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Application of machine learning models to improve the prediction of 
pesticide photodegradation in water by ZnO-based photocatalysts 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Photodegradation of pesticides by ZnO- 
based photocatalysts was reviewed as a 
green technology. 

• Novel machine learning models were 
developed to predict photocatalytic 
process. 

• RBF model showed the best perfor-
mance for modeling pesticide 
photodegradation. 

• Key parameters regulating photo-
catalysis process were identified by 
sensitivity analysis.  
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A B S T R A C T   

Pesticide pollution has been posing a significant risk to human and ecosystems, and photocatalysis is widely 
applied for the degradation of pesticides. Machine learning (ML) emerges as a powerful method for modeling 
complex water treatment processes. For the first time, this study developed novel ML models that improved the 
estimation of the photocatalytic degradation of various pesticides using ZnO-based photocatalysts. The input 
parameters encompassed the source of light, mass proportion of dopants to Zn, initial pesticide concentration 
(C0), pH of the solution, catalyst dosage and irradiation time. Additionally, physicochemical properties such as 
the molecular weight of the dopants and pesticides, as well as the water solubility of both dopants and pesticides, 
were considered. Notably, the numerical data were extracted from the literature via relevant tables (directly) or 
graphs (indirectly) using the web-based tool WebPlotDigitizer. Four ML models including multi-layer perceptron 
artificial neural network (MLP-ANN), particle swarm optimization-adaptive neuro fuzzy inference system (PSO- 
ANFIS), radial basis function (RBF), and coupled simulated annealing-least squares support vector machine (CSA- 
LSSVM) were developed. In comparison, RBF showed the best accuracy of modeling among all models, with the 
highest determination coefficient (R2) of 0.978 and average absolute relative deviation (AARD) of 4.80%. RBF 
model was effective in estimating the photocatalytic degradation of pesticides except for 2-chlorophenol, 
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triclopyr and lambda-cyhalothrin, where CSA-LSSVM model demonstrated superior performance. Dichlorvos was 
completely degraded by ZnO photocatalyst under visible light. The sensitivity analysis by relevancy factor 
exhibited that light irradiation time and initial pesticide concentration were the most important parameters 
influencing photocatalytic degradation of pesticides positively and negatively, respectively. The new ML models 
provide a powerful tool for predicting pesticide degradation in wastewater treatment, which will reduce 
photochemical experiments and promote sustainable development.   

1. Introduction 

There is increasing urgency for improved water security due to 
worldwide freshwater shortage, water pollution and climate change 
(Qiu et al., 2023). As a repetitive and persistent problem, the occurrence 
of toxic chemicals such as dyes from textile industries, pesticides 
generated by agriculture sector, and antimicrobials and analgesics as 
part of the pharmaceuticals seriously reduce water quality (Li et al., 
2023). One of the most significant type of contaminants in drinking 
water is considered to be pesticides due to their significant global pro-
duction, wide applications, and persistence (Izadifard et al., 2013; Liu 
et al., 2022). Nine of the twelve highly polluting and perilous chemicals 
in the world are pesticides or their intermediate components (Khan and 
Pathak, 2020), although pesticides are generally seen as a category of 
chemicals used for providing nutrition and fulfilling the needs of global 
population (Kong et al., 2022). Pesticides are complicated mixtures of 
chemicals with complex structures; often their intermediates or break-
down products are more toxic than the parent compounds (Schostag 
et al., 2022). Pesticides have a terrible effect on organisms’ develop-
ment, so they can influence an entire system of evolution (Hamilton 
et al., 2003). Many studies suggest that at the point of application, more 
than 98% of insecticides used in agricultural areas do not have rapid 
degradation and end up being absorbed into the environment (Muha-
mad, 2010). There are many different pesticides in the water system that 
come from a variety of sources, e.g. industry, agricultural sectors, and 
chemical spills. There has been long-term concern about pesticide 
toxicity, slow biodegradation and perseverance in the environment 
(Sakkas et al., 2005). In addition, the potential influence of pesticides on 
human health and quality of life has long been recognized, from skin 
contact, inward breath, or ingestion (Damalas and Koutroubas, 2016). 
Pesticide effects on the health of individuals occur after bio-
accumulation followed by metabolism, removal and excretion, and shall 
be determined by the type, concentration, and duration of exposure as 
well as the individual’s state of health (Kalyabina et al., 2021; Nic-
olopoulou-Stamati et al., 2016). Shockingly, pesticide residues have 
been detected in prepared food and drinks, counting cooked meals, 
snacks, natural products juices, drinking water, alcoholic drinks, and 
animal feed, as ordinary washing and peeling do not remove them 
efficiently (Reiler et al., 2015). Furthermore, human breast drain tests 
have also detected pesticide residues, which raise concerns related to 
fetal presentation and infant health (Brahmand et al., 2019). 

