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Abstract

Accurate modelling of complex social systems, where people interact with each other and

those interactions change over time, has been a research challenge for many years. This

study proposes an evolutionary Digital Twin-Oriented Complex Networked System (DT-

CNS) framework that considers heterogeneous node features and changeable connection

preferences. We create heterogeneous preference mutation mechanisms to characterise

nodes’ adaptive decisions on preference mutation in response to interaction patterns and

epidemic risks. In this space, we use nodes’ interaction utilities to characterise the positive

feedback from interactions and negative impact of epidemic risks. We also introduce social

capital constraint to harness the density of social connections better. The nodes’ heteroge-

neous preference mutation styles include the (i)inactive style that keeps initial social prefer-

ences, (ii) ignorant style that randomly mutates preferences, (iii) egocentric style that

optimises individual interaction utility, (iv) cooperative style that optimises the total interac-

tion utilities by group decisions and (v) collaborative style that further allows the cooperative

nodes to transfer social capital. Our simulation experiments on evolutionary DT-CNSs

reveal that heterogeneous preference mutation styles lead to various interaction and infec-

tion patterns. The results also show that (i) increasing social capital enables higher interac-

tions but higher infection risks and uncertainty in decision-making; (ii) group decisions

outperform individual decisions by eliminating the unawareness of the decisions of other

nodes; (iii) the collaborative nodes under a strict social capital limit can promote interactions,

reduce infection risks and achieve higher overall interaction utilities.

Introduction

Digital Twin (DT) paradigm in the context of Complex Networked Systems (CNSs) means

that a network representation is able to accurately reflect or even extend the reality. Over the

years, we have seen the trend of developing CNSs with increasing complexity levels that bring

us closer and closer to a Digital Twin paradigm. This new research space is called Digital Twin

Oriented Complex Networked Systems (DT-CNSs) [1].
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Considerable studies in CNS space focus on the simulation and modelling of static net-

works [2–8]. They decompose the networks as nodes and their connections, which are mod-

elled based on rules that characterise nodes’ preferences for connecting with others. Over the

years, three main connection rules were proposed in this space, including preferential attach-

ment [2], homophily [9] and transitivity [10]. More specifically, [2] proposes a scale-free net-

work model based on the preferential attachment to higher node degrees. [9] uses the

homophily principle to describe the nodes’ tendency to connect with similarly attributed oth-

ers. [10] proposes to use transitivity as a critical concept to present nodes’ preferences to con-

nect with their neighbours’ neighbours. The three rules mentioned above have been

respectively well analysed and modelled in many studies [11–17]. However, only a few studies

consider the combined effect of more than one connection rule in CNS modelling [17, 18].

For example, [18] considers both the homophily and the transitivity effects on a network

formation.

Current research on CNSs also progresses towards a more realistic representation of real

systems by modelling network topology changes [18–23]. Recent studies also introduce the

epidemic spreading processes on dynamic networks and investigate the nodes’ infection

occurrences impacted by the evolving network connectivity patterns [24, 25].

In contrast, only a few studies investigate the influence of an epidemic outbreak on network

evolution [26, 27]. For example, [26] models the endogenous social distancing phenomenon in

evolving social networks by incorporating the interaction risks from an epidemic outbreak

into the nodes’ decisions on connecting with others. Despite this study, a heavily underdevel-

oped research space remains where nodes make heterogeneous decisions on network evolu-

tion in response to the connectivity patterns and the infection occurrences for positive

feedback. The interrelated changes of networks and processes, motivated by the nodes’ pur-

poseful behavioural changes, add complexity to the CNS dynamics and pose a challenge to the

DT-CNS modelling framework.

Some studies have accommodated the individual motivations of social interactions into the

individual decision-making processes on connection preferences. They employ the social capi-

tal concept to represent people’s investment in social connections for expected returns [28,

29]. For example, in the knowledge-sharing process on social networks, nodes, motivated by

reputation and altruism, conduct knowledge-sharing behaviours based on their social capital

(such as trust, identification and reciprocity, which are embedded in social relations) [28].

Our previous work proposed the DT-CNS modelling framework based on heterogeneous

node features and related preferences, including preferential attachment and homophily [30].

The framework proposed there models CNSs composed of static networks and a dynamic pro-

cess on the networks. This study extends this framework by modelling the interrelated network

evolution and dynamic process on the evolving networks. We build an evolutionary DT-CNS

framework featuring heterogeneous node features and changeable connection preferences,

which combine the effects of preferential attachment, homophily and transitivity. We propose

to measure the nodes’ interaction utilities based on the reward (i.e. social stimuli originates

from and motivates the interactions) and epidemic risks from their interactions. We create

heterogeneous preference mutation mechanisms to characterise nodes’ adaptive decisions on

changing the connection preferences in response to the changes of interaction utilities. In

addition, we introduce the nodes’ maximum investment in social connections, referred to as

social capital constraints, to the nodes’ preference mutation process and propose to model

nodes’ preference changes as an optimisation process for higher interaction utilities with lim-

ited social connections. Under the social capital limit, nodes can follow heterogeneous prefer-

ence mutation styles, including the (i) inactive style that keeps zero social preferences, (ii)

ignorant style that randomly mutates preferences, (iii) egocentric style that optimises
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individual interaction utility, (iv) cooperative style that optimises the total interaction utilities

by group decisions and (v) collaborative style that further allows the cooperative nodes to

transfer social capital.

Through conducting simulation-based experiments on the evolutionary DT-CNSs, we find

that (i) increasing social capital enables higher interactions and triadic closures but higher

infection risks and uncertainty in decision-making; (ii) group decisions outperform individual

decisions by avoiding the unawareness of the decisions of other nodes; (iii) the collaborative

strategy, given a strict social capital limit, outperforms the inactive, ignorant, egocentric and

cooperative strategies by achieving more interactions and triadic closures, lower infection

numbers and consequently, higher interaction utilities.

This study innovates in the following aspects:

• proposal of an evolutionary DT-CNS framework related to heterogeneous node features and

the changeable preferences for connecting with others.

• introduction of social capital limits to nodes’ adaptive decisions on preferences changes for

interaction utility maximisation.

• creation of heterogeneous preference mutation mechanisms that drive nodes’ individual and

group behaviours.

• suggestion of strict social capital limit on social connections and collaboration between

nodes in an epidemic outbreak.

The rest of this study is structured as follows: Modelling Framework presents the methodol-

ogy of building an evolutionary DT-CNS. Following this, Experiment Design, Results and

Analysis builds and evaluates the evolutionary DT-CNSs. Finally, we conclude with

Conclusion.

Modelling framework

In this section, we build an evolutionary DT-CNS based on (i) heterogeneous features of

nodes, (ii) nodes’ preferences for connecting with others and (iii) heterogeneous preference

mutation styles that are driven by the utility and the risk of interactions. We present the com-

ponents of DT-CNSs related to nodes, their interactions driven by features and related prefer-

ences, and their conditions in an epidemic spread in Complex Networked System

Components and propose ways to calculate the interaction utilities and risks for individuals.

In CNS Dynamics, we model the dynamics of DT-CNS that governs the nodes’ interactions

and interaction preference mutation based on their utilities and risks.

Complex Networked System Components

CNSs are composed of the (i) nodes that possess features and preferences for connecting with

others and (ii) the edges that represent interactions between pairs of nodes. These nodes and

edges compose the CNSs’ network dimension, and in the CNSs’ process dimension, the pro-

cess (e.g. epidemic) spreads via the edges and results in changes in the nodes’ status (e.g.

nodes’ health conditions). The network and process dimensions constitute the CNS.

