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Mapping reservoir water quality 
from Sentinel‑2 satellite data based 
on a new approach of weighted 
averaging: Application of Bayesian 
maximum entropy
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In regions like Oman, which are characterized by aridity, enhancing the water quality discharged 
from reservoirs poses considerable challenges. This predicament is notably pronounced at Wadi 
Dayqah Dam (WDD), where meeting the demand for ample, superior water downstream proves to 
be a formidable task. Thus, accurately estimating and mapping water quality indicators (WQIs) is 
paramount for sustainable planning of inland in the study area. Since traditional procedures to collect 
water quality data are time‑consuming, labor‑intensive, and costly, water resources management 
has shifted from gathering field measurement data to utilizing remote sensing (RS) data. WDD has 
been threatened by various driving forces in recent years, such as contamination from different 
sources, sedimentation, nutrient runoff, salinity intrusion, temperature fluctuations, and microbial 
contamination. Therefore, this study aimed to retrieve and map WQIs, namely dissolved oxygen (DO) 
and chlorophyll‑a (Chl‑a) of the Wadi Dayqah Dam (WDD) reservoir from Sentinel‑2 (S2) satellite data 
using a new procedure of weighted averaging, namely Bayesian Maximum Entropy‑based Fusion 
(BMEF). To do so, the outputs of four Machine Learning (ML) algorithms, namely Multilayer Regression 
(MLR), Random Forest Regression (RFR), Support Vector Regression (SVRs), and XGBoost, were 
combined using this approach together, considering uncertainty. Water samples from 254 systematic 
plots were obtained for temperature (T), electrical conductivity (EC), chlorophyll‑a (Chl‑a), pH, 
oxidation–reduction potential (ORP), and dissolved oxygen (DO) in WDD. The findings indicated that, 
throughout both the training and testing phases, the BMEF model outperformed individual machine 
learning models. Considering Chl‑a, as WQI, and R‑squared, as evaluation indices, BMEF outperformed 
MLR, SVR, RFR, and XGBoost by 6%, 9%, 2%, and 7%, respectively. Furthermore, the results were 
significantly enhanced when the best combination of various spectral bands was considered to 
estimate specific WQIs instead of using all S2 bands as input variables of the ML algorithms.
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AI  Artificial intelligence
ANNs  Artificial neural networks
BMEF  Bayesian maximum entropy-based fusion
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CTD  Conductivity, temperature, depth
DO  Dissolved oxygen
EC  Electrical conductivity
MAE  Mean absolute error
MC  Monte Carlo
MCA  Monte Carlo analysis
MF  Mathematical function
ML  Machine learning
MLR  Multilayer regression
MSE  Mean square error
NDVI  Normalized difference vegetation index
NDWI  Normalized difference water index
NSC  Nash Sutcliffe
ORP  Oxidation–reduction potential
PMF  Probability mass function
RF  Random forest
RFR  Random forest regression
RMSE  Root mean squared error
RS  Remote sensing
R-Squared  Coefficient of determination
SIAC  Sensor independent atmospheric correction
SVR  Support vector regression
S2  Sentinel-2
TSM  Total suspended matter
WDD  Wadi Dayqah dam
WQIs  Water quality indicators

Urban areas threaten the purity of lakes and reservoirs because of the unauthorized release of industrial water 
and household sewage, which often contaminates these bodies of  water1,2. The deterioration of water quality 
can have several detrimental effects, including increased human exposure to disease and harmful  chemicals3,4, a 
decrease in ecosystem productivity and  biodiversity5, and harm to water-related industries, such as aquaculture 
and  agriculture6. Water quality monitoring has leaned on two approaches: producing water samples for analysis 
in a controlled setting or employing automated in situ measurement. However, such procedures can be labor-
intensive or  expensive7. Additionally, the majority of water sample analyses require regents for examination and 
managing the disposal of generated waste during the testing phase can be prohibitively expensive. While such 
methods may be highly accurate, individual samples only provide information on the quality of water at the 
very location in which water quality is measured, and they have limited ability to fully characterize the overall 
information of WQIs through the whole water  bodies8. As a result, over time, there has been transition from 
conventional in situ measurement techniques towards the utilization of RS  methods9. RS technology utilizes 
sensors that are either airborne or located in space to measure the radiation reflected across various wavelengths 
from the surface of a body of water, which can provide valuable information about its quality. The reflections 
can be employed either directly or indirectly to determine various  WQIs10,11. To monitor and assess WQIs, it is 
crucial to consider several essential factors, including the spectral attributes of both the water and its contami-
nants. These characteristics are determined by the chemical, biological, and hydrological properties of  water12.

The launch of the Multi-spectral Imager’s (MSI) onboard S2 in 2015 significantly enhanced the potential 
for RS of reservoirs. With spatial resolutions of 10, 20, and 60 m, the imagery allows for studying even small 
reservoirs. Moreover, data is required across 13 spectral bands, and the sensor’s radiometric resolution is 12-bit. 
The second satellite launched into orbit at the beginning of 2017, after which the revisit time of S2 was 5  days13. 
Although RS imagery can provide valuable information, meaning and analyzing large-scale datasets using tra-
ditional techniques can be challenging. Therefore, there has been a recent shift toward utilizing cutting-edge 
techniques, including incorporating ML models into geo-referenced databases, to improve the analysis and 
management of these data.

The emergence of ML algorithms, when combined with advanced data processing technologies and powerful 
computing capabilities, has opened up novel opportunities to decode, quantify, and grasp processes propelled 
by significant data  volumes14. Combining ML with satellite RS data offers a powerful approach for the routine 
assessment of variance in WQIs across space and time. Such a procedure provides a viable method to incorporate 
water quality data obtained from conventional in situ  measurements15. Furthermore, ML algorithms facilitate 
faster estimation of WQIs, enabling real-time measurements. Collaborating with RS imagery, these algorithms 
decrease the need for human involvement in analyzing vast amounts of data, delivering exceptional precision 
at a low  cost16.

Recently, a large number of researchers have considered the application of ML algorithms to analyze RS 
satellite data. As a result, several prediction models, considering the combination of RS and ML algorithms, 
have been effectively used in recent decades to estimate and forecast water quality characteristics within bodies. 
These algorithms include artificial neural  networks17–21,  SVR22–26, random  forest27–35, decision  tree36–41, logistic 
regression, Naïve  Bayes42,43,  KNN44–47, and boosting  algorithms48,49.

Guo et al. conducted a study wherein they assessed 255 different compositions of bands in S2 imagery to 
determine the optimal ones for retrieving different  WQIs50. In Guo’s study, three ML algorithms, including RF, 
SVR, and NNs, were examined side by side to identify the best combination of ML and S2 satellite data. In another 
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study, Adusei et al., focused on retrieving and mapping WQIs for the Owabi Dam reservoir by leveraging S2 and 
Landsat 8 satellite data. To accomplish the goal, the researchers employed three ML models, namely RF, SVM, 
and  MLR51. The obtained results indicated that the S2 and RF models were recommended for monitoring the 
surface water quality of the study area. Tian et al. utilized S2 images to evaluate the performance of eXtreme 
Gradient Boosting, SVR, RF, and ANN in estimating different WQIs for inland reservoirs. The findings indicated 
that XGBoost performed better than the remaining three algorithms in terms of evaluation  indices52. Tian et al. 
employed a combination of RS and ML algorithms to recover Chl-a, DO, and ammonia nitrogen levels in inland 
reservoirs. Their findings revealed that XGBoost demonstrated superior performance compared to alternative 
 algorithms53. Between 2016 and 2018, more than 200 records of water quality data, encompassing blue-green 
algae phycocyanin (BGA-PC), Chl-a, DO, specific conductivity, fluorescent dissolved organic matter (fDOM), 
turbidity, and pollution sediments. Their findings underscored the significant potential of both proximal and 
satellite-based sensors in accurately estimating optically active parameters. However, while remote sensing may 
indirectly estimate non-optically active parameters, it continues to pose  challenges54. Leggesse et al., formulated 
six ML models that incorporated Landsat 8 imagery to assess their precision in forecasting three optically active 
WQIs monitored on a monthly basis from August 2016 to April 2022. Their research demonstrated the feasibility 
of monitoring water quality in extensive freshwater bodies with sparse observed data through the integration of 
RS and ML algorithms, potentially augmenting decision-making  processes55.

