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Abstract
Objective: Radiologists can detect the gist of abnormal based on their rapid initial impression on a mammogram (ie, global gist signal [GGS]).
This study explores (1) whether global radiomic (ie, computer-extracted) features can predict the GGS; and if so, (ii) what features are the most
important drivers of the signals.

Methods: The GGS of cases in two extreme conditions was considered: when observers detect a very strong gist (high-gist) and when the gist
of abnormal was not/poorly perceived (low-gist). Gist signals/scores from 13 observers reading 4191 craniocaudal mammograms were
collected. As gist is a noisy signal, the gist scores from all observers were averaged and assigned to each image. The high-gist and low-gist cate-
gories contained all images in the fourth and first quartiles, respectively. One hundred thirty handcrafted global radiomic features (GRFs) per
mammogram were extracted and utilized to construct eight separate machine learning random forest classifiers (All, Normal, Cancer, Prior-1,
Prior-2, Missed, Prior-Visible, and Prior-Invisible) for characterizing high-gist from low-gist images. The models were trained and validated using
the 10-fold cross-validation approach. The models’ performances were evaluated by the area under receiver operating characteristic curve
(AUC). Important features for each model were identified through a scree test.

Results: The Prior-Visible model achieved the highest AUC of 0.84 followed by the Prior-Invisible (0.83), Normal (0.82), Prior-1 (0.81), All (0.79),
Prior-2 (0.77), Missed (0.75), and Cancer model (0.69). Cluster shade, standard deviation, skewness, kurtosis, and range were identified to be
the most important features.

Conclusions: Our findings suggest that GRFs can accurately classify high- from low-gist images.

Advances in knowledge: Global mammographic radiomic features can accurately predict high- from low-gist images with five features
identified to be valuable in describing high-gist images. These are critical in providing better understanding of the mammographic image charac-
teristics that drive the strength of the GGSs which could be exploited to advance breast cancer (BC) screening and risk prediction, enabling early
detection and treatment of BC thereby further reducing BC-related deaths.
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Introduction
Clinicians such as radiologists, the experts in the interpretation
of medical images, often report that they have an initial im-
pression about an abnormality of a medical image or its “gist”
after momentarily glancing at an image. Several observer stud-
ies provided evidence suggesting that in less than a half-
second, radiologists are capable of distinguishing abnormal
mammograms1 or chest X-rays from the normal ones.2 A
study focusing on mammographic images indicated that radi-
ologists can distinguish abnormal from normal mammograms,
containing no obvious localized sign of cancer, contralateral to
the malignancies.3 It was also shown that based on a half-
second image presentation, the gist of the abnormal can be
detected in prior normal breast images belonging to women
who were later diagnosed with breast cancer (BC) (ie, missed
cancers based on prior images from a previous screening
round).4-6 Moreover, previous studies showed that women
with a false positive (FP) result on screening mammogram or
who have had a cancer in one breast have elevated risk of

developing a future/contralateral BC.7,8 These findings imply
that the initial impression of a radiologist does not necessarily
have a localized source within the image but is possibly driven
by the mammographic textural features and not associated
with other risk factors such as breast density.9-12

In medical image perception literatures, the holistic percep-
tual processing of radiological instantaneous view of an image’s
abnormality features is often called the gist signal, which has
been extensively studied to better understand radiological errors
and enhance screening performance.3-6,11-21 From the human
visual system, one may claim that gist contains both global and
local source of information about “what” and “where” the ab-
normality in an image may be, correspondingly.12,22,23 A large
body of gist literature, studying gist on images without a local-
ized cancer sign such as contralateral mammograms, revealed
that gist is associated with global “what” information occurring
without prior location of that information.3-5,13-15,23,24 Views
from the basic vision science domains suggest that gist infor-
mation can be rapidly extracted (eg, using just as small as a
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half-second of an image viewing time) from the entire global
image properties in a “non-selective” manner, while identifica-
tion of the information occurs from the local properties (ie, the
“selective” pathway).16,17,25,26 With that, gist is evidently a
global rapid signal which will be referred to as the “global gist
signal” (GGS) in this article.

Numerous gist studies focusing on the process of under-
standing natural scenes suggest that only after a brief sight of
an image, observers are capable of categorizing these images
into classes such as indoor or outdoor.27,28 The human visual
system relies on texture features in recognizing the global gist
of the natural scenes,29-31 demonstrating that texture analysis
can provide strong holistic cues for quick scene recognition.
Previous studies have shown that first and second order
(Gray Level Co-occurrence Matrix [GLCM]-based) statistical
features are relevant for texture analysis in typical viewing
modes.32-34 However, it is unclear whether these features are
also relevant for the perceived GGS of a mammogram, which
is extracted briefly after image onset based on a half-second
image presentation. Our hypothesis is that a set of global
radiomic features (GRFs), including both first order statistics
(FOS) and GLCM-based, can differentiate between mammo-
graphic textures that result in strong gist signals (ie, high-gist)
and those that result in weak ones (ie, low-gist). Therefore,
this experimental study aims to (i) explore whether a set of
GRFs comprising FOS and GLCM-based statistics extracted
from mammograms can predict high- from low-gist images
and (ii) identify the most important GRFs that drive the GGS.
We focus only on these two extreme sides of the gist spectrum
(highest and lowest gist images) to ensure that a clear differ-
ence between them at their maximum level is achieved.
Moreover, mammographic images’ textural features have
been linked to the presence of BC35,36 and elevated BC risk.37

Therefore, we included images of normal cancer-free and
cancer-containing cases, and high-risk individuals, and con-
sidered each class separately to ensure that our model is not
capturing the signal related to the presence of BC or elevated
BC risk, but rather capturing the gist signal.

