Proceedings of the 43rd International Business Information Management Association Conference (IBIMA)

26-27 June 2024

ISBN: 979-8-9867719-2-2

ISSN: 2767-9640

Sustainable Global Economic Development within 2025 Vision: Research and Practice

Editor

Khalid S. Soliman

International Business Information Management Association (IBIMA)

Copyright 2024

Conference Chair

Khalid S. Soliman, International Business Information Management Association, USA

Conference Advisory Committee

Abdul Rahman Ahmad, Universiti Tun Hussein Onn Malaysia, Malaysia Abraham G. van der Vyver, Monash University, South Africa Amine Nehari Talet, King Fahd University of Petroleum & Mineral, KSA Az-Eddine Bennani, Reims Management School, France Emil Boasson, Central Michigan University, USA John F. Affisco, Hofstra University, USA Mohammad Ayub Khan (University of Monterrey, UDEM), Mexico Rene Leveaux, University of Technology, Sydney, Australia Susana de Juana Espinosa, Universidad de Alicante, Spain Sherif Kamel, The American University in Cairo, Egypt Silvius Stanciu, "Dunarea de Jos" University of Galati, Romania

Program Committee

(it is IBIMA Policy to include a program committee member's name only after reviewing at least one submitted paper)

Kamal Abou El Jaouad, Hassan II University, Morocco

Nik Hazimah Nik Mat, Universiti Malaysia Terengganu, Malaysia

Khairunesa Isa, Universiti Tun Hussein Onn Malaysia, Malaysia

Jurica Bosna, University of Zadar, Croatia

Katarzyna Łukasik-Stachowiak, Czestochowa University of Technology, Faculty of Management, Poland

Aleksandra Ostrowska, University of Warmia and Mazury in Olsztyn, Poland

Ljubica Milanović Glavan, Faculty of Economics and Business, University of Zagreb, Croatia

Joanna M. Michalak, University of Lodz, Poland

Ana Filipa Marques Roque, University of Beira Interior, Portugal

Hidaya Othmani Gharbi, University of Jendouba, Tunisia

Nelly Rosario Moreno-Leyva, Universidad Peruana Unión, Perú

Natalya V. Alesina, Sevastopol State University, Russia

Fernanda A. Ferreira, ESHT, Polytechnic of Porto, Portugal

Shereen Khan, Multimedia University, Malaysia

Olivia Tan Swee Leng, Multimedia University, Malaysia

Beata Chudy, University of Agriculture in Krakow, Poland

Kátia Lemos, Polytechnic University of Cávado and Ave, Portugal

Olukemi Ade-Adeniji, Covenant University, Ota, Nigeria

Ritesh Chugh, CQUniversity, Australia

Mercy E.I. Ogbari, Covenant University, Ota, Nigeria

Alicja M. Graczyk, Wroclaw University of Economics and Business, Poland

Rossana Soto Gonzales, Universidad San Ignacio de Loyola, Peru

Pedro Ferreira, Agueda School of Management and Technology, University of Aveiro, Portugal

Zuliani Dalimunthe, Universitas Indonesia, Indonesia

Lee-Kwun Chan, Universiti Tunku Abdul Rahman, Malaysia

Joseph A. Dada, Joseph Ayo Babalola University, Nigeria

Isaac Akintoyese Oyekola, Landmark University, Omu-Aran, Nigeria

Jana Majerova, AMBIS University, Czech Republic

Hugo González Aguilar, Universidad Autónoma del Perú, Perú

Arkadiusz Kowalski, Wroclaw University of Science and Technology, Poland

Andrés Edgardo Pardo Labrín, Pontificia Universidad Católica de Chile, Chile

Mihaela Popa, University POLITEHNICA Bucuresti, Romania

Dean Učkar, Juraj Dobrila University of Pula, Croatia

Tan Choo Kim, Multimedia University, Malaysia

Abdellah Nouib, Faculty of Ecoeconomics and Management of Guelmim- University Ibn Zohr, Morocco

Elena Korostyshevskaya, St. Petersburg State University, Russia

Muhammad Hamza Qummar, Universiti Malaysia Terengganu, Malaysia

Sylwia Wiśniewska, Krakow University of Economics, Poland

Juan Romelio Mendoza Sànchez, Universidad Nacional de Cajamarca, Perù

Joberth Vargas Figueroa, Private University of the North, Perú

Wai Ching Poon, University Teknologi PETRONAS, Malaysia

Nataliia Demeshkant, University of the National Education Commission, Krakow, Poland

Ewa Koreleska, Bydgoszcz University of Science and Technologie, Poland

Ntebogang Moroke, North West University, South Africa

Agnieszka Kurdyś-Kujawska, Koszalin University of Technology, Poland

Liliana Bunescu, Lucian Blaga University of Sibiu, Romania

Silvia Barnová, DTI University, Slovakia

Boris Mucha, The Slovak University of Technology in Bratislava (Institute of Management), Slovakia

