
RESEARCH ARTICLE

Optimal configurations for stiffness and

compliance in human & robot arms

Jon WoolfreyID
1*, Arash Ajoudani2, Wenjie Lu3, Lorenzo Natale2

1 School of Electronic & Electrical Engineering, University of Leeds, Woodhouse, United Kingdom, 2 Center

for Intelligent & Robotic Systems, Istituto Italiano di Tecnologia, Genoa, GE, Italy, 3 School of Mechatronics &

Automation, Harbin Institute of Technology, Shenzen, Guangdong, China

* j.k.woolfrey@leeds.ac.uk

Abstract

Research in neurophysiology has shown that humans are able to adapt the mechanical stiff-

ness at the hand in order to resist disturbances. This has served as inspiration for optimising

stiffness in robot arms during manipulation tasks. Endpoint stiffness is modelled in Cartesian

space, as though the hand were in independent rigid body. But an arm is a series of rigid

bodies connected by articulated joints. The contribution of the joints and arm configuration

to the endpoint stiffness has not yet been quantified. In this paper we use mathematical opti-

misation to find conditions for maximum stiffness and compliance with respect to an exter-

nally applied force. By doing so, we can retroactively explain observations made about

humans using these mathematically optimal conditions. We then show how this optimisation

can be applied to robotic task planning and control. Experiments on a humanoid robot show

similar arm posture to that observed in humans. This suggests there is an underlying physi-

cal principle by which humans optimise stiffness. We can use this to derive natural control

methods for robots.

Introduction

Research in human physiology has shown that humans are able to modify the mechanical stiff-

ness of their arms to improve task performance [1, 2]. This is achieved by leveraging musculo-

skeletal properties through a combination of muscle contraction and arm configuration [2, 3].

Naturally, robotics researchers have attempted to emulate this behaviour in autonomous

manipulation tasks. The Cartesian stiffness ellipsoid was shown to be a good predictor in

humans [4], and serves as a basis for developing robotic control methods. However, an arm is

a series of rigid bodies connected by articulated joints. The joints contribute to stiffness at the

hand has not been adequately explained. By analysing the Cartesian stiffness as a function of

the joints, it can provide better insight in to how humans and robots can regulate interaction

with external forces. Moreover, it is possible to embed robots—particularly humanoids—with

more natural control behaviours.
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For a single rigid body, Hooke’s law states that its deflection is linearly proportional to an

applied force [5] governed by the equation:

w ¼ w0 þ dw ¼ Kcdx ð1Þ

where:

• w 2 Rm
is a wrench of forces (N) and moments (Nm),

• Kc ¼ KT
c 2 R

m�m is the Cartesian stiffness matrix,

• x 2 Rm
is the position and orientation (pose) of said rigid body, and

• δ denotes an infinitesimally small change from some nominal state.

The nominal wrench is assumed to be w0 = 0 when no external force is applied. As afore-

mentioned, a human or robot arm is composed of many rigid bodies connected in series. The

displacement of the endpoint is due to the displacement of the joints and ought to be

accounted for when analysing stiffness. The pose for the endpoint of a mechanism is computed

from the joint angles q 2 Rn
known as forward kinematics:

x ¼ gðqÞ: ð2Þ

For an infinitesimally small displacement the relationship between the endpoint deflection

and joint deflection is given by:

dx ¼ JðqÞdq ð3Þ

where J ¼ @g=@q 2 R6�n is the Jacobian matrix. To find the relationship between endpoint

force and joint torques τ 2 Rn
we can equate the power between the joint space and Cartesian

space to show that:

_qTτ ¼ _xTw ¼ _qTJTw ð4aÞ

;τ ¼ JTw: ð4bÞ

We can use this relationship to analyse how the kinematics affects the ability of a human or

robot to produce forces at the endpoint. If we assume isotropic joint torque:

τTτ ¼ 1 ð5aÞ

then by substituting Eq 1 in to Eq 4b, Eq 4b in to Eq 5a we obtain:

wTJJTw ¼ 1 ð5bÞ

dxTKcJJ
TKcdx ¼ 1: ð5cÞ

Eq 5a is the equation for an n-dimensional sphere in the joint space, centered at zero. Eq 5b

denotes the Cartesian force ellipsoid, and Eq 5c the Cartesian stiffness ellipsoid. The eigenvec-

tors of the matrix KcJJTKc correspond to the principle radii of the stiffness ellipsoid. They have

been shown to be a good predictor of stability in the human arm when subject to external

forces [4]. Notably, the stiffness ellipsoid is a function of the Jacobian J(q) which is a function

of the joint positions q. Therefore, changing the joint configuration can maximise or minimise

the stiffness ellipsoid in different directions.

To further illustrate this, we can examine the joint stiffness as opposed to the Cartesian stiff-

ness. Eq 1 implies that Kc = @w/@x. Similarly, we can evaluate the joint stiffness matrix using
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the derivative product rule, substituting in Eq 4b, to obtain:

Kq ≜
@τ
@q
¼ JTKcJ|fflfflffl{zfflfflffl}

Ka

þ
@JT

@q
Kcdx

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Kp

:
ð6Þ

The first term on the right hand side Ka 2 R
n�n is the active stiffness matrix. It pertains to the

joint torques that attempt to restore the endpoint to its nominal pose when displaced. It is

sometimes referred to as the common mode stiffness (CMS) in the robotics literature [6–9].

The second term Kp 2 R
n�n is the passive stiffness which results from a change in configura-

tion. In robotics it has been referred to as the configuration-dependent stiffness (CDS) [6–9].