In addition to ML techniques, the employment of ensemble regression or decision-level fusion has garnered 
significant interest among the RS  community56,57. In a regression problem, decision-level fusion refers to the 
amalgamation of multiple models and their outputs to generate a single model. This approach is widely pre-
ferred because it exploits individual strengths and reduces the biases inherent in employing a single modeling 
 technique58. According to Liu et al.59 decision-level fusion can offer more consistent predictions in regression 
problems, and its adoption may also enhance the transferability of models while capturing diverse correlations 
that may not be evident in models dependent on a solitary regression technique. It has also been discovered that 
the amalgamation of various ML algorithms can aid in crafting accurate models for estimating and predicting 
 WQIs60.

The research indicates that the BMEF procedure, which is one of the procedures to fuse various ML algo-
rithms, plays a vital role in combining individual ML algorithms. However, RS has not yet been used coupled 
with ML and the BMEF concept to improve the outcome generated by predictive models for WQIs. Therefore, 
a BME-based fusion model is proposed to estimate the outcomes generated by individual ML algorithms com-
bined with RS satellite data. To put it differently, the main aim of the BMEF procedure is to combine the output 
of many estimation or predicting models in order to take advantage of the strengths and capabilities of each 
 model61. As a result, the more similar a prognosis is to the relevant observation, the greater the models’ weights 
in the process of fusion of individual  models62.

This research introduced an innovative framework for contrasting singular ML algorithms, such as MLR, 
RFR, SVR, and XGBoost, and their fusion based on BMEF. Although several ML and DL estimation procedures 
have been utilized in the previous research for estimating and predicting WQIs, as far as the authors know, such 
researches lack a comparison of ML models along with their fusion based on BMEF regarding RS satellite data. 
Therefore, this research addressed the gap in knowledge by evaluating the precision of four distinct and widely 
recognized ML algorithms and their fusion. The intended purpose of the suggested framework was to:

1. Creating dataset based on field measurement, using a CTD sensor, and satellite-based data using S2
2. Developing four individual ML algorithms to estimate WQIs
3. Examining the effectiveness of ML models based on various evaluation indices to compare the outcomes of 

ML models together
4. Developing a new hybrid model based on the weighted averaging method, considering uncertainty
5. Comparing the results generated by individual ML algorithms and those of the BMEF model

The benefits of BMEF models for estimating WQIs using RS data include a wide range of stakeholders, such 
as water utilities, environmental agencies, policymakers, and the general public. For instance, water utilities can 
use these models to optimize their treatment processes, reduce costs, and ensure compliance with regulations.

Materials and methods
Four types of ML algorithms and the BMEF model were employed to estimate Chl-a and DO to compare the 
effectiveness of ML algorithms in estimating WQIs using RS data. These characteristics were obtained from an 
AAQ-RINKO sensor. Figure 1 depicts the flowchart outlining the suggested methodology to estimate WQIs. 
The structure encompasses the subsequent stages:

1. Data gathering

The data used to establish the ML models was gathered using an AAQ-RINKO sensor for 15th January, 30th 
January, 14th February, 1st March, 31th March, 20th April, 30th April, 25th May, 31th May, 9th June, 4th July, 
and 14th July 2023 in 254 sampling points. In addition, as the fundamental purpose of the present research was 
to develop ML algorithms able to accurately estimate WQIs using S2 data, the value of different bands, namely 
Aerosols (B1), blue (B2), green (B3), red (B4), Red Edge 1 (B5), Red Edge 2 (B6), Red Edge 3 (B7), NIR (B8), 
water vapor (B9), Cirrus (B10), shortwave infrared-1 (B11), and shortwave infrared-2 (B12), were extracted for 
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the sampling points. It is worth mentioning that the process of atmospheric correction is done based on the 
SIAC algorithm.

2. Optimizing predictor selection (input variables)

This paper determines the most effective predictors among various variables are B1, B2, B3, B4, B5, B6, B7, 
B8, B9, B10, B11, and B12, which are selected as models’ inputs for estimating WQIs. To do so, feature selection 

Figure 1.  The flowchart of the proposed methodology.
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was performed based on a trial-and-error procedure to find important variables for predicting WQIs, namely 
DO and Chl-a. Additionally, using Pearson’s correlation coefficient, WQIs with the most robust links with vari-
ous bands of satellite data were obtained to develop ML algorithms.

3. Developing ML algorithms

During this stage of the proposed framework, the WQPs, including ORP, temperature, EC, DO, and Chl-a are 
estimated individually using the individual models that have been calibrated. The ANN, SVR, RF, and XGBoost 
were utilized to develop these data-driven forecasting models.

4. Developing a hybrid model

A fusion model rooted in BMEF was created with the aim of improving the results achieved through singular 
ML algorithms. BMEF heralds a paradigm shift by seamlessly amalgamating diverse learning models through 
Bayesian inference and maximum entropy. As an innovative fusion method, BMEF catalyzes advancements in 
computational intelligence, promising a new era of predictive prowess.

5. Comparing the results of Singular and fusion models considering uncertainty

During this phase, the findings of the new procedure, that is, BMEF, and singular models were subjected to 
uncertainty analysis using a resampling technique and MCA.

MLR‑ANNs
ANNs are part of the most practical and effective tools for ML algorithms employed in regression problems to 
estimate output(s) regarding the specific nature of the problem. ANNs, which take inspiration from the human 
brain, can effectively model various highly intricate nonlinear problems and deliver precise  outcomes63. This 
method can prove useful in situations where the data does not conform to established  MFs64. MLR-ANNs are 
among the most prevalent and applicable types of ANNs, as depicted in Fig. 2. In addition, net and z can be 
computed using the following procedure, as described in Eqs. (1) and (2):

The variables X1 to Xn are the first to nth input variables; W1–Wn represent their respective weights; the vari-
able b is a constant; f indicates a function called “transfer”; and z is the neuron’s output. The weights, Wi , and 
constant number, b, neurons weights in ANNs are determined through an optimization method. Three transfer 
functions are frequently used in ANNs, which include the hyperbolic tangent sigmoid (TANSIG), logarithmic 
sigmoid (LOGSIG), and pure linear transfer function (PURELIN). Equations (3)–(5) represent the three transfer 
functions used in ANNs.

