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A hybrid swarm intelligence 
algorithm for region‑based image 
fusion
Rohit Salgotra 1,2,4, Amanjot Kaur Lamba 3, Dhruv Talwar 3, Dhairya Gulati 3 & 
Amir H. Gandomi 4,5*

This paper proposes a novel multi‑hybrid algorithm named DHPN, using the best‑known properties 
of dwarf mongoose algorithm (DMA), honey badger algorithm (HBA), prairie dog optimizer (PDO), 
cuckoo search (CS), grey wolf optimizer (GWO) and naked mole rat algorithm (NMRA). It follows an 
iterative division for extensive exploration and incorporates major parametric enhancements for 
improved exploitation operation. To counter the local optima problems, a stagnation phase using 
CS and GWO is added. Six new inertia weight operators have been analyzed to adapt algorithmic 
parameters, and the best combination of these parameters has been found. An analysis of the 
suitability of DHPN towards population variations and higher dimensions has been performed. 
For performance evaluation, the CEC 2005 and CEC 2019 benchmark data sets have been used. A 
comparison has been performed with differential evolution with active archive (JADE), self‑adaptive 
DE (SaDE), success history based DE (SHADE), LSHADE‑SPACMA, extended GWO (GWO‑E), jDE100, 
and others. The DHPN algorithm is also used to solve the image fusion problem for four fusion quality 
metrics, namely, edge‑based similarity index ( QAB/F ), sum of correlation difference (SCD), structural 
similarity index measure (SSIM), and artifact measure ( NAB/F ). The average QAB/F

= 0.765508 , 
SCD = 1.63185 , SSIM = 0.726317 , and NAB/F

= 0.006617 shows the best combination of results 
obtained by DHPN with respect to the existing algorithms such as DCH, CBF, GTF, JSR and others. 
Experimental and statistical Wilcoxon’s and Friedman’s tests show that the proposed DHPN algorithm 
performs significantly better in comparison to the other algorithms under test.
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Over the last three decades, several natural phenomena have been used to formulate new mathematical gen-
eralizations for solving optimization problems including medical  imaging1–3, robotics, business management, 
mathematical  science4,5,  segmentation6–10,  clustering11, feature  selection12–16, among  others17–19. These algorithms 
are used because of their simple implementation and low computational complexity. Apart from that, the algo-
rithms are faster in convergence and have fewer parameters and better exploration (expl) as well as exploitation 
(expt) properties. The algorithms include swarm intelligent algorithms (SIAs) and evolutionary algorithms (EAs). 
EAs consists of genetic algorithm (GA)20, memetic algorithm (MA)21, scatter search (SS)22, differential evolution 
(DE)23, stochastic fractal search (SFS)24, among others. These algorithms are among the earliest known algo-
rithms in this domain and use the theory of evolution. SIAs, on the other hand, follow swarming and are based 
on social groupings such as bird flocking, colonies of insects, herds of animals, and others. Some of the major 
algorithms of this group include particle swarm optimization (PSO)25, symbiotic organisms search (SOS)26, 
sandpiper optimization algorithm (SOA)27, red fox optimization (RFO)28, golden eagle optimizer (GEO)29, grass-
hopper optimization algorithm (GOA)30, clouded leopard optimization (CLO)31, hermit crab shell exchange 
(HCSE)32, mud ring algorithm (MRA)33, seahorse optimizer (SHO)34, escaping bird search (EBS)35, and honey 
badger algorithm (HBA)36, among others.

Naked mole rat algorithm (NMRA) is a recently proposed  SIA37 and is applied to many domain research 
problems. It takes inspiration from the worker-breeder relationship of NMR’s found in nature. It is based on the 
mating of NMR’s and consists of two parts. The first part of the algorithm is the worker phase which consists of 
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arbitrary solutions to control expl operation, whereas the second part is the breeder phase which is intended for 
expt operation. The algorithm is simple in implementation, but for higher dimensions, it becomes very difficult 
to optimize the  results38. Apart from that, the algorithm still suffers from poor expl due to less randomization in 
the worker phase and there are chances of stagnation as well.

In the current article, a new hybrid variant of NMRA is proposed. This newly proposed algorithm uses a com-
bination of three new algorithms, namely  HBA36, dwarf mongoose algorithm (DMA)39 and Prairie dog optimizer 
(PDO)40. All of these algorithms are added in a specific manner to see which algorithm fits the best for which 
set of iterations. In general, we have used only those equations from these algorithms, which fit the best for our 
proposed approach. Here DMA, PDO and HBA-based equations are added to the worker phase of NMRA for 
enhanced expl operation. The exploitation operation of the basic NMRA is found to be highly exploitative and 
is kept intact. In order to deal with the stagnation problems, we introduce a new stagnation phase. Apart from 
the added advantages, the algorithm is made adaptive by using six different mutation/iw operators, including 
 chaotic41, exponential  decreasing42, linearly decreasing,  oscillating43, simulated  annealing44, and random. All of 
these modifications sum up to formulate the new algorithm.

In addition, the proposed hybrid algorithm is applied to the real-world problem of image fusion of infrared 
(IR) and visible (VIS) images. Image fusion is a process of merging two or more images that are obtained from 
various  sensors45,46. This is done to obtain a highly informative image that contains details which cannot be 
comprehended by analysing its source images independently. VIS images tend to have superior visual quality 
and precision background attributes. However, IR images have more resilience against varying light levels and 
environmental  deterioration47. Therefore, this work employs the proposed algorithm as an optimization strategy 
to perform region-based image fusion of IR and VIS images. Here, DHPN is used to perform segmentation of 
the VIS image to extract its salient features. The derived features are utilized for weight map computation of both 
VIS and IR images. These weight map functions are further used to form the final fused image.

The major highlights of this work are presented as:

• The best-known equations of four new algorithms, namely PDO, DMA, HBA, and NMRA, are used to for-
mulate a new multi-hybrid algorithm.

• The equations of PDO, DMA, and HBA are incorporated into the worker phase of NMRA, for improved 
exploration operation, whereas the exploitation phase is kept same.

• The parameters of the proposed algorithm are made self-adaptive in nature by using six different mutation/iw 
operators. These operators are chosen to perform better exploration and exploitation along with a balanced 
operation.

• A new stagnation phase is introduced to help the algorithm come out of local optima stagnation and find the 
near-optimal solution.

• To test the performance of the proposed algorithm, CEC 2005 and CEC 2019 benchmark problems are used. 
These are challenging problems, and any algorithm performing well on these problems can be considered as 
a potential candidate for future research.

• Apart from these benchmark datasets, the proposed algorithm is further used for the optimization of real-
world IR and VIS images. In the current study, we perform region-based image fusion of both IR and VIS 
images using the proposed DHPN algorithm.

Excluding introduction, the paper has seven sections. The second section provides details about the major 
algorithms used for formulating the proposed algorithm and a summary of literature. Section three details the 
requirement of the proposal, basic motivation, and extended novelty of the proposed work. We provide detailed 
results of the numerical benchmarks in Sect. 4. We have used two sets of benchmarks, namely CEC  200548 and 
CEC 2019  benchmarks49. For experimental tests, we have used various new and hybrid algorithms, including 
 JADE50, LSHADE-SPACMA51, and success-history based adaptive DE (SHADE)52 among others. A detailed para-
metric study, along with dimension size and population size (pop size) variability, is also checked and tested to 
see the applicability of the proposed work for higher dimension problems. In Sect. 5, we have used the proposed 
optimization algorithm for region-based image fusion of IR and VIS images. In the sixth section, a detailed 
summary of the results is presented. This section also includes some drawbacks of the proposed algorithm, 
along with some future insights. Conclusions are drawn and some future directions are given in the final section.

Basics of nature‑inspired algorithms
This section provides details on the algorithms used as the basis for the proposed algorithm.

Naked mole‑rat algorithm
NMRA was developed using the data from naturally occurring mating behaviours of species of naked mole-rats 
(NMRs). NMRA is broken down into three phases. Apart from the introduction, the worker phase is known 
for expl operation, whereas the breeder phase is meant for expt. Both these phases are shared by practically all 
nature-inspired algorithms. The essential NMRA’s mathematical formulations are as follows:

Initialization: Initial NMR population is defined in this phase with dimensional vector D in [1, 2, ..., n] inter-
val. Here, n stands for the best possible pop size and D means various parameter combinations of the test issue. 
Each NMR’s initialization is shown by:

(1)Ni,j = Nmin,j + r × (Nmin,j − Nmax,j)
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where in the intervals [1, 2, ..., n] and [1, 2, ..., D], i and j are defined. Nmin,j is the lower boundary and Nmax,j is 
the upper boundary of the problem under investigation. r is the random number between [0, 1] with uniform 
distribution.

Worker phase: Here, the worker NMRs’ fitness is assessed, and according to the result, it may be qualified to 
join the breeder’s. A chance of mating exists if the worker NMRs join the breeder’s. Utilizing prior knowledge, 
the worker NMR solution is computed. The workers are generated using,

where oti for the t th iteration is the solution of the i th worker, and ot+1
i  is the new solution produced by lever-

aging the prior solution. The arbitrarily solutions selected are oti , xtp and xtq . The mating factor � has a uniform 
distribution and falls between [0, 1].

Breeder phase: To mate with the queen or continue breeding, NMRs in breeder groups must become more 
physically fit. The best breeders nbest update their position according to the probability of breeding (bp). Here, 
it is important to keep in mind that the fitness of a certain section of breeders does not improve over time and, 
hence, is shifted to the worker group. The new solutions in this phase are given by

where yti  is the result of the i th breeder during the t th iteration, � denotes a parameter that regulates mating 
and yt+1

i  is the new breeder produced in the subsequent iteration. Initially set to 0.5, the value of bp can be any 
number between [0,1].

Grey wolf optimizer
As the name suggests, GWO is inspired by grey wolves. All the individuals have a strict dominance hierarchy 
categorized as beta, alpha, delta and omega wolves. The mathematical model of GWO is given as:

Social hierarchy: The appropriate solution for each generation is considered as alpha (α) wolf. Respectively, 
beta (β) is the second and third is delta (δ) ; and the rest are omegas (ω).

Encircling prey: Grey wolf ’s ability is to recognize prey and encircle it. Mathematically, this behaviour is 
formulated as

where t represents the iteration counter, xtp and xt denote the position of prey and grey wolf, respectively. The 
values of R and P are as:

where a ∈ [2, 0] and r1 , r2 ∈ [0,1].
Hunting: It is done by α , β and δ . Guided by α , here β and δ might also participate in hunting occasionally. 

Thus, the remaining two agents ( ω wolves) will also participate in hunting, and their position will be decided 
according to the positions of α , β , δ . The mathematical expression used in this phase is:

Attacking the prey (expt phase): At the very last stage, the prey is attacked as per the hunting mechanism. The 
stage of a first contains, 2 which is now been decreased to 0. It will continuously and correspondingly affect the 
parameter A as per the Eq. (6). Thus, the effect of the equation will affect the value A, which will be in the range 
of [−1,1]. As per the equation, the search for the next prey will definitely be done. Thus, for |A| < 1 , the wolves 
will forcefully attack.

Searching prey (expl phase): For the search for prey algorithm, gray wolves must diverge their directions, which 
means that it has two options. Mathematically, this includes, A ≤ −1 or A > 1 . These two options will allow the 
algorithm to go further. In the situation of |A| > 1 the wolves get separated and find new prey. C helps the algorithm 
to control expl by assigning random weights and hence following a random behaviour for avoiding local optima.

Cuckoo search
CS draws inspiration from nature and can handle challenging optimization issues. The main inspiration for this 
method came from the parasitic behavior of the natural cuckoo species. CS consists primarily of global (expl) 
and local search (expt), to obtain the optimum solution.

(2)xt+1
i = xti + �(xtp − xtq)

(3)yt+1
i = (1− �)yti + �(nbest − yti )

(4)D = |P.xtp − xt |

(5)xt+1 = xtp − R.D

(6)R = 2a.r1 − a

(7)P = 2.r2

(8)Dα = |Y1.xα − x|; Dβ = |Y2.xβ − x|; Dδ = |Y2.xδ − x|

(9)o1 = xα − G1.(Dα); o2 = xβ − G2.(Dβ); o3 = o1 = xδ − G3.(Dδ)

(10)xt+1 =
o1 + o2 + o3

3
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Global search phase: This phase focuses on the expl phase of the CS algorithm and makes the assumption that 
a cuckoo only lays a single egg. With this supposition, a new solution ot+1

i  was evolved, employing Lévy flights 
for the i th cuckoo. The solution is given by:

where oti denotes the solution of i th cuckoo at t th iteration, ot+1
i  represents the next solution and xbest is the 

current best solution. Here, an arbitrary component of the Lévy distribution’s flight model is applied. This part, 
which basically imitates the cuckoo species’ flight path, is characterized as:

where � is the expected outcome of an event.
Local search phase: The algorithm’s expt actions are reflected in this phase. The solution ot+1

i  is built in this 
phase on the basis of two random solutions xtp , xtq from the total population. For this stage, the following equa-
tion will produce a solution:

where ǫ ∈ [0, 1].

Honey badger algorithm
Honey badger (HB) is a fluffy black and white mammal that lives in semideserts and rain forests in Southwest 
Asia, Africa, and the Indian subcontinent. HBA mimics a HB’s foraging behaviour. The HB either smells and 
digs to find food sources, or it follows a honey-guide bird. The first situation is referred to as digging and honey 
mode. Previously, it senses smell to roughly localise the prey; then chooses the best digging spot so as to capture 
it. In the latter form, it uses a honeyguide to locate a beehive directly.

Algorithmic Steps: Theoretically, HBA includes both the expl and expt stages.

Population = 







o11 o12 o13 ... o1D
o21 o22 o23 ... o2D
... ... ... ... ...
on1 on2 on3 ... onD







i th position of HB oi = [o1i , o
2
1, ...., o

D
i ]

1) Initialization phase: Set HBs and their locations to their initial values based on Eq. (14).

where r1 ∈ [0, 1] , oi is i th HBs position, lbi is lower bound and ubi is upper bound.
2) Intensity(I): This is the difference between prey and HB and is given by

where S defines source strength and gi is the prey’s and i th HB’s distance.
3) Density Factor (α) : To guarantee a transition from expl to expt, the density factor regulates randomization.

where tmax is the maximum iterations, C ≥ 2
4) Escaping Local Optimum: The three steps that follow are utilized to leave local optima zones by employing 

a flag H that modifies the search for higher expl.
5) Updating Positions: It constitutes two phases;
6) Digging Phase: The intensity of the prey’s smell I, HB’s and the prey di distance, and the influence of α are all 

important in the digging phase for HBs.

where xprey signify the location of prey; β ≥ 1 (default = 6) is HBs capability to search food; gi denotes the 
distance between the i th HB and prey; r3, r4, r5 ∈ [0, 1].

