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A B S T R A C T

Vertebral compression fractures often go clinically undetected and consequently untreated, resulting in severe
secondary fractures due to osteoporosis, and potentially leading to permanent disability or even death.
Automated detection of vertebral compression fractures (VCF) could assist in routine screening and followup
of incidentally scanned patients, thereby mitigating secondary fractures later. A novel fully automated method
for the detection of VCF in 3D computed tomography (CT) of the chest or abdomen is presented in this work.
It starts with 3D localisation of thoracic and lumbar spine regions using deep reinforcement learning (DRL)
and imitation learning (IL). Six different 3D bounding boxes are generated by the localisation step, achieving
an average Jaccard Index (JI)/ Dice Coefficient (DC) of 74.21%/84.71%, and detection accuracy of 97.16 %
using 3 different CNN architectures. The localised region is then split into 2D sagittal slices around the coronal
centre. Each slice is further divided into patches, on which convolutional neural networks (CNNs) are trained
to detect VCF. Four different CNN architectures, namely 3 layered, 6 layered and transfer learning (TL) using
VGG16 and ResNet50, were experimented with. The best performing architecture turned out to be the 6 layered
CNN. Aggregation is performed on the VCF detection in the 2D Patches extracted from individual bounding
boxes, followed by majority voting to arrive at the final decision on the status of VCF for a given patient.
An average three-fold cross validation accuracy of 85.95%, sensitivity of 88.10%, specificity of 84.20% and
F1 score of 85.94% were achieved on chest images using 6 layered CNN on chest images from 308 patients.
An average five-fold cross validation accuracy of 86.67%, sensitivity of 88.13%, specificity of 85.02% and F1
Score of 87.04% were achieved on abdomen images from 168 patients with the 6 layered CNN.
1. Introduction

Osteoporosis is a skeletal disorder resulting from reduced bone
mineral density, with the affected person becoming susceptible to bone
fractures, particularly vertebral compression Fractures (VCF). It is a ma-
jor cause of morbidity and mortality in the elderly population in many
parts of the world. Unfortunately, these fractures may go undetected
clinically due to various reasons:

(a) the asymptomatic nature of the fractures
(b) the radiologist focussing on other areas suggested by clinicians
(c) the challenge of distinguishing between normal and pathologi-

cally deformed vertebral bodies.

Left untreated, they can lead to secondary fractures causing permanent
disability and even death. In general women over 50 are vulnerable
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to such fractures, with the rate of occurrence varying across regions
between 9% (Indonesia) and 26% (Scandinavia) [1]. Early detection of
VCF is of paramount importance in preventing secondary fractures with
severe consequences. An automatic computer aided diagnostic system
can help mitigate the effects of non-detection of VCFs.

Methods based on machine learning have been used for VCF de-
tection. Majority voting was applied among multiple classifiers on
segmented images based on geometric and intensity features [2]. A
committee of Support Vector Machines was used to distinguish the
origin of VCF between osteoporotic and neoplastic causes on segmented
images using adaptive thresholding, watershed and directed graph [3].
Other work [4] segmented the vertebrae using the watershed algorithm
and then extracted the vertebral height, height relative to neighbouring
vertebrae and bone density in various sectors of a height compass.
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These features were then used to train a Support Vector Machine to
grade the compression fractures. The authors achieved a sensitivity
of 95.7% and a false positive rate of 0.29 per patient. However they
restricted studies to no more than 2 contiguous fracture levels to avoid
scaling inaccuracies due to height loss.

Deep learning has gained popularity during the last decade ever
since AlexNet [5] won the ImageNet challenge in 2012. Since then,
deep learning architectures, especially CNNs, have been commonly
used for medical image analysis. A detailed study has been carried out
by a number of authors and CNNs have the proven ability to outperform
human experts and other machine learning methods [6–8]. One of
the advantages of using CNN is their ability to automatically extract
features, unlike other classical machine learning approaches which rely
on hand crafted features from medical images.

The strength of CNNs lies in their ability to detect patterns in
different locations of an image using weight sharing of convolution
operations, which drastically reduces the number of parameters that
need to be learned, compared to a fully connected artificial neural net-
work architecture like multilayer perceptron. This results in a network
equivariant to input translations. The main mathematical operations
performed are ‘‘convolutions’’ which result in merging of the informa-
tion in the input image with kernels, also known as filters or feature
detectors, to filter out feature maps. Starting from the input image,
feature maps are generated at each layer, which in turn are convolved
with the kernels to generate feature maps in subsequent layers. It
is typical of convolution layers to be followed by pooling layers for
aggregating the pixel values in the neighbourhood using a permutation
invariant function. Typically, CNNs are several layers deep and in
general deeper models seem to perform better with large datasets. The
end of a stream of convolution layers are a few fully connected layers
followed by classification layers, where the weights are not shared.
CNNs have been utilised for a number of tasks in computer vision
in the areas of detection, segmentation and classification. This work
involves experiments with CNNs. Three different architectures were
used in localisation and 4 different ones for VCF detection.

Due to their proven performance in outperforming other machine
learning methods and the ability to extract hierarchical features and
generalise across all datasets, recent works on VCF detection have
made use of deep learning methods involving CNNs. Many works use
Computed Tomography (CT) images as they provide more detailed
information of bone tissues. Bar et al. [9] extracted the sagittal slices
along the coronal centre of CT images, divided them into patches and
trained a CNN with them. A recurrent neural network (RNN) was then
trained using the output of the CNN on a sequence of patches to detect
the VCF. They used a balanced dataset of 1673 CT studies containing
nearly equal numbers of positive and negative samples, achieving an
accuracy of 89.1%. Tomita et al. [10] built a model using the ResNet34
architecture with 5% of the slices around the centre of each CT image,
without any localisation or segmentation. The CNN output for each
slice for a specific vertebra was fed to a long short term memory
(LSTM) [11] to detect VCF in a CT image. They used 1432 CT scans for
training and achieved an accuracy of 89.2%. They also tried rule based
approaches to aggregate the detection in the slices, however these
did not perform as well as the LSTM. Husseini et al. [12] pretrained
the networks with their proposed novel method ‘‘gradient loss’’ before
classification on a public VerSe dataset consisting of 157 CT scans,
achieving an F1 score of 82%. Nicolaes et al. [13] proposed a 3D model
for detection of vertebral fractures using 3D CNN to classify first at
voxel level achieving an AUC of 95%, which was then aggregated at the
patient level, achieving an AUC of 93% using five-fold cross validation.
They used a dataset consisting of 90 CT scans, with 90% belonging to
abdomen level.

There are also other works focussed on non CT images. Murata
et al. [14] achieved an accuracy of 86.0%, sensitivity of 84.7% and
specificity of 87.3% on 300 plain thoracolumbar radiographs (PTLR)
2

using IBM Visual recognition V3 deep convolutional neural network
(DCNN) architectures. Chen et al. [15] employed TL using ResNet50
pretrained on Imagenet to classify 1458 plain frontal radiographs to
achieve an accuracy of 73.59%, sensitivity of 73.81%, specificity of
73.02% and AUC of 0.72.

This work proposes a totally novel method of detecting VCFs. The
regions of interest (ROI), namely the thoracic spine in chest scans and
the lumbar spine in abdomen scans, were extracted using a localisation
algorithm. This step is intended to result in better performance by
focussing on the region of interest alone. The localisation algorithm
generates six bounding boxes, from each of which 2D sagittal slices
were extracted around the coronal centre. The slices were further
divided into patches for training CNNs to predict the VCFs. Four dif-
ferent CNN architectures were experimented with to arrive at the right
model. The results of the patch based CNN were then aggregated at the
bounding box level. Finally majority voting is performed on the results
of the six bounding boxes to decide on the VCF status of a patient.
There are not many similarities between this approach and the state-
of-the-art methods. The work of Bar et al. [9] involved segmentation
to extract the spine region, which was then divided into patches for
training a CNN, and to that extent is similar to the method proposed in
this work. However, their aggregation method to combine the detection
of the CNNs involved an RNN. The method used by Tomita et al. [10]
involved extraction of 5% of slices around the centre of the CT scans for
training a ResNet34 architecture to extract the features. For aggregation
they experimented with three rule based methods, namely average,
maximum and polling on the prediction of the slices. They however
achieved best performance by aggregation using an LSTM. The method
proposed in this work involves aggregation using polling, similar to
one of their methods, but on the results of bounding boxes rather than
slices. This coupled with the fact that the focus is on the ROI rather
than the entire slice is likely to ensure better performance. There is no
LSTM involved in the proposed method.