Edyta Kardas, Częstochowa University of technology, Poland

Rachid Oumlil, ENCG Agadir, UIZ, Morocco

Aleksandra Radziszewska, Czestochowa University of Technology, Poland

Agung Nugroho, Universitas Indonesia, Indonesia

Piotr Walentynowicz, University of Gdansk, Poland

Sandilyan Ramanujam Pagaldiviti, Alliance University, India

Daniela Zirra, Romanian-American University, Romania

Anna Stasiuk-Piekarska, Poznan University of Technology, Poland

Monika Górska, Częstochowa University of Technology, Poland

Piotr Kosiuczenko, Institute of Information Systems, WAT, Warsaw, Poland

Anna Strychalska-Rudzewicz, University of Warmia and Mazury, Poland

Marta Daroń, Czestochowa University of Technology, Poland

Rafael Antonio Figueroa Ortega, Universidad de Atacama, Chile

Sameh Tebourbi, Université de Sfax, Tunisia

Anna Murawska, Bydgoszcz University of Science and Technology, Poland

Agnieszka Knap-Stefaniuk, Jesuit University Ignatianum in Krakow (Akademia Ignatianum w Krakowie), Poland

María del Carmen Valls Martínez, University of Almería, Spain

Paweł Lubiewski, Akademia WSB in Dabrowa Górnicza, Poland

Jose Carlos Lopes, Polytechnic University of Bragança, Portugal

Martin Holubčík, University of Zilina, Slovakia

Poorna Prabhat Sunkara, LEO1, India

Sylwia Kowalska, University of Szczecin, Poland

Daniela Cristina Momete, National University of Science and Technology Politehnica Bucharest, Romania

Leszek Robert Kurnicki, The University of Economics and Human Sciences in Warsaw, Poland

Aneta Włodarczyk, Czestochowa University of Technology, Poland

Justyna Łukomska-Szarek, Czestochowa University of Technology, Poland

Rubina Masum, Karachi School of Business and Leadership, Pakistan

Florin Cornel Dumiter, "Vasile Goldiș" Western University of Arad, Romania

Karol Kowalewski, The Eastern European University of Applied Sciences in Bialystok, Poland

Cristiana Doina Tudor, Bucharest University of Economic Studies, Romania

Nadia Sghaier, University of Tunis El Manar, Faculty of Eco. Sciences and Management of Tunisia, Tunisia

Nadia Montacer, Higher Institute of Management Of Tunis, Tunisia

Sławomir Zator, Opole University of Technology, Poland

Marcin Kuzel, Nicolaus Copernicus University, Poland

Klaudia Smolag, Czestochowa University of Technology, Poland

Pavel Kološ, Moravian Business College Olomouc, Czech Republic

Tomasz Dryl, University of Gdańsk, Faculty of Management, Poland

Cristina Raluca Gh. Popescu, University of Bucharest and The Bucharest University of Eco. Studies, Romania

Dian Damayanti, Universitas Terbuka, Indonesia

Octavian Dospinescu, Alexandru Ioan Cuza of Iasi, Romania

Tamara Alcántara-Concepción, Universidad Nacional Autónoma de México, México

Ilham El Haraoui, Ibn Tofail University, Morocco

Magdalena Kakol, Maria Curie-Sklodowska University in Lublin, Poland

Misdi, Universitas Swadaya Gunung Jati, Indonesia

Rdouan Faizi, Mohammed V University in Rabat, Morocco

Anna Korombel, Czestochowa University of Technology, Poland

Rhita Sabri, Ibn Tofail University, Morocco

Abir Zouari, University of Sfax, Tunisia

Margarita R. Tsibulnikova, Tomsk State University, Russia

Sebastian Kot, Czestochowa University of Technology, Poland

Paul Calanter, Romanian Academy of Sciences, Romania

Iwona Krzyżewska, WSB University Country: Poland

Justyna Łapińska, Nicolaus Copernicus University in Toruń, Poland

Kalaiselvee Rethinam, AIMST University, Malaysia

Lucia Morosan-Danila, Stefan cel Mare University of Suceava, Romania

Pavle Jakovac, University of Rijeka, Faculty of Economics and Business, Croatia

Magdalena M. Stuss, Jagiellonian University, Poland

Daniel Homocianu, Alexandru Ioan Cuza University of Iasi, Romania

Yandra Rivaldo, Institut Agama Islam Abdullah Said Batam, Indonesia

Niki Derlukiewicz, Wrocław University of Economics and Business, Poland

Vlatka Škokić, University of Split, Croatia

Damian Ostrowski, WSB Merito University in Wrocław, Poland

Galina Ivankova, Plekhanov Russian University of Economics (PRUE), Russia

Beata Sofrankova, University of Presov, Faculty of Management and Business, Slovakia

