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Abstract: The advancement of medical imaging has profoundly impacted our understanding of the
human body and various diseases. It has led to the continuous refinement of related technologies over
many years. Despite these advancements, several challenges persist in the development of medical
imaging, including data shortages characterized by low contrast, high noise levels, and limited
image resolution. The U-Net architecture has significantly evolved to address these challenges,
becoming a staple in medical imaging due to its effective performance and numerous updated
versions. However, the emergence of Transformer-based models marks a new era in deep learning
for medical imaging. These models and their variants promise substantial progress, necessitating
a comparative analysis to comprehend recent advancements. This review begins by exploring the
fundamental U-Net architecture and its variants, then examines the limitations encountered during
its evolution. It then introduces the Transformer-based self-attention mechanism and investigates
how modern models incorporate positional information. The review emphasizes the revolutionary
potential of Transformer-based techniques, discusses their limitations, and outlines potential avenues
for future research.

Keywords: medical imaging segmentation; deep learning; Transformer-based models; medical
sensing; X-ray; CT scan; ultrasound device; high resolution; sensitivity; noisy level

1. Introduction

For medical segmentation, data scarcity has long been a persistent challenge. Unlike
natural images, annotating medical image data often necessitates the expertise of trained
professionals, making data collection a complex endeavor. Additionally, scaling up data
collection for rare medical cases proves to be a difficult task. Ethical and privacy considera-
tions further complicate the aggregation and sharing of medical data [1,2]. Compounding
these challenges are the inherent features of medical images, including low contrast, high
noise levels, and limited image resolution. These factors, particularly evident in ultra-
sound image segmentation, have posed significant barriers to achieving precise and reliable
results, as reported in recent research by [3–5]. However, with its rapid development,
traditional convolutional algorithms have encountered bottlenecks, necessitating further
technological innovations to enhance efficiency [6].

Recent years have revealed the convergence of deep learning and computer vision,
presenting transformative opportunities for medical imaging. With their self-attention
mechanisms, the introduction of Transformer-based models has demonstrated the ability
to produce promising results, especially in handling longer-range content [7]. This break-
through offers the potential to recognize global information and represents a technological
stride beyond existing bottlenecks [5,8].

In this literature review, we embark on a deep exploration of articles within this
specialized domain. The review begins with a detailed examination of the historical
evolution of medical imaging, shedding light on its inherent difficulties and challenges.
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Subsequently, we delve into a comprehensive assessment of specific technologies. The
focus then shifts to an in-depth analysis of Transformer-based approaches, particularly the
self-attention mechanism. Furthermore, we investigate cutting-edge advancements, such
as incorporating positional information into algorithms.

Finally, this comprehensive review aims to provide significant insights into the most re-
cent advancements and technological innovations, emphasizing the revolutionary potential
of Transformer-based approaches in transforming the future landscape of medical imaging.

2. Medical Imaging Segmentation

Doctors in the traditional healthcare system rely primarily on their quick cognitive
capabilities to guide complex treatments. In contrast, computer vision in the modern
medical system evaluates medical data, such as images, using machine learning, deep learn-
ing, and other technologies, thereby supporting doctors in making high-accuracy medical
decisions [2,9]. However, there has always been a need for more data in medical images.
Annotation of medical image data requires experienced specialists, making it resource-
intensive [10]. Additionally, it is challenging to scale data in unusual circumstances, and
factors such as ethical privacy complicate aggregate data disclosure [4]. Furthermore,
standard medical imaging technologies such as computed tomography (CT), magnetic
resonance imaging (MRI), X-ray, and ultrasound have limitations, including low contrast
and high noise.

2.1. Difficulty from Imaging Sensor

In medical imaging, an imaging sensor is a device used to capture light and convert
it into electrical signals [11]. It is crucial in modern medical imaging equipment such as
X-ray machines, CT scanners, MRI machines, and ultrasound devices [12–14]. Due to the
imaging theory [15], in the medical field, it has several characteristics:

• High resolution: the number of pixels of the sensor is crucial, as a higher resolution
allows for more detailed images, which is essential for accurate diagnosis;

• High sensitivity: the sensor’s performance in low-light conditions ensures that high
sensitivity provides clear images even with low radiation doses, enhancing patient
safety;

• High noise level: the random electrical signals generated during image capture need
to be minimized since lower noise levels lead to clearer and more accurate images,
reducing the likelihood of misdiagnosis.

2.2. U-Net and Its Variants’ Structures

The U-shaped Network(U-Net) architecture (as shown in Figure 1) and its variants
are widely favored in medical image segmentation due to their exceptional performance,
adaptability, and efficiency [10]. They excel in organ delineation, tumor detection, and cell
counting tasks, offering state-of-the-art results in various medical imaging challenges [16].
U-Net’s fully convolutional design accommodates varying image sizes, and its incorpo-
ration of skip connections enables it to capture high- and low-level features crucial for
precise results. Moreover, its ability to perform well with limited training data and its
real-time inference capabilities make it practical for clinical applications. The openness
and interpretability of U-Net further cement its popularity and impact in advancing med-
ical image analysis and diagnosis [17,18]. Therefore, most articles in the field focus on
this architecture.

However, as research questions become more complex, especially considering the
extraordinary and unpredictable complexity of medical images, the basic U-Net architecture
has encountered technical bottlenecks [19–22]. Specifically, traditional U-Net models face
challenges in the backpropagation process, such as gradient disappearance, feature loss,
and uneven response. There are several typical variants based on it.
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Figure 1. The U-Net architecture has a contracting path on the left and an expansive path on the
right. The contracting path consists of repeated 3× 3 convolutions with ReLU and 2× 2 max pooling
for downsampling, doubling the feature channels at each step. The expansive path involves up-
convolutions and concatenations with cropped feature maps from the contracting path, ending with
a 1× 1 convolution to produce the output segmentation map [6].