(1)net = b+

n
∑

i=1

WiXi

(2)z = f (net)

(3)TANSIG(x) =
2

1+ e−2x
− 1

(4)LOGSIG(x) =
1

1+ e−x

Figure 2.  Architecture of the MLR-ANN model in this study.
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SVR
SVR is a traditional supervised ML technique that was initially presented  by65. SVR is a method even when there 
is no pre-knowledge of the raw data. This technique can be employed to unstructured or semi-structured data, 
such as text or images, and it is carried out within the framework of statistical learning theory and minimal 
structure risk  concept66. Numerous papers and books provide extensive information on the underlying principles 
and mathematical formulas of SVR; therefore, this paper does not repeat these equations and the core concept 
of SVR. Figure 3 illustrates the utilization of the SVR model in estimating WQIs, which includes the latitude, 
longitude, and depth as inputs, as well as the WQIs as outputs of the developed model.

RFR
The ML approach called RF employs numerous decision trees and a collection of predictors to predict and assess 
 outcomes67. RF attains its predictive outcomes by forming decision trees through a training  dataset68. RF cre-
ates multiple decision trees, with each tree autonomously cultivated using a distinct bootstrap sample from the 
training data (Fig. 4). The bootstrap sampling procedure is utilised to randomly partition the acquired data into 
homogeneous subsets. The credibility and precision of each tree are ascertained through the assessment of the 
remaining samples, following its generation and training on the data randomly selected.

During the initial comparison phase, which focused solely on selecting the optimal model, the grid search 
technique was utilized to enhance the quality of tuning hyperparameters. Therefore, the RFR model was utilized 
to establish the association between the potential predictors (the value of spectral bands) and the target variables 
(in-situ WQIs).

Gradient Boosting Algorithms
A gradient boosting algorithm is a useful tool for predicting a substantial volume of data characterized by 
exceptional accuracy. This type of algorithm belongs to the boosting family, which combines the predictions 
of multiple base estimators to enhance  accuracy69; specifically, the process of consolidating various weak or 
moderate indicators into robust indicators is known as  fusion70. A guiding heuristic of boosting is that increas-
ingly refined approximations can lead to good predictive results by consolidating the predictions of weak or 
normal indicators into more solid ones. XGBoost stands as an optimized distributed gradient boosting library 
that boasts productivity, adaptability, and convenience as its hallmarks. Additionally, XGBoost is an AI library 
that performs calculations using the gradient boosting system. Such a system can perform AI  computations71. 
It is known for its dominance in structured or tabular datasets when it comes to classification and regression 
predictive modeling problems. Moreover, it has the ability to solve numerous issues in data science rapidly and 
with precision. Figure 5 displays the XGBoost architecture considered for water quality prediction in this study.

CV approach for ML algorithms
CV offers a means of evaluating a model’s predictive capacity on new and unseen data, yielding crucial insights 
into the model’s ability to generalize beyond its training set. It furnishes an estimate of the model’s potential 
performance when applied to unfamiliar data  points72. One strategy to address concern involves abstaining 

(5)PURELIN(x) = x

Figure 3.  Architecture of the SVR model in this study.
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from using the entire dataset during the training phase. Before initiating the training process, the remaining 
data is segregated and kept separate. Upon concluding the training phase of the dataset, the data that remains is 
employed to evaluate the proficiency of the algorithms. Such principle constitutes the foundational idea underly-
ing an extensive range of model evaluation methodologies referred to as CV.

The portioning datasets hold the capability to influence the results of ML algorithms. Numerous methods to 
develop the idea of employing CV have been put forth in prior research endeavors. Nonetheless, the fundamental 
elements of all these methodologies share a common  essence71. The hold-out procedure was selected for this 
study due to its uncomplicated and straightforward nature among the assortment of available techniques. In the 
present study, Fig. 6 illustrates the CV methodology employed.

BMEF model
In this study, the capabilities of the geospatial approach called BME were utilized. In addition, a fusion model 
based on the BME principle was employed by combining the outcomes with various estimation techniques. BMEF 
stands as a geostatistics-derived technique capable of amalgamating variables or spatially extrapolating them 
across multiple locations when data is lacking. This approach achieves equilibrium between two scenarios: (1) 

Figure 4.  Architecture of the RFR in this study.

Figure 5.  Architecture of the XGBoost model in this study.
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incorporating prior knowledge and familiarity with the spatial fluctuations of estimated variables characterized 
by maximum entropy and (2) pursuing the optimization of Bayesian functions to attain posterior probabilities 
with minimal uncertainty.

Within this study, we contemplate a series encompassing the 1st through nth predictions. This sequence serves 
as a depiction of projected WQIs generated by employing three distinct models: MLR, RFR, and SVR. The BMEF 
model considers the predictions of the less accurate values for the parameters of the water quality made using 
the three different  models73. Considering the fact that BMEF implements the distinctive benefit offered by each 
model, the newly devised model demonstrates enhanced assurance and precision in fulfilling the WQIs. The 
diagram illustrating the amalgamation methodologies that utilize the developed BMEF model is illustrated in 
Fig. 7. Furthermore, the steps involved in BMEF are explained in detail below:

1. Introducing spatiotemporal data of estimates into n separate trained and tested model.
2. Employing distinct algorithms to generate preliminary estimates for WQIs.
3. WQIs are considered vectors computed through singular estimation models, and the pertinent observa-

tion is associated with them. In relation to the symbol representing this vector, ( x1j , x2j , . . . , xnj , zj ), where, 
x1, x2, . . . , xn are 1st to nth estimation of the factors influencing WQIs generated by each ML model across 
different depths ranging from i to n, and zj represents the recorded WQIs at a determined depth of the res-
ervoir.

4. Determining the measure of the distinction between singular data points and their corresponding observa-
tions: as a model’s predictions align more closely with the corresponding data, its relative influence increases 
within the fusion process.

5. Selecting types of data, that is, soft and hard, regarding the outcomes derived from ML and recorded data. 
The foremost advantage provided by the BMEF over earlier data fusion models lies in its ability to incor-
porate uncertainty into the problem as a probabilistic number. By partitioning the data into two categories, 
the present data uncertainties are taken into account during the projection of WQIs. The former data can 
manifest as range values or PMF and frequently encompass estimation as well as observational inaccuracies. 
Thus, the WQIs produced from singular ML models are considered “soft data.” Consequently, rather than 
employing an exact numerical value, we may include the distinct models’ estimations with a larger level of 
uncertainty. To capture the characteristics of soft data, we use ML algorithms to compute PMFs.

6. Computing the covariance values obtained through experimentation: The BMEF analysis establishes how 
the distances between the data points related to their importance. In this context, the term ’data points’ refers 
to the estimated values of WQIs. The space separating such data points reflects the variations among the 
calculated water quality metrics from different models and their corresponding actual values. Covariance is 
a determined type of statistical correlation function that indicates this importance. As a result, experimental 
variogram points can be developed to demonstrate the correlation between covariance values and distances.

7. Creating appropriate variograms that align with the empirical values: The empirical samples are aligned 
with a designated MF referred to as a theoretical variogram. In this study, the observed locations were used 
to fit a spatial covariance model using the hard data. This generated graph was employed to calculate the 
probability distribution function (PDF) of WQIs.

8. Employing the provided variogram to estimate values for undetermined samples.

Assessing the effectiveness of ML techniques
Several statistical indicators can be used to assess the precision and margin of error exhibited by the models 
that were developed. In the current study, such indicators as Nash–Sutcliffe (NSC), mean squared error (MSE), 
mean absolute error (MAE), root mean square error (RMSE), and R-squared ( R2 ) were employed to assess the 
accuracy and error of each  model91. These indices are defined in Eqs. (6)–(10)74:

Figure 6.  The utilization of CV methodology.
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wherein T represents the desired amount; P represents the estimated value; T  represents the mean value of the 
target data; P represents the mean of the data forecasted by the model; and n represents the count of data ana-
lyzed. Each of the aforementioned statistical indicators was computed independently.