In addition to enhancing our comprehension of the gist sig-
nal’s nature when dealing with complex textures, the present
study could yield insights into radiological errors in screening
mammograms. Identifying features on normal images which
signal a strong gist of the abnormal (FP) and missed cancer
cases which signal a weak gist (false negative [FN]) could help
in educating radiologists about possible appearances of FP and
FN cases so that their diagnostic errors could be better moni-
tored and drastically reduced. Since BC is the major cause of
cancer-related death in females worldwide and the efficiency of
mammographic screening interpretation depends largely on
the visual expertise of clinician radiologists, errors such as FP
and FN are significant.38 While FP errors can trigger huge an-
nual healthcare expenses of almost US$3 billion (an example
from the United States) and an increased patient anxiety and
depression, FN mistakes could result in increased treatment
complications and reduced overall survival due to delayed de-
tection of BC.39,40 Hence, providing a better understanding
about the underlying reasons for diagnostic errors in the inter-
pretation of screening mammograms is crucially important.

Materials and methods
Institutional ethics approval of all experiment procedures
was obtained from the Human Research Ethics Committee of

the University of Sydney (protocol no. 2020/324). Informed
consent from all subjects participated in the study was ac-
quired prior to the data collection.

Participants
Seventeen Australian and New Zealand radiologists and
breast physicians were invited to participate in this study.
These readers were identified as the “gist expert”, through
their participation in the previous gist experiment15 where
they demonstrated superior ability to detect reliable and ac-
curate gist of the abnormal in mammographic images. Full
details of their selection and identification were described in
a previous study15 which also showed that the superior abil-
ity of these “gist experts” was not associated with factors
such as their years of experience reading mammograms
or number of mammograms interpreted each week. A total
of 13 readers (11 radiologists and 2 breast physicians)
were recruited.
Prior to the data collection, the 13 participants’ character-

istics and general workload details (Table 1) were collected
via an online questionnaire. Majority of the participants were
female (77%) radiologists (85%) working part-time (69%)
as screen readers (92%) for the national screening program
BreastScreen Australia and did not undertake a fellowship
(62%) but had association with a university or educational
institute (54%). At the time of participating in the gist experi-
ment, on average, the participants spent 9.5 h per week read-
ing mammograms and read 237 screening cases per week.
With that, 70% of their time was dedicated to reading breast
images, while 24.6% of their time was dedicated to reading
diagnostic mammograms. The participants also had a median
of 17.5 years being a certified BreastScreen reader, 21 years
registered as a screen reader, and 21.5 years reading
mammograms. Of those who had a fellowship training in
mammography reading, the median duration of their training
program was 6months in which they completed it on
average of 10 years ago. Lastly, on average, the participants
performed 250 breast biopsy examinations in the last
12months with a median of four times in a month correlat-
ing/reviewing radiology-pathology findings for biopsy
cases, and three times in a month participating in a Multi-
Disciplinary Meeting.

Mammographic images
For the purpose of conducting this gist experiment and radio-
mics analysis, mammographic images and binary (black and
white) masks were required. A dataset of de-identified 4191
craniocaudal (CC) unilateral digital imaging and communica-
tions in medicine (DICOM) mammograms were obtained
from the archive of BreastScreen Australia, which were ac-
quired from asymptomatic women aged between 50 and 75.
These images were obtained using a variety of vendors, that
is, Siemens (Munich, Germany), Hologic (Hologic, Inc.,
Marlborough, MA, USA), Sectra (Sectra, Link€oping,
Sweden), Fujifilm (Fujifilm Corporation, Minato City,
Tokyo, Japan), Philips (Philips Healthcare, Amsterdam, the
Netherlands), and Konica Minolta (Marunouchi, Chiyoda,
Tokyo, Japan). Next, binary masks were generated from
4191 DICOM images to extract breast area from its back-
ground using a standard thresholding gray level intensity
value of 100. Due to computational efficiency reasons (to
save computational resources, ie, time and memory),
DICOM images and masks were then converted to TIFF
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format with all the right CC images being flipped to the left
for consistent left side chest wall on all images. The TIFF
images and binary masks were then cropped based on the
maximum breast region size and used for the gist experiment
(Fig. 1) and radiomics analysis (Fig. 2).

Since the gist of the abnormal has been reported to be pre-
sented in both current and prior images3-6,11,13-16 and to in-
clude various levels of gist strength in our analysis, we
included all the eight types of the mammograms in our data-
set. The eight types were “Normal” (n¼1409), “Cancer”
(n¼923), “Prior-1” (n¼1438), “Prior-2” (n¼ 419), “Prior-
3” (n¼ 2), “Missed” (n¼375), “Prior-Visible” (n¼ 308),
and “Prior-Invisible” (n¼755). The “Normal” category in-
cluded current mammograms of women reported and con-
firmed to be cancer-free normal by at least two independent
expert radiologists (over 20 years of experience) with nega-
tive follow up mammograms acquired 2 years after. The
“Cancer” had current cancer images contained biopsy proven
malignancy. The “Prior-1”, “Prior-2”, and “Prior-3” con-
tained prior no visible cancer signs mammograms, obtained
2, 4, and 6 years before current cancer mammograms, corre-
spondingly. The “Missed”, “Prior-Visible”, and “Prior-
Invisible” were categorized by two expert radiologists or a
third expert radiologist as an arbitrator if disagreement oc-
curred between the two expert radiologists,41 using “Prior-1”
category images. These three categories, respectively,

included prior mammograms with actional (ie, recall), non-
actional (ie, no recall), and no visible cancer signs that were
reported as normal, but a later screen showed a biopsy-
proven cancer.

Collecting gist scores
To collect the gist signals/scores from the 13 participants, a
previously developed multi-observer gist experimental proto-
col4 was used. Participants were asked to assess the 4191 CC
images in 11 batches (381 images per batch selected ran-
domly) and provide the probability of the image being abnor-
mal/gist score based on a scale of 0 to 100 (0¼ completely
confidence the image was normal while 100¼ absolute confi-
dence that the image was abnormal). An extensive descrip-
tion of the data collection process (Fig. 1) was provided in a
previous study.42 Considering gist has low intra and inter-
observer variability, the collected gist scores from the 13 radi-
ologists (who were experts and consistent with each other in
their gist scores) were then averaged and used for the analy-
sis, obtaining one gist score per image and eliminating the
noise of the gist signal.11,14

Categorizing high- vs low-gist images
To identify high- vs low-gist images, the averaged gist score
per image was used to classify images into high- and low-gist
based on the 75th and 25th percentiles of the images

Table 1. Participants’ characteristics and general workload details at the time of participating in the gist experiment (n¼ 13).