Marium Mateen Khan, Institute of Business Management (IoBM), Pakistan

Katarina Žager, University of Zagreb, Faculty of Economics and Business, Croatia

Karol Król, University of Agriculture in Krakow, Poland

Fran Galetic, University of Zagreb, Croatia

Janusz Marek Lichtarski, Wrocław University of Economics and Business, Poland

Ghizlane Boutaky, ULCO/UH2, France/Morocco

Radu Alin Paunescu, Independent, Romania

Sławomir Skiba, Gdynia Maritime University, Poland

Dawuda Alhassan, University of Warsaw, Poland

Sebastian Saniuk, University of Zielona Góra, Poland

Gisela Analy Fernández Hurtado, Universidad Privada del Norte, Perú

Edyta Kulej-Dudek, Czestochowa University of Technology, Poland

Liviu-Adrian Cotfas, Bucharest University of Economic Studies, Romania

Intan Nurbaizura Zainuddin, Universiti Teknologi MARA, Malaysia

Nadia Elaref, ESLSCA University, Egypt

Tadeusz A. Grzeszczyk, Warsaw University of Technology, Poland

Lukáš Smerek, Matej Bel University in Banská Bystrica, Slovakia

Carlos Galleguillos Cortes, University of Atacama, Chile

Agnieszka Sawińska, University of Szczecin, Poland

Arshad Ahmad Abdul Hamid, Education Network, Pakistan

Karolina Rybicka, Czestochowa University of Technology, Poland

Kārlis Krēslinš, Ventspils University of Applied Sciences, Latvia

Katarzyna Marek-Kolodziej, Opole University of Technology, Poland

Nicoleta Barbuta-Misu, "Dunarea de Jos" University of Galati, Romania

Matúš Baráth, Comenius University in Bratislava, Faculty of Management, Slovakia

Andrei-Mirel Florea, "Dunarea de Jos" University of Galati, Romania

Ricardo De la Hoz Lara, Universidad Libre, Colombia

Rosmaizura Mohd Zain, Universiti Malaysia Kelantan, Malaysia

Maurice Abi Raad, RMIT University, Australia

Renata Caban, Czestochowa University of Technology, Poland

Joanna Alicja Dyczkowska, Koszalin University of Technology Country: Poland

Vita Zarina, EKA University of applied science, Latvia

Tiago A. Trancoso, IPVC, Portugal

Marek Stembalski, Wroclaw University of Science and Technology, Poland

Katarina Tomičić-Pupek, University of Zagreb Faculty of Organization and Informatics, Croatia

Piotr Wittbrodt, Opole University of Technology, Poland

Laura Elena Zapata Jiménez, Universidad Cattolica Luis Amigó, Colombia

Elisa Alén-González, University of Vigo, Spain

Wojciech Zalewski, Nicolaus Copernicus University, Poland

Daniel Amadeo Robles Fabián, Universidad Privada del Norte, Perú

Simona Frone, Institute of National Economy, Romania

Quratulain Ezam, Dow University of Health Sciences, Pakistan

Anna Nowak, University of Life Sciences in Lublin, Poland

Olonode Ayo, University of Ibadan, Nigeria

Agnieszka Malkowska, University of Szczecin, Poland

Christiana Olufunke Adetunde, Covenant University, Nigeria

Raphael Murswieck, Heydelberger Institute, Germany

Małgorzata Śliwa, University of Zielona Góra, Poland

Stephen Aro-Gordon, Muscat College (University of Stirling), Oman

Tamara Slišković, Faculty of Economics and Business, University of Zagreb, Croatia

Adrianna Guzowska, Bydgoszcz University of Science and Technology, Poland

Anna Wziątek-Staśko, Jagiellonian University in Kraków, Poland

Disclaimer: The abstracts and papers included in these Conference Proceedings remain the work of the authors and represent their own research / opinion. IBIMA staff have had only non-editorial intervention.

Copyright @ 2024 International Business Information Management Association (IBIMA) Individual authors retain copyright on their authored papers. Please contact authors directly for reprint permission

Technology Factors Affecting Australian Manufacturing SMEs Adoption of Collaborative Robot Technology: A Qualitative Interview Study

Mashael HADDAS

King Khalid University, Abha, Saudi Arabia, University of Technology Sydney, Sydney, Australia, Mashael.Haddas@student.uts.edu.au

Farookh HUSSAIN

University of Technology Sydney, Sydney, Australia Farookh. Hussain@uts.edu.au

Abstract

Within the context of rapidly evolving technologies, collaborative robots (cobots) are revolutionizing the manufacturing processes of small and medium-sized enterprises (SMEs) and transforming the entire work structure. Several studies have highlighted cobots from an individual level; however, little attention has been given to empirical research that focuses on adopting cobots from an organisational perspective in SMEs. This paper aims to focus extensively on understanding technology factors that may potentially affect Cobot's adoption process within the firm. Based on the Diffusion of Innovation theory (DOI), the paper utilised the five technology factors and followed a semi-structured interview method with decision-makers in Australian manufacturing SMEs. Results discovered the relative advantage revealed is the most significant factor. The other three factors, compatibility, trialability and complexity, were noted to have a lower impact, and the final factor, observability, had an unclear influence. This paper also discussed the mechanisms underlying these impacts and the potential implications.

Keywords: Adoption, SMEs, Collaborative robots, DOI

Introduction

The manufacturing sector has a considerable impact on the development of any country, acting as a backbone for the creation of jobs and the growth of industrial companies. In Australia, this sector is mainly made up of SMEs (1-99 employees), which make up 66% of jobs and contribute to 50% of the total value added (ASBFEO2020).