Globally, approximately 2 million tons of pesticides are used annu-
ally to combat weeds, insects, and pests. Herbicides and insecticides are 
the predominant types, accounting for 47.5% and 29.5% of total pesti-
cide usage, respectively (Syafrudin et al., 2021). Between 2000 and 
2016, England and Wales experienced a total of 1571 instances of water 
quality compliance failures due to the detection of pesticides in drinking 
water exceeding the 0.1 μg L− 1 limit. These compliance failures involved 
35 distinct pesticides out of the 248 compounds approved for use in the 
UK (Cosgrove et al., 2019). 

In response to the adverse effects of pesticides on human health, the 
Drinking Water Directive 98/83/EC establishes maximum concentration 
limits. Specifically, it sets a threshold of 0.1 μg L− 1 for each individual 
pesticide and its degradation products, and 0.5 μg L− 1 for the cumulative 
concentration of all pesticides in a sample. Additionally, the new EU 
directive 2020/2184 emphasizes a risk-based approach to pesticide 
monitoring for identifying pesticides likely to be present in a specific 

environment in water intended for human consumption 
(Kruć-Fijałkowska et al., 2022). According to European Union regula-
tions, very low concentrations of pesticides are considered the limit 
values for pesticides in drinking water, with thresholds set at 5 μg L− 1 for 
the sum of all pesticides and 1 μg L− 1 for individual pesticides (Kalantary 
et al., 2022). 

To combat water contamination, the development of water treat-
ment methods (e.g. physical, chemical, biological) is of fundamental 
importance (Jia et al., 2023; Tang et al., 2022; Wu et al., 2022). Among 
different methods, photocatalysis is hugely popular as it can be carried 
out in many applications, with relatively fast degradation rates, and 
capacity to mineralize pollutants under ambient conditions (Ong et al., 
2018). 

Currently, a number of less complex ML models such as artificial 
neural networks (ANN) have been effectively employed in water and 
wastewater treatment field (Kim et al., 2016; Wan et al., 2022). With an 
overwhelming amount of input data with no feature engineering, ML 
systems are the best suited for estimating complex functions (Amirkhani 
et al., 2021; Dashti et al., 2020a, 2021b, 2023; Raji et al., 2019). Irfan 
et al. (2022) used response surface methodology (RSM) and ANN to 
optimize the permeability of the membranes in membrane rotating 
biological contactors. They managed to increase the productivity of the 
treatment by significantly reducing membrane fouling. Artificial Intel-
ligence strategies are robust and reliable, and they have been used 
widely in different areas of research such as wastewater treatment 
(Wang et al., 2021). 

To design a photocatalytic process for the effective degradation of 
pesticides, it is important to understand the complex and often nonlinear 
relationships which exist between the process variables (e.g. light in-
tensity, catalyst dosage, and pollutant concentration) and photocatalysis 
results, as well as the interactions between different variables (Ayodele 
et al., 2021). The relationships between these factors are not always 
linear, meaning that small changes in one parameter can have an 
important impact on the overall process efficiency. By understanding the 
relationships between the process variables, photocatalytic reactors can 
be better designed to optimize the photocatalytic degradation process 
and maximize the removal efficiency. Therefore, this research aimed to 
develop novel ML methods (MLP-ANN, PSO-ANFIS, RBF, CSA-LSSVM) 
for the estimation of the photocatalytic degradation of different types 
of pesticides over ZnO-based photocatalyst. The input parameters were 
light source (UV/visible light), mass proportion of the dopants to Zn, 
initial concentration of pesticide (C0), pH of the solution, and irradiation 
time which were considered the process parameters, while the molec-
ular weight of dopants and pesticides, and water dissolvability of dop-
ants and pesticides were regarded as the structural parameters of 
materials. The estimation of the photocatalytic degradation of each 
pesticide was carried out by collecting a set of data for the input pa-
rameters. A systematic literature review identified relevant research on 
ZnO photocatalysts for pesticide removal. Studies with all the 
above-mentioned input and output data, demonstrating strong correla-
tions, were chosen for further analysis. It is hypothesized that the ML 
models will demonstrate high-performance prediction of pesticide 
photocatalysis in water and wastewater. To evaluate the prediction 
strength of these models, the modeling results were compared with 
experimental values through a variety of statistic and visual analyses. 
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2. Review and data selection 