We represent the network at time t as Gt = {Vt, Et}, based on the dynamic network compo-

nents: nodes Vt = {v1,t, � � �, vN,t} and edges Et = {eij,t|vi,t, vi,t 2 Vt}. The node vi,t at time t is

defined as:

vi;tðf i;t; sDNAi;t; bi;t;Ui;t;Ri;t; $i;t; $̂ i;tÞ ð1Þ
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where we represent the node’s features and the related preferences with fi,t and sDNAi,t. βi,t
represents the node’s health condition with 0 and 1, each representing the node’s healthy and

infected condition. The node vi,t obtains the utility Ui,t from interacting with others at time t
and suffers the interaction risk Ri,t given an epidemic outbreak. The social capital embedded in

nodes’ interactions is denoted by $i,t and constrained by the social capital limit $̂ i;t. Nodes

interact under the social capital limit $̂ i;t for objectives related to interaction utilities.

The node’s preferences sDNAi,t for the related features fi,t is determined by

sDNAi;t ¼ ðpi;t;w
p
i;t;hi;t;w

h
i;t; ci;t;w

c
i;tÞ ð2Þ

where pi,t and hi,t are vectors that determine the negative, zero, and positive preferences for

features and feature differences by values −1, 0 and 1. These two vectors are followed with the

same length weighting vectors wp and wh, indicating the weight of preference and valuing

within (0, 1]. Similarly, c determines the negative, zero and positive preference for connecting

with nodes with common friends by −1, 0 and 1, followed by the weight of preference wc
i;t.

The edge eij,t represents the interactions between the node pair: vi,t and vj,t, which is defined

as:

eij;tðIij;t;wI
ij;tÞ ð3Þ

where Iij,t represents no interaction and an interaction between a node pair with 0 and 1

respectively. It is followed by an interaction intensity factor wI
ij;t, ranging beteween 0 and 1.

Interaction reward. The interaction reward generally refers to social stimuli that posi-

tively reinforce the frequency or intensity of a behaviour pattern [31, 32]. In the context of

social networks, the interaction reward Ri,t for node vi,t represents the social stimuli such as

cultural goods, money, positive emotional expressions and social reputation, which originates

from and further motivates the interactions between node vi,t and others.

In this study, we assume that a node’s interaction reward depends on the scores and fre-

quency of its interactions. It is calculated by aggregating the reward ri,t(i, j) from any pairwise

interactions.

Ri;t ¼
X

vj;t2Vt

ri;tði; jÞ ð4Þ

The reward for node vi,t from the interaction with node vj,t depends on the interaction

score Pij,t and the individual interaction cost ci,t.

ri;tði; jÞ ¼ �Pij;t � c
b

i;tci;t ð5Þ

where � > 0 indicates that the reward correlates directly with the interaction score Pij,t. ψ 2 (1,

2] is a tuning parameter for the node’s average interaction cost ci,t, depending on the node’s

infection status βi,t. The infected nodes have a higher interaction cost and low-score

interactions.

The interaction scorePij,t of the interaction between the node pair vi,t and vj,t depends on

their mutual evaluation based on features and related preferences.

Pij;t ¼
1

2
ðPi!j;t þPj!i;tÞ ð6Þ

wherePi!j,t and Pj!i,t each represents the unilateral evaluation of node vi,t and node v + j, t
on their interaction.
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The score Pi!j that node vi,t assigns to its interaction with vj,t is calculated based on the

preferential attachment, homophily and closure effects, each represented as ph
i!j;t, p

p
i!j;t and

pc
i!j;t.

Pi!j;t ¼

1

3
ðph

i!j;t þ p
p
i!j;t þ p

c
i!j;tÞ þ �i!j;t if vi;t and vj;t encounters:

0 if else:

8
><

>:
ð7Þ

where vi,t evaluates the pairwise interaction with others by averaging the homophily score

ph
i!j;t, preferential attachment score p

p
i!j;t and the closure effect pc

i!j;t based on their encounters,

ranging between [0, 1]. The nodes encounter each other based on an encounter rate at η,

where the nodes’ encounters follow a binary distribution and η denotes the probability of

encounters. Moreover, without an encounter, the subjective node assigns 0 to this unilateral

evaluation of the pairwise interactions. �i!j,t* N(0, 0.012) is a random interference that fol-

lows a normal distribution N(0, 0.012). It characterises the unobservable and uninterpretable

interference in nodes’ evaluation on interactions between pairs of nodes, which results in dif-

ferent node pair scores even for the node pairs attributed with the same features.

The homophily effect ph
i!j;t describes the node’s preference for connecting with similar or

dissimilar others. It is calculated based on the feature differences and the preference vectors pi,t

and wp
i;t:

ph
i!j;t ¼

1

2l
jf i � f jj

t
ðhi;t � wh

i;tÞ þ
1

2
ð8Þ

where the feature vector fi for node vi,t and the feature vector fj for node vj,t include the stan-

dardised feature values from a range [0, 1]. |fi − fj| represents the elementary absolute values of

the difference between the feature vector fi and fj. τ denotes the transpose operator. hi,t repre-

sents the preference vector of node vi,t for the feature differences. wh
i;t represents the corre-

sponding preference weighting vector.� is the Hadamard product operator. The aggregated

homophily effects from each feature difference are averaged and then standardised based on

the feature-length l, ranging between [0, 1].

The preferential attachment effect p
p
i!j;t describes the node’s preference for connecting with

other nodes with specific features:

p
p
i!j;t ¼

1

2l
ftj ðpi;t � wp

i;tÞ þ
1

2
ð9Þ

where fj represents the feature vector for ndoe vj,t. pi,t represents the preference vector of node

vi,t for the features. wp
i;t represents and the corresponding weighting factor. Similar to the

homophily effect, each feature’s aggregated preferential attachment effects are also standard-

ised with the feature-length l, ranging between [0, 1].

The closure effect pc
i!j;t describes the node’s preference for connecting with nodes with or

without common friends.

pc
i!j;t ¼ ci;twc

i;t

X

vk2V

Iik;tIjk;t
X

vk2V

Iik;t
ð10Þ

where we calculate the number of common friends between node vi,t and node vj,t with

PLOS ONE Evolutionary Digital Twin-Oriented Complex Networked Systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0303571 May 16, 2024 5 / 40

https://doi.org/10.1371/journal.pone.0303571


X

vk2V

Iik;tIjk;t. The proportion of common friends with node vj,t from the perspective of node vi,t is

calculated as

X

vk2V

Iik;t Ijk;t

X

vk2V

Iik;t
.

Interaction risk. Given an epidemic outbreak, the node vi,t, either healthy or sick, takes

the risk of getting infected or infecting the neighbours via interactions. We describe this epi-

demic spreading process with the “susceptible-infected-recovered” (SIR) model and assume an

epidemic spreads from a single node and propagates with a transmissibility rate at z
s
t and a

recovery rate at z
r
t every time an interaction occurs. The node vi,t gets infected at a probability

of prst ¼ z
s
t given a single interaction with an infected node and, once infected, recovers at a

probability of pr�t � z
r
t before another interaction occurs.

We measure the infection risk RH
i;t of a healthy node vi,t at time t with its probability of get-

ting infected based on the available information about interactions and node infections.

RH
i;t ¼ 1 �

Y

vj;t2Vt

ð1 � prsÞIij;tbj;t
ð11Þ

where
Y

vj;t2Vt

ð1 � prsÞIij;tbj;t represents the probability of keeping healthy given the interactions

Iij,t with the nodes neighbour and the neighbour’s infected condition βj,t = 1.

Similarly, we measure the spreading risk RI
i;t of an infected node vi,t at time t with its proba-

bility of infecting others via interactions.

RI
i;t ¼ 1 �

Y

vj;t2Vt

ð1 � prsÞIij;tð1� bj;tÞ
ð12Þ

where
Y

vj;t2Vt

ð1 � prsÞIij;tð1� bj;tÞ represents the probability of keeping healthy given the interac-

tions Iij,t with the node’s neighbour and the neighbour’s healthy condition βj,t = 0.

Interaction utility. Referring to [26], we calculate the interaction utility Ui,t of the node vi,
t based on the interaction reward and the risk avoidance.

