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A B S T R A C T   

Pressure retarded osmosis (PRO) is highly investigated in the literature as one of the blue energy techniques. The 
PRO membrane plays a key role in harvesting the osmotic energy from a salinity gradient resource and process 
optimization. Therefore, a well-selected membrane will improve the power density generated in the PRO process 
to meet a designed power density threshold required for an economic salinity gradient power plant. In order to 
select a proper membrane for the PRO process, it is crucial to know its intrinsic properties, such as the membrane 
water permeability, salt permeability, and structural parameters, that impact the process performance. Deter-
mining the membrane's exact intrinsic parameters in a full-scale PRO module is challenging and time-consuming, 
and assuming constant parameters will compromise the accuracy of the results and power generation in the PRO 
process. This study employs artificial neural networks and Boosting-based tree models to predict the intrinsic 
parameters of the PRO membrane based on the minimum theoretical power density that could be predetermined 
and was assumed to be 5 W/m2 in this study. The Random Forest and XGBoost algorithms demonstrate superior 
predictive power (R2 

= 0.97) compared to the other examined machine learning algorithms. The results reveal 
that machine learning algorithms can provide significant predictive power for the membrane's intrinsic pa-
rameters and power density based on the input parameters. Additionally, the algorithms were used to evaluate 
the feature importance of each input parameter affecting the power density of the pressure retarded osmosis 
membrane.   

1. Introduction 

Pressure retarded osmosis (PRO) is one of the blue energy techniques 
for sustainable energy generation from salinity gradient solutions. The 
osmotic pressure variation between the two PRO feed solutions is 
responsible for the water permeation from the low salinity to the high 
salinity of the PRO semipermeable membrane, where the hydraulic 
power is generated through the hydro-turbine [1–3]. Recently, the 
availability and development of promising PRO membranes for pro-
ducing higher power density of the PRO process have been broadly 
investigated [4–8]. A PRO membrane of satisfactory water permeability 
and good salt rejection would ensure the cost-effectiveness of the 

process. 
The membrane efficiency in osmotically driven systems is usually 

related to the membrane properties such as the membrane water 
permeability coefficient, the salt permeability coefficient, and the 
membrane structural parameter [4,9]. The membrane's intrinsic pa-
rameters highly influence the PRO process performance. For example, 
Zhang et al. [10] revealed that the reduction of the salt permeability 
coefficient caused an enhancement of 58.5 % of the PRO power density. 
Moreover, the salt permeability coefficient points out the severity of the 
reverse solute diffusion from the draw to the feed side. Nevertheless, the 
analytical model in PRO studies [5,11,12] ignored the effect of the 
reverse salt flux on the process behaviour for simplicity. The reverse salt 
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diffusion can intensify the membrane's internal concentration polariza-
tion [11–15] and the possibility of enhancing the membrane fouling 
[14,15]. These phenomena involve controlling the performance of the 
PRO process and cannot be underestimated. Recent work by Ruiz-García 
et al. [16] showed the impact of membrane fouling on the power gen-
eration in the PRO process. A 50 % reduction in the water permeability 
resulted in a 25 % decrease in power generation, whereas a 50 % 
reduction in the salt permeability showed insignificant impact. 

Accurately determining the membrane's intrinsic parameters with 
the variation of the operating conditions (within the allowable range of 
the operating conditions from the membrane manufacturer) is necessary 
for the precise cost estimation of the osmotically driven membrane 
processes. Determining the membrane parameters affected by the 
process's operating conditions has been challenging. Many studies in the 
literature [17–22] assumed constant values of these parameters, which 
is not the real case. Undoubtedly, the applied hydraulic pressure is a 
crucial factor affecting the membrane performance, and it could pro-
duce a lower permeation rate or enhance the reverse salt flux [23–25]. 
The water and salt permeability coefficients cannot be constants in this 
case. For instance, She et al. [26] compared the PRO process outputs 
with two scenarios predicting the water and solute permeability co-
efficients. The first scenario relied on the conventional RO method. The 
second scenario used a new technique in which the membrane transport 
parameters varied within the applied hydraulic pressure changes. The 
results showed a preferable prediction of the experimental PRO-specific 
solute reverse flux when the second scenario determined the membrane 
transport properties. An interesting study by Ruiz-Carcia et al. [27] 
revealed that increasing the number of PRO modules in series led to an 
increase in power generation despite the pressure drop on both sides of 
the membrane. The study highlighted the significance of using multiple 
PRO membranes for maximum power generation. 

Moreover, analytical PRO models assumed a constant membrane 
structural parameter [28,29]. Technically, the membrane structural 
parameter can provide reasonable knowledge of the internal concen-
tration polarization, a significant incident in osmotically driven mem-
brane systems. For instance, the occurrence of internal concentration 
polarization in the PRO process will attenuate the osmotic driving force 
at the membrane sides, decreasing the PRO power density [5]. 
Accordingly, the variation of the membrane structural parameter within 
the operating conditions of the PRO process should be considered. 
Another shortcoming of analytical models is that the effect of high 
salinity is often ignored when estimating membrane intrinsic parame-
ters [30]. For instance, one study [31] reported that the membrane salt 
permeability coefficient increased 10 times with a 100 % increase in the 
solute salinity. 

Alternatively, to assume constant intrinsic membrane parameters, 
the determination of these parameters should be addressed. Usually, the 
conventional RO and the FO processes determine the PRO process 
membrane parameters (9, 26, 31–33). The water and salt permeability 
coefficients are predicted using the RO process, where the feed solution 
is pressurized. On the contrary, the FO test defines the membrane 
structural parameter. However, this method is inaccurate as there are 
differences between the RO, FO, and PRO systems [32,33]. 

Additionally, physical or analytical modelling studies neglect the 
reverse salt diffusion in the PRO process. Consequently, some studies 
[32–37] presented different experimental results compared to the 
modelled results based on predicting the membrane parameters using 
the conventional technique. This information is not obtainable through 
traditional analytical models [34]. Several researchers have utilized 
numerical techniques, such as Computational Fluid Dynamics (CFD) 
[38], to examine the hydrodynamics and mass transfer within a PRO 
channel; however, CFD is not practical for large-scale analysis due to its 
high computational costs [39]. 

