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Many real-world optimization problems, particularly engineering ones, involve constraints that make 
finding a feasible solution challenging. Numerous researchers have investigated this challenge for 
constrained single- and multi-objective optimization problems. In particular, this work extends the 
boundary update (BU) method proposed by Gandomi and Deb (Comput. Methods Appl. Mech. Eng. 
363:112917, 2020) for the constrained optimization problem. BU is an implicit constraint handling 
technique that aims to cut the infeasible search space over iterations to find the feasible region faster. 
In doing so, the search space is twisted, which can make the optimization problem more challenging. 
In response, two switching mechanisms are implemented that transform the landscape along with 
the variables to the original problem when the feasible region is found. To achieve this objective, two 
thresholds, representing distinct switching methods, are taken into account. In the first approach, 
the optimization process transitions to a state without utilizing the BU approach when constraint 
violations reach zero. In the second method, the optimization process shifts to a BU method-free 
optimization phase when there is no further change observed in the objective space. To validate, 
benchmarks and engineering problems are considered to be solved with well-known evolutionary 
single- and multi-objective optimization algorithms. Herein, the proposed method is benchmarked 
using with and without BU approaches over the whole search process. The results show that the 
proposed method can significantly boost the solutions in both convergence speed and finding better 
solutions for constrained optimization problems.

Keywords  Constraint handling, Multi-objective optimization, Evolutionary algorithm, Boundary updating, 
Switching point

Constrained optimization problems arise naturally in most disciplines where finding optimized feasible solu-
tions, especially with multiple objectives, is challenging. Despite the considerable variety of techniques developed 
in optimization fields and other disciplines to tackle these problems, the complexity of their solutions calls for 
alternative solution methods. Moreover, the computational cost has become another major concern due to the 
complexity of modern real-world problems. Also, the demand for optimal design and its applications in engi-
neering and industry have become even more significant to satisfy the need for more strategic designs in modern 
engineering practices1. Engineering optimization problems usually consist of constraints that may be physical, 
geometrical, or operational; handling such constraints to find a single feasible solution is a challenging task2,3. 
For multi-objective problems, constraint handling is critical since a set of feasible solutions, i.e., Pareto front set, 
is sought. To tackle real-world constrained optimization problems, the constraint handling technique (CHT) has 
been combined with an evolutionary algorithm (EA) to achieve constrained evolutionary algorithm optimization 
(CEAO)2. Most CHTs proposed in the literature are explicit methods, e.g., CHTs by penalty or other fix-ups2.

The CHTs come in two main forms: explicit and implicit. Explicit techniques involve the explicit definition of 
constraints as part of the problem formulation. They are designed to respect and enforce constraints explicitly, 
guiding the search towards feasible regions of the solution space and addressing violations directly.
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For example, several existing CHTs in the literature are based on feasibility and infeasibility regions4–6, pri-
ority assignment7, and tournament selection and a selection operator7,8. Some studies also provide surveys of 
CHTs8–11. In contrast, implicit techniques do not necessitate the explicit form of constraints. They handle con-
straints inherently during the search for the optimal solution, avoiding the need for additional objective function 
evaluations. Implicit CHT simplifies the problem formulation, but it may face challenges in handling complex 
or nonlinear constraints effectively.

For instance, Diwekar and Rubin12 proposed an implicit constraint handling technique for the ASPEN chemi-
cal process, which is based on a mixed integer mathematical programming approach consisting of master and 
subproblems. Since most of the relations in the above-mentioned problems are implicit12, proposed a method 
for partitioning the variables to significantly decrease computational time.

Raghavan et al.13 developed an implicit constraint handling technique for optimization based on the proper 
orthogonal decomposition (POD) of shapes, further producing a bi-level reparameterization approach for struc-
tural geometries. Uemura et al.14 proposed a real-coded genetic algorithm for implicitly constrained black-box 
optimization, in which the method employs the weighted mean of the best individuals in a population to find 
the optimal solution.

Mirabel and Lamiraux15 proposed a method to handle all constraints explicitly and implicitly that deals 
with manipulation planning, where the constraints are solved explicitly as much as possible. Implicit handling 
is alternatively employed with few variables in case all constraints cannot be handled explicitly. Nomura et al.16 
introduced a natural evolution strategy called DX-NES-IC for implicit handling of constrained black-box opti-
mization, which demonstrated better performance than DX-NES, xNES, and CMA-ES.

The current study extends the work of Gandomi and Deb6 by extending and applying boundary update (BU) 
to single-objective and multi-objective optimization problems (MOOPs). As novel strategies, two switching 
mechanisms are suggested that transform the landscape and variables to the original problem when the feasible 
region is found. Then, the optimization process is continued without the BU method.

In the work by Gandomi and Deb6, the authors proposed a novel approach, boundary update (BU), as an 
implicit CHT that updates variable bounds by directly using the constraints and then applying them to several 
single-objective optimization problems. Since, the BU method is an implicit CHT, it should be coupled with 
an explicit CHT, that is feasibility rules in our study17. As for the strategy without BU, only an explicit CHT 
(feasibility rules) is applied to solve the problem. The BU method is an implicit constraint handling approach 
that aims to cut the infeasible search space over iterations to find the feasible region faster. Although the BU 
method directs the search operators to the feasible space and reaches the first feasible solution reasonably fast, 
it twists the search space, making the optimization problem more challenging. The current study tries to tackle 
the above-mentioned problem by proposing two switching approaches.

The current study augments existing research by introducing two novel switching mechanisms. In the initial 
method, called Hybrid-cvtol, the BU approach is employed until constraint violations reach zero, ensuring zero 
violations across the entire population. Subsequently, the algorithm transitions to the optimization process 
without utilizing the BU approach. The second switching mechanism, called Hybrid-ftol, in this study involves 
employing the BU method during the initial phase until the objective space remains unchanged for a specified 
number of generations. At that point, the optimization problem shifts to a state without utilizing the BU approach.

The remainder of the paper is organized as follows. Section “Proposed approach” presents the proposed 
approach. Section “Research methodology” discusses the research methodology. Section “Numerical examples” 
provides numerical examples. Finally, Sects. “Discussion”, “Limitation”, and “Conclusion” give the discussion, 
limitation, and conclusion.

Proposed approach
A constrained optimization problem can be formulated in Eqs. (1–3) as follows:

where F(x) is the objective vector that consists of several objectives (t is the number of objective functions); n 
and m are the number of inequality and equality constraints, respectively; and x is the decision variable bounded 
by the lower bound (LB) and upper bound (UB) vectors. These equations yield several Pareto optimal solutions 
rather than producing a single solution18. In the case of single-objective optimization, a single solution can be 
found as a solution to F(x) = f1(x) . In the optimization process, the boundaries of decision variables, represented 
by lower bounds (LB) and upper bounds (UB) vectors, undergo dynamic changes as the algorithm progresses 
through iterations. This dynamic nature enables the optimization process to adapt and explore a continually 
evolving solution space, illustrating the inherent variability and adaptability of decision variable boundaries 
throughout the iterative stages. Hence, the iterative nature of optimization involves the dynamic evolution of 
the i-th decision variable boundaries throughout each iteration.

The proposed method uses the constraints to narrow down variable space and then forces the algorithm to 
focus its search in the feasible region by limiting the viable search space for the variable(s). In the BU method, 

(1)Maximize(Minimize)F(x) = (f 1(x), . . . , f t (x))

(2)s.t.hi(x) ≤ 0f ori ∈ {1, . . . , n}

(3)gj(x) = 0forj ∈ {1, . . . ,m}

(4)LB ≤ x ≤ UB
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the boundaries change iteratively and are updated during the optimization procedure. Mathematically, it could 
be written as follows6:

where li,j and ui,j are dynamic lower bound and upper bound for the ith decision variable, respectively. Updating 
the bounds involves the following scenarios:

Else:

where ( lbui , ub
u
i ) are updated boundaries. BU begins by selecting a repairing variable that can handle the most 

significant number of constraints without overlapping other repairing variables. As such, if there is more than 
one candidate, the one that handles the greatest number of constraints is selected. Also, if there is still another 
candidate for variable selection, one variable is chosen randomly6.

If a repairing variable handles the first ki constraints, then:

If another repairing variable (xr) is defined:

In the BU method, a repairing variable could be substituted with a generalized semi-independent variable6 
and then rewritten with lower and upper bounds as:

where p1, . . . , ph are semi-independent variables; and mx indicates the set of selected repairing variables.

After selecting repairing variables, the search operator will be applied to the problem, the boundaries of 
non-repairing variables will be checked, and the mx-vector will be updated. During the solution procedure, the 
boundaries of repairing variables will be updated, and then the semi-independent variables ( pi , i = 1, . . . , h) are 
remapped to the actual variables using updated boundaries. In the end, those constraints that were not involved 
in the repairing variable boundary, along with fitness values, will be evaluated using actual variables. Algorithm 1 
illustrates the BU method in a constrained optimization problem.

(5)∃i ∈ {1, . . . ,m} : [∀j ∈ {1, . . . , n} : xi ≥ li,j
(

x�=i

)

∪ xi ≤ ui,j
(

x�=i

)

]

(6)If lbi = −∞andubi = +∞ :

(7)lbui = li,j(x�=i)

(8)ubui = ui,j(x�=i)

(9)lbui = min(max
(

li,j
(

x�=i

)

, lbi
)

, ubi)

(10)ubui = max(min
(

ui,j
(

x�=i

)

, ubi
)

, lbi)

(11)lbui = min(max[li,1
(

x�=i

)

, . . . , li,ki
(

x�=i

)

, lbi], ubi)

(12)ubui = max(min[ui,1
(

x�=i

)

, . . . , ui,ki
(

x�=i

)

, ubi], lbi)(whereki ≤ m)

(13)lbui = min(max
[

li,1
(

x�=i,r

)

, . . . , li,ki
(

x�=i,r

)

, lbi
]

, ubi)

(14)ubui = max(min
[

ui,1
(

x�=i,r

)

, . . . , ui,ki
(

x�=i,r

)

, ubi
]

, lbi)

(15)lbur = min
(

max
[

lr,ki+1

(

x�=r

)

, . . . , lr,ki+kr

(

x�=r

)

, lbr
]

, ubr
)

(16)ubur = max
(

min
[

ur,ki+1

(

x�=r

)

, . . . , ur,ki+kr

(

x�=r

)

, ubr
]

, lbr
)

wherer ∈ {1, . . . , n}andr �= i

(17)x ∈
{

x1, . . . , xh, xh+1, . . . , xn
}

→ mx ∈
{

p1, . . . , ph, xh+1, . . . , xn
}

(18)x ∈
{

x1, . . . , xh, xh+1, . . . , xn
}

→ mx ∈
{

p1, . . . , ph, xh+1, . . . , xn
}

(19)xi = lbui + pi(ub
u
i − lbui )fori = 1, . . . , hwhere0 ≤ pi ≤ 1
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   Initialization 
   While the criteria are not met

Applying the search algorithm 

Applying the BU method and updating the mx-vector

Check the boundaries of non-repairing variables

Update the boundaries of repairing variables

Remap p variable to the original variables using updated boundaries ( , ) 
Evaluate the constraint violations

Evaluating fitness function

  End while 

Algorithm 1.   Implementation of the BU method in a constrained optimization problem.
As an illustrative example, the following multi-objective optimization problem (MOOP) is considered to 

explain BU:

Either x1orx3 can be selected as a repairing variable of the single constraint. All the variables are in the range 
of − 2 to 2. From the variable selection strategy6, as explained earlier, x3 is selected as a repairing variable. The 
inequality constraint is solved with respect to x3 as the lower and upper bound functions. The repairing variable 
( x3 ) is substituted with the mapped variable, p , in the range of 0–1. Therefore, the lower and upper bounds of 
the variables are {− 2, − 2, 0} and {2, 2, 1}, respectively. When the search algorithm is applied to the problem, the 
repairing variable is substituted with the mapped variable, and the boundary of the repairing variable is mapped 
for the rest of the search cycle6. The original variable can be calculated by the following formula to compute the 
objectives and constraints:

where ubu3andlb
u
3 are the lower and upper bounds for the repairing variable x3 , respectively. The updated bounds 

can be written as follows:

The repairing variable is remapped to the actual boundary when the fitness values are evaluated. Figure 1a–d 
compare Pareto-optimal fronts found by the BU method coupled with a CHT (here, feasibility rules) and by the 
method without the BU method (only the feasibility rules approach is considered) for a population size of 100 
for different generations. Figure 1 shows that the BU method produces more non-dominated solutions than 
the approach without BU. However, the number of non-dominated solutions is not always a good indicator 
for comparison. In the following sections, other indicators are explained in detail to compare the algorithms.