Significant transformations in business performance have occurred due to the emergence of technological innovations in SMEs (Shahadat et al. 2023). Manufacturing industry decision-makers, such as CEOs, IT managers, and other IT professionals, are likely to discover the potential for success and the issues surroundingthe introduction of new technologies. In recent years, collaborative robots have emerged as a new technology in industrial companies (Hentout et al. 2019; Kopp, Baumgartner & Kinkel 2021); they are designed to work without safety cages and achieve real collaboration between humans and machines; it is evident that collaborative robots have the ability to expand the application of robots significantly (El Zaatari et al. 2019; Kildal et al. 2018). Given collaborative robots features over conventional industrial robots in terms of user-friendly interfaces and being lightweight, all aimed at improving user satisfaction, health and safety (Kopp, Baumgartner & Kinkel 2021). These characteristics make collaborative robots specifically suitable for SME environments, where the flow of products can change quickly (Schnell & Holm 2022) and produce small-batch and customized products (Belhadi, Touriki & El fezazi 2018). However, the research on the industrial Human-Robot Collaboration (HRC) is still limited, particularly in SMEs (Kopp, Baumgartner & Kinkel 2021)

Empirical research at the organisational/firm level is rare, and the existing studies primarily focus on the individual level to adopt cobots (Bröhl et al. 2019; Prassida & Asfari 2022). Although few empirical investigations at the organisational level have attempted to understand collaborative robot adoption in large companies (Correia Simões, Lucas Soares & Barros 2020) and SMEs (Liu & Cao 2022), there is still lacking

a deeper understanding of mechanisms and discussing technology factors in detail in the SME context. To the author's knowledge, publications on cobot acceptance/adoption in Australian manufacturing SMEs are scarce. Consequently, this paper explores technology factors related to collaborative robot adoption in Australian manufacturing SMEs. Using the Diffusion of Innovation (DOI) theory (Rogers 2003), this paper aims to uncover the attributes of technology related to collaborative robot adoption and determine a thorough understanding mechanism.

This paper first gives a brief introduction. In the second part, the paper provides an overview of the theory. The third part deals with the method used in this paper. Following this, the paper provides the results in the fourth part. The fifth part presents the discussion. The paper concludes in the final part.

Theory

The DOI theory (Rogers 2003) is an innovation adoption theory that identifies the factors that influence the adoption of new technology or ideas within society. Users' perceptions of innovation and technology characteristics are mostly considered to be the basis of this theory. It can be used at the enterprise/organisational level of research (Lai 2017; Tarhini et al. 2015)

An innovation is defined by (Rogers 2003) as "an idea, practice, or object that is perceived as new by an individual or another unit of adoption". A collaborative robot is an innovation in the manufacturing sector because it brings together advanced technology and operational flexibility to create more efficient production environments. It offers a range of benefits that make it a promising solution for improving processes and addressing the industry's needs (Matheson et al. 2019; Simões et al. 2022)

Table 1: The Five Innovation Attributes

Attribute	Definition	References
Relative advantage	"the degree to which an innovation is perceived as superior to its predecessor"	(Rogers 2003, p. 229)
Compatibility	"the degree to which an innovation is perceived as consistent with the existing values, past experiences, and needs of potential adopters"	(Rogers 2003, p. 15)
Complexity	"the degree to which an innovation is perceived as relatively difficult to understand and use"	(Rogers 2003, p. 15)
Trialability	"the degree to which an innovation may be experimented with on a limited basis"	(Rogers 2003, p. 16)
Observability	"the degree to which the results of an innovation are visible to others"	(Rogers 2003, p. 16)

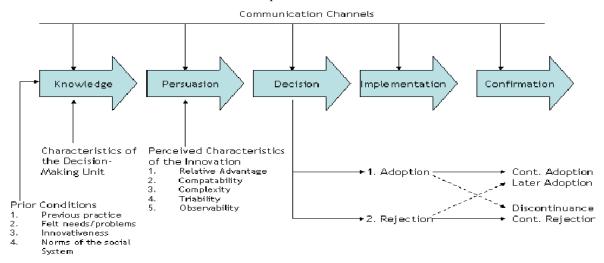


Figure 1. The Five Steps of the Innovation-Decision Process

The decision-making process in DOI theory involves five steps, as presented in Figure 1. In the successful process, all these steps are essential, but in particular, step 2 (persuasion) is considered significant when adopters decide to adopt (or not adopt). This step is based on five main attributes of innovation, as seen in Table 1, which provides a concise overview of their definitions. As Rogers (2003) observed, complexity is the only attribute that negatively influences innovation. There is still agreat deal of study to be done in SMEs environments to explore collaborative robot adoption (Liu & Cao 2022). Furthermore, it is important to understand the full extent of DOI characteristics of collaborative robots in this area. According to the author's understanding, no previous studies have investigated in Australia. Therefore, this paper analyses the impact attributes' of collaborative robots and discovers the essential mechanisms by applying qualitative research.

The paper addressed the following questions:

- 1) What are the collaborative robot technology factors adoption in Australian manufacturing SMEs?
- 2) What mechanisms support the significance of technology factors in facilitating the adoption?

Method

The current study employed a semi-structured interview with participants responsible for decision-making for their companies, such as directors, CEOs, and IT managers in Australian manufacturingSMEs. Semi-structured interviews are frequently employed to gather respondents' perspectives, insights, and viewpoints regarding a specific topic (Creswell & Creswell 2018). Therefore, this type of interview is suitable and more flexible, as it allows for new responses and perspectives on the discussed topics while remaining focused on the specific subject without deviating significantly from essential issues. Following DOI theory, the interview protocol was structured into five sections, and the interviewees were asked to discuss the five technology attributes' roles.