Leveraging ML technology to predict PRO power density using an 
actual PRO database can minimize the required PRO experimental work, 
saving the researcher's time and reducing the PRO process's operational 

cost. It could also be used as a prior experimental step to choose better 
input conditions for the best power density needed for the PRO process. 
Notably, the actual economically viable PRO power density deviates 
according to the process design, including the system capacity, feed 
solutions salinity, and applied hydraulic pressure on the feed solutions. 
Additionally, the consumed energy through the pumping and treatment 
of the PRO feed solutions should be considered to evaluate the net en-
ergy generation of the PRO process. The net energy generation would 
present the best view of the viability of the PRO process. ML models can 
also aid researchers in exploring novel PRO configurations, materials, 
and operational strategies by rapidly analyzing and generating insights 
from vast amounts of experimental and theoretical data. 

This study aims to utilize machine learning to predict the intrinsic 
membrane properties to achieve the assumed threshold power density of 
5 W/m2 for an economic PRO process based on input operating condi-
tions, which can subject the membrane's intrinsic parameters to change. 
The membrane characteristics, i.e., water and salt permeabilities and the 
structural parameter, and the power density should be built by tech-
niques that employ factual PRO operating conditions, such as the 
applied hydraulic pressure, the osmotic pressure of the feed, and the 
draw solutions, the feed and the draw solution types, and the membrane 
type. A PRO database will be arranged using the experimental data 
available in the literature, followed by collecting the membrane pa-
rameters by assuming a theoretical power density of 5 W/m2 for an 
economic PRO process [1,40]. It should be noted that the theoretical 
power density threshold could be adjusted to achieve an economic PRO 
process. The machine learning program will predict the membrane 
power density based on the membrane characteristics and operating 
parameters to allow researchers to select or fabricate PRO membranes 
with Aw, B, and S factors recommended to generate a power density 
equal to or more than the 5 W/m2 threshold. These parameters will be 
predicted by four different machine learning algorithms, namely Arti-
ficial Neural Network, CatBoost, XGBoost, and Random Forest, where 
the results will be compared. The predicted membrane parameters and 
PRO power density will be compared to the published data. 

2. Methods 

2.1. The PRO dataset collection 

PRO data, termed the PRO dataset, is a comprehensive and system-
atic collection of data for PRO. The dataset is provided along with the 
study. The PRO dataset in this study is higher than one thousand points, 
which is higher than the dataset points of other studies where machine 
learning modelling applications have been applied [41]. The PRO 
dataset includes 1190 instances and 24 features. The dataset was 
collected from 47 published papers. Notably, the conclusion will be 
based on these studies; however, the experimental work of the PRO 
system is generally limited, and most studies are from modelling works 
due to the PRO's expensive infrastructure. The figures were collected 
from the literature (Data and references provided in supplementary in-
formation, S.1). Then the online software “WebPlotDigitizer” was 
applied to extract the data from the figures and plots. 

The dataset visualized in Fig. 1 shows the membrane's intrinsic pa-
rameters at a power density lower than and higher than the economi-
cally viable 5 W/m2 at various values of the applied pressure difference 
of the PRO. For instance, Fig. 1a shows the power density lower than 5 
W/m2 in one of the y-axis (black) and the water permeability coefficient 
in the other y-axis (pink) at different hydraulic pressure values. Also, at a 
power density of more than 5 W/m2, the Aw values are shown in Fig. 1b. 
It is worth noting that around 52 % of the collected power density data 
are less than 5 W/m2. The water permeability coefficient, the salt 
permeability coefficient, and the membrane structural parameter were 
reported in the studies and considered as they are in the modelling. The 
data's maximum, minimum, average, median, and standard division 
were extracted using Python and tabulated in Table 1. The applied 
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pressure difference ranges from 0.41 to 70.04 bar (Table 1). Theoreti-
cally, modelling higher pressures of more than 70.04 bar can be simu-
lated, requiring less time and no infrastructure. The maximum recorded 
power density value is 120 W/m2, while the highest osmotic pressure 

difference is 176 bar. 

Fig. 1. (a), (b) The Aw values at W lower and higher than 5 W/m2, respectively, with the variation of the applied hydraulic pressure difference, (c), (d) The B values 
at W lower and higher than 5 W/m2, respectively, with the variation of the applied hydraulic pressure difference, (e), (f) The S values at W lower and higher than 5 
W/m2, with the variation of the applied hydraulic pressure difference, and (g), (h) The osmotic pressure difference at W lower and higher than 5 W/m2, with the 
variation of the applied hydraulic pressure difference. Table 1 provides an overview of the collected data. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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2.2. Determination of Aw, B, and S in the literature 

In the PRO studies, determining the membrane water permeability 
requires the water flux, the applied hydraulic pressure difference, and 
the osmotic pressure difference across the membrane (Eq. (1)). These 

were taken directly from the experimental data for accuracy, where the 
water flux was calculated according to Eq. (1) in the experimental 
studies. 

Jw = Aw(Δπ − ΔP) (1) 

Table 1 
The maximum, minimum, average, median, and standard division of the numerical database.  

Collected data Maximum Minimum Average Median Standard deviation 

Inputs Draw flow rate (L/min)  40.00  0.03  2.18  0.50  5.00 
Feed flow rate (L/min)  27.58  0.02  1.33  0.50  2.81 
Applied pressure on the draw side (bar)  29.48  0.72  9.88  8.93  6.33 
Applied pressure on the feed side (bar)  6.63  0.10  1.42  0.50  1.59 
Draw salinity (M)  3.00  0.07  1.00  1.00  0.63 
Feed Salinity (M)  1.00  0.00  0.04  0.01  0.12 
Membrane thickness (m)  0.40  0.000059  0.03  0.00  0.10 
Membrane area (m2)  650.00  0.00005  9.88  0.00  44.97 
Draw temperature (K)  343.00  283.00  298.18  297.00  8.37 
Feed temperature (K)  343.00  283.00  298.80  298.00  8.58 
The osmotic pressure difference (bar)  176.00  2.80  50.58  49.20  30.72 
The applied pressure difference (bar)  70.04  0.41  10.83  8.62  10.31 
Water flux (L/m2⋅h)  148.40  0.11  24.30  16.47  23.47 
Reverse salt flux (L/m2⋅h)  459.77  0.00  30.28  0.00  77.08 

Outputs Power density (W/m2)  120.00  0.02  7.68  3.77  14.27 
Water permeability coefficient (L/m2⋅h⋅bar)  8.78  0.08  2.14  2.27  1.77 
Salt permeability coefficient (L/m2⋅h)  8.55  0.01  0.78  0.32  1.21 
Membrane structural parameter (μm)  2877.81  90.00  729.07  645.94  473.51  

Fig. 2. Study design for machine learning models.  
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where Jw is the water flux, Aw is the membrane permeability coefficient 
(L/(m2⋅h⋅bar)), Δπ is the osmotic pressure difference (bar), and ΔP is the 
applied hydraulic pressure difference (bar), respectively. Power density 
(W) in W/m2, the energy generated in the PRO system by the membrane 
area, is reported in the studies or determined by the following equation. 

