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A B S T R A C T   

Osteoarthritis (OA) is a well-known degenerative joint disease recognized by the deterioration of cartilage in the 
joints, leading to pain and reduced mobility. Traditional treatments for OA include pain management, physical 
therapy, and in severe cases, joint replacement surgery. In recent years, there has been growing interest in 
exploring the potential of phytoconstituents and nanomedicines combined for treating OA. Furthermore, with the 
increasing amount of study in this field, now is the opportune time for the widespread use of plant-derived 
medications as complementary and alternative medical therapies to be acknowledged and used for more effi-
cient treatment of human ailments like OA. Combining phytoconstituents with nanomedicine technology (phyto- 
nanomedicine) can potentially enhance their effectiveness in treating OA. The phyto-nanomedicines has many 
advantages, including enhanced permeability, increased bioavailability, and sustained/controlled drug release at 
the joint site, decreased adverse effects, and possible use in combination treatment. It’s important to note that 
while there is promising preclinical and some clinical evidence regarding the effectiveness of phyto- 
nanomedicine in OA treatment, further research is needed to establish their safety and efficacy conclusively. 
In this review, the effectiveness of phytoconstituents to treat OA and the potential of combining phytomedicines 
with nanoparticulate drug delivery to enhance the former therapeutic effectiveness is discussed in detail. 
Furthermore, we have also described briefly on the application of organ-on-chip and/or joint on-chip models to 
accelerate the identification of novel phytoconstituents and evaluate the potency of phyto-nanomedicines to treat 
OA.   

1. Introduction 

By 2023, the prevalence of osteoarthritis (OA) in North America and 
Western Europe was expected to reach around 20 %. Pro-inflammatory 

cytokines are key factors that contribute to the increased generation of 
inflammatory mediators at the joints [1]. This, in turn, leads to an in-
crease in the production of enzymes that degrade the matrix of the 
articular cartilage. As a consequence, the cartilage deteriorates further, 
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resulting chronic OA [2,3]. It is a challenging pathological condition to 
treat, since joint cartilage has a limited capacity to rebuild itself. Despite 
the potential of developing treatment techniques, such as the use of 
mesenchymal stem cells (MSCs) and tissue engineering (TE) for regen-
eration of cartilage tissue, these approaches are often expensive and do 
not effectively replace the joint cartilage. Therefore, there is a growing 
demand for new, secure, and better options to encourage TE and carti-
lage joint repair in OA. Long ago, plants were employed as a source of 
medications, and as of now, some 70,000 species have been examined 
for their potential as therapeutics [4]. Using bioactivity-based frac-
tionation procedures, various anticancer medicines have been produced 
from plants in recent years, including paclitaxel, docetaxel, etoposide, 
and camptothecin [5]. Currently, 8 out of 10 medications used to treat 
infections, malignancies, cardiovascular diseases, or immunosuppres-
sants are either derived directly from plants or have some connection to 
them. Notably, 155 anticancer medicines were authorized between 
1981 and 2006, with about half coming from natural sources [6]. On the 
other hand, regulators have finally established that just one in 10,000 
examined chemicals is safe and effective to be used in human. There are 
several instances where pharmaceuticals introduced to the market were 
withdrawn within a few weeks, months, or even years because of 
unfavourable side effects. Thus, emphasis on plant-based compounds for 
drug development has arisen because of the high level of uncertainty, 
particularly since they are thought to be safer and more potent than 
synthetic chemicals [4,4,7]. 

Natural phytochemicals (herbal medicines) have received a lot of 
interest as innovative therapeutic techniques to treat inflammatory ill-
nesses, such as avoiding OA and age-related cartilage deterioration. 
Several medicinal plant extract and their single compounds have been 
reported to have potent anti-inflammatory and antioxidant properties, 
as well as anabolic potential [8–11]. Moreover, numerous studies have 
demonstrated the powerful pharmacological characteristics of several 
plants, including their ability to inhibit inflammation and the catabolic 
and anti-apoptotic effects of pro-cytokines. These characteristics can be 
utilized to shield cartilage from these pro-cytokine effects like inflam-
mation, including tumor necrosis factor alpha (TNF-α), interleukin-1 (IL- 
1), and damaging enzymes, such matrix metalloproteinases (MMPs), as 
well as the inflammatory mediator, cyclooxygenase-2 (COX-2) [12]. 
Nowadays, various anti-inflammatory and analgesic drugs are used to 
treat the pain and symptoms of OA and RA; however, some patients may 
find it challenging to take these medications for prolonged durations due 
to their side effects. In addition, the long-term treatment of arthritis with 
non-steroidal anti-inflammatory drugs (NSAIDs) is not a preferred 
choice due to its propensity for gastrointestinal, cardiovascular, and 
nephrotoxic adverse effects. [13,14]. Hepatotoxicity may be brought on 
by acetaminophen [15]. The central nervous system and gastrointestinal 
tract may be affected by tramadol [16]. Intra-articular (IA) corticoste-
roids may not be as effective as advertised in treating OA and can even 
cause more harm to tissues and joints [17]. Hyaluronic acid injections 
provide good safety and OA pain alleviation, although they are costly 
[17]. On the other hand, disease modifying-OA drugs (DMOADSs) are 
very effective as well in treating early rheumatoid arthritis (RA) with 
modest disease activity. Using them also increases the risk of gastroin-
testinal, liver, kidney, and blood issues [18]. Although they have poor 
tolerability and raise the risk of major infection, malignancy, and heart 
failure, DMOADSs are still found to be effective in treating moderate to 
severe OA [10,18 19,21]. Crucially, several studies have demonstrated 
that the cytokines, pro-inflammatory, and degradation mediators 
mentioned are all directly regulated by the major master pro- 
inflammatory transcription factor NF-κB. Even more fascinating is the 
possibility that phytochemicals might effectively stop cytokine-induced 
extracellular matrix (ECM) degradation in cartilage tissue by suppress-
ing the transcription factor NF-κB signalling pathway. Using botanical 
products for therapeutic treatment and prevention has several advan-
tages, not the least: affordability, accessibility to a broad range of peo-
ple, safety, and lack of adverse effects. Even if it is challenging to carry 

out a reliable scientific assessment of herbal medical products, several 
procedures reported in modern delivery systems have looked at the use 
of herbal medicines in biotechnology to treat OA and RA more effec-
tively [8,11,22,23]. The results depend critically on how the herbs are 
prepared, used, and delivered. Tinctures, fatty oils, and other herbal 
medications are made from powdered, extracted, fractionated, refined, 
concentrated, or treated for other physical or biological procedures. 
Studies on the appropriate use of herbal medicines and herbal sub-
stances in TE must be considered as a vital and appropriate strategy for 
the articular cartilage’s regeneration and repair. [8,22,24]. 

Phytoconstituents can provide considerable difficulties while 
formulating them because of their varied and intricate physicochemical 
characteristics [25]. These problems can also impact the process of 
extracting, isolating, characterizing, formulating, and enhancing the 
bioavailability of the substances. A significant number of phytocon-
stituents exhibit low solubility in water, which poses challenges in their 
extraction and formulation into aqueous solutions [26,27]. Factors such 
as poor absorption, fast metabolism, and quick removal from the body 
usually limit the bioavailability of phytoconstituents [26,27]. Certain 
chemicals serve as substrates for efflux transporters, such as P-glyco-
protein, which actively remove them from cells, therefore diminishing 
their efficacy [28,29]. In context of OA, the elimination of a drug after it 
is injected into a joint area, known as intra-articular (IA) injection, is a 
vital aspect in determining the drug’s and/or phytomedicine effective-
ness, and how long it remains active in the joint [30]. Several variables, 
including the drug pharmacokinetics and pharmacodynamics, as well as 
the patient’s physiological and pathological circumstances, could in-
fluence the rapid removal of drug from joints. The production and 
drainage of synovial fluid, which serves to lubricate the joints, occur in a 
continuous manner [31]. The frequent fluid renewal can rapidly elimi-
nate the presence of drugs in the synovial fluid. Synovial joints, in 
particular, provide a robust blood supply that enables efficient elimi-
nation of medicines from the joint region and their return to the systemic 
circulation [32]. Smaller chemicals that can dissolve in water may move 
more readily from the joint area into circulation. On the other hand, 
highly lipophilic molecules tends to rapidly absorb into nearby tissues 
and eliminate themselves from the joint. In addition, the synovial fluid 
expedites the elimination of drugs with weak protein binding [33]. 
Notably, OA and other inflammatory conditions can enhance blood flow 
and vascular permeability in the joints, facilitating the elimination of 
drugs more quickly compared to the healthy joints. In addition, 
inflammation may also enhance the flow of lymphatic fluid from the 
joint area, accelerating the elimination rate of medicines [34]. Thus, 
creating extended-release formulations that deliver the medication 
gradually and consistently into the joint are considered to be beneficial 
in the context of OA. Next, studies frequently reports using nano-
particles, liposomes, or other encapsulating techniques to prolong 
medication release and improve its permeation and retention within the 
joint. The process involves modifying the therapeutic molecule to in-
crease its affinity with synovial proteins or decrease its metabolic 
breakdown. Administering drugs in conjunction with substances or 
polymers that impede their quick breakdown or improve their accu-
mulation in the joint are highly desirable [35]. In this regard, the uti-
lization of nanoparticles to augment the persistence of medication inside 
joints is a developing and encouraging methodology in the realm of drug 
delivery to treat OA. This technique seeks to tackle the problem of 
sustaining optimal drug levels in the synovial fluid and tissues of joints 
for extended durations, a crucial aspect in the treatment of disorders 
including OA, RA, and other inflammatory joint diseases. Therefore, 
combination of phytomedicine and nanomedicine presents a hopeful 
approach for treating OA. Through the integration of the inherent 
healing characteristics of plant-based chemicals with cutting-edge 
nanotechnology, it becomes feasible to create therapies that are both 
more potent and less risky for this incapacitating ailment. Herein, we 
have reviewed recent research on the use of herbal extracts and phy-
tochemicals for OA therapy. Furthermore, the objective of this review is 
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to elucidate the therapeutic efficacy of established herbal phytocon-
stituents following their incorporation into various types of nano-
particles, which may serve as an extremely efficient vehicle for 
delivering former for effectively managing OA. 

