A cross-domain perspective to Clustering with Uncertainty

Salvatore F. Pileggi[0000-0001-9722-2205]

School of Computer Science, Faculty of Engineering and IT University of Technology Sydney (Australia) SalvatoreFlavio.Pileggi@uts.edu.au

Abstract. Clustering in presence of uncertainty may be considered, at the same time, to be a pressing need and a challenge to effectively address many real-world problems. This concise literature review aims to identify and discuss the associated body of knowledge according to a cross-domain perspective. A semi-systematic methodology has allowed the selection of 68 papers, with a priority on the most recent contributions. The analysis has re-marked the relevance of the topic and has made explicit a trend to domain-specific solutions over generic-purpose approaches. On one side, this trend enables a more specific set of solutions within specific communities; on the other side, the resulting distributed approach is not always well-integrated in the mainstream and may generate a further fragmentation of the body of knowledge, mostly because of some lack of abstraction in the definition of specific problems. While these gaps are largely understandable within the research community, a lack of implementations to provide ready-to-use resources is overall critical, looking at a more and more computational and data intensive world.

Keywords: Clustering \cdot Uncertainty Modelling \cdot Uncertainty Management \cdot Unsupervised Learning \cdot Data Analysis \cdot Data Mining

1 Introduction

Empirical observations show an increasing quantity of data with a degree of uncertainty [14]. Indeed, real-world data naturally tends to present uncertainty due to different factors including, among others, human or instrumental errors [81], randomness, imprecision, vagueness and partial ignorance [17].

In general terms, the theoretical impact of data uncertainty, as well as the risk associated with ignoring it (e.g. [48][19]), are well-known issues within the scientific community. Always in general, it strongly suggests, wherever possible, a proper and explicit uncertainty model to effectively support representation, measuring and consequent analysis. From a more practical perspective, more and more studies present a specific focus in a variety of application domains, such as, among the very many, budget impact analysis [59], organizational environments [45] and hydrological data [56]. Such a critical modelling is intrinsically challenging and may require a domain specific-approach, such as for Big Data [29][79], Visualization [41] and Deep Learning [1].

On the other side, clustering techniques [86] group data points into different clusters based on their similarity. These techniques have been extensively used in a general scientific context and traditional approaches keep evolving as a response to an environment characterised by evolving needs [82]. For instance, clustering is a common class of unsupervised learning [73], often adapted to achieve concrete goals in the different application domains (e.g. [7]), as well as formal classification [8], ontological modelling [49, 62] and rule mining [76] commonly rely on clustering techniques.

Intuitively, clustering in a context of uncertainty, or even just potential uncertainty, proposes additional significant challenges on both (i) modelling similarity between uncertain objects and (ii) developing effective and efficient computational methods accordingly [39].

Alternative approaches to deal with uncertainty can be used for different reasons in different contexts. A classification of these techniques is not trivial. For instance, in [36] the authors have identified two main broad categories that aim, respectively, to complement and to generalise probabilistic representations. The former family addresses non-probabilistic uncertainty (typically imprecision, vagueness or gradedness), while the latter targets effective modelling of partial ignorance. More holistically, looking at extensions of traditional methods, three main categories have been summarised in [39]: partitioning clustering, density-based clustering, and possible world approaches. The resulting extended solutions integrate the original semantics with uncertainty modelling.

This papers aims to holistically review the most recent advances in the field of clustering in presence of uncertainty. The focus is on a cross-domain perspective resulting from a contextual analysis that considers the most relevant computational trends and related applications.

Related Work. This work can be framed in the very broad context of uncertain data algoritms and applications [5]. A valuable review specifically on clustering has been provided in 2017 [17]. The focus of such a work is on uncertainty management and associated theoretical formalisms. Other concise contributions aimed at summarising the body of knowledge are relatively old (e.g. [36] and [14]), given the strong and constant advances in the computational world. This paper proposes an additional contribution to the body of knowledge in the field by addressing recent advances minimising the overlapping with existing reviews. Additionally, the provided analysis is performed according to a simple analysis framework, which also include the application domain. It allows to distinguish between generic-purpose and application-specific solutions.

Structure of the paper. The introductory part of the paper is concluded by a description of the adopted methodology (Section 2). The core part of the paper includes two different sections that aims, respectively, to overview the most relevant contributions in literature according to a cross-domain perspective (Section 3) and to discuss results looking at major gaps and challenges (Section 4). Finally, a conclusions section provides an overview of the work.

2 Methodology and Approach

In order to generate a tangible contribution to the body of knowledge and avoid, in the limit of the possible, overlapping and lack of deepening, this literature review has been conducted by combining typical systematic processes with nonsystematic practices.

The mainstream process assumes, as usual, paper retrieval from relevant databases. In this specific case, queries have been performed by simply combining two main keywords, namely *Clustering* and *Uncertainty*.

