised when

xi =


(
k+1
k/2

)−1
where k is even and i = k/2, k/2 + 1,(

k
(k+1)/2

)−1
where k is odd and i = (k + 1)/2,

0 otherwise.

Then the result follows by substituting yi = xi/2
k.

We now illustrate this theorem with an example.

Example 4. Consider an experiment with three 2–level attributes and with choice sets

of size 2. Then there are three possible ordered difference vectors that could be used to

describe the choice sets, vvv1 = (1), vvv2 = (2), and vvv3 = (3). According to Theorem 6, the
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design consisting of all ordered choice sets with (k + 1)/2 = 2 attributes at different levels

is optimal for the estimation of main effects plus two–factor interactions of the attributes

and contrasts of the position effects. This experiment will consist of 24 choice sets. Since

C(πππ0,ψψψ) = BΛ(πππ0,ψψψ)BT and, using the results in Section 3, we have

det(C(πππ0,ψψψ)) =
ψ5

1ψ
5
2

1458(ψ1 + ψ2)12
.

According to Theorem 6, the value of yi that gives the optimal design is 1
2k

(
k

(k+1)/2

)−1
= 1

24

when i = 2 and 0 when i 6= 2, and thus

det(C(πππ0,ψψψ))OPT =

(
Ψ1

Ψ2

)6(
2× 1

24
×
(

2

1

))3(
4× 1

12
×
(

1

1

))3

× 1

2ψ1ψ2

=
ψ5

1ψ
5
2

1458(ψ1 + ψ2)12
,

showing that the design is optimal.

6 A Design Approach Based on Williams Designs

A natural candidate for the design of choice experiments when position effects are of interest

is a Latin square balanced for carry–over effects of all orders. A carry–over effect is the effect

that a previously presented item has on the response to the item currently being considered.

The order of a carry–over effect refers to the number of previously presented items that are

considered to have an effect on the item currently being considered. Wakeling and MacFie

(1995) provide a good discussion on the use of Latin squares in taste–testing experiments

where carry–over effects are of interest. The authors use Williams designs (Williams (1949))

to balance for carry–over effects of all orders.

The problem of constructing designs for the estimation of position effects in DCEs is

similar to the problem of constructing designs for the estimation of carry–over effects of

all orders. In both cases, the selection of items that are to be presented in any pair of

positions is important. In this section, we consider how Williams designs could be used for

the estimation of main effects of the attributes plus contrasts of the position effects. Note

that these designs are not in the class of competing designs considered earlier in this paper.
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To obtain a factorial representation for the items presented in the experiment, one design

strategy would be to use a Williams design to determine which items form the choice sets,

and an orthogonal array (OA) to describe each of the items in the Williams design in terms

of attributes. Williams (1949) states that if the first column of a set of mutually orthogonal

Latin squares is in standard order, then each pair of items will appear in each pair of

positions exactly once, so Lemma 1 holds for this construction. We could possibly use

other designs that are balanced for some carry–over effects, such as complete Latin squares

or equineighboured balanced incomplete block designs, but unless the design is balanced

for carry–over effects of all orders, Lemma 1 does not necessarily hold. The next example

illustrates the use of a Williams design and an OA to construct a choice design.

Example 5. Consider the Williams design in Table 3(a) and the OA in Table 3(b). If we

label the rows of the OA with 0, 1, 2, and 3, and replace the entries in the Williams designs

with the corresponding row of the OA then we obtain the choice sets in Table 4.

(a) (b)

0 1 2 3 0 2 3 1 0 3 1 2 0 0 0

1 0 3 2 1 3 2 0 1 2 0 3 0 1 1

2 3 0 1 2 0 1 3 2 1 3 0 1 0 1

3 2 1 0 3 1 0 2 3 0 2 1 1 1 0

Table 3: A Williams design with 4 columns (a) and a 4 run orthogonal array (b).

Since each pair of items in the OA appears in each pair of positions exactly once, we can

reorder the rows and columns of Λγγ(πππ0,ψψψ) to give

Λγγ(πππ0,ψψψ) =
Ψ2

NΨ1

 (m− 1)Im − Jm 000

000 000

 ,

29



Option 1 Option 2 Option 3 Option 4

0 0 0 0 1 1 1 0 1 1 1 0

0 1 1 0 0 0 1 1 0 1 0 1

1 0 1 1 1 0 0 0 0 0 1 1

1 1 0 1 0 1 0 1 1 0 0 0

0 0 0 1 0 1 1 1 0 0 1 1

0 1 1 1 1 0 1 0 1 0 0 0

1 0 1 0 0 0 0 1 1 1 1 0

1 1 0 0 1 1 0 0 0 1 0 1

0 0 0 1 1 0 1 0 1 0 1 1

0 1 1 1 0 1 0 0 0 1 1 0

1 0 1 0 1 1 1 1 0 0 0 0

1 1 0 0 0 0 1 0 1 0 1 1

Table 4: The 23 choice experiment from Example 5
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where the 000 entries correspond to the items in the complete factorial that do not appear in

the OA, and Jm is an m×m matrix of 1s.

Since each pair of items appears in each pair of positions once, and the items form an

OA, the conditions of Lemma 1 are satisfied. Thus Cγψ(πππ0,ψψψ) = 000. Using the results in

Bush (2009) we obtain

C(πππ0,ψψψ)

=

 BF BF̄ 000

000 000 Bψ

×


Ψ2

NΨ1
((m− 1)Im − Jm) 000 000

000 000 000

000 000 Λψψ(πππ0,ψψψ)

×

BT
F 000

BT
F̄

000

000 BT
ψ


=

 Ψ2

NΨ1
BF ((m− 1)Im − Jm)BT

F 000

000 Cψψ(πππ0,ψψψ)


=

 LΨ2

NΨ1
Ip 000

000 Cψψ(πππ0,ψψψ)

 ,
where p =

∑k
q=1(`q − 1), BF contains the contrast coefficients for the items in the OA, and

BF̄ contains the contrast coefficients for the remaining items in the complete factorial.

