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Original Article

Introduction

Intracytoplasmic sperm injection (ICSI) is a well-estab-
lished reproduction technology used for treatment of 
about half of the couples with male factor infertility 
(Nyboe Andersen et al., 2008). However, ICSI can lead to 
a significant decrease in both implantation and clinical 
pregnancy rates compared with conventional in vitro fer-
tilization (IVF; Bhattacharya et al., 2001; Yoeli et al., 
2000). In ICSI, sperms are subjectively selected by the 
embryologist, based on their motility and morphology cri-
teria, bypassing the natural selection processes provided 
by biological interaction and physiological barriers (D. Y. 

Liu & Baker, 2000; Miller & Smith, 2001). Elimination of 
biological selection may result in selection of sperm with 
morphological and DNA abnormalities, thereby lowering 
the chance of success with ICSI (Mehta & Sigman, 2014). 
Several novel and traditional methods have been devel-
oped to improve sperm selection strategy, including mem-
brane maturity of sperm (Beck-Fruchter et al., 2016; 
Parmegiani et al., 2010), motile sperm organelle morphol-
ogy examination (MSOME; Bartoov et al., 2003), non-
adherence of sperm to a glass wool column (Jeyendran 
et al., 1986) and assessing the surface charge of sperm 
(Ainsworth et al., 2005). However, the most efficient 
sperm selection method has not yet been determined (Said 
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Abstract
The objective was to investigate the embryo morphokinitics using a time-lapse monitoring (TLM) system and 
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pregnancy, and implantation was observed. Sperm selection using biological materials, such as ZP, improved both 
embryo quality and pregnancy outcomes, despite not affecting the early embryo development and morphokinetic 
parameters up to t8. This prospective randomized sibling oocyte trial was registered in October 2020 to January 2022 
(IRCT20200705048021N1).

Keywords
sperm-zona pellucida binding, morphokinetic, immature oocyte, ICSI, time-lapse monitoring

Received November 29, 2023; revised January 7, 2024; accepted January 8, 2024

https://us.sagepub.com/en-us/journals-permissions
http://journals.sagepub.com/home/jmh


2 American Journal of Men’s Health 

& Land, 2011). It has been reported that for fertile men, a 
small fraction (14%) of motile spermatozoa bind to the zona 
pellucida (ZP) of human oocytes (D. Y. Liu et al., 2003). In 
addition, several studies have demonstrated sperms that bind 
to ZP are mature with normal morphology (Garrett & Baker, 
2004; Huszar et al., 1994; D. Y. Liu & Baker, 1992) and 
normal nuclear DNA compared with non-adhering sperm to 
ZP (Dadoune, 2007; Garrett & Baker, 2004; D. Y. Liu & 
Baker, 2007) in which potentially increase the mutational 
load carried by the embryos due to DNA defects (Aitken, 
2017a, 2017b). Previous studies reported that the ZP has the 
ability to select higher quality sperm, which can be used for 
ICSI (Black et al., 2010; Braga et al., 2009; Casciani et al., 
2014; Ganeva et al., 2019; Izadi et al., 2021; Jin et al., 2016). 
It seems that the human oocyte ZP can be used to help in 
selecting competent sperm to enhance ICSI clinical out-
comes. Where a cohort of collection oocytes contains imma-
ture and mature oocytes, the ZPs are biologically similar, 
despite differing levels of cytoplasmic and genetic maturity 
(D. Y. Liu & Baker, 2007). As such, the ZP of the sibling 
immature oocytes are a potential source to be used for sperm 
selection in ICSI.

Specific morphological defects in the sperm head, 
midpiece, and tail have been reported to have significant 
effects on certain stages of embryonic development, from 
the appearance of pronucleus to the hatched blastocyst. 
These defects in sperm cells affect both embryo morpho-
kinetic and assisted reproductive technology (ART) out-
comes (Nikolova et al., 2020). Therefore, the present trial 
study was conducted to determine if there was a differ-
ence in embryo morphokinetics and clinical outcomes 
following sperm selected with ZP-bound sperm method 
versus conventional ICSI. To our knowledge, the mor-
phokinetic of pre-implantation embryos has not been 
studied in ZP-bound sperm selection in ICSI setting.