(6)NSC = 1−

∑n
i=1 (Ti − Pi)

2
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Figure 7.  A schematic of fusion steps using the BMEF model.
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Spectral‑band importance
RS for WQI estimation has two key factors. The first is the algorithm used to detect the relationship between 
reflectance from different spectral bands of the satellites, and the second is the band selection for every parameter. 
Different ML algorithms and other statistical algorithms, such as regression, have been used to find the relation 
between satellite bands’ reflectance and field measurements. This study conducted a variable-importance analysis 
to assess the effect of different wavelengths or spectral bands on ML models. The analysis employed various band 
reflectance values as input features to estimate the concentration of the corresponding water-quality variable. By 
doing so, the study aimed to determine which wavelengths or spectral bands have the most significant impact on 
ML algorithms. Overall, remote sensing technology offers a powerful tool for assessing and monitoring WQIs 
over large spatial scales, facilitating informed decision-making and sustainable management of aquatic resources.

Case study
Study area
Oman, characterized as a semi-arid nation, possesses limited reserves of enduring surface water. Among the 
scarce wadis in Oman maintaining consistent flow, Wadi Dayqah stands  out75. Surrounding this reservoir are 
diverse mountains, an array of wadis, and fertile grounds, collectively rendering the area an attractive destina-
tion. The WDD demonstrates the promise of hydropower technology and possesses immeasurable economic 
 significance89. Climate and precipitation transitions occur from summer to winter, spanning from mountainous 
regions to coastal areas or wadis. Unlike the mountainous area, the lowland sections of the reservoir encounter 
elevated temperatures and humidity  levels90. Furthermore, winter brings precipitation patterns, with certain years 
experiencing notably higher rainfall, leading to substantial floods due to the presence of other wadis in close 
proximity to the dam. The area’s consistent radiation throughout the year and prevailing arid climate contribute 
to a relatively modest flow of water through the wadis and wells.

Thermal stratification refers to temperature variations at various reservoir depths, influencing the density 
of the water. Prolonged water retention periods within this reservoir, coupled with thermal stratification, lead 
to (1) notable deterioration in water quality; (2) an elevated likelihood of water contamination, posing risks to 
human health; and (3) heightened treatment demands for the WDD. Significant to recognize is that stratification 
divides the reservoir water into distinct layers, with the lower layer lacking atmospheric oxygen. Figure 8 depicts 
the perimeter of the WDD along with the sampling stations designated for acquiring WQIs.

Data
This study utilized data from an in situ spectroscopy and water-quality measurements collected through a CTD 
sensor. The CTD sensor, an acronym for conductivity, temperature, and depth sensor, serves as a fundamental 
instrument in oceanographic and limnological research. This sensor enables precise measurement of critical water 
quality indicators, including salinity, temperature, and pressure, thereby facilitating comprehensive understand-
ing and real-time monitoring of aquatic environments. Table 1 summarizes the WQIs collected via the CTD sen-
sor. The researchers conducted field sampling from January 15th, 2023 to July 14th, 2023, to collect water quality 
data. A total of 254 samples were collected, including temperature, EC, pH, Chl-a, ORP, and DO. In addition, 
field spectroscopy data were collected using S2. The S2 mission offers high-resolution, multi-spectral images that 
can be utilized in various fields of study. The S2 Multi-spectral Imagery (MSI) data consists of 13 bands. Table 2 
Provides detailed information on the S2 bands. The satellite images of four dates in 2023 (15 January, 30 January, 
14 February, 1 March, 31 March, 20 April, 30 April, 25 May, 31 May, 9 June, 4 July, and 14 July) were downloaded 
using Google Earth Engine (GEE). All of the computational processes on satellite images were done utilizing 
GEE. This paper utilized a total of 254 datasets, of which 190 were used for training and calibration purposes, 
and the remaining 64 datasets were used to verify the developed models.

Uncertainty analysis
In this study, resampling and MCA are used to analyze uncertainties on both the singular outcomes of estimated 
algorithms and the BMEF (Fig. 9). The bootstrap approach, which is a resampling and introduced  by77 methodol-
ogy, is used to calculate the statistical characteristics of a variable. The foundation of this approach rests on the 
premise that when information about the proper distribution of a variable is lacking, sampled values offer the 
most accurate estimation. Additionally, an adequate estimate of the distribution of the unfamiliar population 
is possible using the established practical distribution obtained through a recorded dataset. Such a procedure 
proves valuable for analysis due to its relative ease of use in contrast to conventional analytical approximations, 
e.g.,77. According  to78, the bootstrapping strategy is built upon two key components: unbiased drawing samples 
by drawing with the substitution from the initial dataset to develop an MC approximation of the bootstrap 
resampling technique.

The bootstrapping process comprises two main phases: conducting autonomous and random sampling with 
replacement from the primary dataset to acquire a Monte Carlo approximation of the bootstrap resampling 
approach. More details about this technique can be found  in78.

Results and discussions
In the current research, four singular ML techniques and the BMEF model, a combination of these techniques, 
were formulated to augment the outcomes yielded by standalone ML algorithms. Field-measured data for each 
parameter was the dependent variable, and the S2 reflectance for each band at the same location of the field-
measured data was the model predictor. Model validation was performed using 25% of the data for testing 
and 30% for the training dataset. The decision to utilize a 30% training dataset was meticulously reasoned, 
considering both the intricacies of the dataset and the computational constraints, ensuring that the selected 
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machine learning algorithms demonstrate robust performance and generalize effectively to unseen data despite 
the relatively smaller training size.

ML models’ inputs and outputs
As the main goal of this research was to map WQPs using different bands of satellite datasets, the sampling WQIs 
obtained from a CTD sensor were considered target values. Furthermore, the value of various bands of S2 was 
considered as the input variable or feature of ML algorithms. RS for WQIs estimation has two key factors: (1) 

Figure 8.  Location of Wadi Dayqah Dam and its designated sampling points, developed by  ArcMap76.
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the algorithm used to detect the relationship between reflectance from different spectral bands of the satellite; 
and (2) the band selection for every parameter. Different ML algorithms and other statistical algorithms, such 
as regression, were used to find the relation between satellite bands’ reflectance and field measurements. Four 
different date field measurements, having the same time as S2, have been obtained to recognize the best selec-
tion of bands. The final surface water quality of each parameter was exported for the best band combination.

Fine‑tuning the ML algorithms
The tuning mechanism entails identifying the optimal hyperparameter for a learning algorithm pertaining to 
distinct data. In the realm of supervised learning, the term ’optimally’ encompasses various performance indi-
cators and run time, which hyper-parameters can significantly impact in some cases. The enhancement in per-
formance achievable by modifying a single hyper-parameter compared to its preset configurations is known as 
’’tunability,’’ encompassing all hyper-parameters. In order to proceed with the process of tuning in the current 
research, the optimal proportion of four ML procedures, namely MLR, RFR, SVR, and XGBoost, were obtained 
via trial and error.

Table 1.  Statistical summary of recorded WQIs in WDD. The statistics are computed from 254 samples.