7) Honey Phase: We can model the scenario where an HB pursues a honeyguide bird to a beehive as;

where xnew is the new position of HB, and xprey is prey location.

(11)ot+1
i = oti + α ⊗ Levy(�)(xbest − oti )

(12)Levy ∼ µ = t−�, (1 < � ≤ 3)

(13)xt+1
i = oti + α ⊗ (ǫ)⊗ (xtp − xtq)

(14)xi = lbi + r1 ∗ (ubi − lbi)

(15)Ii = r2 ∗ S/4πg
2
i

(16)S = (oi − oI+1)
2

(17)gi = xprey − oi

(18)α = C ∗ exp(−t/tmax)

(19)xnew = xprey +H ∗ I ∗ β ∗ xprey +H ∗ α ∗ r3 ∗ gi ∗ |cos(2πr4) ∗ [1− cos(2πr5]|

(20)xnew = xprey +H ∗ r7 ∗ α ∗ gi
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Dwarf mongoose algorithm
The tiniest carnivore found in Africa is the dwarf mongoose (DM). Due to their territorial nature, DM’s frequently 
mark horizontal objects in their domain with their cheek and anal glands.

The suggested DMO algorithm consists of the DM’s compensatory behavioural adaptation. Limiting the size 
of the prey, social behaviour (babysitters), semi-nomadic living, and other adaptations are examples of compen-
satory behaviour. The model consists of DMs as scouts, alpha group, and babysitters. The DMO algorithm starts 
with initialising the candidate population of the DMs (X)

where O is the populations generated randomly, mi,j signifies the location of the j th dimension of the i th member, 
n and D denote the pop size and dimension, respectively.

The proposed DMO algorithm’s optimization processes are divided into three phases.

Alpha group
The alpha female ( α ) is chosen according to the probability calculated for each population fitness.

If bs represents the number of babysitters, then n− bs gives the DMs in the alpha group. Every DM sleeps in the 
initial sleeping mound, which is set to φ.

where φ ∈ [−1, 1]
The sleeping mound is given as smi

The sleeping mound’s average value is provided by;

Once the criterion is satisfied, DMO hops to the scout phase, where another source is assessed.

Scout group
The DMs are known to avoid returning to the former sleeping mound, so the scouts search for an adjacent one 
to ensure expl. This is modelled as

where rand denotes a random number in [0, 1], CD = 
(

1− iter
Maxiter

)

(

2 iter
Maxiter

)

 regulates the collective-volatile 
movement of DM’s, and is decreased linearly. M =

∑n
i=1

oi∗smi
oi

 determines the movement of the DM towards 
the new food source.

The babysitters
The group’s subordinate members who stay with the babies are typically rotated on a regular basis as the babysit-
ters, allowing the alpha to guide the other group members. She usually comes back for nursing in the afternoon/
evening. Total babysitters vary with pop size; and have an impact on DMO by decreasing the pop size according 
to the preset percentage. The exchange parameter helps reset the information between previous and current 
family members.

Prairie dog optimization algorithm
Prairie dogs (PDs) are quite sociable and prefer to live together underground in large colonies. A colony usually 
houses 15-26 family units or coteries, with each coterie residing into its respective ward. The functionality and 
complexity of the subunits of a colony are same irrespective of the colony’s size.

In  PDO40, PD populations are search agents, whereas their location represents the possible solution. The 
mathematical model of PDO is described below:

Initialization
Consider n number of PD in a coterie where each PD belongs to m coterie. The location of all coteries in a colony 
can be represented by a matrix CO given as:

(21)O =







m1,1 m1,2 ... m1,D−1 m1,D

m2,1 m2,2 ... m2,D−1 m2,D

... ... mi,j ... ...
mn,1 mn,2 ... mn,D−1 mn,D







(22)α =
fiti

∑n
i=1 fiti

(23)oI+1 = oi + φ ∗ peep

(24)smi =
fiti+1 − fiti

max{fiti+1, fiti}

(25)ϕ =

∑n
i=1 smi

n

(26)oI+1 =

{

oi − CD ∗ phi ∗ rand ∗ [oi −M] if ϕi+1 > ϕi
oi + CD ∗ phi ∗ rand ∗ [oi −M] else
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where COi,j denotes the jth dimension of the ith coterie. The location of all the PDs in a coterie can be repre-
sented by:

where LOi,j denotes the jth dimension of the ith PD such that n ≤ m . If U(0, 1) denotes a random number with 
a uniform distribution, then each coterie and PD location is given by:

where ubj =
UBj
m  and lbj =

LBj
m  , such that UBj and LBj represent the upper and lower bounds of the jth dimen-

sion, respectively.

Fitness function evaluation
The value of fitness function of each PD location in a coterie is calculated by feeding the optimal solution to the 
fitness function defined as

At each iteration, the fitness function values are evaluated for all PDs and stored as (n× 1) matrix. Here, each 
fitness value represents the food source quality, the ability to build new burrows, and the apt response to the 
predators.

Exploration
The exploration operation is carried in 0 < iter < T

4  and T4 ≤ iter < T
2  intervals. The first step in this phase is 

the movement of PDs of a coterie from the ward in search of food. The position updating for the search can be 
expressed as

where gLOBest
i,j  represents the globally best solution so far, ǫ denotes the food source alarm and Lévy(n) represents 

the Lévy(n) distribution. Here, ecLOBest
i,j  signifies the effect of current best solution which is defined as

where τ signifies the individual PD position difference. Also, the collective impact of all the PDs in the colony, 
CLOi,j , is given by

where rLOi,j is the random position of the ith PD in the jth dimension.
The second step is to evaluate the food quality along with the digging strength in order to build new burrows. 

The position updating for the building of a burrow can be expressed as

where DS denotes the digging strength as defined below

where s can be either -1 or 1 according to the odd or even current iteration, respectively.

(27)CO =







CO1,1 CO1,2 ... CO1,D−1 CO1,D

CO2,1 CO2,2 ... CO2,D−1 CO2,D

... ... COi,j ... ...
COm,1 COm,2 ... COm,D−1 COm,D







(28)LO =







LO1,1 LO1,2 ... LO1,D−1 LO1,D

LO2,1 LO2,2 ... LO2,D−1 LO2,D

... ... LOi,j ... ...
LOn,1 LOn,2 ... LOn,D−1 LOn,D







(29)COi,j = U(0, 1)× (UBj − LBj)+ LBj

(30)LOi,j = U(0, 1)× (ubj − lbj)+ lbj

(31)fit(LO) =

[

fit1(LO1,1 LO1,2 ... LO1,D−1 LO1,D)

fit2(LO2,1 LO2,2 ... LO2,D−1 LO2,D)

fitn(LOn,1 LOn,2 ... LOn,D−1 LOn,D)

]

(32)LO
j+1
i+1 = gLOBest

i,j − ecLOBest
i,j × ǫ − CLOi,j × Levy(n) ∀ 0 < iter <

T

4

(33)ecLOBest
i,j = gLOBest

i,j × τ +
LOi,j ×mean(LOn,m)

gLOBest
i,j × (UBj − LBj)+ τ

(34)CLOi,j =
gLOBest

i,j − rLOi,j

gLOBest
i,j + τ

(35)LO
j+1
i+1 = gLOBest

i,j × rLO × DS × Levy(n) ∀
T

4
≤ iter <

T

2

(36)DS = 1.5× s ×

(

1−
iter

Maxiter

)

(

2 iter
Maxiter

)
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Exploitation
In PDO, the exploitation mechanism is utilised to focus the search on promising locations identified in the 
previous phase. It is implemented according to the equations given below

where ρ represents the food source quality, rand is a random number between 0 and 1 and PR is the effect of 
predators which can be expressed as

Summary of literature
In the above sections, we have introduced the basic algorithms used for the formulation of the proposed algo-
rithm. Apart from the introduction of a new algorithm, the proposed algorithm has also been applied to CEC 
benchmarks and image fusion problems. A recent list of applications with some modified algorithms in presented 
in Table 1.

A more detailed review of region-based image fusion is given in Sect. 5. The literature discussed in this section 
provides some insights on the applicability of the recently introduced algorithms on image segmentation prob-
lems. A major research gap in most of the works discussed above is in the implementation part of the algorithms. 
It has been found in most of the literature that the algorithms proposed are either simple modifications in the 
basic algorithm, enhancements in the parameters or merely an adaptation in a certain section of the algorithm. 
There is very limited work on the actual modification aspects, or mainly hybridization of algorithms pertaining 
to image thresholding and segmentation problems. So in the present work, a multi-hybrid algorithm with adap-
tive properties is proposed. In the next section, extensive details on how the proposed algorithm is formulated 
and every minute detail on why’s and how’s of this proposal are formulated.

The proposed approach
Among the recently introduced algorithms, NMRA has been found to provide amazing expl and expt capabilities. 
The algorithm is highly reliable when compared with respect to the recently introduced CS, GWO, WOA and 
other algorithms. A comparison with the hybrid and enhanced versions shows that the algorithm has certain 
disadvantages too, and new improvements are required to make the algorithm self-sufficient in itself. One of the 
major disadvantages is the prevalence of poor expl operation of NMRA, which has been proved and highlighted 
in various recently introduced enhanced versions of  NMRA38. It was analysed that due to less randomness in 
the solution space of the worker phase, and hence local optima stagnation. However, it can be improved by the 
addition of new prospective equations in the general working phase of the algorithm, thus, enhancing its global 
search properties. Also, parameters need to be enhanced, and self-adaptivity must be ensured so that no amend-
ments are required. Based on this and the added advantages of new equations inspired by DMA, HBA, PDO, CS 

(37)LO
j+1
i+1 = gLOBest

i,j − ecLOBest
i,j × ρ − CLOi,j × rand ∀

Maxiter

2
≤ iter < 3

Maxiter

4

(38)LO
j+1
i+1 = gLOBest

i,j × PR × rand ∀ 3
Maxiter

4
≤ iter ≤ Maxiter

(39)PR = 1.5× (1−
iter

Maxiter
)
(2 iter

Maxiter
)
.

Table 1.  Recent literature on algorithms and their applications.

Reference no. Optimization algorithm used Application

Özbay4 Modified seahorse optimization algorithm Engineering design problems

Gharehchopogh and  Ibrikci6 Improved African vultures optimization algorithm Multi-level thresholding image segmentation

Krishna et al.11 K-means and PSO algorithm Clustering

Eluri and  Devarakonda12 Chaotic binary pelican optimization algorithm Feature selection

 Eluri and  Devarakonda14 Binary flamingo search algorithm and genetic algorithm Feature selection

 Abed-Alguni et al.15 Opposition-based sine cosine optimizer Feature selection

 Abed-Alguni et al.16 Improved binary djaya algorithm Feature selection

 Gharehchopogh et al.17 Dynamic harris hawk optimization algorithm Botnet detection in IoT

 Cheng and  Prayogo26 Symbiotic organisms search optimization algorithm Engineering design problems

 Kaur et al.27 Sandpaper optimization algorithm Engineering design problems

 Mohammadi-Balani et al.29 Golden eagle optimizer Engineering design problems

 Saremi et al.30 Grasshopper optimization algorithm Structural design problems

 Trojovská et al.31 Clouded leopard optimization algorithm Engineering design problems

 Salgotra et al.38 Hybrid algorithm Multi-level image thresholding

 Shahdoosti and  Tabatabaei53 Ant colony optimization algorithm MRI and pet/spect image fusion

 Panguluri and  Mohan54 PSO algorithm Thermal and VIS image fusion

 Oliva et al.55 Electromagnetism optimization Multi-level thresholding
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and GWO, a new multi-hybrid algorithm namely Dwarf Honey Parairie Naked mole-rat (DHPN) algorithm is 
proposed. The major highlights of this algorithm are

• Follows the basic structure of NMRA, and new modified equations are included in the worker phase. For 
the first one-fourth of iterations, basic NMRA equations are used, PDO-inspired equations are used for the 
second one-third of the iterations, for the third one-fourth of the iterations, DMA and for the final phase of 
iterations HBA, HBA-based equations are used.

• Equations of both CS and GWO are used in a hybrid manner, inspired by self-adaptive cuckoo search algo-
rithm (SACS)56, and are meant for updating the whole solution set if the algorithm gets stuck. That is, if the 
solution quality doesn’t improve for certain iterations, the stagnation phase is activated and hence serves as 
the best player for avoiding local optima stagnation.

• For adding self-adaptive properties, six different mutation operators are added to the basic random param-
eters of the DHPN algorithm. All these mutation operators have algorithms that have been exploited in the 
literature and more details are presented in subsequent subsections.

A detailed discussion of what’s, how and why’s of the requirement of the proposal is given in the next subsections.

What is the requirement of the proposal
In the recent literature, it has been found that new algorithms are being proposed and added to the expanding 
literature. However, the performance evaluation of these algorithms is limited to certain basic optimization 
algorithms only, and a comparison with respect to recent hybrid algorithms is missing. Even in some cases, the 
comparison is present, but enhanced search shows that there isn’t any significant improvement in the perfor-
mance of newly proposed algorithms. Another thing that has been pointed out in the literature is the prevalence 
of problem-based modification as pointed out by the no free lunch theorem (NFL)57. According to NFL, no 
algorithm is perfect for all problems and user-based enhancements are required to fit it to a certain domain 
research problem. This is because every optimization problem consists of a different scenario, including vari-
able dimension size, constrained or unconstrained nature, computational complexity, scalability, and others. 
The total number of local minima also poses a significant challenge to solving these problems. This provides us 
with enough evidence and motivation for the proposal of new algorithms. Apart from the generalized scenarios, 
NMRA also has the drawback of poor expl, and user-based modification is required to improve its expl proper-
ties. Why NMRA has poor expl?, it is because of the lesser random nature of the solutions and the problem of 
 stagnation38. Apart from these problems, the basic algorithm uses only random initialization of parameters, 
which makes it very difficult to identify which set of combinations fits the best for the used parameters. A simple 
constant value is employed in most cases, thus following constant step sizes and restricting the search of the 
algorithm to particular regions. Adding a new combination of mutation operators using self-adaptive formula-
tions makes the algorithm follow variable steps and provide excellent expl and expt properties. This provides us 
with enough motivation to propose a new prospective algorithm. In the present case, we present a novel DHPN 
algorithm based on the added properties of different algorithms and mutation operators. Modifications to the 
new equation are added in the global search or worker phase. The breeder phase is kept as such, and no equa-
tions are modified. More details on how the modifications have been added are provided in the next subsections.