2. Systemic survey of literature 

Two major search engine, PubMed and Scopus were employed to 
write this comprehensive review. The research, review, and clinical 
trial-based papers were used combined to prepare the contents for this 
work. As we searched phytomedicine to treat OA in these search plat-
forms, 50 articles were found from the year 2000–2023, wherein 13 
articles were from clinical trial studies. Next, we wanted to search for 
phytomedicine used for effective articular cartilage regeneration. Four 
research paper was found from the year 2018–2023. Next, we looked for 
phytomedicine with anti-inflammatory activities. Notably, 1,428 arti-
cles popped up from 1994 to 2023. Similarly, as we typed phytomedi-
cine with analgesic activities, 610 research articles appeared in the 
search. The results strongly pointed toward two things. First, investi-
gation of phytoconstituents anti-OA has begun in recent years. However, 
the database is still insufficient to present strong arguments in support 
phytomedicine for treating OA. Secondly, enough anti-inflammatory, 
and analgesic activities of herbal medicine have been investigated, 
and it could be utilized to initiate the study of anti-OA potential of herbal 
medications. In upcoming years, it can be expected that various plant- 
based scaffolds could be reported to treat OA. 

3. Therapeutic classification of phytoconstituents based on its 
mechanism of action to manage arthritis 

3.1. Anti-inflammatory herbal medicines 

Anti-inflammatory herbs have been shown to be useful in fighting 
inflammatory reactions that cause significant abnormalities in physio-
logical systems [4,4,7,8]. Beneficial features of medicinal plants or their 
components include sufficient potency, convenience of availability, low 
cost, few or no adverse effects, and being safer and more efficient than 
synthetic alternatives [36–38]. These therapeutic plants include phy-
toconstituents that may prevent and treat unwanted inflammatory 
conditions [39–42]. Common phytoconstituents in these plants include 
steroids, glycosides, phenolics, flavonoids, alkaloids, polysaccharides, 
terpenoids, cannabinoids, and fatty acids [6]. Different mechanisms for 
anti-inflammatory activity of these active compounds have been inves-
tigated. They may synergize or interfere with anti-inflammatory 
pathway enzymes, factors, and proteins such as lipoxygenases, COX, 
TNF-α, ILs, PGs, nitric oxide, mitogen-activated protein kinases, and 
nuclear factor kappa B. Considering all the elements, molecular cellular 
studies will allow for a deeper understanding of the processes. Zingiber 
montanum, Juglans regia, Aegle marmelos, Nelumbo nucifera, Curcuma 
longa, Urtica dioica, Terminalia chebula, Eriobotrya japonica, Camellia 
japonica, Vaccinium myrtillus, and many more are common anti- 
inflammatory herbal medicinal plants [43–51]. They are thought to be 
free of adverse effects, in contrast to their chemical equivalents or 
synthetic anti-inflammatory medications, such as steroids, nonsteroid 
anti-inflammatory pharmaceuticals, and immunosuppressants used to 
regulate and suppress inflammatory crises. A thorough phytochemical, 
pharmacological, and physiological study will allow them to be used 
safely and effectively in inflammatory situations. Many anti- 
inflammatory drugs and herbal formulations have been patented, and 
others are being considered. Because of the high activity of individual 
bioactive components or the synergistic influence of numerous potent 
phytochemicals, medicinal plant extracts have substantial pharmaco-
logical action, including anti-inflammatory activity [52]. Table 1 lists 
major phytochemicals and medicinal plants with anti-inflammatory 
therapeutic potential against arthritis. 

Table 1 
List of various herbal medicinal plants with potent anti-inflammatory properties.  

Herbs Activity Reference 

Curcuma longa 
(Turmeric) 

In contrast to phenylbutazone, which 
is employed as an active control 
measure, the results implied that 
curcumin may be helpful in lowering 
clinical signs of RA, such as joint 
swelling and morning stiffness. 

[4,6,53–55] 

Zingiber officinale 
(Zinger) 

Compared to ibuprofen and 
indomethacin, ginger extract showed 
an equivalent improvement in pain 
levels in individuals with OA. 

[56–60] 

Rosmarinus officinalis 
(Rosemary) 

During a 4-week open-label trial, the 
effects of rosemary extract were 
evaluated in patients with OA, RA, 
and fibromyalgia; hs-CRP, an index 
for the presence of inflammation, was 
significantly lower in patients who 
had demonstrated augmentation in 
this index; incidentally, treatment 
resulted in a reduction in 
inflammation related to pain score 
but not in remission in fibromyalgia 
scores. 

[55,61,62] 

Borago officinalis 
(Borage) 

In the first experiment, individuals 
with RA were given 1.4 g of borage 
seed oil as a capsule daily or placebo. 
By the end of six months, the 
treatment group had improved by 
36.8 %. For six months, patients in the 
consecutive trial received 2.8 g/day 
of borage seed oil; after therapy, RA 
symptoms improved in the treatment 
group by 64 %, compared to 21 % in 
the control group. 

[55,63,64] 

Oenothera biennis 
(Evening Primrose) 

Because of sterols like campesterol 
and sitosterol in this oil, evening 
primrose oil has stronger reported 
anti-inflammatory properties than 
borage oil. 

[55,65–67] 

Harpagophytum 
procumbens (Devil’s 
Claw) 

Devil’s claw root extract is thought to 
restrict arachidonic acid production 
and inhibit NO, inflammatory 
cytokines, PGE2, and eicosanoids, 
which suppress COX-2 and lessen 
inflammation. 

[55,68–70] 

Boswellia serrata 
(Indian frankincense) 

It has been shown that Boswellia 
serrata extract is beneficial for 
treating OA. After treatment, there 
was a notable decrease in the 
frequency of joint discomfort and 
swelling, along with an improvement 
in joint flexibility and walking 
distance. 

[55,71,72] 

Rosa canina 
(Dog rose) 

Following treatment with this herb, 
patients with OA reported decreased 
pain, stiffness, and the need for rescue 
drugs to be reduced. CRP levels were 
also dramatically lowered. Two 
clinical studies conducted on 
individuals with OA supported the 
latter claim. Rosehip powder may be 
used as a supplement in addition to 
conventional RA therapies since it has 
also been demonstrated to lower ESR 
and enhance the quality of life in RA 
patients. 

[14,55,73,74] 

Urtica dioica 
(Common nettle) 

Nettle leaf was investigated in a pilot 
study to show its anti-inflammatory 
properties. Individuals diagnosed 
with acute arthritis were given an oral 
infusion of Urtica dioica (50 mg) and 
50 mg of diclofenac daily. These 
findings indicate that U. dioica has a 
remarkable synergistic impact when 
taken with NSAIDs. It has been 

[55,75–78] 

(continued on next page) 
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3.2. Phytoconstituents as analgesic pain medicine 

Many chronic pain sufferers turn to alternative therapies that are not 
covered by the medical system now. These alternative therapies are 
being scrutinized rigorously as any other evidence-based medical ther-
apy (Table 2). Research conducted across 16 nations found that 67 % of 
individuals with chronic pain sought therapies other than synthetic al-
lopathic medication [104]. In traditional Chinese medicine (TCM) and 
other traditional medical systems around the globe, herbal remedies are 

Table 1 (continued ) 

Herbs Activity Reference 

demonstrated that in chondrocytes, 
along with nettle leaf, rosehip, and 
willow bark suppress COX-2 and IL-1. 

Uncaria tomentosa 
(Cat’s claw) 

In a 24-week, double-blind, placebo- 
controlled trial, a highly purified 
extract of U. tomentosa was 
administered with sulfasalazine or 
hydroxychloroquine to evaluate its 
effects in RA patients; a small benefit 
of this herb in reducing joint pain, 
swelling, and tenderness was seen in 
the treatment group in contrast to the 
placebo group. 

[55,76,79–81] 

Salvia officinalis 
(Common sage) 

Carnossol and Carnosic acid have 
been found to have potent anti- 
inflammatory activities. By inhibiting 
microsomal PGE2 synthase-1, these 
two medicines may have stopped 
PGE2 production. 

[55,82–87] 

Ribes nigrum 
(Black currant) 

In a six-week clinical trial involving 
RA patients, researchers studied the 
effects of blackcurrant oil (BCO) on 
patients; the results included a 
decrease in morning stiffness in the 
experimental group and a decrease in 
proinflammatory mediators like IL-1 
and TNF-α in peripheral blood 
monocytes. 

[55,88–91] 

Persea americana 
Avocado)/Glycine 
max (Soybean) 

153 OA patients participated in a 
prospective multicenter, 3-month 
randomized control study and 
underwent NSAID and avocado/ 
soybean unsaponifiable (ASU) 
treatment; after 45 days of therapy, 
the requirement for NSAID decreased, 
but there were no substantial 
improvements in the patients’ pain 
levels. 

[55,92–95] 

Elaeagnus angustifolia 
(Russian olive) 

Oleaster effectiveness in the treating 
oral lichen planus (OLP) lesions was 
evaluated in a randomized controlled 
trial with 28 patients. There was a 75 
% reduction in pain and a 50–75 % 
reduction in lesion size in the case 
group. Another randomized clinical 
trial including 90 female patients with 
knee OA discovered that the active 
treatment group dramatically 
lowered levels of TNF-α and matrix 
metalloproteinase-1 (MMP-1) 
(proinflammatory mediators) as well 
as IL-10 (an anti-inflammatory 
cytokine). 

[40,55,96,97] 

Vaccinium myrtillus 
(European blueberry) 

The patient’s group’s circulating 
lipopolysaccharide (LPS) 
concentration reduced, as did hs-CRP, 
IL-6, and IL-12 levels, according to a 
randomized clinical investigation on 
27 patients with metabolic syndrome 
who received 400 g of fresh bilberry 
daily. After six weeks, bilberry 
resulted in remission in 63.4 % of 13 
patients with ulcerative colitis, and a 
significant decrease in Mayo score 
and fecal protection level. No changes 
in anti-inflammatory peptides 
(monocyte chemotactic protein-1) 
were seen when people with diabetics 
were given one capsule of 
concentrated bilberry extract (36 % 
w/w anthocyanins) daily. 

[55,98–100] 

Olea europaea 
(Olive) 

Extra virgin olive oil (EVOO) has been 
demonstrated to have beneficial 
effects on postprandial plasma 
lipopolysaccharide, proinflammatory 
cytokines, TXB2 and LTB4, and a 

[55,101–103]  

Table 1 (continued ) 

Herbs Activity Reference 

lower risk of coronary heart disease in 
healthy and metabolic syndrome 
patients.  

Table 2 
List of herbal medicinal plants with potent analgesic effect.  