WQPs Mean Variance Standard deviation Minimum Maximum Skewness Kurtosis

Temperature 23.27 0.25 0.50 22.045 24.338 − 0.528 − 0.097

EC 565.53 0.25 8.43 555.4 610.6 2.10 8.07

Chl-a 0.71 0.18 0.43 0.117 2.858 2.85 10.94

pH 7.55 0.17 0.41 4.91 8.62 − 2.68 17.52

ORP 101.12 4592 67.78 − 31.12 300.77 0.55 0.08

DO 7.69 0.12 0.35 6.98 8.37 − 0.25 − 0.86

Table 2.  Summary of various bands of Sentinel-2.

Name Resolution Wavelength Description

B1 60 m 443.9 nm (S2A)/442.3 nm (S2B) Aerosols

B2 10 m 496.6 nm (S2A)/492.1 nm (S2B) Blue

B3 10 m 560 nm (S2A)/559 nm (S2B) Green

B4 10 m 664.5 nm (S2A)/665 nm (S2B) Red

B5 20 m 703.9 nm (S2A)/703.8 nm (S2B) Red Edge 1

B6 20 m 740.2 nm (S2A)/739.1 nm (S2B) Red Edge 2

B7 20 m 782.5 nm (S2A)/779.1 nm (S2B) Red Edge 3

B8 10 m 835.1 nm (S2A)/833 nm (S2B) Near-Infrared (NIR)

B8A 10 m 864.8 nm (S2A)/864 nm (S2B) Red Edge 4

B9 20 m 945 nm (S2A)/943.2 nm (S2B) Water vapor

B11 20 m 1613.7 nm (S2A)/1610.4 nm (S2B) SWIR 1

B12 20 m 2202.4 nm (S2A)/2185.7 nm (S2B) SWIR 2

Figure 9.  A flowchart of the bootstrap resampling method.
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The MLR algorithm’s development in Keras involved utilizing an MLR. As was discussed, the parameters 
of this algorithm were tuned via a trial-and-error procedure. The model considered in this study comprised an 
input layer that represented the different bands of S2 satellite data. Considering more details, the first hidden 
layer consisted of fifty neurons, while the second contained twenty-five. The optimization approach to minimize 
the MAE quantity was determined based on Adam. This optimization technique choice aligns with utilizing the 
ReLU activation function in both the hidden layers and the output layer. Table 3 provides an overview of the 
HPOs in the MLR model.

The RFR algorithm requires the user to set various parameters, namely, the number of observations randomly 
drawn, the number of variables chosen for every division, the criterion for portioning, the smallest count of 
instances, and the number of trees. In practice, RF users may be uncertain if adjusting the tuning parameters 
to different values could improve performance in contrast to the defaults. The tuned hyper-parameters are 
described in Table 3. One of the primary challenges in enhancing the predictive accuracy of the SVR model is 
hyper-parameter tuning. Therefore, this study optimized five parameters of the SVR algorithm via trial and error. 
The SVR model requires various parameters to be set, including (I) the type of kernel function, which can be 
polynomial, linear, or radial basis functions; (II) sigma; (III) epsilon; (IV) C; and (V) the polynomial function’s 
degree, of the chosen optimal kernel function happens to be of polynomial nature. Figure 3 shows the procedure 
used for experimenting with various parameter values for the SVR model. Additionally, Table 3 displays the 
optimal value of each parameter for the SVR model formulated within this research.

Outcomes from the utilization of BMEF to estimate WQIs
In this part, the results of water quality estimations are presented. These results are based on the utilization of 
the BMEF and encompass two primary scenarios—all bands of S2 as input variables and those bands having 
the highest impact and correlation with each of the parameters pertaining to water quality. In order to attain 

Table 3.  The summary of optimized parameters obtained for machine learning algorithms. #: Number; HAF, 
hidden activation function; LF, loss; OA, Optimization algorithm; RAF, recurrent activation function; OAF: 
output activation function; RD, recurrent dropout.

Model Predicted Variable Structure

MLP

Temperature # layers: 3; # Nodes: 20; HAF: ReLU; RAF: Sigmoid; OAF: ReLU; Dropout: 0.001; RD: 0.05; LF: MAE; 
OA: Adam

EC # layers: 3; # Nodes: 25; HAF: ReLU; RAF: Sigmoid; OAF: ReLU; Dropout: 0.001; RD: 0.05; LF: MAE; 
OA: Adam

Chl-a # layers: 3; # Nodes: 20; HAF: ReLU; RAF: Sigmoid; OAF: ReLU; Dropout: 0.001; RD: 0.05; LF: MAE; 
OA: Adam

pH # layers: 3; # Nodes: 25; HAF: ReLU; RAF: Sigmoid; OAF: ReLU; Dropout: 0.001; RD: 0.05; LF: MAE; 
OA: Adam

ORP # layers: 3; # Nodes: 20; HAF: ReLU; RAF: Sigmoid; OAF: ReLU; Dropout: 0.001; RD: 0.05; LF: MAE; 
OA: Adam

DO # layers: 3; # Nodes: 25; HAF: ReLU; RAF: Sigmoid; OAF: ReLU; Dropout: 0.001; RD: 0.05; LF: MAE; 
OA: Adam

SVR

Temperature Kernel: Linear kernel; Sigma: 1.0; Epsilon: 0.1; C: ; and degree of the polynomial: -

EC Kernel: Polynomial; Sigma: 1.0; Epsilon: 0.1; C: 1.0; and degree of the polynomial: 3

Chl-a Kernel: RBF kernel; Sigma: 1.2; Epsilon: 0.1; C: 1.0; and degree of the polynomial: -

pH Kernel: Linear kernel; Sigma: 1.04; Epsilon: 0.17; C: 1.0; and degree of the polynomial: -

ORP Kernel: Polynomial; Sigma: 1.1; Epsilon: 0.15; C: 1.0; and degree of the polynomial: 3

DO Kernel: RBF kernel; Sigma: 1.12; Epsilon: 0.15; C: 1.0; and degree of the polynomial: -

RFR

Temperature Max_depth: 15; Criterion: MSE; Min_size: 7; n_trees: 1000; n_features: 2

EC Max_depth: 15; Criterion: MSE; Min_size: 7; n_trees: 1000; n_features: 2

Chl-a Max_depth: 15; Criterion: MSE; Min_size: 7; n_trees: 1000; n_features: 2

pH Max_depth: 15; Criterion: MSE; Min_size: 7; n_trees: 1000; n_features: 2

ORP Max_depth: 15; Criterion: MSE; Min_size: 7; n_trees: 1000; n_features: 2

DO Max_depth: 15; Criterion: MSE; Min_size: 7; n_trees: 1000; n_features: 2

XGBoost

Temperature Learning_rate = 0.1; n_estimator = 100; subsample = 1.0; criterion = ‘friedman’; max_depth = 5, ccp_
alpha = 0

EC Learning_rate = 0.1; n_estimator = 100; subsample = 1.0; criterion = ‘friedman’; max_depth = 5, ccp_
alpha = 0

Chl-a Learning_rate = 0.1; n_estimator = 100; subsample = 1.0; criterion = ‘friedman’; max_depth = 5, ccp_
alpha = 0

pH Learning_rate = 0.1; n_estimator = 100; subsample = 1.0; criterion = ‘friedman’; max_depth = 5, ccp_
alpha = 0

ORP Learning_rate = 0.1; n_estimator = 100; subsample = 1.0; criterion = ‘friedman’; max_depth = 5, ccp_
alpha = 0

DO Learning_rate = 0.1; n_estimator = 100; subsample = 1.0; criterion = ‘friedman’; max_depth = 5, ccp_
alpha = 0
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the values of the empirical covariance function, we utilize both recorded and estimated values obtained from 
singular ML algorithms. Using the MATLAB “cftools” package, the empirical points were employed to conform 
the appropriate covariance function, and unidentified water quality indices were interpolated using the obtained 
covariance functions to estimate such parameters. In both scenarios, the estimation of each developed ML algo-
rithm is characterized by elevated uncertainty levels, often referred to as soft data. This method aids in addressing 
the uncertainty linked to the estimated WQIs characterized by lower precision. Empirical histograms offer a form 
of characterization for this category of soft data. The main focus of the discussion revolves around four distinct 
varieties of soft data (Fig. 10) to match the soft data in this study. Furthermore, the probability distribution of 
type 1 was selected based on the proportionate occurrence rate of the recorded data.