Different semiconductors such as TiO2 (Navidpour et al., 2023a), 
ZnO (Navidpour et al., 2023d), and g-C3N4 (Navidpour et al., 2023b) 
have been used for the photocatalytic degradation of organic contami-
nants. Although TiO2 or P25 is known as a benchmark semiconductor in 
photocatalysis (Navidpour et al., 2023a), wurtzite ZnO provides a more 
superior photocatalytic activity than TiO2 in some cases and is an 
under-explored alternative to TiO2 (Navidpour et al., 2023c; Sakthivel 
et al., 2003). Zinc oxide is odorless and insoluble in water (Lee et al., 
2016), and crystallizes in three different crystal structures including 
Wurtzite (hexagonal), zinc blende (cubic), and rocksalt (cubic) (Espitia 
et al., 2012). Notably, ZnO is considered a multifunctional material with 
extensive usages in various fields such as sensors, catalysts, environ-
mental remediation, pharmaceutical drugs, and biological applications 
(Rahman et al., 2021). Generally, wurtzite ZnO (Fig. 1) is considered the 
most common crystalline structure of ZnO used in photocatalysis with 
ease of synthesis (Rajbongshi and Samdarshi, 2014). 

ZnO has many promising features such as versatile synthetic condi-
tions for different morphologies, high photocatalytic properties, non-
toxicity, abundance, sufficient electron mobility, low cost, high 
absorption coefficient, large exciton binding energy of 60 meV at room 
temperature, and high redox potential (Abbas and Bidin, 2017; Ansari 
et al., 2015). The wide band gap energy of ZnO (~3.37 eV) restricts its 
application under visible light irradiation (Rahman et al., 2021). Several 
strategies have been considered to improve the photocatalytic activity of 
ZnO. Among those, element doping is a widely used method that can 
change morphological, structural, and optical features of ZnO nano-
particles (Rahman et al., 2021). 

The photodegradation effectiveness is affected by the characteristics 
of photocatalysts like surface area and pore volume, properties of pes-
ticides (e.g. initial concentration, chemical structure) and photocatalytic 
reaction including intensity of light, catalyst dose, pH, and operation 
time, which should all be carefully examined (Derikvandi and 
Nezamzadeh-Ejhieh, 2017). In most cases, a few days or even months 
are needed for full optimization of these preparatory conditions by 
carrying out carefully designed and lengthy tests. Using conventional 
photocatalytic testing, the optimum values of these parameters for 
photodegradation have been explored to a large extent (Bassi et al., 
2022; Sekar and Yadav, 2021). Alternative methods like machine 
learning (ML) techniques can recognize the relationship between 
different process parameters and their corresponding targets (Amirkhani 
et al., 2022, 2023). ML approaches have many unique features, such as 
the estimation of nonlinear and complex systems, the ability to distin-
guish each parameter’s impact, and the discovery of optimum values for 

each parameter (Tabatabai-Yazdi et al., 2021). Yadav and colleagues 
(Yadav et al., 2021) fabricated light-responsive nanostructures of ZnO 
doped with lithium using various lithium concentrations through a 
simple combustion method at low temperatures. The findings of their 
investigation illustrate that during Triclopyr degradation through pho-
todegradation, a robust electronic bonding between lithium and ZnO 
enhances the efficacy of charge transfer and delays their recombination. 
The modification in the optical and surface characteristics of ZnO due to 
the incorporation of lithium into its lattice also contributed to the 
heightened performance of lithium-doped ZnO. 

Peng and collaborators (Peng et al., 2019) crafted Ag/ZnO nano-
composites and utilized them in the photocatalytic breakdown of phenol 
with ozone. Subsequently, they noted a marked advancement in the 
photocatalytic breakdown of phenol catalyzed by Ag/ZnO substances. 
Furthermore, they detected a collaborative influence between photo-
catalysis and ozonation. Benhebal and co-authors (Benhebal et al., 
2013) investigated the photocatalytic breakdown of phenol and benzoic 
acid in water utilizing ZnO powder synthesized via the sol-gel technique. 
Daneshvar and colleagues (Daneshvar et al., 2007) synthesized ZnO 
nanocrystals through a precipitation method for the decomposition of 
diazinon in aqueous solution. The findings indicated that the photo-
catalytic process with ZnO nanoparticles, having an average size of 14 
nm, exhibited the highest energy efficiency. Consequently, it could be 
inferred that around 80% elimination of the pesticide, upon optimizing 
operational conditions, could be accomplished in a relatively short 
period, approximately 80 min. 

Evgenidou and colleagues (Evgenidou et al., 2005) explored the 
photocatalytic breakdown of an organophosphorus insecticide, 
dichlorvos, employing two distinct photocatalysts (TiO2 and ZnO). The 
exposure of zinc oxide suspensions resulted in the disappearance of 
dichlorvos, although complete mineralization was not achieved, leading 
to the formation of intermediates. Premalatha and co-researchers 
(Benhebal et al., 2013) investigated the photocatalytic efficacy of ZnO 
and ZnO–Bi2O3 using Lambda-Cyhalothrin (LCHT), a pyrethroid pesti-
cide detrimental to humans and animals, under visible light irradiation. 
Anju and colleagues (Anju et al., 2012) explored the degradation of trace 
levels of phenol pollutants in water utilizing Zinc oxide catalyst under 
UV), Ultrasonic (US), and a combination of UV and US irradiation. 