W = JwΔP = Aw(Δπ − ΔP)ΔP (2) 

Traditionally, in all the data, Eq. (1) estimates the Aw based on the 
RO test when Δπ is zero [28]. On the other hand, B is estimated by the 
following equation [28]: 

B =

A
(

CP
CF

)

(ΔP − Δπ)
(

1 − CP
CF

) (3)  

where A is the membrane area in (m2), CP (M) is the permeate con-
centration, and CF (M) is the feed concentration. All the points for B were 
collected from the literature for the given studies. The membrane 
structural parameter (S) was also collected from the studies. Data pre-
processing will remove any outliers from the data before machine 
learning modelling can be applied to minimize error due to different 
estimation methods for Aw, B, S, and power density. 

2.3. Machine learning study design and algorithms 

2.3.1. Study design 
The data attached (Supplementary information, S.1) was collected 

from PRO studies using figures and tables. The extracted data from the 
figures and tables was tabulated in Excel and exported to Python. After 
cleaning, preprocessing, and transforming the data, feature engineering 
was conducted to drop less relevant features in the collected data 
(Fig. 2). The data was subsequently fed into the ANN or gradient 
boosting models and evaluated with the evaluation metrics. 

2.3.2. Artificial neural network architecture 
A built-in library in Python called “Keras” was employed to scheme a 

neural network. An artificial neural network (ANN) is a deep learning 
algorithm built to imitate the human brain's neural networks by devel-
oping multi-connections between artificial neurons [42]. It is a subset of 
machine learning algorithms designed to process and learn from data. 
The basic processing elements of neural networks are called artificial 
neurons or nodes, representing features of raw input data. Each neuron 
in the network is a computational unit that takes the inputs, performs a 
weighted sum, applies a non-linear function, and generates an output. 

We constructed the ANN model with a specific architecture. The 
training model comprised six dense layers with different numbers of 
neurons (512, 512, 128, 128, 128, and 64) to learn and represent 
complex patterns (as shown in Table 2). A rectified linear unit (ReLU) is 
an activation function that introduces non-linearity into the network. 
We further apply regularization using dropouts to prevent overfitting 
and improve the model's generalization ability. 

The dropout rate of 0.3 in the first Dropout layer means that during 
training, 30 % of the input units (neurons) will be randomly set to 0 at 
each update, which helps prevent the model from relying too heavily on 
any particular subset of neurons. Similarly, the dropout rate of 0.2 in the 
second Dropout layer means that 20 % of the input units will be 
randomly set to 0 during training. The ANN model can become more 
robust and better generalize unseen data by using dropout. It helps 
prevent overfitting by forcing the network to learn more robust repre-
sentations and not relying too much on specific neurons. Finally, the 
model ends with a dense layer containing a single neuron and an acti-
vation layer with a linear activation function suitable for regression 
tasks. 

2.3.3. ANN training procedure and hyperparameters 
The ANN model was trained using the Adam (Adaptive moment 

estimation) optimizer with a learning rate of 0.001. The learning rate is a 
crucial hyperparameter that determines the step size during gradient 
descent optimization. The Adam optimizer adapts the learning rate 
during training, helping the model converge faster and potentially 
escape local minima. The ANN model was trained for 500 epochs (i.e., 
500 passes through the entire training dataset), and the batch-size 
parameter was set to 256, indicating that the training data will be 
divided into batches of 256 samples during each training iteration. This 
approach helps optimize memory usage and accelerate training. The 
MSE was used as a loss function. In general, L2 loss (MSE) tends to 
provide more precise gradient information for optimization. The pre- 
trained ANN model was loaded to make predictions with ANN, and 
the new test data was preprocessed similarly to the PRO dataset. Finally, 
predictions were obtained for the new test data and exported. 

2.3.4. Gradient boosting method 
Three gradient boosting models were processed in the current study: 

Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), 
and the Random Forest. These models combine multiple decision trees, 
which leads to strong predictive power. These models are well-known 
for faster training and improved generalization and have been success-
fully used in many regression problems. For instance, CatBoost is 
considered a significant method for the high accuracy of the general-
ization [43]. Moreover, random forest is determined to be a significantly 
accurate method and a fast learning method without being affected by 
the nature of the original dataset [44]. Random Forest as an ML method 
is a variety of classifiers processed in decision trees, created based on a 
couple of randomization sources. The decision trees' forming relies on 
choosing the best split points to minimize the loss [45]. The input var-
iables are the PRO process parameters that impact the water perme-
ability coefficient, the salt permeability coefficient, the membrane 
structural parameter, or the power density. Furthermore, the output 
variable is one of the membrane's intrinsic parameters or the power 
density. A single tree in the gradient boosting models is utilized to build 
a basis function [46,47] as follows: 

Fo(x) = arg minβ

∑n

i=1
Loss(yi, β) (4)  

where x is the input variable, Fo is the basis function, Loss (yi, β) is the 
loss function, and β is the split points set for the internal nodes of the 

Table 2 
ANN model architecture.  

Layer type and activation Output (shape) Number of parameters 

dense (Dense) 
activation (ReLU) 

(None, 512) 
(None, 512) 

6656 
0 

Dense_1 (Dense) 
Activation_1 (ReLU) 

(None, 512) 
(None, 512) 

262,656 
0 

Dense_2 (Dense) 
Activation_2 (ReLU) 

(None, 128) 
(None, 128) 

65,664 
0 

Dense_3 (Dense) 
Activation_3 (ReLU) 

(None, 128) 
(None, 128) 

16,512 
0 

Dropout (Dropout 0.3) (None, 128) 0 
Dense_4 (Dense) 

Activation_4 (ReLU) 
(None, 128) 
(None, 128) 

16,512 
0 

Dense_5 (Dense) 
Activation_5 (ReLU) 

(None, 64) 
(None, 64) 

8256 
0 

Dropout_1 (Dropout 0.2) (None, 64) 0 
Dense_6 (Linear) (None,1) 65 
Total parameters 

376,321 
Trainable parameters 
376,321 
Non-trainable parameters 
0  
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tree. The best β value that guarantees to minimize the loss function is 
decided using the training data. 