Materials and Methods

This prospective randomized sibling oocyte trial was per-
formed at the Reproductive Science Institute in Yazd, 

Iran from October 2020 to October 2022. This clinical 
trial was registered in the Iranian Registry of Clinical 
Trials (IR. CT20200705048021N1) and approved by the 
Ethics Committee of our institute (IR. SSU.RSI.
REC.1398.022). The ICSI candidates were diagnosed 
with unexplained infertility and failure of fertilization 
after IVF provided written informed consent.

The inclusion criteria for females were age of <40 
years, basal follicle-stimulating hormone (FSH) <10.0 
IU/L with at least five to six mature and one immature 
oocytes (Table 1). The inclusion criteria for men were age 
of <50, having a semen sample with motile sperm con-
centration ≥5 × 106/mL and abnormal sperm morphol-
ogy. Males with non-ejaculated spermatozoa or 
cryptozoospermia, were excluded. In addition, the cases 
in which the sperm cells failed to bind to the ZP were 
excluded. The couples did not have a history of Y chro-
mosome micro-deletion in their diagnostic tests. The 
baseline laboratory characteristics were recorded before 
assigning the patients to the control and ZP-bound groups 
(Figure 1).

Clinical Procedure

Seventy candidates for ICSI received the antagonist pro-
tocol for control ovarian stimulation, 20 cases were 
excluded due to the failure of spermatozoa not bounding 
to the ZP. In total, 371 MII oocytes were aspirated 34 to 
36 hr after human chorionic gonadotropin (hCG) injec-
tion. Sibling oocytes from each patient were randomly 
and equally assigned to control (199 oocytes) and 
ZP-bound group (172 oocytes). After ICSI, incubation 
and confirmation of fertilization were performed. 
Afterward, the fertilized oocytes were transferred to time-
laps culture dish. The dish was placed in a standard incu-
bator equipped with time-lapse microscopy (TLM) 
system for morphokinetic assessment. Embryo transfer 
took place on Day 3 and clinical outcomes were recorded. 
All procedures were performed by the same blinded 
embryologist.
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Controlled Stimulation of the Ovaries and 
Oocyte Retrieval

Ovulation stimulation protocol was performed through 
the long-term downregulation of pituitary and using ago-
nist or antagonist of FSH (Gonal-F; Serono, Geneva, 
Switzerland) and gonadotropin-releasing hormone 
(GnRH). After appropriate growth of follicles using 
transvaginal ultrasound, hCG (Ovidrel; Merck-Serono) 
was injected to trigger the final follicle maturation and 
ovulation. Oocytes were then collected 36 hr post-hCG 
administration.

Collection of Oocytes

Cumulus-oocyte complexes (COCs) were isolated from 
follicular fluid, and incubated in SynVitro Flush medium 
(Origio, Cooper Surgical, Denmark) overlaid with oil 
(Ovoil; Vitrolife, Sweden). The COCs were transferred to 
universal IVF medium (Medicult, Copenhagen, Denmark) 
and incubated at 37oC, 6% CO2, 5% O2 for 2 hr. Following 
denudation, all oocytes were evaluated to determine the 
nuclear maturation stage. For the process of ZP-bounded 
sperm selection, the immature oocytes were selected, 
while mature oocytes were assigned to the ICSI.

Sperm Samples Preparation

Ejaculates were prepared using a discontinuous 80:40 
density gradient (Nidacon Laboratories AB, Gothenburg, 
Sweden). The pellet was washed twice by resuspending 

in 1 mL, universal IVF medium and centrifuged at 300 g 
for 5 min. The ultimate sperm preparation was resus-
pended in 500 μL of the medium (World Health 
Organization, 2021).

ZP-Bound Sperm Selection

In the ZP group, 5-μL sperm sample (concentration: 1–2 
× 106 motile sperm/mL) was added to a 5-μL droplet of 
universal IVF medium containing 1 immature oocyte 
(37°C, 6% CO2). After 2 hr, the immature oocytes were 
carefully washed by repeated aspirations in droplets of 5 
μL (universal IVF medium) using a pipette fitted with a 
200 to 250 µL tip for removal of loosely bound sperms. 
The immature oocyte with ZP-bound sperms was trans-
ferred to a 5μL droplet of SynVitro Flush medium (Origio, 
Cooper Surgical, Denmark) overlaid with oil in a plastic 
culture dish (Nunc153006). The culture dish was finally 
placed on the warm stage of an inverted microscope.