In the case of ZnO photocatalysts with dopant, Shirzad and Siboni 
(Shirzad-Siboni et al., 2017) scrutinized the photocatalytic disintegra-
tion of organophosphorus pesticide diazinon using ZnO nanorods 
infused with copper. They fabricated Cu-doped ZnO nanorods employ-
ing a simple co-precipitation method. Cu-doped ZnO nanorods had 
significantly higher photocatalytic degradation rather than ZnO photo-
catalysts in diazinon degradation. Rani and colleagues (Rani et al., 
2023) synthesized nanostructured ZnO and Zinc Oxide doped with 
Lanthanum (La) via the hydrothermal synthesis method, resulting in 
highly effective photocatalytic materials. They examined the degrada-
tion of 2-chlorophenol (2-CP) using both ZnO and La-doped ZnO pho-
tocatalysts under optimal pH, irradiation duration, and catalytic dosage 
conditions. Remarkably, ZnO achieved a maximum degradation effi-
ciency of 75.85%, while La-doped ZnO exhibited even higher efficiency 
at 83.92%. 

Machine learning methodologies can be effectively applied in 
modeling the photocatalytic degradation process. Salahshoori et al. 
(2024) employed utilized various ML models to predict the elimination 
of tetracycline (TC) via photocatalysis using Metal-Organic Frameworks 
(MOFs). Among these models, the GAPSO-LSSVM model emerged as the 
accurate one. 

Gheytanzadeh et al. (2022) compiled an extensive database con-
sisting of 374 data points sourced from previous experiments. They 
introduced a robust machine learning approach, Gaussian process 
regression (GPR) model, incorporating four kernel functions to predict 
the photodegradation of tetracycline (TC) based on features of 
Metal-Organic Frameworks (MOFs) such as surface area and pore vol-
ume, along with process parameters including radiation time, catalyst 

Fig. 1. Wurtzite (hexagonal) crystalline structure of ZnO. Reproduced with 
permission from (Escudero and Escamilla, 2011). Copyright 2011 Elsevier. 
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dosage, TC concentration, and pH. The GPR models exhibited strong 
performance, with the GPR-Matern model demonstrating the most 
precise accuracy. Navidpour and co-authors (Navidpour et al., 2024) 
investigated the use of Adaptive Boosting (AdaBoost), Gradient Boosting 
Machine (GBM), and Random Forest (RF) machine learning algorithms 
to simulate and predict the photocatalytic degradation of per-
fluorooctanoic acid (PFOA). Their modeling results indicated that both 
the GBM and RF models outperformed the AdaBoost model in terms of 
predictive performance. 

Deylami and colleagues (Deylami et al., 2023) examined the pho-
todegradation of disulfine blue dye and tetracycline over g-CN/Ag3-
VO4/PAN nanofibers using Response Surface Methodology (RSM), 
RBF-NN) and ANFIS modeling. Their findings suggest that the ANFIS 
model provides more accurate predictions for the degradation of TC. 
Jaffari and colleagues (Jaffari et al., 2023) delved into the capabilities of 
multiple machine learning models to forecast the photocatalytic 
breakdown of malachite green in wastewater using diverse NM-BiFeO3 
composites. They assembled an extensive databank containing 1200 
data points gathered from diverse experimental setups. Evaluation 
metrics revealed that the CatBoost model attained the highest test co-
efficient of determination (0.99). 

The search for relevant experimental data was through the Scopus 
database. Extensive research in pesticide photodegradation has been 
reported in different studies (Anju et al., 2012; Benhebal et al., 2013; 
Daneshvar et al., 2007; Evgenidou et al., 2005; Peng et al., 2019; Pre-
malatha and Miranda, 2019; Rani et al., 2023; Sadeghi et al., 2021; 
Shirzad-Siboni et al., 2017; Yadav et al., 2021), which allow its deep 
analysis and forecast. With respect to the accessible information in 
literature for the photocatalytic treatment of different pesticides, the 
photocatalytic parameters, and physiochemical parameters of pesticides 
and dopants of ZnO were assembled. The source of light (UV (1) and 
visible light (2)), mass proportion of the dopants to Zn, initial pesticide 
concentration (C0), pH of the solution, and irradiation time were 
considered as the process parameters. The physicochemical properties 

such as the molecular weight of the dopants and pesticides, and water 
dissolvability of dopants and pesticides, were obtained from the pre-
dicted values using the US Environmental Protection Agency EPISuite™, 
which is available in Chemspider website (www.chemspider.com). The 
details of these parameters are shown in Table 1. 