2.2.1. Residual Module

Innovated by residual learning [23], many models have incorporated residual elements
into their architectures. Similar to the basic U-Net, these models also feature encoder
and decoder pathways and skip connections. The initial motivation for this structural
design was to address issues such as vanishing gradients in deep neural networks during
training [23]. Vanishing gradients occur when the gradients of the loss function toward the
network’s parameters become very small as they are back-propagated through many layers.
This phenomenon can hinder convergence or even prevent effective learning, especially in
intense neural networks. Residual networks mitigate this problem by introducing “skip
connections” or “residual connections”, allowing information to bypass or be added to the
middle layers (as Figure 2). ResPath is widely used in skip connections. Along these lines,
many models have achieved improved results in specific applications, such as SIU-net for
ultrasound spine image segmentation, MultiResUNet, Multi-Scale U-Net, and RSU-Net for
cardiac magnetic resonance image segmentation [3,24–26], among others.

ResUNet (Residual and U-Net), introduced by [27], is a typical example of combining
the residual network and U-Net. Building upon ResUNet, ResUNet++ [28] underwent
further modifications. This model not only utilizes skip connections to pass feature maps
of different scales but also incorporates channel attention weights. In this way, the model
can use this weighted information to filter unnecessary details in the decoder feature map
before passing it to subsequent network layers.
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Figure 2. A diagram of the strategy, which involves gradually increasing the overall amount of filters
in each of the three succeeding layers while also introducing a residual connection [23].

2.2.2. Intention Module

As the difficulty of tasks increases, the ability to focus on specific targets or objects
while ignoring irrelevant areas becomes crucial. Models can handle more challenging
tasks effectively through selection gates [29,30]. The selection gate, commonly used in
expansive and contracting paths and skip connections, is one of the most common applica-
tions of attention modules. It significantly improves segmentation results without adding
unnecessary computational complexity.

For instance, the attention gate is widely used in various image tasks. For example,
ASCU-Net utilizes an attention gate for skin lesion segmentation [31], while another vari-
ant enhances U-Net for abnormal tissue segmentation using a spatial attention gate [32].
Furthermore, Attention U-Net++ employs Attention U-Net for liver CT imaging segmenta-
tion [33], among other applications.

In practice, many networks utilize multiple modules tailored to their specific tasks. For
example, RAD-UNet is introduced to minimize streak artifacts in CT images reconstructed
from sparse-view projections, improving reconstruction accuracy and preserving image
details [34]. LDS U-Net (Light-convolution Dense Selection) was designed for segmenting
ultrasound bony features [35]. Additionally, DRAUNet, a deep network with a biplane
joint method, enhances liver area segmentation from CT scans by incorporating 3D spatial
information [36]. Moreover, models like DENSE-Inception U-Net [37] tackle more compli-
cated segmentation tasks, while H-DenseUNET focuses on liver and tumor segmentation
in CT scanning [38], and 2D Dense-Unet is applied for automated glioma segmentation [39].
In SIU-Net [3], a similar dense structure is also utilized for skip connection paths.

However, researchers have observed that increasing the number of network layers
only sometimes leads to better segmentation performance in practice. Instead, it can lead
to problems such as overfitting, a “black box” structure in the middle layers, and poor
performance on long series of data [7,10,19,23]. Some networks may exhibit poor results
on global content [40]. Consequently, this indicates a technical bottleneck in traditional
U-Net models and their variants, requiring further technological innovation to address
these issues and improve segmentation model performance.

3. Transformer in Medical Imaging

When introduced in 2017, the Transformer architecture, particularly its innovative
self-attention mechanism, represented a significant milestone in deep learning [41–43]. This
groundbreaking architecture brought about a considerable shift in how neural networks
handle sequential and structured input, initially developed for applications in natural
language processing [41,44,45]. The Transformer introduced a parallelized and attention-
driven approach to processing sequences, contrasting earlier recurrent neural networks
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(RNN) and convolutional neural networks (CNNs) [46,47]. It not only dramatically im-
proved model training efficiency but also achieved state-of-the-art results across various
natural language understanding and generation tasks [48–51].

The Transformer architecture consists mainly of an encoder and a decoder [41]. Each
encoder comprises components such as position coding, a multi-head self-attention mech-
anism, layer bormalization (LN) [52,53], a feed-forward network (FFN) [54], and fully
connected layers. The decoder structure is similar to that of the encoder but includes a
masked multi-head self-attention mechanism at the input layer [55,56]. The architecture is
illustrated in Figure 3.

Figure 3. The Transformer structure, consisting of an encoder and a decoder as its primary compo-
nents, each comprising multiple layers [41].

Two key components stand out in grasping the essence of the Transformer architec-
ture. Among them, the self-attention mechanism plays a paramount role [41]. There are
three main components: Queries (Q), Keys (K), and Values (V) [57–59]. This mechanism
aims to calculate a weighted sum, allowing information aggregation from the Values into
the Queries.

Whenever an algorithm calculates an attention score, several key steps are involved in
the process [41,60]:

1. The algorithm will initialize the matrix for K, Q, and V.
2. The relationship between Queries and Keys: Each Query must first be connected to

every Key. First, to facilitate the dot product operation, the algorithm transposes the
K matrix and then multiplies the transposed matrix by the Q matrix. This indicates
that each Query computes its correlation with each Key to determine which Keys are
more pertinent to a given Query.
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3. Scaling: The results of the correlation calculations are ordinarily divided by the square
root of dk (

√
dk) to ensure consistent computations. This step helps to control the

range of values to ensure the stability of the calculation.
4. Softmax: The Softmax function is applied to convert the correlation distribution of

Query to Keys into a weight distribution. The Softmax function ensures that the sum
of these weights is equal to 1, and the appropriate weights are assigned according to
the strength of the correlation.