At ×400 magnification, the spermatozoa that were 
tightly bound to ZP were separated using a microinjection 
needle. The sperms isolated from immature oocytes were 
inserted in a made-droplet of polyvinylpyrrolidone (PVP) 
solution (Irvine Scientific). After sperm immobilization 
in the PVP, the sperms were injected into the oocytes 
allocated to the ZP-bound group (Braga et al., 2009; 
Casciani et al., 2014; F. Liu et al., 2011). In the control 
group, sperm selection and microinjection was performed 
based on the conventional method. In both groups, all 
injected oocytes were rinsed, then cultured in droplets of 
SAGE 1-Step medium (Origio, Cooper Surgical, 
Denmark) overnight at 37°C and 6% CO2.

Embryo Culture and Time-Lapse Monitoring

After incubation (16–18 hr), fertilization was confirmed 
when two pronuclei were present. Zygotes were trans-
ferred to culture dish (Primo Vision, Vitrolife, Sweden) 
containing 50 μL of pre-equilibrated SAGE 1-Step 
medium (Origio, Cooper Surgical, Denmark) covered 
with mineral oil at 5% O2 and 6% CO2, 37°C. Full trace-
ability was provided for each zygote. The embryo culture 
dish was put in a standard incubator (5% O2 and 6% CO2, 
37°C) equipped with TLM system. The images were cap-
tured at 3 to 11 focal plane of embryos every 10 min and 
full scan every 20 min (Faramarzi et al., 2017; Mangoli 
et al., 2020). Therefore, the embryo development was 
monitored in real time until Day 3.

Embryo Development Evaluating With  
TLM Technology

On Day 3, the embryos were evaluated by viewing time-
lapse images and analyzed using Embryo Viewer TM 
(Vitrolife) software. Embryos with direct cleavage 

Table 1. Baseline Laboratory Characteristics of the Patients

Male parameters M ± SD

Age 37.02 ± 4.68
Semen volume (mL) 3.01 ± 0.86
Sperm concentration (×106/mL) 64.94 ± 32.20
Normal morphology (%) 3.98 ± 1.15
Progressive motility (%) 39.02 ± 11.02
Non-progressive motility (%) 34.32 ± 15.22
Immotile (%) 26.66 ± 13.19

Female parameters M ± SD

Age 34.02 ± 4.15
COCs 8.340 ± 3.86
MII oocytes 7.420 ± 3.32
BMI 26.69 ± 3.94
AMH (ng/mL) 2.785 ± 1.7
E2 (pg/mL) 1,623 ± 774
FSH (IU/L) 7.30 ± 1.82
PRL (ng/mL) 13 ± 4.19

Note. SD = standard deviation; COC = cumulus-oocyte complexes; 
BMI = body mass index; FSH = follicle-stimulating hormone; MII = 
Metaphase II; PRL = prolactin.
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defined as a blastomere divided directly from 1 to 3 blas-
tomeres <5 hr; Rubio et al., 2012), uneven blastomere 
and multinucleation (MN) at the 2 and 4-cell stage (Mn4) 
were excluded and all embryos with eligible morphology 
were subjected for scoring according to Basile criteria. 
Time points of early development stages were determined 
by Embryo Viewer TM (Vitrolife) software. Briefly, pro-
nuclear fading time (PNF), time of cleavage to 2-cell 
(24–28 hr) (t2), to 3-cell (30–38 hr) (t3), to 4-cell (35–41 
hr) (t4), to 5-cell (48–57 hr) (t5), to 6-cell (t6); to7-cell 
(t7) to 8-cell (50–59 hr) (t8). In addition, cc2 (8–12 hr) 
was defined as duration of the second cell cycle, cc3 was 
defined as duration of the third cell cycle, s2 was defined 
as second synchronous divisions, and s3 was defined as 
third synchronous divisions, which were calculated as 

follows: cc2 = t3 − t2, cc3 = t8 − t4, s2 = t4 − t3, and  
s3 = t8 − t5, respectively (Basile et al., 2015; Y. Liu et al., 
2015; Meseguer et al., 2011; Tejera et al., 2017). The 
transferred embryos were graded according to Hill et al. 
(1989) that scored according to the rate of fragmentation 
and symmetry of the blastomeres A: symmetrical, no 
fragmentation; B: <10% fragmentation and/or asymmet-
ric; C: 10% to 25% fragmentation; D: > 25% fragmenta-
tion with dark granules.