The sample size was determined using a data saturation approach following the recommendations in the general qualitative research (Fusch & Ness 2015; Guest, Namey & Chen 2020) and the literature on qualitative interviews (Kvale & Brinkmann 2015; Saunders & Townsend 2016). The process of collecting data was terminated when the following interview did not reveal any new themes, insights, or ideas (Guest, Namey & Chen 2020). Directed content techniques were employed to analyse the data collected, as it is the most effective method for checking the existing theories and framework (Assarroudi et al. 2018). This approach enables a more structured data analysis process compared to conventional techniques (Hickey & Kipping 1996). According to Miles, Huberman & Saldana (2019), this study used the approach for data analysis, which comprised three phases in sequence: qualitative data reduction, data coding, and data display.

Results

This paper used a convenience sampling strategy to recruit participants with decision-making, whether from managerial or technical positions in Australian manufacturing SMEs. The research sample was balanced regarding job title and the type of manufacturing companies (small/medium) in various industries. In interview 11, saturation was reached; 10 participants were included in the final sample (Table 2)

Table 2: Interview Sample

N	Job Title	Industry	Headcount	Type
P1	Chief Technical Officer (CTO)	Appliance Manufacturing	100	Medium
P2	Technical Support Specialist	Textile Manufacturing	126	Medium
Р3	Chief Executive Officer (CEO)	Furniture Manufacturing	76	Medium
P4	Operations Manager	Paint manufacturing	19	Small
P5	IT manager	Textile Manufacturing	198	Medium
P6	Production Manager	Paper Product Manufacturing	196	Medium
P7	Process Engineer	Sporting Goods Manufacturing	18	Small
P8	General Manager	Camping equipment Manufacturing	16	Small
P9	Automation Engineer	Plastic Product and Packaging	188	Medium
P10	General Manager	Metal Product Manufacturing	98	Medium

Relative Advantage

The result analysis revealed that the majority of participants rated relative advantage as highly important. Six participants called it a "key technology" for SME manufacturing companies, while others considered it a "crucial" aspect of cobots. The relative advantage of cobots was discussed in terms of providing high productivity through collaborative teamwork between employees and machines, the importance of the cost-saving benefit for SMEs companies, and, In general, there is a persistent need for continual updates with emerging technologies, such as collaborative robots, it enhances safety without the need for cages then this will add value to the company.

Relative advantage is a key factor since productivity will be high when using a collaborative robot at our company. After the COVID-19 crisis, there was a considerable shortage of labour in Australian companies, so at this stage, when we benefit from Cobot, we make the workforce and Cobot work in a collaborative method; this enables us to capitalise the minds of the employees by making them focus on the more complex and interesting tasks and Cobot doing the very repetitive, dirty, dull and dangerous tasks. (P1)

When discussing the relative advantages of collaborative robots in terms of providing cost savings for us as small companies, it is possible to save costs, such as a reduction in setup time and maintenance requirements. (P7)

Ongoing updates are imperative to remain aligned with technological advancements, such as collaborative robots. The advantage of collaborative robots is their ability to work alongside employees safely. This is an essential feature, as it enhances safety without the need for cages, then this will add value to the company. (P9)

Compatibility

Some participants emphasized the critical nature of compatibility as a factor; they spoke about the collaborative robot's compatibility with all aspects of the manufacturing company, whether with its goals, vision, culture, or existing systems.

With regard to compatibility, collaborative robot technology aligns with our company's goals, vision, and aspirations for the optimal use of technology that meets our needs. (P2)

In my opinion, ensuring that collaborative robots are compatible with organisational values and culture is imperative. (P4)

Compatibility matters are essential, especially in collaborative robots' compatibility with the existing systems in the company, whether hardware or software. (P5)

For our company, this factor is critical; it is the basis for making investment decisions in new technology. (P6)

Two interviewees believed compatibility had a moderate impact because they definitely considered new technologies and their fit, and SMEs might take some time to integrate their systems with cobots.

Right, I can say that compatibility is a somewhat important factor. We definitely look at new technologies and how they can be implemented and adopted to fit the company they are applying to.(P9)

Ok, I think SMEs might take some time to integrate their devices or systems with collaborative robots, but it is not a highly critical factor that should be given significant consideration. (P10)

As a result, four themes were revealed from the analysis: 1) compatibility is taken into account in all aspects of the manufacturing company, whether with its goals, vision, culture, or existing systems (hardware or software). This makes compatibility an important factor in collaborative robot adoption; 2) It is the basis for making investment decisions in new technology; 3) compatibility will be important when considering new technologies and their fit for the company; 4) SMEs might take some time to integrate their systems with collaborative robots, but it is not a highly critical factor that should be given significant consideration.

Observability

Differing opinions were expressed regarding the impact of observability. Some interviewees argued that observability was significant, particularly in light of the positive influence obtained in different applications of manufacturing and the success of companies in using this technology.