Ui;t ¼

Ri;tð1 � RH
i;tÞ if bi;t ¼ 1:

dRi;tð1 � RI
i;tÞ if bi;t ¼ 0:

8
<

:
ð13Þ

where the utility for node vi,t, given its healthy condition βi,t = 1, is dependent on the infection

risk RH
i;t and the interaction reward Ri;t. In contrast, in the infected condition, the node vi,t’s

utility is directly correlated with interaction reward Ri;t, excluding the spreading risk RI
i;t and

depreciated by δ due to the infected condition.

The expected interaction utility EUi,t depends on the interaction probability, recovery prob-

ability and the presumed behavioural changes at t. We denotes the interaction utility based on

the node’s health status, UH
i;t for a healthy node and UI

i;t for an infected node. The expected

interaction utility is calculated as

EUi;t ¼

UH
i;tð1 � RH

i;t� 1
Þ þ UI

i;tðR
H
i;t� 1
Þ if bi;t� 1 ¼ 1:

UI
i;tð1 � pr�Þ þ UH

i;tpr
� if bi;t� 1 ¼ 0:

8
<

:
ð14Þ

where RH
i;t� 1

and prϕ each describes the probability of this node getting infected and recover
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over time, given the interaction structures at t − 1. UH
i;t and UI

i;t each represents the individual

utility calculated by each node based on their changes of preferences and the available infor-

mation of the other nodes.

CNS dynamics

We model the network dynamics based on the interaction scores driven by the features and

related preferences. The interaction scores evolve by the preference mutation in response to an

epidemic outbreak towards positive feedback related to the individual utility Ui,t. We present

the network growth and its evolution process in Network formation and Network evolution.

Network formation. The unconnected nodes encounter and simultaneously interact

based on the expectations of interaction reward and interaction risks under social capital con-

straints. The social capital constraint refers to people’s maximum investment, due to personal

capacity or social restrictions, in social interactions for expected returns [28, 29]. The interac-

tion between a node pair is determined by

Iij;t ¼
1 if ri;tði; jÞ; rj;tði; jÞ � 0; $i;t < $̂ i;t and $j;t < $̂ j;t:

0 if else:

8
<

:
ð15Þ

where nodes vi,t and vj,t interact under the social capital constraints $̂ i;t and $̂ j;t for a beneficial

interaction reward ri,t(i, j). $i,t and $j,t each denotes the social capital of node vi,t and node vj,t
They tend to use social capital best and select the most promisingly beneficial interactions

characterised by higher interaction rewards.The interaction intensity of this node pair also

depends on the interaction score:

wI
ij;t ¼

Pij;t if Iij;t ¼ 1:

0 if Iij;t ¼ 0:

8
<

:
ð16Þ

Network evolution. The networks evolve with the changes in social relations and people’s

preferences related to features. In this section, we introduce a preference mutation mechanism

while incorporating five mutation styles: (i) inactive mutation where nodes keep initial prefer-

ences, (ii) ignorant mutation where nodes randomly mutate preferences, (iii) egocentric muta-

tion that maximises the respective individual utility while unaware of others’ mutation actions,

(iv) cooperative mutation where bonded nodes cooperate to maximise their overall utilities

and (v) collaborative mutation that enables the nodes to transfer social capital and cooperate.

Inactive style describes the nodes’ inaction to the changes of interaction utilities and risks.

These nodes keep their initial social preferences and make social contact by calculating the

interaction scores for node pairs under their respective social capital constraints.

Ignorant style describes the active nodes who are unaware of the individual utilities and

thus randomly select their social preferences related to preferential attachment, homophily

and closure effects between positive, zero and negative.

Egocentric nodes optimise their interaction utilities by social preference mutation shortly

after interactions while aware of others’ social preferences and, at the moment, assuming oth-

ers’ inactiveness in preference mutation. Each egocentric node can evaluate γ sets of random

preference changes in what-if scenarios related to the respective preference change and selects

the best-performing one to achieve the highest interaction utility. The individual optimisation
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process is determined as follows:

max
sDNAi;t

EUi;t

s:t: 0 � $i;t � $̂ i;t

ð17Þ

where sDNAi,t represents the set of preference vectors for node vi,t at time t. EUi,t represents

the expected utility of node vi,t at time t. $i,t represents the social capital of node vi,t at time t.
$̂ i;t represents the corresponding social capital constraint for node vi,t.

Cooperative nodes cooperate and make a group decision on preference changes to maxi-

mise their total interaction utilities. In this study, we assume that all nodes in the node set Vt at

time t cooperate with each other. These cooperative nodes consider γ attempts in preference

mutation, and to evaluate these attempts, conduct what-if analyses under the social capital

constraints of each node. The decision making process is shown as follows:

max
fsDNAi;tg

X

vi;t2Vt

EUi;t

s:t: 0 � $i;t � $̂ i;t

ð18Þ

where sDNAi,t represents the set of preference vectors for node vi,t at time t. EUi,t represents

the expected utility of node vi,t at time t.
X

vi;t2Vt

EUi;t represents the sum of the expected utility of

all nodes in the node set Vt at time t. $i,t represents the social capital of node vi,t at time t. $̂ i;t

represents the corresponding social capital constraint for node vi,t.
Collaborative nodes collaborate in a group decision on their preference changes. In con-

trast with the decision-making of the cooperative nodes under the respective individual social

capital constraints, collaborative nodes can transfer their social capital between each other,

where they make a group decision under the overall social capital constraints. The decision-

making process of collaborative nodes is shown as follows:

min
fsDNAi;tg

X

vi;t2Vt

EUi;t

s:t: 0 �
X

vi;t2Vt

$i;t �
X

vi;t2Vt

$̂ i;t

ð19Þ

where sDNAi,t represents the set of preference vectors for node vi,t at time t. EUi,t represents

the expected utility of node vi,t at time t.
X

vi;t2Vt

EUi;t represents the sum of the expected utility of

all nodes in the node set Vt at time t. $i,t represents the social capital of node vi,t at time t. $̂ i;t

represents the corresponding social capital constraint for node vi,t.
Epidemic transmission with recovery. The epidemic spreads from the seed nodes St =

{� � �, vi,t, � � �|vi,t 2 Vt}, propagates with the transmissibility rate at z
s
t and a recovery rate at z

r
t . As

presented in Interaction risk, a healthy node, given a connection with an infected node, gets

infected at the probability of prs ¼ zst . Correspondingly, the probability of a healthy node vi,t
(βi,t−1 = 0) keeping healthy (βi,t = 0) can be calculated as

prðbi;t ¼ 1jbi;t� 1 ¼ 0Þ ¼
Y

vj;t2Vt

ð1 � prstÞ
Iij;tbj;t

ð20Þ
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which value depends on the epidemic transmissibility prst ¼ z
s
t , the interactions Iij,t with each

neighbour and the neighbour’s infected condition βj,t = 1.

In contrast, the recovery rate zr denotes the probability of the recovery of any infected

node despite of the connections with infected others. The probability of an infected node

vi,t (βi,t−1 = 1) recovering to be healthy (βi,t = 1) can be calculated as

prðbi;t ¼ 0jbi;t� 1 ¼ 1Þ � z
r

ð21Þ

where the recovery probability keeps equal to the recovery rate at zr.

Experiment design, results and analysis

In this section, we conduct simulation-based experiments with the proposed DT-CNS and

investigate the impact of different social capital constraints and heterogeneous preference

mutation styles on the evolving interaction and infection patterns. Initial Parameters illustrates

the initialised parameters of the DT-CNSs and the backbone networks of network simulations.

Interaction Patterns and Infection Patterns present the interaction and infection patterns in

different interaction scenarios. We calculate and compare the infection utilities in Interaction

Utilities based on the interaction and infection patterns.

Initial parameters

We simulate a 30-node network interacting in an epidemic outbreak for 100 iterations based

on their interaction utilities related to preferences for their respective features and epidemic

risks. Table 1 shows the initial parameters related to the nodes’ features, preferences, and epi-

demic transmissibility.