Embryo Selection and Transfer

Two embryos with high quality from one of the groups 
were selected and loaded by a blinded embryologist 
based on Hill indices (Hill et al., 1989). Embryo loading 

Figure 1. Consolidated Standards of Reporting Trials (CONSORT) Diagram of Participants’ Allocation, Treatment, Follow-Up, 
and Analysis
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and transferring was performed with a Cook catheter 
(Cook Medical, USA) and SAGE 1-Step medium (Origio, 
Cooper Surgical, Denmark) (20–30 μL). Supernumerary 
embryos were cryopreserved for future use.

Outcome Parameters

Clinical pregnancy was defined when fetal heart beat and 
gestational sac were detected by ultrasound examination 
after 7 weeks. The secondary outcomes were fertilization 
rate (number of fertilized oocytes per number of injected 
oocytes), embryo morphokinetic scores include PNF, t2, 
t3, t4, t5, t6, t7, t8, cc2, cc3, s1, s2, and s3, implantation 
rate (ratio between the number of gestational sacs to num-
ber of transferred embryos) and chemical pregnancy rate 
(when b-hCG was positive 14 days after embryo trans-
fer). Some time-points data in the time-lapse system were 
considered as missing values due to unfocused imaging 
and/or technical problem. The embryos dividing directly 
from 1 to 3 cells, 2 to 5 cells and/or MN at 2- and 4-cell 
stages were excluded.

Statistical Analysis

Normality of the data was assessed using the Kolmogorov–
Smirnov test. Quantitative data are presented as mean ± 
standard deviation (± SD) for normal numeric data and 
proportions (%) for categorical variables. The unpaired 
t-test was used for the determination of differences 

between every two groups. Chi-square test was used to 
compare classification variables (χ2 test was used to deter-
mine the significance of differences between two groups). 
Values of two-tailed p < .05 were considered significant. 
SPSS version 22 was used for all statistical analyses.

Results

From a total of 417 collected COCs, 371 MII oocytes 
were assessed (maturation rate: 88.96%). One hundred 
seventy-two of the MII oocytes were assigned to the 
ZP-bound sperm selection group and 182 of the MII 
oocytes were assigned to control group (Table 1).

Fertilization Rate

In the ZP-bound sperm selection group, 129 oocytes out 
of 172 were normally fertilized (fertilization rate: 75%); 
while 133 oocytes from 182 were normally fertilized 
(73.0%) in controls. No significant differences were 
noted in the fertilization rates between the groups (t = 
0.1, p = .68).

Morphokinetics of Embryos

There was no significant difference in the time points of 
embryo development (tPNf, t2, t3, t4, t5, t6, and t7) between 
two groups. However, t8 (t = 2.0, p = .04; Table 2,  
Figure 2A) and cc3d (t = 2.3, p = .02; Table 2, Figure 2B) 

Table 2. Individual Time Points and Calculated Interval Times in the Time-Lapse Monitoring-System in the ZP-Bound and 
Control Groups

Time-lapse stage Control ZP-bound
95% Confidence interval 

of the difference Sig. (2-tailed)