The different models whose outputs are employed in the amalgamation process are shown in Table 4. In 
addition, Table 4 presents the estimated WQIs using the new methodology of the weighting model. According 
to the findings obtained from BMEF, employing all bands as input variables as predictor reduced the effective-
ness of WQI estimation using RS satellite data because of the limited extent of correlation between some bands 
and the WQIs. Moreover, the same or better results are typically obtained by considering those bands having a 
high correlation with WQIs. Section “Evaluation of model performance” discusses the findings of each singular 
algorithm and the BMEF model in more detail. In the fusion process, four ML algorithms with high accuracy in 
estimating WQIs are considered predictors in the fusion model.

Figure 10.  Four main types of probability distribution used in BMEF.

Table 4.  The chosen individual algorithms and their outcomes used in the fusion model.

Scenario Predictor WQI
Selected individual 
models

All bands of S2 B1, …, B12
Chl-a

MLR RF SVR

The best combination B2, B3, B4, B5, B6 MLR RFR SVR

All bands of S2 B1, …, B12
DO

MLR RFR SVR

The best combination B2, B3, B4, B8 MLR RFR SVR
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Evaluation of model performance
The comparison of the standalone ML algorithms as well as the BMEF model
Considering S2 bands as input variables. In order to develop ML algorithms, the raw data was separated for the 
training (70%) and the testing (30%). Subsequently, the ML algorithms and BMEF model, which are mentioned 
in the previous sections, were developed to estimate the number of WQIs such as DO and Chl-a. Table 5 presents 
the results of ML and BMEF models, considering all S2 bands as input variables. As can be seen from Table 5, 
due to the combining merits of individual ML algorithms, the fusion model based on BMEF outperformed all 
of these developed models. For example, the closer the value of RMSE is to zero, the better results are obtained. 
These values showed that BMEF leads to better results compared to MLR (15%), RFR (20%), XGBoost (31%), 
and SVR (19%), respectively. Additionally, considering NSE as an evaluation index, BMEF outperformed other 
individual ML algorithms by MLR (5%), RFR (2%), XGBoost (6%), and SVR (4%), respectively. It is worth men-
tioning that the optimum value of NSE is close to one. Based on the results, individual ML algorithms excel in 
their specialized domains, harnessing specific patterns within data to make estimations. However, they may be 
limited by their inability to capture the full spectrum of complexity inherent in real-world datasets. The BMEF 
model, on the other hand, leverages the strengths of multiple individual algorithms, combining their estimation 
capabilities to develop a more robust and accurate model. By integrating diverse perspectives and insights from 
various algorithms, the BMEF model outperforms its individual counterparts, offering enhanced estimation 
power and adaptability across a wider range of scenarios. Through this amalgamation of approaches, fusion 
models represent a promising frontier in ML, poised to revolutionize estimative analytics across domains.

Figure 11a and b compare the evaluated indices in the training and testing phase for the ML algorithms. The 
effectiveness of all the developed algorithms was acquired for each individual ML model and the BMEF model, 
as shown in Fig. 11 and Table 5. Since S2 does not have a thermal band in scenario 1, considering all bands of S2 
as input variables and R2 as evaluation criteria, the results obtained for the temperature in the validation/testing 
period are not satisfied in comparison with other WQPs. Table 6 shows the range of evaluation indices. It may 
be true that the obtained results indicated that evaluation indices for estimating temperature can classified as 
an acceptable ML model, but S2 is not reliable to estimate the mentioned parameter compared to other WQIs. 
Therefore, the results obtained for the estimation of temperature were the least accurate among other WQIs. On 

Table 5.  The capability of singular ML algorithms considering all bands of S2 as input variables.

Variables Model
NSE
(train)

NSE
(test)

R
2

(train)
R
2

(test)
RMSE
(train)

RMSE
(test) MAE (train) MAE (test) MSE (train) MSE (train)

Chl-a

MLR 0.84 0.85 0.86 0.87 2.13 2.17 2.44 2.45 4.53 4.21

RFR 0.91 0.92 0.88 0.90 2.29 2.31 1.81 1.79 5.24 5.12

XGBoost 0.82 0.84 0.81 0.81 2.69 2.67 2.78 2.71 7.23 6.95

SVR 0.85 0.86 0.85 0.86 2.25 2.24 2.23 2.16 5.06 4.14

BMEF 0.89 0.90 0.91 0.92 1.88 1.85 1.85 1.77 3.53 3.25

DO

MLR 0.84 0.83 0.88 0.89 1.24 1.25 1.48 1.45 1.53 1.43

RFR 0.81 0.80 0.83 0.84 2.19 2.24 3.25 3.21 4.79 4.61

XGBoost 0.83 0.82 0.79 0.80 2.24 2.38 4.18 4.11 5.01 5.56

SVR 0.83 0.84 0.87 0.88 1.28 1.25 0.99 0.97 1.63 1.38

BMEF 0.91 0.90 0.92 0.91 0.98 0.95 0.83 0.85 0.96 0.82

Figure 11.  Assessing the effectiveness of MLs and BMEF model for estimation of Chl-a based on (a) R-Squared 
and NSE and (b) RMSE, MAE, and MSE for both the training as well as testing period.
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the other hand, Chl-a and DO can be estimated using B2, B3, and B4 directly; thus, the obtained results for such 
parameters are satisfying (Table 6). Additionally, for the validation period, the values of NSE ranged from 0.69 
to 0.84 for Chl-a, which had an acceptable rate, thus classifying it as appropriate for the estimating parameters. 
During both phases, all models have good and acceptable performance due to the ranges of such index between 
0.44 and 0.85, for XGBoost to estimate temperature and for BMEF to estimate DO, respectively. R-squared values 
were classified as satisfactory, good, and very good performance.

Taking into account that a lower RMSE value nearer to zero indicates the better effectiveness of the model, the 
outcomes from both individual models and the BMEF model show that these evaluation indices do not yield an 
acceptable rate when all bands of S2 data are employed as input variables. For instance, BMEF, the best model, 
for estimating Chl-a, has an index value of 1.07, while the worst model, XGBoost, for estimating temperature, 
has a considerably higher index value of 4.01.

Regarding the recorded versus estimated value of WQIs, Fig. 12 illustrates instances where the model exhib-
ited positive errors, indicating underestimation, and, conversely, where negative errors were present, implying 
an overestimation of the observed values for the WQIs. Additionally, as depicted in Fig. 12, points situated over 
the 1:1 line indicate that the estimated values held lesser value compared to the recorded values. Furthermore, 
the closer the scatter values are to the 1:1 line, the better the estimation effectiveness; conversely, the further away 
the points are from this line, the worse the model’s performance.