In humans, active stiffness is achieved through muscle contraction. Although, literature

suggests that it only modifies the volume of the stiffness ellipsoid rather than the shape [2]. In

fact, under fixed arm configurations, it appears that humans have little control over the direc-

tion of stiffness [10]. This implies that active stiffness Ka is subordinate to passive stiffness Kp,

and that changing arm configuration is a better strategy than tensing one’s muscles. Several

other studies support this notion. For example, it was observed that muscle contractions

change with arm configuration [3] hinting at its significance in shaping stiffness. Other

research directly hypothesized that resisting displacement of the hand is a combination of

joint torques (i.e. muscle contraction) and joint angles [4]. The decomposition of the joint

stiffness matrix Eq 6 makes this evident.

The significance of arm posture, and hence Kp, had been hypothesized as far back as 1985

[11]. This research concluded that it was the primary control input of the central nervous sys-

tem. The general consensus in the neurophysiology literature appears be that increased

mechanical advantage can supplant the need for muscle contraction [1, 2, 4, 12]. The latter is

metabolically costly, and therefore ought to be minimised where possible. When permitted,

humans will naturally choose arm configurations that increase the stiffness in the direction of

disturbances at the hand [12]. The authors hypothesized that kinematic redundancy may be

exploited to regulate stiffness. Many descriptions have been written about the measured stiff-

ness and observed arm configuration, but this relationship has not been quantified.

Control of robot arms had traditionally been concerned with accurate tracking of a desired

joint position or Cartesian pose. Driven by industry, there was a need for fast and precise

manipulation. However, this precision necessitates high stiffness. This can lead to dangerously

high contact forces if the robot is physically disturbed. Conversely, impedance control was

proposed as a method for regulating the interaction forces between robots and their environ-

ment [13–15] (Ironically, these series of papers were the catalyst for studying human stiffness

regulation in neurophysiology). This method has since become a staple for robots operating in

unstructured environments or interacting with humans. By regulating contact forces, robots

can be made compliant to disturbances and uncertainty. We can impose the following second-

order differential equation on the endpoint dynamics [16]:

w ¼ Λð€xd � €xÞ
|fflfflfflfflffl{zfflfflfflfflffl}

€e

þDð _xd � _xÞ
|fflfflfflfflffl{zfflfflfflfflffl}

_e

þKðxd � xÞ
|fflfflfflfflffl{zfflfflfflfflffl}

e

ð7Þ

which is analogous to a mass-spring-damper where:

• xd 2 R
6

is some desired pose,

• Λ 2 R6�6
is the Cartesian mass-inertia matrix,

• K 2 R6�6
is a damping matrix, and
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• K 2 R6�6
a stiffness matrix, and

• _x ¼ dx
dt is the time derivative.

The inertia Λ, damping D, and stiffness K can be designed to produce a desired dynamic

response. For instance, the inertia can be reduced to make it easier for a human to manipulate

the robot. Or, a low stiffness may be applied so the robot complies to unexpected disturbances.

There is a natural affinity here between the position error feedback Ke and the Cartesian

stiffness modelling Eq 1. In fact, Hogan asserted that active feedback was not the best method

compared to “exploiting the intrinsic properties of mechanical hardware” [13]. This was dem-

onstrated in the effects of a robotic polishing task [17]. By changing the joint configuration of

a robot, the natural compliance in its structure was shown to improve surface finish. Despite

this, the robotics community has still not adopted control of the passive stiffness as standard

practice. For example, 31 years after Hogan had published his research, a method of compli-

ance optimisation was developed for a robotic handover task [18]. The passive stiffness term

Kp was assumed to be negligible, thus the joint stiffness could be conveniently solved using

only Ka. In 1994, research showed that reconfiguring a robot arm could reduce impact forces

on the endpoint [19]. But 24 years later active force-feedback was proposed for floating manip-

ulation without considering passive compliance of the robot configuration itself [20].

As surmised by [12], kinematic redundancy may be exploited to enhance performance

depending on the task. This has been actively applied in robotics. Inspired by the fact that

humans can find “natural” postures for a given task, a method for reorienting the Cartesian stiff-

ness ellipsoid was proposed by [21]. This relied on correcting the error between the desired and

actual stiffness. It did not actively exploit redundancy. Nevertheless, a simulated robot arm was

shown to reconfigure itself and reshape the Cartesian stiffness ellipsoid accordingly. Later, kine-

matic redundancy was directly utilized using this stiffness error method [6, 22]. Only the active

stiffness component Ka was considered, and was assumed to be constant. This further omits con-

figuration dependency since Ka is itself a function of the joint positions. This method was later

applied to a two-handed manipulation task [7]. The role of passive stiffness Kp in impedance

control was finally considered for a redundant robot in [8, 23]. The control problem optimised

the Cartesian stiffness ellipsoid to reconfigure the arm whilst keeping the endpoint stationary.

Inspired by neurophysiology, the robotics researchers have demonstrated that they can sim-

ilarly shape the Cartesian stiffness ellipsoid in robotic arms. They concluded—inductively—

that since the resulting robot arm configurations look “natural” then the control methods are

“natural” [6, 7, 21]. “Natural” is not defined. The neurophysiology literature only makes quali-

tative remarks regarding measured stiffness and observed arm posture in this regard.

The purpose of this paper is to quantify how the joint configuration of a serial link mecha-

nism contributes to stiffness and compliance at its endpoint. Specifically, Cartesian stiffness is

treated as a mathematical optimisation problem. We then derive the conditions for the min-

ima (optimal stiffness) and maxima (optimal compliance) with respect to how the joint axes

align with a wrench at the endpoint. A similar treatment has been given to parallel mecha-

nisms [24], although we consider both stiffness and compliance (its inverse).