A comprehensive dataset was obtained by considering seven 
distinctive pesticides (diazinon, dichlorvos, triclopyr, trifluralin, 
lambda-cyhalothrin, phenol, 2-chlorophenol), in their photocatalytic 
degradation by ZnO-based photocatalysts with and without dopants. It 
should be noted that Cu and La were considered as dopants, while im-
purities were not regarded as doping elements. The numerical data were 
gathered and extracted directly via tables or indirectly via graphs from 
the publications using the web-based tool WebPlotDigitizer 4.7 (http 
s://apps.automeris.io/wpd/). The extracted data are presented in 
Table S1 (Supplementary Material). Notably, the gathered data have 
common input parameters. Characteristics of the photocatalysts, tech-
niques used for the pollutant analysis, detection limits of the analysis 
methods, and the number of experimental repetitions for the publica-
tions used to gather data are provided in Table S2. Table 2 provides the 
details of the experimental conditions and the degradation performance 
for the target pesticides. 

To set up precise ML models, 80% of the datapoints were randomly 
isolated as the train set and the remaining (20%) were regarded as the 
test data to assess the accuracy of the models. Statistical analysis was 
measured by the calculation of measurable variables such as the deter-
mination coefficient (R2), average absolute relative deviation (AARD), 
root-mean-square error (RMSE), and the standard deviation (STD), 
which are described in equations (1)–(4): 

R2 =1 −
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i − xexperimental
i
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Table 1 
Physicochemical properties of the target pesticides and dopants for ZnO.  

Pesticide/Dopant MW (g mol− 1) Solubility in water (mg L− 1) 

2-Chlorophenol 128.556 5165 
Diazinon 304.345 6.456 
Dichlorvos 220.976 1889 
Triclopyr 256.471 374.9 
Trifluralin 335.279 0.209 
Lambda-cyhalothrin 449.850 0.001 
Phenol 94.111 26160 
La 138.906 53940 
Cu 63.546 420800  

Table 2 
A summary of experimental conditions and degradation efficiency from the photocatalytic treatment of water by ZnO-based photocatalysts.  

Pesticide Type of 
dopant 

Irradiation 
time (h) 

Catalyst dosage 
(mg L− 1) 

Solution 
pH 

Initial pesticide 
concentration (mg L− 1) 

Degradation 
(%) 

Number of 
data 

Ref. 

2-Chlorophenol Laa 0.30–2.00 333–1667 2.0–10.0 10.0 64.39–84.00 14 Rani et al. (2023) 
2-Chlorophenol – 0.30–2.00 333–1667 2.0–10.0 10.0 33.71–77.00 14 Rani et al. (2023) 
Diazinon Cub 0.25–2.00 10–1000 3.0–11.0 10.0–50.0 4.00–99.00 100 Shirzad-Siboni et al. (2017) 
Diazinon – 0.17–2.00 25–200 3.5–11.3 16.0–30.0 7.00–88.00 52 (Daneshvar et al., 2007;  

Shirzad-Siboni et al., 2017) 
Dichlorvos – 0.03–2.00 100–500 7.0–7.2 10.0–50.0 16.00–100 73 Evgenidou et al. (2005) 
Triclopyr  0.25–2.00 1000 7.0 10.0 6.00–17.00 8 Yadav et al. (2021) 
Trifluralin – 0.33–1.00 50–150 9.0 0.6 58.00–92.00 9 Sadeghi et al. (2021) 
Lambda- 

cyhalothrin 
– 0.50–3.00 1200 7.0 50.0 33.00–69.47 6 Premalatha and Miranda (2019) 

Phenol – 0.25–2.00 20–2500 2.5–12.5 40.0–250.0 12.00–87.00 64 (Anju et al., 2012; Benhebal 
et al., 2013; Peng et al., 2019) 

– – 0.03–3.00 10–2500 2.0–12.5 0.6–250.0 4.00–100 340 –  

a Mass ratio of doping element to Zn: 0.123. 
b Mass ratio of doping element to Zn: 0.007. 
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3. Results and discussion 

3.1. Model development 

The details of ML methods are presented in the Supplementary 

Material. In this study, the RBF kernel was utilized to propose CSA- 
LSSVM. CSA used two variables of γ (389.4) and σ2 (2.7496). In 
expansion, particle swarm optimization (PSO) (Eberhart and Kennedy, 
1995; Kıran et al., 2012; Kuo et al., 2010) was connected to optimize the 
ANFIS structure and to determine the ideal values of ANFIS variables. 
The Generalized Gaussian sort was accomplished by MFs within the 
fuzzy sub-domain, as exhorted in the literature (Amirkhani et al., 2021; 
Dashti et al. 2020a, 2020b, 2021b, 2021c, 2023). PSO parameters were 
changed by trial and error to obtain the highest accuracy for PSO-ANFIS 
model. Table S3 records the details of the PSO-ANFIS models utilized to 
compute photocatalytic degradation of pesticides by ZnO-based 
materials. 