Considering the optimal amalgamation of spectral bands to estimate WQIs. The bands of S2 with a strong 
correlation with parameters related to WQIs (more than 0.7) are considered as input variables to achieve high 
accuracy in the predictions. S2 satellites operate in visible, near-infrared, and shortwave infrared bands, mainly 
used for vegetation mapping, land cover classification, and other applications related to Earth observation. How-
ever, these satellites do not have thermal infrared sensors, so they cannot be directly used in temperature meas-
urements. To estimate temperature from S2 data, one would need to use a process known as thermal RS, which 
involves analyzing thermal infrared data from other sensors or satellite platforms. Therefore, using RGB bands, 
which have a robust correlation with WQIs (more than 0.7) as input variables to estimate the temperature, leads 
to satisfactory results. In addition, the results of the best combination of S2 satellite data are presented in Table 7 
and Fig. 12.

Table 7 illustrates the assessment of analyzed metrics in the training and testing periods for the developed 
models to estimate the concentration of Chl-a. The BMEF model demonstrates better performance when the 
Nash–Sutcliffe Coefficient (NSE) and R-squared values are closer to 1. In addition, Table 7 indicates the models’ 
performance considering RMSE, MAE, and MSE as evaluation indices. Such values had better performance if the 
value of evaluation indices is closer to zero. Furthermore, a model’s performance can be considered good if NSE 
is above 0.5 and R-squared is more than 0.5. Hence, in nearly all situations, the BMEF had better performance 
in comparison with the other developed ML algorithms due to the higher R2 and NSE for both calibration and 

Table 6.  Classification of suitable amount evaluation indices.

Performance rating NSE R-Squared MAE RMSE

Very good NSE ≥ 0.7 R
2
≥ 0.7 MAE < 0.3 RMSE < 0.3

Good 0.5 ≤ NSE < 0.7 0.5 ≤ R
2<0.7 0.3 ≤ MAE < 0.5 0.3 ≤ RMSE < 0.5

Satisfactory 0.3 ≤ NSE < 0.5 0.3 ≤ R
2<0.5 0.5 ≤ MAE < 0.7 0.5 ≤ RMSE < 0.7

Unsatisfactory NSE < 0.3 R
2<0.3 MAE ≥ 0.7 RMSE ≥ 0.7

Figure 12.  R-Squared of the BMEF model to estimate DO.
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validation periods. It is worth mentioning that since the BMEF model utilizes the best results of individual 
models, this model performs better in estimating WQIs are better than those of individual ML models. As the 
RMSE, MSE, and MAE values approach proximity to zero relate to better model had better performance, the 
outcomes derived from individual models and the BMEF model indicate that when the best combination of S2’s 
bands are considered as input variables, the level of uncertainty decreases. As a result, the mentioned evaluation 
indices get closer to 0. As for R-Square, Table 7 shows that the XGBoost model overestimated the observed value 
due to the high number of points in the testing period above the 45-degree line.

General comparison of two scenarios (considering all bands as input variables and the best combination of them)
This section presents the outcomes of all tested algorithms considering the defined scenarios—all bands and the 
best combination of bands. Figure 13 displays the best results obtained from the BMEF model to estimate WQIs. 
As such, the blue circles indicate the scenario that considers all bands of S2 as input variables, and the red ones 
are the scenarios showing the best combination of bands as input variables of the developed models. The findings 
reveal that the red scatter points, in approximately all WQIs, correlated highly with observed data. For instance, 
using the best combination of bands (i.e., B2, B3, and B4), as input variables to estimate the amount of Chl-a led 
to a significant improvement in R-squared, outperforming the results with all bands by 24%, 10%, 27%, 5%, and 

Table 7.  The effectiveness of ML models and the BMEF model regarding all bands of S2 as input variables. 
Model 1: Multi-layer Regression. Model 2: RFR. Model 3: XGBoost. Model 4: SVR. Model 5: BME. Temp, 
temperature. B, band. *: 0. If the results were less than 100, 0 should be implemented. For example (83 → 0.83). 
**: 1. If the results were more than 100, 1 should be implemented. For example (111 → 1.11).
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Bands of S2 satellite data

B
2

B
3

B
4

B
5

B
6

B
8

C
hl
-a

1 94 90 95 92 92 94 111 125 67 79
2 97 98 98 98 56 55 124 131 33 31
3 89 89 91 91 77 83 115 128 65 75
4 91 92 88 89 111∗∗ 121 176 184 128 131

5 98 99 96 97 64 65 118 124 46 41

D
O

1 94 95 95 95 24 23 27 28 24 25
2 92 93 92 91 26 25 25 24 28 27
3 91 92 90 91 29 31 31 28 23 24
4 94 95 93 94 25 24 26 24 21 22
5 98 99 96 97 10 11 13 12 14 13

Figure 13.  R-Squared data obtained for the BMEF model considering (a) all bands as input variables and (b) 
the best combination of bands as input variables for DO concentration.
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10% compared to when all bands are considered as input variables. In all of the comparison scenarios, BMEF was 
considered as it exhibited the best performance over the individual ML models. In addition, Fig. 15 illustrates the 
generated spatial water quality maps of WDD using the BMEF model and considering the two defined scenarios 
to estimate Chl-a. As can be seen from this figure, the similarity between observed data and the scenario when 
the best combination of bands was considered as input variables is higher than in the other scenario.

Figure 14.  Boxplot for (a) dissolved oxygen and (b) chlorophyll-a.

Figure 15.  Generated spatial water quality maps of the Wadi Dayqah Dam using the BMEF model (a) 
considering (a) all bands as input variables, and (b) the best combination of bands as input variables, developed 
by  ArcMap76.
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Estimating the amount of EC in reservoirs using RS data is a complex task requiring the use of additional data 
sources and modeling techniques. S2 data cannot directly estimate the amount of EC of water bodies. Therefore, 
some RS methods have been developed to estimate this parameter, such as a technique that approximates the 
ratio of bands 4 and 5 (red and red-edge) of S2 data to estimate WQIs.

Boxplots serve as powerful graphical representations of statistical data, offering insights into the distribution, 
central tendency, variability, outliers, and skewness within a dataset, thereby facilitating nuanced comparisons 
and analyses in scientific research. Positioned along the x-axis, the box in a boxplot denotes the median, signi-
fied by the line within the box, representing the middle value of the dataset when sorted in ascending order and 
dividing the data into two halves, each comprising 50% of the points. The length of the box visually illustrates the 
spread of the central portion of the dataset, delineated by the first quartile (Q1) and third quartile (Q3). Figure 14 
illustrates the boxplot of two WQIs, dissolved oxygen (DO) and chlorophyll-a (Chl-a), during the testing phase, 
offering valuable insights into the distribution of both estimated and recorded values. For instance, in Fig. 14a, 
the lower band for observed data hovers near 6, contrasting with the range of 6.2–8.3 for the developed models, 
indicating that the models generally capture the lower range of observed DO concentrations. The upper whisker 
reveals that while the observed data peaks at 8.3, the models span from 6 to 8.4, encompassing a broad spectrum 
of values, some of which closely approach the maximum observed values. The median, a representation of the 
central trend, stands at 7.2 for the observed data and varies from 7.8 to 8.4 for the models, suggesting good 
alignment between the models’ core values and the observed data’s median.