As shown in Table 1, the 30 nodes are each denoted by integer values ranging from 0 to 29.

They have a single feature simulated by a random uniform distribution within [0, 1]. In this

study, we select the 30 nodes with a single uniform feature as an example of the social network

simulations to illustrate the mutual impact of epidemic spread and the network evolution. In

the initialisation stage, these nodes are connected with each other based on the backbone net-

work. These nodes have zero preferences regarding preferential attachment, homophily and

Table 1. The initialised parameters for the DT-CNSs.

CNS Component Parameter Meaning Value

Network i Node identity [0, 1, 2, � � �, 29]

f Feature U½0; 1�

p Preference for features [0]

wp Weights of preference for features [1]

h Preference for feature differences [0]

wh Weights [1]

c Preference for transitivity [0]

wc Weights of preference for transitivity [1]

η Encounter rate 1.00

u0 Initial interaction cost 0.40

ηi,t Infection penalty 1.5

γ Length of action space per node 2

δ Interaction utility discount 0.01

� Scaling parameter for interaction utility 1.00

Process ηs Infection rate 0.20

ηr Recover rate 0.20

https://doi.org/10.1371/journal.pone.0303571.t001
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closure effects. These preferences are initialised for illustration purposes, which mutate in the

network evolution process in response to the feedback of interactions and infections. The cor-

responding preference weights keep fixed at 1.

Based on these features and preferences, the nodes encounter each other given an encoun-

ter rate of η = 1 and evaluate the node pairs based on the interaction scores. The interaction

cost initialised for the healthy nodes keeps at 0.4, which turns into 0.6 under the infection pen-

alty of η = 1.5 when the nodes get infected.

Given the above parameters initialised above, we investigate network evolution that starts

from different backbone networks. We consider three scenarios with different set-ups of the

backbone networks, including (i) an unconnected network composed of 30 nodes without

connections, (iii) a scale-free network driven by a 0.2 probability of connecting with others,

composed of 30 nodes and 56 edges, and (iii) a random network composed of 30 nodes and 56

random connections with each other. In each scenario, the epidemic spread from the most

popular nodes, characterised by the highest node degrees. We respectively consider the first

node, the first two nodes and the first three nodes that rank high in popularity as the seed

nodes for the epidemic spread. In an empty network, the seed nodes are randomly selected as

all node degrees are zero. Under the influence of seed selection and backbone networks, the

networks evolve by preference mutation and re-evaluation of the pairwise interactions. We

generate 8 simulations of evolving social networks in each experiment scenario and investigate

the variability of infection patterns and interaction patterns in the following subsections.

Infection patterns

We investigate the infection patterns with a mutual influence on the evolving social networks

according to the infection occurrence (proportion of infected nodes to the overall 30 nodes) in

the evolving social networks that starts from the unconnected backbone network (See Fig 1),

the random backbone network (See Fig 2) and the scale-free backbone network (See Fig 3).

Fig 1. The average values and standard deviations of infection occurrences in 100 iterations in the evolving social

networks based on an unconnected backbone network under the impact of one seed (a), two seeds (b) and three seeds

(b). In each scenario, the evolving social networks are respectively driven by inactive, ignorant, egocentric, cooperative

and collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g001
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Fig 2. The average values and standard deviations of infection occurrences in 100 iterations in the evolving social

networks based on a random backbone network under the impact of one seed (a), two seeds (b) and three seeds (b). In

each scenario, the evolving social networks are respectively driven by inactive, ignorant, egocentric, cooperative and

collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g002

Fig 3. The average values and standard deviations of infection occurrences in 100 iterations in the evolving social

networks based on a scale-free backbone network under the impact of one seed (a), two seeds (b) and three seeds (b).

In each scenario, the evolving social networks are respectively driven by inactive, ignorant, egocentric, cooperative and

collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g003
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As shown in Fig 1, the infection occurrence in evolving social networks increases with the

social capital limit and the number of seeds in the epidemic spreading process. This is because

higher social capital limits and more seeds lead to more interactions with the infected nodes,

increasing infection risks. The infection occurrences in networks driven by the egocentric and

ignorant nodes are much higher, with larger standard deviations, than in networks driven by

the other types of nodes. In addition, the infection occurrences of egocentric nodes are highest

among all the node types. This indicates that maximising individual reward by individual deci-

sions without considering others’ rewards can lead to higher infection occurrences. The inac-

tive nodes keep healthy with an infection occurrence close to zero for 100 iterations in all

experiment scenarios. This is because inactive nodes keep zero preferences without active

interactions with others. The infection occurrence of cooperative and collaborative nodes is

close to zero, with smaller standard deviations given one seed or three seeds in epidemic

spread. In contrast, the infection occurrence of cooperative and collaborative nodes is positive,

given five seeds in epidemic spread. This indicates that cooperation and collaboration between

nodes have fewer infection risks than other nodes. Cooperation and collaboration, given a

lower social capital and fewer seeds, can mitigate the infections to zero.

As shown in Fig 2, the infection occurrences in the evolving social networks given a random

backbone network have similar patterns to that of evolving social networks given an uncon-

nected backbone network. The infection occurrence increases with the social capital limit and

the number of seeds. Ignorant and egocentric nodes have fewer infection occurrences than the

other nodes. In contrast, the inactive, cooperative and collaborative nodes keep the infection

occurrences close to zero. However, the variability of infection occurrences in evolving net-

works given a random network, as indicated by the standard deviations, is generally smaller

than that in evolving networks given an unconnected network. This indicates that the uncon-

nected backbone network leads to the uncertainty in infection occurrences,

As shown in Fig 3, the infection occurrences in the evolving social networks given a scale-

free network show different patterns when the social capital limit changes. The infection

occurrences have been kept at zero since the second iteration, given only one seed without an

epidemic spread from the seed. This is because the seed in a scale-free backbone network has a

higher interaction cost due to its infection and much higher spreading risks considering a

greater number of neighbours, which avoids further interactions with the seed and the epi-

demic spread from the seed. The infection occurrences increase significantly when the number

of seeds increases from 1 to 3 and 5. This indicates that more seeds lead to higher infection

risks and more difficulty in epidemic control.

We take one of the evolving network simulations as an example to illustrate the impact of

social capital limit and preference mutation styles on infection patterns. Fig 4 presents the

infection occurrence on the evolving networks that are simulated given an unconnected back-

bone network and one seed for epidemic spread.

As shown in Fig 4, with the increased social capital limit, more infections occur in the epi-

demic spreading process, where some nodes get infected and some recover. Compared with

the other node types, the ignorant and the egocentric nodes are more likely to be infected.

Their infection occurrences, given the social capital limit at 15 and 20, fluctuate around 0.70

from the twentieth iteration. This indicates that around 70% of the nodes tend to be infected

as the epidemic propagates for more than 20 iterations.This can be caused by the ignorance of

group utilities and the unawareness of others’ decisions in individual decision-making pro-

cesses. In contrast, the inactive, cooperative and collaborative nodes have insignificant infec-

tion occurrences. These nodes keep healthy since the tenth iteration (See Fig 4(b)). To better

understand the interrelations between the abovementioned infection patterns and the nodes’
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interactions, we present and compare the nodes’ interaction patterns driven by different pref-

erence mutation styles in Interaction Patterns..

Interaction patterns

This section investigates the interaction patterns in an epidemic outbreak simulated over 100

iterations. Interactions in the generated networks are driven by different preference mutation

styles, including inactive, ignorant, egocentric, cooperative, and collaborative styles. We firstly

discuss the variability of interaction numbers given different backbone networks and numbers

of seeds (Interaction variability). In addition, we present the evolving networks given an

unconnected backbone network and one seed as an example to illustrate the impact of social

capital limits and preference mutation styles. We present the visualisations of the evolving

social networks in first 20 iterations in Supporting Information and take the most typical ones

as examples in the discussion of interaction structures (Interactions). In addition, we compare

the social networks driven by different mutation styles by analysing the nodes’ degree values

(Degree Distribution) and clustering coefficients (Clustering Coefficient Distribution), and

node pairs’ shortest path lengths (Shortest Path Length Distribution). To better understand

the differences between the interaction structures of the evolving social networks driven by dif-

ferent preference mutation styles, we also calculate the Euclidean differences between these

network statistics.