In doing so, three important contributions are made:

1. Observations of humans in the neurophysiology literature can be retroactively explained

using these optimality conditions,

2. The optimisation function can be used as a metric for robotic task planning, and

3. Applying the optimisation to a humanoid robot leads to arm configurations similar to

those observed in humans.
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Roboticists have frequently looked to biological principles to derive control methods. For

example, research in neurophysiology suggests human arm motion follows a minimum-jerk

trajectory [25]. This type of trajectory generation has been implemented as standard in the

humanoid iCub robot [26]. Motion tracking has also been used to replicate human-like move-

ment in androids [27]. More recently, learning from human demonstration has been used for

trajectory generation in whole-body control of humanoid robots [28]. Illuminating the role of

arm configuration in Cartesian stiffness can enhance our understanding of human behaviour

and stiffness control methods in autonomous systems. For instance, a method for estimating

Cartesian stiffness in human arms was developed in [29], which was later used to emulate simi-

lar behaviour in robots [30]. Although, said method relied on the fact that the human arm can

be reduced to 2 links, and does not consider rotational stiffness. The results of this paper gen-

eralise to mechanisms with any number of links and joints, both revolute and prismatic, and

considers translation and rotational stiffness.

Another minor contribution is to show that maximising stiffness at the hand simulta-

neously reduces the joint torques required to resist external forces. It had been speculated in

neurophysiology that stiffness optimisation is connected to energy reduction. Interestingly,

some robotics researchers had developed a control method for reducing joint torques from

external loads [31]. They noted the joint stiffness matrix appeared when taking the derivative

of the torque minimization function. We show that zero joint torque is a condition for maxi-

mum stiffness. For a robotic arm, the Cartesian stiffness can be arbitrarily shaped through an

appropriate control design. However, it was shown that torque limits of the joint motors

restrict the feasible solutions for the arm configuration [23]. It is therefore advantageous to

exploit passive stiffness for assistance, as Hogan originally asserted [13].

The paper is organised as follows:

• First we review the calculation of the Jacobian matrix both algebraically and with respect to

arm geometry,

• Second, we propose an objective function for optimising stiffness and compute its maxima

and minima with respect to properties of a serial link arm.

• Then we apply these results for optimal stiffness and compliance to observations of humans

in neurophysiology, and demonstrate their application in robotics.

• Finally, we discuss some implications and directions for future research given the results in

this paper.

Arm geometry & the Jacobian matrix

The derivative of the forward kinematics Eq 2 is obtained from the chain rule. Using this

approach the Jacobian is regarded as a matrix of partial derivatives with respect to each joint:

JðqÞ ¼
@g

@q
¼

@g1

@q1
� � �

@g1

@qn

..

. . .
. ..

.

@gm
@q1

� � �
@gm
@qn

2

6
6
6
6
4

3

7
7
7
7
5
2 Rm�n

: ð8Þ

In practice, particularly for robotic control, the Jacobian may be computed numerically from

known geometric properties of the forward kinematics [32]. Joints are classified in 2 funda-

mental types:
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1. Revolute joints, which rotate about a given axis of actuation â 2 Rm, and

2. Prismatic joints, which translate along an axis â.

More complex joints are formed through different combinations of these two (for example,

a ball joint may be modelled as 3 revolute joints). For m = 6 the ith column of the Jacobian can

be written in terms of the joint axis â 2 R3
and the translation vector r 2 R3

from the joint to

the endpoint (Fig 1):

Ji ¼

â i � ri
â i

" #

if i is a revolute joint

â i
0

" #

if i is a prismatic joint

8
>>>>>><

>>>>>>:

ð9Þ

Likewise, we can also express the derivative of the Jacobian using the same vectors [33, 34]:

@Ji

@qj
¼

â j � ðâ i � riÞ

â j � â i

" # if i is revolute;

j is revolute &j � i

â j � ðâ i � riÞ

0

" # if i is revolute;

j is revolute or prismatic &j > i

â j � â i

0

" # if i is revolute;

j is prismatic &j � i

0

0

" #

otherwise:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð10Þ

Fig 1. Geometry of the Jacobian matrix. The ith column of the Jacobian is formed using the joint axis â i and translation vector to the endpoint ri.

https://doi.org/10.1371/journal.pone.0302987.g001
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Note that the partial derivative of the Jacobian is not symmetric:

@Ji

@qj
6¼
@Jj

@qi
: ð11Þ

Given Eq 9 we could then express Eq 3 as a sum of column vectors weighted by the joint

displacements dqi 2 R:

dx ¼ J1dq1
þ � � � þ Jndqn: ð12Þ

By analysing the column vectors of the Jacobian, we can understand the contribution of indi-

vidual joints to the total endpoint displacement and hence its stiffness.

Optimal configurations for stiffness & compliance

Conditions for optimality

We require a scalar quantity with which to optimise the stiffness. First we note that the joint

torques from a given deflection are obtained by substituting Eqs 4b in to 1: τ = JTKcΔx. Then

by projecting this vector on to itself (i.e. the dot product) we obtain the sum-of-squares as a

scalar:

p qð Þ ¼ 1

2
τTτ ð13aÞ

¼
1

2
wTJJTw ð13bÞ

¼
1

2
dxKcJJTKcdx: ð13cÞ

We halve this quantity to make its derivatives neater. We can interpret Eq 13 as the magnitude

of the joint torques for a given deflection of the endpoint. This is half the stiffness ellipsoid,

and its longest principal radius gives the direction in which the arm has the least deflection

when under load. We can see that the stiffness ellipsoid takes the force ellipsoid JJT (something

configuration dependent) and compounds the Cartesian stiffness matrix Kc (something

designed). It combines the inherent mechanical properties of the arm with the restoring forces

that oppose displacement at the endpoint.