2.3.5. Gradient Boosting models architecture and hyperparameters 
Gradient Boosting is a popular machine-learning technique used for 

prediction purposes. It is an ensemble learning method that builds 
multiple weak learners (i.e., decision trees) where each weak learner is 
trained sequentially to correct the errors made by the previous ones. 
CatBoost and XGBoost are powerful gradient-boosting models used in 
our experiments. RandomForestRegressor is an ensemble learning 
method that uses a collection of decision trees (forest) to perform 
regression tasks. Each tree in the forest independently predicts the 
output and the final prediction is obtained by averaging (for regression) 
the predictions of all trees. The hyperparameters of CatBoost, XGBoost, 
and Random Forest regression are listed in Table 3. The parameters it-
erations (CatBoost) or n_estimators (XGBoost and Random Forest), 
respectively, are similar and control the number of boosting rounds or 
iterations, which corresponds to the number of base learners (decision 
trees) built in the ensemble. 

The learning_rate hyperparameter controls the step size at which the 
models (CatBoost and XGBoost) are updated during each boosting iter-
ation. A lower learning rate allows the model to make more conservative 
updates, which can improve stability during training. For instance, the 
learning rate is set to 0.001 for CatBoost, which means the model will 
make small updates to the parameters at each iteration. The Mean 
squared error (MSE) was used as a loss function for all the models. In 
Random Forest, there is no iterative boosting procedure, and the model's 
parameters are not updated with a learning rate. The trees are trained 
independently, and their predictions are combined directly without any 
iterative optimization process. The depth hyperparameter specifies the 
maximum depth of each decision tree in the ensemble. A deeper tree can 
capture more complex relationships in the data but may also lead to 
overfitting. For instance, by setting the depth to 15 for the XGBoost, the 
code limits each decision tree to a maximum depth of 15 levels. Finally, 
by setting verbose to False or 0, no progress messages are revealed 
during training, making the training process silent. 

2.3.6. The metrics evaluation of the model performance 
Models for the water permeability, the salt permeability, the struc-

tural parameter, and the PRO power density were built and evaluated. 
The main metrics used to evaluate the ML models are the coefficient of 
determination (R2), the mean square error (MSE), and the mean absolute 
error (MAE). The competence of the proposed machine learning models 
is examined by the coefficient of determination (R2), between 0 and 1. 
The higher the R2 value is, the more efficient the model. 

R2 =

∑n

i=1
(Pi − ȳi)

2

∑n

i=1
(yi − ȳi)

2
(5)  

where n is the number of data points, Pi is the output predicted from the 
machine learning model, ȳi is the mean of the sample data, and yi is the 
real output value. To determine how much the model fitting line is to the 
collected data, the mean square error was evaluated as the following: 

MSE =
1
n
∑n

i=1
(yi − Pi) (6) 

In Eq. (6), MSE is the mean square error used to evaluate the machine 
learning model's performance. It has been suggested that the MSE of the 
testing data governs the machine learning model's predictive perfor-
mance. However, the importance of the MSE of the training data is to 
clarify and point out the reliability of the machine learning models in 
digging for the abnormality in the dataset. The mean absolute error 
(MAE) of the testing data is also included as the summation of the ab-
solute error between the predicted data and the real output data as 
follows: 

MAE =
1
n
∑n

i=1
∣yi − Pi∣ (7) 

The Google Colaboratory platform, through Python 3.9 software and 
the built-in libraries, was operated to build and run the models. The 
input data present the independent variables of the machine learning 
models, while the output layer would be the water permeability, salt 
permeability, structural parameter, or power density. 

2.3.7. Testing the models on new unseen data 
Model performance was predicted using unseen data, and a com-

parison was made to illustrate the predictive powers of the best models 
for intrinsic membrane parameters and power density. 

3. Results 

Four machine learning algorithms predict the intrinsic parameters of 
the PRO membrane. Furthermore, the PRO output represented by the 
power density is also predicted. The prediction of these parameters and 
output will be discussed in this section. 

3.1. Prediction of the membrane's intrinsic parameters and the PRO 
power density using ANN 

Neural networks are powerful deep learning algorithms that can find 
hidden patterns in data and accurately predict a process's output. Python 
was used to design the artificial neural network (ANN) algorithm to 
predict the water permeability coefficient, the salt permeability coeffi-
cient, the structural parameter, and the PRO power density. The PRO 
dataset was loaded into the software. The categorical variables, such as 
the types of the feed and draw solutions, the membrane types, or the 
membrane manufacturing companies, were converted to numerical data 
by one-hot encoding to form binary variables. Through the design of the 
ANN algorithm, the layers number, the algorithm learning rate, and the 
training epochs number were decided precisely (Epochs = 500, learning 
rate = 0.01) because the PRO input parameters have no direct impact on 
the process outputs. First, the number of hidden layers was assigned to 
one, and then, through trial and error, the appropriate number of hidden 
layers was decided. The optimal number of epochs was determined by 
plotting the loss function of the training data and validation data against 
the number of epochs, starting from 100. The input parameters, such as 
the draw and the feed solutions type, salinity, flow rate, temperature, 
hydraulic pressure, membrane type, and membrane area, were consid-
ered while designing the ANN model. The built ANN model had one 
input layer, three hidden layers, and one output layer to predict Aw, B, S, 
and power density (Fig. 3a). The RELU (Rectified linear Unit) activation 
function was applied to the output of each neuron from the Dense layer. 

A significant predictive power of the designed ANN model was dis-
played for the water permeability coefficient, the salt permeability co-
efficient, and the structural parameter but not for the power density. 

The categorical data were encoded to numbers with the help of the 
“LabelEncoder” transformer in Python. Early stopping occurred to pre-
vent the model's overfitting and enhance the learning rate. Fig. 3a 

Table 3 
Hyperparameters used in Gradient boosting models.  

Model name Iterations/ 
n_estimators 

Learning 
rate 

Depth Verbose Booster 

CatBoost 3000 0.001 10 False gbtree 
XGBoost 10 0.01 15 None gbtree 
Random 

Forest 
100 N/A 15 0 N/A  
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Fig. 3. a) ANN hierarchy b) The correlation matrix of the impact of the PRO input parameters of the water permeability coefficient, the salt permeability coefficient, 
the structural parameter, and the power density. 
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represents the hierarchy of the ANN model, and multiple hidden layers 
make the relation between the inputs and outputs complex. A correla-
tion matrix, using a heat map, was prepared for the water permeability, 
salt permeability, structural parameters, and power density (Fig. 3b) to 
investigate further how the input parameters influenced them. A cor-
relation factor of value close to 1 means the parameters have a high 
correlation and impact each other strongly. Conversely, a correlation 
factor of a value close to − 1 means that the parameters have no or weak 
impact on each other. A high correlation factor of “1” was found to relate 
the osmotic pressure difference to the draw flow rate and the reverse salt 
flux with the feed salinity (Fig. 3b). The training set was around 80 % of 
the collected input data. 