Interaction variability. Figs 5–7 show the average values and the standard deviations of

interaction numbers in evolving social networks over 100 iterations given an unconnected

backbone network, a random backbone network and a scale-free backbone network.

Fig 4. The infection occurrences in 100 iterations (a) and first 20 iterations (b) in the evolving social networks based on an unconnected backbone

network under the impact of inactive, ignorant, egocentric, cooperative and collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g004
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Fig 5. The average values and the standard deviations of interaction numbers in 100 iterations in the evolving social

networks based on an unconnected backbone network under the impact of one seed (a), two seeds (b) and three seeds

(b). In each scenario, the evolving social networks are respectively driven by inactive, ignorant, egocentric, cooperative

and collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g005

Fig 6. The average values and the standard deviations of interaction numbers in 100 iterations in the evolving social

networks based on a random backbone network under the impact of one seed (a), two seeds (b) and three seeds (b). In

each scenario, the evolving social networks are respectively driven by inactive, ignorant, egocentric, cooperative and

collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g006
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As shown in Fig 5, the average values and the standard deviations of the interaction number

increase with the social capital limit. In addition, the standard deviations increase with the

number of seeds. This indicates that a higher social capital limit allows for more flexible inter-

actions and leads to the variability of the interaction number. An increased number of seeds

causes more infections (See Fig 1, which leads to fluctuations in interaction numbers over iter-

ations with larger standard deviations. Overall, the collaborative nodes have the highest num-

ber of interactions over iterations. This is because collaborative nodes can transfer social

capital to each other for more interactions and the corresponding interaction rewards. The

inactive nodes have a higher number of interactions than the ignorant nodes, egocentric nodes

and cooperative nodes. This is because inactive nodes keep zero preferences for features and

feature differences without reacting to the epidemic spread and the interaction reward through

preference mutation, which leads to a steady interaction number without variations. In con-

trast, the interaction number of ignorant nodes, egocentric nodes and cooperative nodes fluc-

tuates with larger standard deviations due to their preference mutation given various infection

occurrences in the evolving social networks.

As shown in Fig 6, the average values and the standard deviations of the interaction number

of the evolving social networks based on a random backbone network share similar patterns

with that of the evolving networks based on an unconnected backbone network. For example,

the average interaction number increases with the social capital limit. The standard deviation

of the interaction number increases with the social capital limit and the number of seeds,

which can be caused by the increased infection occurrences (Se Fig 2). In addition, the collabo-

rative nodes have more interactions than the other types of nodes due to the social capital

transfer between the nodes.

As shown in Fig 7, the average values and the standard deviations of the interaction number

of the evolving social networks based on a scale-free backbone network share similar patterns

Fig 7. The average values and the standard deviations of interaction numbers in the evolving social networks based on

a scale-free backbone network under the impact of one seed (a), two seeds (b) and three seeds (b). In each scenario, the

evolving social networks are respectively driven by inactive, ignorant, egocentric, cooperative and collaborative

mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g007
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with that of the evolving networks based on an unconnected backbone network and the evolv-

ing networks based on an unconnected backbone network, without significant differences in

interaction numbers over iterations. To have a deeper understanding of the interaction pat-

terns under the impact of social capital limit and preference mutation styles, we take one of the

evolving network simulations as an example, where social networks, driven by different prefer-

ence mutation styles, evolve from an unconnected backbone network under different social

capital limits.

Interactions. Fig 8(a) and 8(b) show impact on the interactions of different social capital

constraints and preference mutation styles in 100 iterations and first 20 iterations. To illustrate

the phenomenon presented in Fig 8, we respectively discuss these two aspects based on typical

examples of social network simulations presented in Figs 10–12.

When the social capital limit increases, the number of interactions generally increases as

nodes can interact more with others (Fig 8). Considering different preference mutation styles,

collaborative nodes have the highest interaction numbers over the iterations. This can be

caused by the flexible social capital transfer between the collaborative nodes, which enables the

creation of more edges with the preferred nodes. In addition, the interaction numbers for each

simulated network increase significantly in the first iterations and then fluctuate around a

fixed value afterwards, except for the networks driven by the ignorant and the egocentric pref-

erence mutation styles under the social capital limit at 15 and 20. This can result from the sig-

nificant number of infected nodes (See Fig 4(a)) in the ignorant and the egocentric network

simulations, which increases the corresponding interaction cost and risk, reducing the interac-

tions with infected nodes. In contrast, due to insignificant infection occurrence and low

Fig 8. The number of interactions in the 100 simulations steps (a) and first 20 iterations (b) in the evolving social networks based on an unconnected

backbone network under the impact of inactive, ignorant, egocentric, cooperative and collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g008
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infection risks, the interaction numbers in networks driven by the inactive, cooperative, and

collaborative mutation styles remain steady without significant fluctuations.

To better understand the interrelations between the interaction numbers and the infection

patterns, we present the interaction numbers between nodes with different health statuses in

the evolving social networks driven by different mutation styles (Fig 9). In networks driven by

the inactive, the cooperative and the collaborative preference mutation styles (See Fig 9(a), 9

(d) and 9(e)), social interactions generally take place between the healthy nodes. In contrast, in

social network simulations driven by the ignorant and the egocentric preference mutation

styles (Fig 9(b) and 9(c)), there are interactions with the infected nodes over the iterations and

some of them take place between healthy and infected nodes. These interactions increase sig-

nificantly as the social capital limit increases from 10 to 20, resulting from and, in turn, rein-

forcing a high infection occurrence (Fig 4).

Since the social networks present different interaction numbers and infection occurrences

in the first 20 iterations and afterwards they stay stable with small fluctuations, we present the

social network simulations of the ignorant nodes (Fig 11) and the collaborative nodes (Fig 10)

in the first 20 iterations under different social capital limits as an example to further explore

the network structures and epidemic propagation. As shown in Fig 10, the networks get denser

with more interactions given the increased social capital limits. The nodes collaborate to avoid

contact with the infected seed node and interact most by reaching their respective social capital

limits. In contrast, in Fig 11, the networks in the first ten iterations get denser with more inter-

actions given the increased social capital limits. However, under the social capital limits at 15

and 20, the networks get sparser since the tenth iteration with less interactions and more infec-

tions. The decreased interaction number can be caused by the increase in infection occurrence

(Fig 11(c) and 11(d)). In addition, as shown in Fig 11(a) and 11(b), under the social capital

limit at 5 and 10, there are fewer infections due to a limited number of interactions and expo-

sures to the epidemic spread. This indicates that a lower social capital limit enables to avoid

specific interaction risks and limit the impact of epidemic spread on interaction patterns.

We also find from Fig 8 that under the same social capital limit, nodes in the inactive, igno-

rant and cooperative mutation styles have different number of interactions. To better illustrate

this phenomenon, we take the social network simulations under the social capital limit of 10

and driven by different mutation styles as an example (Fig 12). In Fig 12(e), collaborative

nodes interact more than other node types. This is because there are few infections, and the

collaborative nodes can transfer social capital to enable more interactions. The other types of

nodes engage in a similar number of interactions but have different interaction structures and

infection patterns. In Fig 12(c), the egocentric nodes have the highest infection occurrence and

a significant number of interactions with infected nodes. In contrast, there are fewer infections

and limited interactions with the infected nodes in the networks driven by ignorant preference

mutation styles. Moreover, there is no social contact with the infected nodes in the networks

driven by the inactive and the cooperative preference mutation styles. The abovementioned

phenomenon indicates that the egocentric nodes maximise their individual utilities by expand-

ing social contact even though they are infected, detrimental to the utilities of others.