Motivation behind the proposal
Based on the rise in hybridization among optimization researchers, some of the most successful results for com-
binatorial and practical problems have been achieved through hybrid algorithms. One of the earliest instances 
of algorithm combination involved simulated annealing, genetic algorithms, tabu search, descent local search, 
and evolutionary algorithms, yielding notable  outcomes58. The taxonomy of heuristic algorithms comprises 
hierarchical and flat classifications. The hierarchical level reduces the number of classes, while the flat level 
arranges techniques in an arbitrary order. In hierarchical taxonomy, low-level and high-level hybridization are 
distinguished. Low-level hybridization involves replacing a portion of the algorithm with another, whereas high-
level hybridization involves self-contained algorithms with no direct internal relationship. Further, low-level and 
high-level hybridizations are categorized as Relay and Teamwork hybridization. Relay hybridization employs 
multiple algorithms sequentially, with the output of one serving as the input for the next, akin to a pipelined 
operation. On the other hand, Teamwork hybridization employs several parallel cooperating algorithms, each 
conducting an independent search. Overall, these characteristics classify hybrid algorithms into four  types58.

• LRH : Low-level relay hybrid
• LTH : Low-level teamwork hybrid
• HRH : High-level relay hybrid
• HTH : High-level teamwork hybrid

In LRH, a single-solution algorithm incorporates an embedded algorithm. This approach is exemplified in the 
combination of simulated annealing with local search for solving the travelling salesman  problem59. LRH models 
typically balance exploration and exploitation operations by utilizing different algorithms. However, since heu-
ristics are often stronger in exploration than in exploitation, in LTH, one algorithm handles exploration while 
another tackles exploitation. For instance, Chu et al.60 proposed an LTH algorithm by integrating a generalized 
GA with tabu search for mutation and hill-climbing for crossover operations. On the other hand, HRH evaluates 
self-sufficient algorithms sequentially. In a study  by61, tabu search and simulated annealing were employed to 
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enhance the population generated by a GA over iterations. In HTH, several self-sufficient algorithms collaborate 
in parallel, each contributing to the search operation. For example, Cohoon and  Hegde62 applied a GA as the base 
algorithm, with sections of the population being evaluated using simulated annealing, genetic programming, 
evolution strategy, and tabu search to improve overall performance.

In this study, we propose a novel algorithm based on the LTH model. Our approach combines multiple algo-
rithms to execute the exploration operation, with each algorithm providing distinct solutions. These solutions 
are subsequently evaluated by another algorithm during the exploitation phase. Specifically, we employ equations 
inspired by PDO, DMA, HBA, and NMRA for the enhanced worker phase (exploration), while the exploita-
tion phase leverages breeder equations from NMRA. Within a single iteration, one set of equations, inspired by 
one algorithm, conducts the exploration operation, while the other set handles exploitation. After a predefined 
number of iterations, the first algorithm is substituted with a new one, gradually transitioning to a multi-hybrid 
approach. By utilizing a combination of algorithms and employing a teamwork strategy, our method falls within 
the LTH model. This approach, integrating two or more algorithms, facilitates effective exploration and exploita-
tion, enhancing the overall optimization process.

In a generalized algorithm, the aim is to conduct extensive exploration in the initial phases, gradually transi-
tioning towards increased exploitation, and finally emphasizing extensive exploitation in the later stages. In our 
approach, we utilize equations inspired by DMA, HBA, PDO, and NMRA for iterative search, while employ-
ing CS-GWO-based equations for the stagnation phase. Before implementing the multi-hybrid algorithm, a 
preliminary study is essential to determine which algorithms excel in exploration, exploitation, and facilitating 
the transition between the two. Thus, our study proposes a multi-hybrid algorithm that incorporates the most 
effective equations for exploration and exploitation. We divide the iterations into four distinct phases, with each 
phase employing a specific set of equations from one of the algorithms. Additionally, we consider the parameters 
of each algorithm to optimize the performance of the proposed new algorithm. This approach aims to leverage 
the strengths of different algorithms while ensuring an effective balance between exploration and exploitation 
throughout the optimization process.

The proposed approach
As already stated, the DHPN algorithm has the added advantages of PDO, DMA, HBA, and CS/GWO inspired 
self-adaptive cuckoo search (SACS)56. In this section, we deal with the detailed study of the proposal of the 
DHPN algorithm. It consists of five different phases, where initialization is the first phase, and the second worker 
phase incorporates some major changes and is the main phase. This phase provides excellent expl properties and 
incorporates major details using all the new algorithms under consideration. The next phase is the breeder phase, 
which has equations of NMRA. The fourth phase is meant for the selection of the best individuals over the course 
of iterations. A new phase inspired by the SACS algorithm is incorporated as a stagnation phase and is meant 
to improve the local search capabilities and also help to counter the local optima problems. A new subsection 
is added to analyse the parameters of the proposed algorithm. Details about the algorithm are presented below:

Initialization of the proposed DHPN algorithm
Initialization stands for the generation of randomized solutions for a D dimensional problem within a certain 
range defined by Nmin,j lower and Nmax,j upper bounds of the problem. The mathematical formulation is given by

where j ∈ [1, 2, ...,D] , i ∈ [1, 2, ..., n] , and r ∈ [0, 1].

Worker phase
The second and most interesting phase of the DHPN algorithm is the worker phase. It is for better expl properties 
and forms the core of the proposed algorithm. This phase is divided into four sub-phases.

a) Phase I: For Iterations. ≤ tmax/4 . The first phase of the worker group follows the same equations as used 
in the basic NMRA. These equations are based on two random solutions initialized within the search space. The 
two solutions are random, which makes the algorithm highly diverse in nature. This phase is mainly meant for 
explorative tendencies, and due to the presence of diverse solutions, we can achieve it conveniently. The math-
ematical equation is given by

where � is a self-adaptive parameter analysed in consecutive subsections.
b) Phase II: For tmax/4 < iterations ≤ tmax/2 . This section uses the  PDO40 algorithm for dedicated expl opera-

tion and is specifically meant for extensive global search. This search operation is to find solutions in close vicinity 
and in particular sections of the search space. The strategy is modelled using two equations of the PDO and is 
mathematically given by

(40)Ni,j = Nmin,j + r × (Nmin,j − Nmax,j)

(41)xt+1
i = xti + �(xtp − xtq)
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where nbest is the local best solution, oti is a current solution, l is the parameter of PDO and is made self-adaptive 
by using different mutation operators (discussed in consecutive sections), A is a random number.

c) Phase III: For tmax/2 < iterations ≤ tmax3/4 . This phase is controlled by DMA and is used for enhancing 
the expl operation with the advantages of expt operation. The DHPN algorithm uses a combination of expl and 
expt inspired scout DM phase for position update and is given by

rand = [0, 1] , and CF is made self-adaptive in nature using different mutation operators. More details on the 
added parameters is presented in consecutive subsections.

d) Phase IV: iterations > tmax3/4 . The final phase of iterations is controlled by using HBA. Here, digging phase 
and honey phase of HBA is used to formulate the basic equations of this phase. The mathematical formulation 
is given by

where di = xbest − oti is the distance to the best solution, β , andI is chosen as 1, α is a random control parameter, 
and it decreases over iterations to reduce the diversity, g is the major parameter of HBA and is optimized using 
a different set of mutation/iw operators. This parameter helps the search agents to change their direction for 
rigorous expl. Apart from that, the major reason for using the digging and honey phase of HBA is because of 
both expl and expt search in the basic equations.

Breeder phase
This phase is meant to provide better expt operation and is evaluated using the current best solutions. Apart 
from that, � controls the extent of expt in the breeder phase. The major reason why this phase is kept as such is 
because of the inherent properties of a limited number of breeders that remain concentrated around the search 
space, and hence corresponds to better potential solutions around those sections. In a general scenario, the search 
agents look for potential solutions that are close to the current/previous best. This helps to exploit the search 
space efficiently and, hence, improves search capabilities.

Selection operation
This phase is meant for finding the best solution. Here, the best solutions from the previous and current are 
compared based on fitness, and the best among both is retained.

where f (oti ) is the fitness of the previous solution and f (ot+1
i ) signifies the fitness of the current solution.

Stagnation phase
To deal with the problems of stagnation, a new phase is incorporated into the proposed DHPN algorithm. This 
phase uses a combination of  SACS56 inspired equations for better performance. This phase is activated only if the 
solution quality is not improving. This helps the algorithm to improve and produce good solutions. Its general 
equation is given by,

(42)

ifrand < 0.5

if abs(A) ≥ 1

ot+1
i = xbest − nbest × l − oti × rand()

else

ot+1
i = xbest × ge × rand()

elseif rand ≥ 0.5

de = abs(xbest − oti )

ot+1
i = de × exp(l).× cos(l.2π)+ xbest

end

end

(43)ot+1
i =

{

oi − CF × rand()× [xbest − oi] ifrand() > 0.5 expl
oi + CF × rand()× [xbest − oi] ifrand() > 0.5 expt

(44)

if r < 0.5

ot+1
i = oti + g × β × I × oti + g × rand()× α × di × (cos(2πg))

else

ot+1
i = oti + F × β × I × oti + g × rand()× α × di × (cos(2πg))× |[1− cos(2πg)]|

end

(45)ot+1
i =

{

oti if f
(

ot+1
i

)

< f (oti )

ot+1
i otherwise

(46)o1 = oi − G1(Y1.xnew − oti ); o2 = oi − G2(Y2.xnew − oti ); o3 = oi − G3(Y3.xnew − oti )
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where G1,G2,G3 ∈ A and Y1,Y2,Y3 ∈ C are given by A = 2l.r1 − l; C = 2.r2 . The Eq. (47) is adapted using 
Cauchy Cauchy(δ) distributed random parameter and the new equation is

The equation for Cauchy distribution is given by

The Cauchy distribution function is

And Cauchy(δ) operator is expressed as

Here δ is added because of its fatter tail, and it helps the algorithm to provide better expl of the search space. 
This helps in avoiding local optima and premature convergence. A significant problem to deal with is when to 
activate this phase. The question is still under consideration, and in our current work, we are activating it if the 
solution does not change after 10 iterations.

Parameter settings
The proposed DHPN uses a combination of six new mutation operators/inertia weights (iw) for analysing the 
performance of its six parameters ( � , CF, P, R, g and l), and making them adaptive in nature. The mutation opera-
tors introduced include, simulated annealing (sa), chaotic, exponential decreasing (exp), linearly decreasing (lin), 
oscillating, and random iws. Note that random weights are added only to see how the algorithm behaves if no 
adaptive parameter is added. The iws are formally given as:

Simulated annealing (sa) iw
 This iw is meant for providing better expl and expt38 and is mathematically given by

where ζmin , ζmax ∈ [0, 1] and k = 0.95.

Chaotic iw
This iw is meant for improving the global  search41, and is done by guiding the algorithm away from the local 
optima.

where k ∈ [0, 1] , βmax = 0.9 , βmin = 0.5 , tmax is maximum iterations.

Exponential decreasing (exp) iw
Exponential iw helps in slowly moving the algorithm from expl towards expt. This helps to achieve better con-
vergence patterns and hence has better expl towards the start and expt towards the  end42. It is mathematically 
given as:

where ζmin and ζmax lies between [0,1].

Linearly decreasing (linear) iw
This iw follows a linear pattern for adaptation of parameters, and helps in providing a transitional change from 
expl towards expt38. In general, this iw improve the search for global solutions with better convergence speed. 
This is given by:

(47)xt+1
i =

o1 + o2 + o3

3

(48)ot+1
i = oti + α ⊗ Cauchy(δ)(nbest − oti )

(49)fCauchy(0,g)(δ) =
1

π

g
(

g2 + δ2
)

(50)y =
1

2
+

1

π
arctan

(

δ

g

)

(51)δ = tan

(

π

(

y −
1

2

)

)

(52)ζk = ζmin + (ζmax − ζmin)× p(k−1)

(53)K = 4× k × (1− k)

(54)ζ = (ζmax − ζmin)×
tmax − t

tmax
+ βmin × K

(55)ζ(t) = ζmin + (ζmax − ζmin)exp

[

−
t

( tmax
10 )

]
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Oscillating iw
This iw generates periodic waves for balanced expl and expt, and is mathematically modelled as:

where ζmax = 0.9 and ζmin = 0.3 , and k ∈ [0, 1].
The flowchart of the proposed algorithm is given in Fig. 1.
The pseudocode of the proposed algorithm is given in Algorithm 1.

(56)lin =

(

1−
t

tmax

)

(

2× t
tmax

)

(57)ζ(t) =
βmin + ζmax

2
+

ζmax − ζmin

2
cos

(

2π t

T

)

(58)T =
2× tmax

3+ 2k

Start

Initialize population, parameters, dimension & stopping
criteria

Generate new solutions

Phase I : Generate solution using NMRA

Worker Phase

Phase II : Generate solution using PDO

Phase III : Generate solution using DMA

Phase IV : Generate solution using HBA

Generate solution using NMRA

Breeder Phase

If new solution better than 
old solution ?

If counter > 10 ?

Replace old solution by the new solution

Update parameters

Check termination criteria ?

Update final best

End

No

No

No

Stagnation Phase
Yes

Yes

Yes

Figure 1.  Flowchart of DHPN algorithm.



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13723  | https://doi.org/10.1038/s41598-024-63746-w

www.nature.com/scientificreports/

Algorithm 1.  Pseudocode of DHPN algorithm

Computational complexity
In this section, the computational complexity of the proposed algorithm is analysed with respect to that of the 
basic algorithm NMRA. If n is the size of the population, d signifies the dimensionality of the problem and tmax 
represents the maximum number of iterations to find the global optimum, then the computational complexity 
of the basic NMRA is expressed as O(n.d.tmax)37. The complexity analysis is done to examine the operation of 
an algorithm with worst-case complexities and find the run-time of an algorithm. In the case of a fixed problem 
dimension, the complexity stands at O(d) for an individual population member. However, when the algorithm 
uses multiple search agents, the complexity increases to O(n.d), accounting for the population’s size. Given the 
stochastic nature of the algorithm, evaluation of tmax iterations results in an overall complexity of O(n.d.tmax).

In contrast to the original NMRA, the exploration operation in the proposed DHPN algorithm is divided into 
multiple iterations, but the total number of iterations is kept fixed at tmax . Thus, there is no change in complexity 
due to this added adaptation. In terms of addition of stagnation phase, the complexity is given by O(n.d) and is 
equal to 1. This is so because the stagnation phase is activated only if the algorithm gets stuck for certain itera-
tions and the new solution is generated only once. Hence, the overall computational complexity of the proposed 
DHPN algorithm is the same as that of the basic NMRA.