Herbs Activity Reference 

Hypericum perforatum 
(St John’s Wort 
(SJW)) 

Serotonin, norepinephrine, dopamine 
reuptake, monoamine oxidases 
(MAOIs) A and B, and gamma- 
aminobutyric acid (GABA) receptors 
strongly have an affinity to the crude 
extracts of hypericin. It can therefore be 
utilized for sedative, anxiolytic, 
analgesic, and antidepressant activity. 

[108,109] 

Zingiber officinale 
(Zinger) 

Due to its antioxidant function, it may 
be used to treat bacterial and viral 
infections as well as colds and muscular 
pain and swelling, arthritis, headaches, 
digestive and appetite issues. 

[108,110–112] 

Capsaicin Capsaicin is a recognized therapy for 
several pain problems. Capsaicin causes 
a reversible and selective loss of 
nociceptive nerve terminals after 
prolonged or intense exposure. 

[113–116] 

Tripterygium wilfordii 
(Thunder God Vine) 

It prevents lymphocytes, macrophages, 
synovial chondrocytes, and fibroblasts 
from expressing proinflammatory 
cytokines, proinflammatory mediators, 
adhesion molecules, and matrix 
metalloproteinases. 

[117,118] 

Petasites hybridus 
(Butterbur) 

The sesquiterpenes in it, notably petasin 
and isopetasin, are probably the active 
ingredients. Transient receptor 
potential ankyrin 1 (TRPA1) channel 
may be activated by isopetasin, which 
causes neuropeptide-containing 
nociceptor stimulation and, therefore, 
heterologous neuronal desensitization. 

[119–121] 

Tanacetum parthenium 
(Feverfew) 

Many centuries ago, it was used to cure 
inflammation, headaches, and, fever. In 
the latter half of the 20th century, it was 
rediscovered to treat migraines. The 
parthenolide found in the leaves is its 
active ingredient. It may stop platelet 
aggregation and the release of serotonin 
from platelets and white blood cells. By 
preventing the production of 
prostaglandins and phospholipase A, it 
may also have anti-inflammatory 
effects. 

[118] 

Salix sp (Willow Bark) Salix is often standardized to salicin, 
although it also contains flavonoids, 
polyphenols, and other salicylates. It 
has been used for its antipyretic, 
analgesic, and anti-inflammatory 
properties for countless years. The 
active ingredients in willow bark 
extract prevent tumor necrosis factor-α, 
interleukin 1ß, and prostaglandin E2 
from being released by COX-2. 

[122–124]  
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the most often utilized form of pain relief. Tetrahydropalmatine, alo-
perine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodi-
amine, brucine, tetrandrine, stopholidine, and lappaconitine are among 
the analgesic alkaloids from TCM that are the subject of Jiang et al. study 
on the mechanism and potential therapeutic applications [105]. Drug- 
cloud (dCloud) theory was employed by Jiang et al. to provide a 
clearer picture of these alkaloid mechanisms. dCloud demonstrated the 
full therapeutic range of multi-target analgesics in two dimensions: 
“background efficacy,” which includes reducing neuronal inflamma-
tion/oxidative stress, inhibiting glial cell activation, re-establishing the 
balance between excitatory and inhibitory neurotransmission, and 
curing chronic pain, and “direct efficacy,” which includes blocking ion 
channels, activating gamma-aminobutyric acid/opioid receptors, and 
directly inhibiting the pain signal [105]. Empirical studies show that 
between 30–50 % of people with chronic pain benefit from pharma-
ceutical combinations. Afterwards, Jiang et al. discussed the potential 
benefits of analgesic compositions using analgesic alkaloids originating 
from Chinese medicine for alternative drug discovery models. Compared 
to opioids, TCM analgesic alkaloids are less harmful over the long term 
despite their moderate effectiveness as natural compounds [106], 
making them suitable medication candidates. In South Africa, tradi-
tional medicine continues to be the predominant approach for treating 
inflammatory diseases and pain. Several scientific databases, as well as 
widely available ethnobotanical literature were used in an extensive 
search focused on South African ethnobotany. Using 38 sources, the 
systematic analysis produced a list of 495 plants from 99 families that 
were hypothesized to be effective treatments for inflammatory-related 
pain and diseases (such as headache, toothache, backache, menstrual 
pain, and rheumatism) among South African populations of varied racial 
backgrounds [107]. Traditional medicine continues to be the focus for 
treating inflammatory diseases and pain in South Africa [107]. Given its 
acceptability across all age groups, the expanding global market for 
herbal medicine, and clinical trials and scientific data to back it, some 
alternative therapies, like herbal medicine, is suggested to be classified 
as conventional medicine. However, little is known about how they 
function, and their use is unreported to medical professionals often and 
without supervision. Therefore purpose of this section is to provide a list 
of widely accessible herbal remedies that can be used to treat OA or RA 
instead of or in addition to prescription painkillers and is enlisted in 
Table 2 [108]. 

3.3. Phytomedicine in cartilage tissue engineering 

Three essential requirements must be met for tissue construction and 
regenerative medicine to be viable, i.e., scaffolds, effector stem cells, and 
signals from the body’s tissues and organs. Scaffolds function in 
conjunction with organic components of body to assess, heal, improve, 
or replace bodily tissues or functions, including mature bone stem cells, 
cartilage, skin, brain, and nerve cells. These platforms aims to correct or 
alter cell stage and behaviour, i.e., how cells respond to developing 
forms such as shape arrangement. Additionally, scaffolds serve as 
blueprints, guiding the development of contemporary tissues by 
showing them how to be taken care of and ensuring that cells receive the 
nourishment they need. However, most biomaterials in clinical settings 
don’t tick all these boxes. Restorative plants have long been funda-
mental part in numerous societies [8]. Their part in tissue designing 
builds remains largely unexplored. But since therapeutic plants have 
proven useful in wound recuperating, pharmaceutical, and anti-aging 
medicines, it stands to reason that they might also be valuable in OA 
field. A research group from South Africa investigated two plants i.e., 
Eucomis autumnalis, commonly known as Pineapple Lily, and Pterocarpus 
angolensis, or wild teak. The class Eucomis autumnalis has been utilized 
for centuries to treat bone fractures. It’s widely used as a home remedy 
for wound healing and post-operative recovery [125]. Pterocarpus 
angolensis, for its part, promotes the organization of cartilage and reg-
ulates collagen, which is extensively present in human bones and 

cartilage. These plants were mixed with scaffolds and fat cells by the 
researcher. They found that the two plants enhanced bone production 
and stimulated the body’s cells. Moreover, they are excellent in healing 
wounds in vitro and do a better job of scaffolding when paired with 
pertinent signals and stem cells [126]. Table 3 summarizes the medici-
nal plant with potent cartilage re-engineering capabilities. 

Nanofibers have become a viable tool for treating OA because of their 
distinctive characteristics, such as a large surface area, adjustable me-
chanical properties, and the capacity to administer medicinal substances 
[127]. Biomedical engineers can customize nanofibers that look like 
cartilage’s ECM. This helps chondrocytes stick to the nanofibers, grow, 
and specialize. Materials commonly used include polycaprolactone 
(PCL), polylactic acid (PLA), collagen, chitosan, and hyaluronic acid 
[128]. Further, researchers have found that nanofibers can also hold 
anti-inflammatory drugs (like NSAIDs and corticosteroids), growth fac-
tors (like TGF-β and BMPs), and herbal extracts that are known to pro-
tect cartilage [129]. Notably, investigator can control the release of 
these therapies by fabricating the nanofiber’s content and structure, 
ensuring their continuous release only in the damaged cartilage area. 
Additionally, incorporating magnetic nanoparticles into nanofibers al-
lows for precise delivery of healing substances to the injured joint using 
external magnetic fields [130,131]. These nanofibers have the ability to 
react to particular stimuli, such as changes in pH or temperature, in 
order to deliver their therapeutic payload at the exact moment it is 
required. Nanofibers have the capacity to include extracts derived from 
herbs such as turmeric (curcumin), green tea (EGCG), and Boswellia 
(boswellic acid), which are renowned for their anti-inflammatory and 
antioxidant characteristics [132]. The integration of several herbal ex-
tracts into nanofibers are expected to augment their overall therapeutic 
effectiveness, offering a versatile strategy to addressing OA. On the other 
hand, nanofibers can be designed to provide mechanical reinforcement 
to the injured cartilage, thereby facilitating the inherent healing process 
under normal load conditions [133]. Nanofiber-based scaffolds that are 
well-designed may send mechanical signals that boost chondrocytes 
activities and ECM synthesis, which will help cartilage heal faster. 
Nanofiber-based interventions have shown encouraging outcomes even 
in animal models of OA, showcasing enhanced cartilage regeneration 
and decreased inflammation [134]. The subsequent stage involves 
extrapolating these discoveries to human clinical trials, with a specific 
emphasis on ensuring safety, effectiveness, and long-term results. Next, 
the integration of nanofiber scaffolds with stem cells, such as MSCs, may 
accelerate the process of cartilage regeneration [135]. Thus, nanofibers 
provide a diverse and efficient method for treating OA through struc-
tural reinforcement, controlled drug administration, and tissue regen-
eration stimulation. As research progresses, these technologies have the 
potential to greatly improve OA therapy management and results. 

Hydrogels are networks of highly hydrated polymers that can act like 
cartilage’s natural ECM [136]. These properties makes them a good 
choice for treating OA. They can retain a large amount of water, similar 
to natural cartilage, providing a conducive environment for chondrocyte 
survival and function. In addition, the mechanical properties of hydro-
gels can be tuned or adjusted to match those of native cartilage, 
providing necessary support while allowing for normal joint movement 
[137]. Hyaluronic acid, collagen, chitosan, and alginate are commonly 
used due to their biocompatibility and bioactivity [138]. Formulation 
Scientist can engineer polyethylene glycol (PEG), polyvinyl alcohol 
(PVA), and polyacrylamide (PAM) to have specific mechanical and 
degradation properties [139]. Hydrogels loaded with anti-inflammatory 
drugs, growth factors, and herbal extracts, are expected to gradually 
release the therapeutic payload to provide sustained therapeutic bene-
fits [140]. Moreover, modifying the hydrogel’s cross-linking density, 
polymer composition, and degradation rate can adjust or fine-tune the 
release profile as desired [141]. When injectable hydrogels are directly 
administered into the joint space, an in situ gel is formed that precisely 
delivers therapeutic agents. Notably, embedding drug-loaded nano-
particles in hydrogels can improve drug release in a more controlled and 
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Table 3 
List of herbal phytoconstituents with reported cartilage engineering capabilities.  