Characteristics Count (%)

Gender (female, male) 10 (77%), 3 (23%)
Discipline (radiologist, breast physician) 11 (85%), 2 (15%)
Working full-time (yes, no) 4 (31%), 9 (69%)
Being a screen reader (yes, no) 12 (92%), 1 (8%)
Fellowship-trained in mammography reading (yes, no) 5 (38%), 8 (62%)
Whether affiliated with a university or educational institute (yes, no) 7 (54%), 6 (46%)

Median Min-Max 25th-75th percentile

No. of hours per week currently spent in reading mammograms 9.5 1.0-30.0 3.0-19.0
No. of screening cases read per week 237 5-800 150-400
Percentage of time dedicated to reading breast images 70 5-95 45-78
Percentage of time dedicated to reading diagnostic mammograms 24.6 0-90.2 9.0-35.0
No. of years certified as a BreastScreen reader 17.5 0.5-22 7.5-20
No. of years registered as a screen reader 21 2-30 12-25
No. of years reading mammograms 21.5 0-34 8.5-25
Duration of fellowship training in mammography reading (months) 6 6-12 6-12
No. of years since completing fellowship training in mammography reading 10 5-16 0-20.0
No. of breast biopsy examinations performed in the last 12months 250 30-100 77-400
Frequency of correlating/reviewing radiology-pathology findings for biopsy cases in a month 4 1-100 4-40
Frequency of participating in a Multi-Disciplinary Meeting in a month 3 1-6 3-4

Figure 1. Gist experiment. For a half-second each, a red cross sign was firstly displayed in the centre of the screen, followed by a mammogram and then

a corresponding white mask representing the breast area appeared to ensure conclusion of image visual processing. Lastly, without a time limit, a rating

screen was shown to collect a gist score (ie, the probability of the image being abnormal) based on a scale of 0-100 (0means completely confidence that

the image was normal while100means absolute confidence that the image was abnormal).
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containing the highest and lowest gist scores, correspond-
ingly. This gave a total of 1048 high- and 1048 low-gist
images (namely “All” image type, including “Prior-3” images
which had insufficient number of images, n¼2, to form its
own group), 162 high- and 497 low-gist for “Normal”, 545
high- and 71 low-gist for “Cancer”, 268 high- and 370 low-
gist for “Prior-1”, 73 high- and 110 low-gist for “Prior-2”,
117 high- and 80 low-gist for “Missed”, 59 high- and 68
low-gist for “Prior-Visible”, 92 high- and 222 low-gist for
“Prior-Invisible” image type (Table 2). To accentuate an ob-
vious difference between the highest and lowest gist images,
only images in these upper and lower quartiles were used in
the analysis.

Radiomics and statistical analysis
Using the 4191 images and masks, a set of 130 GRFs per im-
age was extracted using the handcrafted features approach43

with our in-house MATLAB-based programs. This is based
on the region of interest identified through MATLAB’s bi-
nary erosion algorithm using disk-shaped structuring element
of 100 radius (distance from the origin to the edge of the
disk),44-46 to exclude the vendor post-processed background
skin-air region in the mammogram in order to obtain the true
breast tissue region.47 Erosion algorithm was chosen because
it is one of most reliable methods of the mathematical mor-
phological image processing which has been widely used
for exacting ROI and eliminating the noises in an image.46

These features included 110 GLCM-based texture and 20
FOS-based features which have been shown to be valuable
descriptors of mammographic appearances in measuring
the contrast values of spatial inter-relationships between
neighbouring pixels48-50 and the distribution of single pixel
intensity values within the image region of interest, corre-
spondingly49,50 (Table 3).

To predict high- from low-gist images, the 130 GRFs, de-
rived from the corresponding image types (“All”, “Normal”,
“Cancer”, “Prior-1”, “Prior-2”, “Missed”, “Prior-Visible”,
and “Prior-Invisible”—Table 2), were then used to build
eight separate machine learning (ML) random forest classi-
fiers (All, Normal, Cancer, Prior-1, Prior-2, Missed,

Prior-Visible, and Prior-Invisible) based on the ensemble of
500 decision trees using bootstrap aggregation method.51,52

The random forest with bootstrap aggregation technique was
chosen because of its built-in feature selection function that
can minimize feature-overfitting and imbalanced data issues
(ie, oversampling unique observations from the minority class
to balance the data), and automatic estimation of feature im-
portance for generating interpretable classifier.53,54 Useful
features for each predictive model were also recognized
through feature important analysis of their importance scores
estimated using MATLAB’s predictor importance algorithm.
To determine the useful GRFs based their total importance
scores from each model, a scree test of exploratory factor
analysis55 was utilized. Importance scores show the useful-
ness of each feature in constructing the decision trees within
the model, with larger values mean more impact on the pre-
dictions made by the model.
In evaluating the performance of the models, we trained

and validated each model using the 10-fold cross-validation
approach,53,56 a reliable, unbiased, and accurate validation
method for estimating the model’s generalization perfor-
mance. This involved randomly splitting the dataset into 10
groups, and while the first group was used once to test the
predictive performance of the model, the rest of the groups
were used to train the model. This process was repeated 10
times until each group was used once as a test set. The area
under the receiver operating characteristic curve (AUC) was
then used to evaluate the overall performance of the models
for distinguishing high- from low-gist images.
MATLAB R2022a (MathWorks, Natick, MA, USA) was

used to complete all radiomics and statistical analysis.