In contrast, the remaining 20 % of the data was used to test the ANN 
model and predict the output parameters. A larger training set, like an 
80–20 split, provided the model with more varied examples, enabling it 
to learn more robust patterns, leading to slower convergence but 
potentially lower validation loss, indicating better generalization. Some 
input data were classified as definite: the type of PRO feed solutions, the 
membranes type, and the manufacturers. These were encoded with one- 
hot encoding in Python and normalized. 

The Adam optimizer and the learning rate 0.001 simulated the ANN 
model. The R2 value was found for the training and testing data, as 
shown in Fig. 4 for Aw, B, S, and W, and the optimization of the ANN was 
done using the loss function for the training set against the validation 

Fig. 4. The ANN R2 predictive power for the prediction of the training and the testing data of (a) and (b) of the water permeability coefficient, (c) and (d) of the salt 
permeability coefficient, (e) and (f) for the membrane structural parameter, and (g) and (h) for the PRO power density, respectively. 
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set. The loss function against the number of epochs plot is presented in 
Fig. S1 (Supplementary information S1). The R2 of the training data for 
the Aw is 0.9988, while the R2 for the testing data for the water 
permeability coefficient is 0.9882 (Fig. 4a and b). The high R2 value 
exhibits the significant performance of the ANN model for the prediction 
of Aw, and there are no signs of overfitting. A high R2 value indicates that 
the ANN can accurately predict the Aw based on the input conditions. 
Excellent results of the simulation of the ANN model for the training and 
testing data are shown for the salt permeability coefficient, B, with R2 of 
0.9977 for the training data (Fig. 4c). Furthermore, the R2 of the salt 
permeability coefficient for testing the ANN model is 0.9501 (Fig. 4d). 
Smaller R2 values, compared to other output parameters, can be noticed 
for both training and testing data of the membrane structural parameter 
of 0.7789 and 0.7119, respectively, as shown in Fig. 4e and f. The co-
efficient of determination for the training and testing data of the power 
density is equal to 0.9959 and 0.9858, respectively, which again shows 
excellent predictive ability. 

For further evaluation of the machine learning model, in addition to 
the R2 metric, the MSE and MAE metrics were also examined. The MSE 
results are based on the ANN model for the water permeability coeffi-
cient, salt permeability coefficient, structural parameter, and power 
density, which are 0.03 L/m2⋅h⋅bar, 0.07 L/m2⋅h, 8.78E− 8 m, and 3.02 
W/m2, respectively. The results show good predictive power for the 
ANN testing data using the ANN model of the water and salt perme-
ability coefficients but not for the membrane structural parameter (S) 
and the power density. Moreover, the MAE results were also evaluated 
for all the models. The MAE for the models were Aw = 0.1 L/m2⋅h⋅bar, B 
= 0.06 L/m2⋅h, structural parameter = 0.0002 m, and power density =
0.90 W/m2. According to the results, the ANN model reasonably predicts 
the water permeability coefficient, salt permeability coefficient, and 
power density. 

The ANN program for the prediction of S was also investigated using 
the AdamW optimizer instead of the Adam and a variable learning rate 
instead of a fixed learning rate [48]. AdamW (W stands for “Weight 
Decay) is a variant of the popular Adam optimizer that introduces 
weight decay during optimization, which helps with stabilizing training 
and reducing overfitting. The R2 value after AdamW optimization 
increased slightly to 0.7199 compared to 0.7119 for Adam using 500 
epochs. We changed the learning rate for the S model to a variable 
learning rate coupled with AdamW, and the R2 was improved to 0.86 
and MSE to 4.07E− 08 m. 

3.2. Prediction of the membrane's intrinsic parameters and the PRO 
power density with the Gradient Boosting models 

In the Gradient Boosting model, the previous predictions are updated 
based on the residual values at every single iteration, which leads to 
optimizing the loss function [49]. The CatBoost, the XGBoost, and the 
Random Forest are evaluated in this study to predict the water perme-
ability coefficient, the salt permeability coefficient, the structural 
parameter, and the power density. The main benefit of using the Cat-
Boost model is that this machine learning algorithm improves its pre-
diction power by learning from its mistakes through simulation. 
Moreover, it's considered an easy algorithm, stable, requires minimum 
computations, and has high accuracy [50]. Additionally, it does not 
require addressing the categorical variables. Generally, boosting models 
depend on gathering several weak models to design one model with high 
predictive power in a greedy manner. Accordingly, there is no need for a 
large dataset for boosting machine learning models to learn from [51]. 
80 % of the dataset was used for the training data, while the remaining 
data points were utilized to validate and test the Gradient Boosting 
models. The dataset used in the Gradient Tree Boosting models was the 
same as the one used for the ANN model. The CatBoost model was fitted 
to the training data, and the input features and target variables (Aw, B, S, 
and W) were specified. The model iteratively builds an ensemble of 
decision trees based on the gradient-boosting algorithm. The loss 

function against the number of iterations plot is presented in Fig. S2 
(Supplementary information S1). The R2 and MSE are determined to 
present the predictive power of the CatBoost model for the various 
output parameters. 

Fig. 5 displays the performance of the CatBoost model for predicting 
the water permeability coefficient, the salt permeability coefficient, the 
structural parameter, and the power density. The R2 of the training data 
for the water permeability coefficient is 0.9785, while the R2 for the 
testing data for the water permeability coefficient is 0.9012 (Fig. 5a and 
b). A less significant fitting of the CatBoost model for the training data is 
shown of the salt permeability coefficient with R2 of 0.9248 (Fig. 5c). 
Moreover, the R2 of the salt permeability coefficient for testing the 
CatBoost model is 0.8420 (Fig. 5d). Higher R2 values can be noticed for 
both training data of the membrane structural parameter of 0.9740 and 
the R2 of the testing data is 0.7903, as shown in Fig. 5e and f, 
respectively. 