To improve the MLP models, the number of neurons in a hidden layer 
were changed. The RMSE of the tested data decided the accuracy of the 
model. The Levenberg-Marquardt (LM) training approach empowered 
us to prepare and control the weight values as the method showed 
excellent stability in the training stage and presented a sharp conver-
gence in training process (Yadav et al., 2021). In order to find the 
optimal neuron for the MLP-ANN show, a trial and error approach was 
used. The results showed that a layer of 25 neurons covered by the 
MLP-ANN appeared to generate the best design. 

In the RBF model, tuning variables, and counting spread and the 
maximum number of neurons (MNN) are necessary to be decided 
(Barati-Harooni et al., 2017; Tatar et al., 2016). To obtain an accurate 
model effectively, the optimization of these parameters is crucial. 
Through trial and error operation (Tatar et al., 2016), the optimum 
values were obtained in the 28 to 201 range for Spread MNN and 
maximum number of neurons. 

3.2. Modeling results and validation 

Several evaluation methods have been carried out to assess the 
estimation capability of proposed artificial intelligence models for 
photodegrading pesticides using ZnO-based photocatalysts. Two basic 
approaches, statistical and visual comparison plots, were used for 
assessing the approval. The statistical parameters show the degree to 
which the actual and expected values are aligned. For the training and 
testing datasets, these parameters were recorded in Table S4. For the test 
data that were used in the ANN, RBF, PSO-ANFIS and CSA-LSSVM 
models on a case-by-case basis, the R2 values achieved were 0.912, 
0.935, 0.841, and 0.911, respectively. Such results confirmed that the 
estimation of photocatalytic degradation of pesticides was sufficiently 
precise by RBF and CSA-LSSVM with their comparative statistics for 
AARD, RMSE and STD. RBF with AARD of 4.80% for total data, as shown 
in Table S4, appeared to be the most precise model for photocatalytic 
pesticide degradation by ZnO-based photocatalysts. Fig. 2 shows that 
pesticide photodegradation values from experiments were accurately 
estimated. Thus, the created ML models show dependable expectation 
execution for the pesticides photodegradation framework. In addition, 
in expansion the real efficiencies of photodegradation for pesticides 
were compared to model output obtained by ML (Fig. 3). The closer the 
data is to the bisector line, the more accurate the recommended models 
are. For all the ML models, especially the RBF, the estimated data points 
were closely following the experimental data points with a R2 value of 
0.978. The results therefore confirmed that ML models were able to 
estimate the real dataset in this analysis. 

Table S5 shows the accuracy of the ML models in terms of AARD for 
the estimation of photocatalytic degradation of the considered pesti-
cides. As the results show, RBF can estimate the photocatalytic degra-
dation of all pesticides except 2-chlorophenol/La, 2-chlorophenol, 
triclopyr and lambda-cyhalothrin, for which CSA-LSSVM model 
demonstrated better performance. 

3.3. Effect of input parameters on photocatalytic degradation of pesticides 

Fig. 4 shows the impact of process variables on the photodegradation 

Fig. 2. Comparison between experimental results and estimated values from 
the developed models against index of data points. 
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of pesticides using ZnO-based photocatalyst. Undoubtedly, the irradia-
tion time is considered an important factor in photocatalysis process. 
Generally, the more the time of irritation, the higher degradation is 
expected. However, the rate of degradation depends on several param-
eters including type of photocatalyst, type of pollutant, dosages of 
photocatalyst and pollutant, type of reactor, solution pH, and source of 
light. Notably, the vital impact of time on the photocatalytic degradation 
of pesticides is evidenced in Fig. 4(a) and (e). 

Solution pH is an important parameter affecting the photocatalytic 
performance (Rani et al., 2023). Notably, the electrostatic interaction 
between the catalyst and the pollutant depends on solution pH and the 
catalyst pHzpc values. At pH higher than pHzpc, the catalyst surface is 
negatively charged, whereas it is positively charged at pH lower than 
pHzpc (Rani et al., 2023). Rani et al., (2023) evaluated the effect of pH 
(2–10) on the photocatalytic degradation of 2-chlorophenol over ZnO 
and La-doped ZnO under UV and visible light irradiation, respectively, 
where acidic medium generally yielded higher efficiency than basic 
medium for both photocatalysts (with the highest efficiency at pH 2). 
Considering their findings, the effect of solution pH on the photo-
catalytic degradation of 2-chlorophenol (experimental and estimated 
values) using La-doped ZnO under visible light irradiation is shown in 
Fig. 4b. The superior efficiency of ZnO and La-doped ZnO at acid 