Results
GRFs predicting high- vs low-gist images
The overall performance of the eight models (All, Normal,
Cancer, Prior-1, Prior-2, Missed, Prior-Visible, Prior-
Invisible) is shown in Fig. 3. When differentiating high- from
low-gist images, the Prior-Visible model reached the highest
AUC of 0.84 (95% CI, 0.77-0.91) followed by the Prior-

Figure 2. Radiomics analysis workflow. The first step was to obtain input images (unilateral craniocaudal mammograms and masks). Next, a ROI (pink

region) was identified using MATLAB’s image erosion algorithm to omit skin-air region. A set of 130 (110 GLCM-based and 20 FOS-based) global

radiomic features per image were then computed and finally used to build eight machine learning classification models for predicting high-gist from low-
gist images. Abbreviations: FOS ¼ first order statistics; GLCM ¼ gray level co-occurrence matrix; ROI ¼ region of interest.
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Invisible (0.83, 0.77-0.87), Normal (0.82, 0.79-0.86), Prior-
1 (0.81, 0.79-0.85), All (0.79, 0.77-0.81), Prior-2 (0.77,
0.68-0.83), Missed (0.75, 0.70-0.81), and Cancer model
(0.69, 0.65-0.75).

Important GRFs
Table 3 and Fig. 4 show the feature importance scores of the
130 GRFs derived from each of the eight models. When com-
paring each feature’s importance score, ranked from high to
low, in each individual model (Fig. 5), five features appear to
be significant for most of the models. These features were
cluster shade (feature no. 26-30, calculated across five orien-
tations) of the GLCM,48-50 standard deviation (feature no.
112), skewness (feature no. 113), kurtosis (feature no. 114),
and range (feature no. 129 and 130, calculated across two
dimensions) of the FOS.49,50 Cluster shade is a measure of
the symmetry distribution in an image. Standard deviation
describes the variation or spreading of gray level intensity
from the mean value. Skewness is a measure of the uneven-
ness of the distribution. Kurtosis measures the extreme values
of the distribution in the image. Also, range describes the dif-
ference between 95th and 5th percentile (feature no. 129),
and 99th and 1st percentile of image gray level values (feature
no. 130).

Discussion
For almost 50 years, research has shown that the holistic
rapid visual impression of an image (ie, GGS) can convey a
great amount of useful information about an image abnor-
mality in the medical image interpretation and diagnostic
process, aiming to significantly reduce FN and FP
errors.2,18,26 Recent medical image perception studies have

recognized the existence of GGS shown to be valuable for
providing information about the presence of BC to facilitate
the improvement of early BC detection and future risk predic-
tion.3-6,13-16 However, little is known about which global
computer extracted image features are correlated to the inten-
sity of the GGS.21 Here, for the first time, using radiomics ap-
proach,43 we built upon the previous works and evaluated
GRFs that drive the strength of the gist signals. We hypothe-
sized that GRFs of high-gist mammograms are different
from low-gist ones, based on the efficacy of radiomics in
mammography43 and the GGS, independent of lesion charac-
teristics (eg, breast density), in identifying image abnormal-
ity.3-5,11,13,14,16,24 We also examined which features are
more important for distinguishing between high-gist mam-
mograms from low-gist ones.
The results obtained from our eight ML classification mod-

els (All, Normal, Cancer, Prior-1, Prior-2, Missed, Prior-
Visible, Prior-Invisible) demonstrated that the GRFs had the
ability to accurately differentiate high- from low-gist images
with as high as an AUC of 0.84 (Fig. 3). Interestingly, al-
though the GGS has been shown to be helpful for predicting
cancer images,4,13 the Cancer model in our study achieved
smaller AUC value of 0.69 in discriminating high- from low-
gist cancer mammograms when compared to other seven
models (AUCs of 0.75-0.84). This could be because of the
large imbalanced dataset (n¼474) between the high-gist
(n¼ 545) and low-gist (n¼ 71) images in the “Cancer” image
category, making it difficult for the Cancer model to opti-
mally learn the difference, thereby limiting its predictive ca-
pability. Nevertheless, our overall promising findings (ie, up
to 0.84 AUC) indicate the significance of the GRFs in predict-
ing high-gist images which could potentially be used to guide

Table 2. Image types included in the study (n¼ 8).

No. Image type Description No. of high-gist images No. of low-gist images Total

1 All Included all the image categories 1048 1048 2096
2 Normal Current mammograms of women reported

and confirmed to be cancer-free normal by
at least two independent expert
radiologists (20þ years of experience)
with negative follow-up mammograms ac-
quired two years after

162 497 659

3 Cancer Current cancer mammograms of women
contained biopsy proven malignancy

545 71 616

4 Prior-1 Prior mammograms with no visible cancer
signs acquired two years before current
cancer mammograms

268 370 638

5 Prior-2 Prior mammograms with no visible cancer
signs acquired four years before current
cancer mammograms

73 110 183

6 Missed Prior-1 mammograms with actionable
visible cancer signs (ie, recall) that were
reported as normal, but a later screen
showed a biopsy-proven cancer

117 80 197

7 Prior-visible Prior-1 mammograms with non-actionable
(ie, not recall) yet visible cancer signs that
were reported as normal, but a later screen
showed a biopsy-proven cancer

59 68 127

8 Prior-invisible Prior-1 mammograms with no visible
cancer signs that were reported as
normal, but a later screen showed a
biopsy-proven cancer

92 222 314
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Table 3. List of global radiomic features (n¼130) with feature importance scores.

No.