5. Multiplication of Weights with Values: These weights are multiplied by the corre-
sponding values. This step weights the Query information with the related Key details
to produce the final output.

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V (1)

Consequently, the score in this attention mechanism signifies a measure of correlation
or similarity between a Query and a set of keys [41,60]. These scores indicate how strongly
the model focuses on different locations or elements based on the correlation between the
Query and the Key (Equation (1)), facilitating effective weighted input data aggregation.
This is one of the reasons why the self-attention mechanism finds utility across various
tasks, as it captures complex relationships and dependencies in data (Figure 4).

Figure 4. The key mechanism in the Transformer architecture, which computes attention scores
between elements in a sequence, providing a weighted representation of the input [41].

3.1. Transformers in Computer Vision

Although the first significant application of the Transformer module is in natural
language processing, many studies have found that the Transformer module can also
be used in the computer vision area [40]. Incorporating the Transformer’s self-attention
mechanism has significantly changed how visual data are processed and understood in
computer vision. CNNs were primarily used in traditional computer vision methods for
picture classification, object recognition, and image segmentation. But with its attention-
based mechanism, the Transformer architecture has ushered in a new age for managing
visual data [61,62].

One of the pioneers in this area is the vision Transformer (ViT) [63]. It is a deep learning
model introduced by Alexey Dosovitskiy and his team in 2020, marking a significant
advancement in computer vision. ViT took a fresh approach by dividing an image into
smaller patches, arranging them into a sequence, and using the Transformer’s self-attention
mechanism to capture the relationships and dependencies between them. This innovative
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shift delivered impressive performance in image classification. It opened the doors for the
widespread adoption of Transformer-based models in computer vision, establishing ViT as
a significant milestone in the field. It plays an essential role in the areas of self-attention and
computer vision. Based on that [63], the Swin Transformer was invented for multi-scale
reception fields [8]. Furthermore, there is another attempt to use ViT in breast cancer
screening [64] and the deeper Vision Transformer in similar segmentation applications [65].

Self-Attention and Convolutional Operation

Compared to regular convolutional operations, the self-attention mechanism empha-
sizes global context information more strongly. It achieves comprehensive connectivity
by modeling relationships between all elements [61]. This means that each component
can affect all the others, better capturing more global information. Moreover, it excels at
capturing intricate relationships and dependencies across distant positions in sequential
data, making it a potent tool for handling long-range dependencies.

In Table 1, the advantages and drawbacks of the self-attention mechanism and con-
volutional operation [61] are highlighted. The self-attention mechanism is better suited
for processing sequence data, especially with long-distance dependencies. Meanwhile,
the convolution operation is better for local features because it can effectively capture
local structures and features in an image. Therefore, there is a new trend of combining
the advantages of two different structures so the model can perform well in long-range
sequence information extraction and local information extraction. Regarding the medical
imaging process, this provides more chances for applications like segmentation, especially
noise removal.

Table 1. Summary of advantages and disadvantages of self-attention mechanism and convolutional
operation.

Characteristics Self-Attention Mechanism Convolutional Operation

Applicability

Suitable for long-range
dependencies.

Suitable for extracting local
features and structures.

Fully connected; each element
can influence all others.

Locally connected; each
neuron relates to a small

portion of the input.

Parameter Count
More parameters; requires

more computational
resources.

Fewer parameters; more
computationally efficient.

Computational Efficiency Higher computational
complexity.

Lower computational
complexity, particularly for

large-scale data.

Translation Invariance

Lacks translation invariance;
sensitive to position.

Possesses translation
invariance; insensitive to

position.
Often requires position
encoding for handling
sequence information.

No need for additional
position encoding.

3.2. Feature Extraction

There are several ways to combine transformers. RNN and long short-term memory
(LSTM) are more position sensitive than bon-recurrent models, which incorporate position
bias by loading the input tokens in a sequential order [66]. The primary cause of this issue
is that position information among input units is not intrinsically encoded; as a result,
they are identical in permutations. This issue explains why every known model includes
a position encoding/embedding layer at the input. Similarly, Transformer-based models
also require careful consideration of positional information. As one of the examples, ViT
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already includes position embedding with the patch for adding positional information [41],
but the position information is still relatively weak.

3.2.1. Hybrid Structure

The first way to implement a combination is through a hybrid structure.Most appli-
cations in this area simply combine the advantages of both convolutional operation and
self-attention with a hybrid structure. As a result, this is the most common combination
technology [67].

TransBTS is a unique neural network architecture for MRI brain tumor segmentation,
seamlessly combining Transformer and the 3D CNN, effectively capturing local and global
characteristics. CoTr integrates multi-scale feature maps and employs a 3D deformable
Transformer with a bridge module to enhance feature fusion and attention computation
while reducing computational complexity [68,69]. AFTer-UNet addresses axis informa-
tion in 3D volumes and achieves superior segmentation accuracy with fewer parameters
compared to previous Transformer-based models [70].

TransUNet, another innovative hybrid structure, combines Transformer and the 3D
CNN, effectively capturing local and global characteristics. It outperforms previous state-
of-the-art 3D algorithms for brain tumor segmentation in 3D MRI scans [7]. HiFormer
efficiently combines a CNN and a Transformer, leveraging multi-scale feature representa-
tions and introducing a double-level fusion module to fuse global and local features [71].

To address uncertainties, TransUNet+ enhances skip features using a Transformer
block’s score matrix to improve global attention, achieving superior performance, especially
in tiny organ segmentation [72]. H-TUNet integrates a multi-scale cross-attention Trans-
former module, effectively capturing anatomical distinctions and enhancing contextual
features, demonstrating exceptional performance in thyroid disease diagnosis [73].