We can take the derivative of Eq 13 and substitute in Eq 6 to obtain:

@p
@q
¼

@τ
@q

� � T

τ ¼ Ka þKp

� �
JTw: ð14Þ

A given joint position q is an extremum of Eq 13 if @p/@q = 0. This constitutes the first order

optimality condition. Taking the derivative a second time produces the Hessian matrix:

HðqÞ ¼
@

2p
@q2
¼

@
2τ
@q2

� � T

τ þ
@τ
@q

� �T
@τ
@q

� �

: ð15Þ

An extremum of Eq 13 is a local minimum if Eq 15 is positive definite: H(q)� 0. Conversely,

it is a local maximum if Eq 15 is negative definite: H(q)� 0. These constitute the second order

optimality conditions. We want to find for what configurations of the arm that Eq 13 is maxi-

mized or minimized. We know that the Jacobian and its derivative can be expressed in terms

of the joint axis and translation vectors Eqs 9 and 10. We wish to find what properties of the

axis vector â and displacement vector r produce stiffness or compliance at the endpoint.
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Optimal stiffness

Since Eq 13 equates to a sum-of-squares, it is always greater than or equal to zero p(q)� 0 8q.

Thus, from inspection, we can see that it is a minimum when:

JTw ¼ 0: ð16Þ

Likewise, the gradient Eq 14 is also zero and hence this constitutes an extrema of Eq 13. For

this case the Hessian Eq 15 reduces to:

HðqÞ ¼
@τ
@q

!T 
@τ
@q

 !

ð17Þ

which is positive definite. This confirms that JTw = 0 is a minimum of Eq 13.

The fact that JTw = 0 for w 6¼ 0 implies that Jacobian J and hence the stiffness ellipsoid

KcJJTKc are singular. We can apply the singular value decomposition (SVD) to provide further

insight in to its consequences of a singularity:

KcJJTKc ¼ USV
T ð18Þ

where U, V 2 Oð6Þ are orthogonal matrices. The singular values equate to the squared inverse

of the principle radii of the ellipsoid:

S ¼
smax

. .
.

smin

2

6
4

3

7
5 ¼

r� 2min
. .

.

r� 2max

2

6
4

3

7
5 ð19Þ

They are always arranged from largest to smallest. Hence, the smallest singular value is propor-

tional to the longest axis of the Cartesian stiffness ellipsoid. As the arm approaches a singular

configuration, the length of the longest axis will grow to infinity:

lim
smin!0

rmax ¼ 1:

The arm will have theoretically infinite stiffness in this direction when singular, as illustrated

in Fig 2 (assuming the individual rigid bodies that comprise the arm themselves have infinite

tensile or compressive strength).

It had been hypothesized in neurophysiology that one of the goals in human manipulation

tasks is to minimize energy consumption: “the CNS [central nervous system] attempts to both

maintain a minimum level of stability and minimize energy expenditure” [2]. This seems to

imply a zero-sum between the two objectives. While it is true that muscle contraction stiffens

the arm, it is also metabolically costly [35]. When singular, the arm requires zero joint torque

(i.e. muscle contraction) to withstand external forces since τ = JTw = 0. Maximising stiffness

and minimising energy expenditure can be achieved simultaneously. They are the same

strategy.

Suppose that we apply a 3D wrench of forces and moments to the endpoint:

w ¼
f

m

" #

where f 2 R3
are the linear forces (N), and m 2 R3

are the moments (Nm). From Eq 16 it

must hold that the projection of all column vectors of the Jacobian and the wrench must be
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zero:

JTi w ¼ 0 8i: ð20Þ

In the next two sections this result is examined with respect to revolute and prismatic joints.

For revolute joints. If we take the definition of the column vector of a revolute joint in Eq

9 and substitute it in to Eq 20 the result is:

ðâ i � riÞ
T
f þ âT

i m ¼ 0: ð21Þ

From inspection, one possible condition for this identity is that each term is zero:

â i � riÞ
Tf ¼ âTi m ¼ 0

�
. The dot product, or projection of the vectors, is zero and hence they

must be orthogonal:

â i þ ri ? f ð22aÞ

â i ? m: ð22bÞ

Any moment m applied to the endpoint must be orthogonal to the joint axis â i and hence it

produces zero joint torque. The moment produced by the linear forces is ri × f, so Eq 22a can

be rearranged to say that ri � f ? â i. It produces zero joint torque and hence zero deflection

ensues. An example of an optimally stiff configuration is illustrated in Fig 3.

Fig 2. The Cartesian stiffness ellipsoid of a serial link mechanism. As the mechanism approaches a singular configuration the longest axis of the

Cartesian stiffness ellipsoid grows to infinity.

https://doi.org/10.1371/journal.pone.0302987.g002
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Equation Eq 21 can also be rearranged as:

ðri � fÞ
T
â i þmTâ i ¼ 0 ð23aÞ

ðri � f þmÞ
T
â i ¼ 0: ð23bÞ

Thus another possible condition is:

m ¼ � ri � f : ð24Þ

The moments produced by the force are equal and opposite to the moment on the endpoint.