A significant prediction through the CatBoost model resulted in a 
power density with R2 of 0.9772 for the training data and 0.9522 for the 
testing data. Accordingly, the CatBoost model can predict the power 
density with high accuracy. Nevertheless, the MAE value of the mem-
brane structural parameter (100.68) and the MSE and MAE values of the 
PRO power density (23.6 and 3.44, respectively) are relatively high. 
Based on these results, the CatBoost model presents reasonable predic-
tion behaviour for the water and salt permeability coefficients with the 
lower predictive power of the membrane structural parameter and the 
PRO power density. Further investigation through additional ML models 
should occur for better prediction power. The predictive power of the 
membrane's intrinsic parameters regarding R2 value is relatively higher 
for the ANN model than the CatBoost model. For instance, the predictive 
power for the salt permeability coefficient based on the training data 
related to the ANN model is around 7.31 % higher than the CatBoost 
model. A similar trend can be noticed for the PRO power density, as its 
predictive power is around 1.88 % higher for the ANN model compared 
to the CatBoost model. 

The MSE results for the water permeability coefficient, the salt 
permeability coefficient, the structural parameter, and the power den-
sity were 0.31 L/m2⋅h⋅bar 0.35 L/m2⋅h, 3.43E− 08 m, and 23.6 W/m2, 
respectively. In contrast, the MAE results for the water permeability 
coefficient, the salt permeability coefficient, the structural parameter, 
and the power density were 0.43 L/m2⋅h⋅bar, 0.41 L/m2⋅h, 100.68 m, 
and 3.44 W/m2, respectively. A similar trend was observed for the MSE 
results of the power density using the CatBoost to the ANN model, where 
the MSE values are high. Nevertheless, the R2, MSE, and MAE values of 
the water permeability and salt permeability coefficients present sig-
nificant fitting of the CatBoost model to the testing data but not the 
membrane structural parameter and the PRO power density. 

The Extreme Gradient Boosting model is also investigated to evaluate 
the membrane's intrinsic parameters and the PRO power density (Fig. 6). 
XGBoost is an algorithm that relies on the boosted trees, and due to the 
learning, the boosting procedure is accelerated, which enhances the 
fitting behaviour of the data [52]. The loss function against the number 
of iterations plot is presented in Fig. S3 (Supplementary information S1). 

The random forest algorithm was also considered in this study, 
where random forest works on multiple decision trees to evaluate a 
single output that is valid for classification and regression by using the 
bagging technique [53]. The output of the Random Forest model was 
one of the investigated parameters in the current study. The main ad-
vantages of the Random Forest model are the possibility of utilizing it for 
large datasets and its capability of estimating the missing data and 
averting overfitting, which gives the model better prediction values of 
the outputs [53]. When using the training data, the Random Forest 
regression model was trained by calling the “.fit()” function [54]. This 
process involves adjusting the model's internal settings to find the best 
patterns and relationships between the input and target variables. The 
“n_estimators” parameter was set to 100 in this case. It determines the 
number of decision trees the model will build before calculating the 
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average prediction. Each decision tree is a separate model contributing 
to the final prediction; setting “n_estimators” to 100 means that the 
Random Forest model will construct 100 decision trees and then 
combine their predictions to obtain an average value. This averaging 
helps to improve the accuracy and stability of the predictions made by 
the model. The higher the tree number, the better the model 

performance and the higher the prediction stability of the outputs. 
Fig. 7 displays the Random Forest model's performance for predict-

ing the water permeability coefficient, the salt permeability coefficient, 
the structural parameter, and the power density. The R2 of the training 
data for the water permeability coefficient is 0.9958, which is 0.3 % 
lower than its corresponding value resulting from the ANN model. The 

Fig. 5. The CatBoost R2 predictive power for the prediction of the training and the testing data of (a) and (b) of the water permeability coefficient, (c) and (d) of the 
salt permeability coefficient, (e) and (f) for the membrane structural parameter, and (g) and (h) for the PRO power density, respectively. 
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Fig. 6. The XGBoost R2 predictive power for the prediction of the training and the testing data of (a) and (b) of the water permeability coefficient, (c) and (d) of the 
salt permeability coefficient, (e) and (f) for the membrane structural parameter, and (g) and (h) for the PRO power density, respectively. 
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R2 for the testing data for the water permeability coefficient is 0.9536 
(Fig. 7a and b). The fitting of the Random Forest model for the training 
data is shown of the salt permeability coefficient with R2 of 0.9953 
(Fig. 7c). It can be noticed that the R2 of the training data for the salt 
permeability coefficient by the Random Forest model is higher than its 
corresponding values by the CatBoost model of around 7.19 %. 

Moreover, the R2 of the salt permeability coefficient for testing the 
Random Forest model is 0.9830 (Fig. 7d), which shows the great pre-
dictive power of the Random Forest for the prediction of B. The R2 values 
for the training and testing data of the membrane structural parameter 
are 0.9945 and 0.9749, respectively, as shown in Fig. 7e and f. 

A significant prediction through the Random Forest model resulted 

Fig. 7. The Random Forest R2 predictive power for the prediction of the training and the testing data of (a) and (b) of the water permeability coefficient, (c) and (d) 
of the salt permeability coefficient, (e) and (f) for the membrane structural parameter, and (g) and (h) for the PRO power density, respectively. 
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in the power density with R2 of 0.9792 for the training data and 0.9748 
for the testing data (slightly less than the training data). One can notice 
that the Random Forest model presents significant prediction behaviour 
for the water permeability coefficient, the salt permeability coefficient, 
the structural parameter, and the power density, with R2 higher than 
0.95 value. The MSE results based on the Random Forest model for the 
water permeability coefficient, salt permeability coefficient, structural 
parameter, and power density are 0.15 L/m2⋅h⋅bar, 0.02 L/m2⋅h, 
7.1E− 09 m, and 6.06 W/m2, respectively. On the other hand, the MAE 
results based on the Random Forest model for the water permeability 
coefficient, salt permeability coefficient, structural parameter, and 
power density are 0.13 L/m2⋅h⋅bar, 0.05 L/m2⋅h, 0.00028 m, and 1.09 
W/m2, respectively. The Random Forest model's prediction power shows 
good behaviour for determining the membrane's intrinsic parameters. 
The R2 of the training and the testing data of the ML algorithms evalu-
ated in this study and the MSE and MAE results are summarized in 
Table 4 and discussed more in the following subsection. 