DA-TransUNet is a novel deep medical image segmentation framework that integrates
Transformers and dual attention blocks (DA-Block) into a U-shaped architecture [74],
optimizing position and channel features to enhance feature extraction and performance,
consistently outperforming state-of-the-art techniques across five datasets.

ScribFormer, a new Transformer-CNN hybrid solution, achieved superior segmentation
performance over state-of-the-art scribble-supervised methods on the ACDC, MSCMRseg,
and HeartUII datasets [75]. It demonstrated new state-of-the-art (SOTA) performance on
the ACDC, MSCMRseg, and HeartUII datasets

There are numerous models with similar structures, and one of the most typical
and commonly studied approaches involves combining the basic CNN or its variants
with Transformers and self-attention mechanisms. This category is characterized by its
straightforward integration of these components.

3.2.2. Self-Attention Block

Another implementation approach involves incorporating the self-attention mecha-
nism into the feature selection block. It replaces the standard convolutional operation with
a Transformer within the U-Net architecture. It is evident that there are also several hybrid
variants; however, unlike that mention in the previous chapter, the convolutional operation
is entirely replaced by the self-attention mechanism.

Based on the Swin Transformer [8], one of the essential models in the medical field
is called Swin-Unet [76]. Since the traditional CNN network has long-range semantic
information extraction limitations, Swin-Unet is intended to be a pure Transformer similar
to Unet for medical picture segmentation. The tokenized image patches are fed into
a U-shaped encoder–decoder architecture based on Transformers and skip connections.
Furthermore, to compensate for local information, a window-based system was introduced.

As Figure 5 illustrates, the LN layer, multi-head self-attention module, residual connec-
tion, and two-layer MLP with GELU nonlinearity are all included in each Swin Transformer
block. The windowed multi-head self-attention module (W-MSA) and the offset windowed
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multi-head self-attention module (SW-MSA) are employed in two consecutive Transformer
blocks. The precise examples for W-MSA and SW-MSA are as follows:

• W-MSA: In W-MSA, input data are divided into windows, each containing multiple
adjacent blocks of data. Self-attention operations are performed in each window,
allowing each block of data to perform self-attention calculations with other blocks in
the same window. This helps capture local features.

• SW-MSA: SW-MSA is an improved multi-head self-attention mechanism that intro-
duces the offset of the window. This means that when calculating self-attention, it
is no longer limited to the data blocks within the window but takes into account the
relationships between the windows. This helps capture a wider range of contextual
information.

The Swin Transformer, known for its window-based self-attention mechanism and
shifted window mechanism, divides input data into windows to capture local features
effectively [76]. This model has significantly advanced deep learning, with its ability
to process local and global information. Improved versions have shown remarkable
performance on public medical datasets.

Figure 5. The Swin block contains two consecutive blocks incorporating windowed multi-head
self-attention (W-MSA) and offset windowed multi-head self-attention (SW-MSA) modules [41].

For instance, ST-Unet combines the Swin Transformer as an encoder and CNNs as
a decoder, introducing a cross-layer feature enhancement (CLFE) module and a spatial
and channel squeeze and excitation module to improve feature learning across different
layers and highlight specific areas’ importance [77]. TransDeepLab, a pure Transformer
for medical image segmentation, employs Swin Transformer blocks to capture local and
long-distance context information, integrating multi-scale features into the decoder through
cross-contextual attention mechanisms [78]. TransConver replaces the multi-branching
structure in GoogLeNet with Transformer modules and convolutional modules, facilitat-
ing interactions between global and local features, thus improving tumor segmentation
accuracy and reducing computational load [79].

CSwin model combines CNN and Swin blocks to leverage both models’ advantages,
integrating the interactive channel attention (ICA) module, gating-based auxiliary feature
fusion (SFF) module, and boundary detection (BD) module to improve breast lesion seg-
mentation performance [80]. Another approach involves entirely modified versions, such
as PCAT-UNet, incorporating cross-patch convolution self-attention (CPCA) and inner
patch convolution self-attention (IPCA) modules, and MT-Unet, introducing the hybrid
Transformer module (MTM) for intra- and inter-sample affinity relationships [81]. These
methods have demonstrated superior performance on diverse medical image datasets.
Other than that, SSTrans-Unet highlights the limitation of fixed masks in the Swin Trans-
former and represents a novel approach that can better capture long-range dependencies
channel-wisely [82].

To summarize this model’s applications, it has the following characteristics:
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• Transformer position selection, which affects model performance: Choosing a seg-
mentation model that places the Transformer in the encoder is more common than a
segmentation model that places it in the decoder. This is because encoders are mainly
used to extract features, while decoders are used primarily to fuse features extracted
by encoders.

• Feature expression ability improvement: In order to better fuse global and local
information, it is common to use a Transformer in the encoder to extract information
and then use a Transformer in the decoder to fuse the information and combine the
convolutional network to obtain detailed features as an advantage, so as to enhance
the model’s ability to express features.

• Complexity and efficiency trade-offs: Inserting Transformer modules into both the
encoder and decoder increases the computational complexity of the attention mecha-
nism, resulting in a decrease in model efficiency. Therefore, efficient attention modules
need to be explored to improve the efficiency of such models.

• Balance at transition junctions: Placing the Transformer at the transition junction is
a trade-off option to draw connections from features with low expressiveness while
relying on global features to guide subsequent fusions. This is because the feature map
at the transition junction has the lowest resolution, and even if you use a multi-layer
superimposed Transformer module, it will not put a large load on the model. However,
this approach has limited capabilities in feature extraction and fusion, and there is a
trade-off between its use and its costs.

Therefore, placing transformers in different parts has different benefits; the selection
should be based on their applications, balancing the benefits and drawbacks.