Although the BU method directs the search operator to the feasible space and reaches the feasible region in 
a reasonable time, it twists the search space, which can make the optimization problem more challenging and, 
hence, does not always bear good results and could potentially result in premature convergence. Consider the 
following example:

(20)minf1(x) = (x21 + x22)

(21)minf2(x) = −(x1 − 1)2 − x22

(22)g1(x1 + x3) = x1 + x3 ≤ 1

(23)−2 ≤ x1 ≤ 2

(24)−2 ≤ x2 ≤ 2

(25)−2 ≤ x3 ≤ 2

(26)x3 = lbu3 + pi × (ubu3 − lbu3)

(27)lbu3 = min(max(lb3, 1− x1), ub3)

(28)ubu3 = max(min(ub3, 1− x1), lb3)

(29)Maxf (x) = x21 + x22 − 2× x1 − 2× x2 + 2

(30)s.t.g1(x) : −
(

3× x1 + x22 − 5.5
)

≤ 0

g2(x) : −(x21 + 2× x2 − 4.5) ≤ 0

g3(x) : 0.8+ x31 − x2 ≤ 0
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In case of selecting variable x2 as a repairing variable, the design space for the original variables x1 and x2 
(Fig. 2a) is converted to the new design space (Fig. 2b). Twisting landscape may result in challenges for optimi-
zation problems, such as premature convergence. Some of these issues are presented in the following examples.

(31)0 ≤ x1 ≤ 4

(32)0 ≤ x2 ≤ 4

Figure 1.   Pareto-optimal fronts obtained with and without the BU method.

Figure 2.   Contour plot of the search space.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4816  | https://doi.org/10.1038/s41598-024-54841-z

www.nature.com/scientificreports/

Therefore, two distinct hybrid methods are introduced, each incorporating its own unique switching mecha-
nism. In the initial approach, the BU method is employed until all constraint violations are reduced to zero, 
ensuring the absence of violations across the entire population. Subsequently, the algorithm transitions to the 
optimization process, excluding the use of the BU approach. In the second switching mechanism, the BU method 
is utilized in the initial phase until the objective space remains unchanged for a specified number of generations. 
Following this, the optimization problem transitions to a state where the BU approach is no longer employed. 
In both approaches, the optimization process is halted once the criteria and threshold tolerance are met. In the 
subsequent phase, the optimization problem is solved without the BU method, using the final population from the 
previous phase as the initial population for the new optimization problem. Figure 3 illustrates that the handling 
of boundaries and constraints occurs after the application of search operators.

During the first phase, the proposed methods simultaneously check constraints and examine variable bounda-
ries, making the optimization process an iterative search procedure for handling constraints and boundaries 
concurrently. If the criteria are met, the second phase of the optimization process is conducted without utilizing 
the BU approach, constituting a sequential iterative search procedure where constraint handling occurs after 
boundary checking. The implementation of the proposed hybrid method is detailed in Algorithm 2.

Figure 3.   Optimization process of the proposed method.
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Initialize the parameters

Set a threshold tolerance for constraint violation and objective space changes 

While all constraints are handled 

Find the repairing variable (s)

If there is more than one candidate

    Select the one (s) that handle/s the greatest number of constraints

    If there are still other candidates

        Choose randomly 

    End if

End if

End while

While the criteria are not met (here threshold tolerance: constraint violation should reach zero/ no change in objective 

space in the last n generations)

Applying the search algorithm 

Update mx-vector

Check the boundaries of non-repairing variables ( ℎ+1,…, )

For i=1 to h (repairing variables)

       Update the boundaries of repairing variables, 

       Remap p variable to the original space for post-processing

End for

Check the constraint violation

End while

Stop the optimization process using the BU method

Initialize the algorithm using the final population of the previous optimization process

Set a termination criteria (e.g., number of evaluations, number of generations, time, etc.)

While the criteria are not met

           Apply the search algorithm

           Optimize the problem without the BU method

           Evaluate fitness function

End while

Algorithm 2.   Implementation of the proposed method (hybrid methods).

Research methodology
To evaluate the proposed method, Python and Pymoo libraries19 were used, which include well-stabilized algo-
rithms. The specific algorithm parameters are presented in Table 1. Furthermore, because the implemented 
algorithms act stochastically, each of these algorithms were ran 31 times with random initial point(s).

Several examples, including benchmarks and real-world problems, were solved using three methods (with-
out the BU method, with the BU method, and hybrid method). The presented examples are of different types: 
constrained by one, two, and three objective functions. For the problem with one objective function, the pro-
posed method was implemented using evolutionary strategy (ES), differential evolution (DE), stochastic ranking 

Table 1.   Specific parameter settings for the algorithms used in this study.

Algorithm Parameter settings

Evolutionary strategy Number of offspring = 200, rule = 1.0/7.0

Differential evolution Variant = "DE/rand/1/bin", crossover constant (CR) = 0.3, Weighting factor (F) = 0.8

Stochastic ranking evolutionary strategy Number of offspring = 200, rule = 1.0/7.0, gamma = 0.85, alpha = 0.2

Biased random key genetic algorithm Number of elite = 200, number of offspring = 700, number of mutant = 100, bias = 0.7
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evolutionary strategy (SRES)20, and biased random key genetic algorithm (BRKGA)21. For two objective func-
tions, the BU method was applied using NSGA-II17,22. For three and five objective functions, some other EAs were 
used. As such, NSGA-III23, U-NSGA-III24, AGE-MOEA25, NSDE26, and NSDER27 were applied to optimization 
problems. The following metrics were evaluated to assess the accuracy of the obtained results.

•	 Number of non-dominated solutions: The BU method was coupled with an explicit constraint handling 
technique and compared to the approach without BU (only feasibility rules were applied to the optimization 
problem). Since the BU method aims to reduce the search space, the number of non-dominated solutions 
was determined for comparison.

•	 Constraint violation (CV): Compared to unconstrained optimization problems, constrained optimization 
problems are more challenging since a large proportion of infeasible regions appears in the search space 
(meaning the hit ratio is low), especially for highly constrained problems where these regions lead to some 
difficulties, such as feasibility-hardness and convergence-hardness. Therefore, even finding one feasible solu-
tion is a significant achievement. To test the effectiveness of the proposed method, the first feasible solutions 
found by the methods were compared and the whole population was tracked against generations.

•	 Performance indicators: Generational Distance (GD)28, Generational Distance Plus (GD+)29, Inverted Gen-
erational Distance (IGD)30, Inverted Generational Distance Plus (IGD+)29, and Hypervolume (HV) are the 
indicators that were analyzed.

•	 Running metric31: It is possible to trace the difference in the objective space followed by generations.

Moreover, the population was fixed at 100, and the maximum number of experiments was set to 11.

Numerical examples
The proposed approach was applied to several single-objective and multi-objective optimization examples, 
including benchmarks and real-world problems. The presented examples include problems constrained by one, 
two, and three objective functions. The performance of the three strategies was evaluated using an example that 
has linear constraints. Following this numerical example, the proposed approach was evaluated to solve a sur-
rogate model for a car-side impact design problem. This design problem consists of two versions of optimization, 
i.e., single- and multi-objective optimizations, and is an example of a black-box optimization problem. The speed 
reducer problem, a single-objective constrained engineering optimization problem, was also considered. For the 
multi-objective optimization problem, two benchmarks, namely OSY and BNH, and three real-world constrained 
optimization problems, including welded beam design, Cantilevered Beam design, and multi-objective car-side 
design problems were solved via the three strategies.

Several metaheuristic methods have been developed and implemented to reduce the total runtime of the 
optimization problems2,32, but still produce results that are almost as accurate and precise as conventional solving 
methods. Also, real-world engineering problems involve some type of optimization that is often constrained, 
most of which are considered MOOPs. No single solution exists for a MOOP; instead, different solutions gener-
ate trade-offs for various objectives. Furthermore, MOOPs arise naturally in most fields, and solving them has 
been a challenging problem for researchers32,33. EA methods have been identified as more effective in tackling 
the challenges that arise from MOOPs, for which the form of the Pareto-optimal front (discontinuity, noncon-
vexity, etc.) is not important34,35. Moreover, most multiobjective evolutionary algorithms (MOEAs) use the 
dominance concept36,37. In this work, for the single-objective optimization problems, Genetic Algorithm (GA), 
Differential Evolution (DE)38, Evolutionary Strategy (ES)39, Stochastic Ranking Evolutionary Strategy (SRES)20, 
and Biased Ranking Key Genetic Algorithm (BRKGA)40 were considered. NSGA-II41 is applied to bi-objective 
and multi-objective optimization problems with three objective functions and to multi-objective optimization 
problems with more than three objective functions, which are called many-objective optimization problems. 
NSGA-III23, U-NSGA-III24, and Adaptive Geometry Estimation-based Multi-objective Evolutionary Algorithm 
(AGE-MOEA)25 were further implemented for optimizing the problems. For all problems, the BU method was 
coupled with feasibility rules proposed by Deb41. Table 2 presents the studied examples in this work to assess the 
effectiveness of the proposed method in comparison with the other methods.

Table 2.   Test problems considered in this study.

Problem Type of problem Example No. of objective/s No. of constraints No. of variables

1 Benchmark G1 problem22 1 9 13

2 Real-world Single-objective car-side problem42 1 10 11

3 Real-world Speed reducer43 1 11 7

4 Benchmark BNH5 2 2 2

5 Benchmark OSY44 2 6 6

6 Real-world problem Welded beam problem45 2 4 4

7 Real-world problem Cantilevered Beam design Problem46 2 10 10

8 Real-world problem Multi-objective car-side problem47 3 10 7
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Single optimization problems
In this section, three single-optimization problems, namely G1, car-side design problem, and speed reducer, are 
considered to be solved using the different strategies discussed above.

G1 problem
The G1 problem is a famous mathematical constrained optimization problem that includes 13 decision vari-
ables, a quadratic objective function, and nine linear constraints. The problem is an excellent example of a highly 
linearly constrained problem, with a feasibility ratio of 0.111%6 (see the Appendix). In other words, it is a highly 
challenging to find a feasible solution for this constrained problem. The three different strategies were applied 
to this problem. According to the variable selection strategy, x10, x11, and x12 were selected as repairing variables 
for handling all nine constraints. The global optimum for this problem is -15, and the optimization results by 
using GA, DE, ES, SRES, and BRKGA with the BU method, without the BU method, and hybrid methods are 
presented in Tables 3, 4, 5 and 6 and Fig. 4. The Friedman rank test at a significant level of 5% was used to detect 
differences in treatments across test attempts (Table 4). Also, the Post-hoc Nemenyi Friedman test was performed 
to identify exactly which groups have different means (Tables 5, 6).

The comprehensive analysis of algorithm performance on the G01 optimization problem, characterized by 
13 continuous decision variables, nine linear constraints, and a quadratic objective function, unveils intricate 
relationships between problem features and algorithmic behavior. Each algorithm’s response to the problem’s 
unique attributes provides valuable insights into their adaptability and efficacy.

The hybrid methods, consistently showcasing superior performance across diverse algorithms, reflect an 
inherent versatility that aligns with the multi-faceted nature of the G01 problem. The distinct advantage of the 
hybridization approach becomes particularly evident in the handling of constraints. The BU method, serving 

Table 3.   Statistical results of different methods on G1 problem (The best performing method (objective 
function values) is marked in bold). a “None” means no BU method or hybrid is used and only feasibility rules 
as an explicit constraint handling method is worked alone.

Algorithm BU step Best Mean Median Worst St. Dev

GA

Nonea − 13.83 − 12.87 − 13.07 − 11.99 0.68

BU − 14.43 − 13.94 − 14.17 − 13.02 0.48

Hybrid-cvtol − 15.0 − 14.87 − 14.95 − 14.58 0.15

Hybrid-ftol − 15.0 − 14.99 − 14.99 − 14.99 0.00

DE

None − 10.08 − 8.83 − 8.74 − 8.10 0.66

BU − 14.02 − 12.61 − 13.46 − 9.55 1.62

Hybrid-cvtol − 14.80 − 14.718 − 14.710 − 14.66 0.047

Hybrid-ftol − 14.35 − 14.02 − 14.05 − 13.68 0.21

ES

None − 10.75 − 9.24 − 9.38 − 8.13 0.89

BU − 10.89 − 9.89 − 9.99 − 8.98 0.65

Hybrid-cvtol − 13.41 − 10.47 − 9.84 − 8.63 1.63

Hybrid-ftol − 10.77 − 9.92 − 10.0 − 8.98 0.57

SRES

None − 7.40 − 5.68 − 5.85 − 3.63 1.24

BU − 9.05 − 8.27 − 8.18 − 1.04 0.44

Hybrid-cvtol − 7.96 − 5.10 − 5.04 − 1.04 1.68

Hybrid-ftol − 8.38 − 5.51 − 4.54 − 3.27 1.84

BRKGA

None − 13.83 − 12.46 − 12.20 − 11.30 0.89

BU − 14.43 − 13.56 − 13.85 − 11.54 1.03

Hybrid-cvtol − 14.90 − 14.88 − 14.88 − 14.86 0.01

Hybrid2-ftol − 14.93 − 14.87 − 14.88 − 14.85 0.02

Table 4.   Summary of the p-value of the Friedman rank test over all runs. a All statistical test in this study was 
performed at a significant level of 5%.