2. Material and methods

This paper proposes a novel method of automatic detection of
vertebral compression fractures in CT chest and abdominal images.
Preliminary work on a limited dataset was presented earlier [16], re-
porting on VCF detection in selected localised regions in chest scans of
3 mm slice thickness. In further work reported here, multiple classifiers
are trained on all localised regions in a larger dataset and the outputs
combined by majority voting. The new dataset consists of both chest
and abdomen scans of 3 mm and 5 mm slice thickness extracted from
a hospital PACS system. An improvement in accuracy of nearly 6% is
achieved over the earlier model for chest scans. Additionally, the results
of analysis on abdomen scans are also provided. The results show that
majority voting improves accuracy by at least 4% on both chest and
abdomen scans compared to simple averaging.

Most known methods focus on the whole image. The present work
is based on the idea that better results can be achieved if the focus
is narrowed down to the region of interest (ROI). Hence a novel 3D
localisation step is added to extract the thoracic and lumbar spine
regions from the whole image. A selective number of sagittal slices
are then extracted around the coronal centre from the ROI and split
into patches. In the training phase, the correct ROI is identified by a
clinician, the sliced patches are annotated using radiology reports as
well as Genant’s criteria as containing either VCF or non VCF, and
these annotated patches are collected into a database for training a
deep convolutional neural network (CNN) model. In the testing phase,
six different bounding boxes are generated using the localisation step
which present six different views of the ROI. The trained CNN is then
used to classify patches from these six ROI’s. The results of model
prediction are aggregated for a specific ROI. As there are six bounding
boxes, it was found that better results can be achieved, and false
positives and false negatives reduced, by performing majority voting
on the bounding boxes to decide on the presence of VCF for a specific

patient.
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Fig. 1. Process diagram of the proposed method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
The following is a summary of the proposed method:

(i) 3D localisation of thoracic and lumbar vertebrae that combines
DRL with IL. Using a novel approach that involves three differ-
ent architectures of 3D-CNNs, six different 3D bounding boxes
surrounding the region of interest (ROI) are generated.

(ii) Cropping of localised ROIs within the bounding boxes, followed
by extraction of a selective number of sagittal slices around the
coronal centre.

(iii) Splitting of sagittal slices into patches for training CNNs to
detect the presence or absence of VCFs. Four different CNN
architectures namely: 3 layered, 6 layered, VGG16 and ResNet50
were trained. TL using pretrained ImageNet weights was applied
for VGG16 and ResNet50.

(iv) Aggregation of the results of the individual patches in all the
slices to determine the presence of VCF in a bounding box.

(v) Majority voting on the results of detection from the 6 bounding
boxes to improve the accuracy of detection of VCF for a given
patient.

The overall workflow is shown in Fig. 1.

2.1. Datasets

The dataset for vertebral analysis was provided by the Prince of
Wales Hospital, Randwick, NSW, Australia in an anonymised form after
ethics approval. The CT datasets were acquired for both chest and
abdominal regions. Abdominal datasets are required for lumbar spine
analysis and chest datasets for thoracic spine analysis.

Initially the focus was on localisation and therefore CT scans were
collected only for training an algorithm for 3D localisation around
thoracic and lumbar scan regions. Upon analysis, it was found that
many of the archived images were either chest or abdomen scans. The
slice thickness of the stored images was one of 3 mm, 5 mm or 7 mm,
with the majority being 5 mm thick. There were very few full body
scans. It was decided to build models only with 3 mm and 5 mm slice
thickness images for chest and abdomen scans in this study, however
the proposed method may be extended to 7 mm slice thickness with
slight modifications.

A summary of chest and abdomen datasets is provided in Tables 1
and 2 respectively. The slices themselves were mostly of dimension
512 × 512. The number of slices per patient depended on slice thickness
and was about 120 for 3 mm and 70 for 5 mm.
3

Table 1
Summary of datasets – chest scans.

Name Slice Slice Purpose
thickness thickness
3 mm 5 mm

Chest1 144 Localisation
Chest2 127 VCF

Detection
Chest3 126 VCF

Detection
Chest4 142 VCF

Detection
Total 271 268

Table 2
Summary of datasets – abdomen scans.

Name Slice Slice Purpose
thickness thickness
3 mm 5 mm

Abd1 132 Localisation
Abd2 84 VCF

Detection
Abd3 86 VCF

Detection
Abd4 96 VCF

Detection
Total 216 182

2.2. 3D localisation using DRL and IL

Many methods have been proposed for automatic organ localisa-
tion, which rely on multi-atlas registration or machine learning using
hand-crafted features [17–20]. These methods can be computationally
intensive or highly dependent on feature selection. Recent methods
make use of deep learning with its ability to automatically extract
features. Some methods perform landmark detection by combining the
detected organs in 2D slices in the axial, coronal and sagittal planes to
estimate 3D bounding boxes [21–23]. There are however limitations to
this approach of processing in 2D and aggregating in 3D:

(a) annotations are required for each of three orthogonal planes
(b) CNNs need to be run for each slice in three orthogonal planes,

which can be redundant as many of the slices may have identical
information
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(c) 3D contextual information is not available, therefore the result-
ing localisation may not be accurate.

Region-proposal based localisation [24] has shown a lot of promise
in object detection and has been extended to multi organ detection
[25]. One of the salient aspects of region proposal based methods is
the generation of multiple candidate bounding boxes that may overlap
with each other.

DRL is an area that has seen major successes in recent times [26],
combining the representation power of CNNs with reinforcement learn-
ing. Using a Markov Decision Process (MDP), an artificial agent can be
trained to achieve an intended goal. At any given time, an agent in a
state 𝑠𝑡 selects an action from action space  based on policy 𝜋(𝑎𝑡|𝑠𝑡)
which represents the agent’s behaviour. The agent is taken to state 𝑠𝑡+1
and receives a reward 𝑟𝑡. In an episodic problem, this process continues
until a terminal state is reached. The expected return at the end of the
episode is the discounted accumulated reward:

𝑅𝑡 =
∞
∑

𝑘=0
𝛾 𝑘𝑟𝑡+𝑘 , 𝛾 ∈ (0, 1] (1)

The goal is to maximise this reward. The expected future discounted
rewards for a given action 𝑎 in state 𝑠 is known as the 𝑄 value and is
given by:

𝑄𝜋 (𝑠, 𝑎) = E
[

𝑅𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
]

(2)

The optimal value function at any given state 𝑠 for an action 𝑎 is 𝑄∗.
Q-Learning involves updating the action value as follows:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼
[

𝑟𝑡 + argmax𝑎𝑡+1 (𝑄(𝑠𝑡+1, 𝑎𝑡+1) −𝑄(𝑠𝑡, 𝑎𝑡))
]

(3)

where 𝛼 is the learning rate.
The agent has two choices at each time step:

(i) explore by selecting a random action (with probability 𝜀), or
(ii) exploit using already gained knowledge by choosing an action

with the maximum Q value (with probability 1 − 𝜀).

This is known as an 𝜀-greedy policy. After each episode, the state is
reset to the initial state 𝑠0 and the process is repeated until the Q
value converges. The parameter 𝜀 continuously decays as the training
progresses. At each time step, the current value of 𝜀 is compared with
a randomly generated value between 0 and 1. If the latter is less then
𝜀, the action chosen is to explore, otherwise the action chosen is to
exploit. The starting value of 𝜀 is high because the model is not yet
trained and exploration is to be encouraged. As training progresses, 𝜀
is gradually decayed and the probability of the exploit action increases.
Towards the end of training, 𝜀 is decayed to a stage that results in more
exploitation than exploration.

DRL has been used in bounding box object localisation in 2D
datasets [27,28]. However, bounding box localisation in 3D has re-
mained a challenge due to high computational resource requirements.
DRL has been used for detection of anatomical landmarks in 3D CT
datasets [29,30] by training an artificial agent to navigate from a
random starting point towards the landmark and learning to move in
the correct direction in the three coordinates, and has recently been
used also for organ localisation using bounding boxes [31].

2.2.1. Method overview
The proposed algorithm in this work is motivated by a direct search

to the ROI using DRL [30] and is an extension of work reported earlier
(see [16]). In Fig. 2 the navigation strategy of a pre-selected bounding
box towards the target landmark is shown. The bounding box can be
navigated in three coordinate directions in both positive and negative
directions thereby giving rise to six possible movements to a new state
from the present one. To identify an optimal navigation path to the
target using DRL, random exploration in three coordinate directions to
a new position from each state is required. The reward function for
each movement is the reduction in the resulting effective distance to the
4

Fig. 2. Navigation strategy of navigating a pre-selected bounding box on top towards
a target as shown by the box in the bottom. The bounding box is navigated in three
coordinate directions shown in red for X, blue for Y and purple for Z.

ground truth centroid [30]. DRL generally assumes no prior knowledge,
instead it bootstraps from an initially random strategy and is therefore
better suited for applications such as video games where the true target
location might not be known during training. In the current application
on the other hand, where the goal location is known, it may be more
efficient and less complex for the agent to be trained in a guided
manner. A simple strategy of navigating in the coordinate direction that
is at maximum distance from the current location to the centre of the
ground truth should suffice. Hence instead of random explorations, the
direction of movement of the pre-defined bounding box is decided by
a function which performs the role of an expert who guides the agent
to the target, thereby converting into an imitation learning paradigm
[32]. Unlike DRL, where the task of associating states to actions is
learned over several iterations, IL associates states with actions chosen
by the expert. This converts the task to one of supervised learning of a
mapping from the states to expert actions.