3.2.3. Others

Several innovative approaches have emerged to tackle specific challenges in medical
image segmentation by integrating attention mechanisms and transformer architectures
into encoder–decoder frameworks. Models like EG-TransUNet, TransCeption, HiFormer,
HTNet, and RTNet [71,83–86] leverage multi-head self-attention, Transformer-enhanced
modules, multi-scale feature extraction and fusion, dual-Transformer bridging, position-
sensitive axis attention, and relational Transformer modules to improve feature discrimina-
tion, capture global context, fuse spatial and semantic information effectively, and model
relationships between regions and lesions [66]. These approaches have shown impres-
sive performance in various medical image segmentation tasks, surpassing traditional
CNN-based and hybrid methods in both quantitative and qualitative results. MultiTrans
introduces a novel multi-branch Transformer (MultiTrans) architecture with a memory- and
computation-efficient self-attention module to address the challenges of using Transformer
models for medical image segmentation [87].

Furthermore, there is a novel segmentation framework based on Transformers called
Segtra [88]. Transformers have the advantage of having an infinite number of effective
receptive fields, even at high feature resolutions. The development of a unique squeeze-
and-expansion Transformer, which contains both squeezed attention blocks to regularize
self-attention and expansion blocks to acquire varied representations, is the key innovation
within Segtran (Figure 6).

Some follow-up works have explored improvements in Transformer-based models
by incorporating fixed or learned positional encoding methods. For example, location
information can be computed as an embedding matrix using sine or cosine functions and
added to the attention algorithm [89]. Another approach involves absolute position en-
coding, integrating segment encoding and relative positional information into the token
attention matrix [90,91]. Furthermore, the latest work, SegFormer3D, is a lightweight hier-
archical Transformer for 3D medical image segmentation that efficiently calculates attention
across multi-scale features with an all-MLP decoder, achieving competitive performance on
key datasets with significantly fewer parameters and lower computational requirements
compared to state-of-the-art models [92].
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Overall, Transformers have been seamlessly integrated into various network architec-
tures, enhancing their capabilities and significantly improving performance across diverse
domains by capturing boundaries, enhancing targets, refining feature processing, and more.

Figure 6. A novel positional encoding scheme customized for images with a continuity-inducing bias
is integrated with pitch coordinates and CNN-based extraction [88].

3.2.4. Summary

In Transformer-based networks within the medical field, the evolution of positional
coding methods has traversed distinct phases in recent years. With the advent of the ViT in
2021, the focus of research in 2021 and 2022 revolved around the development of intricate
mathematical transformations and hybrid architectures that seamlessly fused convolutional
processes with transformer units, as evidenced in notable works such as [70,88,93,94]. These
efforts were motivated by a need to address the basic limits of the self-attention mechanism,
specifically its processing of local information. However, the landscape underwent a
substantial transformation with the introduction of the Swin Transformer in 2022. This
significant advancement signaled a shift in emphasis toward the use of fixed or shifting
window-based positional coding techniques. It is important to note that position-encoding
structures prioritized mathematical implementation, whereas hybrid structures combined
convolutional processes with the transformer mechanism’s transformative power. The
self-attention block evolved as a revolutionary strategy that primarily used self-attention
for feature extraction, frequently combining hybrid structures for improved performance
and focusing on Transformer-based blocks and other convolutional processes [95].

3.3. Learning Strategy

Although the transformer-based model has been implemented for several years and
generated good results, there are still several further performance enhancement strategies:

3.3.1. Semi-Supervision

Combining semi-supervised learning with Transformers: Semi-supervised learning is a
widely used method in machine learning to address the challenge of limited labeled samples
in datasets [96–98], particularly in the field of medical imaging where obtaining large-
scale labeled samples is often tricky [4,99,100]. Leveraging the exceptional capabilities of
Transformer models, semi-supervised learning can effectively utilize large-scale unlabeled
medical image data by automatically generating high-confidence pseudo-labels to expand
the training dataset. This approach enhances the model’s generalization ability and better
handles the diversity and complexity present in medical images [101,102]. Combining
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semi-supervised learning with Transformers promises to provide more accurate solutions
for medical image analysis, with potential improvements in medical applications such as
disease diagnosis, medical image processing, and patient care. This method fully capitalizes
on medical image data while addressing the challenges of data scarcity in the medical field.
While there are existing approaches, further research is needed to fine-tune the handling of
specific medical image processing tasks. Additionally, due to the unique characteristics of
the self-attention algorithm [63,103], the more training iterations it undergoes, the more
accurate the results it can generate. Therefore, having more training data, including
semi-supervised data, can be beneficial for improving performance [76]. One possible
solution is contrastive learning [104–106]. Combining extra learning tasks may increase
the model performance by distinguishing each class and benefiting the general model
segmentation performance.

3.3.2. Class Awareness Enhancement

Another alternative to enhancing the model is by improving class differentiation, such
as with the class-aware adversarial Transformer [102]. This approach constructs multi-scale
representations, handles multi-scale variations, and uses a novel class-aware Transformer
module to learn discriminative regions of objects with semantic structures. Similarly,
ClassFormer employs similar concepts to address intra-class and inter-class issues within
specific medical image tasks [107]. Another example is the hierarchical class-aware domain
adaptive network [108], which integrates an anisotropic neural network and a Transformer
(AsTr) to extract multi-scale context features from CT images with an anisotropic resolution.
It includes a hierarchical class-aware domain alignment (HCADA) module to adaptively
align these features across domains using a class attention map. In conclusion, class-aware
enhancement with Transformers improves segmentation accuracy by incorporating class-
specific information into the Transformer model. A class-aware Transformer module is
used to enhance the learning and differentiation of the discriminative regions of objects
based on their semantic structures.