The mechanism has optimal configuration dependent stiffness since there is zero net joint tor-

que and hence zero deflection. An example of this is illustrated in Fig 4.

For prismatic joints. Using the column vector of the Jacobian for a prismatic joint Eq 9,

and substituting in to Eq 20 leads to:

âT
i f ¼ 0: ð25Þ

The projection of the forces on to the joint axis is zero, so the vectors must be orthogonal:

â i ? f : ð26Þ

This result is illustrated in Fig 5.

Optimal compliance

From inspection of Eq 14 another possible condition for an extrema of Eq 13 is that:

Ka þKp ¼ 0: ð27Þ

Fig 3. Optimal stiffness for revolute joints. In this configuration the forces and moments on the endpoint produce

zero joint torque.

https://doi.org/10.1371/journal.pone.0302987.g003
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A potential solution here is that Ka = −Kp. However, it is proven in the S1 Appendix that this

equality is impossible. Therefore, the only other possibility is that:

Ka ¼ Kp ¼ 0: ð28Þ

It is difficult to prove that this is a maxima of Eq 13 since the derivation of the Hessian Eq 15

becomes too complex. However, we can intuit that this constitutes minimum stiffness / maxi-

mum compliance. The fact that Ka = 0 means that Kc = 0 and the arm does not actively apply

any restoring forces when the endpoint is displaced. It complies with any forces applied to it.

Fig 4. Alternate optimal stiffness for a revolute joint. In this configuration the endpoint forces and moments negate each other.

https://doi.org/10.1371/journal.pone.0302987.g004
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Then, for Kp = 0, it must hold that:

Kp ¼
@JT

@q
w ¼ 0 ð29Þ

and hence:

@Ji
T

@qj
w ¼ 0 8 i; j: ð30Þ

We can use the derivatives of the Jacobian Eq 10 to further analyse this result.

For revolute joints. Substituting the revolute case of Eq 10 in to Eq 30 yields:

ðâ j � ðâ i � riÞÞ
T
f þ ðâ j � â iÞ

T
m ¼ 0 ð31aÞ

ððâ i � riÞ � fÞ
T
aj þ ðâ i �mÞ

T
aj ¼ 0 ð31bÞ

One potential solution here is that:

ðâ i � riÞ � f ¼ â �m ¼ 0: ð32Þ

The cross product of the vectors must be zero, meaning they are parallel:

â i � rikf ð33aÞ

â ikm: ð33bÞ

The moments on the endpoint m are parallel to the joint axis â i and hence project the maxi-

mum torque in to the joint. Similarly, the moment produced by the forces ri × f must also be

parallel to â i. Maximising the induced joint torque maximises the possible deflection thus pro-

ducing maximum compliance. An example of an arm in an optimally compliant configuration

is illustrated in Fig 6.

By rearranging Eq 31 further we can get:

ðððri � fÞ � mÞ � â iÞ
T
â j ð34Þ

such that another possible condition is:

ri � f � m ¼ 0: ð35Þ

Fig 5. Optimal stiffness for a prismatic joint. Applied forces must be orthogonal to the axis of actuation.

https://doi.org/10.1371/journal.pone.0302987.g005
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The moments resulting from the linear forces ri × f are in the same direction as the pure

moments at the endpoint:

m ¼ ri � f : ð36Þ

If Eq 33 holds then the combination of forces and moments amplifies the resulting joint tor-

que. This will produce maximum deflection and thus maximum compliance. This is the oppo-

site of the scenario for stiffness Eq 24, which conforms with intuition.

For prismatic joints. If we substitute the prismatic case for Eq 10 in to Eq 30 to one

obtains:

ðâ j � â iÞ
T
f ¼ 0 ð37aÞ

ðâ i � fÞ
T
â j ¼ 0: ð37bÞ

For this equation to be satisfied then the linear forces must be parallel to the axis of the joint:

â ikf : ð38Þ

As we would expect, the case for maximum compliance is opposite that for maximum stiffness

Eq 26. An illustration of maximum compliance for a prismatic joint is given in Fig 7.

Case studies

Explaining observations in humans

Numerous observations have been made in neurophysiology about the shape of the arm in

relationship to the Cartesian stiffness ellipsoid. Stiffness is estimated through experiment by

using a mechanical device to generate forces on the hand from which the ensuing deflection is

Fig 6. Optimal compliance in revolute joints. The moments from the endpoint forces are parallel to the joint axes,

maximising joint torque and hence joint deflection.

https://doi.org/10.1371/journal.pone.0302987.g006
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measured. However, pioneering research in engineering is able to estimate stiffness from the

observed arm configuration [29, 30]. In the same manner, we can use the results for optimal

stiffness Eq 22 and compliance Eq 33 to infer stiffness, and retroactively explain

neurophysiology.

For example, [11] wrote:

“. . . the stiffness is. . . more anisotropic (elongated) in distal [outstretched] positions; the

direction of the maximum stiffness is approximately oriented along a radial line joining the

hand to the shoulder.”

Fig 8 shows an arm in an outstretched position where:

• rs is the radial line from the shoulder to the hand,

• re is the radial line from the elbow to the hand,

• âs and âe are the axes of the shoulder and elbow, respectively, perpendicular to the horizontal

plane, and

• f is a force applied parallel to the horizontal plane.

In this situation the vectors rs and re are parallel. The arm is in a singular configuration,

which is one of the results for maximum stiffness. The force vector in Fig 8 is also orthogonal

to the vectors âs � rs and âe � re which adheres to the optimality conditions previously

derived Eq 22.