3.3. Comparison of the ML models 

Four ML models were determined to predict the membrane's intrinsic 
parameters and the PRO power density, where the R2, the MSE, and the 
MAE values of testing data are summarized in Table 4. The higher the R2 

and the lower the MSE and the MAE values, the more significant the 
model's predictive power. The ANN model is the most significant in 
predicting the water permeability coefficient. As seen in Table 4, the 
ANN model achieved the highest R2 (0.98), the lowest MSE (0.3), and 
the lowest MAE (0.1). The situation is different for predicting the salt 
permeability coefficient, in which the Random Forest and the XGBoost 
models showed the two best predictive behaviours. The resulting MSE 
value is lower by the XGBoost model compared to the Random Forest 
model. Slight different trends are presented for the prediction of the 

membrane structural parameter. The XGBoost and the Random Forest 
models show the best prediction power; however, the R2 is higher for the 
Random Forest, while the MSE is lower for the Random Forest model. 
Accordingly, the Random Forest model is preferable for predicting the 
membrane structural parameter. Moreover, the ANN model shows the 
lowest predictive power of the membrane structural parameter over the 
other three ML models. 

To summarize the results, the Random Forest model shows the best 
predictive power of the salt permeability coefficient and the membrane 
structural parameter. In contrast, the XGBoost model shows a significant 
predictive power of the membrane's intrinsic parameters and power 
density. Accordingly, the two models will be further discussed in the 
following subsections. 

The execution times and mode sizes for all the programs were also 
compared. It should be noted that model training time, data manipula-
tion, and cleaning were not considered in execution time. Amongst all 
the programs, XGboost, followed by Random Forest, was the lightest and 
fastest (Table 4). CatBoost was the slowest due to a large number of it-
erations (3000); however, for smaller iterations, CatBoost didn't return 
any satisfactory results. 

While Random Forest might exhibit the best performance in terms of 
R2, MSE, and MAE, showcasing results from other models like XGBoost 
and CatBoost adds depth to the analysis. This approach demonstrates 
thoroughness and allows an understanding of the varying capabilities 
and limitations of different algorithms. For instance, XGBoost is noted 
for its exceptional execution speed and small model size, making it 
highly efficient for real-time applications. However, it might not always 
rank features identically to Random Forest due to its different algo-
rithmic structure, which emphasizes boosting rather than bagging. 
Moreover, CatBoost, despite its longer execution time, might provide 
better generalization for certain datasets due to its superior handling of 
categorical variables. 

3.4. Features importance 

The feature importance is a metric parameter that can be estimated 
in the tree-based algorithms to determine further the importance of the 
input parameters for modelling the outputs. Features with high scores 
impact the output more than features with low scores. The importance of 
the different PRO operating parameters can be evaluated with ML 
models to predict the membrane's intrinsic parameters and the PRO 
power density. Determining the importance of the feature and selecting 
the best features can enhance the predictive power of the model and its 
performance by including the most significant input parameters. Here, 
the feature importance is defined for the XGBoost and the Random 
Forest models only since these models exhibited the best predictive 
powers compared to the CatBoost and the ANN models. Fig. 8 represents 
the XGBoost, and the Random Forest features the importance of the 
training data for (a) and (b) the water permeability coefficient, (c) and 
(d) the salt permeability coefficient, (e) and (f) the structural parameter, 
and (g) and (h) the PRO power density, respectively. The highest feature 
importance of the water permeability coefficient is feed type equal to 25 
for the XGBoost (Fig. 8a) and 0.035 for the Random Forest (Fig. 8b), 
followed by water flux, which is 15 for the XGBoost (Fig. 8c) and 0.20 for 
the Random Forest (Fig. 8d). This observation can reveal the high impact 
of the feed type and the water flux on the evaluation of the water 
permeability coefficient. Further, the lowest feature importance resulted 
in the applied pressure difference, which clarifies that this parameter 
has the least impact on the water permeability coefficient. 

It can be noticed that the highest feature of importance for the salt 
permeability coefficient is the water permeability coefficient; this can be 
related to the fact that the water permeability coefficient usually affects 
the water flux. In return, the water flux impacts the amount of water that 
permeates through the membrane, affecting the reverse salt flux and the 
salt permeability coefficient. For instance, Xiaoxiao et al. suggested a 
direct relationship between the water and the salt permeability 

Table 4 
The R2, MSE, MAE, execution time, and size comparison of the ML algorithms.  

Parameter Metrics/ 
training 
parameters 

ANN CatBoost XGBoost Random 
Forest 

Aw 

(L/ 
m2⋅h⋅bar) 

R2 0.98 0.90 0.94 0.95 
MSE 0.03 0.31 0.18 0.15 
MAE 0.10 0.43 0.16 0.13 
Execution 
time 
(seconds) 

86.8 77.1 0.36 1.04 

Model size 
(megabytes) 

4.36 44.7 0.01 1.39 

B 
(L/m2⋅h) 

R2 0.95 0.84 0.98 0.98 
MSE 0.07 0.35 0.01 0.02 
MAE 0.06 0.41 0.05 0.05 
Execution 
time 
(seconds) 

90.3 60.09 0.04 0.47 

Model size 
(megabytes) 

4.38 45.90 0.07 1.39 

S 
(m) 

R2 0.71 0.79 0.80 0.97 
MSE 8.78E− 08 3.43E− 08 5.49E− 08 7.1E− 09 
MAE 0.0002 100.68 0.00016 0.00028 
Execution 
time 
(seconds) 

148 55.3 0.04 0.41 

Model size 
(megabytes) 

4.38 44.79 0.01 1.40 

Power 
density 
(W/m2) 

R2 0.98 0.95 0.97 0.97 
MSE 3.02 23.6 7.08 6.06 
MAE 0.90 3.44 1.80 1.09 
Execution 
time 
(seconds) 

85.5 56.1 0.10 0.55 

Model size 
(megabytes) 

4.38 45.8 0.01 1.39  
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Fig. 8. (a) and (b): The feature importance of the water permeability coefficient of the XGBoost model and the Random Forest model, respectively; (c) and (d): The 
feature importance of the salt permeability coefficient of the XGBoost model, and the Random Forest model, respectively, (e) and (f): The feature importance of the 
membrane structural parameter of the XGBoost model, and the Random Forest model, respectively, and (g) and (h): The feature importance of the PRO power density 
of the XGBoost model, and the Random Forest model, respectively. 
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coefficients for several thin film nanofiber composite membranes [55]. 
The lowest feature importance is for the power density and the applied 
pressure difference (Fig. 8c and d). 