Individual time points
 2PNf 25.49 ± 3.88 24.89 ± 3.61 [−0.40, 1.63] 0.24
 t2 28.16 ± 3.89 27.43 ± 4.27 [−0.36,1.83] 0.19
 t3 36.80 ± 7.50 35.97 ± 6.90 [−1.09, 2.75] 0.40
 t4 39.87 ± 7.82 37.66 ± 5.36 [−0.14, 3.54] 0.07
 t5 47.72 ± 9.97 46.48 ± 8.73 [−1.41, 3.90] 0.35
 t6 50.53 ± 8.45 49.55 ± 7.20 [−1.38, 3.36] 0.41
 t7 53.84 ± 7.77 53.00 ± 7.21 [−1.56, 3.25] 0.49
 t8 57.12 ± 8.31 54.42 ± 6.36 [0.05, 5.34] 0.04
Calculated interval times
 cc2a 08.31 ± 6.16 08.35 ± 5.93 [−1.64, 1.56] 0.96
 cc2b 11.68 ± 5.88 11.05 ± 3.51 [−0.74, 2.00] 0.366
 cc3a 08.70 ± 5.93 08.91± 6.41 [−1.95, 1.54] 0.82
 cc3b 13.10 ± 4.83 12.43 ± 5.25 [−0.86, 2.19] 0.39
 cc3c 16.24 ± 3.95 16.04 ± 4.38 [−1.18, 1.58] 0.78
 cc3d 20.36 ± 5.72 18.03 ± 5.08 [0.37, 4.28] 0.02
 S1 02.69 ± 0.67 02.60 ± 0.66 [−0.09, 0.28] 0.31
 S2 01.08 ± 1.16 00.91 ± 0.85 [−0.14, 0.484] 0.28
 S3 11.65 ± 7.87 9.67 ± 6.60 [−0.60, 4.57] 0.13

Note. ZP = zona pellucid; 2Pnf = pronuclei fading.
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in the ZP-bound group were statistically shorter, meaning 
that embryos in the ZP-bound group reached the 8-cell 
stages faster than embryos in the control group.

Embryo Quality

The rates of grade A embryos were significantly higher in 
ZP-bound group than control (t = 4.8, p < .05). The rate 
of grade C embryos was significantly lower in ZP-bound 
group (t = 5.6, p < .05; Table 3). In addition, according 
to Basile embryo classification algorithm, the rates of 
grade A were significantly higher in ZP-bound compared 
with the control (t = 3.8, p < .05). The rate of grade D 
embryos was significantly lower in ZP-bound compared 
with control group (t = 4.0, p < .05; Table 4).

As presented in Table 5, the chemical pregnancy rate in 
the control (4/16; 25%) was significantly lower than 
ZP-bound group (15/26; 57.5%) (t = 4.2, p < .05). The 
clinical pregnancy rate was significantly higher in 
ZP-bound group (14/26; 53.8%) compared with control 

Figure 2. Time-Lapse Morphokinetic Parameters 2Pnf = Pronuclei Fading; t2 = First Cleavage (2-Cell Stage); t3 = Second 
Cleavage (3-Cell Stage); t4 = 4-Cell Stage; t5 = 5-Cell Stage; t6 = 6-Cell Stage; t8 = 8-Cell Stage. (A) Calculated Standard 
Intervals, Such as the Time to Complete First Synchronous Divisions s1 (t2–tPNf), Durations of the Second Cycle (cc2; t3–t2), 
the Time to Complete Second Synchronous Divisions (s2:t4–t3), Third Cell Cycle Duration (cc3; t8–t4) and the Time to 
Complete third Synchronous Divisions (s3:t8–t5) of Early Embryo Development After ICSI (B)

Table 3. Comparison Grade in ZP-Bound and Control 
Groups According to Hill.

Embryo quality ZP-bound (%) Control (%) Sig. (two-tailed)

Grade A 34.88 (45/129) 22.55 (30/133) 0.02
Grade B 35.66 (46/129) 33.08 (44/133) 0.66
Grade C 16.27 (21/129) 28.57 (38/133) 0.01
Grade D 5.43 (7/129) 9.02 (12/133) 0.26
Arrest 7.75 (10/129) 6.77 (9/133) 0.75
Top quality 76.47 (91/119) 59.67 (74/124) 0.005
Poor quality 23.52 (28/119) 40.32 (50/124) 0.005

Note. ZP = zona pellucid.

(3/16; 18.8%) (t = 5.0, p < .01) and the implantation rate 
in the control group (4/32; 12.5%) was lower compared 
with the ZP-bound group (16/47; 34%), (t = 4.6, p < .05).