3.3.3. Uncertainty Awareness

Another challenge in medical image segmentation is annotation accuracy; due to
labeling issues, accurately annotating data is time-consuming and difficult. Therefore,
uncertainty prediction has become prominent. UCTNet’s uncertainty-guided Transformer
module (UgViT) effectively minimizes the functional overlap between CNN and Trans-
former, leading to superior performance compared to other hybrid approaches [109]. Its
computational complexity is reduced compared to vanilla Transformer-based approaches
due to the selective application of self-attention on uncertain regions. Another example
is the Semi-supervised network model for contrastive learning based on entropy con-
straints [110]. This model introduces a semi-supervised learning method for CT image
segmentation that combines CNN and Transformer models with entropy-constrained
contrastive learning, improving performance with less labeled data through uncertainty
awareness. Other notable examples include Rectified Contrastive Pseudo Supervision and
Uncertainty-aware Representation Calibration [111,112].

4. Discussion and Limitation

The articles discuss recent advancements in medical imaging, with a primary emphasis
on medical image segmentation. Given the prominence of the U-Net architecture in this
domain [10,113–115], the articles commence by exploring several specialized architectural
components. These components include residual, inception, dense, and attention modules,
which play a significant role within the U-Net framework and find applicability in other
deep learning networks, notably the Transformer architecture. Furthermore, the central
portion of the articles is dedicated to discussing Transformer-based U-Net architectures.
Additionally, the articles highlight self-attention mechanisms, convolutional processes,
positional encoding techniques, and the integration of hybrid structures.
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While the Transformer-based design has significantly contributed to computer vision,
particularly in medical image processing, its limits remain clear. Below are a few examples
of where these restrictions become apparent:

• Data limitations: Medical image datasets are more difficult to obtain than ordinary
computer vision datasets [4]. The issues involved are more complex, including privacy
concerns, data scarcity, diversity (such as X-rays, MRIs, CTs, ultrasounds, etc.), and the
specialization of the medical field (which usually requires annotation by professional
doctors). This data limitation poses a significant challenge for Transformer-based
models, as they heavily rely on the self-attention mechanism to capture long-range
dependencies and global context information [114]. The self-attention algorithm’s com-
plexity scales quadratically with the input sequence length, making it computationally
expensive, especially for high-resolution medical images. Consequently, Transformer-
based models require larger datasets to learn the intricate patterns and relationships
within medical images [116]. However, the scarcity of annotated medical data can
hinder the model’s ability to leverage the self-attention mechanism fully, potentially
limiting its performance compared to that of CNN, which is more parameter-efficient
and can better generalize from smaller datasets.

• Generalization: Generalization is a prevalent concept in developing deep learning,
particularly within computer vision, where large pre-trained models are common-
place [117]. These models are characterized by their extensive parameter count and
intricate architecture. Among these, Transformer-based large models stand out as a
prime example. They can adapt to various datasets within their respective domains
with minimal effort, necessitating only fine-tuning for different applications [118,119].
This flexibility enables seamless migration from one task to another, eliminating the
need for excessive additional training. However, the medical field faces a unique chal-
lenge in adopting pre-trained large models. This is primarily attributed to the intricacies
and lack of medical data, making developing such models a formidable endeavor.

5. Conclusions and Research Direction

Medical image segmentation, a crucial application of computer vision in healthcare,
initially saw great success with CNN models, particularly U-Net. U-Net’s encoder–decoder
structure and skip connections effectively capture multi-scale image features. Researchers
have since enhanced U-Net with modules like residuals to address vanishing gradients,
inception for multi-scale features, and dense connections for more layer interaction, im-
proving segmentation in complex scenarios. Recently, Transformers have been introduced,
combining self-attention mechanisms with U-Net to model long-range dependencies and
improve global feature learning. While promising, Transformer-based models in this
field are still emerging and face challenges like data scarcity and generalization. Future
innovations are expected to tackle these complexities further.

The following research directions are based on current research on Transformers,
self-attention processes, and U-Net fusion:

• Multi-scale feature extraction: In deep U-shaped networks, the upper model first
learns broader features such as edges and textures, and as the network increases,
the underlying structure extracts higher-level features. Then, at this time, the data
are transferred between different levels, and data loss will inevitably occur [120].
This is also the reason why the model is less effective for segmentation. However,
the previous model also has techniques such as regional feature enhancement or
hierarchical feature jumping [72,80,83], although further research must emphasize
enhancing edge detection and noise cancellation. One of the position directions
could be federal learning, combining different reception fields to generate a more
comprehensive result [121].

• Further local–global context extraction: To further enhance local and global informa-
tion extraction, integrating advanced methods such as hybrid models that combine
CNNs with Transformers can be promising. These models can leverage the strengths
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of CNNs in capturing fine-grained local features and the capability of Transformers in
modeling long-range dependencies [122]. Additionally, incorporating multi-head self-
attention mechanisms and hierarchical attention structures can improve the model’s
ability to capture nuanced details and broader contextual information simultane-
ously [41]. Techniques such as attention gating can also selectively focus on relevant
parts of the image, enhancing the overall segmentation accuracy [29]. Moreover, com-
bining these methods with advanced data augmentation techniques and synthetic
data generation can address the data scarcity issue and further improve the robustness
and generalization of the models in medical image segmentation.

Image processing model creation is basic in computer vision and artificial intelligence.
These models are crucial in tasks ranging from object recognition to medical image seg-
mentation. Transformers play an essential role in the medical field. They are superior
at capturing global context and instrumental in complex tasks such as medical image
segmentation. On the other hand, small medical picture datasets present difficulties for
Transformers. U-shaped networks that are efficient for image tasks are introduced to
address this. They achieve an integration of global and local information. This paper in-
vestigates using Transformers and U-shaped networks in medical picture segmentation to
increase performance. The outcomes demonstrate their synergy in tackling these problems.