Algorithm p-valuea Statistic value

GA 0.002 14.62

DE 0.002 14.03

ES 0.06 7.28

SRES 0.25 4.07

BRKGA 0.005 12.59
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as an implicit constraint-handling technique, demonstrates a keen ability to navigate the infeasible search space 
effectively. This characteristic proves invaluable in problems like G01, where constraints play a crucial role in 
shaping the feasible region. The hybrid methods, by strategically integrating the BU method, adeptly leverage 
this constraint-handling mechanism, enabling faster convergence to the feasible area.

Considering the explicit constraints and the quadratic objective function in G01, it becomes apparent that 
the algorithmic adaptation to these features significantly impacts performance. Genetic algorithms (GA), when 
combined with the BU method (as hybrid methods), exhibit a noteworthy convergence pattern (as illustrated in 
Fig. 5). The initial phase, focused on constraints handling, ensures the algorithm converges to the feasible area 
efficiently. Subsequently, the transition to the optimization process without BU capitalizes on the algorithm’s 
newfound knowledge of the feasible region, resulting in a streamlined path to the final solution. This adaptive 
approach to the problem’s structure showcases how algorithmic behavior is intricately linked to specific features, 
allowing for a dynamic and context-aware optimization process.

The inadequacy of the SRES algorithm in this context sheds light on the sensitivity of algorithmic performance 
to the problem’s characteristics. The SRES algorithm, designed for stochastic optimization, might face challenges 
when confronted with the structured nature of the G01 problem. The lack of significant improvement suggests 
that algorithmic suitability is not universal but rather contingent on the problem’s intricacies. This observation 
underscores the importance of aligning algorithmic choices with the specific features and constraints of the 
optimization problem at hand.

Furthermore, the reduction in standard deviation observed in the hybrid methods implies a more stable 
and reliable convergence behavior. This heightened stability is particularly valuable in the presence of complex 
problem features, such as the quadratic objective function, where rapid fluctuations in convergence patterns 
might hinder progress. The hybrid methods’ ability to maintain a consistent trajectory towards the optimal 
solution underscores their resilience in handling the intricacies introduced by specific problem characteristics.

In summary, the algorithmic performance on the G01 problem intricately relates to its unique features. The 
hybrid methods showcase adaptability and versatility in addressing constraints, demonstrating a keen under-
standing of the problem structure. The nuanced convergence patterns, strategic switching mechanisms, and 
sensitivity to problem-specific attributes provide valuable insights into the dynamic interplay between algorithmic 
behavior and the intricacies of the optimization problem.

Car‑side problem
The car-side impact design problem, a notorious challenge in engineering, stands out as a complex and time-
consuming optimization task, as depicted in Fig. 6. This problem, adaptable to both single-objective and multi-
objective formulations, adds layers of intricacy due to its quadratic objective function and explicit models. 
Specifically, when addressing the single-objective version with the goal of minimizing car weight, the constraints 
and objective function take on quadratic forms, amplifying the intricacies involved. The thicknesses of the inner 

Table 5.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs. Posthoc_nemenyi_
friedman: +, ~, and – presents the first method performs statistically significantly better, equal, and worse than 
the second approach. Significant values are in bold.

Algorithm

Hybrid-cvtol vs. BU
Hybrid-cvtol vs. Without 
BU BU vs. Without BU

p-value h p-value h p-value h

GA 0.45 ~ 0.03 + 0.59 ~

DE 0.12 ~ 0.001 + 0.45 ~

ES 0.90 ~ 0.25 ~ 0.15 ~

SRES 0.22 ~ 0.59 ~ 0.90 ~

BRKGA 0.12 ~ 0.01 + 0.87 +

Table 6.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs (continue). Significant 
values are in bold.

Algorithm

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

p-value h p-value h p-value h

GA 0.12 ~ 0.003 ~ 0.87 ~

DE 0.87 ~ 0.12 ~ 0.45 ~

ES 0.90 ~ 0.06 ~ 0.90 ~

SRES 0.59 ~ 0.90 ~ 0.90 ~

BRKGA 0.20 ~ 0.03 + 0.90 ~
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floor side ( X3 ) are strategically selected as decision variables to solve the explicit models, and their bounds are 
dynamically adjusted to accommodate the interconnected variables, adding an additional layer of complexity.

The results of this formidable optimization challenge are presented in Tables 7, 8, 9 and 10 and Figure 7, 
offering a quantitative assessment of algorithmic performance. Statistical tests (Tables 8, 9, 10) and visualiza-
tions in Figure 7 highlight the superiority of the hybrid methods, particularly when combined with the genetic 
algorithm (GA). This dominance is established through the comparative analysis, showcasing that the hybrid 
approach consistently outperforms both the individual methods and, notably, requires fewer function evalua-
tions (FE) to attain the final solution.

Significantly, the examination of the results reveals nuanced differences between the differential evolution 
(DE) and evolutionary strategy (ES) methods, with the hybrid method showcasing slightly superior outcomes. 
The incorporation of the BU method, along with the hybrid methods, demonstrates a tangible advantage, result-
ing in enhanced solution quality. The visual representation of the switching point for GA in Figure 8 provides 
further clarity on the optimization process. The algorithm strategically transitions from the BU-assisted phase 
to the standard optimization phase, showcasing an adaptive mechanism designed to optimize the convergence 

Figure 4.   Violin plot of implementation of using different algorithms constraint handling methods (G01 
problem).
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path. However, the study identifies limitations within the context of the car-side impact design problem. While 
GA, BU, and hybrid methods exhibit notable improvements, the performance of biased random key genetic 
algorithm (BRKGA) and stochastic ranking evolution strategy (SRES) fails to show enhancement when incor-
porated into the hybrid framework. This suggests that BRKGA and SRES may not be suitable for addressing the 
intricacies of this particular problem, underscoring the need for algorithmic adaptability in the face of diverse 
engineering challenges.

In conclusion, the car-side impact design problem proves to be a formidable optimization challenge, and the 
hybrid methods, particularly in conjunction with GA, emerge as the most effective approach. The adaptability 
of the hybrid methods, strategic switching mechanisms, and the incorporation of the BU method collectively 
contribute to enhanced solution quality and computational efficiency. Nonetheless, the study sheds light on the 
context-specific nature of algorithmic suitability, emphasizing the importance of tailoring optimization strategies 
to the unique characteristics of complex engineering problems.

Speed reducer
The examination of the speed reducer design problem, featuring one objective function and seven continuous 
decision variables, has yielded multifaceted insights into the interplay between algorithmic approaches and 
problem-specific characteristics. With the overarching goal of minimizing the total weight of the speed reducer, 
the complexity of this task is compounded by a combination of linear and nonlinear constraints. Strategically 
leveraging three repairing variables—specifically, the face width and shaft diameters ( x1 , x6 , and x7)—proves 
instrumental in managing these constraints effectively.

The results, meticulously presented in Tables 11, 12, 13 and 14 and Fig. 9, reveal a consistent trend: the hybrid 
approaches consistently outperform standalone methods, yielding the best objective function values across 
all algorithms considered. This dominance suggests that the hybridization process contributes to algorithmic 
robustness, offering a versatile strategy to navigate the intricate optimization landscape presented by the speed 
reducer design problem.

Notably, the algorithms (GA, DE, and BRKGA) exhibit improved performance when integrated into hybrid 
frameworks, signifying a synergistic effect where the strengths of individual algorithms complement one another. 

Figure 5.   Constraint violation implemented by GA on the G01 test problem.

Figure 6.   Schematic of car side impact design problem42.
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The statistical tests conducted (Tables 12, 13, 14) affirm the significance of these improvements, providing a 
robust validation of the observed enhancements and instilling confidence in the findings.

A closer examination of GA within the hybrid methods reveals its particular suitability for this problem, con-
sistently outperforming standalone and BU-assisted methods. This positions GA as a robust choice for addressing 
the complexities inherent in the optimization landscape of the speed reducer design problem.

The incorporation of the BU method consistently leads to a substantial reduction in the number of function 
evaluations required to reach the final solution. This reduction in computational cost is a valuable contribution, 

Table 7.   Statistical results of different methods on car side design impact problem. a “None” means no BU 
method or hybrid is used and only feasibility rules as an explicit constraint handling method is worked alone. 
Significant values are in bold.

Algorithm BU step Best Mean Median Worst St. Dev

GA

Nonea 23.889 24.474 24.246 25.295 0.486

BU 23.538 23.558 23.563 23.568 0.011

Hybrid-cvtol 23.522 23.551 23.557 23.566 0.015

Hybrid-ftol 23.566 23.714 23.602 24.189 0.238

DE

None 21.920 22.370 22.142 24.389 0.661

BU 20.797 21.842 21.786 23.128 0.696

Hybrid-cvtol 20.750 21.784 21.782 23.067 0.618

Hybrid-ftol 21.318 21.714 23.602 22.556 0.238

ES

None 20.432 20.770 20.815 21.168 0.251

BU 20.147 20.453 20.540 20.585 0.161

Hybrid-cvtol 20.147 20.584 20.434 21.386 0.422

Hybrid-ftol 20.446 20.746 20.727 21.064 0.234

SRES

None 20.518 20.673 20.728 20.760 0.092

BU 20.246 20.424 20.436 20.528 0.101

Hybrid-cvtol 20.249 20.425 20.436 20.528 0.100

Hybrid-ftol 20.395 20.477 20.432 20.580 0.077

BRKGA

None 18.165 18.904 18.90 19.572 0.493

BU 20.088 20.246 20.202 20.590 0.178

Hybrid-cvtol 19.631 20.082 20.124 20.639 0.346

Hybrid-ftol 19.359 20.127 20.20 20.534 0.411

Table 8.   Summary of p value of the Friedman rank test over all runs.

Algorithm p-value Statistic value

GA 0.001 15.00

DE 0.025 9.339

ES 0.162 5.125

SRES 0.0175 10.125

BRKGA 0.020 9.734

Table 9.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs. Significant values are in 
bold.

Algorithm

Hybrid-cvtol 
vs. BU

Hybrid-cvtol vs. 
Without BU

BU vs. 
Without BU

p-value h p-value h p-value h

GA 0.59 ~ 0.001 + 0.06 +

DE 0.72 ~ 0.02 + 0.26 ~

ES 0.90 ~ 0.31 ~ 0.20 ~

SRES 0.87 ~ 0.20 ~ 0.03 +

BRKGA 0.87 ~ 0.15 0.02 +
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Table 10.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs (continue). Significant 
values are in bold.

Algorithm

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

p-value h p-value h p-value h

GA 0.59 ~ 0.59 ~ 0.06 ~

DE 0.90 ~ 0.09 ~ 0.90 ~

ES 0.59 ~ 0.87 ~ 0.73 ~

SRES 0.90 ~ 0.03 + 0.87 ~

BRKGA 0.90 ~ 0.06 ~ 0.90 ~

Figure 7.   Violin plot of implementation of using different algorithms constraint handling methods (Carside 
problem).
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Figure 8.   Switch point for GA to normal optimization without the BU method.

Table 11.   Statistical results of different methods on speed reducer problem. a “None” means no BU method or 
hybrid is used and only feasibility rules as an explicit constraint handling method is worked alone. Significant 
values are in bold.

Algorithm BU step Best Mean Median Worst St. Dev

GA

Nonea 2997.353 2998.827 2998.933 2999.647 0.645

BU 3119.764 3126.639 3127.78 3129.697 2.792

Hybrid-cvtol 2997.002 2997.964 2998.023 2998.779 0.539

Hybrid-ftol 2996.371 2996.422 2996.404 2996.542 0.055

DE

None 2847.208 2982.631 2996.641 2997.054 42.848

BU 2706.172 2900.272 2881.668 3131.199 157.048

Hybrid-cvtol 2706.141 2838.565 2828.955 2996.729 108.803

Hybrid-ftol 2718.692 2996.422 2996.404 2742.44 0.055

ES

None 3001.0 3023.363 3025.0 3039.00 12.694

BU 3120.0 3123.727 3123.0 3129.00 2.561

Hybrid-cvtol 3007.0 3018.000 3018.0 3030.00 6.281

Hybrid-ftol 3005 3015.428 3015 3028.00 6.694

SRES

None 3012.0 3031.272 3025.0 3063.00 17.669

BU 3108.0 3123.181 3125.0 3128.00 5.236

Hybrid-cvtol 3015.0 3039.000 3038.0 3076.00 17.832

Hybrid-ftol 3108 3122.57 3125 3128 6.298

BRKGA

None 2997.996 3001.692 3001.084 3006.936 2.761

BU 3117.466 3123.452 3123.855 3127.798 3.386

Hybrid-cvtol 2997.312 3000.977 3000.109 3006.877 3.254

Hybrid-ftol 2875.699 2946.35 2951.593 3036.718 56.361

Table 12.   Summary of the p-value of the Friedman rank test over all runs.

Algorithm p-value Statistic value

GA 0.0001 21.0

DE 0.0018 15.000

ES 0.0031 13.799

SRES 0.0003 18.71

BRKGA 0.0031 13.799
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emphasizing the efficiency gains afforded by the BU method, a crucial consideration in engineering optimiza-
tion scenarios.

Despite the positive outcomes, the study highlights that algorithms like BRKGA and SRES do not exhibit 
improved performance within the hybrid framework, suggesting their unsuitability for this particular problem. 
This observation underscores the importance of algorithmic adaptability and tailoring strategies to specific 
problem characteristics.