Selection Criteria & Saturation. The selection of the papers to include in the review has been performed by applying a critical analysis aimed at the identification of the most relevant contributions in the field. Although no pre-defined objective filter (e.g. on time-range) has been applied, the most recent papers have been systematically included in order to highlight the most recent advances in context and to maximise the value provided. The relatively soft selection criteria enabled the retrieval of an important number of papers. However, the selection process has been much more focused in fact. Indeed, after a number of iterations, a feeling of saturation naturally emerged as contributions started to present consolidations of existing concepts rather than novel solutions. This additional non-systematic element has been a determinant to facilitate de facto conciseness at a relevant scale.

Analysis Framework & Limitations. The analysis has been conducted according to two major dimensions: domain and approach. The former dimension aims primarily to distinguish between generic-purpose and domain specific solutions, while the latter wants to facilitate an overview of major techniques. The presentation of the review (Section 3) has been structured looking at the domain. Indeed, the classification of the different approaches is intrinsically more fragmented and not always explicit. In general terms, the classification followed the claims by authors and the original analysis. Non-systematic practices may have introduced biases. It applies mostly to selection criteria. Additionally, because of the high number of existing works distributed in a variety of domains, it is hard to assess the exhaustiveness of the review.

3 A cross-domain Analysis

This section has a descriptive focus as it provides an overview of the contributions included in this study.

We deal separately with solutions that present a completely generic focus (referred to as "generic-purpose" and reported in Table 1) and that have been designed within a specific application domain ("domain-specific", Table 2). This generic classification naturally introduces a cross-domain analysis. However, there are not always well defined boundaries as certain applications as identified in the context of this work may present a certain degree of genericness.

Table 1: Generic-purpose s	selected	contributions.

Title/Ref.	Year	
Cloud-Cluster: An uncertainty clustering algorithm based on cloud	2023	Method
model [54]		
Outlier-robust multi-view clustering for uncertain data [69]	2021	Multi-view Clustering
Multi-view spectral clustering for uncertain objects [68]	2021	
Modeling uncertain data using Monte Carlo integration method for	2019	Monte-Carlo
clustering [67]		
Optimal clustering under uncertainty [15]	2018	
Locally weighted ensemble clustering [33]	2017	Ensemble Clustering
Self-adapted mixture distance measure for clustering uncertain	2017	Method
data [51]		
Novel density-based and hierarchical density-based clustering algo-	2017	Hierarchical Clustering
rithms for uncertain data [88]		
An information-theoretic approach to hierarchical clustering of un-	2017	Hierarchical Clustering
certain data [24]		
Active Clustering with Model-Based Uncertainty Reduction [84]	2016	Active Clustering
Robust ensemble clustering using probability trajectories [32]	2015	Ensemble Clustering
Large margin clustering on uncertain data by considering probabil-	2015	PD Similarity
ity distribution similarity [85]		
Representative clustering of uncertain data [90]	2014	Framework
Active spectral clustering via iterative uncertainty reduction [80]	2012	Active Clustering
Minimizing the variance of cluster mixture models for clustering	2012	Method
uncertain objects [22]		
Clustering uncertain data based on probability distribution similar-	2011	PD Similarity
ity [39]		
Clustering uncertain data using voronoi diagrams and r-tree in-	2010	Method
dex [44]		
Subspace clustering for uncertain data [25]	2010	Sub-space clustering
Exceeding expectations and clustering uncertain data [20]	2009	Optimization
Clustering Uncertain Data with Possible Worlds [77]	2009	Method
Clustering Uncertain Data Via K-Medoids [21]	2008	Method
A hierarchical algorithm for clustering uncertain data via an	2008	Hierarchical Clustering
information-theoretic approach [23]		
Clustering Uncertain Data Using Voronoi Diagrams [43]	2008	Voronoi diagrams
Uncertain fuzzy clustering: Insights and recommendations [65]	2007	Fuzzy Logic
Uncertain fuzzy clustering: Interval type-2 fuzzy approach to c-	2007	Fuzzy Logic
means [38]		
Density-based clustering of uncertain data [47]	2005	Fuzzy Logic
Hierarchical density-based clustering of uncertain data [46]	2005	Fuzzy Logic

Table 2: Domain-specific selected contributions.