In this work, localisation involves identification of a 3D bounding
box around the lumbar/thoracic vertebrae. The proposed approach
combines the deep Q learning algorithm [26] with IL when searching
for an ROI from a predefined starting point in the image. The algorithm
is presented in Section 2.2.3.

2.2.2. Annotation
As seen in Tables 1 and 2, there are in all 271 of 3 mm slice

thickness and 268 of 5 mm slice thickness chest scans and 216 of
3 mm slice thickness and 182 of 5 mm slice thickness abdomen scans.
These were manually annotated and verified by a radiologist with over
11 years of experience, to identify the two diagonally opposite corner
points of a tight 3D bounding box around the thoracic spine for chest
images and lumbar spine for abdomen images. The annotation process
using ITK-SNAP in the three planes is illustrated in Fig. 3 for creating
a tightly fitting 3D bounding box around the lumbar spine region in
axial, coronal and sagittal planes.

2.2.3. Algorithm for localisation training
The localisation algorithm involves training of two networks:

(i) the first network navigates a preselected bounding box to the
centre of the ROI
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Fig. 3. Annotation using ITK snap to surround lumbar spine with tightly fitting bounding box around axial (left), coronal (middle) and sagittal (right).
(ii) the second network predicts the actual size of the bounding box
surrounding the ROI.

Algorithm 1 Localisation by combining DRL with IL for ROI detection
Input: CT chest and abdominal 3D datasets.
Output: Policy function for navigating bounding Box.
Bounding Box function that predicts the actual bounding box coordinate
sizes
initialize Policy replay memory D
initialize Bounding Box replay memory B
initialize action-value function Q with random weights
for cycles from 1 to M
for each range of starting points
for each randomly selected scan

set a pre-selected bounding box at a predefined starting point =
s1

for steps from 1 to N
following 𝜖-greedy policy select an action

𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

Imitation action with probability 𝜖
argmax𝑎Q(s𝑡, a) otherwise
correction is applied if the predicted action is away from target

execute action a𝑖 to shift to image to s𝑡+1
store transition s𝑡, a𝑡 in D
calculate the IOU of s𝑡 with the ground truth
if IOU >= threshold

store s𝑡, ground truth bounding box coordinate sizes in B
set s𝑡=s𝑡+1
if bounding box centre = ground truth centre

set a𝑡 = ‘‘Terminate’’
store resulting transitions in D and B

break
end for
train Policy network with random samples from D using mean

square error loss
train Bounding Box network with random samples from B

using mean square error loss
end for

end for
end for

The localisation process is illustrated in Fig. 4 and the pseudo code is in
Algorithm 1. The upper network in Fig. 4 is the Policy network that is
5

trained to predict the coordinate direction of shift (action) for an image
region bounded by an initial pre-selected bounding box.

In each coordinate direction, 3 levels of movement namely 25
voxels, 10 voxels and 1 voxel of the bounding box in both positive
and negative directions require 6 actions. For the three coordinate
directions, therefore, 18 actions are possible.

The imitation function in Algorithm 1 returns an action, which is
the coordinate direction at maximum distance from the ground truth
centre. It also corrects predictions deviating from the intended course.
The appropriate level of coarse, fine or very fine movement is selected
based on the distance between the current centre and the ground truth
centre. The starting point for the first navigation trajectory is set at 40%
of the coordinate sizes to eliminate margins and extract meaningful
information from the datasets. Thereafter the network is trained by
shifting the initial starting point by 25 voxels in the three coordinate
directions until 80% of the coordinate sizes is reached, to help the
model recover from unfamiliar locations.

A final action called ‘‘Terminate’’ is used to indicate that the ground
truth centre has been reached. Thus, the network should predict 19
possible actions in all.

The Policy network is made up of three 3D convolution layers
together with batch normalisation and ReLU activation. The kernel
sizes of the first, second and third Convolution layers are 7 × 7 × 7,
5 × 5 × 5 and 3 × 3 × 3 respectively. The network takes as input the
data within the bounding box shrunk by half. The convolution layers
are followed first by a fully connected layer and then by a softmax layer
for 19 possible actions.

To evaluate localisation, Jaccard Index (JI) also known as IOU
(defined in Section 3.1.1) of the predicted bounding box with the
ground truth is used. A 50% threshold level for JI is used for detection,
although the generally accepted standard in computer vision for 3D
object detection is lower. For example Song et al. [33] set the threshold
to 25% and Xu et al. [25] set it to 33%. It is to be noted that these are
the threshold levels only and as can be seen in Section 3.4, the average
JI achieved was much higher (74.21%). The Dice Coefficient (DC) is
also reported, which is the ratio of twice the intersection over sum of
the volumes of ground truth and predicted bounding boxes.

The lower network in Fig. 4 is the Bounding Box network, which
is trained to predict the three coordinate sizes of the ROI. As the pre-
selected bounding box is navigated, those regions whose IOUs exceed
a threshold level are stored, along with the ground truth sizes for
training the Bounding Box network. The latter is made up of three
3D convolution layers together with batch normalisation and ReLU
activation. The kernel size of the first, second and third convolution
layers are 7 × 7 × 7, 5 × 5 × 5 and 3 × 3 × 3 respectively. The
convolution layers are followed first by a fully connected layer and then
by a ReLU layer for 3 coordinate sizes.
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Fig. 4. Navigation of the bounding box to the Region of Interest (ROI) for a 3 layered CNN.
To improve overall performance of the Bounding Box network, two
other CNN architectures were trained besides the one described above,
and the predicted bounding boxes using all three models are provided
to the next stage for analysis. The architecture of the second model
consists of 6 convolution layers. The first 2 layers have kernel size
7 × 7 × 7, followed by 2 convolution layers with kernel size 5 × 5 × 5
and the final 2 convolution layers having kernel size 3 × 3 × 3. Each
convolution layer is followed by batch normalisation. Max pooling
is added after the second and fourth layer. The third model has a
convolution layer with 9 × 9 × 9 kernel and a batch normalisation
preceding the architecture in the 3 layered CNN with the intention that
the larger kernel would provide better response. The architectures of
the 6 layered and 4 layered CNNs respectively are shown in Figs. 5
and 6.

2.2.4. Testing
In the testing mode there is no IL involved. Each test image is simply

run for 25 steps, which was found to be sufficient to reach the ROI.
The search terminates when a ‘‘Terminate’’ action is triggered or when
a loop is detected between the states. The bounding box prediction was
run on all the steps and two different methods were used to predict the
bounding box size:

(a) the predicted size in the terminating state, and
(b) the mean size of the predicted bounding boxes in the last 10

states.

This gives rise to 2 bounding box predictions for each CNN model,
therefore 6 predictions for the three CNN models used.

The average performance of the two different methods of predicting
the bounding boxes per model was similar, and it was difficult to
choose one over the other, as there were advantages in individual
performances. Therefore, both the methods were retained.
6

2.2.5. Time complexity analysis
Time complexity analysis of the Q learning algorithm has been

analysed [34] and was found to have an upper bound complexity
of 𝑂(𝑛3). This is due to search for maximum reward from a starting
point to a goal. This complexity is drastically reduced in the proposed
method by guided search using imitation learning, which results in ‘m’
(constant) episodes of searching through ‘n’ states to 𝑂(𝑚𝑛) which is
effectively 𝑂(𝑛). The time complexity analysis of CNN processing 2D
inputs has been performed [35] and is shown in Eq. (4).

𝑂

( 𝑑
∑

𝑖=1
𝑛𝑙−1.𝑠

2
𝑙 .𝑛𝑙 .𝑚

2
𝑖

)

(4)

where 𝑙 is the index of the convolution layer, 𝑑 is the depth (number of
convolution layers) 𝑛𝑙 is the number of filters also known as the width
in the 𝑙th layer, 𝑠𝑙 is the spatial size (length) of the filter and 𝑚𝑙 is the
spatial size of the output feature map. This does not take into account
pooling and fully connected layers which take 5%–10% computational
time.