Discussion

Numerous suggestions have been proposed to improve 
sperm selection for ICSI, such as: surface charge of sperm 
(Ainsworth et al., 2005), non-apoptotic sperm (Grunewald 
et al., 2001), hyaluronic acid (HA)-based selection (Beck-
Fruchter et al., 2016), nonadherence of sperm (Jeyendran 
et al., 1986), and MSOME (Bartoov et al., 2003; Teixeira 
et al., 2020). The ZP is the last checkpoint for natural sperm 
selection and ZP-binding has been used to select the suit-
able sperm for ICSI (Braga et al., 2009; Casciani et al., 
2014; Jin et al., 2016; F. Liu et al., 2011). This method is 
cost-effective and additionally the sperm selection is 
almost identical to the sperm selection at the last check-
point in the reproductive tract. However, there is inade-
quate evidence to support implementation of this method 
in clinical setting. Our study is the first report of different 
developmental dynamics and kinetics of ZP-bound sperm 
selection-derived embryos. The differences in embryo 
morphokinetics, high-quality embryos, and clinical preg-
nancy after ICSI were found for our randomized groups of 
sibling oocytes (ZP-bound sperm selection and control 
groups). There was no significant difference in fertilization 
rate between the groups. Therefore, it seems that the use of 
the ZP-bound sperm selection method cannot improve fer-
tilization rate. The latest meta-analysis study is in line with 
our results (Izadi et al., 2021).

The use of time-lapse technology makes it possible to 
understand the kinetics of embryos and how they are 
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influenced by external as well as internal factors (Bean 
et al., 2002). In ART, time lapse is applied most widely to 
grade embryos based on morphological features at differ-
ent time intervals. Embryologists use this information to 
determine their treatment procedure to transfer or freeze 
the selected embryos. As a non-invasive apparatus, sev-
eral embryo images can be collected in different focal 
planes every few minutes to assess the embryos without 
changing the culture medium. In addition, embryo mor-
phological abnormalities can be analyzed, which can 
affect the clinical outcomes (Garcia-Belda et al., 2023). 
One of the internal factors that may affect the embryo 
development time and cleavage divisions is the sperm 
nucleus and/or cytoplasm (Lechniak et al., 2008; Tesarik, 
2005). Given that, if the embryo development becomes 
too slow or too fast, it could be due to metabolic and 
chromosomal defects (Biezinova et al., 2006). For 
instance, Kakulavarapu et al. used time-lapse technology 
to investigate morphokinetic characteristics of embryos 
with cell exclusion (CE). It was reported that CE embryos 
showed a delay in specific time intervals including t2, t6, 
t7, t8. Earlier timings for t3 and t5 were observed in these 
embryos. Therefore, it can be concluded that this technol-
ogy provides a wide range of markers to identify embryos 
with altered morphokinetics, such as CE embryos, which 
may be excluded from ET (Kakulavarapu et al., 2023). 
We observed non-significant differences in the tPNf, t2, 
t3, t4, t5, t6 and t7. The time-lapse parameters were 
almost the same until the 8-cell development stage 
between the two groups.

Although the sperm-derived genome is not completely 
silent between fertilization and the early stages of divi-
sion (Schulz & Harrison, 2019; Tesarik, 2005), it has 
been identified that sperm quality plays a key role during 
fertilization (Hernández-Silva et al., 2022; Wakelam 
et al., 2007). In addition, embryonic development is 
influenced by sperm-derived genomic and cytoplasmic 
factors. The insignificance of the time-lapse parameters 
between the two groups in the embryo early development 
stages may be due to the lack of paternal genome activa-
tion before the 8-cell stage (Leng et al., 2019; Tesařék 
et al., 1988; Tesařík et al., 1986). The defects in the sperm 
nucleus are not detected before the 8-cell embryo, until 
the main expression of sperm-derived genes begins 
(Tesarik, 2005).

Other studies with different methods of sperm selec-
tion confirm our results. For example, it was identified 
that sperm selection by grade of sperm head vacuolization 
and IMSI methods had no effect on embryo outcomes 
until Day 3 (Hazout et al., 2006; Neyer et al., 2015). A 
previous study indicated no association between paternal 
factor infertility and embryo morphokinetics (Sacha et al., 
2020). However, the relationship between sperm quality 
and embryo morphokinetic is not well understood (Knez 
et al., 2013; Neyer et al., 2015). A study, which replaced 
PVP with HA in the ICSI procedure, showed that embryo 
development was not affected up to Day 3 (Y. Liu et al., 
2019). Thus, differences in the morphokinetics between 
the two groups may be apparent, if embryos were ana-
lyzed up to the blastocyst development (Y. Liu et al., 
2016). This study identified significant differences 
between the two groups at time point 8, which is in line 
with former studies at this embryonic stage (Mangoli 
et al., 2020). Activation of the main expression of sperm-
derived genes between the 4 and 8 cell stages (Leng et al., 
2019) may be the reason for this event.