Results and discussion
This section presents the analysis of DHPN algorithm for different benchmark suites to confirm its efficiency 
over other algorithms. The section has eight parts, the first subsection consists of CEC 2005 benchmarks. The 
second and third subsections give the parametric details and analysis of the algorithm under test, respectively. 
The sensitivity analysis of pop size and dimension size is analysed in the fourth and fifth parts, respectively. The 
sixth and seventh subsections show the comparative analysis of CEC 2005 and CEC 2019 benchmarks. Finally, 
the convergence profiles are discussed in the eighth subsection.

The experimental study was performed using a 64-bit Windows 10 operating system, Intel(R) Core(TM) 
i5-9300H CPU @ 2.40GHz processor, 8.00 GB RAM. Its source code was implemented using MATLAB (R2022b).

Test suite
It gives details of CEC 2005 benchmarks to analyse the efficiency of the DHPN algorithm. Table 2 gives the 
description of test functions. These functions can be broadly categorized as unimodal (UM) problems, multi-
modal (MM) problems, and fixed dimension (FD)  problems48. The UM problems (G1–G7) are simplex functions 
with one global minimal solution and are used to analyse expl, whereas MM problems (G8− G12) are used to 
test the expl capability. Such functions have multiple local minimal solutions. On the other hand, as the name 
suggests, dimension size is fixed for FD functions (G13− G15) . These functions analyse the consistency in 
finding a global solution.

Preliminary parameter settings
This section describes parameters used for comparative analysis with the proposed DHPN algorithm. For com-
parison with CEC 2005 benchmarks, success-history based DE (SHADE)63, DE with external archive (JADE)50, 
self adaptive DE (SaDE)64, opposition and exponential WOA (OEWOA)65, fractional-order calculus-based FPA 
(FA-FPO)66, sine cosine crow search (SCCSA)67, evolution strategy with covariance adaptation (CMA-ES)68, 
extended GWO (GWO-E)69, LSHADE-SPACMA52, optimization (DMO)  algorithm39,  HBA36 and cuckoo-
search (CS)  algorithm70 are used. Secondly, for CEC 2019 benchmark problems, DHPN is compared with DE, 
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self-adaptive  jDE10071, particle swarm optimization (PSO)72, Young’s double-slit experiment inspired optimizer 
(YDSE)73, naked mole-rat algorithm (NMRA)37 and prairie dog optimization (PDO)40 algorithm. The parameter 
details of aforementioned algorithms are based on their corresponding papers and are also provided in Table 3.

Sensitivity analysis: parametric study of DHPN algorithm
DHPN algorithm has six important parameters namely � , CF, P, R , l, and g. These parameters are subjected to 
mutation operators for 3 UM functions (G2, G6 & G7), 1 MM function (G11) and 1 FD function (G13) of CEC 
2005 benchmarks. Results are evaluated as mean values and standard deviation (std) values. In addition, Fried-
man rank (f-rank)79 test values are given in Table 4.

The parameter � is associated with three mutations: simulated annealing sa inertia weight (iw), chaotic and 
exponential decreasing exp iws. Table 4 clearly shows that for � , sa mutation operator perform the best for G2 
and G13, whereas exp mutation operator performs better for G6 and G7. For G11, the parameter � yields the best 
performance with chaotic iw in comparison to the other operators. Overall, The parameter lambda with chaotic 
mutation operator is the best strategy.

CF is checked for three different cases: linear, chaotic iw and exp iw. Results given in Table 4 depict that the 
chaotic iw yields the best solutions for G2 and G6 for the parameter CF. For G7, G11, and G13, exp iw peforms 
better compared to the other operators for the parameter CF. Overall, the parameter CF with exp iw is found 
to be the best.

P is analysed for a constant iw, chaotic iw and exp iw. Table 4 shows that the exp iw outperforms other 
operators for G6, G11 and G13. For G2, the parameter P with constant number yields better results. For G7, the 
parameter P with chaotic iw gives the best results. Overall, the parameter P with exp iw outperforms the other 
operators, and the F-rank statistical test validates the results.

R is analysed for random iw, chaotic iw and exp iw. Table 4 shows that for the parameter R , chaotic iw performs 
the best for G2 and G6, whereas exp iw is best for G7 and G13. For G11, the random nature of the parameter R 
outperforms the other operators. Overall, the parameter R with random iw is the best.

The last parameters l and g are analysed using linearly decreasing linear iw, oscillating iw and exp iw. Table 4 
that the parameter l with exp iw yields the better results for all problems. Hence, exp iw is the best strategy for the 
parameter l. Further, the parameter g gives the best results with linear reduction between [2, 0]. So, here linear 
iw of g is the best strategy among all the operators.

Table 2.  CEC 2005 Benchmark Dataset.

Function Dim Range Shift position fmin

UM functions

 G1(o) =  
∑n

i=1 o
2
i 30 [−100, 100] [−30,−30, ..,−30] 0

 G2(o) = 
∑n

i=1 |oi | +�n
i=1|oi | 30 [−10, 10] [−3,−3, ..,−3] 0

 G3(o) =  
∑n

i=1(
∑i

j−1 oj)
2 30 [−100, 100] [−3,−3, ..,−3] 0

 G4(o) =  maoi { |oi |, 1 ≤ i ≤ n } 30 [−100, 100] [−3,−3, ..,−3] 0

 G5(o) =  
∑n−1

i=1 100(oI+1 − o2i )
2 + (o1 − 1)2 30 [−30, 30] [−3,−3, ..,−3] 0

 G6(o) = 
∑n

i=1([oi + 0.5])2 30 [−10, 10] [−3,−3, ..,−3] 0

 G7(o) = 
∑n

i=1 io
4
i = random[0, 1] 30 [−1.28, 1.28] [−3,−3, ..,−3] 0

MM functions

 G8(o) = 
∑n

i=1[o
2
i − 10cos(2πoi)+ 10] 30 [−5.12, 5.12] [−30,−30, ..,−30] 0

G9(o) = −20exp(−0.2

√

1
n

∑n
i=1 o

2
i )− exp( 1n

∑n
i=1 cos(2πoi))+ 20+ e 30 [−100, 100] [−30,−30, ..,−30] 0

 G10(o) = 1
4000

∑N
i=1 o

2
i −�N

i=1cos(
oi√
i
)+ 1 30 [−600, 600] [−30,−30, ..,−30] 0

G11(o) =
π

n
10sin(πy1)+

n
∑

i=1

−1(yi − 1)2[1+ 10sin2(πyi+1)]

(yn − 1)2 +

u
∑

i=1

(oi , 10, 100, 4)yi = 1 =
oi + 1

4

30 [−50, 50] [−30,−30, ..,−30] 0

G12(o) = 0.1(sin2(3πo1)+

n
∑

i=1

(oi − 1)2(1+ sin2(3πoi + 1)))

+ 0.1((xn − 1)2[1+ sin2(2πxn])+

n
∑

i=1

u(o1, 5, 100, 4)

30 [−50, 50] [−30,−30, ..,−30] 0

FD functions

 G13(o)= [1+ (o1 + o2 + 1)2(19− 14o1 + 3o2
1
− 14o2 + 6o1o2 + 3o2

2
)]

∗[30+ (2o1 − 3o2)
2 ∗ (18− 32o1 + 12o2

1
+ 48o2 − 36o1o2 + 27o2

2
)]

2 [−2, 2] 3

 G14(o)= −
∑4

i=1 ci exp(−
∑3

j=1 aij(oj − pij)
2) 3 [1, 3] −3.86

 G15(o)= −
∑4

i=1 ci exp(−
∑6

j=1 aij(oj − pij)
2) 6 [0, 1] −3.86
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Effect of population size
For pop size comparison, DHPN is compared with MFO, GWO, WOA, MPA and NMRA for four pop sizes, 
including 25, 50, 75 and 100. Total runs and generations are set to 51 and 500, respectively. Here, 7 UM func-
tions (G1–Total runs and generations7) and 5 MM functions (G8–G12) from Table 2 are used for the analysis of 
various algorithms for different pop sizes as given in Table 5.

Population size 25: Here, for G3, G4, G7 and G9, DHPN algorithm yields the superior performance for both 
mean and std values. For G1 and G2, WOA performs the best, however, DHPN algorithm is quite competitive too. 
For G5, there is a slight variation in the mean values of different algorithms. NMRA is the best for G5. For func-
tions G6, G11 and G12, MPA gives the best performance. For G8, both MPA and DHPN are capable of yielding 
the optimum value. For G10, the DHPN algorithm, along with MPA and NMRA, is best. Thus, the performance 
of the DHPN algorithm is best for six problems, MPA is superior for five, and WOA and NMRA for two test 
problems each. So, DHPN algorithm is found to be the most superior of all the other algorithms for 25 pop size.

Population size 50: Here, for G1, G2, G3, G4, G7 and G9, DHPN algorithm outperforms all the other existing 
algorithms under comparison. For G5, NMRA is better. For G6, G11 and G12, MPA is found better. However, for 
G8 and G10, MPA, NMRA, and DHPN are capable of giving the optimum values. Hence, the DHPN algorithm 
gives the best performance for seven, MPA is better for five, and NMRA gives the best result for three. Overall, 
DHPN is superior for pop size 50.

Population size 75: Here DHPN algorithm is better for G1, G3, G7 and G9. WOA is found to be the best for 
G2, but the performance of DHPN algorithm is also competitive. NMRA gives the best results for G4. For G5, 
NMRA is better among all. For G6, G11 and G12, MPA outperforms others. For G8, both MPA and DHPN 
algorithm yield the optimum value. For G10, GWO, MPA, NMRA and DHPN algorithms are better. Hence, the 
DHPN algorithm is best for six test problems, MPA is best for five, NMRA is best for three, and both WOA and 
GWO give the best performance for one function only.

Population size 100: Here, DHPN outperforms other algorithms for G1, G3, G7 and G9. For G2, WOA yields 
better results, but DHPN results are still competitive. For G4 and G5, NMRA outperforms the other algorithms. 
For G6, G11 and G12, MPA gives the best results. For G8, both MPA and DHPN outperform the other algorithms 
under comparison. All the algorithms except WOA give the exact optimum value for the G10. Therefore, DHPN 
is superior for six, MPA for five, and NMRA for three, whereas WOA, MFO and GWO perform best for one 
function each. Therefore, DHPN is best for pop size 100 too.

Inferences: Table 5 clearly depicts that the performance of the DHPN algorithm decreases for lesser values 
of pop size. Further, bigger values do not contribute significantly, but add to the computational burden. This is 
because, to find a solution for any problem, the required evaluations are a multiple of the total population. With 
increasing pop size, required function evaluations also increase, thus, resulting in enhanced overall computational 
complexity. Here, it can be seen that a population of 50 individuals is capable of providing good results without 
increasing the computational burden of DHPN. Therefore, for simulation results, the pop size is set to 50.

Effect of dimension size
This subsection describes the dimension size effect on DHPN algorithm with MFO, GWO, MPA, WOA, and 
NMRA. Here, 7 UM functions (G1–G7) and 5 MM functions (G8–G12) from Table 2 are used for analysis. Total 

Table 3.  Parameter settings of different algorithms.

Algorithm Parameters

JADE50 F = 0.5 ; 1/c = [5, 20] ; CR = 0.9 ; p = [0.05, 0.20]

SaDE50 F,CR = adaptive

GWO-E69 α = Linearly reducing from 2 to 0

OEWOA65 α = Exponentially reducing function; b = 1

SCCSA67 r1, r2, r3 = [0, 1]

FA-FPO66 α = [0.1, 1] ; S = adaptive

SHADE51 Pbest = 0.1 ; ARC  rate= 2

LSHADE-SPACMA51 c=0.8; Pbest = 0.11 ; ARC  rate= 1.4; FCP=0.5

YDSE73
� = 5× 10−6 m; d = 5× 10−3 m; L = 1 m; I = 0.01 m; δ = 0.38 ; NP = 30

PSO74 Wmax = 0.9 ; C1 ; Wmin = 0.4 ; & C2 = 2

DE74 F=0.5; CR=0.9

MPA75 P = 0.5 ; R = [0, 1] ; CF = adaptive

NMRA37 bp = 0.5 ; � = [0, 1]

GWO76 α = Linearly reducing [2,0]

WOA77 α = Linearly reducing [2,0]; b = 1

MFO78 t = [−1, 1] , b = 1;

HBA36 Honey Badger number = 50; β = 6 ; C = 2

PDO40 ρ = 0.1 ; ε = 2.2204E − 16 ; � = 0.005

DHPN �=chaotic; bp = 0.05 ; CF = exp ; R = random ; P = exp ; l = exp ; g=Linearly decreasing [2,0]
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Table 4.  Parameter analysis of DHPN algorithm Significant values are in bold.