Estimating the amount of ORP in reservoirs can be challenging and typically requires more than just spectral 
band information. Nevertheless, certain spectral bands in S2 data can offer valuable insights related to WQIs, 
such as the presence of certain algae or suspended particles, which can affect the ORP in reservoirs. The spectral 
bands that can be useful for this type of analysis are the blue (B2), green (B3), and near-infrared (B8) bands. 
These bands can be used to calculate various metrics, like the NDVI, NDWI, and TSM index. These indices can 
offer useful information on the presence of algae, suspended particles, and WQIs in the reservoir. Figure 15 
demonstrates the generated spatial water quality maps of DO in WDD.

Estimating the amount of DO in reservoirs using S2 data can be challenging since DO is not directly measur-
able using optical RS. However, some WQIs that can be divided from S2 data, namely, turbidity, Chl-a, and TDS, 
can indicate the concentration of DO within the aquatic environment. The bands that can be useful for estimating 
WQIs related to DO are the blue (B2), green (B3), red (B4), and near-infrared (B8) bands.

Uncertainty analysis
This research presents the outcomes of uncertainty analysis using the BMEF modelfor two WQIs—Chl-a and 
DO. These findings are then juxtaposed with results from the individual ML algorithms. The outcomes of WQI 
estimation underwent an uncertainty analysis employing a technique rooted in bootstrap resampling and MCA. 
With this objective in mind, 100 equidistant samples were selected from the original data used for calibration. 
Subsequently, each set of samples was employed for the calibration of distinct algorithms. Next, the WQIs were 
determined during the verification phase through the utilization of the calibrated algorithms. Ultimately, the 
evaluation metric results were harnessed to construct a PMF corresponding to each estimate WQIs. To conduct a 
more comprehensive investigation, the PMF of ML algorithms to estimate DO and Chl-a are presented hereunder 
in such a way that two defined scenarios (i.e., using all bands and versus the best combination of bands as input 
variables). Subsequently, a comprehensive analysis of Chl-a concentration within two scenarios is presented using 
the optimal model estimator, BMEF. Figure 16 displays the PMF of Chl-a concentration for ML algorithms. It 
can be seen that BMEF aims to gauge the concentration of Chl-a concentration in the range from zero to one, 
showing a significant resemblance to the estimation of such WQIs compared to recorded values.

Moreover, both RFR and MLR demonstrate commendable efficacy in approximating the concentration of 
Chl-a. Conversely, XGBoost does not accurately estimate the Chl-a concentration across various conditions. 
In summary, BMEF, along with RFR, MLR, SVR, and XGBoost, emerges as the top-performing approaches for 
Chl-a estimation.

Figure 16.  PMF of Chl-a considering all bands as input variables.
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Figure 16 indicates the PMF of the ML algorithms and the BMEF model, considering all bands as predictors 
for approximating the Chl-a concentration within the WDD. It is worth mentioning that, in this figure, a “bin” 
refers to a range or interval of values for a continuous variable that is discretized into a finite number of intervals. 
According to Fig. 16, the BMEF model performed better in comparison with other ML algorithms in estimating 
the amount of Chl-a in various locations due to the higher height in bins in which observed values were spread 
over the range. While alternative ML algorithms appear to exhibit a significant degree of concordance with the 
recorded values, the distribution of observed data across the bins, a characteristic absent in the BMEF model, 
contributes to this destination. It is also pertinent to note that the same analysis can be concluded when the best 
band combination is considered input variables.

Discussions
The findings from this research indicate that spectral-reflectance models coupled with data-fusion techniques 
can reliably estimate WQIs. The fused spectral data generates models that are capable of estimating WQIs for DO 
and Chl-a across the entire study region. This method demonstrated significant robustness, producing precise 
estimation models for various WQIs with algae, sediment, water clarity, and dissolved substances. Abdelma-
lik utilized advanced spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery to estimate 
WQIs in the northeastern region of  Egypt79, while Mollaee showcased the monitoring of phytoplankton Chl-a 
concentration in the Western Basin of Lake Erie using RS data. Landsat 8 (L8) has yielded promising outcomes 
in water quality assessment across various  studies80, as demonstrated in  Mexico81 and  China82. Likewise, S2 data 
has delivered precise estimations of WQIs, as illustrated in studies conducted in  Brazil83 and  China84. Although 
RS data is extensively utilized in water quality research, the models linking satellite reflectance to in-situ WQI 
exhibit significant variation. Hence, the outcomes have varied in accuracy depending on the location and the 
specific modelling approach  employed85. This challenge arises in part from the inconsistency among studies 
in determining which spectral features or bands are valuable for establishing functional relationships between 
WQIs and reflectance data obtained from satellite  imagery86,87. However, ML models like RF, support vector 
machine (SVM), ANN, etc., have demonstrated superior accuracies thanks to their capability to autonomously 
learn from data, uncover concealed patterns, and handle the non-linearity inherent in reflectance data and 
optically-active WQIs. Therefore, the selection of satellite image data and modelling techniques is crucial for 
enhancing the adaptive capacity of water quality monitoring for the WDD. Moreover, relying solely on mode-
based pixel-level estimation of WQIs to assess water quality status is highly uncertain, as errors within the models 
can propagate to the population level. Nevertheless, integrating probability samples from the sampling design 
with robust modeling can yield reliable point estimates and facilitate spatio-temporal mapping of WQIs within 
the framework of model-assisted  estimation88.

Conclusions
The current study proposed a novel technique to enhance water quality estimation outcomes by developing a 
fusion model based on the BMEF model that combines ML as well as RS. The motivation for developing such 
a concept was to achieve more accuracy and less uncertainty related to predictions made by specific models. 
The effectiveness of the suggested technique was assessed by estimating WQIs in the northeast of Oman. As the 
study primarily aimed to develop a model to estimate the number of various WQIs, including Chl-a, ORP, DO, 
EC, and pH, the input variables of the ML and BMEF models were derived from S2 bands. Therefore, four ML 
models, namely MLR, RFR, SVR, and XGBoost model, were employed to estimate WQIs. The primary purpose 
of BMEF is to enhance the results obtained from singular ML models; therefore, the best results obtained from 
each model were combined together. Then, two scenarios were evaluated to estimate WQIs: 1. employing all 
bands of S2 and 2. Using the best combination of S2 bands. Results obtained from the developed ML and BMEF 
models indicated that when the best combination of various bands was considered as input variables, better 
results were obtained compared to the use of all S2 bands.

According to the outcomes of the uncertainty analysis, the BMEF procedure produced more accurate results 
than individual models. Moreover, it was concluded that the same or even better results can be obtained by 
combining the bands that highly influence the results for each WQI. As a result, improving estimation accuracy 
does not always originate from the inclusion of additional variables in the inputs. The BMEF model, which 
employs RS data, can be used to estimate how WQIs can benefit various groups of people, including water 
utilities, environmental agencies, policymakers, and the general public. For example, water utilities can make 
use of these models to improve their treatment processes, decrease expenses, and comply with regulations. In 
forthcoming works, the enhanced projections produced by the BMEF model can enhance the development of 
improved water quality management.

Data availability
The water quality data of this study is related to the Wadi Dayqah Dam, located in Oman, which was obtained 
using a CTD device and is not publicly available. However, upon reasonable request subject to any applicable 
restrictions, the corresponding authors can provide the data used in this study.
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