Application of phytochemical 
in cartilage engineering 

Studies and finding 

Curcumin I. It acts as a naturally occurring anti- 
inflammatory drug for the treatment of OA 
[154]. 
II. Curcumin-inhibited action of cytokines can 
be used to maintain the chondrogenic potential 
of chondrocytes [155]. 
III. Curcumin has anti-apoptotic and anti- 
catabolic properties. For the treatment of OA 
and similar osteoarticular conditions, curcumin 
can potentially be an additional nutraceutical 
chondroprotective agent [156]. 
IV. A scaffold made of curcumin and silk fibroin 
was revealed to be an excellent therapeutic 
option for injured cartilage. The scaffolds were 
designed with enough mechanical strength and 
pore size to support cartilage repair. The 
biocompatibility of the curcumin/silk scaffold 
was demonstrated, creating an excellent 
environment for in vivo cartilage repair 
following transplantation. A functional silk/ 
curcumin composite scaffold may be used as a 
possible substrate for cartilage healing in 
cartilage-tissue engineering (TE) [157]. 

Ginger I. Ginger significantly decreased pain and OA 
symptoms compared to the placebo control 
group and was well tolerated by most OA 
patients [158].In chondrocytes and cartilage 
explants, ginger extract significantly reduced 
the generation of the pro-inflammatory medi-
ator nitric oxide (NO) and prostaglandin E2 
(PGE2) [159,160] 
II. Zingerone inhibited cartilage inflammation 
and degradation by lowering TNF-α, IL-6, and 
IL-8 mRNA expression and decreasing p38- 
MAPK and c-Jun n-terminal kinase phosphory-
lation [161]. 
III. Chondrocytes were pre-treated with ginger 
extract before being co-treated with IL-1. 
Ginger extract prevented IL-1-induced oxidative 
stress, mitochondrial changes, and chon-
drocytes mortality [162]. 

Icariin I. Natural extracellular matrix (ECM)/PLLA 
scaffolds comprising Ica (icariin) and Ica-2- 
hydroxypropyl–cyclodextrin were created using 
phase separation, solvent replacement, and 
freeze-drying. PLLA scaffolds with an inclusion 
complex of ica-2-hydroxypropyl–cyclodextrin 
was found suitable for cartilage TE [163,164]. 
II. Ica was added to the chondrogenic medium 
of bone marrow MSC cells. Ica increases 
chondrogenesis of bone marrow MSCs, which 
induces cartilage TE growth factors but not 
hypertrophy [165].Ica was used to produce 
isolated rabbit chondrocytes at various 
concentrations. Former increases the expression 
of aggrecan (AGC), COL2A1 and SOX9 genes, 
which speeds up chondrogenesis. Ica-loaded 
biomaterials might benefit cartilage TE [166]. 
III. LPS-treated murine chondrocytes were co- 
cultured with different dosages of Ica. It is a safe 
chondrocyte anabolic medication that inhibits 
NO and MMP production and may have pro-
tective effects by reducing NO and MMP syn-
thesis, which reduces ECM deterioration 
[167,168]. 
IV. A porous sodium alginate and gelatin 3D 
scaffold was created via 3D printing. The cells 
were treated with Ica. It significantly boosted 
chondrocyte proliferation, indicating a possible 
use for cartilage TE [169]. 

Avocado/soybean 
unsaponifiables 

I HPLC and mass spectrometry examined 
chondrocytes cultivated for 72 h with/without 
IL-1 and co-treated with avocado/soybean  

Table 3 (continued ) 

Application of phytochemical 
in cartilage engineering 

Studies and finding 

unsaponifiable (ASUs). Anti-inflammatory and 
anabolic properties were looked at. ASU 
enhanced COL2A1 and AGC gene expression, as 
well as cell proliferation. ASU partly reversed 
the effects of IL-1 on chondrocytes. The reduc-
tion of IL-1 effects corresponded to chon-
droprotective action [170]. 
II. The capacity of ASU to increase TGF- 
expression stimulated ECM production. ASU 
enhanced plasminogen activator inhibitor (PAI- 
1) production, inhibited MMP, and activated 
matrix repair pathways in chondrocytes [171]. 
III. The effects of ASU/-lipoic acid (LA) on PGE2 
synthesis in horse chondrocytes stimulated with 
LPS, IL-1, or H2O2 for 24 h and supernatants 
immunoassayed for PGE2. ASU/LA suppressed 
chondrocyte PGE2 synthesis more efficiently 
than either alone, related to the reduction of NF- 
κB translocation. The effect of ASU/LA on PGE2 
synthesis can be used as an anti-inflammatory/ 
antioxidant strategy in OA [172]. 

Punica granatum(Pomegranate) I. OA chondrocytes or cartilage explants were 
pre-treated with pomegranate fruit extract 
(PFE) and co-treated with IL-1. A colorimetric 
test was performed to determine the level of 
prostaglandins (PG). The expression of NF-κB 
was ascertained using EMSA, whereas the 
expression of MMPs, pIkB, and MAPKs was 
detected using WB. PFE inhibited PG break-
down, MMP protein and mRNA synthesis, p38- 
MAPK, phosphorylation of inhibitor of kappa B 
alpha (IkB), and NF-κB binding to DNA in OA 
cartilage explants [173]. 
II. PFE-fed rabbits showed higher levels of AGC 
and COL2A1 mRNA expression and lower levels 
of IL-6, MMP-13, and PGE2 in their synovial 
fluid/plasma. The injection of PFE significantly 
suppressed the formation of PGE2 and IL-1- 
induced MAPK and NF-κB inhibitors, high-
lighting PFE’s chondroprotective significance in 
the treatment of OA [174]. 
III. PFE enhances the growth of cartilage and 
bones. After being grown and exposed to PFE, 
MSCs from fetal limb buds produced more 
viable cells than in control conditions. PFE- 
treated cells had more cartilage nodules overall, 
both in quantity and diameter [175]. 

Resveratrol I. To investigate the potential synergistic effects 
of resveratrol and/or curcumin on IL-1- 
stimulated human PCH, western blot and elec-
tron microscopy (EM) were employed. Both 
medications obstructed the MAPK and NF-κB 
signalling pathways. Resveratrol inhibits the 
proteasome, but curcumin alters the inhibition 
of MAPK and upstream kinases [176,177].PCH 
cultures were grown in 3D-alginate cultures, 
and resveratrol was produced in ethanol and 
diluted in the medium. TNF-α, or T-lympho-
cytes were used to treat PCH alginate cultures, 
which were then co-treated with resveratrol. 
TNF-α suppression by resveratrol/histone 
deacetylase sirtuin-1 (SIRT1), comparable to 
TNF-α or T-lymphocytes-induced inflammatory 
milieu in PCH, might be a potential therapeutic 
method for addressing inflammation during 
OA/RA [178]. 
II. Osteochondral defects were completely 
repaired by the collagen/resveratrol scaffold, 
and the neo-cartilage integrated well with the 
surrounding tissue [179]. 
III. Resveratrol decreased the synthesis of VEGF, 
MMP-3, MMP-9, and COX-2 in PCH that had 
been stimulated by IL-1. By inhibiting IL-1, 
ROS, p53 production, and apoptosis through 

(continued on next page) 
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sustained manner. Next, incorporating different herbal compounds into 
a hydrogel matrix can help them work better together as medicines, 
allowing for a more targeted approach to treating OA [142,143]. 
Hydrogels that mimic the viscoelastic properties of cartilage can 
enhance the natural repair processes by providing appropriate me-
chanical cues. Numerous research based investigations in animal models 
of OA have shown that hydrogel-based treatments can enhance cartilage 
regeneration and reduce inflammation [136–138]. Overall, hydrogels 
loaded with phytomedicines represent a promising therapeutic 
approach for OA. This plan combines the natural healing properties of 
plant-based compounds with the advanced features of hydrogel systems 
to provide targeted, long-lasting, and effective treatment for OA, which 
leads to better patient outcomes and quality of life. 

The integration of phytomedicine with cartilaginous organoids is an 
innovative method for addressing OA [144]. This technique exploits the 
regeneration powers of organoids in combination with the anti- 
inflammatory and chondroprotective qualities of phytomedicines 
[145]. Cartilaginous organoids are compact and simplified replicas of 
organs, formed from stem cells or progenitor cells that spontaneously 
arrange themselves into fully functioning structures. Cartilaginous 
organoids are often generated by differentiating MSCs or induced 
pluripotent stem cells (iPSCs) into chondrocytes. The cells are cultivated 
under circumstances that facilitate the development of cartilage tissue. 
They closely imitate the structure and functionality of real cartilage. It 
offers a more biologically accurate setting in comparison to conven-
tional 2D cell cultures. Researchers report either direct loading or a co- 
culture method to incorporate phytomedicine into the cartilaginous 
organoids and in direct loading method former is conditioned with 
phytomedicines or drug of choice before directly loading them for im-
plantation [146]. This entails cultivating organoids in a solution con-
taining phytomedicines in order to enhance their medicinal properties. 
The co-culture approach involves the cultivation of organoids and 
phytomedicines together in bioreactors, enabling direct contact and 
increased therapeutic synergy [147]. Moreover, phytomedicines have 
the ability to stimulate the transformation of stem cells into chon-
drocytes in organoids, which aids in cartilage development. Organoids 
and phytomedicines based unified platform can both increase the pro-
duction of ECM components like collagen and proteoglycans. These are 
important for keeping cartilage in good shape. Therefore, the combi-
nation of plant-based medication with artificial cartilage structures 
presents a new and hopeful method for treating OA. This approach aims 
to revolutionize OA treatment by utilizing organoids’ regeneration ca-
pacities and phytomedicines’ anti-inflammatory and chondroprotective 
properties. 