Parameters of DHPN Variable Parameters

Functions Statistical analysis

BestG2 G6 G7 G11 G13 Average f-rank Overall f-rank

�

�sa

Mean 3.281E−185 4.441E−01 1.221E−04 1.822E−02 3.000E+00

2 2

�chaotic

std 0.000E+00 1.511E−01 2.042E−04 7.271E−03 2.781E−06

f-rank 1 3 3 2 1

�chaotic

Mean 1.000E−156 3.781E−01 1.212E−04 1.581E−02 3.000E+00

1.8 1std 7.151E−156 1.391E−01 1.200E−04 7.571E−03 1.331E−05

f-rank 2 2 2 1 2

�exp

Mean 1.111E−144 3.771E−01 1.141E−04 1.911E−02 3.000E+00

2.2 3std 7.911E−144 1.300E−01 1.271E−04 2.212E−02 4.262E−05

f-rank 3 1 1 3 3

CF

CFlinear

mean 1.001E−156 3.772E−01 1.211E−04 1.582E−02 3.000E+00

2.6 3

CFexp

std 7.151E−156 1.392E−01 1.201E−04 7.572E−03 1.333E−05

f-rank 3 3 2 2 3

CFchaotic

mean 4.411E−162 3.142E−01 1.321E−04 1.643E−02 3.000E+00

2 2std 3.082E−161 1.121E−01 1.352E−04 7.541E−03 4.952E−06

f-rank 1 1 3 3 2

CFexp

Mean 5.242E−159 3.681E−01 9.452E−05 1.511E−02 3.000E+00

1.4 1std 3.742E−158 1.231E−01 9.021E−05 5.342E−03 1.821E−06

f-rank 2 2 1 1 1

P

P0.5

mean 2.421E−159 3.992E−01 1.441E−04 1.791E−02 3.000E+00

2.6 3

Pexp

std 1.531E−158 1.552E−01 1.300E−04 1.171E−02 1.622E−05

f-rank 1 3 3 3 3

Pchaotic

Mean 2.671E−158 3.771E−01 9.162E−05 1.782E−02 3.000E+00

2 2std 1.833E−157 1.171E−01 1.200E−04 1.011E−02 1.440E−05

f-rank 3 2 1 2 2

Pexp

Mean 5.242E−159 3.681E−01 9.451E−05 1.511E−02 3.000E+00

1.4 1std 3.742E−158 1.231E−01 9.021E−05 5.342E−03 1.821E−06

f-rank 2 1 2 1 1

R

Rrandom

Mean 5.241E−159 3.682E−01 9.452E−05 1.511E−02 3.000E+00

1.8 1

Rrandom

std 3.741E−158 1.232E−01 9.021E−05 5.342E−03 1.821E−06

f-rank 2 2 2 1 2

Rchaotic

Mean 4.521E−163 3.521E−01 9.922E−05 1.741E−02 3.000E+00

2 2std 3.141E−162 1.352E−01 7.573E−05 7.551E−03 2.091E−05

f-rank 1 1 3 2 3

Rexp

Mean 2.111E−158 3.800E−01 9.041E−05 1.812E−02 3.000E+00

2.2 3std 1.081E−157 1.181E−01 7.232E−05 8.451E−03 1.632E−06

f-rank 3 3 1 3 1

l

llinear

Mean 5.241E−159 3.682E−01 9.451E−05 1.511E−02 3.000E+00

2.6 3

lexp

std 3.741E−158 1.231E−01 9.022E−05 5.341E−03 1.822E−06

f-rank 3 3 2 3 2

loscillating

Mean 7.231E−160 3.672E−01 1.401E−04 1.392E−02 3.000E+00

2.4 2std 5.161E−159 1.400E−01 1.541E−04 6.962E−03 5.421E−06

f-rank 2 2 3 2 3

lexp

Mean 7.550E−165 3.141E−01 8.060E−05 1.341E−02 3.000E+00

1 1std 0.000E+00 1.271E−01 6.682E−05 5.261E−03 1.671E−06

f-rank 1 1 1 1 1

g

glinear

Mean 7.551E−165 3.142E−01 8.061E−05 1.341E−02 3.000E+00

1 1

glinear

std 0.000E+00 1.271E−01 6.681E−05 5.261E−03 1.672E−06

f-rank 1 1 1 1 1

goscillating

Mean 6.97E−161 3.64E−01 1.09E−04 1.65E−02 3.00E+00

2.4 2std 4.98E−160 1.29E−01 1.13E−04 9.99E−03 3.29E−06

f-rank 3 2 2 3 2

gexp

Mean 2.07E−162 3.75E−01 1.40E−04 1.62E−02 3.00E+00

2.6 3std 1.47E−161 1.28E−01 1.29E−04 7.50E−03 2.63E−04

f-rank 2 3 3 2 3
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Function Algorithm

Pop Size 25 Pop Size 50 Pop Size 75 Pop Size 100

Mean Std Mean Std Mean Std Mean Std

G1

MFO 1.801E+03 3.831E+03 1.171E+03 3.252E+03 5.891E+02 2.371E+03 9.812E+02 3.000E+03

GWO 1.381E−25 1.981E−25 3.142E−33 5.321E−33 8.631E−38 1.072E−37 8.772E−41 1.392E−40

WOA 1.621E−67 1.131E−66 1.111E−83 7.373E−83 6.412E−90 4.372E−89 1.191E−95 7.911E−95

MPA 2.691E−23 3.481E−23 5.051E−23 4.932E−23 2.761E−23 3.371E−23 2.512E−23 2.552E−23

NMRA 1.121E−48 7.041E−48 1.122E−86 7.882E−86 5.801E−86 3.952E−85 6.032E−80 4.282E−79

DHPN 1.351E−66 6.762E−66 0.000E+00 0.000E+00 1.941E−119 9.242E−119 1.071E−118 5.462E−118

G2

MFO 3.211E+01 1.871E+01 3.111E+01 2.000E+01 3.082E+01 2.200E+01 3.100E+01 2.261E+01

GWO 1.511E−15 1.221E−15 7.111E−20 6.531E−20 2.422E−22 2.011E−22 4.531E−24 4.021E−24

WOA 5.952E−49 3.582E−42 1.881E−54 5.691E−54 4.062E−56 1.482E−55 3.461E−57 1.211E−56

MPA 2.241E−13 2.241E−13 3.081E−13 2.981E−13 2.892E−13 2.422E−13 2.262E−13 1.621E−13

NMRA 6.482E−25 3.782E−24 3.462E−45 1.521E−44 6.911E−44 2.242E−43 1.412E−42 9.111E−42

DHPN 8.651E−37 6.172E−36 1.411E−188 0.000E+00 3.263E−50 2.332E−49 1.243E−54 8.842E−54

G3

MFO 2.651E+04 1.491E+04 1.891E+04 1.232E+04 1.511E+04 1.193E+04 1.351E+04 9.341E+03

GWO 8.551E−05 1.952E−04 3.852E−08 6.911E−08 2.201E−10 4.152E−10 1.072E−11 2.401E−11

WOA 5.101E+04 1.412E+04 2.972E+04 9.331E+03 1.981E+04 6.952E+03 1.622E+04 7.913E+03

MPA 8.661E−05 1.372E−04 6.711E−05 1.371E−04 1.691E−05 3.782E−05 7.971E−06 1.881E−05

NMRA 2.341E−47 1.612E−46 2.541E−85 1.323E−84 3.342E−83 1.762E−82 1.482E−83 8.161E−83

DHPN 7.121E−88 5.081E−87 2.962E−323 0.000E+00 8.200E−154 5.851E−153 2.662E−89 1.901E−88

G4

MFO 6.981E+01 1.000E+01 6.031E+01 9.311E+00 4.631E+01 1.122E+01 4.292E+01 9.341E+00

GWO 2.323E−06 2.402E−06 2.183E−08 1.742E−08 1.304E−09 1.141E−09 1.951E−10 1.742E−10

WOA 5.232E+01 2.561E+01 3.723E+01 2.872E+01 3.381E+01 2.911E+01 2.922E+01 2.732E+01

MPA 3.162E−09 2.132E−09 3.153E−09 1.751E−09 2.214E−09 1.141E−09 1.821E−09 8.542E−10

NMRA 8.992E−26 3.851E−25 3.502E−45 1.522E−44 6.571E−43 2.731E−42 9.122E−43 3.273E−42

DHPN 2.341E−36 1.241E−35 1.392E−187 0.000E+00 1.211E−26 4.931E−26 1.952E−27 1.131E−26

G5

MFO 1.581E+06 1.121E+07 1.322E+04 3.112E+04 1.493E+04 3.281E+04 1.164E+04 2.902E+04

GWO 2.704E+01 7.143E−01 2.672E+01 6.862E−01 2.652E+01 6.581E−01 2.632E+01 6.472E−01

WOA 2.103E+01 4.631E−01 2.743E+01 4.792E−01 2.701E+01 2.921E−01 2.682E+01 1.902E−01

MPA 2.542E+01 4.362E−01 2.451E+01 4.371E−01 2.402E+01 4.542E−01 2.353E+01 3.593E−01

NMRA 2.892E+01 1.922E−02 2.891E+01 2.543E−02 2.891E+01 2.492E−02 2.892E+01 2.711E−02

DHPN 2.872E+01 1.341E−01 2.832E+01 3.262E−01 2.823E+01 3.771E−01 2.812E+01 4.063E−01

G6

MFO 2.361E+03 5.853E+03 5.922E+02 2.382E+03 1.163E+03 3.233E+03 3.931E+02 1.961E+03

GWO 9.702E−01 4.022E−01 4.701E−01 2.773E−01 2.822E−01 2.401E−01 1.801E−01 1.982E−01

WOA 6.182E−01 3.031E−01 8.451E−02 1.202E−01 2.082E−02 3.181E−02 5.601E−03 2.702E−03

MPA 2.602E−03 1.273E−02 1.431E−08 6.252E−09 7.231E−09 2.733E−09 4.182E−09 1.913E−09

NMRA 6.843E+00 4.911E−01 6.562E+00 5.902E−01 6.623E+00 6.442E−01 6.531E+00 6.443E−01

DHPN 6.182E−01 1.992E−01 3.451E−01 1.322E−01 3.182E−01 1.081E−01 2.932E−01 1.011E−01

G7

MFO 6.342E+00 1.102E+01 3.021E+00 7.371E+00 9.182E−01 2.172E+00 1.861E+00 5.823E+00

GWO 2.302E−03 1.302E−03 1.202E−03 5.082E−04 8.612E−04 4.492E−04 6.122E−04 4.073E−04

WOA 3.902E−03 4.902E−03 2.301E−03 2.701E−03 1.202E−03 1.302E−03 1.301E−03 1.401E−03

MPA 1.402E−03 8.011E−04 1.001E−03 4.322E−04 8.401E−04 4.502E−04 8.352E−04 4.013E−04

NMRA 2.301E−03 2.402E−03 6.942E−04 6.101E−04 5.901E−04 5.522E−04 4.031E−04 3.262E−04

DHPN 1.772E−04 1.931E−04 8.922E−05 8.192E−05 6.991E−05 6.761E−05 7.001E−05 6.282E−05

G8

MFO 1.691E+02 4.032E+01 1.522E+02 3.041E+01 1.341E+02 3.362E+01 1.432E+02 4.093E+01

GWO 5.051E+00 5.842E+00 1.642E+00 3.063E+00 2.281E+00 3.842E+00 7.122E−01 1.931E+00

WOA 2.231E−15 1.592E−14 1.111E−15 7.951E−15 1.111E−15 7.951E−15 4.452E−15 1.912E−14

MPA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

NMRA 2.431E+00 1.741E+01 0.000E+00 0.000E+00 2.361E+00 1.681E+01 6.422E+00 3.211E+01

DHPN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

G9

MFO 1.581E+01 5.951E+00 1.162E+01 8.602E+00 1.022E+01 9.371E+00 9.541E+00 8.812E+00

GWO 2.042E−13 5.471E−13 4.261E−14 3.322E−14 3.182E−14 4.331E−15 2.822E−14 2.862E−15

WOA 4.992E−15 2.961E−15 4.441E−15 2.242E−15 4.722E−15 2.541E−15 4.092E−15 2.772E−15

MPA 1.712E−12 1.133E−12 1.441E−12 8.942E−13 1.222E−12 7.142E−13 1.261E−12 6.000E−13

NMRA 8.888E−16 0.000E+00 8.888E−16 0.000E+00 8.888E−16 0.000E+00 8.888E−16 0.000E+00

DHPN 4.444E−16 0.000E+00 4.444E−16 0.000E+00 4.444E−16 0.000E+00 4.444E−16 0.000E+00

Continued
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runs and iterations is 51 and 500, respectively. To study the effect of dimension size, four dimension sizes such as 
10, 30, 50 and 100 are chosen. The results obtained for different dimension sizes are given in Table 6.

Dimension size 10: Here, DHPN algorithm is better for G1, G4, G7, G2, G3, G8 and G9. For G5, NMRA gives 
superior results in terms of std values. For G6, G11, and G12, MPA outperforms others. GWO, MPA, NMRA 
and the proposed DHPN algorithm are capable of giving the exact global minima for G10. Overall, the proposed 
DHPN algorithm gives the best solutions for eight, MPA for five, NMRA for two, and GWO for one function only.

Dimension size 30: Here, DHPN algorithm outperforms others for G1, G2, G3, G4, G7 and G9. For G5, NMRA 
performs betters; for G6, G11 and G12, MPA yields the better solutions. MPA, NMRA and the proposed DHPN 
algorithm give the exact global minima for G8 and G10. Overall, DHPN performs better for eight, MPA for five 
and NMRA for two test problems.

Dimension size 50: Here, DHPN is the best one for G1, G2, G3, G4, G7 and G9. Further, for G5, NMRA gives 
the best for std values. MPA gives better performance for G6, G11 and G12. For G8 and G10, MPA, NMRA, and 
the proposed DHPN algorithm give improved performance. Here, the DHPN algorithm is better for eight, MPA 
is better for five, and NMRA is better for two functions.

Dimension size 100: Here, the proposed DHPN algorithm yields the best results for G1, G2, G3, G4, G6, G7 
and G9 for both mean as well as std values. For G5, NMRA is found to be the best. For G8, WOA, NMRA, MPA, 
and DHPN are capable of yielding the optimum value. For G10, all the algorithms except MFO and WOA give 
the desired global optimum value. For G11 and G12, WOA and the proposed DHPN algorithm give better results, 
respectively. Hence, the proposed DHPN is better for ten problems, NMRA for three, WOA and MPA for two, 
and GWO for one function only. In the nutshell, the proposed DHPN is best for 100 dimension size.

Inference: Simulation results clearly indicate that the DHPN algorithm is the best overall strategy for all the 
dimension sizes. For the rest of the simulation results, the value of dimension size is set to 30.

Comparison for CEC 2005 benchmarks
Here, DHPN algorithm is evaluated against the existing optimization algorithms such as JADE, OEWOA, FA-
FPO, SCCSA, GWO-E, SaDE, HBA, LSHADE-SPACMA, CMA-ES, SHADE, DMO, and CS for CEC 2005 bench-
mark  functions48. The parameters of the aforementioned algorithms are shown in Table 3. Here, a dimension 
size of 30 and a number of runs of 51 is taken.

Experimental studies
Comparative results in Table 7 clearly depict that for G1, G2, G3, G4, G7 and G9, only the proposed DHPN 
algorithm yields better solutions while the other algorithms may result in sub-optimal solutions. For G5, G11 
and G12 JADE is better; and for G6, CMS-ES outperforms others. For G8, GWO-E, OEWOA, FA-FPO, HBA and 
DHPN algorithms are capable of providing optimum solution. Further, for G10, GWO-E, FA-FPO, DMO, HBA 
and DHPN algorithms yield optimal solution. For G13, little changes in the mean can be seen and on comparing 
the std values, DMO gives the best results. Similarly, for G14, a slight variation in the mean values of different 
algorithms is observed. So, on the basis of std, JADE is the best. Further, for G15, OEWOA is found to be the 
best. Hence, among fifteen functions, the proposed DHPN algorithm is best for eight, JADE for four, OEWOA, 
GWO-E, FA-FPO, DMO and HBA for two, whereas CMA-ES for one function only. So, overall, the proposed 
DHPN algorithm outperforms others.