Title/Ref.	Year	Approach	Domain
Stochastic economic dispatch of	2024	Stochastic Model	Energy
wind power under uncertainty using			
clustering-based extreme scenarios [6]			
Uncertainty clustering internal valid-	2022	Fuzzy Logic	Machine Learning
ity assessment using Fréchet distance			
for unsupervised learning [64]			
A three-stage automated modal identi-		Method	Engineering
fication framework for bridge param-			
eters based on frequency uncertainty			
and density clustering [30]			
Clustering uncertain graphs using ant	2022	Optimization	Graphs
colony optimization (ACO) [37]			
Uncertainty-Aware Clustering for Un-		Hierarchical Clustering	Machine Learning
supervised Domain Adaptive Object			
Re-Identification [78]			
			Continued on next page

Clustering with Uncertainty 5

		ued from previous page	Domoin
Title/Ref.	Year		Domain
Decision-based scenario clustering	2022	Method	Decision Making
for decision-making under uncer- tainty [31]			
Active domain adaptation via clus-	2021	Active Learning	Machine Learning
tering uncertainty-weighted embed-	2021	Retive Learning	Machine Learning
dings [63]			
	2021	Method	Face Recognition
Clustering Algorithm [16]	-		
Uncertainty assessment in reservoir	2021	Method	Petroleum Science
performance prediction using a two-			
stage clustering approach: Proof of			
concept and field application [26]			
Handling uncertainty in financial de-		Method	Decision Making
cision making: a clustering estimation			
of distribution algorithm with simpli-			
fied simulation [70]			
Ride-sharing under travel time uncer-	2020	Method	Transportation
tainty: Robust optimization and clus-			
tering approaches [50]			
Deep semantic clustering by partition	2020	Method	Machine Learning
confidence maximisation [35]			
Uncertainty mode selection in categor-	2020	Rough Set	Categorical Data
ical clustering using the rough set the-			
ory [58]			
Clustering of electrical load patterns	2020	Fuzzy Logic	Energy
and time periods using uncertainty-			
based multi-level amplitude threshold-			
ing [11]			
Efficient Assessment of Reservoir Un-	2019	Review	Petroleum Science
certainty Using Distance-Based Clus-			
tering: A Review [42]	2010		a vi
Big-data clustering with interval type-	2019	Fuzzy Logic	Genetics
2 fuzzy uncertainty modeling in gene			
expression datasets [71]	2010		
Clustering mining blocks in presence of	2019	Method	Geology
geological uncertainty [75]	2010	Outiningtion	Guardan
Efficient and effective algorithms for	2019	Optimization	Graphs
clustering uncertain graphs [28]	0010		Mississ Data
A three-way clustering approach for	2018	Three-way Clustering	Missing Data
handling missing data using GTRS [2]	2017	Method	Creeks
Clustering uncertain graphs [9]	2017		Graphs
Novel adaptive multi-clustering	2017	Optimization	Energy
algorithm-based optimal ESS sizing in ship power system considering			
uncertainty [87] Multiple clustering views from multiple	2017	Bayesian Model	Collaborative Environments
uncertain experts [10]	2017	Dayesian model	
Uncertain data clustering in dis-	2017	Distributed Clustering	P2P Network
tributed peer-to-peer networks [89]	2017	Distributed Ofustering	1 21 INCLWOIK
Efficient clustering of large uncertain	2017	Framework	Graphs
graphs using neighborhood informa-	2017	Framework	Graphs
tion [27]			
Clustering based unit commitment with	2016	Method	Energy
wind power uncertainty [72]	2010	INTO HOU	Lucigy
A framework for clustering uncertain	2015	Framework	Visualization
data [66]	2010	110micwork	, istalization
Efficient clustering of uncertain data	2014	Method	Data Stream
streams [40]	2014	method	Data Stream
Uncertain data clustering-based dis-	2014	Method	Wireless Sensor Network
tance estimation in wireless sensor	2014	INTO HOU	,, incluss belisor incluotk
			1
networks [55] Weighted graph clustering with non-	2014	Ontimization	Graphs
Weighted graph clustering with non- uniform uncertainties [13]	2014	Optimization	Graphs

Table 2 – continued from previous page

Table 2 – continued from previous page			
$\mathbf{Title}/\mathbf{Ref.}$	Year	Approach	Domain
Clustering large data with uncer-	2013	Fuzzy Logic	Large Data
tainty [18]			
Reliable clustering on uncertain	2012	Possible Worlds	Graphs
graphs [52]			
Clustering uncertain trajectories [61]	2011	Method	Location Data
Hue-stream: Evolution-based cluster-	2011	Method	Data Stream
ing technique for heterogeneous data			
streams with uncertainty [57]			
An algorithm for clustering hetero-	2010	Method	Data Stream
geneous data streams with uncer-			
tainty [34]			
On high dimensional projected cluster-	2009	Method	Data Stream
ing of uncertain data streams [3]			
Clustering trajectories of moving ob-	2009	Method	Location Data
jects in an uncertain world [60]			
A Framework for Clustering Uncertain	2008	Method	Data Stream
Data Streams [4]			
Conceptual clustering categorical data	2007	Quality Assessment	Categorical Data
with uncertainty [83]			
Including probe-level uncertainty in	2007	Method	Genetics
model-based gene expression cluster-			
ing [53]			
Pvclust: an r package for assessing	2006	Hierarchical Clustering	Genetics
the uncertainty in hierarchical cluster-		-	
ing [74]			
Uncertain Data Mining: An Example	2006	UK-Means	Location Data
in Clustering Location Data [12]			