Degree distribution. We compare the node degrees of the evolving social networks

driven by different preference mutation styles over iterations, including the node degree distri-

butions (Fig 13), average node degrees of the infected nodes and the healthy nodes (Fig 14)

and the Euclidean distance values between node degrees in different social networks (Fig 15).

As shown in Fig 13, the node degree values increase with the increasing social capital limit.

We take the social networks driven by ignorant nodes as an example (Fig 13(a)). Given a social

capital limit of 5, a significant number of ignorant nodes’ degrees are less than 5 and less than

10 nodes’ have a degree value at 5, reaching the social capital limit. The corresponding node
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Fig 9. The interaction numbers’ changes between nodes in each health statuses in evolving social networks driven

by different mutation styles under different social capital limits ranging within [5, 10, 15, 20]. The mutation styles

include the inactive (Fig (a)), the ignorant (Fig (b)), the egocentric (Fig (c)), cooperative (Fig (d)) and the collaborative

(Fig (e)) preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g009
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degree distribution for ignorant nodes changes as the social capital increases, with more obser-

vations of node degrees over 5. In addition, compared with other node types, the collaborative

nodes have a generally higher node degree values (Fig 13(e)). The collaborative nodes’ degrees

can be higher than the social capital limit as they can transfer social capital flexibly, as nodes

with higher social capital can have more social interactions and higher node degrees. The col-

laborative nodes generally have more interactions and correspondingly, higher node degrees.

To further analyse the impact of infection patterns on the node degrees, we calculate the

average values and standard deviations for the infected and healthy nodes (Fig 14). The stan-

dard deviations are presented as the width of the shade around average node degrees. In social

networks driven by the inactive, cooperative and collaborative preference mutation styles, gen-

erally, all the nodes keep healthy over 100 iterations. Their average node degrees keep steady

with small fluctuations since the second iteration. In contrast, the average node degrees for

healthy ignorant nodes and healthy egocentric nodes increase over the first iteration and after-

wards gradually decrease. This can be caused by the decreasing interactions between healthy

nodes (Fig 9) and the increasing interaction occurrences in the epidemic outbreak (Fig 4). In

the meantime, the average node degrees for the infected ignorant nodes and the infected

Fig 10. The evolving social networks driven by collaborative preference mutation styles under the impact of different social capital limits.

https://doi.org/10.1371/journal.pone.0303571.g010
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egocentric nodes fluctuate around the similar average node degree values with that of healthy

nodes (Fig 14(b) and 14(c)). We also find that the standard deviations of infected nodes are

higher than those of healthy nodes when there are more infected nodes in social networks.

Moreover, the standard deviations of node degrees for inactive nodes are significantly smaller

than that of others. This is because each inactive node shares a similar connection pattern,

where they randomly interact without specific connection preferences, in contrast to other

node types.

As shown in Fig 15, we find that the differences between the degree distributions increase

significantly when the social capital limit increases (Fig 15). This can be caused by increasing

social interactions where nodes can connect with more people and make different choices.

Within each subplot, there are more visible differences between the degree distributions of col-

laborative social networks and other social networks. This is because of the flexible selection of

social connections given social capital transfer in group decisions when it comes to the collabo-

rative nodes.

Clustering coefficient distribution. We compare the node clustering coefficients of the

evolving social networks driven by different preference mutation styles over iterations,

Fig 11. The evolving social networks driven by ignorant preference mutation styles under the impact of different social capital limits.

https://doi.org/10.1371/journal.pone.0303571.g011
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Fig 12. The evolving social networks driven by different mutation styles under the social capital limit at 10. The mutation styles include the

inactive (Fig (a)), the ignorant (Fig (b)), the egocentric (Fig (c)), cooperative (Fig (d)) and the collaborative (Fig (e)) preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g012
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Fig 13. The degree distribution of evolving social networks driven by different mutation styles under different

social capital limits ranging within [5, 10, 15, 20]. The mutation styles include the inactive (a), the ignorant (b), the

egocentric (c), cooperative (d) and the collaborative (e) preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g013
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Fig 14. The average node degree for infected nodes and healthy nodes in the evolving social networks driven by

different mutation styles under different social capital limits ranging within [5, 10, 15, 20]. The mutation styles

include the inactive (Fig (a)), the ignorant (Fig (b)), the egocentric (Fig (c)), cooperative (Fig (d)) and the collaborative

(Fig (e)) preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g014
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including the node clustering coefficient distributions (Fig 16), average node clustering coeffi-

cients of the infected nodes and the healthy nodes (Fig 17) and the Euclidean distance values

between the node clustering coefficients in different social networks (Fig 18).

As shown in Fig 16, the node clustering coefficient increases as the social capital limit

increases. We take the social networks driven by cooperative nodes as an example (Fig 16(d)).

Given a social capital limit of 5, more than 20 cooperative nodes’ clustering coefficients are

less than 0.20. As the social capital limit increases, more node clustering coefficients take a

value larger than 0.20, and some range between [0.80, 1.00]. In contrast, the inactive nodes’

clustering coefficient keep valuing lower than 0.8. Compared with other node types, the

collaborative nodes have a generally higher node clustering coefficient values (Fig 13(e)). The

Fig 15. The Euclidean distances between the degree distributions of the evolving interaction networks under different social capital limits, driven

by different mutation styles including inactive, ignorant, egocentric, cooperative and collaborative mutation styles. In each subplot, the x-axis

represents the number of interactions ranging from 0 to 20, and the y-axis represents the Euclidean distance.

https://doi.org/10.1371/journal.pone.0303571.g015
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Fig 16. The clustering coefficient distribution of evolving social networks driven by different mutation styles

under different social capital limits ranging within [5, 10, 15, 20]. The mutation styles include the inactive (a), the

ignorant (b), the egocentric (c), cooperative (d) and the collaborative (e) preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g016
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Fig 17. The average node clustering coefficient for infected nodes and healthy nodes in the evolving social

networks driven by different mutation styles under different social capital limits ranging within [5, 10, 15, 20].

The mutation styles include the inactive (a), the ignorant (b), the egocentric (c), cooperative (d) and the collaborative

(e) preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g017
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abovementioned phenomenon implies that the social capital limits significantly impact the

node clustering coefficient. Compared with other node types, collaborative nodes are more

likely to cluster around the preferred nodes as they can transfer social capital to others.

In Fig 17, we analyse the impact of infection patterns on the node clustering coefficients by

presenting their average values and standard deviations for the infected and healthy nodes. In

social networks driven by the inactive and collaborative preference mutation styles (Fig 17(a)

and 17(e)), generally, all the nodes keep healthy since the sixth iteration, where their node clus-

tering coefficients have a steady average value and a small standard deviation than that of

other node types. Compared with the collaborative nodes, the cooperative nodes have smaller

average node clustering coefficients but larger standard deviations (Fig 17(d)). This implies the

Fig 18. The Euclidean distances between the clustering coefficient distributions of the evolving interaction networks under different social capital

limits, driven by different mutation styles including inactive, ignorant, egocentric, cooperative and collaborative mutation styles. In each subplot,

the x-axis represents the number of interactions ranging from 0 to 20, and the y-axis represents the Euclidean distance.

https://doi.org/10.1371/journal.pone.0303571.g018
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diversity of node clustering coefficients for cooperative nodes, which can also be seen in Fig 16

(d). In contrast to the inactive, cooperative and the collaborative nodes, there is a significant

number of infections among the ignorant and the egocentric nodes (Fig 4). The average node

clustering coefficients for healthy ignorant nodes and healthy egocentric nodes are generally

lower than that of their infected peers (Fig 17(b) and 17(c)). This indicates that the ignorant

and egocentric nodes are more likely to cluster around the healthy nodes than the infected

ones. In turn, it also implies that healthy ignorant and healthy egocentric nodes are more likely

to interact with others. This is because the healthy nodes have lower interaction costs than the

infected nodes, which influence the interactions of each node type despite their differences in

preference styles.