The localisation algorithm used 3D inputs and the filter sizes are 3D
and involves 3 CNNs. Therefore the complexity becomes

𝑂

(

𝑛.
𝑐𝑛𝑛=3
∑

𝑐𝑛𝑛=1

𝑑𝑐𝑛𝑛
∑

𝑖𝑐𝑛𝑛=1
𝑛𝑙𝑐𝑛𝑛−1.𝑠

3
𝑙𝑐𝑛𝑛

.𝑛𝑙𝑐𝑛𝑛 .𝑚
2
𝑖𝑐𝑛𝑛

)

(5)

where 𝑛 is the number states involved in between the starting point
and the goal, 𝑙𝑐𝑛𝑛, 𝑑𝑐𝑛𝑛, 𝑛𝑙𝑐𝑛𝑛 , 𝑠𝑙𝑐𝑛𝑛 , 𝑚𝑙𝑐𝑛𝑛 are respectively the index of the
convolution layer, the depth (number of convolution layers), number
of filters also known as the width in the 𝑙𝑐𝑛𝑛th layer, the spatial size
(length) of the filter and the spatial size of the output feature map of
the concerned CNN.

2.2.6. Localisation strategy
The localisation strategy for all the datasets is summarised in Ta-

ble 3. The models trained on 3 mm slice thickness are not compatible
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Fig. 5. 6 layered architecture for localisation.

Fig. 6. 4 layered architecture for localisation.
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Fig. 7. Extraction of 2D Patches by sliding a red rectangular window from the selected number of slices around the coronal centre.
Table 3
Localisation strategy.

Name Slice No. of scans Localised Purpose
thickness by

Chest1 3 mm 144 – Localise Chest2
Abd1 3 mm 132 – Localise Abd2
Chest2 3 mm 127 Chest1 Localisation prior to VCF detection
Abd2 3 mm 84 Abd1 Localisation prior to VCF detection
Chest3 5 mm 126 five-fold cross validationa Localisation prior to VCF detection
Abd3 5 mm 86 five-fold cross validationa Localisation prior to VCF detection
Chest4 5 mm 142 Chest3 Localisation prior to VCF detection
Abd4 5 mm 96 Abd3 Localisation prior to VCF detection

aThe test set for each five-fold run was localised for VCF Detection.
with 5 mm slice thickness, therefore separate models were built with
Chest3 and Abd3. Five-fold cross validation was performed on Chest3
and Abd3 and the localised output of the test set for each five-fold run
was used in VCF detection.

2.3. VCF detection

The patch extraction and annotation strategy has been previously
reported [16], and is briefly summarised below. After localisation, ze-
roing of the negative values of the DICOM NumPy arrays of the patches
was performed as a pre-processing step to reduce the background noise.
This led to removal of background noise and better representation of
the vertebrae contours for subsequent processing.

2.3.1. 2D patch extraction
For building the VCF detection model, ROIs from the ground truth

used for localisation as well as the 6 bounding boxes generated from
localisation were extracted and split into 2D patches, as shown in Fig. 7.
By splitting into 2D patches, a single model suffices to detect VCF in
slices from CT images of different slice thicknesses after localisation.
Visual analysis of scans showed that slices around the coronal centre
carry sufficient information on the vertebrae. Consequently, slices in
the middle 30% of the coronal width were selected and split into
patches, in order to assess the vertebrae condition. While the primary
objective is only to detect VCFs within the CT scan of a patient, it is also
possible to identify their relative positions within a group of vertebrae
in the spine (e.g. T11–T12, T5–T6, L1–L2).
8

Table 4
Summary of VCF and non VCF cases in the dataset.

Name Number of scans VCF cases Non VCF cases

Chest2 127 58 69
Chest3 and Chest4 268 183 85
Abd2 84 53 31
Abd3 and Abd4 182 129 53

2.3.2. Annotation
Radiology reports usually provide the location of the positive VCF

cases, with which the patches were annotated where available. How-
ever, as pointed out in Section 1, VCFs go undetected in radiology
reports due to various reasons. Genant’s criteria [36] provide a method
of qualitative assessment of vertebral fractures based on height loss of
the anterior, posterior and middle portions of a vertebra. The criteria
help grade a fracture into mild, moderate or severe, depending on
the degree of height loss. Manual annotations carried out using this
criterion resulted in 20%–25% more VCF cases than were originally
identified by radiology reports. A summary of the VCF and non-VCF
cases after annotation with Genant’s criteria together with radiology
reports appears in Table 4.

2.3.3. Model architectures
The annotated patches extracted from 2D slices were used to build a

CNN to detect VCF in a patch. The results of detection were aggregated
for a bounding box.

Four different architectures were experimented with:

(i) 3 layered CNN
(ii) 6 layered CNN
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Fig. 8. 3 layered CNN architecture.
Fig. 9. 6 layered CNN architecture.
(iii) TL on pre-trained VGG16
(iv) TL on pre-trained ResNet50

The architecture of the 3 layered CNN is shown in Fig. 8, while that of
the 6 layered architecture is shown in Fig. 9.

VGG16 was one of the best performing CNN architectures in ILSVRC
(Imagenet) competition in 2014 [37]. It is quite popular for image
recognition tasks. The architecture focusses on repetition of 3 × 3
filters with a stride of 1 followed by max pooling of 2 × 2 with a
stride of 2. It has 16 layers that have weights and has approximately
138 million parameters. At the end, there are 2 fully connected layers
which are followed by a softmax layer for output, and Fig. 10 shows
the architecture of VGG16. The output layer is replaced by a fully
connected layer of 512 followed by a final layer having 2 outputs.
The TL process involved retaining the weights when pre-trained on
Imagenet, for detecting the lower level features, and retraining only
the last two layers FC3 and FC4.
9

ResNet is another popular model that won the ILSVRC (Imagenet)
challenge in 2015. ResNet has a number of variants depending on
the number of layers, and Fig. 11 shows the architecture of ResNet50
with 50 layers. The ResNet architecture employs skip connections to
improve overall accuracy. Further details can be found elsewhere [38].
For TL, the output is replaced by a fully connected layer of 512 neurons
followed by an output of 2.

2.3.4. Time complexity analysis of models
As stated in Section 2.2.5, the time complexity of the three layered

and six layered CNNs are according to Eq. (4). The time complexity of
VGG16 and ResNet50 has been reported by a number of researchers
in terms of the FLOPs (Floating Point Operations) and the number of
parameters used. VGG16 performs 1.55 × 1010 FLOPs using 134.2 × 106

parameters, while ResNet50 performs 3.80 × 109 FLOPs using 23.5 × 106

parameters [39].
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Fig. 10. Pre-trained VGG16.
Fig. 11. Pre-trained ResNet50.
2.4. Majority voting

The localisation algorithm results in 6 bounding boxes for each
scan, as discussed in Section 2.2.4. As also discussed in Section 2.2,
popular algorithms such as Faster RCNN generate multiple bounding
boxes. They then employ ‘‘non maximum suppression’’ to select the best
bounding boxes. In this work instead eliminating some bounding boxes,
detection is performed in each one of them. After that there are two
options available:

(i) compute the average performance of all bounding boxes, or
(ii) perform voting using the prediction from each bounding box and

take the consensus.

This work takes the second option.
Each bounding box is split into 2D patches as described in Sec-

tion 2.3.1. It was found that performance can be improved significantly
by majority voting. This involved evaluation by varying the criteria for
10
detection from at least one to all 6 bounding boxes predicting VCF.
Majority voting was performed for consensus from at least half of them.
Best performance was achieved when there was agreement by either 3
or 4 bounding boxes.

3. Results

The proposed method requires the results of localisation and VCF
detection in each bounding box before computing the final consensus
using majority voting.

3.1. Performance metrics

The following metrics were used to evaluate performance on local-
isation and VCF detection.
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Table 5
Balanced dataset.

Name Available scans VCF cases Selected VCF cases Non VCF cases

Chest2, Chest3 and Chest4 395 241 154 154
Abd2, Abd3 and Abd4 266 182 84 84
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3.1.1. Localisation metrics
Two metrics were used:

(i) Jaccard Index, also known as intersection over union (IOU), is a
measure of the overlap between the predicted and ground truth
bounding boxes. If 𝐴 is the predicted bounding box and 𝐵 is the
ground truth bounding box:

Jaccard Index (JI) = 𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

(6)

(ii) Dice coefficient of predicted bounding box 𝐴 and ground truth
bounding box 𝐵 is given by

Dice Coefficient (DC) = 2 ∗ 𝐴 ∩ 𝐵
𝐴 + 𝐵

(7)

3.1.2. VCF detection metrics
Five different metrics were used to measure detection performance,

requiring definitions of True Positive (TP), False Positive (FP), True
Negative (TN) and False Negative (FN).

(i) A detection outcome is true positive (TP) if it correctly identifies
a positive case. False positive (FP) is an incorrectly identified
positive outcome. Similarly, true negative (TN) is a correct neg-
ative detection, while false negative (FN) is an incorrect negative
detection.