Milner would describe a similar scenario regarding the stiffness ellipsoid relative to an out-

stretched arm [4]:

“. . . [the] subjects’ ability to maintain a precise position of the hand progressively deterio-

rated except in the K4 condition. Because the elbow was extended at this hand position,

endpoint stiffness was relatively high in the anterior-posterior direction. . .”

Fig 9 shows an illustration of this description. It is the same situation as previously

described. When the elbow is extended, the arm forms a straight line and is in a singular con-

figuration. Forces applied in the K4 direction thus produce minimal joint torque resulting in

increased stiffness as previously described. From the same article Milner also wrote that:

Fig 7. Optimal compliance in a prismatic joint. The applied forces are orthogonal to the axis of actuation.

https://doi.org/10.1371/journal.pone.0302987.g007
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Fig 8. A singular configuration in the human arm. An outstretched arm leads to a kinematic singularity in the direction from the shoulder to the

hand. This results in maximum stiffness.

https://doi.org/10.1371/journal.pone.0302987.g008

Fig 9. Stiffness ellipsoid in a human arm. The principle radii correspond to directions of maximum stiffness, and

maximum compliance respectively.

https://doi.org/10.1371/journal.pone.0302987.g009
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“. . .endpoint stiffness was greatly diminished in the orthogonal direction K1 and this corre-

sponded to the greatest drop in success score as force field strength increased.”

This description matches the conditions for optimal compliance Eq 33. The arm has mini-

mal passive stiffness in the K1 direction, and is limited to capacity of the muscles in generating

joint torque. If the force is too high and/or prolonged, the muscles will eventually succumb to

fatigue.

Fig 10 shows an illustration of a human with a bend in the elbow. Experiments were done

in which forces were applied in different directions resulting in different muscle activation

[10]:

(a) predominantly shoulder muscles,

(b) predominantly elbow muscles, and

(c) a combination of the two.

Forces in region (a) are roughly orthogonal to the line of motion that the elbow produces as

the hand f ? âe � re. This results in minimal elbow torque which requires the shoulder to do

most of the work. Conversely, in region (b), the forces are orthogonal to the shoulder joint

actuation f ? âs � rs. This necessitates that the elbow bear most of the forces. No orthogonal-

ity is present in region (c) and hence a combination of elbow and shoulder joint torque is

required. These observations are consistent with the optimality conditions previously derived

Eqs 22 and 33.

Planning in robotic tasks

In this section we show how the performance criterion proposed prior can be used for task

planning. There are many scenarios where exploiting the passive stiffness in a robotic arm can

be used to improve task performance. For example, it was shown that a simple change in

Fig 10. Stiffness is relative to the direction of applied forces. Forces in region (a) lead to shoulder muscle activation,

forces in region (b) lead to elbow muscle activation, and forces in region (c) create both.

https://doi.org/10.1371/journal.pone.0302987.g010
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configuration could improve the surface finish in a polishing task by absorbing vibrations [17].

More recently, an admittance control framework was used for machining bone for use in hip

replacement surgery [36]. Adopting an appropriate arm posture could further enhance the

admittance control.

Whilst the forward kinematics gives the pose of the endpoint as a function of joint angles

x = g(q) Eq 2, inverse kinematics involves finding the joint angles that satisfy a given endpoint

pose: q = g−1(x). This can be achieved through closed form solutions or mathematical optimi-

sation. The forward kinematics mapping is always unique, whereas the inverse kinematics may

have several solutions. For example, the UR3, UR5, and UR10 robotic arms from Universal

Robot have 8 solutions for the inverse kinematics [37]. Given these solutions for the inverse

kinematics, we can use Eq 13 to evaluate the relative stiffness for each in the direction x̂. The

configuration that gives the best result (be it stiffness or compliance) can then be chosen for

use (for example, a compliant posture in addition to the active feedback control in [20]).

Fig 11 shows the 8 inverse kinematics solutions of the UR3 robot for a given endpoint pose.

Eq 13 was computed for each in the direction x̂ ¼ ½ 1 0 0 0 0 0 �
T
, i.e. how stiff the

robot is in the x-axis of the base frame. The configuration in Fig 11(a) has the smallest value

and hence the highest stiffness. This configuration could be chosen where accurate position

control is required in the x-direction. Conversely, Fig 11(h) has the largest value and hence the

largest compliance. This configuration could be chosen for tasks that require force control,

robustness to uncertainty, or the ability to absorb impacts in the x-direction.

Real-Time optimisation in a redundant robot

A kinematic chain, such as a human or robot arm, is redundant if there are more joints than

needed to perform a given task. The surplus joints can be used to reconfigure the arm. Mathe-

matically, for a given Jacobian J 2 Rm�n it must have full row-rank that is less than the number

of joints: rank(J) = m < n. If we take the time derivative of Eq 3 we get:

€x ¼ JðqÞ€q þ _Jðq; _qÞ _q: ð39Þ

Fig 11. The 8 inverse kinematics solutions for the UR3 robot arm. The relative stiffness in the x-direction is compute for each configuration using Eq

13.

https://doi.org/10.1371/journal.pone.0302987.g011
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In a redundant system there are infinite combinations of €q to satisfy €x. It is therefore possible

to reconfigure the arm without moving the endpoint: 9€q 6¼ 0 : J€q ¼ 0.

The dynamic joint torque for controlling the arm is:

τ ¼MðqÞ€q þ hðq; _qÞ ð40Þ

where MðqÞ 2 Rn�n is the inertia matrix, and hðq; _qÞ 2 Rn is a vector of Coriolis and gravita-

tional torques. We can resolve Eqs 39 and 40 by using Gauss’ principle of least constraint [38].