Generic-purpose solutions. Among the generic-purpose works, there are two clearly identifiable sub-sets of solutions adopting, respectively, mixed (or not uniquely classifiable) methods [21, 77, 44, 22, 51, 15, 54] and Fuzzy Logic [46, 47, 38, 65]. Smaller classes of solutions adopt Hierarchical Clustering [88][23][24], Probability Distribution Similarity [39][85], Ensemble Clustering [33][32], Multiview Clustering [68][69] and Active Clustering [84][80]. Other methods focus on framework-based solutions [90], Voronoi diagrams [43], Monte-Carlo [67], optimization strategies [20] and Sub-space Clustering [25].

Domain-specific solutions. Mixed methods [53, 4, 60, 3, 34, 57, 61, 55, 40, 72, 9, 75, 35, 50, 70, 26, 16, 31, 30], as well as Fuzzy Logic [18, 71, 11, 64], Hierarchical Clustering [74, 78], Optimization [13, 87, 37, 28], and framework-based approaches [66, 27] play a significant role also in a context of domain-specific applications. Other contributions include the adaptation of traditional techniques [12], quality assessment [83], Possible Worlds [52], Distributed Clustering [89], Bayesian Modeling [10], Three-way Clustering [2], review for assessment purpose within a specific domain [42], Rough Set Theory [58], Active Learning [63] and Stochastic Models [6].

4 Discussion

In order to exhaustively discuss the review, the section is structured in two different subsections to address an overview of the results (Section 4.1) and a critical analysis of the major gaps emerged (Section 4.2).

7

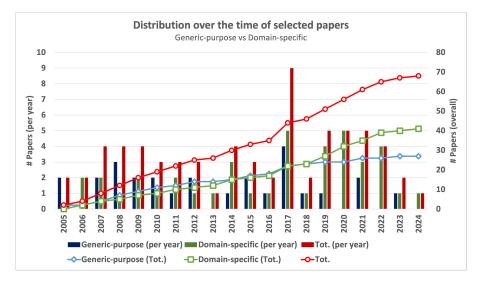


Fig. 1: Distribution over the time of the selected contributions.

4.1 Overview

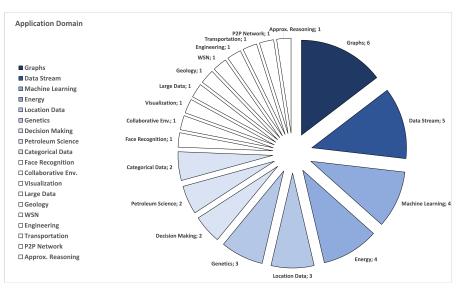
In quantitative terms, the majority (60%) of the 68 papers selected within the time range 2005-2024 presents a domain-specific focus. As shown in Figure 1, such a trend becomes more consistent and somehow predominant from 2018 onward. More holistically, the study confirms a substantial research interest in the topic throughout the observation period.

The analysis conducted in this study based on soft-classification allows to overview the application domain (Figure 2a). Looking at the 41 domain-specific papers, as expected, generic application fields, such as *Graphs*, *Data Stream* and *Machine learning*, are quantitatively more relevant, both with large domains (e.g. *Energy, Genetics* and *Location Data*). At a more fine-grained level, the review has identified a diverse spectrum reflecting a generic need for clustering in presence of uncertainty.

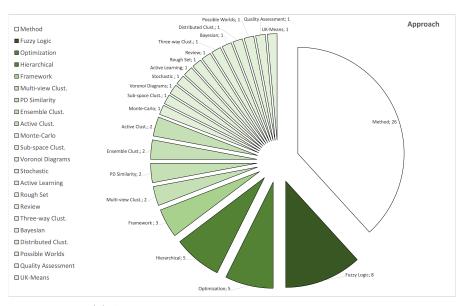
A more technical perspective is summarised in Figure 2b. A consistent part (38%) of the considered papers proposes a mixed-method approach, which is generically referred to as *method* in the adopted analysis framework. *Fuzzy Logic*, *Optimization* and *Hierarchical Clustering* are the most popular approaches. In addition, to note a focus on defining analysis *frameworks*, on *Multi-view Clustering*, *Probability Distribution Similarity*, *Ensemble* and *Active Clustering*.

4.2 Major Gaps and Challenges

From a critical perspective, the analysis conducted has allowed the identification of a number of gaps other than the originally reported in the different contributions that are summarised in Table 3.



(a) Application Domain.



(b) Approaches characterizing the selected solutions.

Fig. 2: Analysis overview.

Table 3: Main gaps.