(ii) Accuracy is the percentage of correctly identified cases over a
target set of test images:

Accuracy = 100 ∗ (TP + TN)
(TP + FP + TN + FN) (8)

(iii) Sensitivity, also known as recall, is the percentage of correctly
identified positive cases over all positives:

Sensitivity = 100 ∗ TP
(TP + FN) (9)

(iv) Specificity is the percentage of correctly identified negative cases
over all negatives:

Specificity = 100 ∗ TN
(TN + FP) (10)

(v) Precision is the percentage of true positives over all detections
identified as positive:

Precision = 100 ∗ TP
(TP + FP) (11)

(vi) F1 Score is the harmonic mean of precision and recall, and is
defined as:

F1 Score = 100 ∗ 2 ∗ (Precision * Recall)
(Precision + Recall)

= 100 ∗ 2 ∗ TP
(2*TP + FP + FN)

(12)

.2. Dataset balancing

After annotation it was found that the datasets were not balanced, as
here were more VCF cases than non VCFs. To perform the experiments,
balanced dataset with an equal number of VCF and non VCF cases
as created by randomly selecting VCF cases for final analysis. The
mm and 5 mm scans were combined, as shown in Table 5, to create
balanced dataset containing 154 scans each for VCF and Non VCF

espectively for chest, and 84 scans each for VCF and non VCF for
bdomen.
11
.3. Evaluation method

Many authors choose to present their results on a hold-out test set.
he evaluation method used in this work is K-fold cross validation. This

s a technique where the data is split into K equal-sized subsets, and
ach subset is used as a validation set while the other K-1 subsets are
sed for training. The process is repeated K times, with each subset used
xactly once as the validation set. The performance is then averaged
ver the K iterations.

K-fold cross validation has several advantages over evaluation on
single test set. It presents a more accurate estimation of model

erformance, as the performance is averaged over multiple iterations
nd different subsets of the data. This reduces the variance of the
stimated performance and makes it more reliable. Secondly, K-fold
ross validation allows for more efficient use of the data, as each data
oint is used for both training and validation. K-fold cross validation
lso provides a more realistic estimate of the model’s performance on
ew data. Finally, K-fold cross validation provides a mechanism for
electing and fine-tuning the hyper parameters for model performance.

Other work [40] clearly shows that k-fold cross validation is a
referred approach over hold-out test set validation.

.4. Localisation results

All the localisation experiments were performed on a Keras/
ensorflow platform with Titan XP GPU. The training was performed
or 10 episodes for each CNN architecture. The learning rate was set
o 0.00001. The loss function used was mean square error. The best
odel was captured during the 10 episodes. The results of localisation

re shown in Table 6.

.5. Average bounding box results for VCF detection

The individual patches extracted following the process in Sec-
ion 2.3.1 were then resized. Three different patch sizes of 64×48,
128×96 and 48×32 were experimented with before deciding in favour
of 64×48 due to better VCF detection performance. Data augmentation
was performed to shift the width and height by ±20%, rotation by ±20◦

and to flip horizontally. The training was performed for 80 epochs using
keras/tensorflow and the best model was chosen. The learning rate
was set at 0.00001 and the loss used was categorical cross entropy.
The dataset was balanced at patient level i.e. equal number of VCF
and non VCF cases. However, the spinal column (thoracic or lumbar as
the case may be) is split into slices and slices into patches. Therefore,
at the patch level the number of VCF and non-VCF cases could be
imbalanced and balancing with Keras was needed while training. The
class weight parameter of Keras was used to deal with this imbalance
between the number of VCF and non VCF cases at patch level. Three-
fold cross validation was performed on the balanced chest datasets (row
1 of Table 5). Five-fold cross validation was used on balanced abdomen
datasets (row 2 of Table 5). Cross validation was performed separately
for each of the 6 bounding boxes that resulted from localisation for
each CT image. The bounding boxes from both training and test folds
were split into patches.

3.5.1. Model performance
In Table 7 are shown the comparative average three-fold cross

validation performance on 308 thoracic scans of the four architectures
discussed in Section 2.3.3. The best performing architecture is the six
layered CNN and its performance is shown in bold. In Table 8 the
average five-fold cross validation performance on 168 lumbar scans is
shown. Again the best performance is achieved using the six layered
CNN architecture,
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Table 6
Localisation results.

Dataset/ Scans Method JI DC Detection
Slice Accuracy
thickness 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 (for Average)

Chest1/3 mm 144 3 sets of 74.39 ± 1.27 85 ± 0.69 100
experiments
training on 115
and testing on 29

Chest2/3 mm 127 Using model built 73.28 ± 9.67 84.21 ± 6.6 96.85
with Chest1

Chest3/5 mm 126 Five-fold Cross 72.56 ± 9.73 83.73 ± 6.57 96.83
validation

Chest4/5 mm 142 Using model built 73.82 ± 9.64 84.58 ± 6.51 97.18
with Chest3

Abd1/3 mm 132 3 sets of 76.96 ± 4.58 85.92 ± 3.93 96.5
experiments
training on 105
and testing on 27

Abd2/3 mm 84 Using model built 74.54 ± 11.07 84.95 ± 7.49 96.43
with Abd1

Abd3/5 mm 86 Five-fold cross 74.19 ± 10.22 84.79 ± 6.87 97.67
validation

Abd4/5 mm 96 Using model built 73.95 ± 11.31 84.53 ± 7.65 95.83
with Abd3

Average 74.21 ± 1.28 84.71 ± 0.64 97.16 ± 1.27
Table 7
Average three-fold cross validation results using 308 chest scans for 4 architectures.

Model Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

3 layered 74.46 ± 5.18 77.97 ± 1.76 71.39 ± 7.88 72.88 ± 9.84 75.01 ± 6.00
CNN
6 layered 𝟖𝟏.𝟔𝟒 ± 𝟎.𝟎𝟏 𝟖𝟓.𝟐𝟕 ± 𝟎.𝟎𝟐 𝟕𝟕.𝟗𝟔 ± 𝟎.𝟎𝟑 𝟕𝟖.𝟗𝟐 ± 𝟎.𝟎𝟐 𝟖𝟏.𝟖𝟒 ± 𝟎.𝟎𝟏
CNN
Pre-trained 75.05 ± 3.30 73.81 ± 4.97 75.16 ± 9.06 75.50 ± 4.12 74.38 ± 4.10
VGG16
Pre-trained 75.65 ± 1.14 71.06 ± 3.91 79.81 ± 3.08 77.66 ± 5.68 74.04 ± 4.31
ResNet50

3.6. VCF detection majority voting results

After the results of VCF detection in the patches were aggregated
for a given bounding box, voting was performed on the individual
bounding box predictions for a given CT scan. The mean ± SD results
of three-fold cross validation of chest scans using the best performing
6 layered CNN is shown in Table 9. Each row shows the results of
voting from the results of a different number of bounding boxes that
detect VCF on a scan. As can be seen, sensitivity is high when any one
model detects VCF. However, the corresponding accuracy, F1 score and
specificity are low, as false positives are picked up as well.

Progressively higher consensus from multiple models, as shown in
rows 2 through to 6, leads to a decrease in sensitivity while specificity
increases. The accuracy and F1 Score keep increasing and reach an
optimal value usually when 3 or 4 models agree. Five-fold cross val-
idation for 168 abdomen scans using the best performing 6 layered
CNN is shown in Table 10, with an identical pattern and optimal values
attained also when 3 or 4 models agree.

The results of comparison between Tables 7 and 9 show that major-
ity voting improves the accuracy/F1 score of the 6 layered CNN archi-
tecture by 4%. Similarly as can be seen from Tables 8 and 10, majority
voting improves the performance of the 6 layered CNN architecture by
4%.

3.6.1. Majority voting best fold results
In Tables 11 and 12 the best results achieved during 3 fold cross val-

idation of thoracic and 5 fold cross validation of lumbar spine respec-
tively are shown, using majority voting on 6 layered CNN architecture.
12
3.6.2. Majority voting using other models
The performance of other models for VCF detection were not as

good as the six layered CNN. The majority voting results of the 3
layered CNN, pre-trained VGG16 and pretrained ResNet50 are shown in
Appendices A–C respectively. For thoracic spine, the best results were
obtained when at least 4 bounding boxes agree with accuracy/F1 score
of 78.43/77.83 for 3 layered CNN, 80.07/78.75 for pre-trained VGG16
and 80.72/78.30 for pre-trained ResNet50. For lumbar spine, the
best results were obtained were accuracies/F1 scores of 79.39/79.82,
81.21/83.46 and 83.64/82.32 for 3 layered CNN, pre-trained VGG16
and pre-trained ResNet50 respectively.

3.7. VCF detection example

The localisation process is explained in Section 2.2 using three
different models. As explained in Section 2.2.4, each of the models uses
two different methods for predicting the localised ROI:

(a) the predicted size in the terminating state, and
(b) the mean size of the predicted bounding boxes in the last 10

states.