Indeed, observability is extremely important in the operations of SMEs. Assuming that it is possible to easily and efficiently observe the behaviour and performance of collaborative robots within the company environment, this would undoubtedly be a significant motivator for us to adopt and widely implement them in different applications. (P1) Of course, as manufacturing companies, it is essential to keep up with new technologies, specifically those that facilitate operations, reduce the considerable time required for execution, lower costs, and so on. In this case, if we notice these benefits for our company, it will encourage us to adopt it on a wide scale. (P3) Sure, the observation factor is quite important; we should observe if collaborative robots facilitate our work in the company, especially if we notice that companies from the same industry have used this technology and have had success. Our company, in this situation, will decide to adopt it, whether in an assembly line or other applications. (P6) In our interview, a few participants mentioned that the observability factor somewhat impacts the adoption of collaborative robots. From my perspective, seeing the benefits of collaborative robots doesn't necessarily mean we will immediately start adopting or implementing them. This depends on several factors, with observability not being the most important factor in our decision-making process. (P2) When we look at some manufacturing companies in the same industry that have adopted collaborative robots in their various applications and have seenthe benefits of this technology, this doesn't necessarily mean that it will benefit us in the same way; we need to think about it. (P5)

Two of the interviewees were unsure about the general impact of collaborative robots. Yes, I believe that the observability factor could be important, meaning that if competitors have introduced this technology into their industries, it is possible for us to observe and consider it. However, it is not clear enough at this time whether we will adopt it, perhaps in the near future. (P7) Let's look at adopting new technologies in the Australian manufacturing setting. There are certain procedures, measures, and policies that we need to consider carefully so that this process may take longer time. (P10) Consequently, these themes surfaced mainly about the relationship between observability and collaborative robot adoption: 1) Observability is a significant factor in collaborative robot adoption, though the strength of the impact is not clear; 2) observability is extremely important in the operations of SMEs, particularly if the benefits of collaborative robots can be observed in manufacturing applications; 3)Also, if other companies succeeded in using this technology; 4) Considering the benefits of collaborative robots in different applications for companies, there may be some factors contributing to the decision-making process; 5) Due to the presence of certain procedures and policies, it may take a long time for companies to adopt new technologies.

Trialability

Most interviewees in this study agreed on the influence of trialability, though to varying degrees. For those who assert it has an extreme impact, trialling new technologies on a small scale leads to the possibility of wide-scale implementation.

Definitely, for SMEs the trialability factor is very important; the ability to try out new technology, such as collaborative robots, can reduce potential risks before making a substantial investment. (P2)

Sure, I believe that providing the opportunity to trial this new technology on a limited scale allows our companyemployees to understand the operational dynamics and how these can be more seamless; therefore, I rate this factor as highly important. (P6)

Right, I see trialability as essential when adopting any new technology; it should be tested on a small scale to assess its applicability and achieve the required benefits. This leads to the possibility of implementing it widely in the company. (P9) Also, participants who believed that this factor has a somewhat moderate impact on adoption rates in Australian SMEs argued that new technologies could be trialled, and typically, company leaders make decisions on this quickly and within a set timeframe.

We initially trial and test our new technologies in our company and similar industries. Therefore, I do not think there are challenges in experimenting with any emerging technologies for our company. (P1)

We test and experiment with all technologies, and our manufacturing company leaders typically decide on experimentation quickly and within a set timeframe, so I give this factor medium to high importance. (P5)

I expect the trialability factor to affect, to some extent, the adoption rates in Australian SMEs. (P6)

Finally, one participant indicated that this factor is unimportant and that collaborative robots can be integrated into SMEs' operations without needing trialling.

No, this factor is not as important as I see it. In the case of SMEs, they can integrate collaborative robots into their operations more rapidly without the need for trial, as progress here is clear and fast. (P8)

The subsequent themes were uncovered in the analysis process: 1) Trialability plays a significant role in collaborative robot adoption, though it is unclear how strong the impact this factor is; 2) SMEs can integrate collaborative robots into their operations without the need for trialling.

Complexity

One of the interviewees agreed that the effect of the complexity factor was negative, considering the high initial costs and the total costs that could increase with the need for ongoing support. Others acknowledged the importance of this factor and its strong impact due to the need for diverse and costly training requirements and the challenge of entirely using and understanding collaborative robots.

We must consider the high initial costs when considering the complexity factor and its significant negative impact on collaborative robots. Collaborative robots are characterised by very advanced features and capabilities, which make the initial cost high. As SMEs, we suffer from limited budget constraints. Additionally, the ongoing need for continuous support may further increase the overall cost of this type of robot. (P7)

Of course, collaborative robots require a high degree of collaboration between humans and machines in all factory applications. Hence, a high level of complexity will arise due to the need for diverse and costly training requirements, which will increase the time and cost for companies. Therefore, the subject needs to be studied extensively before adopting this type of technology. (P8)

Until this moment, I expect that complexity remains a highly significant factor. Most Australian SMEs still struggle to understand and fully use collaborative robots. (P10)

Other participants also argued that the impact of complexity would be moderate because these emerging technologies take time to understand correctly and consider safety features and regulatory compliance.

From my point of view, the complexity factor has a moderate impact. It doesn't pose a major challenge or barrier that could prevent the adoption of this technology. [...] It may take some time to understand it properly. This is quite natural when adopting emerging technologies. (P2)

When considering the complexity factor, we must consider safety features and regulatory compliance and ensure sufficient support to deal with any issues that may arise currently or in the future. (P9)

Two of the participants, however, did not think that complexity posed a barrier to adoption. They argued that this type of robot is designed with a user-friendly interface and simplified programming because employees are highly trained and have an open mindset.