	Gap
G1	Lack of implementations to provide ready-to-use computational resources
G2	Relationship between generic-purpose and domain-specific solutions not always clear
G3	Fine-grained application-specific approach that doesn't facilitate re-use in a different context
G4	Lack of abstraction in domain-specific approaches
G5	Despite a well-identified research field, solutions are not always discussed in context looking at
	the exiting body of knowledge

The review has reiterated the practical relevance of clustering in presence of uncertainty. In such a context, ready-to-use resources in the computational world are crucial and a determinant to consolidate and properly transfer innovation into practice (G1).

The cross-domain focus has highlighted and put emphasis on applications to solve real-world problems. The relationship between generic-purpose and domain-specific solutions not always clear (G2). The fine-grained applicationspecific approach makes re-using complex and costly (G3). That is because of a lack of abstraction in the formulation of domain-specific problems (G_4) with a consequent difficulty to generalize solutions or re-using existing ones in a different context.

More in general, despite a well-identified research field, solutions are not always discussed in context looking at the exiting body of knowledge (G5).

Conclusions 5

Given the popularity of clustering techniques within the modern computational world and the intrinsic need to deal with uncertainty in the different application domains, this concise literature review aimed at a cross-domain analysis of the most recent solutions in the field.

Such analysis has firstly re-marked the relevance of the topic and the consequent related research activity. A trend to domain-specific solutions over genericpurpose approaches progressively emerged and became more consistent in the last few years. On one side, this trend enables a more specific set of solutions within specific communities; on the other side, the resulting distributed approach is not always well-integrated in the mainstream and may generate a further fragmentation of the body of knowledge, mostly because of some lack of abstraction in the definition of specific problems.

While these gaps are largely understandable within the research community, a lack of implementations to provide ready-to-use resources is overall critical. looking at a more and more computational and data intensive world.

Acknowledgements. I would like to thank the conference organisers, the workshop chair as well as the anonymous reviewers, who have provided valuable constructive feedback.

References

- Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U.R., et al.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information fusion **76**, 243–297 (2021)
- Afridi, M.K., Azam, N., Yao, J., Alanazi, E.: A three-way clustering approach for handling missing data using gtrs. International Journal of Approximate Reasoning 98, 11–24 (2018)
- Aggarwal, C.C.: On high dimensional projected clustering of uncertain data streams. In: 2009 IEEE 25th International Conference on Data Engineering. pp. 1152–1154. IEEE (2009)
- Aggarwal, C.C., Philip, S.Y.: A framework for clustering uncertain data streams. In: 2008 IEEE 24th International Conference on Data Engineering. pp. 150–159. IEEE (2008)
- Aggarwal, C.C., Philip, S.Y.: A survey of uncertain data algorithms and applications. IEEE Transactions on knowledge and data engineering 21(5), 609–623 (2008)
- Bhavsar, S., Pitchumani, R., Maack, J., Satkauskas, I., Reynolds, M., Jones, W.: Stochastic economic dispatch of wind power under uncertainty using clusteringbased extreme scenarios. Electric Power Systems Research 229, 110158 (2024)
- Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European conference on computer vision (ECCV). pp. 132–149 (2018)
- Castellanos, A., Cigarrán, J., García-Serrano, A.: Formal concept analysis for topic detection: a clustering quality experimental analysis. Information Systems 66, 24– 42 (2017)
- Ceccarello, M., Fantozzi, C., Pietracaprina, A., Pucci, G., Vandin, F.: Clustering uncertain graphs. Proceedings of the VLDB Endowment 11(4), 472–484 (2017)
- Chang, Y., Chen, J., Cho, M.H., Castaldi, P.J., Silverman, E.K., Dy, J.G.: Multiple clustering views from multiple uncertain experts. In: International Conference on Machine Learning. pp. 674–683. PMLR (2017)
- Charwand, M., Gitizadeh, M., Siano, P., Chicco, G., Moshavash, Z.: Clustering of electrical load patterns and time periods using uncertainty-based multi-level amplitude thresholding. International Journal of Electrical Power & Energy Systems 117, 105624 (2020)
- Chau, M., Cheng, R., Kao, B., Ng, J.: Uncertain data mining: An example in clustering location data. In: Advances in Knowledge Discovery and Data Mining: 10th Pacific-Asia Conference, PAKDD 2006, Singapore, April 9-12, 2006. Proceedings 10. pp. 199–204. Springer (2006)
- Chen, Y., Lim, S.H., Xu, H.: Weighted graph clustering with non-uniform uncertainties. In: International Conference on Machine Learning. pp. 1566–1574. PMLR (2014)
- Cormode, G., McGregor, A.: Approximation algorithms for clustering uncertain data. In: Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. pp. 191–200 (2008)
- Dalton, L.A., Benalcázar, M.E., Dougherty, E.R.: Optimal clustering under uncertainty. PLoS One 13(10), e0204627 (2018)
- Debnath, B., Coviello, G., Yang, Y., Chakradhar, S.: Uac: an uncertainty-aware face clustering algorithm. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3487–3495 (2021)