3.4. Senolytic phytoconstituents to treat osteoarthritis 

Cellular senescence is also considered as a crucial factor in the 

advancement of OA. Senescent chondrocytes, which are the cells present 
in cartilage, build up in osteoarthritic cartilage as per the increasing age 
[148]. These cells after undergoing senescence experience a decline in 
their capacity to sustain and restore the cartilage matrix, resulting in its 
deterioration and eventual onset of chronic OA. Moreover, senescent 
cells can also build up in the synovial membrane, leading to inflam-
mation and deterioration of the joints [149]. To tackle this condition, 
senolytic medicines that specifically trigger the demise of senescent cells 
are utilized. These treatments attempt to reduce inflammation and 
enhance tissue healing by lowering the load of senescent cells in the 
joint. Preclinical investigations have shown encouraging outcomes with 
senolytic substances including fisetin, quercetin, and dasatinib in 
diminishing symptoms of OA and enhancing the condition of joints 
[150]. Senolytic drugs, which specifically trigger the apoptosis of se-
nescent cells, have attracted attention due to their potential in the 
treatment of age-related disorders such as OA [151]. Phytoconstituents, 
which are natural chemicals present in plants, have shown potential as 
senolytic agents. Quercetin, fisetin, curcumin, epigallocatechin gallate, 
and resveratrol are some commonly used senolytic drug from plant 
based sources and these have been frequently reported for treating OA 
[152,153]. In conclusion, since they can target senescent cells, lower 
inflammation, and preserve cartilage, phytoconstituents have potential 
as senolytic drugs in the treatment of OA. To completely comprehend 
their workings and maximize their use in therapeutic contexts, further 
investigation is needed. 

4. Phyto-nanomedicine and drug delivery confluence to 
enhance therapeutic effectiveness 

The pharmacokinetics of a medication delivered via IA route, 
meaning directly into a joint, requires careful study owing to the unique 
characteristics of the joint area [33]. Further, injecting a drugs or phy-
tomedicines directly into the IA cavity bypasses the need for systemic 
absorption, resulting in an instantaneous and high local concentration 
within the joint [30]. Formulations like gels or sustained-release parti-
cles can be used to for this purpose. Initially, the drug diffuses into the 
synovial fluid, which serves to lubricate and provide nutrients to the 
cartilage and joint structures. Subsequently, the medication is able to 
infiltrate the synovial membrane and cartilage [31]. The drug’s molec-
ular dimensions, lipophilicity, and propensity for binding to joint tissues 
determine the depth of infiltration. However, enzymes in the synovial 
fluid are reported to digest drugs. Hyaluronidase, for example, has the 
ability to break down medications that are based on hyaluronic acid 
[184]. In addition, the cells that cover the joint capsule have the ability 
to break down drugs via cellular enzymes, which might possibly impact 
the length and strength of the drug’s effects [185]. On the other hand, 
the lymphatic system eliminates any surplus fluid and solutes, including 
medications, from the synovial fluid through constant production and 
drainage. Therefore, drug formulation in the nanoparticulate size ranges 
are usually designed to increase the system’s circulation time, area 
under the curve (AUC) pharmacokinetics, dissolution/bioavailability, 
and targeting of phytomedicines or synthetic drugs (Fig. 1). Many of 
these drug-loaded nanoparticulate vehicles are being investigated to 
enhance the targeting. Passive targeting prolongs circulation time by 
disguising the nanoparticle with a coating, such as polyethylene glycol 
(PEG). By changing its surface, i.e., adding ligands to target particular 
receptor, active targeting enables a nanoparticle to recognize and stick 
to certain bodily parts—like cancerous tumors—while avoiding healthy 
tissue. Notably, cell-specific ligands can be anchored to the nano-
particle’s surface to enable it to attach precisely to complement re-
ceptors. Furthermore, nanoparticulate vehicles loaded into the 
formulations like carbohydrate-based polymers or hydrogels are re-
ported provide a longer duration of action by gradually releasing the 
drug over time. The above-mentioned technologies for medication and/ 
or phyto-nanomedicine delivery are expected to be beneficial in 
resolving issues with OA therapy. This section will describe the potential 

Table 3 (continued ) 

Application of phytochemical 
in cartilage engineering 

Studies and finding 

NF-κB downregulation, resveratrol has a chon-
droprotective effect [180,181]. 

Quercetin (QCN) I. QCN prevents OA formation and progression 
by preserving the homeostasis of the 
inflammatory cascade. QCN may thus be a 
useful treatment drug to stop the development 
of OA in high-risk individuals [182]. 
II. According to Hu et al., QCN has 
chondroprotective effects by reducing apoptosis 
and inflammation of chondrocytes, altering 
synovial macrophage polarization to M2 
macrophages, and creating an environment that 
is pro-chondrogenic for chondrocytes to 
enhance cartilage regeneration in OA patients 
[183].  
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for drug delivery technologies, specifically nanomedicine, to enhance 
the therapeutic effectiveness of phytoconstituents treating OA [186]. 

4.1. Parameters to be considered for designing effective phytomedicine- 
incorporated nanoparticles to treat osteoarthritis 

Articular cartilage has an overall negative charge because it contains 
glycosaminoglycans, such as chondroitin sulfate and keratan sulfate, 
which have negatively charged sulfate and carboxyl groups [35]. 
Moreover, utilizing biocompatible cationic polymers such as chitosan, 
polyethyleneimine (PEI), or cationic poly(lactic-co-glycolic acid) 
(PLGA) to induce a positive charge in nanoparticles are reported to 
facilitate drug penetration into the articular cartilage [188]. Addition-
ally, cationic lipids can also be used to fabricate liposomes or solid lipid 
nanoparticles (SLNs) that possess a positively charged on the exterior 
surface. Similarly, the application of cationic surfactants such as cetyl-
trimethylammonium bromide (CTAB) or polymers to nanoparticles will 
result in an increase in their positive charge [189]. For further precision, 
investigator can also consider attaching particular ligands such as an-
tibodies, peptides, or aptamers that have the capability to preferentially 
bind to cartilage components or OA biomarkers [190]. This can be a 
unique approach when personalizing the delivery vehicles. In order to 
get the best possible outcomes, it is advisable to focus on a size range 
between 50–200 nm. This range enables efficient infiltration into the 
deep layers of cartilage while also guaranteeing durable preservation 
[191]. Next, formulation scientists often choose spherical nanoparticles 
due to their capacity to distribute uniformly and be absorbed effectively 
by cells. The development of nanoparticles that can selectively release 
compounds in a controlled way is achieved by using biodegradable 
polymers or materials that are responsive to changes in pH or temper-
ature, and can adapt suitably to the specific environment [192]. In order 
to provide strong electrostatic interaction with negatively charged 
cartilage and avoid clumping, it is vital to maintain a zeta potential 
within the range of + 20 to + 40 mV [35]. Moreover, it is advantageous 
to maintain the stability of nanoparticles under physiological conditions 

by limiting rapid aggregation or clearance. Further, it is equally 
important to choose biocompatible materials and undertake thorough 
cytotoxicity studies to ensure former safety. By using these specific 
design principles, it is possible to customize positively charged nano-
particles in order to efficiently treat OA. 

4.2. Types of nanoparticles that can be used to improvise delivery of 
phytoconstituents 

Nanomedicine encompasses a diverse range of small-scale materials 
and technologies specifically designed to diagnose, treat, and prevent 
illnesses and diseases. Many characteristics, such as the type of nano-
materials used, their specific use, and their functional properties, can 
categorize them [193]. This section has classified the various nano-
particulate drug delivery vehicles that can be utilized to deliver thera-
peutically active phytoconstituents to manage OA in detail. 
Furthermore, in Table 4, the phytomedicine incorporated nano-
particulate drug delivery vehicles for treating OA and RA has been 
summarized. 

4.2.1. Polymeric nanoparticles 
Polymeric nanoparticles are a kind of nanomedicine composed of 

biodegradable and biocompatible polymers. They usually have a size 
between 10–1000 nm [194]. Chitosan, gelatin, alginate, albumin, pol-
ylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) 
(PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) are 
often utilized to create these nanoparticles [195]. Polymeric nano-
particles can regulate and prolong drug release, thereby increasing 
therapeutic effectiveness and reducing dosage frequency. It can preserve 
and protect medications against environmental variables and enzymatic 
deterioration [188]. In addition, surface modification using targeting 
ligands (e.g., antibodies and peptides) enables the delivery of specific 
medications to target tissues or cells. This approach is suitable for a wide 
range of pharmaceuticals, including proteins, peptides, nucleic acids, 
and both hydrophobic and hydrophilic chemicals. The common surface 

Fig. 1. Several nanoparticles have been developed and used during the last two decades for the treatment or management of several ailments. Figure reproduced 
with permission and without modification from Nasra et al. [187]. 
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modification technique improves polymeric nanoparticles’ functioning 
and targeting abilities. The next step is to anchor PEG chains to extend 
circulation duration by reducing immune system clearance and opso-
nisation [196,197]. Further, we could incorporate cationic or anionic 
groups to enhance their interactions with specific cellular constituents 
or cell membranes [198]. Thus, in nanomedicine, polymeric nano-
particles are a flexible and potent platform that provide a number of 
benefits for therapeutic and drug delivery uses. The goal of ongoing 
research and technology developments is to get beyond present obsta-
cles and reach their full capacity in therapeutic environments. 

4.2.2. Lipid nanoparticles 
Lipid nanoparticles (LNPs) are a kind of nanocarrier that finds 

widespread usage in drug delivery and other biomedical applications 
because of their targeted delivery capabilities, biocompatibility, and 
capacity to encapsulate both hydrophilic and hydrophobic medicines 
[199]. Usually made of lipids that resemble biological membranes, these 
nanoparticles are more physiologically compatible with the human 
body. Types of LNPs are discussed below. 

I Solid lipid nanoparticles 
One kind of lipid-based nanocarrier that is employed for medication 

delivery is called solid lipid nanoparticles, or SLNs. Solid lipid cores 
stabilized by surfactants give them a number of benefits over conven-
tional drug delivery methods [200,201]. The ability of SLNs to encap-
sulate and safeguard medications, enhance their stability, and provide 
regulated release is very noteworthy. Lipids such as glyceryl mono-
stearate, glyceryl behenate, stearic acid, and triglycerides; solid at both 
body temperature and room temperature, form the basis of SLNs 
[202,203]. On the other hand, stabilizers such as lecithin, poloxamers, 
and polysorbates prevent nanoparticles in suspension from aggregating, 
caking, and agglomeration [204]. They can encapsulate drugs that are 
either hydrophilic or hydrophobic, either on the surface or within the 

lipid matrix, and are commonly formulated by high-pressure homoge-
nization, solvent evaporation, solvent injection, and the double emul-
sion method [205] (Table 4). 