Function Algorithm

Pop Size 25 Pop Size 50 Pop Size 75 Pop Size 100

Mean Std Mean Std Mean Std Mean Std

G10

MFO 3.332E−02 7.541E−02 5.701E−03 2.852E−02 2.901E−03 2.041E−02 0.000E+00 0.000E+00

GWO 8.602E−03 3.461E−02 8.601E−03 3.462E−02 0.000E+00 0.000E+00 0.000E+00 0.000E+00

WOA 3.432E−02 6.241E−02 4.281E−02 6.702E−02 1.712E−02 4.741E−02 1.431E−02 4.372E−02

MPA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

NMRA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

DHPN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

G11

MFO 7.201E+04 5.051E+05 5.322E+00 6.642E+00 2.471E+00 1.521E+00 2.512E+00 1.822E+00

GWO 5.843E−02 3.223E−02 2.592E−02 1.312E−02 1.791E−02 1.161E−02 1.552E−02 8.702E−03

WOA 3.363E−02 2.131E−02 7.401E−03 6.302E−03 2.602E−03 4.303E−03 1.901E−03 7.202E−03

MPA 2.432E−04 8.851E−04 1.391E−09 6.502E−10 6.192E−10 3.341E−10 4.213E−10 1.762E−10

NMRA 1.032E+00 2.541E−01 1.093E+00 2.563E−01 1.042E+00 2.492E−01 1.103E+00 2.313E−01

DHPN 2.651E−02 1.651E−02 1.642E−02 7.611E−03 1.622E−02 9.902E−03 1.143E−02 5.101E−03

G12

MFO 8.041E+06 5.741E+07 8.022E+00 7.712E+00 4.843E+00 6.763E+00 3.752E+00 3.082E+00

GWO 7.392E−01 2.363E−01 3.343E−01 2.021E−01 2.372E−01 1.862E−01 1.872E−01 1.403E−01

WOA 7.443E−01 2.732E−01 2.253E−01 1.601E−01 7.283E−02 7.062E−02 4.321E−02 7.213E−02

MPA 3.000E−02 3.573E−02 6.532E−04 2.602E−03 8.613E−04 3.000E−03 4.592E−04 2.202E−03

NMRA 2.083E+00 3.653E−01 2.972E+01 1.382E−01 2.983E+00 1.101E−02 3.023E+00 1.182E−01

DHPN 3.143E−01 1.511E−01 2.361E−01 1.051E−01 2.151E−01 8.382E−02 1.602E−01 5.661E−02

Table 5.  Experimental results for population size of 25, 50, 75, 100.
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Function Algorithm

Dim Size 10 Dim Size 30 Dim Size 50 Dim Size 100

Mean Std Mean Std Mean Std Mean Std

G1

MFO 5.272E−14 8.781E−14 1.171E+03 3.252E+03 5.722E+03 7.253E+03 5.393E+04 1.343E+04

GWO 6.912E−69 4.002E−68 3.141E−33 5.321E−32 9.662E−24 1.002E−23 5.283E−15 4.791E−15

WOA 4.342E−88 2.751E−87 1.111E−83 7.372E−83 5.862E−83 3.333E−82 2.663E−82 1.193E−81

MPA 8.042E−31 1.361E−30 5.052E−23 4.932E−23 3.651E−21 3.041E−21 3.712E−19 3.622E−19

NMRA 3.000E−81 2.141E−80 1.121E−86 7.882E−86 4.332E−88 2.372E−87 6.663E−86 3.351E−85

DHPN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

G2

MFO 7.841E−01 2.711E+00 3.111E+01 2.000E+01 6.602E+01 3.000E+01 2.351E+02 4.191E+01

GWO 4.071E−40 6.811E−40 7.111E−20 6.532E−20 1.372E−14 7.652E−15 1.553E−09 5.47§E−10

WOA 5.241E−55 2.061E−54 1.882E−54 5.691E−54 2.553E−52 1.592E−51 4.212E−54 9.561E−54

MPA 7.862E−18 8.912E−18 3.082E−13 2.982E−13 3.042E−12 2.633E−12 2.441E−11 2.722E−11

NMRA 1.833E−44 9.361E−44 3.462E−45 1.522E−44 4.952E−44 3.373E−43 8.733E−45 2.772E−44

DHPN 0.000E+00 0.000E+00 1.411E−188 0.000E+00 5.511E−188 0.000E+00 1.341E−183 0.000E+00

G3

MFO 9.801E+01 7.000E+02 1.892E+04 1.231E+04 5.821E+04 2.072E+04 2.232E+05 5.701E+04

GWO 1.271E−31 7.381E−31 3.852E−08 6.912E−08 3.401E−02 1.941E−01 1.461E+02 2.542E+02

WOA 4.181E+01 8.751E+01 2.972E+04 9.332E+03 1.551E+05 2.523E+04 9.002E+05 1.853E+05

MPA 9.371E−15 1.552E−14 6.712E−05 1.372E−04 2.431E−02 4.173E−02 5.582E+00 6.674E+00

NMRA 6.401E−89 2.871E−88 2.542E−85 1.322E−84 9.701E−87 6.853E−86 1.992E−87 9.354E−87

DHPN 0.000E+00 0.000E+00 2.961E−323 0.000E+00 8.531E−298 0.000E+00 8.972E−301 0.000E+00

G4

MFO 6.362E−02 3.062E−01 6.031E+01 9.311E+00 7.922E+01 5.762E+00 9.141E+01 2.411E+00

GWO 1.712E−22 3.091E−22 2.181E−08 1.742E−08 3.582E−05 2.883E−05 1.983E−01 2.332E−01

WOA 1.553E+00 4.461E+00 3.721E+01 2.872E+01 6.312E+01 2.953E+01 7.142E+01 2.812E+01

MPA 6.702E−13 4.562E−13 3.151E−09 1.751E−09 2.582E−08 1.062E−08 2.763E−07 1.173E−07

NMRA 4.341E−45 2.662E−44 3.502E−45 1.523E−44 9.453E−42 6.752E−41 6.472E−45 3.161E−44

DHPN 5.222E−185 0.000E+00 1.391E−187 0.000E+00 7.651E−181 0.000E+00 8.353E−185 0.000E+00

G5

MFO 5.731E+03 2.131E+04 1.322E+04 3.111E+04 3.523E+06 1.562E+07 1.232E+08 5.663E+07

GWO 6.352E+00 7.064E−01 2.671E+01 6.863E−01 4.722E+01 8.322E−01 9.743E+01 8.542E−01

WOA 6.292E+00 4.851E−01 2.743E+01 4.792E−01 4.772E+01 4.253E−01 9.781E+01 2.974E−01

MPA 1.011E+00 3.052E−01 2.452E+01 4.371E−01 4.533E+01 3.502E−01 9.624E+01 7.833E−01

NMRA 8.97E1+00 2.042E−02 2.892E+01 2.541E−02 4.893E+01 2.002E−02 9.893E+01 1.873E−02

DHPN 7.622E+00 4.432E−01 2.831E+01 3.263E−01 4.842E+01 1.700E−01 9.800E+01 9.171E−02

G6

MFO 1.500E−13 4.251E−13 5.921E+02 2.382E+03 7.402E+03 8.693E+03 5.443E+04 1.404E+04

GWO 2.571E−06 9.732E−07 4.702E−01 2.773E−01 1.831E+00 6.352E−01 8.093E+00 9.963E−01

WOA 1.252E−04 9.456E−05 8.453E−02 1.201E−01 3.574E−01 1.562E−01 1.892E+00 6.073E−01

MPA 7.021E−12 5.543E−12 1.432E−08 6.251E−09 2.263E−02 5.262E−02 2.164E+00 6.131E−01

NMRA 1.292E+00 7.472E−01 6.561E+00 5.903E−01 1.173E+01 4.844E−01 2.431E+01 4.664E−01

DHPN 4.572E−02 2.951E−02 3.452E−01 1.322E−01 7.713E−01 1.822E−01 1.761E+00 5.083E−01

G7

MFO 5.501E−03 3.000E−03 3.022E+00 7.371E+00 1.921E+01 2.532E+01 2.452E+02 1.362E+02

GWO 4.682E−04 3.231E−04 1.203E−03 5.082E−04 2.202E−03 9.951E−04 4.703E−03 1.502E−03

WOA 1.602E−03 2.101E−03 2.303E−03 2.702E−03 2.803E−03 3.403E−03 2.803E−03 3.404E−03

MPA 5.923E−04 3.661E−04 1.000E−03 4.322E−04 1.100E−03 3.722E−04 1.401E−03 6.731E−04

NMRA 8.181E−04 7.682E−04 6.942E−04 6.103E−04 6.443E−04 6.522E−04 6.652E−04 5.163E−04

DHPN 1.021E−04 1.021E−04 8.922E−05 8.193E−05 8.231E−05 7.552E−05 9.243E−05 7.972E−05

G8

MFO 1.981E+01 1.141E+01 1.522E+02 3.042E+01 2.921E+02 5.232E+01 8.192E+02 7.313E+01

GWO 2.902E−01 1.071E+00 1.641E+00 3.062E+00 3.632E+00 4.623E+00 7.332E+00 5.932E+00

WOA 7.491E−01 5.353E+00 1.112E−15 7.952E−15 0.000E+00 0.000E+00 0.000E+00 0.000E+00

MPA 3.161E−11 2.261E−10 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

NMRA 1.381E+00 5.721E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

DHPN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

G9

MFO 6.881E−08 6.012E−08 1.162E+01 8.601E+00 1.902E+01 1.692E+00 1.982E+01 1.263E−01

GWO 5.831E−15 1.751E−15 4.262E−14 3.322E−15 5.323E−13 1.333E−13 7.092E−09 2.742E−09

WOA 4.021E−15 2.311E−15 4.442E−15 2.242E−15 4.091E−15 2.483E−15 5.062E−15 2.212E−15

MPA 4.511E−15 4.972E−15 1.442E−12 8.941E−13 9.613E−12 4.792E−12 6.302E−11 2.973E−11

NMRA 8.888E−16 0.000E+00 8.888E−16 0.000E+00 8.888E−16 0.000E+00 8.888E−16 0.000E+00

DHPN 4.444E−16 0.000E+00 4.444E−16 0.000E+00 4.444E−16 0.000E+00 4.444E−16 0.000E+00

Continued
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Statistical testing
To validate the simulation results, two non-parametric tests namely Wilcoxon’s p-rank80 and Friedman f-rank 
 tests79 are employed. The p-rank is used in assigning the p-values to two algorithms under test and is given in 
Table 7 for every problem as win(w)/loss(l)/tie(t). Here win(w) =′ +′ situation, test algorithm yields better per-
formance than the proposed; loss(l) =′ −′ situation arises when the performance of the test algorithm is inferior 
to the proposed; and lastly, the tie(t) scenario arises when both the considered algorithms are either significant or 
irrelevant and hence, assigned ”=” is assigned to it. So, from w/l/t in Table 7, we find that the DHPN algorithm 
is better than existing algorithms. This test is also applied to validate the superiority of the proposed DHPN 
algorithm. In this test, each algorithm is given a unique rank and is shown in Table 7. It has been found that the 
DHPN algorithm is comparatively better and has the 1st rank among all others.

Comparison on CEC 2019 benchmark functions
As a further extension, the competitiveness of DHPN algorithm is proven by testing it on ten CEC 2019 
 benchmarks71 of the 100-Digit  Challenge81. Table 8 list the names, dimensions, search ranges and optimal val-
ues of CEC 2019 benchmark functions (G16− G25) . For computing simulation results on CEC 2019 functions, 
the values of pop size, runs and maximum iterations are taken as 50, 51 and 500, respectively. Further, existing 
algorithms jDE100, DE, PSO, YDSE, NMRA and PDO are compared with the proposed DHPN algorithm as 
mean and std values in Table 9.

Table 9 shows that the proposed DHPN is best for functions G21, G22 and G25; for G16 and G18, PDO is 
better; and for G17, YDSE yields the best performance. PSO yields best results for G19, G20, G23 and G24. Here 
also, Wilcoxon’s p-rank and f-rank tests are done to test the significance of the DHPN algorithm. From Table 9, 
we find that the DHPN algorithm has 10 wins and no loss against jDE100. As compared to both DE and PDO, 
DHPN has 8 wins and 2 losses with no draw. Similarly, DHPN has a total of 6 wins and 4 losses with no draw 
against PSO and YDSE. Moreover, according to the f-rank test, DHPN stands at 1st among all comparative algo-
rithms. Thus, DHPN is deduced to be the best overall strategy for the CEC 2019 benchmark suite.

Convergence profiles
The convergence profiles of YDSE, DE, NMRA and the proposed DHPN algorithm are shown for functions 
G16, G17, G20, G21, G23 and G24 in Fig. 2. Here, convergence curves are drawn for maximum iterations, pop 
size and dimension as 500, 50 and 30, respectively. The convergence profiles for G16, G17, G21, G23 and G25 
clearly confirm the fastest convergence of the DHPN algorithm among the other algorithms under comparison. 
For G20, the proposed DHPN algorithm begins to converge faster initially, but its rate of convergence decreases 
later. So, for G20, the convergence of DE is the fastest. Overall, the DHPN algorithm is superior to the existing 
algorithms in terms of convergence.

Real world application: region‑based image fusion using DHPN
The demand for image fusion in image processing applications has grown significantly with the tremendous 
increase in acquisition  systems45,46. Image fusion is a process of integrating images acquired by various sensors 
to yield an informative image. An effective image fusion preserves vital information by extracting all essential 
properties and features from the images without resulting in any inconsistency in the fused image. This fused 

Function Algorithm

Dim Size 10 Dim Size 30 Dim Size 50 Dim Size 100

Mean Std Mean Std Mean Std Mean Std

G10

MFO 1.141E−02 3.951E−02 5.702E−03 2.852E−02 2.903E−03 2.043E−02 1.142E−02 3.951E−02

GWO 0.000E+00 0.000E+00 8.602E−03 3.462E−02 5.701E−03 2.851E−02 0.000E+00 0.000E+00

WOA 3.431E−02 6.241E−02 4.282E−02 6.702E−02 2.281E−02 5.351E−02 3.142E−02 6.052E−02

MPA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

NMRA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

DHPN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

G11

MFO 1.701E−01 4.622E−01 5.322E+00 6.643E+00 1.531E+07 6.072E+07 2.292E+08 1.701E+08

GWO 1.801E−03 5.602E−03 2.592E−02 1.311E−02 8.641E−02 6.702E−02 2.102E−01 5.813E−02

WOA 2.402E−03 6.000E−03 7.401E−03 6.301E−03 1.142E−02 5.701E−03 1.811E−02 1.192E−02

MPA 3.442E−12 3.000E−12 1.391E−09 6.501E−10 1.302E−03 1.402E−03 2.632E−02 7.201E−03

NMRA 8.241E−01 4.011E−01 1.092E+00 2.562E−01 1.161E+00 1.442E−01 1.202E+00 7.581E−02

DHPN 1.131E−02 8.801E−03 1.641E−02 7.611E−03 1.791E−02 8.101E−03 1.802E−02 5.402E−03

G12

MFO 2.601E−03 4.701E−03 8.022E+00 7.711E+00 1.682E+07 8.022E+07 4.621E+08 2.803E+08

GWO 1.901E−03 1.361E−02 3.342E−01 2.022E−01 1.582E+00 3.383E−01 5.991E+00 4.462E−01

WOA 5.301E−03 8.801E−03 2.252E−01 1.602E−01 4.911E−01 2.332E−01 1.612E+00 6.873E−01

MPA 1.751E−11 1.791E−11 6.532E−04 2.602E−03 8.581E−02 7.242E−02 5.622E+00 2.812E+00

NMRA 8.633E−01 1.761E−01 2.973E+00 1.382E−01 4.992E+00 2.502E−03 9.993E+00 2.003E−03

DHPN 5.433E−02 3.863E−02 2.361E−01 1.052E−01 4.672E−01 1.463E−01 9.511E−01 2.843E−01

Table 6.  Experimental results for dimension size of 10, 30, 50, 100.
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image is more apt for both human as well as machine perception as it gives information that cannot be obtained 
by examining several images individually. In certain applications, details from CCD and IR sensors are combined 
together with the objective of maintaining their distinct  features82. The process of merging information obtained 
from several sensors is called MM image  fusion83,84. An example of an image pair obtained from different sensors 
with their fused image is shown in Fig. 3. The final image clearly maintains the distinct features of both VIS and 
IR images. Human presence is depicted, and edges are preserved.