When it comes to the comparison between clustering coefficient distributions (Fig 18), we

find that the differences between them are significant in the first interactions and then slightly

fluctuate over time. We find no significant changes in differences between Euclidean Distances

when the social capital limit increases. This indicates that increasing interactions can not sig-

nificantly influence the differences in clustering patterns. In addition, we find that the Euclid-

ean Distances between the collaborative nodes and the egocentric/ignorant nodes are

significantly higher than that between other evolving social networks. The collaborative nodes

generally keep healthy over the iterations and can transfer social capital to others. This leads to

node clusters around the nodes with preferred features, different from the cases of ignorant

nodes and egocentric nodes.

Shortest path length distribution. We compare the shortest path lengths of the evolving

social networks driven by different preference mutation styles over iterations, including the

shortest path length distributions (Fig 19), average shortest path lengths of the node pairs con-

sidering their health statuses (Fig 20) and the Euclidean distance values between shortest path

lengths in different social networks (Fig 21).

As shown in Fig 19, the shortest path length generally decreases as the social capital limit

increases. We take the social networks driven by inactive nodes as an example (Fig 19(a)).

Given a social capital limit of 5, the shortest path lengths between half of all inactive node pairs

are 3 or over 3. As the social capital limit increases, the average shortest path lengths get

shorter, and most inactive node pairs have shortest path lengths below 3. Given a social capital

limit at 20, around 280 node pairs are directly connected, with an average shortest path length

at 1. In addition, compared with other node types, the collaborative nodes have a generally

lower shortest path length (Fig 19(e)). This implies that the social capital limits also signifi-

cantly impact the shortest path lengths. Moreover, collaborative nodes are more likely to be

more tightly connected than the other node types.

In Fig 20, we analyse the impact of infection patterns on the shortest path lengths by pre-

senting their average values for the node pairs considering their health statuses. In social net-

works driven by the inactive, the cooperative and the collaborative preference mutation styles

(Fig 20(a), 20(d) and 20(e)), generally, all the nodes keep healthy since the sixth iteration.

Thus, we mainly present the average shortest path lengths between healthy nodes, in contrast

to ignorant and egocentric nodes. Among different node types, the average shortest path

lengths for inactive nodes and collaborative nodes are lower than 5 given any social capital lim-

its, much smaller than that of other node types. This implies that there are fewer unconnected

node pairs, and the inactive/collaborative nodes tend to be tightly connected despite the

changes in social capital limit. In contrast, the average shortest path lengths between the coop-

erative nodes decrease with an increased social capital limit, indicating that more unconnected

pairs get connected. Regarding the ignorant and egocentric nodes, the average shortest path

lengths between the node pairs in respective health statuses fluctuate significantly. This can

result from the fluctuating infection occurrence (Fig 4). In addition, given a social capital limit
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Fig 19. The shortest path length distributions of evolving social networks driven by different mutation styles

under different social capital limits ranging within [5, 10, 15, 20]. The mutation styles include the inactive (a), the

ignorant (b), the egocentric (c), cooperative (d) and the collaborative (e) preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g019
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Fig 20. The average shortest path length for infected nodes and healthy nodes in the evolving social networks

driven by different mutation styles under different social capital limits ranging within [5, 10, 15, 20]. The

mutation styles include the inactive (a), the ignorant (b), the egocentric (c), cooperative (d) and the collaborative (e)

preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g020
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over 5, the average shortest path lengths between the healthy nodes fluctuate significantly and

sometimes reach a lower value of around 1 when compared with the shortest path lengths

between the infected and healthy nodes. This implies that the ignorant and the egocentric

nodes can avoid the interaction risks by reducing tight connections with the infected nodes.

This is because the infected nodes have higher interaction costs, suppressing the correspond-

ing social interactions.

Regarding the comparison between shortest path length distributions (Fig 21), we find that

the differences between them are significant when the social capital limit is 5. This implies that

decreasing interactions can lead to larger differences in the shortest path length distributions.

In addition, we find that the Euclidean Distances between the collaborative nodes and the

Fig 21. The Euclidean distances between the shortest path length distributions of the evolving interaction networks under different social capital

limits, driven by different mutation styles including inactive, ignorant, egocentric, cooperative and collaborative mutation styles. In each subplot,

the x-axis represents the number of interactions ranging from 0 to 20, and the y-axis represents the Euclidean distance.

https://doi.org/10.1371/journal.pone.0303571.g021
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inactive nodes are significantly lower than that between other evolving social networks. This is

because both the inactive nodes and the collaborative nodes are adequately connected in social

networks, as presented in the average shortest path lengths (Fig 20(a) and 20(d)).

Interaction utilities

We further investigate the interaction utilities of the nodes in the evolving social networks.

Figs 22–24 show the average values and the standard deviations of cumulative total interaction

utilities for nodes in evolving social networks over 100 iterations given an unconnected back-

bone network, a random backbone network and a scale-free backbone network.

As shown in Fig 22, the cumulative values of total interaction utilities increase with the

social capital limit, which results from the increasing number of interactions and the corre-

sponding interaction rewards. Their standard deviations increase with the social capital limit

and the number of seeds. This is because the fluctuations in the infection occurrence (Fig 1)

and interaction number (Fig 5) influence the interaction utilities with the interaction risks and

the interaction rewards. In addition, the cooperative nodes and the collaborative nodes gener-

ally have higher cumulative total interaction utilities than the other types of nodes. This is

because cooperative nodes and collaborative nodes can make group decisions based on the

group information, while the other types of nodes make individual decisions based on individ-

ual information without considering the overall infection risks and interaction rewards. The

collaborative nodes can achieve higher average values of cumulative interaction utilities than

cooperative nodes given a social capital at 5 and 10. In contrast, the cooperative nodes can

achieve higher average values of interaction utilities than collaborative nodes given a social

capital at 15 and 20. This indicates that collaborative nodes can improve the overall utilities of

Fig 22. The average values and standard deviations of the cumulative total interaction utilities of nodes in 100

iterations in the evolving social networks based on an unconnected backbone network under the impact of one seed

(a), two seeds (b) and three seeds (b). In each scenario, the evolving social networks are respectively driven by inactive,

ignorant, egocentric, cooperative and collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g022
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Fig 24. The average values and standard deviations of the cumulative total interaction utilities of nodes in 100

iterations in the evolving social networks based on a scale-free backbone network under the impact of one seed (a), two

seeds (b) and three seeds (b). In each scenario, the evolving social networks are respectively driven by inactive,

ignorant, egocentric, cooperative and collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g024

Fig 23. The average values and standard deviations of the cumulative total interaction utilities of nodes in 100

iterations in the evolving social networks based on a random backbone network under the impact of one seed (a), two

seeds (b) and three seeds (b). In each scenario, the evolving social networks are respectively driven by inactive,

ignorant, egocentric, cooperative and collaborative mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g023
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all nodes through social capital transfer when the random interference is limited given a

smaller social capital limit.

As shown in Fig 23, the cumulative values of total interaction utilities also increase with the

social capital limit due to the increasing number of interactions and the corresponding interac-

tion rewards. However, compared with the standard deviations of cumulative total interaction

utilities for evolving social networks based on an unconnected backbone network (Fig 22), the

standard deviations of cumulative total interaction utilities in evolving social networks based

on a random backbone network are smaller, which can be caused by their smaller standard

deviations in interactions (Fig 6) and infection occurrences (Fig 2). In addition, the coopera-

tive and collaborative nodes also have higher cumulative interaction utilities than the other

types of nodes. The cooperative and collaborative nodes have similar cumulative interaction

utilities, whose standard deviations significantly increase when the social capital and the num-

ber of seeds increase. This is because the infection occurrence increases, leading to fluctuations

in interaction number and the variability of interaction utilities.