Suppose τ∅ 2 R
n

are the joint torques for reconfiguring the arm. We can solve a constrained

optimisation problem of the form:

min
€q

1

2
τ⌀ � M€qÞTM� 1 τ⌀ � M€qð Þ
�

ð41aÞ

subject to : J€q ¼ €x � _J _q: ð41bÞ

Using Lagrange multipliers, the solution is:

M€q ¼ JTðJM� 1JTÞ
� 1

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Λ

ð€x � _J _qÞ þ ðI � JTΛJM� 1Þ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

NT
M

τ⌀
ð42Þ

where Λ 2 Rm�m is the apparent inertia of the robot in Cartesian space at the endpoint, and

NM is the null space projection matrix. Equation Eq 42 can then be substituted in to Eq 40 to

control the robot. The operation JM� 1NT
M ¼ 0 so the task τ⌀ will not produce motion on the

endpoint. We can denote the redundant torque vector as:

τ⌀ ¼ a
@p
@q
� kd _q ð43Þ

where a 2 R is a scalar and kd is a damping factor for stability [39]. By setting the redundant

torques proportional to the gradient of Eq 13 the arm will move toward an optimal configura-

tion. Setting α< 0 will minimize deflections for a given Δx and maximise stiffness. Conversely,

α> 0 will maximise compliance. We can rearrange Eq 7 for w = 0 to obtain:

€x ¼ €xd þ Λ� 1
ðD _e þ K _eÞ: ð44Þ

This can be substituted in to Eq 42 to control the endpoint. We note that this method of stiff-

ness optimisation has been applied previously in literature (e.g. [8, 23]). The purpose is to illus-

trate that the resulting arm configurations conform with optimality conditions derived earlier.

Results on a planar robot. For the first demonstration of kinematic redundancy we con-

sider simulation of a 4-link mechanism that operates in a 2D plane. The primary task is to hold

a fixed position for the end point for m = 2. Since the mechanism has n = 4 joints this gives n

− m = 2 degrees of redundancy for it to reconfigure itself. The robot is made to maximize

either stiffness or compliance in three different directions:

• x̂ ¼ 1 0 �
T�

for the x direction,

• x̂ ¼ 0 1 �
T�

for the y direction, and

• x̂ ¼
ffiffiffi
2
p ffiffiffi

2
p
�
T�

for the xy-direction.

Fig 12 shows the changes in the stiffness ellipsoid and arm configuration when applying

Eqs 40, 42 and 43. In each of the 6 cases, the robot starts from the same starting configuration.

The length of the stiffness ellipsoid either expands or contracts as desired. The final
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configuration achieved also follows the optimal conditions derived in earlier. For example, in

Fig 12(a) the 3rd and 4th links are roughly parallel to the x-axis increasing the stiffness ellip-

soid in the required direction. In Fig 12(c) all four links are roughly parallel with the vector
ffiffiffi
2
p ffiffiffi

2
p
�
T�

leading to a larger increase in the stiffness ellipsoid in this direction. These obser-

vations are consistent with the optimal stiffness condition Eq 22. For compliance we can see in

Fig 12(d) that links 1 to 4 are roughly orthogonal to the x-axis. Likewise, in Fig 12(f), links 1, 3,

and 4 are approximately orthogonal to the x-y direction. This has led to a decrease in the width

of the Cartesian stiffness ellipsoid in the respective directions. This is consistent with the con-

ditions derived in Eq 33. Of course, the ability to satisfy these conditions fully is constrained by

the desired pose for the endpoint and the kinematics of the robot.

Emulating human behaviour on a humanoid robot. As mentioned in the introduction,

there are many scenarios in which robotics engineers have looked to human motion control

for inspiration and insight. A pertinent motive, particularly with humanoid robots, is to instill

natural motion that fosters empathy with human collaborators. In this section we apply the

redundancy resolution to the ergoCub robot from the Italian Institute of Technology [40]. We

Fig 12. Rotoscoped images of the Cartesian stiffness ellipsoid with changing arm configuration. A robot can be made to increase stiffness or

compliance in different directions. Each case begins from the same starting configuration.

https://doi.org/10.1371/journal.pone.0302987.g012

PLOS ONE Optimal configurations for stiffness and compliance in human & robot arms

PLOS ONE | https://doi.org/10.1371/journal.pone.0302987 May 29, 2024 19 / 25

https://doi.org/10.1371/journal.pone.0302987.g012
https://doi.org/10.1371/journal.pone.0302987


emulate the experiments conducted with humans in [12] to show that the control method

results in similar arm postures. These results, in conjunction with observations from neuro-

physiology, suggest that humans are optimising for an underlying physical principle during

manipulation tasks. Moreover, by applying these methods to robots we can achieve control

that not only appears natural, but enhances task performance.

The primary control task is to keep the right hand at chest height, and constraining it to

move along a straight line. The Cartesian stiffness ellipsoid is then maximised in the different

Cardinal directions forward (X), sideways (Y), and upward (Z). Fig 13 shows pictures of the

final configuration of the ergoCub compared to those observed in humans in [12]. By applying

mathematical optimisation of the Cartesian stiffness to a redundant humanoid robot we have

achieved similar arm configurations to humans.

The discrepancies between the human and ergoCub are explained by the robot’s joint limits.