In conclusion, the insights gained from the speed reducer design problem analysis underscore the effectiveness 
of hybrid approaches in enhancing algorithmic performance. The adaptability of GA, efficiency gains with the BU 
method, and the nuanced trade-offs between algorithms offer valuable guidance for tackling real-world engineer-
ing optimization challenges. These findings contribute not only to the understanding of algorithmic behavior in 
this specific context but also pave the way for broader applications in engineering design optimization.

Multi‑objective optimization problems
The following subsections provide two benchmarks and two real-world optimization problems to assess the 
effectiveness of the proposed hybrid method for multi-objective optimization problems.

Osyczka and Kundu (OSY)
Osyczka and Kundu44 introduced the OSY test problem, a widely recognized benchmark featuring two nonlinear 
objective functions and six linear and nonlinear constraints. As highlighted earlier, the BU method is a central 
focus of this work, particularly in its ability to directly handle constraints and its subsequent integration with 
other explicit constraint-handling techniques. The BU approach strategically reduces the feasible search space by 
altering one or more variables, compelling the algorithm to concentrate on exploring regions that adhere to the 
defined constraints. For the OSY problem, a specific repairing variable selection strategy is employed, targeting 
variables x1 , x4 , and x6 identified as effective for handling all constraints inherent in the problem.

Following the application of the BU approach, NSGA-II is employed to navigate the complex landscape of 
the OSY problem. NSGA-II, known for identifying viable Pareto fronts, initially achieves an entirely feasible 
population after 1500 evaluations. In contrast, the coupling of the BU method with the algorithm accelerates this 
process, achieving a fully feasible population after only 300 evaluations. Subsequently, the optimization process 
seamlessly transitions to routine optimization without the continued use of the BU method.

The evaluation of performance indicators, presented in Tables 15, 16, 17 and 18 and Fig. 10, offers a compre-
hensive understanding of the algorithmic performance. It becomes evident that the hybrid methods, particularly 
when incorporating the BU approach, consistently outperform other methods. Statistical analyses, including the 
Friedman rank and posthoc tests, validate this observation by demonstrating a significant improvement in all 
performance indicators (excluding IGD+) when the hybrid approach is implemented.

Examining Fig. 10 through the lens of a violin plot further illustrates the superiority of the hybrid methods. 
The best values for all performance indicators, with the exception of IGD, show marked improvement when the 
BU and hybrid methods are employed. This enhancement in performance underscores the effectiveness of the 

Table 13.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs. Significant values are in 
bold.

Algorithm

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

p-value h p-value h p-value h

GA 0.019 + 0.46 ~ 0.46 ~

DE 0.29 ~ 0.06 ~ 0.87 ~

ES 0.06 ~ 0.90 ~ 0.03 ~

SRES 0.014 + 0.90 ~ 0.026 +

BRKGA 0.03 + 0.90 ~ 0.06 ~

Table 14.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs (continue).

Algorithm

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

p-value h p-value h p-value h

GA 0.001 + 0.019 + 0.46 ~

DE 0.03 + 0.003 + 0.76 ~

ES 0.002 + 0.82 ~ 0.70 ~

SRES 0.90 ~ 0.02 + 0.014 +

BRKGA 0.002 + 0.70 ~ 0.82 ~
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BU method in combination with the hybrid approach, providing valuable insights into the algorithmic strategies 
that lead to improved convergence and solution quality for the OSY problem.

In summary, the OSY problem, coupled with the BU method and hybrid approach, serves as a compelling 
case study. The specific variable selection strategy, the seamless transition between BU-assisted and routine 
optimization, and the consistent improvement in performance indicators highlight the adaptability and effec-
tiveness of the proposed approach. These findings contribute not only to the optimization of the OSY problem 
but also offer broader insights into the potential of the BU method and hybridization in addressing complex, 
constrained optimization scenarios.

Bin and Korn Test Problem (BNH)
BNH is a test problem proposed by Binh and Korn5, characterized by two conflicting objectives and two con-
straints, introduces a challenging landscape for optimization. The nonlinear nature of the objectives and con-
straints adds an additional layer of complexity, requiring sophisticated algorithmic strategies to navigate the 

Figure 9.   Violin plot of implementation of using different algorithms constraint handling methods (speed 
reducer problem).
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Table 15.   Statistical results of different methods on the OSY problem. a “None” means no BU method or 
hybrid is used and only feasibility rules as an explicit constraint handling method is worked alone. Significant 
values are in bold.

Performance indicator BU step Best Mean Median Worst St. Dev

IGD

Nonea 0.354 0.652 0.697 0.727 0.12

BU 0.680 0.712 0.698 0.772 0.032

Hybrid-cvtol 0.636 0.655 0.651 0.677 0.014

Hybrid-ftol 0.412 0.484 0.499 0.503 0.030

IGD+

None 0.504 0.520 0.526 0.549 0.013

BU 0.503 0.573 0.506 0.754 0.107

Hybrid-cvtol 0.491 0.495 0.495 0.500 0.003

Hybrid-ftol 0.400 0.433 0.439 0.439 0.013

GD

None 0.031 0.042 0.046 0.050 0.007

BU 0.002 0.114 0.007 0.403 0.17

Hybrid-cvtol 0.006 0.009 0.010 0.013 0.002

Hybrid-ftol 0.032 0.057 0.038 0.176 0.048

GD+

None 0.022 0.034 0.037 0.043 0.006

BU 0.000 0.113 0.006 0.403 0.172

Hybrid-cvtol 0.001 0.004 0.005 0.009 0.002

Hybrid-ftol 0.030 0.055 0.037 0.175 0.048

Table 16.   Summary of the p-value of the Friedman rank test over all runs.

Performance indicator p-value statistic value

IGD 0.0006 17.22

IGD+ 0.0003 18.44

GD 0.0005 17.38

GD+ 0.0006 17.26

Table 17.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs.

Performance indicator

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

p-value h p-value h p-value h

IGD 0.03 + 0.005 + 0.90 ~

IGD+ 0.10 ~ 0.005 + 0.70 ~

GD 0.019 + 0.010 + 0.90 ~

GD+ 0.04 + 0.026 + 0.90 ~

Table 18.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs (continue).

Performance indicator

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

p-value h p-value h p-value h

IGD 0.06 ~ 0.01 + 0.90 ~

IGD+ 0.06 ~ 0.002 + 0.90 ~

GD 0.035 + 0.019 + 0.90 ~

GD+ 0.014 + 0.007 + 0.90 ~
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intricate solution space effectively. The objectives and constraints may exhibit intricate relationships, posing a 
considerable challenge to traditional optimization approaches.

In addressing this nonlinear bi-objective optimization problem, the algorithmic focus will be on developing 
robust strategies that balance the optimization of both objectives while adhering to the imposed constraints. 
The inherent trade-offs between conflicting objectives necessitate a careful exploration of the Pareto front to 
identify solutions that represent optimal compromises. This problem involves two continuous variables, x1 and 
x2 , which can be strategically chosen as repairing variables. The findings presented in Tables 19, 20, 21, 22, 23, 
24 and 25 and Fig. 11 illuminate a substantial disparity between the hybrid method and alternative approaches. 
Particularly noteworthy is the superior performance of the hybrid method, especially when objective function 
tolerance is considered, showcasing noteworthy enhancements over other methods across various cases. The 
results unequivocally demonstrate the hybrid approaches’ consistent outperformance in tackling this bi-objective 
optimization problem characterized by nonlinear constraints and objective functions. Furthermore, the per-
formance indicator values associated with the hybrid approaches are significantly smaller compared to their 
counterparts, underscoring the effectiveness of the proposed methodology in achieving superior convergence 
and solution quality. These insights not only contribute to the optimization of the BNH problem but also offer 
valuable considerations for addressing the nuances of nonlinear bi-objective optimization challenges across 
diverse applications.

Figure 10.   Violin plot of implementation of using different indicators (OSY problem).
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Welded beam design problem
The welded beam fabrication is a well-known engineering optimization benchmark problem48 that examines 
the trade-off between the strength and cost of a beam. The problem includes four constraints (Eqs. 32–35) and 
four design variables, which are:

•	 x1 = h, the thickness of the welds

Table 19.   Statistical results of different methods on the BNH problem. Significant values are in bold.

Performance indicator BU step Best Mean Median Worst St. Dev

IGD

Nonea 0.0423 0.0803 0.0834 0.1281 0.0253

BU 0.0255 0.0535 0.0426 0.0896 0.0272

Hybrid-cvtol 0.0123 0.0289 0.0209 0.0660 0.0172

Hybrid-ftol 0.0110 0.0183 0.0200 0.0222 0.0038

IGD+

None 0.0170 0.0268 0.0247 0.0433 0.0084

BU 0.0112 0.0222 0.0179 0.0419 0.0111

Hybrid-cvtol 0.0024 0.0061 0.0048 0.0143 0.0040

Hybrid-ftol 0.0029 0.0035 0.0033 0.0043 0.0005

GD

None 0.0045 0.0052 0.0050 0.0065 0.0006

BU 0.0061 0.0073 0.0066 0.0098 0.0013

Hybrid-cvtol 0.0044 0.0046 0.0046 0.0049 0.0001

Hybrid-ftol 0.0040 0.0044 0.0046 0.0047 0.0002

GD+

None 0.0029 0.0034 0.0033 0.0048 0.0005

BU 0.0039 0.0053 0.0049 0.0079 0.0013

Hybrid-cvtol 0.0026 0.0027 0.0027 0.0029 0.00009

Hybrid-ftol 0.0020 0.0028 0.0030 0.0031 0.0003

Table 20.   Summary of the p-value of the Friedman rank test over all runs.

Performance indicator p-value Statistic value

IGD 0.0006 17.22

IGD+ 0.0003 18.44

GD 0.0005 17.38

GD+ 0.0006 17.26

Table 21.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs. a Posthoc_nemenyi_
friedman: +, ~, and – presents the first method performs statistically significantly better, equal, and worse than 
the second approach.

Performance indicator

Hybrid-cvtol vs. BU
Hybrid-cvtol vs. Without 
BU BU vs. Without BU

p-value ha p-value h p-value h

IGD 0.244362 ~ 0.003837 + 0.244362 ~

IGD+ 0.244362 ~ 0.003837 + 0.244362 ~

GD 0.001488 + 0.376245 ~ 0.082380 ~

GD+ 0.001000 + 0.147296 ~ 0.147296 ~

Table 22.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs- IGD value comparison.

Method Hybrid-cvtol Hybrid-ftol BU Without BU

Hybrid-cvtol – 0.9000 0.0358 0.0051

Hybrid-ftol 0.9000 – 0.06243 0.01026

BU 0.0358 0.06243 – 0.9000

Without BU 0.0051 0.01026 0.9000 –
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•	 x2 = l, the length of the welds
•	 x3 = t, the height of the beam
•	 x4 = b, the width of the beam

The constraints are:

where tmax = 13600, smax = 30000,P = 6000,Pc = 64746.022× (1− 0.0282346× x3)× x3 × x
3
4 , s = 6× P × 14/(x4 × x

2
3) . The 

two objective functions are to minimize the fabrication cost of the beam and minimize the deflection of the end 
of the beam:

The four variables of this problem include: (1) thickness of the weld, (2) welded joint’s length, (3) beam’s 
width, and (4) beam’s thickness. Using the three strategies, NSGA-II was applied to this problem, and fitness 
values were evaluated.

The exploration of sampling and crossover operators in EAs stands as a critical endeavor, influencing the 
convergence speed and efficacy of these algorithms, particularly in the context of noisy optimization. In the con-
text of the Welded Beam Design problem, where the impact of noise is significant, the experimentation involved 

(33)g1 =

(

1

tmax

)

× (t − tmax) ≤ 0

(34)g2 =

(

1

smax

)

× (s − smax) ≤ 0

(35)g3 =

(

1

5− 0.125

)

× (x1 − x4) ≤ 0

(36)g4 =

(

1

P

)

× (P − Pc) ≤ 0

(37)f1 = 1.10471× x21 × x2 + 0.04811× x3 × x4 × (14.0+ x2))

(38)f2 = 2.1952/(x4 × x33)

Table 23.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs-IGD+value comparison.

Method Hybrid-cvtol Hybrid-ftol BU Without BU

Hybrid-cvtol – 0.900000 0.103359 0.005121

Hybrid-ftol 0.900000 – 0.062433 0.002444

BU 0.103359 0.062433 – 0.704147

Without BU 0.005121 0.002444 0.704147 -

Table 24.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs- GD value comparison.

Method Hybrid-cvtol Hybrid-ftol BU Without BU

Hybrid-cvtol – 0.9000 0.019641 0.010266

Hybrid-ftol 0.9000 – 0.035858 0.019641

BU 0.019641 0.035858 – 0.9000

Without BU 0.010266 0.019641 0.9000 –

Table 25.   Summary of the p-value of the posthoc_nemenyi_friedman over all runs- GD+value comparison.