medium (specifically at pH 2) has been attributed to the electrostatic 
interaction between phenolate anions and positively charged surface of 
the photocatalysts. Formation of carbonate anions, acting as scavengers 
for OH− anions, could also be responsible for the reduced photocatalytic 
degradation of 2-chlorophenol at basic medium (Rani et al., 2023). 
Shirzad-Siboni et al. (Shirzad-Siboni et al. (2017) evaluated the effect of 
pH (3–11) on the photocatalytic degradation of diazinon over Cu-doped 
ZnO nanorods. Similarly, acidic medium yielded higher efficiency than 
basic medium, but the best efficiency was obtained at neutral pH (i.e. 7) 
due to the photo-corrosion of ZnO in basic and acidic solutions. In 
addition, considering the electrostatic interaction between the catalyst 
and the pollutant, the optimal pH was expected to be in the range of 2.6 
(pKa value of diazinon) and 7.8 (pHzpc value of Cu-doped ZnO) where 
negatively charged diazinon could readily react with positively charged 
Cu-doped ZnO nanorods. 

The photocatalyst dosage is considered another important factor in 
photocatalytic reactions. Usually, increasing the amount of photo-
catalyst, up to an optimum level which corresponds to the optimum of 
light absorption, can improve the degradation efficiency. Hence, dos-
ages higher than the optimum value cannot be effective due to the 
blocked passage of light and the increased light scattering (Evgenidou 
et al., 2005). For instance, Shirzad-Siboni et al. (Shirzad-Siboni et al. 

Fig. 3. Predictions of pesticide photodegradation (%) by ML models in comparison to experimental results.  
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Fig. 4. Comparing the experimental and the estimated values of photocatalytic degradation of pesticides. (a) effect of irradiation time (Cu-doped ZnO catalyst, 0.007 
mass ratio of Cu to Zn, initial diazinon concentration of 20 mg L− 1, UV light, catalyst dosage of 200 mg L− 1, solution pH 3) (Shirzad-Siboni et al., 2017), (b) effect of 
solution pH (La-doped ZnO catalyst, 0.123 mass ratio of La to Zn, initial 2-chlorophenol concentration of 10 mg L− 1, visible light, catalyst dosage of 333.33 mg L− 1, 
irradiation time of 2 h) (Rani et al., 2023), (c) effect of catalyst dosage (ZnO catalyst, initial diazinon concentration of 20 mg L− 1, UV light, solution pH 7, irradiation 
time of 0.83 h) (Daneshvar et al., 2007), (d) effect of initial phenol concentration (ZnO catalyst, catalyst dosage of 1000 mg L− 1, UV light, solution pH 2.5, irradiation 
time of 2 h) (Benhebal et al., 2013), and (e) effect of element doping (ZnO and Cu-doped ZnO catalysts, mass ratio of Cu to Zn at 0.007, initial diazinon concentration 
of 20 mg L− 1, UV light, catalyst dosage of 200 mg L− 1, solution pH 7) (Shirzad-Siboni et al., 2017). 
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(2017) assessed the impact of catalyst dosage, for the photocatalytic 
degradation of diazinon over Cu-doped ZnO nanorods (under UV irra-
diation), where the optimum catalyst dosage was 0.2 g L− 1 among the 
range of 0.1–1.0 g L− 1. Considering the results reported by Daneshvar 
et al., (2007), the effect of the catalyst dosage on the photocatalytic 
degradation of diazinon using ZnO (under UV irradiation) is shown in 
Fig. 4c, where increasing the catalyst dosage, from 25 to 150 mg L− 1, 
gradually improved the degradation efficiency of diazinon, but further 
increase in the catalyst dosage, from 150 to 200 mg L− 1, suppressed the 
photocatalytic activity. 

Shirzad-Siboni et al. (Shirzad-Siboni et al., (2017) evaluated the ef-
fect of initial diazinon concentration, in the range of 10–50 mg L− 1, 
where increase of the initial diazinon concentration reduced its degra-
dation efficiency gradually, (Similar to Fig. 4d) and has been mainly 
related to the blockage effect of adsorption of diazinon molecules on the 
surface of catalysts. An approximately similar trend was observed by 
Zhu et al., (2020), where the effect of different initial concentrations of 
dimethoate, in the range of 1–20 mg L− 1, have been evaluated in their 
research. On the other hand, increasing the initial concentration of dyes 
has improved their degradation efficiency in some cases (Hanafi and 
Sapawe, 2020), and therefore the effect of the initial pollutant concen-
tration on the photocatalytic degradation relies on several factors in the 
photocatalytic process (e.g. type of pollutant/photocatalyst and dosage 
of photocatalyst). 