II Micelles 
Micelles are aggregated colloids formed in solution by the self- 

assembly of amphiphilic polymers, provide a novel strategy to over-
come numerous drug delivery challenges, such as limited water solu-
bility and poor drug permeability through biological barriers (Fig. 2) 
[206,207]. Moreover, polymeric micelles have a smaller size, faster 
preparation, and sterilization procedures, and high solubilization ca-
pabilities compared to other nanocarriers; yet, they have inferior sta-
bility in biological fluids and are more challenging to characterize. 
Further, studying of their interaction with the biological environment, is 
essential to predict former true in vivo behaviour after therapy, is very 
difficult [208]. Micelles develops when the concentration of the polymer 
in solution exceeds a specified threshold concentration known as the 
critical micellar concentration (CMC). These micelles could be effec-
tively tailored to deliver hydrophobic phytoconstituents adequately to 
the site of abnormalities and are very easy to produce in commercial 
settings. 

III Liposomes 
Liposomes are vesicular structures consisting of bilayers that form on 

their own when phospholipids are dispersed in aqueous solutions (Fig. 3, 
Table 4). These are minuscule vesicles entirely encased in an aqueous 
layer of lipid bilayer membrane. These colloidal spheres called lipo-
somes may hold cholesterol, long-chain fatty acids, sphingolipids, gly-
colipids, non-toxic surfactants, membrane proteins, and therapeutic 
compounds in a single nanoparticulate drug delivery platform. 
Depending on the hydrophilicity of the active pharmaceutical ingredient 
(API) or phytoconstituents, it is often introduced into the liposome 
either into the hydrophilic pocket or sandwiched between the hydro-
phobic bilayers. Moreover, for effective targeting, surface modification 

Table 4 
The table displays the summary of the reported studies on incorporation of various phytoconstituents in different types of nanoparticulate drug delivery vehicles 
(phyto-nanomedicine) to treat arthritis [249].  

Nanoparticle 
type 

Active 
Phytoconstituents 

Method of formulation Average 
Particle 
diameter 

Encapsulation 
efficiency 

Application References 

Polymeric 
nanoparticles 

Triptolide Ultracentrifugation 98.0 nm 48.6 % Reduced the cytotoxic effects of the Triptolide [250,251] 
Ultracentrifugation 79.0 nm 48.6 % 

Nanoemulsion Curcumin high-pressure 
homogenization 

150.0 nm 90.0 % Improved drug permeability and absorption [252] 

Self-emulsifying 41.1 nm 42.9 % Improved penetration of curcumin using 
nanoemulsion 

[253] 

Quercetin Self-emulsifying 136.8 nm 94.7 % Enhanced physicochemical stability, satisfactory 
mechanical characteristics, and increased skin 
permeability 

[182] 

Lipid core 
nanocapsule 

Resveratrol and 
curcumin 

interfacial deposition of 
preformed polymer 

200 nm  Reduced toxicity, improved stability and 
bioavailability 

[254] 

Solid lipid 
nanoparticle 

Curcumin Microemulsification 
technique 

134.6 nm 81.9 % Enhanced surface area resulted in heightened 
bioadhesion, thus leading to amplified and 
sustained cellular absorption, as well as improved 
bioavailability. 

[255] 

Liposome Liquiritin Film hydration and 
extrusion method 

122.3 nm  Enhanced antioxidation [211] 

Microsphere Quercetin Solvent evaporation 
method 

91 nm 57 % These results suggest that optimised quercetin- 
loaded polycaprolactone microspheres may be the 
viable strategy for controlled release of quercetin 
in the joint cavity for more than 30 days by intra- 
articular injection to treat rheumatoid arthritis. 

[256] 

Nanocrystals Curcumin High-pressure 
homogenization 

105.99 µm  Can be used in OA and RA [238] 

Quercetin Thin-film hydration 
technique and 
ultrasonication 

<400 nm  [239] 

Resveratrol Wet media milling 
technique 

270 nm  [240] 

Dendrimers Quercetin  <100 nm  Potent anti-inflammatory efficacy in carrageenan- 
induced paw edema mode and can also be utilized 
in OA. 

[183]  
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with different ligands can be done [209]. Li et al. developed injectable 
liposome-anchored teriparatide incorporated gallic acid-grafted gelatin 
hydrogel for OA treatment and showed good therapeutic potential of 
former [210]. Notably He et al. reported photo-cross-linkable meth-
acryloyl groups (ChsMA) microgels anchored liposomes with liquiritin 
(LQ)-loaded liposomes (ChsMA@Lipo) to delay the progression of OA by 
dual antioxidation [211]. Similarly, to address joint discomfort, Chang 
et al. developed a new OA therapeutic formulation called hyaluronic 
acid (HA)-Liposomal (Lipo)-DIC/DEX. Hyaluronic acid (HA) and DEX- 
loaded nanostructured lipid carriers Lipo-DIC/DEX were combined to 
create the formulation for long-term OA use. The nanoparticles had 
average size of 103.6 ± 0.3 nm, a zeta potential of − 22.3 ± 4.6 mV, an 
entrapment efficiency of 90.5 ± 5.6 %, and DIC and DEX contents of 
22.5 ± 4.1 and 2.5 ± 0.6 %, respectively. Research showed that HA- 
Lipo-DIC/DEX could release the medication for at least 168 h while 
maintaining an effective working concentration in 4 h. Co-culturing HA- 
Lipo-DIC/DEX with articular chondrocyte cells resulted in no discernible 
toxicities but did enhance the number of cells [212]. 

IV Nanoemulsion 
Nanoemulsion formulations offer several benefits, such as adminis-

tering of biological agents, medications, and diagnostics (Fig. 4, Table 4) 
[214–217]. This advanced medicine delivery system was developed to 
address many significant issues with conventional drug administration 
techniques, such as solubility, permeability and bioavailability. In 
addition, nanoemulsion are most frequently used to cover up the un-
pleasant taste of fatty liquids. Further, they can protect drugs or 

molecules that are susceptible to oxidation and hydrolysis and also en-
hances the solubility and permeability of BCS class II and IV drugs. 
Mohammadifar et al. demonstrated that nanoemulsion containing 
essential oils of peppermint and rosemary reduces OA pain via 
increasing antioxidant capacity and improving the histopathological 
features of the rats’ knee joint [218]. Similarly, Rivera-Pérez et al., re-
ported that incorporation of curcumin into nanoemulsion followed by 
microencapsulation enhanced its absorption and therapeutic benefits in 
OA. Next, Faheem et al. developed naproxen and gaultheria oil based 
nanoemulsion to treat OA, and suggested nanoemulsion to be better 
option for delivering the former [219]. Future studies and development 
pertaining to the application of phytomedicine in nanoemulsion for OA 
treatment are anticipated to increase greatly in near the future [136]. 

4.2.3. Metallic nanoparticles (MNPs) 
Metal nanoparticles (MNPs) are nanoscale particles made of metals, 

usually with sizes between 1–100 nm [221]. Their distinctive physical, 
chemical, and biological characteristics render them advantageous for a 
range of biomedical uses, such as medication administration, treatment, 
and diagnosis. MNPs may be synthesized in a variety of forms and sizes, 
such as cubes, spheres, and rods, which will affect their characteristics 
and uses. With a variety of biological uses, the MNPs include gold (Au), 
silver (Ag), iron oxide (IO), platinum (Pt), copper, zinc, titanium, and 
cerium nanoparticles [222]. When it comes to treating OA, MNPs have a 
great deal of promise. MNPs’ unique qualities, such as their large surface 
area, reactivity, and capacity for functionalization, enable a variety of 
applications in the treatment of OA. It is reported that, AuNPs modify 
inflammatory pathways in osteoarthritic joints, and subsequently they 
produce pro-inflammatory cytokines and mediators less frequently 
[223]. AgNPs have anti-inflammatory qualities and have the ability to 
lower oxidative stress, which can halt the advancement of OA 
[224,225]. Nevertheless, iron oxide nanoparticles (IONPs) can aid in 
cartilage regeneration and repair by delivering growth factors or stem 
cells. The antioxidative qualities of platinum nanoparticles (PtNPs) may 
protect cartilage cells, or chondrocytes, from oxidative stress-induced 
damage [226]. Therefore, phytomedicine-incorporated MNPs must be 
evaluated systematically both in vitro and in vivo studies, to establish 
former in OA and RA treatment. 

4.2.4. Nanotubes and nanofibers 
Long, cylindrical nanostructures with distinct mechanical, electrical, 

and thermal characteristics are known as nanotubes and nanofibers 
[227]. Because of their potential for tissue engineering, regenerative 
medicine, and drug delivery, they have attracted a lot of attention in a 
variety of sectors, including biomedical applications. Carbon atoms 
organized in a hexagonal lattice form the cylindrical nanostructures 
known as carbon nanotubes (CNTs). Their distinct mechanical, elec-
trical, and thermal characteristics render them immensely advantageous 
in several domains, including the biological and medical arena. In tissue 
engineering, CNTs are utilized to strengthen scaffolds by giving them 
mechanical strength and encouraging cell adhesion, proliferation, and 
differentiation. The electrical conductivity of CNTs is advantageous for 

Fig. 2. Graphical illustration of polymeric nanoparticles that can be employed to load phytomedicine to treat osteoarthritis. Figure reproduced without modification 
and with permission from Ghezzi et al. [208]. 

Fig. 3. Conventional and functionalized liposome structures (A) phospholipid- 
based conventional liposomes; (B) PEGylated/stealth liposomes with a layer of 
polyethylene glycol (PEG); (C) targeted liposomes with a specific ligand to 
target a cancer site; and (D) multifunctional liposomes that can be used for solid 
tumor diagnosis and treatment. Figure reproduced with permission and without 
modification Olusanya et al. [213]. 
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the tissue engineering of electrically active tissues, including heart or 
brain tissues [228]. Drugs or phytoconstituents could be incorporated 
into or placed onto CNTs for regulated, long-term release that prolongs 
therapeutic benefits and lowers administration frequency. By directly 
delivering painkillers to the injured joints, CNTs can increase patient 
comfort and range of motion. Scaffolds for cartilage tissue engineering 
can also include CNTs and their surface could be functionalized to 
encourage chondrocyte (cartilage cell) cell adhesion, proliferation, and 
differentiation, while their mechanical strength maintains the scaffold’s 
structural integrity. By electrically stimulating chondrocytes, CNTs’ 
electrical conductivity could promote their proliferation and matrix 
synthesis, both of which are advantageous for cartilage regeneration 
[229]. In addition, stem cells can also be administered to the injured 
cartilage using CNTs. By enhancing stem cell survival and integration in 
the joint environment, they are expected to encourage cartilage regen-
eration and repair [230]. 