As shown in Fig 24, the cumulative values of total interaction utilities also increase with the

social capital limit due to the increasing number of interactions and the corresponding interac-

tion rewards. However, compared with the standard deviations of cumulative total interaction

utilities for evolving social networks based on an unconnected backbone network (Fig 22) and

a random network (Fig 23), the standard deviations of cumulative total interaction utilities in

evolving social networks based on a scale-free network given a social capital limit at 5 are

much smaller. This is because there is no epidemic spread (Fig 2) and a steady number of

interactions (Fig 6). In addition, the cooperative and collaborative nodes generally have higher

average values in cumulative interaction utilities and smaller standard deviations than the

other types of nodes. However, the cooperative and collaborative nodes do not outperform the

inactive nodes when the social capital limit is 20, and the number of seeds is 5, indicating the

inefficiency of group decisions.

To better understand the abovementioned phenomenon, we discuss the interaction utilities

of nodes in the evolving social networks based on an unconnected backbone network. Fig 25

shows the total interaction utilities of nodes in evolving social networks and their cumulative

values over time.

As shown in Fig 25(a), the interaction utilities for the inactive, cooperative and collaborative

nodes generally increase in the first iterations and keep steady with minor fluctuations. This is

because most nodes interact without exposure to the infections. In contrast, the interaction

utilities of ignorant and egocentric nodes fluctuate greatly due to many infections (See Fig 4).

Compared with the other node types and given any social capital limit, the social interaction

utilities of cooperative nodes and collaborative nodes are generally higher.Fig 25(b) shows the

cumulative interaction utilities of all nodes in the evolving social networks. We find that the

egocentric nodes have the lowest cumulative utilities regardless the social capital limit. This is

because the egocentric nodes make inefficient individual decisions without considering the

others’ behavioural changes. The collaborative and cooperative nodes can achieve the highest

cumulative interaction utilities through group decisions. In addition, as shown in Fig 25(b),

the collaborative nodes outperform the cooperative nodes under the social capital limit of 5

and 10 by more interactions and similar infection risks. In contrast, the cooperative nodes out-

perform the collaborative nodes under the social capital limit of 15 and 20 by fewer interac-

tions and lower interaction risks. This indicates that the interaction risks and the infection

occurrences greatly influence the utility maximisation process. A lower social capital limit

makes it easier to avoid infection risks under the influence of random interference, ensuring

the accuracy of group decisions on social capital transfer and group utility maximisation for

collaborative nodes. In contrast, given a social capital limit at 10 or 15, the collaborative nodes
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have more flexible social capital transfer between the nodes and correspondingly develop

more interactions, including the low-intensity ones which are significantly impacted by the

random interference. The random interference leads to inaccurate group decision making pro-

cess and harms the efficiency of interaction utility maximisation.

We present the average values and standard deviations of node utilities for the infected and

healthy nodes in Fig 26. The average node utilities of healthy nodes are much higher than

those of infected nodes. This is because the infected nodes tend to have higher interaction

costs, and their interaction utilities are discounted due to their health statuses. It also indicates

that, apart from the social capital limit, the utility discount (0.01 of the aggregated interaction

utilities) and the interaction cost (0.60 for infected nodes and 0.40 for healthy nodes) can also

suppress the interactions of infected nodes, and thus leading to the infection avoidance effect.

Compared with the other node types, the average node utilities for the healthy ignorant nodes

and the healthy egocentric nodes are much lower due to the interaction risks given a greater

infection occurrence (Fig 4). This also implies that the spread of the epidemic can decrease the

utilities of both infected and healthy nodes.

To summarise, first, regarding social capital, increasing social capital enables higher inter-

actions but in the same time results in higher infection risks and uncertainty in decision-mak-

ing. For example, the inactive, cooperative and collaborative nodes have more interactions

when the social capital increases. The ignorant and egocentric nodes make more interactions

when there are limited number of infections as the social capital limit increases from 5 to 10.

In contrast, the ignorant and egocentric nodes reduce interactions when infection occurrence

increases significantly under the social capital limit at 15 and 20. Second, among all the

Fig 25. The total interaction utilities of nodes in the evolving social networks (a) and their cumulative values over time (b).

https://doi.org/10.1371/journal.pone.0303571.g025
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Fig 26. The average utility of infected nodes and healthy nodes in evolving social networks driven by different

mutation styles under different social capital limits ranging within [5, 10, 15, 20]. The mutation styles include the

inactive (a), the ignorant (b), the egocentric (c), cooperative (d) and the collaborative (e) preference mutation styles.

https://doi.org/10.1371/journal.pone.0303571.g026
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mutation styles, cooperative and collaborative mutation styles achieve higher total utilities

than the other mutation styles. This implies that group decisions outperform individual deci-

sions by avoiding the unawareness of the decisions of other nodes. Third, given an insignifi-

cant social capital limit that partially excludes the influence of random interference, the

collaborative strategy outperforms the inactive, ignorant, egocentric and cooperative strategies

by achieving higher interactions, lower infection occurrence and consequently, higher interac-

tion utilities. This indicates that promoting collaborative interactions while imposing strict

social capital limits in an epidemic outbreak can effectively reduce infection occurrence and

preserve the overall benefit of people.

Conclusion

This study extends our previous work on the DT-CNS modelling framework related to hetero-

geneous node features and connection preferences by introducing preference mutation mech-

anisms [30]. Our previous work enables to model CNSs composed of static networks and a

dynamic process on the networks. This study progresses this framework by a substantial exten-

sion allowing to model the interrelated component changes in DT-CNSs.

More specifically, we propose an evolutionary DT-CNS modelling framework concerning

the nodes’ adaptive decisions on a preference mutation in response to the interaction patterns

and epidemic risks. Under this framework, we consider nodes’ heterogeneous features and

changeable connection preferences, which combine the effects of preferential attachment,

homophily and transitivity. We create heterogeneous preference mutation mechanisms to

characterise nodes’ adaptive decisions on preference mutation in response to the interaction

patterns and epidemic risks. The preference mutation styles can be inactive, ignorant, egocen-

tric, cooperative and collaborative dependent on the consideration of node utilities and the

transferability of social capital between nodes in their decision-making processes.

To build the preference mutation mechanism while incorporating the feedback of interac-

tions and infections, we introduce the social capital limit (which limits the number of possible

relationships) to the nodes’ preference mutation process and propose to model nodes’ prefer-

ence changes as an optimisation process for higher interaction utilities with limited social capi-

tal. Nodes can follow heterogeneous preference mutation styles, including the (i)inactive style

that keeps zero social preferences, (ii) ignorant style that randomly mutates preferences, (iii)

egocentric style that optimises individual interaction utility, (iv) cooperative style that opti-

mises the total interaction utilities by group decisions and (v) collaborative style that further

allows the cooperative nodes to transfer social capital.

We conduct extensive simulation-based experiments on the evolutionary DT-CNSs. In the

experiments, the nodes interact and mutate their preferences based on heterogeneous strate-

gies, which leads to heterogeneous interaction and infection patterns. We also consider the

impact of different number of seeds in epidemic spread and the backbone networks on the

evolving social networks. We find that (i) increasing social capital enables more interactions,

higher node degrees, higher clustering coefficient, lower shortest path lengths, but more vari-

ability in network structures and higher infection risks and uncertainty in decision-making;

(ii) group decisions outperform individual decisions by eliminating the unawareness of the

decisions of other nodes; (iii) the collaborative strategy, given a strict social capital limit, out-

performs the inactive, ignorant, egocentric and cooperative strategies by achieving higher

interactions, lower infection numbers and consequently, higher interaction utilities.

In summary, this study proposes an evolutionary DT-CNS framework related to heteroge-

neous node features and the changeable preferences for connecting with others. This model-

ling framework can model the interrelated CNS component changes by incorporating the
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impact of epidemic processes on the network evolution. Our future study will progress this

framework by modelling interaction patterns’ influence on the dynamic processes’ transmissi-

bility changes.
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