^

Feature name Importance scores from each model

All Normal Cancer Missed Prior-Vis Prior-Invis Prior1 Prior2

1 Autocorrelation_1 0.0001 0.0003 0.0003 0.0010 0.0015 0.0005 0.0003 0.0008
2 Autocorrelation_3 0.0001 0.0003 0.0003 0.0009 0.0015 0.0006 0.0003 0.0009
3 Autocorrelation_5 0.0001 0.0003 0.0003 0.0008 0.0013 0.0006 0.0004 0.0009
4 Autocorrelation_9 0.0001 0.0003 0.0003 0.0009 0.0015 0.0005 0.0003 0.0007
5 Autocorrelation_11 0.0001 0.0003 0.0003 0.0008 0.0016 0.0006 0.0004 0.0009
6 Contrast_1 0.0001 0.0003 0.0003 0.0015 0.0007 0.0008 0.0003 0.0018
7 Contrast_3 0.0001 0.0002 0.0003 0.0013 0.0013 0.0005 0.0003 0.0012
8 Contrast_5 0.0001 0.0002 0.0002 0.0009 0.0018 0.0006 0.0003 0.0007
9 Contrast_9 0.0001 0.0002 0.0003 0.0009 0.0019 0.0007 0.0003 0.0008
10 Contrast_11 0.0001 0.0002 0.0003 0.0009 0.0021 0.0006 0.0004 0.0007
11 Correlation_m_1 0.0001 0.0003 0.0002 0.0009 0.0009 0.0007 0.0004 0.0017
12 Correlation_m_3 0.0001 0.0002 0.0003 0.0008 0.0013 0.0006 0.0003 0.0009
13 Correlation_m_5 0.0001 0.0002 0.0003 0.0010 0.0016 0.0005 0.0003 0.0008
14 Correlation_m_9 0.0001 0.0002 0.0002 0.0009 0.0016 0.0005 0.0003 0.0010
15 Correlation_m_11 0.0001 0.0002 0.0003 0.0013 0.0020 0.0006 0.0004 0.0007
16 Correlation_p_1 0.0001 0.0003 0.0003 0.0010 0.0008 0.0007 0.0004 0.0019
17 Correlation_p_3 0.0001 0.0002 0.0003 0.0007 0.0013 0.0006 0.0003 0.0009
18 Correlation_p_5 0.0001 0.0002 0.0003 0.0010 0.0014 0.0005 0.0003 0.0008
19 Correlation_p_9 0.0001 0.0002 0.0002 0.0009 0.0016 0.0005 0.0004 0.0010
20 Correlation_p_11 0.0001 0.0002 0.0003 0.0013 0.0020 0.0006 0.0004 0.0007
21 Cluster_prominence_1 0.0003 0.0011 0.0006 0.0051 0.0161 0.0027 0.0016 0.0043
22 Cluster_prominence_3 0.0003 0.0013 0.0006 0.0050 0.0136 0.0028 0.0015 0.0040
23 Cluster_prominence_5 0.0003 0.0013 0.0005 0.0055 0.0124 0.0026 0.0017 0.0048
24 Cluster_prominence_9 0.0003 0.0012 0.0005 0.0055 0.0139 0.0035 0.0018 0.0052
25 Cluster_prominence_11 0.0003 0.0013 0.0006 0.0050 0.0121 0.0029 0.0017 0.0044
26 Cluster_shade_1 0.0008� 0.0030� 0.0009� 0.0055 0.0249� 0.0071� 0.0035� 0.0119�
27 Cluster_shade_3 0.0008� 0.0033� 0.0010� 0.0051 0.0262� 0.0068� 0.0035� 0.0126�
28 Cluster_shade_5 0.0008� 0.0034� 0.0009� 0.0051 0.0277� 0.0075� 0.0036� 0.0138�
29 Cluster_shade_9 0.0009� 0.0038� 0.0009� 0.0066 0.0303� 0.0088� 0.0040� 0.0148�
30 Cluster_shade_11 0.0009� 0.0040� 0.0009� 0.0059 0.0266� 0.0092� 0.0039� 0.0119�
31 Dissimilarity_1 0.0001 0.0003 0.0003 0.0011 0.0008 0.0007 0.0003 0.0018
32 Dissimilarity_3 0.0001 0.0003 0.0002 0.0010 0.0008 0.0005 0.0003 0.0013
33 Dissimilarity_5 0.0001 0.0003 0.0002 0.0011 0.0015 0.0005 0.0003 0.0011
34 Dissimilarity_9 0.0001 0.0002 0.0003 0.0012 0.0011 0.0007 0.0003 0.0011
35 Dissimilarity_11 0.0001 0.0002 0.0003 0.0011 0.0012 0.0007 0.0004 0.0007
36 Energy_1 0.0001 0.0003 0.0002 0.0013 0.0012 0.0008 0.0004 0.0013
37 Energy_3 0.0001 0.0004 0.0003 0.0013 0.0011 0.0008 0.0004 0.0016
38 Energy_5 0.0001 0.0004 0.0003 0.0011 0.0013 0.0007 0.0003 0.0015
39 Energy_9 0.0001 0.0006 0.0003 0.0009 0.0019 0.0007 0.0003 0.0012
40 Energy_11 0.0001 0.0004 0.0002 0.0013 0.0016 0.0007 0.0004 0.0016
41 Entropy_1 0.0002 0.0003 0.0004 0.0012 0.0024 0.0010 0.0006 0.0012
42 Entropy_3 0.0002 0.0003 0.0004 0.0015 0.0017 0.0007 0.0004 0.0013
43 Entropy_5 0.0001 0.0003 0.0003 0.0015 0.0022 0.0008 0.0004 0.0011
44 Entropy_9 0.0002 0.0004 0.0004 0.0013 0.0018 0.0007 0.0004 0.0012
45 Entropy_11 0.0002 0.0004 0.0003 0.0015 0.0025 0.0008 0.0004 0.0017
46 Homogeneity_m_1 0.0002 0.0003 0.0004 0.0009 0.0021 0.0009 0.0004 0.0016
47 Homogeneity_m_3 0.0001 0.0003 0.0004 0.0013 0.0017 0.0006 0.0003 0.0011
48 Homogeneity_m_5 0.0001 0.0003 0.0003 0.0019 0.0019 0.0006 0.0004 0.0010
49 Homogeneity_m_9 0.0001 0.0003 0.0004 0.0017 0.0013 0.0006 0.0004 0.0015
50 Homogeneity_m_11 0.0001 0.0003 0.0003 0.0023 0.0013 0.0007 0.0004 0.0012
51 Homogeneity_1 0.0002 0.0003 0.0003 0.0008 0.0021 0.0009 0.0004 0.0019
52 Homogeneity_3 0.0001 0.0003 0.0004 0.0016 0.0018 0.0007 0.0003 0.0012
53 Homogeneity_5 0.0001 0.0003 0.0003 0.0018 0.0020 0.0007 0.0004 0.0010
54 Homogeneity_9 0.0002 0.0003 0.0004 0.0014 0.0018 0.0006 0.0004 0.0012
55 Homogeneity_11 0.0001 0.0003 0.0003 0.0025 0.0018 0.0006 0.0004 0.0011
56 Maximum_probability_1 0.0001 0.0003 0.0003 0.0013 0.0014 0.0010 0.0004 0.0013
57 Maximum_probability_3 0.0001 0.0004 0.0003 0.0013 0.0013 0.0008 0.0003 0.0015
58 Maximum_probability_5 0.0001 0.0004 0.0002 0.0011 0.0013 0.0008 0.0004 0.0014
59 Maximum_probability_9 0.0001 0.0005 0.0003 0.0011 0.0017 0.0007 0.0003 0.0012
60 Maximum_probability_11 0.0001 0.0004 0.0002 0.0012 0.0018 0.0007 0.0004 0.0014
61 Sum_of_sqaures_variance_1 0.0001 0.0003 0.0003 0.0009 0.0013 0.0005 0.0003 0.0009
62 Sum_of_sqaures_variance_3 0.0001 0.0003 0.0003 0.0009 0.0016 0.0005 0.0003 0.0010
63 Sum_of_sqaures_variance_5 0.0001 0.0003 0.0003 0.0009 0.0014 0.0005 0.0003 0.0009
64 Sum_of_sqaures_variance_9 0.0001 0.0003 0.0003 0.0009 0.0017 0.0004 0.0003 0.0009