- D'Urso, P.: Informational paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review. Information Sciences 400, 30– 62 (2017)
- Ghosh, S., Mitra, S.: Clustering large data with uncertainty. Applied Soft Computing 13(4), 1639–1645 (2013)
- Griffin, S.C., Claxton, K.P., Palmer, S.J., Sculpher, M.J.: Dangerous omissions: the consequences of ignoring decision uncertainty. Health economics 20(2), 212– 224 (2011)
- Guha, S., Munagala, K.: Exceeding expectations and clustering uncertain data. In: Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. pp. 269–278 (2009)
- Gullo, F., Ponti, G., Tagarelli, A.: Clustering uncertain data via k-medoids. In: International Conference on Scalable Uncertainty Management. pp. 229–242. Springer (2008)
- Gullo, F., Ponti, G., Tagarelli, A.: Minimizing the variance of cluster mixture models for clustering uncertain objects. Statistical Analysis and Data Mining: The ASA Data Science Journal 6(2), 116–135 (2013)
- Gullo, F., Ponti, G., Tagarelli, A., Greco, S.: A hierarchical algorithm for clustering uncertain data via an information-theoretic approach. In: 2008 Eighth IEEE International Conference on Data Mining. pp. 821–826. IEEE (2008)
- 24. Gullo, F., Ponti, G., Tagarelli, A., Greco, S.: An information-theoretic approach to hierarchical clustering of uncertain data. Information sciences **402**, 199–215 (2017)
- Günnemann, S., Kremer, H., Seidl, T.: Subspace clustering for uncertain data. In: Proceedings of the 2010 SIAM International Conference on Data Mining. pp. 385–396. SIAM (2010)
- Haddadpour, H., Niri, M.E.: Uncertainty assessment in reservoir performance prediction using a two-stage clustering approach: Proof of concept and field application. Journal of Petroleum Science and Engineering 204, 108765 (2021)
- Halim, Z., Waqas, M., Baig, A.R., Rashid, A.: Efficient clustering of large uncertain graphs using neighborhood information. International Journal of Approximate Reasoning 90, 274–291 (2017)
- Han, K., Gui, F., Xiao, X., Tang, J., He, Y., Cao, Z., Huang, H.: Efficient and effective algorithms for clustering uncertain graphs. Proceedings of the VLDB Endowment 12(6), 667–680 (2019)
- Hariri, R.H., Fredericks, E.M., Bowers, K.M.: Uncertainty in big data analytics: survey, opportunities, and challenges. Journal of Big Data 6(1), 1–16 (2019)
- He, Y., Yang, J.P., Li, Y.F.: A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering. Engineering Structures 255, 113891 (2022)
- Hewitt, M., Ortmann, J., Rei, W.: Decision-based scenario clustering for decisionmaking under uncertainty. Annals of Operations Research 315(2), 747–771 (2022)
- Huang, D., Lai, J.H., Wang, C.D.: Robust ensemble clustering using probability trajectories. IEEE transactions on knowledge and data engineering 28(5), 1312– 1326 (2015)
- Huang, D., Wang, C.D., Lai, J.H.: Locally weighted ensemble clustering. IEEE transactions on cybernetics 48(5), 1460–1473 (2017)
- Huang, G.Y., Liang, D.P., Hu, C.Z., Ren, J.D.: An algorithm for clustering heterogeneous data streams with uncertainty. In: 2010 International Conference on Machine Learning and Cybernetics. vol. 4, pp. 2059–2064. IEEE (2010)