Nanofibers are elongated nanostructures that may have lengths 
ranging from micrometres to centimetres with diameters generally 
ranging from 10–100 nm. They are be made from a variety of materials, 
including as metals, ceramics, and polymers. Because of their special 
qualities and wide range of uses in a variety of industries, such as ma-
terials science, biomedicine, and the environment, nanofibers have 
attracted a lot of attention. Moreover, due to their very high surface 
area-to-volume ratio, nanofibers may be used in filtration, sensing, and 
drug delivery—applications that need strong surface contacts [231]. 
Former tiny diameter gives them special optical, mechanical, and elec-
trical qualities that set them apart from their bulk counterparts. High 

porosity and linked pores are common features of nanofibrous materials, 
which may be useful for processes like tissue engineering and filtration. 
In addition, it is possible to load nanofibers with pharmaceuticals or 
bioactive compounds to provide targeted and controlled release [232]. 
Notably, when compared to conventional dressings, wound dressings 
based on nanofibers provide improved breathability, moisture retention, 
and biocompatibility. Anti-inflammatory drugs or phytomedicine can be 
encapsulated in nanofibers and delivered straight, over time, to the 
injured joints. Moreover, to preserve and regenerate cartilage, nano-
fibers may transport medications that alter disease progression, such as 
matrix metalloproteinase inhibitors or growth hormones. On the other 
hand, drugs or phytomedicines can be kept at therapeutic concentra-
tions in the joint area for longer periods of time by controlled release 
from nanofibers, which improves the therapeutic effectiveness [233]. 
Next, by imitating the ECM found naturally in cartilage, nanofibrous 
scaffolds provide chondrocytes a favourable environment in which they 
can develop and differentiate well. Apart from these, for load-bearing 
applications in joints, nanofibers can also be reinforced with ceramics 
or polymers to increase mechanical strength and stability. Notably, 
MSCs and other cell types can also be transported via nanofibers, which 
improves their survival and retention in the joint environment [234]. 
Overall, because of their special qualities and capacities in medication 
administration, tissue engineering, pain management, and diagnostics, 
CNTs and nanofibers have intriguing prospects for the treatment of OA. 
The treatment results and quality of life for patients with OA might be 
greatly enhanced by CNTs and nanofibers by resolving issues with 
biocompatibility, drug loading, and regulatory approval. To achieve 

Fig. 4. The graphical illustration of incorporating plant-based anticancer drug i.e., etoposide into the nanoemulsion. Figure reproduced with permission and without 
modification from Jha et al. [220]. 
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these nanomaterials’ full therapeutic potential in OA treatment, further 
in vivo investigation and advancement are necessary. 

4.2.5. Nanocrystals 
Because of a higher surface-to-volume ratio, crystalline nano-

particles or nanocrystals may increase bioavailability, permeability, and 
solubility (Fig. 5). All the frequently utilized administration routes, 
including oral, injectable, pulmonary, ophthalmic, and topical admin-
istration, include crystalline nanoparticles as a viable delivery method. 
Moreover, nanoparticle aqueous dispersions may be made into tablets, 
capsules, fast melts, and lyophilized products for use in sterile applica-
tions [54,235]. Pharmacokinetic characteristics of nanocrystals can vary 
from being quickly soluble in blood to slowly dissolving; in the latter 
case, drug delivery is prolonged, while peak height is limited by 
macrophage absorption and subsequent drug release. This increases 
efficacy in several drug types, permits greater dosages, and enhances 
safety. Nanocrystals can concentrate therapeutic substances in certain 
areas through surface and size modification. This section focuses on 
formulations based on nanocrystals that are meant to be administered by 
various routes, such as liquid nanosuspensions and, upon additional 
processing, as solid dosage forms. The literature suggests the medicinal 
uses of pharmaceutical nanocrystals, emphasizing their applicability as 
a formulation methods for poorly soluble drugs [236,237]. Another 
delivery technique that may increase the bioavailability of both hy-
drophobic and hydrophilic medications is lipid-based liquid crystalline 
nanoparticles (LCNPs). These are self-assembled structures formed by 
spreading a nonlamellar liquid crystalline matrix at high shear energy 
into the water phase. Curcumin, a constituent derived from turmeric, 
has limited solubility in water and demonstrates low levels of 
bioavailability [238]. Nanocrystals have boosted curcumin’s solubility 
and improved its medicinal benefits. Similarly, quercetin, present in 
several fruits and vegetables, has antioxidant and anti-inflammatory 
characteristics. Researchers have created Quercetin nanocrystals to 
improve its solubility and bioavailability [239]. Additionally, re-
searchers have also reported that nanocrystals enhance the stability and 

bioavailability of resveratrol, which is present in grapes and berries and 
has anti-aging and cardioprotective properties [240]. Thus, nanocrystals 
provide a potential approach to improve the delivery of phytomedicines 
by resolving issues related to their solubility, stability, and bioavail-
ability. Although there are notable benefits, this technique also en-
counters challenges linked to manufacturing, regulations, and costs. 
Further investigation and innovation in this field have the potential to 
result in enhanced and readily available phytomedicine treatments for 
managing OA. 

4.2.6. Dendrimer 
Dendrimers are molecules with many branches radiating from a 

central core. The name comes from the Greek words dendron, meaning 
“tree”, and meros, meaning “part”. Dendrimers are polymers, but they 
are not the same as the linear network of monomers that make up all 
these plastics (Fig. 6, Table 4) [242,243]. To make polyethylene and 
other related materials, monomers are linked by forming “cross-links” 
between long molecular chains. Dendrimers may seem simple and 
attractive, but they are huge, intricate, and time-consuming. It must be 
constructed step by step, beginning with the proper monomers and 
gradually adding additional components. A dendrimer is made up of 
three main components: The core lies at the centre, with branches 
flowing from it and terminating in end groups. These abilities include 
modifying components, particularly end groups, to produce polymers 
with sophisticated physical and chemical characteristics [242,243]. 
Because of their special qualities and many uses in drug administration, 
imaging, diagnostics, anti-inflammatory therapy, and tissue engineer-
ing, dendrimers offer great promise for the management and treatment 
of OA. In addition, dendrimers can be used in biosensor systems to 
identify OA biomarkers in biological fluids such as blood or synovial 
fluid. This enables disease activity and treatment responses to be tracked 
[244]. Due to their excellent sensitivity and specificity, dendrimer-based 
biosensors make it possible to precisely quantify OA biomarkers in 
clinical samples. Using dendrimers, pro-inflammatory cytokines (such as 
TNF-α and IL-1β) may be targeted using siRNA or small-molecule 

Fig. 5. Fenofibrate nanocrystals (FNB-NCs) are encapsulated, and this causes nanocrystals to develop in composite spherical microparticles (NCSMs). Figure taken 
from Kevadiya et al. with permission and without alteration [241]. 
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inhibitors to lessen joint inflammation, relieve pain, and delay the 
course of illness [245]. Dendrimers containing siRNA molecules have 
the ability to specifically silence genes linked to inflammatory pathways, 
offering an OA treatment strategy that is more focused on reducing 
inflammation [246]. In cartilage tissue engineering applications, den-
drimers can enhance the mechanical strength, biocompatibility, and cell 
adhesion of scaffold materials. The incorporation of growth factors or 
cell-adhesive peptides onto the surface of dendrimer-based scaffolds 
may promote ECM formation and chondrogenic differentiation in 
encapsulated cells [247]. Oliveira et al. aimed to develop poly(amido-
amine) dendrimers (PAMAM), functionalised with chondroitin sulphate 
(CS), lined with anti-TNF α antibodies (Abs) to provide anti- 
inflammatory properties. Physicochemical characterisation demon-
strated that anti-TNFα Abs-CS/PAMAM dendrimer nanoparticles were 
successfully produced. The in vitro studies revealed that CS/PAMAM 
dendrimer nanoparticles did not affect the ATDC5 and THP-1 cell lines’ 
metabolic activity and proliferation, presenting good cytocompatibility 
and hemocompatibility. Moreover, anti-TNFα Abs-CS/PAMAM den-
drimer nanoparticles showed suitable TNF α capture capacity, making 
them appealing for new immunotherapies in RA patients [248]. 

4.3. Advantages of nanoparticles for the delivery of phytomedicines 

(I). Enhanced Bioavailability: Phytoconstituents often exhibit low 
absorption levels when taken orally. Nanomedicine has the potential to 
enhance the solubility and stability of these drugs, hence promoting 
improved absorption and bioavailability. Ensuring precise administra-
tion of therapeutic dosages to the afflicted joint is of utmost importance 
(Fig. 7) [257,258]. 

(II). Targeted Delivery: Nanoparticles could be engineered to 
selectively target the damaged joint tissue. This focused delivery method 
reduces the amount of contact with healthy tissues and increases the 
concentration of phytoconstituents specifically at the location of OA 
pathology. It mitigates the likelihood of systemic adverse effects 
[257,258]. 

(III). Sustained Release: Controlled-release nanoparticles might 
have an extended therapeutic impact. OA is a long-lasting disease, and 
continuous drug release may help maintain a steady amount of phyto-
constituents at the joint, hence minimizing the need for frequent 
administration of drugs [141255,258]. 

(IV). Reduced Side Effects: Nanomedicine can mitigate the overall 
negative effects caused by phytoconstituents by targeting the 

Fig. 6. The graphical representation of various dendrimers. Phytomedicine can be incorporated into the dendrimers and delivered at the joint site via intra-articular 
(IA) injection. Figure reproduced with permission and without modification from An et al. [242]. 
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medicament specifically at the joint. This is especially important for 
people with OA who have other health issues or are on multiple medi-
cations [257,258]. 

(V). Combination Therapy: Nanomedicine enables the incorpora-
tion of various phytoconstituents or medicines with complimentary 
modes of action into a single formulation. This collaborative approach 
has the potential to enhance the treatment of symptoms associated with 
OA [257,258]. 

(VI). Improved Disease Modifying Potential: Some nanomedicine 
formulations can provide symptom relief and potentially slow down OA 
progression by delivering disease-modifying agents to the joint 
[257,258]. 

(VII). Non-Invasive Routes: Nanomedicine can be administered 
through various routes, including intra-articular (directly into the joint), 
oral, or transdermal, depending on the formulation. This flexibility en-
hances patient comfort and adherence to treatment [257,258]. 