If we use this type of design, then the number of items in the OA is the number of items

in each component Latin square. In a Williams design, there are m− 1 mutually orthogonal

m×m Latin squares. So N = m(m− 1).

The existence of such a design depends on the existence of a Williams design of order m

and an OA with m items. For large m this approach needs to be modified. One way to do

this is to use a balanced incomplete block design (BIBD) to select subsets of the items from

the OA and then construct a Williams design on the items in each block. The next example

illustrates this construction.

Example 6. Suppose that we would like to use the items in an OA with 8 runs, but

want 4 options in each choice set. Then by using the Williams design in Table 3(a) and a

BIBD(8, 14, 7, 4, 3), we obtain a DCE with 12 choice sets from each of the 14 blocks, and so
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N = 168. The first 36 choice sets are shown in Table 5, with the defining entries from the

BIBD in bold.

0 1 2 3 0 1 2 4 0 1 5 6

1 0 3 2 1 0 4 2 1 0 6 5

2 3 0 1 2 4 0 1 5 6 0 1

3 2 1 0 4 2 1 0 6 5 1 0

0 2 3 1 0 2 4 1 0 5 6 1

1 3 2 0 1 4 2 0 1 6 5 0

2 0 1 3 2 0 1 4 5 0 1 6

3 1 0 2 4 1 0 2 6 1 0 5

0 3 2 1 0 4 2 1 0 6 5 1

1 2 0 3 1 2 0 4 1 5 0 6

2 1 3 0 2 1 4 0 5 1 6 0

3 0 2 1 4 0 2 1 6 0 5 1

Table 5: The first 36 choice sets in the design constructed in Example 6

The DCEs constructed using only an OA and a Williams design are special cases of the

class of designs described here. In this case, the BIBD is a single block containing one copy

of each of the items. It follows that the properties of the DCEs that incorporate a BIBD

in this way are similar to those which use only an OA and a Williams design. Each pair

of items in a particular block will appear in each pair of positions of the Williams design

developed from that block exactly once. Since we use a BIBD(v, b, r,m, λ) to allocate items

to the entries in each Williams design, each pair of items will appear in the same block λ

times. Therefore each pair of items appears in each pair of positions λ times across the DCE.

Thus

Λγγ(πππ0,ψψψ) =
λΨ2

NΨ1

 r(m− 1)Iv − Jv 000

000 000

 ,
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where, once again, the 000 entries correspond to the items that do not appear in the OA. The

number of rows and columns in I and J is equal to the number of runs in the OA, the value

of v in the BIBD. Then, by using the results in Bush (2009) for OAs, we obtain

C(πππ0,ψψψ) =

 Lλ(r(m−1)+1)Ψ2

NvΨ1
I∏k

q=1(`q−1) 000

000 Cψψ(πππ0,ψψψ)

 .
If we use this type of design, then each block gives rise to m(m − 1) choice sets of size m.

So there are N = bm(m− 1) choice sets in total. As with the previous design strategy, this

strategy relies on the existence of three designs. We require a Williams design of order m,

an orthogonal array with v runs, and a BIBD(v, b, r,m, λ).

In general we cannot be explicit about the efficiencies of these designs. If, however,

`q ≥ m for all q then Sq = m(m−1)
2

for all q. Thus

det(C(πππ0,ψψψ)) =
k∏
q=1

[
Lλ(r(m− 1) + 1)Ψ2

vNΨ1

]`q−1

× det(Cψψ(πππ0,ψψψ)),

and

det(C(πππ0,ψψψ)OPT) =
k∏
q=1

[
2Sq`qΨ2

Lm(m− 1)Ψ1(`q − 1)

]`q−1

× det(Cψψ(πππ0,ψψψ)),

and so the efficiency of the designs from this construction is

k∏
q=1

[
L2(`q − 1)λ(r(m− 1) + 1)

v2`qr(m− 1)

]`q−1

.

In particular if k = 2, m = 3 and `q = 5, there is a BIBD(25, 100, 12, 3, 1) from which we

construct a DCE with 100 × 6 choice sets that is 86.4% efficient when compared to the 50

choice sets given in Example 2 for this situation.

7 Discussion

We conclude by considering some practical considerations arising from the assumptions made

about the designs that we construct in this paper.
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In Theorem 5 we make the assumption that, for each pair of positions, each non–zero

difference needs to appear equally often. When there is a high level of so-called donkey

voting, where a respondent always selects the item in a particular position of the choice set,

this assumption will not necessarily give the most efficient design. For instance, consider an

experiment with k = 2, `1 = `2 = 2 and m = 3, where 90% of respondents always select

the first option. The design that is optimal by Theorem 5, which is constructed using three

starter choice sets, (00, 01, 11), (00, 10, 01), and (00, 11, 10), is 92.8% as efficient as the design

constructed using only one starter choice set, (00, 11, 10).

In Section 4, we mentioned two approaches that can be used to obtain small designs.

Both of these methods introduce some level of confounding between the effects. In the first

method this is a consequence of choosing a near–optimal design rather than an optimal de-

sign. In the latter method the confounding arises from the heterogeneity in the preferences

of the respondents. Further research could investigate the merits of treating the versions as

blocks both when designing the experiment and analysing the results.
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