- 12 S.F. Pileggi
- Huang, J., Gong, S., Zhu, X.: Deep semantic clustering by partition confidence maximisation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8849–8858 (2020)
- Hüllermeier, E.: Uncertainty in clustering and classification. In: Scalable Uncertainty Management: 4th International Conference, SUM 2010, Toulouse, France, September 27-29, 2010. Proceedings 4. pp. 16–19. Springer (2010)
- Hussain, S.F., Butt, I.A., Hanif, M., Anwar, S.: Clustering uncertain graphs using ant colony optimization (aco). Neural Computing and Applications 34(14), 11721– 11738 (2022)
- Hwang, C., Rhee, F.C.H.: Uncertain fuzzy clustering: Interval type-2 fuzzy approach to c-means. IEEE Transactions on fuzzy systems 15(1), 107–120 (2007)
- Jiang, B., Pei, J., Tao, Y., Lin, X.: Clustering uncertain data based on probability distribution similarity. IEEE Transactions on Knowledge and Data Engineering 25(4), 751–763 (2011)
- Jin, C., Yu, J.X., Zhou, A., Cao, F.: Efficient clustering of uncertain data streams. Knowledge and Information Systems 40, 509–539 (2014)
- Kamal, A., Dhakal, P., Javaid, A.Y., Devabhaktuni, V.K., Kaur, D., Zaientz, J., Marinier, R.: Recent advances and challenges in uncertainty visualization: a survey. Journal of Visualization 24(5), 861–890 (2021)
- 42. Kang, B., Kim, S., Jung, H., Choe, J., Lee, K.: Efficient assessment of reservoir uncertainty using distance-based clustering: a review. Energies 12(10), 1859 (2019)
- Kao, B., Lee, S.D., Cheung, D.W., Ho, W.S., Chan, K.: Clustering uncertain data using voronoi diagrams. In: 2008 Eighth IEEE International Conference on Data Mining. pp. 333–342. IEEE (2008)
- Kao, B., Lee, S.D., Lee, F.K., Cheung, D.W., Ho, W.S.: Clustering uncertain data using voronoi diagrams and r-tree index. IEEE Transactions on Knowledge and data engineering 22(9), 1219–1233 (2010)
- Karimi, J., Somers, T.M., Gupta, Y.P.: Impact of environmental uncertainty and task characteristics on user satisfaction with data. Information systems research 15(2), 175–193 (2004)
- Kriegel, H.P., Pfeifle, M.: Hierarchical density-based clustering of uncertain data. In: Fifth IEEE International Conference on Data Mining (ICDM'05). pp. 4–pp. IEEE (2005)
- Kriegel, H.P., Pfeifle, M.: Density-based clustering of uncertain data. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. pp. 672–677 (2005)
- 48. Kuczenski, B.: False confidence: are we ignoring significant sources of uncertainty? The International Journal of Life Cycle Assessment **24**, 1760–1764 (2019)
- Lee, C.S., Kao, Y.F., Kuo, Y.H., Wang, M.H.: Automated ontology construction for unstructured text documents. Data & Knowledge Engineering 60(3), 547–566 (2007)
- Li, Y., Chung, S.H.: Ride-sharing under travel time uncertainty: Robust optimization and clustering approaches. Computers & Industrial Engineering 149, 106601 (2020)
- Liu, H., Zhang, X., Zhang, X., Cui, Y.: Self-adapted mixture distance measure for clustering uncertain data. Knowledge-Based Systems 126, 33–47 (2017)
- Liu, L., Jin, R., Aggarwal, C., Shen, Y.: Reliable clustering on uncertain graphs. In: 2012 IEEE 12th international conference on data mining. pp. 459–468. IEEE (2012)
- Liu, X., Lin, K.K., Andersen, B., Rattray, M.: Including probe-level uncertainty in model-based gene expression clustering. BMC bioinformatics 8(1), 1–19 (2007)

- Liu, Y., Liu, Z., Li, S., Guo, Y., Liu, Q., Wang, G.: Cloud-cluster: An uncertainty clustering algorithm based on cloud model. Knowledge-Based Systems 263, 110261 (2023)
- 55. Luo, Q., Peng, Y., Peng, X., Saddik, A.E.: Uncertain data clustering-based distance estimation in wireless sensor networks. Sensors **14**(4), 6584–6605 (2014)
- McMillan, H.K., Westerberg, I.K., Krueger, T.: Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water 5(6), e1319 (2018)
- 57. Meesuksabai, W., Kangkachit, T., Waiyamai, K.: Hue-stream: Evolution-based clustering technique for heterogeneous data streams with uncertainty. In: Advanced Data Mining and Applications: 7th International Conference, ADMA 2011, Beijing, China, December 17-19, 2011, Proceedings, Part II 7. pp. 27–40. Springer (2011)
- Naouali, S., Salem, S.B., Chtourou, Z.: Uncertainty mode selection in categorical clustering using the rough set theory. Expert Systems with Applications 158, 113555 (2020)
- Nuijten, M., Mittendorf, T., Persson, U.: Practical issues in handling data input and uncertainty in a budget impact analysis. The European journal of health economics 12, 231–241 (2011)
- Pelekis, N., Kopanakis, I., Kotsifakos, E., Frentzos, E., Theodoridis, Y.: Clustering trajectories of moving objects in an uncertain world. In: 2009 Ninth IEEE international conference on data mining. pp. 417–427. IEEE (2009)
- Pelekis, N., Kopanakis, I., Kotsifakos, E.E., Frentzos, E., Theodoridis, Y.: Clustering uncertain trajectories. Knowledge and information systems 28, 117–147 (2011)
- Pileggi, S.F.: Ontological modelling and social networks: From expert validation to consolidated domains. In: International Conference on Computational Science. pp. 672–687. Springer (2023)
- Prabhu, V., Chandrasekaran, A., Saenko, K., Hoffman, J.: Active domain adaptation via clustering uncertainty-weighted embeddings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8505–8514 (2021)
- Rendon, N., Giraldo, J.H., Bouwmans, T., Rodríguez-Buritica, S., Ramirez, E., Isaza, C.: Uncertainty clustering internal validity assessment using fréchet distance for unsupervised learning. Engineering Applications of Artificial Intelligence 124, 106635 (2023)
- Rhee, F.C.H.: Uncertain fuzzy clustering: Insights and recommendations. IEEE computational intelligence magazine 1(2), 44–56 (2007)
- 66. Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K.A., Zimek, A.: A framework for clustering uncertain data. Proceedings of the VLDB Endowment 8(12), 1976–1979 (2015)
- 67. Sharma, K.K., Seal, A.: Modeling uncertain data using monte carlo integration method for clustering. Expert systems with applications **137**, 100–116 (2019)
- Sharma, K.K., Seal, A.: Multi-view spectral clustering for uncertain objects. Information Sciences 547, 723–745 (2021)
- Sharma, K.K., Seal, A.: Outlier-robust multi-view clustering for uncertain data. Knowledge-Based Systems 211, 106567 (2021)
- Shi, W., Chen, W.N., Gu, T., Jin, H., Zhang, J.: Handling uncertainty in financial decision making: a clustering estimation of distribution algorithm with simplified simulation. IEEE Transactions on Emerging Topics in Computational Intelligence 5(1), 42–56 (2020)
- Shukla, A.K., Muhuri, P.K.: Big-data clustering with interval type-2 fuzzy uncertainty modeling in gene expression datasets. Engineering Applications of Artificial Intelligence 77, 268–282 (2019)