The data indicated the rates of biochemical and clini-
cal pregnancies and implantation were significantly 
higher in our ZP-bound group compared with the control. 
In line with the results, some studies reported that signifi-
cantly higher implantation rate acquired using ZP-bound 
sperm selection, and clinical pregnancy was insignifi-
cantly higher than the control group (Jin et al., 2016; F. 
Liu et al., 2011). Major expression of sperm-derived 
genes that occurs between the 4 and 8 cell stages (Leng 
et al., 2019) may play a role in the improvement of the 
pregnancy outcomes. Gamete fusion as a critical step in 
fertilization can cause the acrosome reaction and prevent 
the entry of enzymes into the ooplasm. This phenomenon 
in this sperm selection method may be a mechanism that 
ultimately improves the pregnancy results (Paes Almeida 
Ferreira de Braga et al., 2009).

A recent study reported that the use of sperm bound to 
isolated and immobilized ZP proteins from oocytes with 

Table 4. Comparison of the Rates of Embryo Grades in ZP-
Bound and Control Groups According to Basile Classification

Embryo  
quality ZP-bound (%) Control (%)

Sig. (two-tailed) 
(χ2 test)

Grade A 20.21 (19/94) 10.28 (11/107) 0.049
Grade B 15.95 (15/94) 17.75 (19/107) 0.73
Grade C 26.59 (25/94) 20.56 (22/107) 0.31
Grade D 37.23 (35/94) 51.4 (55/107) 0.04

Note. ZP = zona pellucid.

Table 5. Rates of Clinical Outcomes in the Control and  
ZP-Bound Groups

Groups

Chemical 
pregnancy 

(ß-hCG+/No.ET)
Clinical pregnancy 
(heart beat/No.ET)

Implantation rate 
(GS/NO. embryo)

Control 4/16 (25%) 3/16 (18.75%) 4/32 (12.5%)
ZP-bound 15/26 (57.5%) 14/26 (53.8%) 16/47(34%)
p Value .03 .02 .03

Note. ZP = zona pellucid; hCG = human chorionic gonadotropin; 
ET = Embryo transfer; GS = gestational sac.
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a germinal vesicle (GV) can increase the pregnancy rate 
and reduce the risk of miscarriage (Ganeva et al., 2019). 
There are other studies demonstrating that the use of 
ZP-bound sperms resulted in high-quality embryos 
(Braga et al., 2009; F. Liu et al., 2011). In contrast, 
Casciani and colleagues reported that ZP-bound method 
provided equivalent outcomes than control groups with 
consideration of fertilization, implantation, and clinical 
pregnancy rates (Casciani et al., 2014).

ICSI-derived embryos in the ZP-bound group had a 
higher quality compared with the controls. So, the per-
centage of grade A embryos in the ZP-bound group was 
significantly higher than controls. In addition, the grade 
D embryos in the control were significantly higher than 
that of in the ZP-bound group. In line with our data, some 
studies reported that the percentage of high-quality 
embryos in the ZP-bound sperm selection method has 
significantly increased (Braga et al., 2009; F. Liu et al., 
2011). In contrast, few studies have identified that 
ZP-bound sperm selection method has no effect on 
embryo quality (Black et al., 2010; Jin et al., 2016). These 
conflicting findings may be due to the differences in the 
inclusion criteria for selection of patients and other con-
founding factors, including seminal and oocyte qualities, 
stimulation protocols, and other factors within the IVF 
laboratory. The transferred embryos at our clinic were 
selected from one of the groups, either control or 
ZP-bound. The limitation of our study was related to per-
forming ET on Day 3, such that it was not possible to 
evaluate the embryos at the blastocyst stage. The match-
ing of couples between two groups was performed on the 
base of main restricted factors, such as similar female age 
and seminal profiles. In conclusion, our study showed 
that the selection of spermatozoa with human ZP-bound 
sperm method in cases with non-male factor infertility 
can improve the embryo quality and clinical outcomes 
without affecting early embryo morphokinetics in ICSI.
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