(continued)
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Table 3. (continued)

No.

^

Feature name Importance scores from each model

All Normal Cancer Missed Prior-Vis Prior-Invis Prior1 Prior2

65 Sum_of_sqaures_variance_11 0.0001 0.0003 0.0003 0.0010 0.0015 0.0004 0.0003 0.0009
66 Sum_average_1 0.0001 0.0004 0.0003 0.0011 0.0012 0.0006 0.0003 0.0015
67 Sum_average_3 0.0001 0.0004 0.0004 0.0010 0.0013 0.0007 0.0004 0.0014
68 Sum_average_5 0.0001 0.0004 0.0004 0.0010 0.0014 0.0006 0.0004 0.0013
69 Sum_average_9 0.0001 0.0004 0.0004 0.0009 0.0013 0.0006 0.0004 0.0012
70 Sum_average_11 0.0001 0.0004 0.0003 0.0010 0.0017 0.0006 0.0003 0.0014
71 Sum_variance_1 0.0001 0.0003 0.0003 0.0009 0.0017 0.0006 0.0003 0.0010
72 Sum_variance_3 0.0001 0.0003 0.0003 0.0010 0.0015 0.0005 0.0003 0.0011
73 Sum_variance_5 0.0001 0.0003 0.0003 0.0011 0.0015 0.0006 0.0003 0.0011
74 Sum_variance_9 0.0001 0.0003 0.0003 0.0010 0.0017 0.0005 0.0004 0.0011
75 Sum_variance_11 0.0001 0.0003 0.0003 0.0011 0.0018 0.0006 0.0003 0.0012
76 Sum_entropy_1 0.0001 0.0006 0.0003 0.0015 0.0020 0.0009 0.0004 0.0017
77 Sum_entropy_3 0.0001 0.0006 0.0004 0.0015 0.0014 0.0007 0.0004 0.0019
78 Sum_entropy_5 0.0001 0.0006 0.0003 0.0017 0.0013 0.0010 0.0004 0.0014
79 Sum_entropy_9 0.0001 0.0006 0.0003 0.0018 0.0020 0.0007 0.0004 0.0015
80 Sum_entropy_11 0.0001 0.0006 0.0003 0.0017 0.0019 0.0008 0.0005 0.0020
81 Difference_variance_1 0.0001 0.0003 0.0003 0.0015 0.0008 0.0008 0.0003 0.0017
82 Difference_variance_3 0.0001 0.0002 0.0003 0.0015 0.0011 0.0005 0.0003 0.0011
83 Difference_variance_5 0.0001 0.0002 0.0002 0.0009 0.0018 0.0006 0.0004 0.0007
84 Difference_variance_9 0.0001 0.0002 0.0002 0.0010 0.0019 0.0006 0.0003 0.0009
85 Difference_variance_11 0.0001 0.0002 0.0003 0.0009 0.0021 0.0006 0.0004 0.0008
86 Difference_entropy _1 0.0001 0.0003 0.0003 0.0012 0.0013 0.0008 0.0004 0.0017
87 Difference_entropy _3 0.0001 0.0003 0.0003 0.0010 0.0010 0.0007 0.0003 0.0017
88 Difference_entropy _5 0.0001 0.0003 0.0002 0.0012 0.0012 0.0006 0.0004 0.0010
89 Difference_entropy _9 0.0001 0.0002 0.0003 0.0015 0.0011 0.0008 0.0004 0.0013
90 Difference_entropy _11 0.0001 0.0002 0.0003 0.0017 0.0011 0.0008 0.0005 0.0008
91 Information_measure_of_co-