(VIII). Imaging and Monitoring: Advanced nanomedicine systems 
can incorporate imaging agents, allowing healthcare providers to visu-
alize the drug’s distribution within the joint and monitor treatment 
progress [257,258]. 

4.4. Enhanced bioavailability 

The drug delivery vehicles must disperse the active component at the 
proper pace and dosage to accomplish the intended therapeutic goal. 
Depending on the desired therapeutic aim, an appropriate bio-
pharmaceutic design can alter the rate and degree of drug absorption 
(also known as bioavailability) or the systemic administration of phar-
maceuticals to the body [260].The spectrum of absorption rates varies 
from rapid and total to slow and continuous. By decreasing particle size, 
altering the surface, and attaching or entrapping the phytomedicine 
with different kinds of micro or nano materials, the application of 
nanoparticulate drug delivery systems raises the penetration, bioavail-
ability, and bioactivity of phytomedicine [260]. Furthermore, the 
nanomedicine can be administered through various routes, including IA, 
oral, or transdermal, depending on the formulation. This flexibility en-
hances patient comfort and adherence to treatment. Interestingly, 
advanced nanomedicine systems can incorporate imaging agents, 
allowing healthcare providers to visualize the drug’s distribution within 
the joint and monitor treatment progress. However, it’s important to 
note that while the potential benefits of phyto-nanomedicine in OA 
treatment are promising, there is ongoing research to optimize these 

delivery systems and establish their safety and efficacy. Patient-specific 
factors, disease severity, and the choice of phytoconstituents must all be 
considered when developing and prescribing these therapies. Collabo-
rative efforts among researchers, clinicians, and pharmaceutical com-
panies are essential further to advance the field of phyto-drug delivery 
for OA management. 

4.5. Targeted drug delivery to treat osteoarthritis via IA injection 

IA injections are often utilized in musculoskeletal disorders such as 
OA and RA to provide large concentrations of medicines to the joint area 
directly. Current IA-injected drugs are promptly cleared and have no 
substantial effect on the course of joint illness (Figs. 7, 8, 9). In this 
section, we highlighted recent advances in IA therapy, focusing on 
present and upcoming therapeutic carriers and their potential to offer 
disease-modifying treatment modalities for arthritis. Recent progress in 
IA techniques have mostly emphasized the development of safe plat-
forms, improved tissue penetration capabilities, and enhanced trans-
latability for the controlled and sustained delivery of pharmaceuticals or 
phytomedicine. In addition, gene therapy given by viral or non-viral 
vectors, and cell-based treatment, are being researched extensively for 
cartilage preservation and regeneration [33]. Phyto-nanomedicine 
delivered via IA injection offers an innovative approach to treating 
conditions like OA by enhancing the permeability of therapeutic agents 
within the joint space. Nevertheless, nanoparticles can be engineered as 
microspheres, hydrogel, nanoparticles, and liposomes to enhance tar-
geting, ensuring that phytoconstituents or other drugs reach the specific 
area needed [261]. Controlled-release nanoparticles via IA-injection can 
maintain therapeutic levels of phytoconstituents within the joint over an 
extended period. This can provide long-lasting relief from pain and 
inflammation associated with OA, reducing the need for frequent in-
jections. Fewer injections can improve patient compliance and is con-
venience for medical professional as well. It’s important to note that 
while the concept of phyto-nanomedicine and IA drug delivery holds 
promise for OA treatment, research is ongoing to optimize these delivery 
systems and ensure their safety and efficacy. The choice of phytocon-
stituents, nanoparticle materials, and formulation design should be 
carefully considered based on the specific needs of OA patients and the 
desired therapeutic outcomes. Collaboration between researchers, cli-
nicians, and pharmaceutical companies is essential to advance the 
development and clinical application of these innovative approaches for 
OA and other joint-related conditions [262]. 

Fig. 7. Advantages of nanoparticulate drug delivery systems to treat osteoarthritis. Figure reproduced with permission and without modification from Guo 
et al. [259]. 
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4.6. Sustained release concept of phyto-nanomedicine to treat 
osteoarthritis 

According to Moghimi et al. [264], sustained release enables the 
distribution of a particular medicine at a predetermined pace, resulting 
in extended drug delivery (Fig. 10). This drug release profile is beneficial 
for drugs that are digested too quickly and leave the body soon after 
taking them. Moreover, drug concentration in the blood or target tissue 
can be maintained at a consistent level by sustained release via modi-
fying the pace of drug release [263]. For instance, the treatment of 
cancer benefits from a consistent medication dose inside the therapeutic 
window [265,264 265]. According to several studies, blocking drug 

molecules from fully interacting with the aqueous environment for a 
reasonable amount of time is one way to achieve prolonged drug release 
[263]. The concept of sustained release in phyto-nanomedicine entails 
using nanotechnology-based approaches to deliver phytochemicals or 
natural compounds extracted from plants in a controlled and extended 
manner [263]. This approach addresses some of the limitations associ-
ated with traditional drug delivery methods for phytochemicals, such as 
rapid clearance from the body, limited bioavailability, and the need for 
frequent dosing. Various materials, such as lipids, polymers, or inor-
ganic substances, can form these nanoparticles. The choice of nano-
particle material depends on factors such as the phytochemical’s 
physicochemical properties and the desired release profile. Various 

Fig. 8. The graphic illustration represents the application and prospects of intra-articular drug delivery systems in arthritis. Figure reproduced with permission and 
without modification from Song, Cui and Hu [261]. 

Fig. 9. Figure illustrates various drug delivery systems that can be employed to load phytomedicine for enhanced bioavailability and targeting ability. 
Figure reproduced with permission and without modification from Sun et al. [263]. 
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mechanisms, such as diffusion through nanoparticle pores, degradation 
of the nanoparticle matrix, or responsive behaviours triggered by envi-
ronmental factors like pH or temperature, can achieve this controlled 
release [263]. This allows for precise delivery of phytochemicals to the 
intended site of action, reducing off-target effects and minimizing sys-
temic exposure. Sustained release in phyto-nanomedicine holds promise 
for various applications, including the treatment of chronic diseases, 
cancer, inflammatory conditions like OA and RA, and more [263]. 
However, it’s important to note that developing these formulations re-
quires careful consideration of factors such as nanoparticle design, 
release kinetics, and safety profiles. Before sustained-release phyto- 
nanomedicine formulations can be used in clinical practice, extensive 
preclinical and clinical testing is typically required to validate their 
effectiveness and safety. 

5. Microfluidic organ-on-chips model for effective identification 
and evaluation of novel phyto-nanomedicine based anti- 
osteoarthritic drugs 

Microfluidic organ-on-chips (OoC) or joint-on-a chip (JOC) models 
provide a sophisticated, biomimetic method for in vitro investigation of 
different drugs, phytoconstituents and nanomedicine in various disease 
[268] (Fig. 11). These models combine the biological intricacy of live 
tissues with the exact control of microfluidics to provide a potent plat-
form for a range of applications, including the phytoconstituent identi-
fication process. Because plant extracts are complex and high- 
throughput screening is required, it might be difficult to identify and 
characterize these chemicals using conventional approaches. In this 
case, microfluidic OoC and/or JOC models provide several benefits 
[269]. The screening procedure may be greatly accelerated by testing 
many phytoconstituents in considerably shorter duration of time than in 
vivo by this technology. Notably, microfluidic devices are tiny in size, 
only minimal volumes of plant extracts are required, which preserves 
priceless samples. When comparing OoC or JOC models to conventional 
cell culture or animal models, the data they provide are more indicative 
of human reactions. They make it possible to investigate in-depth the 
mechanisms of action of phytoconstituents by examining their in-
teractions with certain cell types and tissues. After successfully identi-
fying a valuable phytoconstituent that demonstrates great efficacy, 
characterized by promising in vitro outcomes, the next step is to perform 

in vivo experiments with phytoconstituents incorporated nanoparticles 
to validate the findings [270]. Therefore, with the ability to simulate the 
whole range between healthy and OA joints, a highly adaptable and 
adjustable OoC or JOC platform can provide insight into the early start 
of OA in people, which is difficult to get in clinical practice. Further, 
JOCs can also replicate the long-term course of OA if the settings of the 
cell culture are set up to maximize cell survival for extended research. 
Undoubtedly, JOCs will improve and speed up the traditional drug 
development methods’ speed, efficacy, and safety. 

6. Conclusion 

Current pharmacological therapy options for OA and RA have 
varying efficacy and safety, particularly when managing chronic pain 
and inflammation. According to the literature, phytomedicine has high 
in-vitro bioactivity; however, limited water solubility, increased molec-
ular size, disintegration during stomach emptying, and extensive 
metabolism are some of the difficulties that limit its in-vivo usefulness. 
Certain herbal remedies can be used as a supplementary treatment to 
supplement or replace pharmaceutical drugs. Herbal medicine treat-
ment also provides a safer option with similar or higher effectiveness. 
Herbs commonly reported anti-arthritic mechanisms include the sup-
pression of pro-inflammatory and pro-catabolic mediators, such as cy-
tokines, PGE2, MMPs, ROS, and apoptotic proteins through signalling 
pathways like NF- κB, RANKL, and PI3K/Akt. Phytoconstituents could 
be used to target these mechanisms and help reduce joint pain, 
inflammation, edema, structural damage, and functional impairment 
caused by OA and RA, with little or no adverse effects. On the other 
hand, nanotechnology promotes phytomedicine permeability, 
bioavailability and bioactivity by reducing particle size, altering the 
surface, and attaching or entrapping the phytomedicine with different 
polymers of micro or nanomaterials. In addition, nanomaterials aid with 
targeted and sustained delivery, and the diffusion of drugs or phyto-
constituents into multiple organs by crossing barriers such as the skin, 
gastrointestinal, and blood–brain barrier. Current research should 
concentrate on the design and development of multifunctional nano-
materials, as well as in-vivo clinical examinations of their formulations. 
Focused and evidence-based research is needed in the future to inves-
tigate the clinical safety and thereapeutic efficacy of herbal treatment in 
arthritis and other chronic pain conditions. Moreover, research-based 
investigations on the chemical constituents of herbal plants and their 
extraction might contribute to the development of tailored therapeutic 
treatments. Ultimately, it will be essential to develop natural product 
formulations that possess suitable solubility, permeability, bioavail-
ability, and release kinetics in order to optimize therapy outcomes and 
reduce the toxic effects in OA. This can be effectively achieved by using 
nanoparticulate drug delivery technologies. 
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