Method Hybrid-cvtol Hybrid-ftol BU Without BU

Hybrid-cvtol – 0.9000 0.047574 0.026690

Hybrid-ftol 0.9000 – 0.014282 0.007293

BU 0.047574 0.014282 – 0.9000

Without BU 0.026690 0.007293 0.9000 –
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diverse operators, including real random sampling, Latin hypercube sampling, and two distinct crossovers: 
real-SBX crossover and uniform crossover. Four performance indicators, namely GD, GD+ , IGD, and IGD+, 
were meticulously evaluated against these operators to glean insights into their comparative effectiveness. The 
compelling findings, detailed in Tables 26, 27, 28, 29, 30, 31 and 32 and illustrated in Fig. 12, underscore the 
superiority of the hybrid approach over the two alternative methods.

Examining the Pareto optimal solutions generated by the hybrid methods across different generations reveals 
a consistent outperformance, particularly noteworthy when considering constraint violations as tolerance with 
real random sampling. This suggests that the hybrid approach, when coupled with appropriate operators, signifi-
cantly improves the optimization process for the Welded Beam Design problem. Notably, the hybrid method’s 
effectiveness is evident with Latin hypercube sampling, showcasing its compatibility and superior performance 
within this optimization context. Furthermore, the hybrid method incorporating objective function tolerance 
using uniform crossover emerges as a robust option, outperforming optimization without the BU approach.

In contrast to initial expectations regarding the BU approach as a constraint handling technique, the results 
indicate that it may not be the optimal choice for this specific nonlinear bi-objective model. However, the hybrid 
approaches, through strategic integration of various operators, demonstrate a substantial enhancement in per-
formance. This nuanced observation highlights the importance of selecting appropriate operators within hybrid 
approaches, suggesting that the effectiveness of the BU method can be context-dependent.

The statistical analyses, including the Friedman rank test and the Posthoc_Nemenyi_Friedman, contribute to 
the robustness of the findings. These tests not only affirm the significant differences between the hybrid approach 

Figure 11.   Violin plot of implementation of using different indicators (BNH problem).
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and the two other methods but also reinforce the superiority of the proposed hybrid method for solving the 
Welded Beam Design problem. The identification of the switching point for the second phase of the optimization 
process at evaluation 300 further exemplifies the efficiency of the hybrid approach compared to the without BU 
approach, where the feasible region is reached at evaluation 1600 (Fig. 13).

In conclusion, the investigation into sampling and crossover operators, coupled with the nuanced insights 
from performance indicators and statistical analyses, positions the hybrid approach as the preferred strategy for 
solving the Welded Beam Design problem. The adaptability of the hybrid method, evident in its performance 
across various operators, reinforces its efficacy in addressing the challenges posed by the specific characteristics 
of this nonlinear bi-objective optimization scenario.

Table 26.   Statistical results of different methods on the welded beam design problem (sampling). a “None” 
means no BU method or hybrid is used and only feasibility rules as an explicit constraint handling method is 
worked alone. Significant values are in bold.

Performance indicator

Sampling

Real_lhs Real_random

BU step Best Mean Median Worst St. Dev BU step Best Mean Median Worst St. Dev

IGD

Nonea 0.12 0.15 0.147 0.179 0.021 None 0.12 0.167 0.178 0.19 0.024

BU 0.05 0.15 0.161 0.239 0.051 BU 0.08 0.153 0.139 0.24 0.048

Hybrid-cvtol 0.01 0.03 0.021 0.089 0.028 Hybrid-cvtol 0.01 0.033 0.034 0.05 0.010

Hybrid-ftol 0.044 0.058 0.058 0.069 0.009 Hybrid-ftol 0.028 0.057 0.061 0.084 0.0190

IGD+

None 0.05 0.08 0.071 0.119 0.023 None 0.08 0.111 0.116 0.14 0.019

BU 0.03 0.08 0.070 0.138 0.034 BU 0.05 0.090 0.079 0.16 0.034

Hybrid-cvtol 0.00 0.00 0.003 0.016 0.004 Hybrid-cvtol 0.00 0.005 0.004 0.00 0.002

Hybrid-ftol 0.015 0.018 0.018 0.020 0.001 Hybrid-ftol 0.012 0.018 0.018 0.27 0.004

GD

None 0.05 0.11 0.113 0.196 0.037 None 0.09 0.166 0.189 0.21 0.048

BU 0.02 0.13 0.128 0.282 0.071 BU 0.08 0.162 0.145 0.27 0.067

Hybrid-cvtol 0.00 0.00 0.002 0.004 0.000 Hybrid-cvtol 0.00 0.002 0.002 0.00 0.001

Hybrid-ftol 0.004 0.008 0.008 0.011 0.002 Hybrid-ftol 0.004 0.008 0.005 0.030 0.008

GD+

None 0.05 0.11 0.113 0.196 0.037 None 0.09 0.166 0.189 0.21 0.048

BU 0.02 0.13 0.128 0.282 0.071 BU 0.08 0.162 0.145 0.27 0.067

Hybrid-cvtol 0.00 0.00 0.001 0.003 0.000 Hybrid-cvtol 0.00 0.001 0.001 0.00 0.000

Hybrid-ftol 0.001 0.007 0.007 0.012 0.004 Hybrid-ftol 0.003 0.008 0.005 0.030 0.009

Table 27.   Statistical results of different methods on the welded beam design problem (crossover). Significant 
values are in bold.

Performance indicator

Crossover

Uniform real_sbx

BU step Best Mean Median Worst St. Dev BU step Best Mean Median Worst St. Dev

IGD

None 0.140 0.166 0.167 0.191 0.017 None 0.080 0.144 0.151 0.197 0.035

BU 0.080 0.126 0.127 0.192 0.033 BU 0.136 0.167 0.167 0.186 0.015

Hybrid-cvtol 0.006 0.050 0.055 0.095 0.027 Hybrid-cvtol 0.009 0.032 0.028 0.074 0.022

Hybrid-ftol 0.032 0.052 0.051 0.067 0.012 Hybrid-ftol 0.017 0.033 0.033 0.046 0.010

IGD+

None 0.072 0.092 0.096 0.116 0.015 None 0.036 0.071 0.069 0.108 0.025

BU 0.035 0.071 0.077 0.104 0.023 BU 0.058 0.090 0.088 0.135 0.028

Hybrid-cvtol 0.002 0.008 0.009 0.017 0.004 Hybrid-cvtol 0.001 0.005 0.005 0.007 0.002

Hybrid-ftol 0.005 0.008 0.008 0.010 0.001 Hybrid-ftol 0.003 0.005 0.005 0.006 0.001

GD

None 0.086 0.154 0.176 0.21 0.042 None 0.030 0.102 0.086 0.185 0.053

BU 0.042 0.146 0.123 0.311 0.081 BU 0.062 0.194 0.189 0.410 0.099

Hybrid-cvtol 0.001 0.002 0.002 0.005 0.001 Hybrid-cvtol 0.001 0.002 0.002 0.003 0.000

Hybrid-ftol 0.001 0.002 0.002 0.002 0.000 Hybrid-ftol 0.001 0.002 0.002 0.002 0.000

GD+

None 0.086 0.154 0.176 0.21 0.042 None 0.030 0.102 0.086 0.185 0.053

BU 0.042 0.146 0.123 0.311 0.081 BU 0.062 0.194 0.189 0.410 0.099

Hybrid-cvtol 0.000 0.001 0.001 0.004 0.001 Hybrid-cvtol 0.000 0.001 0.001 0.002 0.000

Hybrid-ftol 0.000 0.001 0.001 0.001 0.0004 Hybrid-ftol 0.000 0.001 0.001 0.001 0.000



24

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4816  | https://doi.org/10.1038/s41598-024-54841-z

www.nature.com/scientificreports/

Table 28.   Summary of the p-value of the Friedman rank test over all runs.

Perofrmance 
indicator

Sampling Crossover

Real_lhs Real_random Uniform real_sbx

p-value Statistic value p-value STATISTIC value p-value statistic value p-value Statistic value

IGD 0.16 10.23 0.01 11.09 0.01 9.89 0.01 10.20

IGD+ 0.01 11.15 0.03 8.39 0.01 11.15 0.009 11.36

GD 0.01 11.09 0.01 11.09 0.01 10.78 0.008 11.75

GD+ 0.01 11.09 0.1 11.09 0.01 10.78 0.008 11.75

Table 29.   Summary of the p-value of the posthoc_nemenyi_friedman test evaluated over all runs (sampling). 
a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically significantly better, 
equal, and worse than the second approach.

Performance indicator

Sampling

Real_lhs Real_random

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

p-value ha p-value h p-value h p-value h p-value h p-value h

IGD 0.04 + 0.09 ~ 0.90 ~ 0.06 ~ 0.01 + 0.90 ~

IGD+ 0.04 + 0.02 + 0.90 ~ 0.12 ~ 0.03 + 0.90 ~

GD 0.01 + 0.06 ~ 0.90 ~ 0.06 ~ 0.01 + 0.90 ~

GD+ 0.01 + 0.06 ~ 0.90 ~ 0.06 ~ 0.01 + 0.90 ~

Table 30.   Summary of the p-value of the posthoc_nemenyi_friedman test evaluated over all runs (sampling-
Continue). a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically 
significantly better, equal, and worse than the second approach.

Performance indicator

Sampling

Real_lhs Real_random

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

p-value ha p-value h p-value h p-value h p-value h p-value h

IGD 0.04 + 0.09 ~ 0.90 ~ 0.51 ~ 0.22 ~ 0.67 ~

IGD+ 0.43 ~ 0.28 ~ 0.67 ~ 0.90 ~ 0.67 ~ 0.35 ~

GD 0.22 ~ 0.51 ~ 0.67 ~ 0.51 ~ 0.22 ~ 0.67 ~

GD+ 0.22 ~ 0.51 ~ 0.67 ~ 0.51 ~ 0.22 ~ 0.67 ~

Table 31.   Summary of p value of the posthoc_nemenyi_friedmantest evaluated over all runs (crossover). 
a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically significantly better, 
equal, and worse than the second approach.

Performance indicator

Crossover

Uniform Real_sbx

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

p-value ha p-value h p-value h p-value h p-value h p-value h

IGD 0.22 ~ 0.06 ~ 0.90 ~ 0.03 + 0.12 ~ 0.90 ~

IGD+ 0.43 ~ 0.04 + 0.67 ~ 0.03 + 0.35 ~ 0.67 ~

GD 0.28 ~ 0.09 ~ 0.90 ~ 0.04 + 0.43 ~ 0.67 ~

GD+ 0.28 ~ 0.09 ~ 0.90 ~ 0.04 + 0.43 ~ 0.67 ~
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Cantilevered stepped beam design problem
The cantilevered stepped design problem is an example of large-scale size problem. In the cantilevered beam 
design problem, the stepped cantilever beam must be able to carry a prescribed end load46. This problem is 
originally a single-objective optimization problem considering minimizing the beam volume; however, this 
study has extended the original problem and added one more objective function, which minimize end deflection 
subject to various engineering design variables (see Appendix). The beam supports the given load, P, at a fixed 

Table 32.   Summary of p value of the posthoc_nemenyi_friedmantest evaluated over all runs (crossover-
Continue). a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically 
significantly better, equal, and worse than the second approach.

Performance indicator

Crossover

Uniform real_sbx

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

p-value ha p-value h p-value h p-value h p-value h p-value h

IGD 0.22 ~ 0.06 ~ 0.90 ~ 0.12 ~ 0.35 ~ 0.90 ~

IGD+ 0.28 ~ 0.02 + 0.90 ~ 0.03 + 0.35 ~ 0.67 ~

GD 0.16 ~ 0.04 + 0.90 ~ 0.02 + 0.28 ~ 0.90 ~

GD+ 0.16 ~ 0.04 + 0.90 ~ 0.02 + 0.28 ~ 0.90 ~

Figure 12.   Pareto-optimal fronts obtained for the welded beam design problem for both BU and without BU 
compared with the true Pareto-optimal front (Generation 20).
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distance L from the support. Besides, designers of the beam can vary the width ( bi ) and height ( hi ) of each sec-
tion (Fig. 14). The problem is highly constraint and large-dimensional; however, for this example five segments 
(N = 5) including 10 dimensions (10 constraints) are considered. In the pursuit of solving both the single- and 
multi-objective versions of this intricate problem, repairing variables x2 , x4, x6, x8, and x10 have been identified. 
The application of the BU method to this constrained nonlinear optimization problem is showcased, provid-
ing a valuable demonstration of the BU method’s utility. Figure 15a–d visually presents the optimal solutions 
discovered by NSGA-II employing different methods across various generations.

To assess the performance of the proposed approaches, the hypervolume (HV) indicator is utilized, offering 
a comprehensive measure of the quality of solutions (Tables 33, 34). The results, detailed in Tables 35, 36, 37, 38 
and 39 and visualized in Fig. 16, unequivocally demonstrate the efficacy of the hybrid approaches in enhancing 
solution quality. This improvement is particularly noteworthy in the case of Latin hypercube sampling and simu-
lated binary crossover (SBX), where the hybrid approaches exhibit a significant enhancement in solution quality.