The source of light (UV or visible light) is another factor affecting the 
photocatalytic activity of semiconductors. Notably, ZnO and TiO2 are 
among semiconductors with wide band gap energies, however, ZnO can 
provide higher photo-absorption ability than TiO2. Metal doping is 
among the methods which can be used to improve the photocatalytic 
activity of ZnO. Due to their ability in trapping the photogenerated e− , 
rare earth metals such as La, Nd, Sm, and Dy have been effectively used 
to increase the photocatalytic efficiency of ZnO (Alam et al., 2018). 
Notably, it has been reported that substitution of Cu into ZnO lattice 
could modify its photocatalytic performance, and its optical and mag-
netic properties (Shirzad-Siboni et al., 2017). For instance as shown in 
Fig. 4e, the photocatalytic degradation of diazinon significantly 
increased from 58.52% to 96.97% for ZnO and Cu-doped ZnO, respec-
tively, under UV irradiation (C0 = 20 ppm, pH = 7, and catalyst dosage 
= 0.2 g L− 1) (Shirzad-Siboni et al., 2017). 

3.4. Sensitivity analysis 

For analysts and engineers in water and wastewater treatment, it is 
critical to make clear recommendations as to the impact that various 
operating parameters have on the process performance. To this end, an 
investigation was carried out on the impact of each input variable in 
order to calculate its significance by equation (5) (Amirkhani et al., 
2024; Dashti et al., 2021a): 

r=

∑n

i=1

(
Xk,i − Xk

)
(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Xk,i − Xk

)2∑n

i=1
(Yi − Y)2

√ (5)  

where Xk,i and Yi stand the ‘k’ th input and ‘i’ th output while Xk and Y 
indicate the average values of input and outputs, respectively. 

A more significant impact on the yield is included in each input with 
a more significant r value. The negative values signify that the 
comparing parameter adversely influences the target (photocatalytic 
degradation). As it is shown in Fig. 5, all process variables including 
irradiation time, mass ratio of doping element to Zn, light source and 
MW of dopant had positive impacts on degradation of pesticides by ZnO 
based photocatalyst. In comparison, initial pesticide concentration, so-
lution pH, pesticide solubility in water, catalyst dosage, dopant solubi-
lity in water, and pesticide MW had the decreasing negative effects on 
the modeling output. Therefore, among all the variables, the light irra-
diation time demonstrated to be the most effective parameter in the 
photocatalytic decomposition of pesticides over ZnO-based 
semiconductors. 

It is obvious that the photocatalytic degradation of pollutants highly 
depended on operation time from a kinetic control point of view. During 
the photocatalytic degradation of dichlorvos (10 mg L− 1) over ZnO (100 
mg L− 1) at pH 7, the photodegradation efficiency was significantly 
increased from 17% to 26%, 37%, 46%, 57%, 63%, 72%, 81%, 88%, 
92%, and finally 96%, respectively at different times (0.03, 0.06, 0.1, 
0.17, 0.28, 0.33, 0.5, 0.75, 1, 1.33, 2 h) (Evgenidou et al., 2005). In 
addition, the photocatalytic degradation of 2-chlorophenol (10 mg L− 1) 
at pH 2 over La-doped ZnO (~333.3 mg L− 1) was increasing from 77%, 
78%, 80%, 82%, to 84% at different operation time of 0.3, 0.7, 1, 1.3, 
and 1.7 h respectively (Rani et al., 2023). 

Besides, Fig. 4 shows that the initial concentration of pesticide has 
the most negative effect on the photocatalytic degradation. Such an 

Fig. 5. Sensitivity analysis of input parameters in the ML models.  
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adverse effect can be related to the blockage impact of adsorption of 
pesticide molecules on the surface of photocatalysts, which caused a 
reduction of surface active sites in the photocatalyst (Shirzad-Siboni 
et al., 2017). 

4. Conclusions 

The reliable estimation of the photodegradation of pesticides by ZnO 
photocatalysts is of vital significance to improve photocatalysis process 
design and performance. Four ML models were developed, namely ANN, 
RBF, PSO-ANFIS and CSA-LSSVM. The RBF model showed the most 
promising modeling power, and exhibited the highest modeling accu-
racy, achieving a R2 value of 0.978 and AARD value of 4.80%. The RBF 
model was successful in predicting the photocatalytic degradation of all 
pesticides expect 2-chlorophenol, triclopyr, and lambda-cyhalothrin, for 
which CSA-LSSVM model provided a better fit. The most positive and 
negative effects on photocatalytic degradation of the pesticides by ZnO- 
based photocatalysts were light illumination time and initial pesticide 
concentration, based on their relative importance in sensitivity analysis. 
Future research should study the performance of different types of 
photocatalysts in the degradation of highly persistent organic contami-
nants, and develop new types of ML models. 
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