Over the last three decades, several image fusion techniques have been developed to improve image quality 
and make them appropriate for different applications such as remote sensing, target detection, surveillance, 
biological recognition, medical images, military field, computer vision, and  robotics85–87.

Related work
Image fusion
The image fusion techniques can be categorized into pixel level, decision level and feature level. Pixel-level 
image fusion techniques integrate the meaningful data from source images at the lowest physical level  directly88. 
Feature-level image fusion techniques involve the extraction of relevant features like textures, edges or pixel inten-
sities, which are then combined to form merged  images53,89. Decision-level image fusion is the most complex and 
highest-level fusion. In this, decisions made from initial object detection and classification tasks are  merged90. As 
compared to feature level and decision level techniques, pixel-level image fusion provides the maximum amount 
of details and is more suitable for applications that are dependent on different  sensors91.

The pixel-level techniques can be classified as substitution techniques and transform domain techniques. Sub-
stitution methods include Independent Component Analysis (ICA)92, Principal Component Analysis (PCA)93, 
whereas transform domain techniques include Pyramid Transform (PT)94, Discrete Wavelet Transform (DWT)95, 
shift-variant shearlet  transform96,  curvelet54, and contourlet  transform97. Although the aforementioned methods 
have less computation cost, however, they possess noise and are unable to preserve adequate details of source 
 images98.

Visible and infrared image fusion
IR images are more robust to varying light levels and environmental deterioration. On the contrary, VIS images 
have finer visual quality with precise background information like texture and higher pixel pitch. The objec-
tive of fusing VIS and IR images is to derive significant details from both images and incorporate them in the 
compound  image47. Hence, over the past two decades, VIS and IR image fusion has become an intensive area of 
research in multi-band nighttime monitoring and navigation imagery.

The most widely used methods for fusing VIS and IR images are region-based  techniques99,100. Region-based 
image fusion techniques include the segmentation of source images into a number of segments or clusters on the 
basis of region-based algorithms and merging them region by  region92,99,101. The most significant stage of such 
techniques is the extraction of salient details from IR images. The present work employs a novel optimization 
strategy for region-based image fusion of VIS and IR images.

In the proposed region-based technique, DHPN is used to segment the VIS image to derive its salient features. 
The extracted features are used to calculate the weight map function of both VIS and IR images. These weight 
map functions are further used to form the final fused image.

Multi‑level thresholding for image segmentation
Image segmentation is a pivotal pre-processing task in image processing. An effective, simple way to achieve 
image segmentation is through image thresholding. It is capable of classifying pixels into different groups through 
a set of threshold  levels55,102. The aim of thresholding is to compute the value of optimal threshold levels for dif-
ferentiating the target from its  background103. If a method chooses only two optimum threshold levels, then it 
is said to be a bi-level or two-level thresholding method. On the other hand, in a multi-level thresholding, an 
image is segmented on the basis of multiple optimum threshold levels.

Table 8.  CEC 2019 Benchmark Functions.

No. Function Dim Range fmin

G16 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192] 1

G17 Inverse Hilbert Matrix Problem 16 [−16384, 16384] 1

G18 Lennard-Jones Minimum Energy Cluster Problem 18 [−4, 4] 1

G19 Rastrigin’s Problem 10 [−100, 100] 1

G20 Griewangk’s Problem 10 [−100, 100] 1

G21 Weierstrass Problem 10 [−100, 100] 1

G22 Modified Schwefel’s Problem 10 [−100, 100] 1

G23 Expanded Schaffer’s G6 Problem 10 [−100, 100] 1

G24 Happy Cat Problem 10 [−100, 100] 1

G25 Ackley’s Problem 10 [−100, 100] 1
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The widely used thresholding techniques are mainly categorized as parametric and non-parametric tech-
niques. Parametric techniques are computationally expensive in terms of both cost and time, as these methods 
require the estimation of Probability Density Functions (PDFs). On the other hand, non-parametric techniques 
yield results with better accuracy and less computational  cost104. Such techniques calculate threshold values by 
measurement of  entropy105, error rate, between-class  variance106, local maxima, and so on. The most preferred 
method for thresholding-based image segmentation is the OTSU  method106.

Image segmentation using OTSU method
Also known as the Between-class variance method, the OTSU method is an adaptive binarization thresholding 
algorithm that was proposed by Japanese scholar OTSU in 1979. This non-parametric, unsupervised method 
utilizes between-class variance for separating the segmented classes. It obtains a threshold value that maximizes 
inter-class variance, resulting in minimum intra-class variance between pixel intensities of each class. Thus, this 

Table 9.  Statistical results for 100-digit challenge (CEC 2019) numerical problems.

Problem jDE10071 DE PSO72 YDSE73 NMRA PDO40 DHPN

G16

Mean 1.590E+05 5.864E+11 3.180E+05 1.836E+06 4.167E+05 6.603E+04 7.384E+04

Std 1.597E+05 8.359E+11 4.470E+05 9.262E+05 2.857E+05 3.328E+04 1.530E+04

p-rank − − − − − +

f-rank 3 7 4 6 5 1 2

G17

Mean 2.385E+06 6.844E+01 3.010E+02 1.735E+01 1.891E+01 1.794E+01 1.744E+01

Std 2.719E+04 1.418E+02 9.820E+01 4.300E-03 5.381E-01 6.264E-01 1.024E-01

p-rank − − − + − −

f-rank 7 5 6 1 4 3 2

G18

Mean 1.310E+06 1.270E+01 3.230E+00 1.270E+01 1.270E+01 1.270E+01 1.270E+01

Std 8.519E+05 1.900E-03 1.860E+00 3.494E-05 4.552E-04 9.596E-07 3.102E-06

p-rank − − − − − +

f-rank 7 5 6 3 4 1 2

G19

Mean 3.475E+05 1.539E+03 3.160E+01 5.389E+01 5.525E+02 9.631E+03 2.589E+03

Std 1.149E+05 2.433E+03 1.280E+01 1.037E+01 5.488E+02 3.382E+03 1.679E+03

p-rank − + + + + −

f-rank 7 4 1 2 3 6 5

G20

Mean 1.673E+05 2.116E+00 1.810E+00 2.170E+00 2.257E+00 3.737E+00 2.409E+00

Std 8.426E+04 2.850E-01 1.350E-01 6.468E-01 5.225E-01 7.068E-01 4.828E-01

p-rank − + + + + −

f-rank 7 2 1 3 4 6 5

G21

Mean 3.841E+04 9.901E+00 9.530E+00 1.007E+01 1.159E+01 8.777E+00 8.496E+00

Std 2.063E+03 1.474E+00 1.180E+00 6.818E-01 7.990E-01 1.365E+00 7.371E-01

p-rank − − − − − −

f-rank 7 4 3 5 6 2 1

G22

Mean 9.105E+06 1.282E+03 1.070E+03 2.658E+02 1.984E+02 6.800E+02 3.003E+01

Std 4.38E+08 4.224E+02 3.210E+02 1.193E+02 1.612E+02 2.154E+02 1.133E+02

p-rank − − − − − −

f-rank 7 6 5 3 2 4 1

G23

Mean 1.219E+09 6.982E+00 4.290E+00 6.007E+00 6.039E+00 6.094E+00 5.253E+00

Std 4.388E+08 2.255E-01 3.010E-01 3.456E-01 4.872E-01 4.536E-01 4.528E-01

p-rank − − + − − −

f-rank 7 6 1 3 4 5 2

G24

Mean 9.207E+08 2.788E+02 3.210E+00 6.172E+01 8.657E+00 1.239E+03 2.071E+02

Std 1.131E+08 3.122E+02 4.190E-01 1.523E+02 2.002E+01 5.042E+02 1.865E+02

p-rank − − + + + −

f-rank 7 5 1 3 2 6 4

G25

Mean 1.541E+06 2.042E+01 2.130E+01 2.039E+01 2.051E+01 2.032E+01 2.007E+01

Std 7.460E+05 1.295E-01 1.040E-01 1.034E-01 1.367E-01 1.430E-01 5.646E-02

p-rank − − − − − −

f-rank 7 4 6 3 5 2 1

w/l/t 0/10/0 2/8/0 4/6/0 4/6/0 3/7/0 2/8/0 NA

Average f-rank 6.60 4.80 3.40 3.20 3.90 3.60 2.50

Overall f-rank 7 6 3 2 5 4 1
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method divides a given image into background and foreground depending on its gray-scale characteristics, such 
that the difference between them is the largest with the best threshold.

The fundamental principle of image segmentation using OTSU method is described below.
Consider the gray scale range of an image is k = 0, 1, 2, ...,K − 1 . If mi signifies the amount of pixels with ith 

gray level, then the total pixels M in the image are

Figure 2.  Convergence profiles of YDSE, DE, NMRA, and DHPN.
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The likelihood of occurrence of ith gray level is given by

Assuming T is the gray level threshold which divides the image into two classes: Y0 = {0, 1, ...,T} and 
Y1 = {T + 1,T + 2, ...,K − 1} , the probability of both Y0 and Y1 are

and

The means and variances of both Y0 and Y1 are

and

If µT denotes mean intensity of the image, then

and

The between-class variance and inter-class variance are defined as

and

(59)M =

K−1
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i=0
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Figure 3.  Example of an image pair obtained by different sensors and their fusion (a) VIS image (b) IR image 
and (c) Fused image.
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Hence, the total variance is

To perform thresholding, the OTSU method maximizes the between-class variance, which minimizes the inter-
class variance as the total variance is constant. This method can be extended to multi-level thresholding by assum-
ing N − 1 thresholds {T1,T2, ...,TN−1} that segment the total pixels into N different classes {Y0,Y1, ...,YN−1} . 
The thresholds can be calculated by

where

and

Weight map computation and fusion strategy
The proposed DHPN algorithm calculates the threshold values of an input image to obtain the segmented image 
along with its weight map. Assuming the input image to be an IR image, then the corresponding segmented 
image and its weight map are given by,

and

The weight map of VIS image corresponding to the input IR image is

The weight maps W1
IR and W1

VIS are hard and noisy. Thus, they are unsuitable for the fusion of input images. In 
particular, IR images include coarse-scale structural data. While VIS images depict fine-scale structures. Fusing 
them directly may result in more insignificant details from IR images and fine-scale details from VIS images. To 
remove these artefacts in the final fused image, the  WLS107 optimization scheme is used to refine both weight 
maps.

WLS preserves edges by striking a balance between sharpening and blurring. Hence, it is an edge-preserving 
and smoothing filter that progressively sharpens an image whilst preserving its spacial  information107. For weight 
maps W1

IR and W1
VIS , the corresponding refined weights W2

IR and W2
VIS can be found by minimizing functions 

FIR and FVIS , respectively.
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After obtaining refined weight maps W2
IR and W2

VIS , the pixel-wise single-scale weighted average composition is 
carried out to get the fused image, IFI as

Experimental results
This section demonstrates the effectiveness of the DHPN algorithm in the context of pixel-based image fusion. 
The DHPN algorithm is analysed against the existing image fusion algorithms based on discrete cosine harmonic 
wavelet (DCH)108, cross bilateral filter (CBF)109, gradient transfer method (GTF)110. Saliency detection in sparse 
domain (JSR)111, convolutional sparse representation (CSR)112 and deep convolutional neural network (CNN)113. 
For simulations, twelve pairs of visible and infrared images are chosen from TNO data  set114 which is available 
online at https:// doi. org/ 10. 6084/ m9. figsh are. 10080 29. v1. Further, comparative analysis has been done on the 
basis of four fusion metrics, namely edge-based similarity index ( QAB/F ), the sum of correlation difference (SCD), 
structural similarity index measure (SSIM) and artefact measure ( NAB/F ), which are discussed in the subsequent 
subsections. Also, their MATLAB codes are available in the public domain.

Edge based similarity index ( QAB/F)
This index represents the edge preservation detail in the fused images with a range between (0, 1). It can be 
calculated  as115,116

where F represents the fused image of source images A and B; qA(u, v) and qB(u, v) denote weights for images A 
and B at pixel position (u, v), respectively. The parameters QA/F

o  and QB/F
o  represent preservation of orientation 

values, whereas the parameters QA/F
q  and QB/F

q  denote strength of edge in images A and B at pixel location (u, v), 
respectively.

The QAB/F values of different algorithms are given in Table 10. Ideally, the value of QAB/F should be one, 
indicating that all the edge details are preserved. It is clearly evident that the QAB/F value obtained in the case 
of the proposed DHPN algorithm is 0.765508, which is higher than that of the other algorithms for all twelve 
pairs. This signifies that the proposed algorithm preserves edge details in the fused images quite significantly 
with respect to the existing algorithms.

Sum of correlation difference (SCD)
SCD denotes the extent of useful information that is transmitted to the fused images from its corresponding 
source  images99,117. For good fusion results, a higher value of SCD is desirable. It is computed as
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q (u, v)QB/F
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Table 10.  Comparison of various algorithms on the basis of QAB/F. Significant values are in bold.