This example provides valuable insights into the application of the BU method in addressing complex, large-
scale, constrained optimization problems. The extension of the original single-objective problem to a multi-
objective setting showcases the flexibility of the proposed methodology. The utilization of hypervolume as a 
performance indicator reaffirms the substantial improvements achieved by the hybrid approaches. Overall, this 
study contributes not only to the optimization of the Cantilevered Stepped Design problem but also sheds light 
on the broader potential of the BU method in tackling diverse engineering optimization challenges.

Multi‑objective car‑side impact problem formulation
In scenarios where the black-box constraints of an optimization problem exhibit highly complex behavior, the 
direct evaluation of these constraints can be prohibitively time-consuming. In such instances, the use of surro-
gates becomes a valuable strategy to mitigate the complexity and expedite the optimization process. Surrogates, 

Figure 13.   Constraint violation evaluated by NSGA-II (convergence of the whole population to feasible 
solutions).

Figure 14.   Schematic of the stepped beam design problem.
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effectively approximating the actual constraints, enable the optimization algorithm to learn from previous evalu-
ations and make informed decisions. The surrogate model, if reducible to a single variable, provides an opportu-
nity to apply the BU approach to solve the constrained surrogate model efficiently, as detailed in the Appendix.

The car side impact problem stands out as a prime example of a complex and time-consuming optimization 
challenge, focusing on the multi-objective optimization of a vehicle’s side impact crashworthiness 50. Repairing 
variables X2andX3 are identified for this problem. Various evolutionary algorithms, including NSGA-II, NSGA-
III, UNSGA-III, and AGEMOEA, are implemented to explore the solution space. Tables 40, 41, 42, 43, 44, 45 
and 46 present the results of the non-dominated solutions obtained by these methods.

The results underscore the superiority of the hybrid methods, implemented with the proposed evolutionary 
algorithms, in terms of diversity. The hybrid approaches exhibit a well-distributed population across the entire 
search space, leading to enhanced performance. While the application of the BU approach alone may face 

Figure 15.   Pareto solutions found by NSGA-II by different approaches and generations.

Table 33.   Results of different methods on the cantilevered stepped design problem (HV values-sampling). 
a “None” means no BU method or hybrid is used and only feasibility rules as an explicit constraint handling 
method is worked alone. Significant values are in bold.

Algorithm

Sampling

Real_random Real_lhs

BU step Best Mean Median Worst St. Dev BU step Best Mean Median Worst St. Dev

NSGA-II

Nonea 0.6960 0.6344 0.6131 0.6118 0.0325 None 0.7324 0.6585 0.6396 0.6118 0.0478

BU 0.7415 0.7309 0.7355 0.7144 0.0102 BU 0.7428 0.7313 0.7329 0.7156 0.0103

Hybrid-cvtol 0.7734 0.7731 0.7730 0.7729 0.0002 Hybrid-cvtol 0.7737 0.7731 0.7731 0.7727 0.0003

Hybrid-ftol 0.7734 0.7730 0.7729 0.7728 0.0002 Hybrid-ftol 0.7737 0.7729 0.7727 0.7723 0.0004



28

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4816  | https://doi.org/10.1038/s41598-024-54841-z

www.nature.com/scientificreports/

Table 34.   Results of different methods on the the cantilevered stepped design problem (HV values-crossover). 
a “None” means no BU method or hybrid is used and only feasibility rules as an explicit constraint handling 
method is worked alone. Significant values are in bold.

Algorithm

Crossover

Real_sbx Uniform

BU step Best Mean Median Worst St. Dev BU step Best Mean Median Worst St. Dev

NSGA-II

Nonea 0.6544 0.6243 0.6396 0.5762 0.0277 None 0.6950 0.6849 0.6941 0.6539 0.0157

BU 0.7428 0.7315 0.7347 0.7156 0.0089 BU 0.7428 0.7285 0.7347 0.7106 0.0129

Hybrid-cvtol 0.7737 0.7733 0.7733 0.7727 0.0003 Hybrid-cvtol 0.7733 0.7728 0.7730 0.7721 0.0004

Hybrid-ftol 0.7737 0.7732 0.7733 0.7729 0.0002 Hybrid-ftol 0.7734 0.7732 0.7732 0.7730 0.0001

Table 35.   Summary of the p-value of the Friedman rank test over all runs.

Algorithm

Sampling Crossover

Real_random Real_lhs real_sbx Uniform

p-value Statistic value p-value Statistic value p-value Statistic value p-value Statistic value

NSGA-II 0.002 14.61 0.003 13.77 0.002 14.03 0.002 14.03

Table 36.   Summary of the p-value of the posthoc_nemenyi_friedman test evaluated over all runs (sampling). 
a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically significantly better, 
equal, and worse than the second approach.

Algorithm

Sampling

Real_lhs Real_random

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

p-value ha p-value h p-value h p-value h p-value h p-value h

NSGA-II 0.16 ~ 0.008 + 0.67 ~ 0.16 ~ 0.008 + 0.67 ~

Table 37.   Summary of the p-value of the posthoc_nemenyi_friedman test evaluated over all runs (sampling-
Continue). a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically 
significantly better, equal, and worse than the second approach.

Algorithm

Sampling

Real_lhs Real_random

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

p-value ha p-value h p-value h p-value h p-value h p-value h

NSGA-II 0.59 ~ 0.09 ~ 0.82 ~ 0.59 ~ 0.09 ~ 0.82 ~

Table 38.   Summary of p value of the posthoc_nemenyi_friedmantest evaluated over all runs (crossover). 
a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically significantly better, 
equal, and worse than the second approach.

Algorithm

Crossover

Uniform real_sbx

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. Without 
BU

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

p-value ha p-value h p-value h p-value h p-value h p-value h

NSGA-II 0.67 ~ 0.12 ~ 0.67 0.35 ~ 0.03 + 0.67 ~
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Table 39.   Summary of p value of the posthoc_nemenyi_friedmantest evaluated over all runs (crossover-
Continue). a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically 
significantly better, equal, and worse than the second approach.

Algorithm

Crossover

Uniform real_sbx

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-ftol 
vs. Hybrid-
cvtol

p-value ha p-value h p-value h p-value h p-value h p-value h

NSGA-II 0.12 ~ 0.005 + 0.67 ~ 0.35 ~ 0.03 + 0.90 ~

Figure 16.   Violin plot of implementation of using different methods (Stepped beam design problem problem).
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efficiency challenges, particularly in the context of a three-objective optimization problem, the hybrid approach 
proves adept at overcoming these difficulties. Statistical analyses of the results reveal that, in some cases and with 
different algorithms, the BU method may not be as efficient, yet the hybrid approach consistently outperforms 
it, signifying the added benefits of the hybridization strategy.

Comparative statistical tests emphasize the significant advantage of the hybrid approaches over the BU 
method. Notably, although some statistical tests indicate no significant difference between the hybrid and BU 
methods, the hybrid method consistently achieves higher hypervolume (HV) values. This suggests that, even 
when statistical significance is not apparent, the hybrid approach provides a qualitative improvement in solu-
tion quality.

In conclusion, the exploration of the car side impact problem demonstrates the efficacy of hybrid approaches 
in addressing complex, multi-objective optimization challenges with intricate black-box constraints. The incor-
poration of surrogates and the application of the BU method within a hybrid framework contribute to improved 
diversity and solution quality. These findings not only advance the optimization of the car side impact problem 
but also offer valuable insights into the broader applicability of hybrid evolutionary algorithms in addressing 
real-world, complex optimization scenarios.

Discussion
The BU method is an implicit constraint-handling technique coupled with an explicit constraint-handling tech-
nique that aims to cut the infeasible search space over iterations to find the feasible region faster. Since optimi-
zation is an iterative process whose boundaries can be changed during the process, the i-th decision variable 
boundaries in each iteration exhibit a dynamic nature. By applying this philosophy to boost the optimization 
process in the BU method, the bounds of selected variable (s) are repaired (repairing variables) to satisfy the 
constraints. As a result, new solutions are created within the updated boundary of the latest search space. The 
above-mentioned process helps the algorithm search for a solution within the feasible region instead of the whole 
area. Although the BU method directs the search operator to the feasible space and reaches the feasible region 
in a reasonable time, it twists the search space, making the optimization problem more challenging. As such, 
the results are not always accurate, and the algorithm may result in premature convergence. Therefore, in this 
paper, two “hybrid” switching mechanisms are proposed. In the proposed approach, the BU method is applied 
to the problem after initializing the algorithm, and in this phase, a threshold tolerance is set. The BU method 

Table 40.   Results of different methods on the multi-objective car-side impact problem (HV values-sampling). 
“None” means no BU method or hybrid is used and only feasibility rules as an explicit constraint handling 
method is worked alone. Significant values are in bold.

Algorithm

Sampling

real_random Real_lhs

BU step Best Mean Median Worst St. Dev BU step Best Mean Median Worst St. Dev

NSGA-II

Nonea 0.249 0.244 0.2466 0.2398 0.0038 None 0.260 0.217 0.213 0.180 0.0283

BU 0.770 0.756 0.76 0.733 0.0132 BU 0.767 0.743 0.750 0.700 0.0228

Hybrid-cvtol 0.818 0.800 0.7985 0.790 0.0094 Hybrid-cvtol 0.814 0.795 0.799 0.768 0.0151

Hybrid-ftol 0.803 0.803 0.803 0.802 0.0004 Hybrid-ftol 0.806 0.797 0.797 0.785 0.0075

NSGA-III

None 0.259 0.165 0.1333 0.1225 0.0520 None 0.263 0.186 0.154 0.136 0.0505

BU 0.818 0.803 0.805 0.778 0.0141 BU 0.824 0.809 0.813 0.785 0.0132

Hybrid-cvtol 0.850 0.826 0.826 0.810 0.0141 Hybrid-cvtol 0.853 0.829 0.824 0.810 0.0162

Hybrid-ftol 0.858 0.852 0.852 0.845 0.004 Hybrid-ftol 0.841 0.833 0.837 0.819 0.008

UNSGA-III

None 0.214 0.191 0.1996 0.1575 0.0195 None 0.182 0.141 0.149 0.074 0.0361

BU 0.815 0.802 0.80 0.788 0.0090 BU 0.833 0.805 0.803 0.790 0.0146

Hybrid-cvtol 0.823 0.811 0.816 0.791 0.0110 Hybrid-cvtol 0.830 0.819 0.827 0.796 0.0133

Hybrid-ftol 0.816 0.810 0.810 0.803 0.004 Hybrid-ftol 0.829 0.822 0.826 0.811 0.006

AGEMOEA

None 0.272 0.226 0.222 0.1937 0.0265 None 0.276 0.224 0.251 0.163 0.0481

BU 0.849 0.801 0.794 0.771 0.0257 BU 0.804 0.777 0.773 0.763 0.0140

Hybrid-cvtol 0.849 0.828 0.819 0.812 0.0145 Hybrid-cvtol 0.853 0.833 0.833 0.816 0.0147

Hybrid-ftol 0.835 0.827 0.826 0.816 0.006 Hybrid-ftol 0.841 0.834 0.838 0.823 0.006

NSDE

None 0.825 0.803 0.811 0.770 0.018 None 0.830 0.773 0.782 0.707 0.045

BU 0.812 0.780 0.771 0.747 0.026 BU 0.777 0.757 0.767 0.734 0.018

Hybrid-cvtol 0.818 0.810 0.816 0.794 0.008 Hybrid-cvtol 0.827 0.813 0.811 0.803 0.008

Hybrid-ftol 0.808 0.798 0.793 0.791 0.007 Hybrid-ftol 0.823 0.809 0.809 0.791 0.011

NSDER

None 0.782 0.737 0.737 0.704 0.029 None 0.816 0.805 0.812 0.774 0.015

BU 0.790 0.759 0.767 0.734 0.021 BU 0.794 0.782 0.781 0.776 0.006

Hybrid-cvtol 0.829 0.816 0.817 0.809 0.006 Hybrid-cvtol 0.840 0.809 0.805 0.791 0.016

Hybrid-ftol 0.823 0.806 0.809 0.791 0.104 Hybrid-ftol 0.808 0.798 0.793 0.791 0.007
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optimizes the problem based on the threshold tolerances so that the population has zero constraint violations or 
there is no more change in the objective space. Then, the optimization problem is continued with the BU method.

The results suggest that:

•	 Advantageously, the hybrid method can be used with and without the BU method. In the first phase of the 
hybrid method, the BU method helps the optimization algorithm to avoid searching inside the infeasible 
region and boosts it to explore the feasible area more efficiently. This way, the optimization algorithm finds 
the feasible area with fewer FEs. However, because the BU brings about changes to the landscape of the 
search space, it may result in premature convergence. Hence, in the second phase of the hybrid method, the 
optimization algorithm searches the feasible area without using the BU approach.

•	 GA has the least standard deviation among the other algorithms for the single-objective function optimiza-
tion problem.

•	 The statistical tests for single-objective optimization problems show there is a significant difference between 
hybrid methods and two other methods (with BU and without BU) using GA. Moreover, GA works well for 
this method and boosts optimization problems. Due to the fact that GA can benefit from different operator 

Table 41.   Results of different methods on the multi-objective car side design problem (HV values-crossover).