For example, the elbow has an upper joint limit of 75˚. This means the minimum possible angle

between the upper arm and forearm is 180˚ − 75˚ = 105˚. One can see that, for the Y-direction

and Z-direction in Fig 13, the ergoCub is unable to bend its elbow further and bring its hand

closer to its body the same as a human. Other possible deviations may come from the different

proportions of the limbs, and the exact location of the endpoint used for the human experiments.

Discussion

An alternative formulation for stiffness estimation

A method for estimating endpoint stiffness in human arms was proposed in [29]. This was

later used to estimate stiffness parameters from videos of human manipulation tasks [30]. It

Fig 13. Comparison of a humanoid robot to human experiments. Applying the optimisation principle to a humanoid robot (left) results in similar

arm configurations as observed in human.

https://doi.org/10.1371/journal.pone.0302987.g013

PLOS ONE Optimal configurations for stiffness and compliance in human & robot arms

PLOS ONE | https://doi.org/10.1371/journal.pone.0302987 May 29, 2024 20 / 25

https://doi.org/10.1371/journal.pone.0302987.g013
https://doi.org/10.1371/journal.pone.0302987


relied on the fact that the human arm can be modelled as a 2-link mechanism lying on a plane.

If we simply apply the force ellipsoid Eq 5b and use the definition for the column vector Eq 9

to expand it we obtain:

JJT ¼

Pn
i¼1
ðâ i � riÞðâ i � riÞ

T Pn
i¼1
ðâ i � riÞâ

T
i

Pn
i¼1

â iðâ i � riÞ
T Pn

i¼1
â iâ

T
i

2

4

3

5 ð45Þ

The translational stiffness component is given by the sum of outer products:

Ktrans: ¼
Xn

i¼1

ðâ i � riÞðâ i � riÞ
T
: ð46Þ

From the results of this paper we also know that optimal stiffness and compliance for a (revo-

lute) joint is determined by the cross product â � r Eqs 22 and 33. If the arm is in an optimally

stiff configuration for a given force vector f then the result would be:

Ktrans:f ¼
Xn

i¼1

ðâ i � riÞðâ i � riÞ
T

 !

f ¼ 0: ð47Þ

Therefore, using Eq 45 might be a simpler and more direct method estimating stiffness. Not

only can it be applied to any generic serial link mechanism, but it is also possible to obtain the

rotational stiffness which is lacking in [29, 30]:

Krot: ¼
Xn

i¼1

¼ â iâ
T
i : ð48Þ

The arm has maximum rotational stiffness for a given moment m when:

Krot:m ¼
Xn

i¼1

¼ â iâ
T
i

 !

m ¼ 0 ð49Þ

which conforms to the conditions in Eq 22.

Deflection or work?

In this paper we proposed that the magnitude of deflection as the performance criterion for

stiffness Eq 13. An alternative may be to consider the work done to/by the endpoint of the arm

instead:

E ¼ 1

2
dxTKcdx ¼

1

2
dqTJTKcJ|fflfflffl{zfflfflffl}

Ka

dq:
ð50Þ

As with Eq 13, it is evident the work done is a minimum when the Jacobian is singular: JTKcJδq

= JTw = 0. If humans are attempting to minimise metabolic cost by maximising stiffness, then

this would give a direct measure for energy expense. Therefore, future work may be to derive

the conditions for optimal stiffness and compliance through this work/energy framing.

Asymmetry of stiffness

An interesting observation in the simulation results for the planar robot is that optimising for

stiffness along one axis does not necessarily equate to compliance in orthogonal axes. In 2
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dimensions, the Cartesian stiffness matrix is:

Kc ¼
kx kxy
kxy ky

" #

ð51Þ

and its inverse is:

K� 1

c ¼

ky
kxky � k

2
xy
� kxy

� kxy
kx

kxky � k2
xy

2

6
4

3

7
5: ð52Þ

Compliance in the y-direction is proportional to the stiffness in the x-direction, and vice versa.

Yet, if we contrast Fig 12(a) with Fig 12(e) we can see that stiffness along the x-axis has led to a

different configuration compared to compliance along the y-axis. For a single rigid body, the

stiffness matrix is assumed symmetric for infinitesimally small displacements: Kc ¼ KT
c . But

for a serial-link mechanism, the joint stiffness Eq 6 is asymmetric since Kp 6¼ KT
p . Consider that

if we push on the endpoint of a serial link mechanism (Fig 14), it becomes more compliant as

its joint bend in accordance with Eq 33. Conversely, if we pull on the endpoint its stiffness

increases as the arm extends as per Eq 22.

This illustrates that Cartesian stiffness Eq 1 is inadequate for studying serial link mecha-

nisms such as a human or robot arm. It is necessary to understand how the joints contribute to

stiffness and compliance at the endpoint using Eqs 22 and 33.

Conclusion

In this paper we have treated Cartesian stiffness control for human and robot arms as a mathe-

matical optimisation problem. We then derived the conditions for the optimal stiffness and

compliance with respect to the joints and arm configuration. These optimality conditions

explain observations made about human behaviour in the neurophysiology literature. More-

over, optimising this mathematical function in a humanoid robot results in similar configura-

tions to those seen in humans. This suggests there is an underlying physical principle for

stiffness control in humans. By understanding the underlying physical principles of human

motor control it is possible to embed natural behaviours in to robotics.

Supporting information

S1 Appendix. Proof of inequality between the active and passive stiffness matrices.

(PDF)

Fig 14. Asymmetry. A serial link mechanism becomes more compliant when pushed in one direction (left), and more

stiff when pulled in the other (right).

https://doi.org/10.1371/journal.pone.0302987.g014
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