Image set

Algorithm

DCH CBF GTF JSR CNN CSR DHPN

Camp 0.39101 0.392 0.40514 0.30318 0.38339 0.47638 0.7809

Traffic 0.47003 0.45063 0.37349 0.5899 0.33248 0.5422 0.8041

Building 0.60936 0.54724 0.5382 0.3571 0.42222 0.64338 0.8122

Home post 0.48 0.47643 0.38912 0.28404 0.27618 0.53147 0.7912

Bench 0.63058 0.63068 0.57943 0.38013 0.42865 0.66955 0.8924

Bunker 0.57579 0.59259 0.48723 0.30221 0.24415 0.56803 0.726

Heather 0.42805 0.40948 0.46613 0.19807 0.18651 0.47147 0.4924

Light hut 0.43398 0.43149 0.39907 0.38772 0.3491 0.52489 0.7879

Lake 0.53952 0.53923 0.48131 0.2751 0.21755 0.54689 0.7703

Doorway 0.50494 0.50734 0.47549 0.29007 0.32607 0.5424 0.7445

Soldier 0.45498 0.40809 0.41948 0.26842 0.15541 0.56881 0.7386

Trench 0.60639 0.59442 0.55742 0.28463 0.23039 0.61256 0.8456

Average 0.510386 0.498302 0.464293 0.326714 0.296008 0.558169 0.765508

https://doi.org/10.6084/m9.figshare.1008029.v1
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where diff1 = F − B , diff2 = F − A and corr(.) represents correlation function.
The SCD values for various algorithms are given in Table 11. The results show the superiority of the DHPN 

algorithm over other algorithms for five image sets in terms of SCD values. On the contrary, CSR is best for 
four image sets, JSR is best for two image sets, and DCH yields a higher value of SCD for one image set only. 
Overall, the proposed DHPN algorithm gives a higher average value of SCD, which is desirable. This shows that 
with DHPN, more meaningful data is transmitted into the final fused image than with the existing algorithms.

Structural similarity index measure (SSIM)
As the name suggests, SSIM represents the extent of similarity between two images with a range between (0, 1). 
It is preferable when the ground truth is available. However, in the case of image fusion, SSIM is calculated as

and

(87)SCD = corr(diff1,A)+ corr(diff2,B),

(88)SSIM(A, F) =
(2αAαF + C1)(2σA/F + C2)

(α2
A + α2

F + C1)(σ
2
A + σ 2

F + C2)
,

(89)SSIM(B, F) =
(2αBαF + C1)(2σB/F + C2)

(α2
B + α2

F + C1)(σ
2
B + σ 2

F + C2)

(90)SSIM =
SSIM(A, F)+ SSIM(B, F)

2
.

Table 11.  Comparison of various algorithms on the basis of SCD. Significant values are in bold.

Image set

Algorithm

DCH CBF GTF JSR CNN CSR DHPN

Camp 1.44541 1.30442 0.96895 1.4111 1.33851 1.51433 1.605

Traffic 1.43676 1.27191 1.10568 1.70293 1.31964 1.54966 1.8013

Building 1.60591 1.4797 0.97451 1.58464 0.91136 1.71489 1.7441

Home post 1.71128 1.39012 1.05256 1.77756 1.54743 1.77825 1.7672

Bench 1.81492 1.62827 1.08473 1.79545 1.71422 1.68696 1.8669

Bunker 1.56726 1.36803 1.15649 1.62841 1.51574 1.50995 1.5467

Heather 1.6286 1.39251 1.19997 1.46388 0.96053 1.64955 1.2101

Light hut 1.65352 1.45965 0.92405 1.54558 1.52093 1.62265 1.6283

Lake 1.60896 1.36132 1.17275 1.70845 1.66239 1.67671 1.7048

Doorway 1.68888 1.45324 1.11126 1.61929 1.44563 1.71431 1.5208

Soldier 0.94824 0.53538 0.73046 1.34397 1.43624 1.47326 1.4505

Trench 1.60723 1.20809 0.97403 1.73614 1.46113 1.6444 1.7365

Average 1.559748 1.321053 1.037953 1.609783 1.402813 1.62791 1.63185

Table 12.  Comparison of various algorithms on the basis of SSIM. Significant values are in bold.

Image set

Algorithm

DCH CBF GTF JSR CNN CSR DHPN

Camp 0.74834 0.62376 0.69181 0.52715 0.70536 0.74954 0.7103

Traffic 0.64468 0.49861 0.61109 0.62353 0.64394 0.67474 0.6632

Building 0.77224 0.58315 0.76132 0.59028 0.764 0.81199 0.8

Home post 0.73449 0.61724 0.73213 0.50549 0.71112 0.76172 0.7725

Bench 0.57614 0.5236 0.50273 0.45458 0.55761 0.56129 0.5923

Bunker 0.65663 0.61793 0.62984 0.4725 0.62314 0.66693 0.6936

Heather 0.70979 0.63041 0.67283 0.44712 0.6714 0.72858 0.7508

Light hut 0.70607 0.53699 0.65676 0.56569 0.66818 0.71927 0.7206

Lake 0.75918 0.69888 0.74249 0.52336 0.7315 0.78059 0.7913

Doorway 0.6883 0.59021 0.67176 0.48033 0.66418 0.71294 0.7308

Soldier 0.62304 0.53005 0.62966 0.57412 0.65703 0.70304 0.6996

Trench 0.74211 0.68207 0.73201 0.52062 0.7277 0.77933 0.7908

Average 0.696751 0.594408 0.669536 0.523731 0.677097 0.72083 0.726317
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Here, αA , αB and αF denote mean intensities, whereas σ 2
A , σ 2

B and σ 2
F  represent variance of images A, B, and F, 

respectively. The parameters σA/F and σB/F signify covariance of source images A and B, and fused image F, 
respectively. C1 and C2 denote constants.

Table 12 gives SSIM values for twelve pairs of images using various algorithms. Higher the value of SSIM, 
higher is the similarity of constituent images with the fused image. It is quite evident from the results that out of 
twelve images, CSR performs best for three image sets, whereas DHPN outperforms other existing image fusion 
algorithms for nine image sets. Overall, DHPN gives the highest value 0.726317 of SSIM among all the existing. 
Hence, DHPN performs superiorly in terms of average SSIM value.

Artefact measure ( NAB/F)
The process of image fusion may add some meaningless visual details to the final fused image. These artefacts 
are undesirable and could lead to misinformation which can severely affect fusion applications. The measure 
NAB/F118,119 gives the extent of such distortion or noise introduced in the final merged image, and hence its lower 
value is preferable.

The values of NAB/F for different image fusion methods are given in Table 13. It is evident that the value of 
NAB/F is minimum for eleven image sets in the case of the proposed DHPN algorithm, whereas the CSR algo-
rithm yields the lowest value for only one image set, ”Camp”. Overall, DHPN gives a minimum average NAB/F 
value, i.e. 0.006617, as compared to the existing algorithms. This signifies that DHPN introduces the least amount 
of artefacts in the output image of all the other image fusion algorithms.

Furthermore, fused images of various image sets using the DHPN algorithm are given in Fig. 4. In image sets 
”Camp”, ”Traffic”, ”Building”, ”Home post”, ”Bench”, ”Doorway”, ”Soldier” and ”Trench”, a human figure is visible 
only in the corresponding IR images, whereas background details like buildings, foliage, trees can be seen in the 
corresponding VIS images. DHPN combines both of these features in the corresponding fused images, thus, 
increasing the information content. For image sets ”Bunker”, ”Heather”, ”Light hut” and ”Lake”, the objective is 
to insert spectral details present in the IR images into the corresponding VIS images for night-vision context 
enhancement. It can be seen that the corresponding fused images show better context enhancement and have 
details from both the VIS and IR images. In a nutshell, DHPN preserves background details from VIS images 
and object details from IR images in the corresponding final fused images. Thus, DHPN is capable of transferring 
necessary details from VIS as well as IR images into the fused images. This is also confirmed by the comparative 
analysis based on different fusion quality metrics.

Discussion
This section has three subsections, namely summary, which highlights the major details of the proposed algo-
rithm, its application to benchmark and image fusion. The second subsection provides the drawbacks of the 
proposed approach, and in the final subsection, we provide some insightful implications.

Summary of results

• The proposed DHPN consists of a balanced expl phase by incorporating DMO, HBA, and PDO into NMRA. 
A stagnation phase is incorporated for local optima avoidance, and finally, six new iws (simulated annealing, 
exponential, linear, chaotic, oscillating, and random) are added to make it self-adaptive.

• In order to evaluate the performance, a pop size and dimension size comparison is done. To check for the best 
set of parameters, an analysis of parameters is also presented. It has been found that if the pop size is reduced, 
the algorithm diversity reduces, and hence, the results are not that significant. However, when we increase 

Table 13.  Comparison of various algorithms on the basis of NAB/F. Significant values are in bold.

Image set

Algorithm

DCH CBF GTF JSR CNN CSR DHPN

Camp 0.05118 0.23167 0.07027 0.34153 0.02976 0.01494 0.0457

Traffic 0.2184 0.487 0.11237 0.19889 0.05862 0.02199 0.002

Building 0.19093 0.45288 0.143 0.42353 0.03609 0.02378 0.0081

Home post 0.10268 0.23932 0.06399 0.36509 0.02096 0.02296 0.0022

Bench 0.05781 0.15233 0.12329 0.21536 0.03424 0.03404 0.0142

Bunker 0.05342 0.11741 0.09009 0.30761 0.0077 0.02371 0.000309

Heather 0.09272 0.2009 0.10404 0.34271 0.02796 0.02013 0.000821

Light hut 0.09951 0.36066 0.06577 0.2822 0.05044 0.01888 0.000974

Lake 0.08579 0.18971 0.09124 0.40261 0.01751 0.02037 0.0011

Doorway 0.09529 0.21509 0.0752 0.35013 0.02381 0.02207 0.0012

Soldier 0.24507 0.25892 0.09293 0.16541 0.02271 0.02574 0.000703

Trench 0.13342 0.18091 0.12682 0.38546 0.01798 0.02746 0.0021

Average 0.118852 0.257233 0.096584 0.315044 0.028982 0.023006 0.006617
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Figure 4.  Image fusion results using proposed DHPN algorithm.
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the pop size, the variation in results is very limited. So it can be said that a pop size of 50 can be considered 
the best. The same is true for dimension size, where the results do degrade over higher dimensions, but there 
are no significant changes in results. Hence, making the algorithm a better fit for higher dimensions as well.

• These operators have been applied to all the parameters of DHPN to make it adaptive in nature. These 
parameter adaptations help the algorithm in self-tuning, with no requirement for adaptation from the user 
perspective.

• All of these added advantages are tested over CEC 2005 as well as CEC 2019 benchmarks. It has been found 
that DHPN provides good optimal results in comparison to other algorithms in the literature.

• For CEC 2005, the proposed algorithm scores the first rank, HBA has the second rank, and JADE ranks third. 
For CEC 2019, DHPN was also ranked first, and YDSE was the second-best algorithm.

Figure 4.  (continued)
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• Further, DHPN is applied to the real-world problem of region-based image fusion of VIS and IR images. 
The average QAB/F = 0.765508 , SCD = 1.63185 , SSIM = 0.726317 , and NAB/F = 0.006617 shows the best 
combination of results obtained by DHPN with respect to other algorithms such as DCH, CBF, GTF, JSR and 
others. Experimental tests showed that the proposed algorithm provides reliable results.

Drawbacks

• A critical issue with the algorithm is the use of a highly intensive expl combined with expt operation in the 
worker phase. Thus making the algorithm more of an exploitative one, and hence increasing the chances of 
poor expl.

• It’s true that the stochastic nature of algorithms can lead to getting stuck in local optima, and there’s no 
guarantee of reaching a global solution. This limitation applies to many stochastic optimization algorithms, 
including the proposed DHPN algorithm. While DHPN may perform well for certain types of problems, it 

Figure 4.  (continued)
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may not be suitable for others, where finding the global optimum is crucial. It’s important to carefully consider 
the characteristics of the problem at hand and assess whether the stochastic nature of DHPN aligns with the 
problem’s requirements. Additionally, employing strategies such as hybridization or incorporating problem-
specific knowledge may help mitigate this limitation and improve the algorithm’s performance across a wider 
range of problems.

• A balance between expl versus expt is also not guaranteed in the proposed algorithm. This is because of the 
presence of a more enhanced expl operation rather than expt operation. Thus, an extensive experimental 
study is required on how we can achieve this effectively.

Insightful implications

• The proposed DHPN is easier to implement and can be applied to hybrid and expert intelligent systems. We 
can further enhance its expl and expt operations and can make it the best fit for real-world problems.

• The algorithm can be changed to a binary version for use in medical imaging, wireless sensor networks, 
electroencephalogram, clustering and other binary domain problems.

• DHPN can also be extended to multiple engineering design problems, including multi-objective optimization 
problems for solving problems with two to many objectives.

• Apart from these, the algorithm can be explored more to make all its parameters auto-tunable, whereby auto-
tunable means that with the progression of the iterations, the algorithm will automatically tune its parameters 
to fit the problem under consideration.

Conclusion and future work
This paper presents an extensive study of a new multiple hybrid algorithm formulated using four algorithms, 
including DMOA, HBO, PDO, and NMRA. The algorithm has a new stagnation phase and self-adaptive mutation 
operators for local optima avoidance and parametric enhancements. The DHPN algorithm is checked for CEC 
2005 and CEC 2019 problems for performance evaluation. A deeper analysis of the population and dimension 
size shows that the proposed algorithm fares significantly better for medium pop sizes and can provide good 
results for higher dimensional problems. A comparative study with JADE, OEWOA, SaDE, FA-FPO, GWO-E, 
SHADE, SCCSA, CMA-ES, LSHADE-SPACMA, and jDE100, among others, shows that the proposed DHPN 
provides highly reliable results. Even from the statistical results of Wilcoxon and Friedman tests, DHPN has 
been found to provide better results. Furthermore, DHPN is used as an optimization strategy in region-based 
image fusion. The efficacy and efficiency of DHPN in image fusion are proven with respect to the four fusion 
quality metrics.

However, the proposed algorithm has the extensive expl operation, but suffers from the poor expt operation. 
A balance between both operations is desirable. For future results, a balance between the expl and expt operation 
must be performed. For parametric adaptations, we can explore various other mutation/inertia wight operations, 
including trigonometric, Gaussian, Cauchy and others. New mathematical equations can be added to further 
improve the expl and expt operations. A detailed theoretical and numerical study can be added to see how the 
algorithm behaves theoretically. Further, as an extension, DHPN can be applied to gene expression modelling, 
cancer classification, feature selection, and clustering problems, among others.

Some other future works include the exploration of hybrid approaches, particularly integrating DHPN with 
other optimization techniques and domain-specific algorithms. Advanced versions of DHPN can be designed for 
handling multi-objective and many-objective optimization problems, adapting to dynamic environments, and 
scaling for large-scale and parallel optimization. Additionally, the intersection of DHPN with quantum comput-
ing is also expected to lead to breakthroughs in evolutionary quantum algorithms, revolutionizing optimization 
capabilities. Overall, the future of DHPN is characterized by continued innovation, driving its broader adoption 
and impact across diverse domains.

Data availibility
The datasets used and/or analysed during the current study are available from the second corresponding author 
(Amanjot Kaur Lamba) on reasonable request.
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