Algorithm

Crossover

real_sbx Uniform

BU step Best Mean Median Worst St. Dev BU step Best Mean Median Worst St. Dev

NSGA-II

None 0.237 0.189 0.180 0.170 0.024 None 0.309 0.264 0.271 0.166 0.051

BU 0.765 0.741 0.750 0.697 0.025 BU 0.773 0.756 0.761 0.732 0.013

Hybrid-cvtol 0.810 0.798 0.798 0.776 0.012 Hybrid-cvtol 0.806 0.798 0.799 0.786 0.007

Hybrid-ftol 0.808 0.801 0.805 0.790 0.006 Hybrid-ftol 0.801 0.799 0.800 0.793 0.003

NSGA-III

None 0.254 0.187 0.186 0.120 0.054 None 0.237 0.2064 0.212 0.164 0.025

BU 0.815 0.806 0.811 0.793 0.008 BU 0.816 0.785 0.772 0.766 0.021

Hybrid-cvtol 0.853 0.824 0.829 0.781 0.023 Hybrid-cvtol 0.844 0.828 0.828 0.815 0.008

Hybrid-ftol 0.833 0.826 0.830 0.814 0.007 Hybrid-ftol 0.833 0.829 0.831 0.822 0.004

UNSGA-III

None 0.188 0.181 0.182 0.174 0.004 None 0.255 0.226 0.218 0.198 0.020

BU 0.797 0.783 0.788 0.767 0.011 BU 0.828 0.801 0.802 0.775 0.016

Hybrid-cvtol 0.851 0.834 0.829 0.816 0.013 Hybrid-cvtol 0.834 0.824 0.828 0.808 0.008

Hybrid-ftol 0.842 0.835 0.839 0.824 0.006 Hybrid-ftol 0.830 0.825 0.825 0.819 0.003

AGEMOEA

None 0.267 0.225 0.217 0.193 0.030 None 0.278 0.252 0.270 0.192 0.032

BU 0.810 0.781 0.791 0.729 0.027 BU 0.799 0.788 0.791 0.777 0.008

Hybrid-cvtol 0.856 0.839 0.843 0.826 0.011 Hybrid-cvtol 0.853 0.839 0.851 0.817 0.016

Hybrid-ftol 0.845 0.838 0.838 0.830 0.005 Hybrid-ftol 0.848 0.839 0.838 0.827 0.007

NSDE

None 0.814 0.804 0.804 0.791 0.008 None 0.810 0.805 0.805 0.799 0.003

BU 0.796 0.782 0.781 0.763 0.012 BU 0.789 0.783 0.782 0.774 0.005

Hybrid-cvtol 0.815 0.810 0.810 0.804 0.003 Hybrid-cvtol 0.812 0.810 0.811 0.808 0.001

Hybrid-ftol 0.802 0.798 0.798 0.793 0.003 Hybrid-ftol 0.799 0.798 0.798 0.796 0.001

NSDER

None 0.755 0.739 0.738 0.718 0.013 None 0.747 0.740 0.739 0.730 0.0060

BU 0.772 0.760 0.760 0.745 0.009 BU 0.765 0.760 0.760 0.754 0.0037

Hybrid-cvtol 0.819 0.816 0.816 0.812 0.002 Hybrid-cvtol 0.816 0.816 0.816 0.815 0.0005

Hybrid-ftol 0.872 0.813 0.811 0.737 0.048 Hybrid-ftol 0.846 0.823 0.836 0.781 0.0251

Table 42.   Summary of the p-value of the Friedman rank test over all runs.

Algorithm

Sampling Crossover

Real_lhs Real_random Uniform real_sbx

p-value Statistic value p-value Statistic value p-value Statistic value p-value Statistic value

NSGA-II 0.0067 10.0 0.0067 10.0 0.0067 10.0 0.0067 10.0

NSGA-III 0.0149 8.40 0.0149 8.40 0.0067 10.0 0.0149 8.40

UNSGA-III 0.0223 7.60 0.02237 7.60 0.0067 10.0 0.0067 10.0

AGEMOEA 0.0223 7.60 0.0149 8.40 0.0067 10.0 0.0067 10.0

NSDE 0.032 8.75 0.050 7.73 0.0018 15.0 0.002 14.03

NSDER 0.054 7.62 0.001 15.0 0.003 13.56 0.006 12.11
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settings, such as crossover and sampling, better results by choosing the appropriate operator setting may be 
achieved.

•	 Regarding the multi-objective optimization problems, the hybrid method could find more non-dominated 
solutions with better distribution compared to with and without the BU methods. The BNH test problems 
indicated that the hybrid method produced promising results for IGD and HV values compared to with BU 
and without BU approaches.

•	 Although the BU and hybrid methods outperformed the other algorithms in single- and multi-objective 
optimization, they are still case-dependent, and there are EAs that are not suitable in some cases.

Table 43.   Summary of the p-value of the posthoc_nemenyi_friedman test evaluated over all runs (sampling). 
a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically significantly better, 
equal, and worse than the second approach.

Algorithm

Sampling

Real_lhs Real_random

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

p-value ha p-value h p-value h p-value h p-value h p-value h

NSGA-II 0.31 ~ 0.01 + 0.59 ~ 0.51 ~ 0.06 ~ 0.67 ~

NSGA-III 0.51 ~ 0.06 ~ 0.67 ~ 0.67 ~ 0.12 ~ 0.67 ~

UNSGA-III 0.82 ~ 0.06 ~ 0.35 ~ 0.22 ~ 0.01 + 0.67 ~

AGEMOEA 0.51 ~ 0.06 ~ 0.67 ~ 0.67 ~ 0.04 + 0.43 ~

NSDE 0.03 + 0.35 ~ 0.67 ~ 0.03 + 0.82 ~ 0.22 ~

NSDER 0.04 + 0.74 ~ 0.35 ~ 0.12 ~ 0.005 + 0.67 ~

Table 44.   Summary of the p-value of the posthoc_nemenyi_friedman test evaluated over all runs (sampling). 
a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically significantly better, 
equal, and worse than the second approach.

Algorithm

Sampling

Real_lhs Real_random

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-cvtol 
vs Hybrid-
ftol

Hybrid-ftol 
vs. BU

Hybridfvtol 
vs. Without 
BU

Hybrid-cvtol 
vs Hybrid-
ftol

p-value ha p-value h p-value h p-value h p-value h p-value h

NSGA-II 0.20 ~ 0.007 + 0.90 ~ 0.22 ~ 0.01 + 0.90 ~

NSGA-III 0.22 ~ 0.01 + 0.90 ~ 0.12 ~ 0.005 + 0.67 ~

UNSGA-III 0.82 ~ 0.06 ~ 0.90 ~ 0.51 ~ 0.90 ~ 0.06 ~

AGEMOEA 0.22 ~ 0.01 + 0.90 ~ 0.74 ~ 0.06 ~ 0.90 ~

NSDE 0.35 ~ 0.90 ~ 0.67 ~ 0.03 + 0.82 ~ 0.22 ~

NSDER 0.59 ~ 0.90 ~ 0.51 ~ 0.67 ~ 0.12 ~ 0.67 ~

Table 45.   Summary of the p-value of the posthoc_nemenyi_friedman test evaluated over all runs (Crossover). 
a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically significantly better, 
equal, and worse than the second approach.

Algorithm

Crossover

Uniform real_sbx

Hybrid-cvtol 
vs. BU

Hybrid-cvtol 
vs. Without 
BU

BU vs. 
Without BU

Hybrid-cvtol 
vs. BU

Hybrid-cvtol vs. 
Without BU

BU vs. 
Without BU

p-value ha p-value h p-value h p-value h p-value h p-value h

NSGA-II 0.45 ~ 0.03 + 0.59 ~ 0.45 ~ 0.03 + 0.59 ~

NSGA-III 0.51 ~ 0.06 ~ 0.67 ~ 0.82 ~ 0.12 ~ 0.51 ~

UNSGA-III 0.67 ~ 0.12 ~ 0.67 ~ 0.82 ~ 0.06 ~ 0.35 ~

AGEMOEA 0.28 ~ 0.02 + 0.67 ~ 0.22 ~ 0.01 + 0.67 ~

NSDE 0.005 + 0.67 ~ 0.12 ~ 0.005 0.51 ~ 0.22 ~

NSDER 0.51 ~ 0.06 ~ 0.67 ~ 0.35 ~ 0.013 0.51 ~
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•	 By boosting the optimization process, the hybrid method finds the first and whole populations much faster 
than the classic BU and without BU methods for most problems (i.e., the single- or multi-objective optimi-
zation problems of this paper). Moreover, regarding the car side impact design problem, the hybrid method 
obtained good diversity, whereas without the BU method searched for solutions in a specific feasible space.

•	 For some case studies, although the hybrid method resulted in the same (or close-to-final) solution as the 
two other methods, it requires fewer FEs to converge to a solution.

•	 Compared to unconstrained optimization problems, constrained optimization problems are more challenging 
since many infeasible regions appear in the search space (meaning the hit ratio is low). This makes solving a 
constrained problem more challenging, especially highly constrained problems that can lead to difficulties 
such as convergence-, diversity-, and feasibility-hardness. Therefore, finding just one feasible solution is a 
significant achievement. The primary goal of the BU method is to minimize the search space by narrowing 
down the variable range and eliminating infeasible options. To compare the effectiveness of the proposed 
approach, the first feasible solution found by different methods is compared to one another, and the whole 
population is tracked against generations. The hybrid method uses this philosophy to switch the optimiza-
tion process and avoid reaching premature convergence. On the other hand, once the whole feasible area is 
found by the BU method, the final solution (global) could be achieved with fewer FEs in a reasonable time.

•	 Regarding the multi-objective car side impact design problem, the hybrid approach works significantly bet-
ter than without the BU method when incorporated in the employed multi-objective algorithms. It is worth 
mentioning that although there is no significant difference in the final HV values between the hybrid and 
BU methods, as mentioned earlier, the hybrid method could achieve the final solution in fewer FEs.

•	 In scenarios where explicit formulation of constraints is challenging, the use of surrogate models, also known 
as metamodels, proves to be a valuable solution. Surrogate models have demonstrated effectiveness in situ-
ations where deriving explicit formulations for constraints is impractical. These models serve as approxi-
mations of intricate simulations, providing an efficient means to evaluate constraints during optimization 
without the computational overhead of running resource-intensive simulations. For instance, consider opti-
mization problems associated with finite element models, such as those involving nodal displacements and 
bar stresses in truss optimization. In these cases, surrogate models can be strategically trained to emulate the 
intricate behavior observed in simulation results. This approach becomes particularly advantageous when 
the direct formulation of these constraints proves to be impractical due to their complexity or reliance on 
computationally expensive procedures.

In EAs, sampling and crossover are critical factors that can strongly affect convergence speed and are often 
used in noisy optimization problems where reducing the negative impact of noise is crucial. Moreover, sampling 
is a popular strategy for dealing with noise. Therefore, experiments with different sampling operators, includ-
ing real random sampling, Latin hypercube sampling, and two different real-SBX and uniform crossovers, were 
conducted to reduce the noise impact.

Limitations
Although this study provides valuable insights into optimization problems, there are certain limitations to this 
work. One significant limitation of this work lies in the relatively small size of variables in the problems. It should 
be noted that this study aims to contribute by addressing a specific aspect of the optimization problem. In this 
study, the benchmark libraries have not been used and some specific problems with solvable constraints with 
respect to at least one variable have been used. While the limited number of variables in our optimization prob-
lems may restrict the immediate applicability of our findings to large-scale size problems, it is clear the insights 
gained from this research serve as a valuable foundation for further research in the field.

Another limitation of this study is related to the experimental section, where the algorithms compared with 
the proposed algorithm are not the most recent. It is important to note that the aim of this work is not focused on 
proposing and developing state-of-the-art algorithms; rather, the advancement of constraint handling techniques 

Table 46.   Summary of the p-value of the posthoc_nemenyi_friedman test evaluated over all runs (Crossover). 
a Posthoc_nemenyi_friedman: +, ~, and – presents the first method performs statistically significantly better, 
equal, and worse than the second approach.

Algorithm

Crossover

Uniform real_sbx

Hybrid-ftol 
vs. BU

Hybrid-ftol 
vs. Without 
BU

Hybrid-cvtol 
vs Hybrid-
ftol

Hybrid-ftol 
vs. BU

Hybridfvtol 
vs. Without 
BU

Hybrid-cvtol 
vs Hybrid-
ftol

p-value ha p-value h p-value h p-value h p-value h p-value h

NSGA-II 0.12 ~ 0.003 + 0.87 ~ 0.12 ~ 0.003 + 0.87 ~

NSGA-III 0.22 ~ 0.01 + 0.90 ~ 0.35 ~ 0.01 + 0.82 ~

UNSGA-III 0.12 ~ 0.005 + 0.67 ~ 0.82 ~ 0.06 ~ 0.90 ~

AGEMOEA 0.43 ~ 0.04 + 0.90 ~ 0.51 ~ 0.06 ~ 0.90 ~

NSDE 0.67 ~ 0.67 ~ 0.12 ~ 0.51 ~ 0.90 ~ 0.22 ~

NSDER 0.22 ~ 0.013 + 0.90 ~ 0.82 ~ 0.12 ~ 0.82 ~
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and the development of the BU approach are being concentrated on. Consequently, well-known algorithms 
such as NSGA-II in the analysis have been included. However, as a future study, it would be valuable to consider 
incorporating state-of-the-art algorithms to provide a more comprehensive evaluation of our proposed approach 
in comparison to the latest advancements in the field.