Thus six bounding boxes are generated and the proposed method
involves predicting VCF using the contents of each of the bounding
boxes. Majority voting is then performed on the six predictions. The
localisation performance in general met the criteria for subsequent
VCF detection, and the average JI (IOU) was 74.21%. However, there
were a few cases for which some bounding boxes did not meet the
criteria for successful ROI detection. An example is shown, where two
bounding boxes of model 1 (Figs. 12, 13) and model 3 (Figs. 16, 17)
were successful in localisation, while the two from model 2 (Figs. 14,
15) missed localisation in an unusual manner. Majority voting helps
to iron out the differences in performance on individual bounding
boxes, and also helps to eliminate false positives and false negatives. 2D
Patches were extracted from the individual bounding boxes. The figures
illustrate the leftmost patch from the bounding boxes as explained in
the captions. Four of the six bounding boxes predicted VCF, resulting
in a successful overall prediction of VCF. The captions of the individual
figures illustrate the locations of VCF in the models where localisation

was successful.
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Table 8
Average five-fold cross validation results using 168 abdomen scans for 4 architectures.

Model Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

3 layered 71.72 ± 1.56 82.16 ± 6.93 59.95 ± 6.96 67.81 ± 4.72 74.03 ± 4.71
CNN
6 layered 𝟖𝟐.𝟐𝟐 ± 𝟎.𝟎𝟏 𝟖𝟒.𝟖𝟓 ± 𝟎.𝟎𝟑 𝟕𝟖.𝟗𝟖 ± 𝟎.𝟎𝟑 𝟖𝟏.𝟏𝟏 ± 𝟎.𝟎𝟐 𝟖𝟐.𝟔𝟕 ± 𝟎.𝟎𝟏
CNN
Pre-trained 71.62 ± 3.08 76.69 ± 11.82 64.95 ± 11.88 70.91 ± 8.74 72.09 ± 6.55
VGG16
Pre-trained 74.55 ± 3.16 69.38 ± 7.62 79.11 ± 7.02 78.67 ± 5.53 72.92 ± 4.29
ResNet50
Table 9
Majority voting of average (𝑚𝑒𝑎𝑛 ± 𝑆𝐷) three-fold cross validation results using 6 layered CNN from 308
chest scans.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

Any bounding box
detects VCF 76.14 ± 5.74 96 ± 0.55 56.64 ± 7.9 68.52 ± 8.13 79.79 ± 5.86
Any 2 bounding boxes
detect VCF 80.39 ± 5.96 93.91 ± 2.36 67.27 ± 8.23 73.68 ± 9.24 82.38 ± 6.38
Any 3 bounding boxes
detect VCF 𝟖𝟑.𝟎𝟏 ± 𝟓.𝟔𝟔 𝟗𝟐.𝟓𝟖 ± 𝟐.𝟎𝟐 𝟕𝟑.𝟕𝟔 ± 𝟕.𝟕 𝟕𝟕.𝟑𝟖 ± 𝟗.𝟑 𝟖𝟒.𝟏𝟒 ± 𝟔.𝟑𝟐
4 bounding boxes
detect VCF 𝟖𝟓.𝟗𝟓 ± 𝟑.𝟗𝟔 𝟖𝟖.𝟏 ± 𝟏.𝟖𝟗 𝟖𝟒.𝟐 ± 𝟕.𝟓 𝟖𝟒.𝟐𝟕 ± 𝟗.𝟐𝟔 𝟖𝟓.𝟗𝟒 ± 𝟒.𝟖𝟖
5 bounding boxes
detect VCF 83.33 ± 4.9 78.01 ± 4.77 88.54 ± 5.74 86.52 ± 9.07 82.02 ± 6.73
All bounding boxes
detect VCF 79.08 ± 4.08 66.23 ± 10.33 90.84 ± 2.98 87.23 ± 6.39 75.18 ± 8.97
Table 10
Majority voting of average (𝑚𝑒𝑎𝑛±𝑆𝐷) five-fold cross validation results using the 6 layered CNN from 168
abdomen scans.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

Any bounding box
detects VCF 78.18 ± 5.42 98.82 ± 2.63 56.65 ± 11.23 70.14 ± 6.59 81.87 ± 4.46
Any 2 bounding boxes
detect VCF 84.24 ± 3.95 97.65 ± 5.26 70.46 ± 6.97 77.02 ± 5.74 85.94 ± 3.93
Any 3 bounding boxes
detect VCF 𝟖𝟑.𝟔𝟒 ± 𝟔.𝟐𝟖 𝟗𝟎.𝟐𝟔 ± 𝟓.𝟐𝟕 𝟕𝟓.𝟗𝟖 ± 𝟏𝟐.𝟎𝟔 𝟖𝟎.𝟒𝟓 ± 𝟖.𝟗𝟔 𝟖𝟒.𝟖𝟐 ± 𝟓.𝟕𝟖
4 bounding boxes
detect VCF 𝟖𝟔.𝟔𝟕 ± 𝟔.𝟐𝟖 𝟖𝟖.𝟏𝟑 ± 𝟔.𝟗𝟏 𝟖𝟓.𝟎𝟐 ± 𝟗.𝟒𝟕 𝟖𝟔.𝟓𝟒 ± 𝟗.𝟑𝟔 𝟖𝟕.𝟎𝟒 ± 𝟔.𝟐𝟖
5 bounding boxes
detect VCF 81.82 ± 4.79 71.1 ± 6.4 92.3 ± 7.76 91.92 ± 8.68 79.8 ± 3.81
All bounding boxes
detect VCF 78.79 ± 3.71 63.15 ± 9.49 93.48 ± 6.16 92.56 ± 7.81 74.47 ± 5.74
Table 11
Majority voting of best fold results from three-fold cross validation results from 308 chest scans using 6
layered CNN.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %

Any bounding box
detects VCF 80.39 96 65.38 72.73 82.76
Any 2 bounding boxes
detect VCF 83.33 92 75 77.97 84.4
Any 3 bounding boxes
detect VCF 86.27 92 80.77 82.14 86.79
4 bounding boxes
detect VCF 88.24 86 90.38 89.58 87.76
5 bounding boxes
detect VCF 88.24 82 94.23 93.18 87.23
All bounding boxes
detect VCF 82.35 70 94.23 92.11 79.55
4. Discussion

Computed Tomography images are the best suited for VCF detection
as they provide better visualisation of the bone tissues. However, they
require 3D data analysis and therefore multistage processing to narrow
the focus to the vertebrae. Typically good localisation and/or segmen-
tation of vertebrae is recommended, as VCF detection depends on them.
13
The approach used in this work is to perform localisation followed by
simple preprocessing for better visualisation of the vertebrae.

A novel approach to localisation is proposed that combines DRL and
IL. This approach to localisation was motivated by directed search to
the ROI. Only a few works [41,42] have performed 3D bounding box
localisation prior to segmentation. Most others [43–46] have focussed
on locating the centre of ROI and reported the mean distance between
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Table 12
Majority voting of best fold results from five-fold cross validation results from 168 abdomen scans using 6
layered CNN.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %

Any bounding box
detects VCF 84.85 100 73.68 73.68 84.85
Any 2 bunding boxes
detect VCF 87.88 100 78.95 77.78 87.5
Any 3 bounding boxes
detect VCF 93.94 92.86 94.74 92.86 92.86
4 bounding boxes
detect VCF 96.97 92.86 100 100 96.3
5 bounding boxes
detect VCF 87.88 71.43 100 100 83.33
All bounding boxes
detect VCF 81.82 57.14 100 100 72.73
Fig. 12. Patches extracted from the leftmost slice around the coronal centre of the terminating step bounding box of model 1. The arrow marks identify the VCFs as per Genant’s
criteria. The patches cover the thoracic region with the rightmost patch covering T11 and T12.
Fig. 13. Patches extracted from the leftmost slice around the coronal centre of the bounding box whose dimensions are the average of the last 10 steps of model 1. The arrow
marks identify the VCFs as per Genant’s criteria. The patches cover the entire thoracic region with the rightmost patch covering T11 and T12 with a part of L1 having VCF.
Fig. 14. Patches extracted from the leftmost slice around the coronal centre of terminating step bounding box of model 2. Model 2 has missed the mark. This is an extreme case
of failure.
Fig. 15. Patches extracted from the leftmost slice around the coronal centre of the bounding box whose dimensions are the average of the last 10 steps of model 2. Model 2 has
missed the mark. This is an extreme case of failure.
Fig. 16. Patches extracted from the leftmost slice around the coronal centre of terminating step bounding box of model 3. The arrow marks identify the VCFs as per Genant’s
criteria. The patches cover the entire thoracic region with the rightmost patch covering T11 and T12 with a part of L1 having VCF.
the predicted and ground truth centres. The requirement in this work
was to determine the proximity of the predicted bounding box to
the ground truth, in order to extract vertebrae regions. Localisation
14
achieved an average JI of 74.21% and DC of 84.71%, which con-
tributed to the overall higher accuracy of VCF detection. It is important
to note that these figures are for 3D localisation only. Quite often
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Fig. 17. Patches extracted from the leftmost slice around the coronal centre of the bounding box whose dimensions are the average of the last 10 steps of model 3. The arrow
marks identify the VCFs as per Genant’s criteria. The patches cover the entire thoracic region with the rightmost patch covering T11 and T12 with a part of L1 having VCF.
Table 13
Comparison with other works on VCF detection.
Work Method Dataset size Result