The situation is different regarding the membrane structural pa-
rameters of the XGBoost and Random Forest models. The XGBoost 
model shows the highest feature importance for the draw concentration 
(Fig. 8e). The concentration of the draw solution influences the diffu-
sivity of the solution through the membrane. As the membrane struc-
tural parameter is governed by the equation of the solute diffusion 
resistivity (solute diffusion resistivity = membrane structural param-
eter/diffusion coefficient of the support layer) [56], it is affected by the 
variation of the draw concentration, as shown in Fig. 8e. Interestingly, 
the highest feature importance of the membrane structural parameter 
found by the Random Forest model is the feed flow rate (Fig. 8f). The 
flow rate of the feed solution affects the water flux and the permeation 
rate. Accordingly, the feed flow rate also impacts the solute resistivity to 
diffusion and the membrane structural parameter [56]. 

Fig. 8g and h show that the draw concentration is the most important 
parameter affecting the PRO power density because the concentration of 
the draw solution governs the osmotic pressure difference across the 
membrane, and the latter directly relates to the water flux [57]. Thus, 
the power density, in turn, is directly impacted by the water flux, which 
explains the feature importance of the draw concentration on the PRO 
power density. 

3.5. New insights for power density modelling 

The Random Forest regression is the best model to predict power 
density accurately. The feature importance scores can provide new in-
sights into unexpected relationships between the input and output pa-
rameters. As shown in Fig. 8h, the top six important features for power 
density predictions are the draw solution concentration, applied pres-
sure difference, water permeability coefficient, membrane structural 
parameter, reverse salt flux, and water flux. The influence of draw so-
lution concentration and applied pressure difference is well-established 
in the PRO literature [58]. The effect of the water permeability coeffi-
cient on power density is also substantial and agrees with previous work 
done by Achilli, Cath [59]. However, according to this study's results, 
the draw solution concentration and applied pressure difference affect 
the power density more than the pure water permeability value. The 
reverse salt flux (a feature often neglected by analytical models) has a 
similar feature importance score as the membrane structural parameter, 
slightly less than the pure water permeability of the PRO membrane, and 
a surprisingly higher feature importance score than the water flux of the 
PRO membrane. Membrane scientists often emphasize improving 
membrane water permeability and structural parameters, ignoring 
reverse salt diffusion's impact. The accumulation of draw solution on the 
membrane surface due to reverse salt flux may cause membrane defor-
mation [60], leading to different Aw, B, and S values for the PRO 
membrane than predicted with RO tests in analytical models. Therefore, 
an ideal draw solution in the PRO applications should have high osmotic 
pressure and low reverse salt flux. As evident from the PRO dataset (e- 
component file, supplementary), most researchers have investigated 
NaCl draw solution, which has high reverse salt flux and can impact the 
output power density. Furthermore, the draw solution temperature has a 
higher feature score than the feed solution temperature. Brines dis-
charged from thermal desalination or wastewater plants usually have 
higher temperatures [61], and can be potentially used as a draw solution 
in the PRO process to optimize the power density in future applications. 

3.6. Testing the models on new data 

The PRO water flux is determined through the solution diffusion 
model in the literature. For further consideration, the machine learning 
models predicted the efficiency of the machine learning prediction 
power of the water permeability coefficient, the salt permeability 

coefficient, the membrane structural parameter, and the PRO power 
density. Then, the prediction results were compared to the experimental 
results in the literature for different lab-fabricated and commercial 
membranes. Fig. 9 shows the percentage difference between the 
experimental and predicted data by the machine learning models of the 
membrane's intrinsic parameters and the power density. Fig. 9 compares 
the ANN model, the XGBoost model, and the Random Forest model. The 
testing data here differs from the original model training dataset. The 
highest percentage error of prediction Aw by the ANN, the XGBoost, and 
the Random Forest models is 4.01 %, 5.09 %, and 2.36 %, respectively 
(Fig. 9a). A higher percentage error was noticed for the prediction of B 
using the ANN and the Random Forest model with a maximum error of 
7.75 % and 3.5 %, respectively, compared to the XGBoost model with 
the highest error of 0.75 % (Fig. 9b). The Random Forest model shows 
the best prediction of S compared to the other models, with a percentage 
error of less than 1.82 % (Fig. 9c). 

Overall, the excellent agreement between the modelled water 
permeability coefficient, the salt permeability coefficient, the membrane 
structural parameter, and the predicted ones by the Random Forest 
model showed a percentage error of around 6.61 % only, compared to 
6.86 % and 15.4 % for the XGBoost model and the ANN mode, respec-
tively. The results emphasize the reliability of the Random Forest model 
and its significant fitting with the additional testing data. On the other 
hand, the ANN model and the XGBoost model show better behaviour 
than the Random Forest model for predicting the PRO power density 
(Fig. 9d). The users can predict the membrane Aw, B, and S and whether 
power density will be economically viable, using simple input initial 
conditions by providing all the input parameters. 

4. Conclusion 

While PRO experiments require a lot of infrastructure, modelling 
studies are abundant in the literature. However, few models have 
considered the impact of all input parameters on the power density. The 
outcomes of this study will assist researchers and scientists in deter-
mining the characteristics of the PRO membrane from an available 
dataset collected from literature and could be continuously expanded. 
The machine learning algorithms assisted in finding the intrinsic mem-
brane parameters so the power density would meet a predesigned 
threshold for an economic PRO process. Researchers and scientists using 
the proposed approach in this study can select a suitable membrane for 
their application based on the type of salinity gradient and required 
power density. 

The prediction of the performance of the PRO process has been 
conducted through collected PRO experimental data with multiple 
physical and chemical operating conditions, such as the applied hy-
draulic pressure and the different types of PRO feed solutions. Four 
machine learning models were performed to predict the membrane's 
intrinsic parameters and the PRO power density. The investigated ML 
models show a high predictive power of the outputs based on the PRO 
operating conditions. The XGBoost and Random Forest models revealed 
the best predictive power over the other models for predicting the 
membrane's intrinsic parameters and the PRO power density. The 
XGBoost and the Random Forest models achieved a significant R2 value 
of 0.97 for the prediction of the power density. The user can predict the 
membrane's intrinsic parameters and the PRO power density with the 
membrane's characteristics and input operating conditions. The thing 
that enhances the design of the PRO membranes with no requirement of 
performing PRO experiments. It should be mentioned that the more 
accurate the collected data, the more precise the predictive power of the 
ML models. Accordingly, the data collection should occur with high 
accuracy to guarantee the best prediction behaviour through the ML 
models. Future work should investigate machine learning algorithms for 
energy optimization and design optimization of PRO. 
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