Moreover, while the current selection of repairing variables is designed to be applicable even in scenarios 
with multiple disjoint feasible regions, the evaluation of constraints can pose challenges in situations where the 
behavior is non-trivial. In such cases, alternative approaches to repairing variable selection, involving book-
keeping or linking of these disjoint feasible ranges, may be necessary. This intriguing aspect has been highlighted 
and it is proposed as a subject for future investigation, intending to delve deeper into the nuanced evaluation of 
constraints in conditions assessment.

Conclusion
This study presents an extension of the work proposed by6 for solving constrained optimization problems effi-
ciently. The proposed methods use an implicit constraint handling approach called boundary updating (BU), 
which focuses on directly handling constraints and is coupled with other explicit constraint-handling techniques 
(here, feasibility rules).

In this study, two augmented versions of the BU method were applied to single-objective, multi-objective, 
and many-objective constrained optimization problems, including benchmarks and real-world problems. To 
accomplish this goal, two thresholds are considered, each representing different switching method. In the initial 
method, the optimization process shifts to a state that does not involve the BU approach once constraint viola-
tions reach zero. In the second approach, the optimization process enters a phase without BU methods when 
there is no longer any observed change in the objective space. For single-objective constrained optimization 
problems, popular algorithms like GA, DE, ES, SRES, and BRKGA were employed, and NSGA-II, a renowned 
algorithm, was used for bi-objective problems. For the multi-objective constrained optimization problems, 
NSGA-III, UNSGA-III, and AGEMOEA were applied. The results show that the hybrid approach performs 
significantly better than with- and without the BU methods, and can find better solutions with fewer iterations.

As a future study, it is suggested that the proposed BU method be coupled with other constraint-handling 
techniques, for example different types of penalty methods with different objective functions. Also, additional 
test problems in the literature, such as many-objective and dynamic functions, could be considered for further 
validating the proposed hybrid approach. After BU generalization, it can also be applied to benchmark libraries 
such as CEC, NEVERGRAD, BBOB, GNBG, and DIRECTGOLib. Although BU is not defined for any specific 
optimization algorithms, implementing BU to a wider range of optimization algorithms can be investigated in 
another future study. Moreover, as a prospective avenue for future research, exploring the applicability of the 
proposed approach to constrained problems featuring multiple disconnected regions is a promising direction. 
Many constrained optimization scenarios exhibit this characteristic, with only certain regions potentially close 
to the true optimum. Investigating the effectiveness and adaptability of our approach in addressing such com-
plex problem structures holds significant potential for enhancing the robustness and versatility of the proposed 
methodology. This important consideration will be a key focus in our forthcoming studies.

Data availability
All data used in this study are simulated and not publicly available. The datasets were generated solely for the 
purpose of conducting the research outlined in this manuscript. Simulated data files are not deposited in any 
public repository or third-party platform. However, upon reasonable request, and subject to any applicable 
restrictions, the corresponding author can provide the simulated data used in this study. Also, our code has been 
executed using the open-source Python library, Pymoo (https://​pymoo.​org/​index.​html) and Pymoode (https://​
pymoo​de.​readt​hedocs.​io/​en/​latest/).

Appendix
G01 formulation:

S.t.

f1(x) = 5× (x1 + x2 + x3 + x4)− 5×
(

x21 + x22 + x23 + x24
)

(39)−(x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13)

(40)g1(x) = 2× x1 + 2× x2 + x10 + x11 ≤ 10

(41)g2(x) = 2× x1 + 2× x3 + x10 + x12 ≤ 10

(42)g3(x) = 2× x2 + 2× x3 + x11 + x12 ≤ 10

(43)g4(x) = −8× x1 + x10 ≤ 0

(44)g5(x) = −8× x2 + x11 ≤ 0

https://pymoo.org/index.html
https://pymoode.readthedocs.io/en/latest/
https://pymoode.readthedocs.io/en/latest/
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Car-side problem formulation:

Speed reducer formulation:

(45)g6(x) = −8× x3 + x12 ≤ 0

(46)g7(x) = −2× x4 − x5 + x10 ≤ 0

(47)g8(x) = −2× x6 − x7 + x11 ≤ 0

(48)g9(x) = −2× x8 − x9 + x12 ≤ 0

(49)0 ≤ x1 · · · x9 ≤ 1, 0 ≤ x10, x11, x12 ≤ 100, 0 ≤ x13 ≤ 1

(50)f1(x) = 1.98+ 4.90× x1 + 6.67× x2 + 6.98× x3 + 4.01× x4 + 1.78× x5 + 2.73× x7

(51)g1(x) = 1.16− 0.3717× x2 × x4 − 0.00931×x2 × x10 − 0.484× x3 × x9 + 0.01343× x6 × x10

(52)g2(x) = 46.36− 9.9× x2 − 12.9× x1 × x8 + 0.1107× x3 × x10

(53)
g3(x) = 33.86+ 2.95× x3 + 0.1792× x10 − 5.057× x1 × x2 − 11.0× x2 × x8 − 0.021× x5

× x10 − 9.98× x7 × x8 + 22.0× x8 × x9

(54)
g4(x) = 28.98+ 3.818× x3 − 4.2× x1 × x2 − 5.0207× x5 × x10 + 6.63× x6 × x9 − 7.7× x7 × x8 + 0.32× x9 × x10

(55)

g5(x) = 0.261− 0.0159× x1 × x2 − 0.188× x1 × x8 − 0.019× x2 × x7 + 0.0144× x3 × x5 + 0.0008757

× x5 × x10 + 0.08045× x6 × x9 + 0.00139× x8 × x11 + 0.00001575× x10 × x11

(56)

g6(x) = 0.214+ 0.00817× x5 − 0.0131× x1 × x8 − 0.0704× x1 × x9 + 0.03099× x2

× x6 − 0.018× x2 × x7 + 0.0208× x3 × x8 + 0.121× x3 × x9 − 0.00364× x5

× x6 + 0.0007715× x5 × x10 − 0.0005354× x6 × x10 + 0.00121× x8

× x11 + 0.00184× x9 × x10 − 0.02× x
2
2

(57)
g7(x) = 0.74− 0.61× x2 − 0.163× x3 × x8 + 0.001232× x3 × x10 − 0.166× x7 × x9 + 0.227× x22

(58)
g8(x) = 4.72− 0.5× x4 − 0.19× x2 × x3 − 0.0122× x4 × x10 + 0.009325× x6 × x10 + 0.000191× x211

(59)
g9(x) = 10.58− 0.674× x1 × x2 − 1.95× x2 × x8 + 0.02054× x3 × x10 − 0.0198× x4 × x10 + 0.028× x6 × x10

(60)
g10 = 16.45− 0.489× x3 × x7 − 0.843× x5 × x6 + 0.0432× x9 × x10 − 0.0556× x9 × x11 − 0.000786× x211

(61)
0.5 ≤ x1, x3, x4 ≤ 1.5, 0.45 ≤ x2 ≤ 1.35, 0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6, x7 ≤ 1.2, 0.19 ≤ x8, x9 ≤ 0.35,−30 ≤ x10, x11 ≤ 30

(62)
minz = 0.785× x1 × x

2

2 × (3.33× x
2

3 + 14.9334× x3 − 43.0934)− 1.508× x1

× (x26 + x
2

7)+ 7.4777× (x36 + x
3

7)+ 0.7854× (x4 × x
2

6 + x5 × x
2

7)

(63)S.t.

(64)27/(x1 × x22 × x3) ≤ 1

(65)397.5/x1 × x22 × x23 ≤ 1

(66)1.93× x34/x2 × x3×x46 ≤ 1

(67)1.93× x35/(x2 × x3 × x47) ≤ 1

(68)

√

(

745×
x4

x2 × x3

)2

+ 1.69× 107/(110× x36) ≤ 1
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OSY formulation:

BNH formulation:

Cantilevered beam design problem:

(69)

√

(

745×
x5

x2 × x3

)2

+ 1.575× 108/(85× x37) ≤ 1

(70)(x2 × x3)/40 ≤ 1

(71)(5× x2)/x1 ≤ 1

(72)x1/(12× x2) ≤ 1

(73)(1.5× x6 + 1.9)/x4 ≤ 1

(74)(1.1× x7 + 1.9)/x5 ≤ 1

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,

(75)5.0 ≤ x7 ≤ 5.5

(76)minf1(x) = −[25× (x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2]

minf2(x) = x21 + x22 + x23 + x24 + x25 + x26

(77)S.t.

(78)C1(x) = x1 + x2 − 2 ≥ 0

(79)C2(x) = 6− x1 − x2 ≥ 0

(80)C3(x) = 2− x2 + x1 ≥ 0

(81)C4(x) = 2− x1 + 3× x2 ≥ 0

(82)C5(x) = 4− (x3 − 3)2 − x4 ≥ 0

(83)C6(x) = (x5 − 3)2 + x6 − 4 ≥ 0

(84)0 ≤ x1, x2, x6 ≤ 10 · · · 1 ≤ x3, x5 ≤ 5 · · · 1 ≤ x4 ≤ 6

(85)minf1(x) = 4× x21 + 4× x22

(86)minf2(x) = (x1 − 5)2 + (x2 − 5)2

(87)S.t.

(88)C1(x) = (x1 − 5)2 + x22 ≤ 25

(89)C2(x) = (x1 − 8)2 + (x2 + 3)2 ≥ 7.7

(90)0 ≤ x1 ≤ 5 · · · 0 ≤ x2 ≤ 3

(91)Minf1(x) = 100× (x5 × x6 + x7 × x8 + x9 × x10 + x1 × x2 + x3 × x4)

(92)Minf2(x) = 10000× (
244

x5 × x36
+

148

x7 × x38
+

76

x9 × x310
+

28

x1 × x32
+

4

x3 × x34
)
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Subject to

Multi-objective car side formulation:

(93)g1(x) = 10.7143−
x5 × x26
1000

≤ 0

(94)g2(x) = 8.5714−
x7 × x28
1000

≤ 0

(95)g3(x) = 6.4286−
x9 × x210
1000

≤ 0

(96)g4(x) = 4.2857−
x1 × x22
1000

≤ 0

(97)g5(x) = 2.1429−
x3 × x24
1000

≤ 0

(98)g6(x) = x6 − 20× x5 ≤ 0

(99)g7(x) = x8 − 20× x7 ≤ 0

(100)g8(x) = x10 − 20× x9 ≤ 0

(101)g9(x) = x2 − 20× x1 ≤ 0

(102)g10(x) = x4 − 20× x3 ≤ 0

(103)xl = [1, 30, 2.4, 45, 2.4, 45, 1, 30, 1, 30]

(104)xu = [5, 65, 3.1, 60, 3.1, 60, 5, 65, 5, 65]

(105)
f1(x) = 1.98+ 4.9× x1 + 6.67× x2 + 6.98× x3 + 4.01× x4 + 1.78× x5 + 0.00001× x6 + 2.73×x7

(106)f2(x) = 4.72− 0.5× x4 − 0.19× x2 × x3

(107)
f3(x) = 0.5× (10.58− 0.674× x1 × x2 − 0.67275× x2 + 16.45− 0.489× x3 × x7 − 0.843× x5 × x6

(108)g1(x) = 1.16− 0.3717× x2 × x4 − 0.0092928× x3 ≤ 1

(109)
g2(x) = 0.261− 0.0159× x1 × x2 − 0.06486× x1 − 0.019× x2 × x7 + 0.0144× x3 × x5 + 0.0154464× x6 ≤ 0.32

(110)
g3(x) = 0.214+ 0.00817× x5 − 0.045195× x1 − 0.0135168× x1 + 0.03099× x2 × x6 − 0.018

× x2 × x7 + 0.007176× x3 + 0.023232× x3 − 0.00364× x5 × x6 − 0.018× x
2
2 ≤ 0.32

(111)g4(x) = 0.74− 0.61× x2 − 0.31296× x3 − 0.031872× x7 + 0.227× x22 ≤ 0.32

(112)g5(x) = 28.98+ 3.818× x3 − 4.2× x1 × x2 + 1.2729× x6 − 2.68065× x7 ≤ 32

(113)g6(x) = 33.86+ 2.95× x3 − 5.057× x1 × x2 − 3.795× x2 − 3.4431× x7 + 1.45728 ≤ 32

(114)g7(x) = 46.36− 9.9× x2 − 4.4505× x1 ≤ 32

(115)g8(x) = 4.72− 0.5× x4 − 0.19× x2 × x3 ≤ 4

(116)g9(x) = 10.58− 0.674× x1 × x2 − 0.672× x2 ≤ 9.9
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