Tomita et al. Full CT Chest, Abdomen and 1432 scans Accuracy 89.2%
Pelvic scans separate F1 score 90.8%
processed by Resnet validation set 15%
followed by LSTM

Bar et al. CT Chest or Abdomen 1673 89.10% on a of dataset
Segmentation followed by separate validation set 15%
Patch based CNN,
the output of which
is fed to an RNN

Husseini et al. grading loss representational 157 scans F1 score 81.5%
learning 966 vertebrae

for training, 312
for testing

Nicolaes et al. 3D CNN 90 scans AUC 95% patient level
with 90% abdomen AUC 93% vertebrae level
five-fold cross
validation

Murata et al. DCNN 300 thoracolumbar Accuracy 86.0%
radiographs

Chen et al. pre-trained 1458 frontal Accuracy 73.59%
ResNet 50 radiographs

Proposed method Localisation followed 308 chest scans Accuracy 85.95%, F1-score 85.94%
by patch-based 6 layered CNN, three-fold cross
majority voting validation

Proposed method Localisation followed 168 abdomen scans Accuracy 86.67%, F1-score 87.04%
by patch-based 6 layered CNN, five-fold cross
majority voting validation

Proposed method Localisation followed 308 chest scans Accuracy 80.72%, F1-score 78.30%
by patch-based pre-trained ResNet50, three-fold cross
majority voting validation

Proposed method Localisation followed 168 abdomen scans Accuracy 83.64%, F1-score 82.32%
by patch-based pre-trained ResNet50, five-fold cross
majority voting validation

Proposed method Localisation followed 308 chest scans Accuracy 80.07%, F1-score 78.75%
by patch-based pre-trained VGG16, three-fold cross
majority voting validation

Proposed method Localisation followed 168 abdomen scans Accuracy 81.21%, F1-score 83.46%
by patch-based pre-trained VGG16, five-fold cross
majority voting validation

Proposed method Localisation followed 308 chest scans Accuracy 78.43%, F1-score 77.83%
by patch-based 3 layered CNN, three-fold cross
majority voting validation

Proposed method Localisation followed 168 abdomen scans Accuracy 79.39%, F1-score 79.82%
by patch-based 3 layered CNN, five-fold cross
majority voting validation
there is a tendency to compare localisation results with segmentation
results, wherein the same metrics are used and the reported values
are much higher. However, localisation and segmentation are quite
different problems and must be evaluated separately. Localisation re-
sulted in six bounding boxes. Generating multiple bounding boxes is
similar to multiple region proposals generated by Faster RCNN. While
Faster RCNN focusses on reducing redundant bounding boxes using non
maximum suppression, in this work every bounding box was retained
and processed independently, and a consensus was computed from
individual bounding box predictions.

Patches were extracted from the individual bounding boxes after
splitting them into slices. The individual bounding boxes introduce
variations in the ‘‘views’’ to the ROI. The prediction from each patch is
aggregated to the corresponding bounding box to decide on the pres-
ence of VCF for a given patient. Four different CNN architectures were
15
experimented with, starting from a shallow 3 layered CNN, followed by
a 6 layered CNN. The remaining two models employed TL using VGG16
and ResNet50, both pre-trained on Imagenet. The architecture that was
best suited for the data was the 6 layered CNN. No CNN architecture is
ever perfect. The sensitivity and specificity measure the false positives
and negatives, which can be effectively reduced by majority voting as
shown in this work.

Most of the known works on VCF detection were trained and tested
on different datasets that are not available publicly, and it is not
possible to make a direct comparison. However, their results may be
taken as an indication of the capability of the different methods. In
Table 13 a comparison with other state of the art methods is provided,
together with the results of the four models presented in this work. It
is to be pointed out that the best performers used hold-out test sets. In
comparison, the proposed methods use three-fold cross validation for
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Table A.1
Majority voting of average (𝑚𝑒𝑎𝑛 ± 𝑆𝐷) three-fold cross validation results using 3 layered CNN from 308
chest scans.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

Any bounding box
detects VCF 68.63 ± 7.07 98.67 ± 1.19 39.42 ± 5.78 61.48 ± 8.58 75.5 ± 6.70
Any 2 bounding boxes
detect VCF 74.18 ± 7.36 92.28 ± 2.84 57.26 ± 12.61 68.10 ± 10.59 77.92 ± 6.47
Any 3 bounding boxes
detect VCF 𝟕𝟔.𝟒𝟕 ± 𝟓.𝟒𝟔 𝟖𝟑.𝟕𝟏 ± 𝟐.𝟓𝟎 𝟕𝟎.𝟎𝟎 ± 𝟖.𝟔𝟐 𝟕𝟑.𝟏𝟕 ± 𝟗.𝟗𝟗 𝟕𝟕.𝟖𝟎 ± 𝟓.𝟖𝟏
4 bounding boxes
detect VCF 𝟕𝟖.𝟒𝟑 ± 𝟕.𝟔𝟔 𝟕𝟔.𝟓𝟔 ± 𝟔.𝟕𝟗 𝟖𝟎.𝟕𝟖 ± 𝟗.𝟎𝟓 𝟕𝟗.𝟓𝟕 ± 𝟏𝟏.𝟐𝟏 𝟕𝟕.𝟖𝟑 ± 𝟕.𝟗𝟗
5 bounding boxes
detect VCF 76.80 ± 5.99 65.54 ± 6.45 87.97 ± 6.62 83.65 ± 11.75 73.45 ± 8.49
All bounding boxes
detect VCF 72.22 ± 2.04 51.06 ± 3.70 92.95 ± 6.29 88.25 ± 12.08 64.41 ± 3.93
Table A.2
Majority voting of average (𝑚𝑒𝑎𝑛±𝑆𝐷) five-fold cross validation results using the 3 layered CNN from 168
abdomen scans.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

Any bounding box
detects VCF 58.18 ± 6.91 98.67 ± 2.98 16.78 ± 8.31 54.54 ± 7.77 70.01 ± 6.38
Any 2 bounding boxes
detect VCF 66.67 ± 4.79 98.67 ± 2.98 33.45 ± 9.62 60.12 ± 6.63 74.52 ± 5.13
Any 3 bounding boxes
detect VCF 𝟕𝟔.𝟗𝟕 ± 𝟐.𝟕𝟏 𝟗𝟕.𝟐𝟒 ± 𝟑.𝟕𝟗 𝟓𝟓.𝟏𝟓 ± 𝟕.𝟕𝟒 𝟔𝟖.𝟕𝟗 ± 𝟒.𝟖𝟖 𝟖𝟎.𝟓𝟓 ± 𝟒.𝟓𝟏
4 bounding boxes
detect VCF 𝟕𝟗.𝟑𝟗 ± 𝟓.𝟖𝟑 𝟖𝟑.𝟖𝟏 ± 𝟏𝟑.𝟒𝟖 𝟕𝟐.𝟗𝟕 ± 𝟏𝟏.𝟗𝟒 𝟕𝟔.𝟗𝟐 ± 𝟑.𝟖𝟐 𝟕𝟗.𝟖𝟐 ± 𝟕.𝟖𝟖
5 bounding boxes
detect VCF 78.18 ± 3.95 65.30 ± 11.25 89.23 ± 8.39 87.73 ± 3.47 74.35 ± 7.88
All bounding boxes
detect VCF 70.91 ± 6.28 49.31 ± 11.90 92.15 ± 6.45 88.03 ± 7.07 62.33 ± 9.66
the chest scans and five-fold cross validation for the abdomen scans.
The results of the fold which performed the best for chest and abdomen
are shown in Tables 11 and 12 respectively. The results show that
the best fold performance accuracy of chest scans (88.24%) is nearly
comparable to the top performance accuracy of 89.2% and 89.1%. The
best fold performance of abdomen scans (96.97%) outperformed the
top performers. The average of three-fold and five-fold cross validation
accuracies of 85.95% for chest and 86.67% for abdomen are nearly
comparable even when using a relatively smaller dataset, and the
top two performers required multistage processing and much larger
datasets.