rrelation1_1
0.0001 0.0003 0.0003 0.0011 0.0016 0.0010 0.0004 0.0028

92 Information_measure_of_co-
rrelation1_3

0.0001 0.0003 0.0003 0.0008 0.0018 0.0008 0.0003 0.0014

93 Information_measure_of_co-
rrelation1_5

0.0001 0.0003 0.0003 0.0011 0.0014 0.0007 0.0004 0.0011

94 Information_measure_of_co-
rrelation1_9

0.0001 0.0002 0.0003 0.0011 0.0009 0.0009 0.0004 0.0016

95 Information_measure_of_co-
rrelation1_11

0.0001 0.0003 0.0004 0.0017 0.0009 0.0007 0.0004 0.0008

96 Information_measure_of_co-
rrelation2_1

0.0001 0.0004 0.0003 0.0013 0.0017 0.0009 0.0004 0.0019

97 Information_measure_of_co-
rrelation2_3

0.0001 0.0004 0.0003 0.0011 0.0020 0.0008 0.0004 0.0015

98 Information_measure_of_co-
rrelation2_5

0.0001 0.0003 0.0003 0.0013 0.0017 0.0006 0.0004 0.0016

99 Information_measure_of_co-
rrelation2_9

0.0001 0.0002 0.0003 0.0012 0.0011 0.0009 0.0004 0.0017

100 Information_measure_of_co-
rrelation2_11

0.0001 0.0002 0.0003 0.0017 0.0014 0.0005 0.0004 0.0010

101 Inverse_difference_normaliz-
ed _1

0.0001 0.0003 0.0003 0.0011 0.0009 0.0007 0.0004 0.0019

102 Inverse_difference_normaliz-
ed _3

0.0001 0.0003 0.0002 0.0011 0.0011 0.0006 0.0003 0.0014

103 Inverse_difference_normaliz-
ed _5

0.0001 0.0003 0.0003 0.0011 0.0016 0.0004 0.0003 0.0011

104 Inverse_difference_normaliz-
ed _9

0.0001 0.0002 0.0003 0.0012 0.0015 0.0007 0.0004 0.0012

105 Inverse_difference_normaliz-
ed _11

0.0001 0.0003 0.0003 0.0013 0.0011 0.0006 0.0004 0.0007

106 Inverse_difference_moment_
normalized _1

0.0001 0.0004 0.0003 0.0014 0.0008 0.0007 0.0003 0.0020

107 Inverse_difference_moment_
normalized _3

0.0001 0.0002 0.0003 0.0013 0.0013 0.0005 0.0003 0.0011

108 Inverse_difference_moment_
normalized _5

0.0001 0.0002 0.0002 0.0009 0.0015 0.0005 0.0003 0.0007

109 Inverse_difference_moment_
normalized _9

0.0001 0.0002 0.0003 0.0011 0.0019 0.0006 0.0003 0.0009

(continued)
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Table 3. (continued)

No.

^

Feature name Importance scores from each model

All Normal Cancer Missed Prior-Vis Prior-Invis Prior1 Prior2

110 Inverse_difference_moment_
normalized _11

0.0001 0.0002 0.0003 0.0010 0.0019 0.0006 0.0004 0.0008

111 Mean 0.0002 0.0008 0.0004 0.0013 0.0019 0.0010 0.0005 0.0018
112 Standard_deviation 0.0005 0.0029� 0.0006 0.0085� 0.0262� 0.0050� 0.0025 0.0069
113 Skewness 0.0009� 0.0014 0.0006 0.0056 0.0114 0.0047� 0.0024 0.0065
114 Kurtosis 0.0002 0.0004 0.0008� 0.0019 0.0017 0.0014 0.0006 0.0012
115 Minimum 0.0001 0.0001 0.0003 0.0005 0.0004 0.0002 0.0001 0.0004
116 5th_percentile 0.0002 0.0007 0.0006 0.0016 0.0025 0.0009 0.0005 0.0009
117 10th_percentile 0.0002 0.0008 0.0004 0.0016 0.0015 0.0015 0.0006 0.0014
118 15th_percentile 0.0002 0.0007 0.0004 0.0021 0.0020 0.0021 0.0006 0.0017
119 20th_percentile 0.0002 0.0009 0.0004 0.0017 0.0026 0.0023 0.0007 0.0018
120 25th_percentile 0.0003 0.0011 0.0004 0.0017 0.0032 0.0020 0.0007 0.0024
121 Median 0.0004 0.0018 0.0003 0.0022 0.0027 0.0019 0.0010 0.0026
122 75th_percentile 0.0002 0.0008 0.0003 0.0018 0.0013 0.0015 0.0006 0.0011
123 80th_percentile 0.0002 0.0005 0.0003 0.0015 0.0016 0.0011 0.0004 0.0010
124 85th_percentile 0.0001 0.0004 0.0004 0.0016 0.0018 0.0010 0.0005 0.0013
125 90th_percentile 0.0001 0.0006 0.0004 0.0024 0.0036 0.0013 0.0006 0.0015
126 95th_percentile 0.0003 0.0017 0.0005 0.0048 0.0094 0.0026 0.0012 0.0032
127 Maximum 0.0002 0.0003 0.0003 0.0013 0.0031 0.0007 0.0006 0.0010
128 Range_all (maximum

less minimum)
0.0002 0.0004 0.0003 0.0017 0.0032 0.0011 0.0006 0.0021

129 Range5 (95th percentile less
5th percentile)

0.0008� 0.0017 0.0011� 0.0093� 0.0318� 0.0053� 0.0035� 0.0107�

130 Range2 (99th percentile less
1st percentile)

0.0006 0.0033� 0.0008� 0.0087� 0.0165 0.0060� 0.0025 0.0082

Feature nos. 1-110 are GLCM-based features49-51 with feature parameters as 1, 3, 5, 9, and 11 being pixel distance between the pixel of interest and its
neighbour. Feature nos. 111-130 are FOS-based features.50,51� and highlighted in grey ¼ important features based on their importance scores from the machine learning model. The larger the importance scores, the more
important the features were for the model.
Abbreviations: FOS ¼ first order statistics; GLCM ¼ gray level co-occurrence matrix.

Figure 3. Area under the receiver operating characteristic curve (AUC) for eight classifiers. When differentiating high- from low-gist images, all eight

models using global radiomic features from each image category performed relatively well with the Prior-Visible images category model achieved the

highest AUC of 0.84 (95% CI, 0.77-0.91) while the Cancer model had an AUC of 0.69 (95% CI, 0.65-0.75).
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the proper use of the GGS to support BC detection and
prediction process.