No, I don't think complexity is a barrier to adopting emerging technologies, especially collaborative robots. These robots are designed with user-friendly interfaces and simplified programming, thus motivating SMEs to adopt this technology. (P1)

Overall, this factor is not important at all. In our company, we can adopt new technologies because we have highly trained employees, and they have an open mindset to experimenting with emerging technologies without imposing complexity or difficulty. (P5)

The analysis highlighted the subsequent key themes: 1) perceived collaborative robots negatively impact its adoption due to the high initial costs, costly training requirements, full use and understanding of technology; 2) the negative impact of complexity can be moderate because the nature of technologies and considering safety features and regulatory compliance; and 3) collaborative robots with user-friendly interfaces, and trained employees, decrease the effect of complexity.

Discussion

The paper summarised technology attributes and the main themes related to the impact of these attributes on collaborative robot adoption, as shown in Table 3. In collaborative robot adoption by Australian manufacturing SMEs, four out of five attributes have been revealed as influencers: relative advantage, compatibility, trialability and complexity. However, the impact of observability remains unclear. As previously noted in the result, a relative advantage is widely recognised as a crucial factor in SMEs' adoption of collaborative robots.

This indicates that adopters need to understand this technology thoroughly, as it is superior and adds value compared to the existing systems in industrial companies. This also motivates decision-makers to see what provides highproductivity and cost-saving for their companies. The interviewees indicated compatibility is a comprehensive process because it considers all aspects of the manufacturing company, including goals, vision, existing systems, and even the organisation's culture.

In the case of trialability, the participants expressed the importance of this factor, noting that any new technology can be tested on a limited scale to see its effectiveness. This may lead to applying this technology on a league scale. On the other hand, those interviewees who argued that their companies have resources and factors that contribute to the decision-making process see the observability factor as less important than other factors. Then, these companies could be innovators or the early majority, who are the group most ready to adopt technological innovation quickly and have the required resources to do so (Rogers 2003). As collaborative robots are still intheir infancy in Australian manufacturing SMEs, this may be of significance.

Table 3: Technology Factors and Emerging Themes in Collaborative Robot Adoption

Technology Factors	Key Themes Relevant to Collaborative Robot Adoption	
Relative Advantage	 Perceived as the strongest technological factor for collaborative robot adoption; Providing high productivity; Cost-saving benefit for SMEs companies; The advantage of collaborative robots is enhanced safety without the needfor cages, which will add value to the company 	
Compatibility	 Perceived as a moderate influence on the process of adopting collaborative robots.; Compatibility is taken into account in all aspects of the manufacturing company, whether with its goals, vision, culture, or existing systems, this makes it an important factor. It is the basis for making investment decisions in new technology; Compatibility will be important when considering new technologies andtheir fit for the company; SMEs might take some time to integrate their systems with collaborative robots, but it is not a highly critical factor. 	
Observability	 Unclear impact on the adoption process; observability is extremely important in the operations of SMEs, particularly if the benefits of collaborative robots can be observed in manufacturing applications; Also, if other companies succeeded in using this technology; Considering the benefits of collaborative robots in different applications, there may be some factors contributing to the decision-making process; Due to the presence of certain procedures and policies, it may take a longtime for companies to adopt new technologies. 	

Complexity	 Perceived as a moderate influence on the adoption; Complexity because of high initial costs, costly training requirements, full use and understanding of technology; The nature of technologies and considering safety features and regulatory compliance Collaborative robots with user-friendly interfaces and trained employees decrease the effect of complexity.
Trialability	 Perceived as a moderate influence on the adoption; Trialability is a significant factor in collaborative robot adoption, though it is unclear how strong of an impact this factor is; SMEs can integrate collaborative robots into their operations without the need for trialling

It appears that technological factors, in general, do not fully present the process of adopting collaborative robots. This is because there are organisational factors mentioned above and present in some mechanisms of factors influencing. As the study results have shown, some factors have potential

impacts, such as organisational culture and required resources (human and financial). Moreover, the participants mentioned the existence of contextual variables, such as policies and standards. When considering the integration of the technological factors discussed above with organisational and contextual factors, this could provide a comprehensive framework characterised by a clearer understanding of collaborative robot adoption for SMEs. Given this integration, the Technology- Organisation-Environment (TOE) framework may seem appropriate for this case (Tornatzky & Fleischer 1990).

When decision-makers decide to adopt collaborative robot technology in general, they should understand the current systems in their manufacturing companies and how long it will take to integrate collaborative robots. They need to comprehend the process comprehensively and the value it will add to productivity shortly. Additionally, there should be a significant focus on providing required financial or operational resources and offering intensive training programs to employees to acquire or enhance skills for effectively adopting and using this new technology.

Conclusion and Limitation

This paper shows the five technological factors that influence SMEs' adoption of collaborative robots. The aim is to understand these factors and the mechanisms behind them. Qualitative research was conducted to collect and analyse data, and a quantitative study will be needed to confirm the relationships. Furthermore, considering a more holistic model, the technological factors can be used alongside organisational, context, or human factors. This study provides actionable insights for industry stakeholders. There are several ways to continue and expand this research to further understand the theoretical and practical knowledge.