A fully automated method for VCF detection has been presented.
As mentioned in Section 1, VCFs are often missed by radiologists
for various reasons. It is therefore useful to have a method that can
run retrospectively on archived images and prospectively as a back-
ground task for the analysis of new scans. One disadvantage of this
method is however the amount of time needed to annotate the patches.
Other approaches using weakly supervised learning such as multiple
instance learning are being investigated for feasibility and performance
comparison.

5. Future work

The proposed methods achieved good performance with a relatively
smaller dataset. However, it would be interesting to see how the models
perform with a much larger dataset. Technology and models keep
evolving, and it would be useful to evaluate and explore ways to
improve performance using transformers [47,48] and other state of the
art architectures.

The presented work flow involved 3D localisation followed by VCF
detection on 2D slices extracted from the localised bounding boxes.
More detailed studies need to be performed by directly processing 3D
localised images, as detection accuracy may be improved with the
16

availability of 3D contextual information.
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Appendix A. Majority voting results using 3 layered CNN

In Tables A.1 and A.2, the performance of majority voting using 3
layered CNN is shown.

Appendix B. Majority voting results using pre-trained VGG16

In Tables B.1 and B.2, the results of TL using pre-trained VGG16 are
shown.

Appendix C. Majority voting results using pretrained ResNet50

In Tables C.1 and C.2 the corresponding results of TL using pre-
trained ResNet50 are shown. After the 6 layered CNN, ResNet50 per-
formed best.
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Table B.1
Majority voting of average (𝑚𝑒𝑎𝑛 ± 𝑆𝐷) three-fold cross validation results using pre-trained VGG16 from
308 chest scans.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

Any bounding box
detects VCF 68.63 ± 1.70 94.00 ± 0.82 42.72 ± 9.44 61.99 ± 3.72 74.68 ± 2.97
Any 2 bounding boxes
detect VCF 72.88 ± 3.96 83.92 ± 3.48 60.53 ± 15.15 68.59 ± 4.09 75.40 ± 2.40
Any 3 bounding boxes
detect VCF 𝟕𝟕.𝟕𝟖 ± 𝟓.𝟗𝟏 𝟕𝟖.𝟓𝟗 ± 𝟓.𝟏𝟎 𝟕𝟓.𝟒𝟗 ± 𝟏𝟒.𝟐𝟑 𝟕𝟕.𝟑𝟗 ± 𝟓.𝟕𝟖 𝟕𝟕.𝟖𝟗 ± 𝟒.𝟑𝟗
4 bounding boxes
detect VCF 𝟖𝟎.𝟎𝟕 ± 𝟒.𝟒𝟐 𝟕𝟒.𝟓𝟗 ± 𝟓.𝟓𝟓 𝟖𝟒.𝟐𝟔 ± 𝟗.𝟗𝟗 𝟖𝟑.𝟔𝟒 ± 𝟒.𝟖𝟓 𝟕𝟖.𝟕𝟓 ± 𝟒.𝟎𝟏
5 bounding boxes
detect VCF 79.08 ± 4.93 64.99 ± 11.03 92.06 ± 3.80 88.67 ± 6.31 74.85 ± 9.61
All bounding boxes
detect VCF 71.90 ± 1.13 46.79 ± 6.31 95.94 ± 2.50 92.34 ± 3.08 61.93 ± 5.57
Table B.2
Majority voting of average (𝑚𝑒𝑎𝑛± 𝑆𝐷) five-fold cross validation results using the pre-trained VGG16 from
168 abdomen scans.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

Any bounding box
detects VCF 60.00 ± 7.23 100.00 ± 0.00 19.68 ± 4.80 54.63 ± 8.39 71.21 ± 6.58
Any 2 bounding boxes
detect VCF 71.52 ± 11.66 95.89 ± 6.30 45.81 ± 22.66 65.482 ± 13.00 77.23 ± 9.54
Any 3 bounding boxes
detect VCF 𝟖𝟏.𝟐𝟏 ± 𝟏𝟏.𝟐𝟐 𝟗𝟐.𝟐𝟔 ± 𝟗.𝟐𝟎 𝟔𝟖.𝟓𝟖 ± 𝟐𝟓.𝟕𝟏 𝟕𝟕.𝟖𝟖 ± 𝟏𝟒.𝟎𝟓 𝟖𝟑.𝟒𝟔 ± 𝟖.𝟓𝟏
4 bounding boxes
detect VCF 𝟖𝟎.𝟎𝟎 ± 𝟓.𝟎𝟕 𝟕𝟕.𝟖𝟒 ± 𝟔.𝟎𝟕 𝟖𝟎.𝟑𝟒 ± 𝟏𝟗.𝟑𝟔 𝟖𝟒.𝟑𝟕 ± 𝟏𝟐.𝟏𝟏 𝟕𝟗.𝟐𝟏 ± 𝟓.𝟕𝟖
5 bounding boxes
detect VCF 73.33 ± 3.95 58.03 ± 21.91 86.53 ± 15.92 88.42 ± 12.91 66.48 ± 12.07
All bounding boxes
detect VCF 63.64 ± 55.67 36.14 ± 20.09 88.75 ± 14.10 86.81 ± 12.94 46.87 ± 18.14
Table C.1
Majority voting of average (𝑚𝑒𝑎𝑛 ± 𝑆𝐷) three-fold cross validation results using pre-trained ResNet50 from
308 chest scans.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

Any bounding box
detects VCF 68.95 ± 3.44 90.67 ± 1.79 47.39 ± 1.10 62.81 ± 6.63 74.11 ± 5.04
Any 2 bounding boxes
detect VCF 79.08 ± 2.26 87.82 ± 3.65 69.89 ± 3.65 74.11 ± 4.95 80.37 ± 4.41
Any 3 bounding boxes
detect VCF 𝟖𝟎.𝟎𝟕 ± 𝟎.𝟓𝟕 𝟕𝟔.𝟒𝟕 ± 𝟐.𝟖𝟐 𝟖𝟒.𝟎𝟕 ± 𝟒.𝟏𝟐 𝟖𝟐.𝟏𝟗 ± 𝟔.𝟗𝟔 𝟕𝟗.𝟎𝟒 ± 𝟐.𝟑𝟎
4 bounding boxes
detect VCF 𝟖𝟎.𝟕𝟐 ± 𝟐.𝟐𝟔 𝟕𝟎.𝟕𝟕 ± 𝟑.𝟎𝟓 𝟗𝟎.𝟏𝟓 ± 𝟓.𝟐𝟔 𝟖𝟕.𝟖𝟏 ± 𝟔.𝟕𝟔 𝟕𝟖.𝟑𝟎 ± 𝟑.𝟔𝟔
5 bounding boxes
detect VCF 74.84 ± 1.50 57.26 ± 7.20 91.37 ± 6.04 87.37 ± 8.60 68.92 ± 5.75
All bounding boxes
detect VCF 70.26 ± 2.26 43.36 ± 10.80 96.00 ± 3.56 92.38 ± 7.19 58.32 ± 9.39
Table C.2
Majority voting of average (𝑚𝑒𝑎𝑛±𝑆𝐷) five-fold cross validation results using the pre-trained ResNet50 from
168 abdomen scans.

Description Accuracy % Sensitivity % Specificity % Precision % F1 score %
𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷 𝑚𝑒𝑎𝑛 ± 𝑆𝐷

Any bounding box
detects VCF 66.67 ± 6.78 93.68 ± 5.15 38.84 ± 12.81 60.87 ± 8.24 73.53 ± 6.32
Any 2 bounding boxes
detect VCF 79.39 ± 3.32 89.97 ± 8.05 67.09 ± 14.36 75.082 ± 6.93 81.35 ± 2.15
Any 3 bounding boxes
detect VCF 𝟖𝟑.𝟔𝟒 ± 𝟒.𝟔𝟎 𝟕𝟗.𝟓𝟐 ± 𝟏𝟎.𝟖𝟑 𝟖𝟔.𝟏𝟑 ± 𝟖.𝟕𝟏 𝟖𝟔.𝟕𝟓 ± 𝟗.𝟓𝟒 𝟖𝟐.𝟑𝟐 ± 𝟔.𝟓𝟔
4 bounding boxes
detect VCF 𝟕𝟔.𝟑𝟔 ± 𝟔.𝟓𝟕 𝟔𝟏.𝟐𝟐 ± 𝟗.𝟕𝟐 𝟗𝟏.𝟐𝟕 ± 𝟖.𝟖𝟑 𝟖𝟗.𝟑𝟐 ± 𝟏𝟎.𝟔𝟖 𝟕𝟏.𝟗𝟔 ± 𝟕.𝟎𝟕
5 bounding boxes
detect VCF 72.73 ± 6.06 51.54 ± 11.37 93.62 ± 4.31 90.32 ± 6.44 64.87 ± 8.66
All bounding boxes
detect VCF 68.48 ± 11.85 40.35 ± 17.94 97.71 ± 3.13 93 ± 10.95 54.67 ± 18.79
17
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