- 14 S.F. Pileggi
- Shukla, A., Singh, S.: Clustering based unit commitment with wind power uncertainty. Energy Conversion and Management 111, 89–102 (2016)
- Sinaga, K.P., Yang, M.S.: Unsupervised k-means clustering algorithm. IEEE access 8, 80716–80727 (2020)
- Suzuki, R., Shimodaira, H.: Pvclust: an r package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22(12), 1540–1542 (2006)
- 75. Tabesh, M., Askari-Nasab, H.: Clustering mining blocks in presence of geological uncertainty. Mining Technology (2019)
- Tew, C., Giraud-Carrier, C., Tanner, K., Burton, S.: Behavior-based clustering and analysis of interestingness measures for association rule mining. Data Mining and Knowledge Discovery 28, 1004–1045 (2014)
- Volk, P.B., Rosenthal, F., Hahmann, M., Habich, D., Lehner, W.: Clustering uncertain data with possible worlds. In: 2009 IEEE 25th International Conference on Data Engineering. pp. 1625–1632. IEEE (2009)
- Wang, P., Ding, C., Tan, W., Gong, M., Jia, K., Tao, D.: Uncertainty-aware clustering for unsupervised domain adaptive object re-identification. IEEE Transactions on Multimedia (2022)
- Wang, X., He, Y.: Learning from uncertainty for big data: future analytical challenges and strategies. IEEE Systems, Man, and Cybernetics Magazine 2(2), 26–31 (2016)
- Wauthier, F.L., Jojic, N., Jordan, M.I.: Active spectral clustering via iterative uncertainty reduction. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 1339–1347 (2012)
- Weng, C.H., Chen, Y.L.: Mining fuzzy association rules from uncertain data. Knowledge and Information Systems 23, 129–152 (2010)
- Wierzchoń, S.T., Kłopotek, M.A.: Modern algorithms of cluster analysis, vol. 34. Springer (2018)
- Xia, Y., Xi, B.: Conceptual clustering categorical data with uncertainty. In: 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007). vol. 1, pp. 329–336. IEEE (2007)
- Xiong, C., Johnson, D.M., Corso, J.J.: Active clustering with model-based uncertainty reduction. IEEE transactions on pattern analysis and machine intelligence 39(1), 5–17 (2016)
- Xu, L., Hu, Q., Hung, E., Chen, B., Tan, X., Liao, C.: Large margin clustering on uncertain data by considering probability distribution similarity. Neurocomputing 158, 81–89 (2015)
- Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on neural networks 16(3), 645–678 (2005)
- Yao, C., Chen, M., Hong, Y.Y.: Novel adaptive multi-clustering algorithm-based optimal ess sizing in ship power system considering uncertainty. IEEE transactions on power systems 33(1), 307–316 (2017)
- Zhang, X., Liu, H., Zhang, X.: Novel density-based and hierarchical density-based clustering algorithms for uncertain data. Neural networks 93, 240–255 (2017)
- Zhou, J., Chen, L., Chen, C.P., Wang, Y., Li, H.X.: Uncertain data clustering in distributed peer-to-peer networks. IEEE transactions on neural networks and learning systems 29(6), 2392–2406 (2017)
- Züfle, A., Emrich, T., Schmid, K.A., Mamoulis, N., Zimek, A., Renz, M.: Representative clustering of uncertain data. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 243–252 (2014)