References

- ASBFEO, A.S.B.a.F.E.O. (2020) Small Business Counts December 2020.
- Assarroudi, A., Heshmati Nabavi, F., Armat, M.R., Ebadi, A. & Vaismoradi, M. (2018) 'Directed qualitative content analysis: the description and elaboration of its underpinning methods and data analysis process', *Journal of research in nursing*, 23(1), 42-55.
- Belhadi, A., Touriki, F.E. & El fezazi, S. (2018) 'Lean Implementation in Small and Medium-Sized Enterprises in Less Developed Countries: Some Empirical Evidences From North Africa', *Journal of small business management*, 56(S1), 132-53.
- Bröhl, C., Nelles, J., Brandl, C., Mertens, A. & Nitsch, V. (2019) 'Human–Robot Collaboration Acceptance Model: Development and Comparison for Germany, Japan, China and the USA', *International Journal of Social Robotics*, 11(5), 709-26.

- Correia Simões, A., Lucas Soares, A. & Barros, A.C. (2020) 'Factors influencing the intention of managers to adopt collaborative robots (cobots) in manufacturing organizations', *Journal of Engineering and Technology Management*, 57, 101574.
- Creswell, J.W. & Creswell, J.D. (2018) Research design: qualitative, quantitative, and mixed methods approaches, Fifth edition. edn, SAGE Publications, Inc., Thousand Oaks, California.
- El Zaatari, S., Marei, M., Li, W. & Usman, Z. (2019) 'Cobot programming for collaborative industrial tasks: An overview', *Robotics and Autonomous Systems*, 116, 162-80.
- Fusch, P.I. & Ness, L.R. (2015), 'Are We There Yet? Data Saturation in Qualitative Research', *The Qualitative Report*, 20(9), 1408-16.
- Guest, G., Namey, E. & Chen, M. (2020) 'A simple method to assess and report thematic saturation in qualitative research', *PloS one*, 15(5), e0232076-e.
- Hentout, A., Aouache, M., Maoudj, A. & Akli, I. (2019) 'Human–robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017', *Advanced Robotics*, 33(15-16), 764-99.
- Hickey, G. & Kipping, C. (1996) 'A multi-stage approach to the coding of data from open-ended questions: A structured approach to analysing data collected from open-ended questions can help to make the process clear, suggest Gary Hickey and Cheryl Kipping', *Nurse researcher*, 4(1), 81-91.
- Kildal, J., Tellaeche, A., Fernández, I. & Maurtua, I. (2018) 'Potential users' key concerns and expectations for the adoption of cobots', *Procedia CIRP*, 72, 21-6.
- Kopp, T., Baumgartner, M. & Kinkel, S. (2021) 'Success factors for introducing industrial human-robot interaction in practice: an empirically driven framework', *The International Journal of Advanced Manufacturing Technology*, 112(3-4), 685-704.
- Kvale, S. & Brinkmann, S. (2015) *InterViews : learning the craft of qualitative research interviewing*, Third edition. edn, Sage Publications, Los Angeles.
- Lai, P.C. (2017) 'The literature review of technology adoption models and theories for the novelty technology', *Revista de gestão da tecnologia e sistemas de informação*, 14(1), 21-38.
- Liu, D. & Cao, J. (2022) 'Determinants of Collaborative Robots Innovation Adoption in Small and Medium-Sized Enterprises: An Empirical Study in China', *Applied sciences*, 12(10085), 10085.
- Matheson, E., Minto, R., Zampieri, E.G.G., Faccio, M. & Rosati, G. (2019) 'Human–Robot Collaboration in Manufacturing Applications: A Review', *Robotics (Basel)*, 8(4), 100.
- Miles, M.B., Huberman, A.M. & Saldana, J. (2019) *Qualitative Data Analysis, A Methods Sourcebook (Fourth)*.
- Prassida, G.F. & Asfari, U. (2022) 'A conceptual model for the acceptance of collaborative robots in industry 5.0', *Procedia Computer Science*, 197, 61-7.
- Rogers, E.M. (2003) 'Diffusion of Innovations'.
- Saunders, M.N.K. & Townsend, K. (2016) 'Reporting and Justifying the Number of Interview Participants in Organization and Workplace Research: Reporting and Justifying Interview Participant Numbers', *British journal of management*, 27(4), 836-52.
- Schnell, M. & Holm, M. (2022) 'Challenges for Manufacturing SMEs in the Introduction of Collaborative Robots', IOS Press.
- Shahadat, M.M.H., Nekmahmud, M., Ebrahimi, P. & Fekete-Farkas, M. (2023) 'Digital Technology Adoption in SMEs: What Technological, Environmental and Organizational Factors Influence in Emerging Countries?', *Global Business Review*, 09721509221137199.
- Simões, A.C., Pinto, A., Santos, J., Pinheiro, S. & Romero, D. (2022) 'Designing human-robot collaboration (HRC) workspaces in industrial settings: A systematic literature review', *Journal of manufacturing systems*, 62, 28-43.
- Tarhini, A., Arachchilage, N.A.G., Masa'deh, R.e. & Abbasi, M.S. (2015) 'A Critical Review of Theories and Models of Technology Adoption and Acceptance in Information System Research', *International journal of technology diffusion*, 6(4), 58-77.
- Tornatzky, L.G. & Fleischer, M. (1990) 'The processes of technological innovation', *The Journal of Technology Transfer*, 16(1), 45-6.