Moreover, if the GGS can be considered as a BC risk fac-
tor, similar to breast density or genetic risk factor, our work
may be applied as a supplemented artificial vision intelligence

tool to signal clinician about an elevated risk of a positive
cancer finding in mammographic screening.3,5,13 It might
also be used to augment the recent deep learning model57 to
further advance the accuracy of BC detection in screening
mammography especially since the GGS has been shown to

Figure 4. Line plot showing feature importance scores of the 130 features (no. 1-130) in each classifier (A)-(H). As shown, pattern of important features

appears to be similar across the eight classifiers.

Figure 5. Scree bar chart for each of the eight classifiers showing important features (ranked from high to low importance scores) determined based on

the identified steep slope (as shown in red arrow). Seven, seven, eight, three, seven, nine, six, and six most important features were identified for All (A),
Normal (B), Cancer (C),Missed (D), Prior-Visible (E), Prior-Invisible (F), Prior-1 (G), Prior-2 (H) model, respectively.
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be helpful in improving the performance of the deep learning
model in detecting BC.14 This could not only assist in lessen-
ing the possibility of FP and FN errors but also optimizing
personalized screening strategy (eg, shorter screening inter-
val) and increasing the chance of BC being detected early
with improved therapy outcomes and survivorship.
Conversely, more research efforts are needed to further evalu-
ate and validate its clinical usefulness.

Interestingly, although studies3,58 indicated that GGS of fu-
ture cancerous abnormalities can be detected in fine details of
the parenchymal texture of high-pass filtered mammograms,
other works revealed that radiologists extract the GGS using
low-resolution peripheral vision prior to detailed foveal proc-
essing of any image areas when separating abnormal from
normal mammograms.1,10,24 Our findings supported the rele-
vance of the FOS and GLCM-based second-order textural
features to the GGS, extracted by radiologists’ peripheral vi-
sion. Prior studies3,13 showed that observers failed to localize
BC using such gist signal, indicating that the gist signal in the
context of medical images is concordant with findings from
basic vision sciences where observers struggle with tasks in-
volving distinguishing phase differences59 and show uncer-
tainty in localizing bisection.60 To move beyond qualitative
evidence, a specific proposal for peripheral “texture proc-
essing” and its relevance to mammography are required. The
current best theory for a model of capturing the appearance
of textures is the Texture Tiling Model61,62 which implicates
the visual system with the summary statistics computed using
the second-order statistics of primary visual cortex over local
pooling regions.

In the context of basic vision science, the importance of
texture features from non-medical images in identifying the
global gist of natural scenes was discovered.29-31 Our work
based on breast medical images also showed similar results,
in that, five useful features involving one GLCM-based tex-
tural and four FOS-based features (Table 3) from the ML
models were found. In concordance with the suggestions
from basic vision science studies,33,34,63 features that are re-
lated to noticeable differences in the first order luminance,
that is, range and standard_deviation, were among important
features in the classification tasks. In particular, range5 (fea-
ture no. 129) seems to be valuable in all the model except
Normal, signifying that a high GGS in most image types may
be motivated by the overall low range (difference between the
95th and 5th percentiles) of the image gray level value, resem-
bling cancer characteristics. Similarly, among the second-
order features, cluster shade (feature no. 26-30) exhibited
importance in all tasks except for one, suggesting that the
“uniformity of mammographic texture” could contribute to
the radiologists’ initial impression about the abnormality of a
case. In this case, these features may be used as an indicator
of whether a strong gist of the abnormal is present in an im-
age, which could contribute to the early detection and risk
prediction of BC. However, larger research is required to fur-
ther examine the effectiveness of these features.

There were a few limitations in our study. First, this was
the first exploratory study investigating the capability of
handcrafted GRFs (ie, 110 GLCM-based texture and 20
FOS-based features) derived from 130 CC unilateral view
mammograms64 in predicting high-gist from low-gist images
based on the gist scores of thirteen “gist experts”.15 The
mediolateral oblique (MLO) view was not used in this study.
While the entire images were viewed by the readers in the gist

experiment, the background skin-air region of the images had
to be excluded using erosion algorithm, because it has been
enhanced by the vendors, to obtain the true breast region for
GRF extraction. The results may be only applicable to the
images and gist experts with characteristic/background (eg,
being a screen reader with high screening workload) similar
to the sample used in the study. Secondly, useful GRFs were
determined based on their importance scores using a scree
test55 (Fig. 4), which may be less explicit for some models,
for instance, the Missed model when compared to the
Normal model. Also, only “Prior-1” images (attained two
years prior to current cancer mammograms) were used to cat-
egorize “Missed”, “Prior-Visible”, and “Prior-Invisible”
images. As with all model building, the output of the model is
constrained by the parameters entered into the model. So,
forthcoming studies should examine other prior mammo-
grams acquired beyond 2 years before, MLO, raw47 and
high-pass filtered bilateral mammograms,58 digital breast
tomosynthesis images,65 and images from other vendors (eg,
GE, GE Healthcare, Chicago, IL, USA). These images may
also contain valuable information to suggest an abnormality
and/or an increased future malignancy risk, and therefore
may result in different gist scores and GRFs. Also, gist
experts from other location and using other morphological
image processing methods (such as corrosion and closing66)
may produce different results. Lastly, other potential impor-
tant GRFs (eg, cluster prominence, feature no. 21-25) and
types of GRFs (eg, deep learning features11) should also
be analysed.

Conclusions
To summarize, this study suggests that a set of quantitative
GRFs derived from mammographic images can accurately
predict high- from low-gist images with five useful GRFs (one
GLCM-based texture and four FOS-based features) discov-
ered and emphasized. These findings are critically important
in providing better understanding of the mammographic im-
age characteristics that drive the strength of the GGS, which
could be exploited to advance BC screening and risk predic-
tion, enabling early detection and treatment of BC thereby
further reducing BC-related deaths.
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