Author Contributions: Conceputalization, C.Z. and S.H.L.; Article Searching, C.Z. and X.D.; Super-
vision, S.H.L.; writing—original draft preparation,C.Z. and X.D.; writing—review and editing, X.D.
and S.H.L. All authors have read and agreed to the published version of the manuscript.

Funding: We would like to acknowledge the funding provided by the China Scholarship Council.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Cheung, C.W.J.; Zhou, G.Q.; Law, S.Y.; Mak, T.M.; Lai, K.L.; Zheng, Y.P. Ultrasound volume projection imaging for assessment of

scoliosis. IEEE Trans. Med. Imaging 2015, 34, 1760–1768. [CrossRef] [PubMed]
2. Khademi, Z.; Ebrahimi, F.; Kordy, H.M. A review of critical challenges in MI-BCI: From conventional to deep learning methods. J.

Neurosci. Methods 2023, 383, 109736. [CrossRef] [PubMed]
3. Banerjee, S.; Lyu, J.; Huang, Z.; Leung, F.H.; Lee, T.; Yang, D.; Su, S.; Zheng, Y.; Ling, S.H. Ultrasound spine image segmentation

using multi-scale feature fusion Skip-Inception U-Net (SIU-Net). Biocybern. Biomed. Eng. 2022, 42, 341–361. [CrossRef]
4. Willemink, M.J.; Koszek, W.A.; Hardell, C.; Wu, J.; Fleischmann, D.; Harvey, H.; Folio, L.R.; Summers, R.M.; Rubin, D.L.; Lungren,

M.P. Preparing medical imaging data for machine learning. Radiology 2020, 295, 4–15. [CrossRef] [PubMed]
5. Xie, Y.; Zhang, J.; Xia, Y.; Wu, Q. Unified 2d and 3d pre-training for medical image classification and segmentation. arXiv 2021,

arXiv:2112.09356.
6. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9
October 2015, Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

7. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders
for medical image segmentation. arXiv 2021, arXiv:2102.04306.

8. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 10012–10022.

9. Aung, K.P.P.; Nwe, K.H. Regions of Interest (ROI) Analysis for Upper Limbs EEG Neuroimaging Schemes. In Proceedings of the
2020 International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 4–5 November 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 53–58.

10. Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of
theory and applications. IEEE Access 2021, 9, 82031–82057. [CrossRef]

http://doi.org/10.1109/TMI.2015.2390233
http://www.ncbi.nlm.nih.gov/pubmed/25594962
http://dx.doi.org/10.1016/j.jneumeth.2022.109736
http://www.ncbi.nlm.nih.gov/pubmed/36349568
http://dx.doi.org/10.1016/j.bbe.2022.02.011
http://dx.doi.org/10.1148/radiol.2020192224
http://www.ncbi.nlm.nih.gov/pubmed/32068507
http://dx.doi.org/10.1109/ACCESS.2021.3086020


Sensors 2024, 24, 4668 15 of 19

11. Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical sensing and imaging of pH values: Spectroscopies, materials, and applications.
Chem. Rev. 2020, 120, 12357–12489. [CrossRef] [PubMed]

12. Westerveld, W.J.; Mahmud-Ul-Hasan, M.; Shnaiderman, R.; Ntziachristos, V.; Rottenberg, X.; Severi, S.; Rochus, V. Sensitive,
small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 2021, 15, 341–345. [CrossRef]

13. Yang, Y.; Wang, N.; Yang, H.; Sun, J.; Xu, Z. Model-driven deep attention network for ultra-fast compressive sensing MRI guided
by cross-contrast MR image. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020:
23rd International Conference, Lima, Peru, 4–8 October 2020, Proceedings, Part II 23; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 188–198.

14. Danielsson, M.; Persson, M.; Sjölin, M. Photon-counting x-ray detectors for CT. Phys. Med. Biol. 2021, 66, 03TR01. [CrossRef]
15. Wang, Z.; Yang, X.; Tian, N.; Liu, M.; Cai, Z.; Feng, P.; Dou, R.; Yu, S.; Wu, N.; Liu, J.; et al. A 64 × 128 3D-Stacked SPAD Image

Sensor for Low-Light Imaging. Sensors 2024, 24, 4358. [CrossRef] [PubMed]
16. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 1–74.

17. Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural
networks: A review. J. Med. Syst. 2018, 42, 1–13. [CrossRef] [PubMed]

18. Pfeffer, M.A.; Ling, S.H. Evolving optimised convolutional neural networks for lung cancer classification. Signals 2022, 3, 284–295.
[CrossRef]

19. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

20. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

21. Moutik, O.; Sekkat, H.; Tigani, S.; Chehri, A.; Saadane, R.; Tchakoucht, T.A.; Paul, A. Convolutional neural networks or vision
transformers: Who will win the race for action recognitions in visual data? Sensors 2023, 23, 734. [CrossRef] [PubMed]

22. Pfeffer, M.A.; Ling, S.S.H.; Wong, J.K.W. Exploring the Frontier: Transformer-Based Models in EEG Signal Analysis for Brain-
Computer Interfaces. Comput. Biol. Med. 2024, 178, 108705. [CrossRef] [PubMed]

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

24. Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation.
Neural Netw. 2020, 121, 74–87. [CrossRef] [PubMed]

25. Su, R.; Zhang, D.; Liu, J.; Cheng, C. MSU-Net: Multi-scale U-Net for 2D medical image segmentation. Front. Genet. 2021,
12, 639930. [CrossRef] [PubMed]

26. Li, Y.Z.; Wang, Y.; Huang, Y.H.; Xiang, P.; Liu, W.X.; Lai, Q.Q.; Gao, Y.Y.; Xu, M.S.; Guo, Y.F. RSU-Net: U-net based on residual
and self-attention mechanism in the segmentation of cardiac magnetic resonance images. Comput. Methods Programs Biomed. 2023,
231, 107437. [CrossRef]

27. Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote. Sens. Lett. 2018, 15, 749–753. [CrossRef]
28. Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. Resunet++: An advanced

architecture for medical image segmentation. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM),
San Diego, CA, USA, 9–11 December 2019; pp. 225–2255.

29. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.

30. Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention gated networks: Learning to
leverage salient regions in medical images. Med. Image Anal. 2019, 53, 197–207. [CrossRef] [PubMed]

31. Tong, X.; Wei, J.; Sun, B.; Su, S.; Zuo, Z.; Wu, P. ASCU-Net: Attention gate, spatial and channel attention u-net for skin lesion
segmentation. Diagnostics 2021, 11, 501. [CrossRef]

32. Khanh, T.L.B.; Dao, D.P.; Ho, N.H.; Yang, H.J.; Baek, E.T.; Lee, G.; Kim, S.H.; Yoo, S.B. Enhancing U-Net with spatial-channel
attention gate for abnormal tissue segmentation in medical imaging. Appl. Sci. 2020, 10, 5729. [CrossRef]

33. Li, C.; Tan, Y.; Chen, W.; Luo, X.; Gao, Y.; Jia, X.; Wang, Z. Attention unet++: A nested attention-aware u-net for liver ct
image segmentation. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi,
United Arab Emirates, 25–28 October 2020; pp. 345–349.

34. Qiao, Z.; Du, C. Rad-unet: A residual, attention-based, dense unet for CT sparse reconstruction. J. Digit. Imaging 2022,
35, 1748–1758. [CrossRef] [PubMed]

35. Banerjee, S.; Lyu, J.; Huang, Z.; Leung, H.F.F.; Lee, T.T.Y.; Yang, D.; Su, S.; Zheng, Y.; Ling, S.H. Light-convolution Dense selection
U-net (LDS U-net) for ultrasound lateral bony feature segmentation. Appl. Sci. 2021, 11, 10180. [CrossRef]

36. Chen, Y.; Zheng, C.; Zhou, T.; Feng, L.; Liu, L.; Zeng, Q.; Wang, G. A deep residual attention-based U-Net with a biplane joint
method for liver segmentation from CT scans. Comput. Biol. Med. 2023, 152, 106421. [CrossRef]

37. Zhang, Z.; Wu, C.; Coleman, S.; Kerr, D. DENSE-INception U-net for medical image segmentation. Comput. Methods Programs
Biomed. 2020, 192, 105395. [CrossRef]

http://dx.doi.org/10.1021/acs.chemrev.0c00451
http://www.ncbi.nlm.nih.gov/pubmed/33147405
http://dx.doi.org/10.1038/s41566-021-00776-0
http://dx.doi.org/10.1088/1361-6560/abc5a5
http://dx.doi.org/10.3390/s24134358
http://www.ncbi.nlm.nih.gov/pubmed/39001137
http://dx.doi.org/10.1007/s10916-018-1088-1
http://www.ncbi.nlm.nih.gov/pubmed/30298337
http://dx.doi.org/10.3390/signals3020018
http://dx.doi.org/10.3390/s23020734
http://www.ncbi.nlm.nih.gov/pubmed/36679530
http://dx.doi.org/10.1016/j.compbiomed.2024.108705
http://www.ncbi.nlm.nih.gov/pubmed/38865781
http://dx.doi.org/10.1016/j.neunet.2019.08.025
http://www.ncbi.nlm.nih.gov/pubmed/31536901
http://dx.doi.org/10.3389/fgene.2021.639930
http://www.ncbi.nlm.nih.gov/pubmed/33679900
http://dx.doi.org/10.1016/j.cmpb.2023.107437
http://dx.doi.org/10.1109/LGRS.2018.2802944
http://dx.doi.org/10.1016/j.media.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30802813
http://dx.doi.org/10.3390/diagnostics11030501
http://dx.doi.org/10.3390/app10175729
http://dx.doi.org/10.1007/s10278-022-00685-w
http://www.ncbi.nlm.nih.gov/pubmed/35882689
http://dx.doi.org/10.3390/app112110180
http://dx.doi.org/10.1016/j.compbiomed.2022.106421
http://dx.doi.org/10.1016/j.cmpb.2020.105395


Sensors 2024, 24, 4668 16 of 19

38. Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor
segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [CrossRef]

39. McHugh, H.; Talou, G.M.; Wang, A. 2d Dense-UNet: A clinically valid approach to automated glioma segmentation. In
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020,
Held in Conjunction with MICCAI 2020, Lima, Peru, 4 October 2020, Revised Selected Papers, Part II 6; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 69–80.

40. Zhao, H.; Jia, J.; Koltun, V. Exploring self-attention for image recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10076–10085.

41. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008

42. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45.

43. Grigsby, J.; Wang, Z.; Nguyen, N.; Qi, Y. Long-range transformers for dynamic spatiotemporal forecasting. arXiv 2021,
arXiv:2109.12218.

44. Lund, B.D.; Wang, T. Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Libr. Hi Tech News 2023,
40, 26–29. [CrossRef]

45. Nadkarni, P.M.; Ohno-Machado, L.; Chapman, W.W. Natural language processing: An introduction. J. Am. Med. Inform. Assoc.
2011, 18, 544–551. [CrossRef] [PubMed]

46. Ribeiro, A.H.; Tiels, K.; Aguirre, L.A.; Schön, T. Beyond exploding and vanishing gradients: Analysing RNN training using
attractors and smoothness. PMLR 2020, 108, 2370–2380.

47. Fernández, S.; Graves, A.; Schmidhuber, J. Sequence labelling in structured domains with hierarchical recurrent neural networks.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007.

48. Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; Dosovitskiy, A. Do vision transformers see like convolutional neural
networks? Adv. Neural Inf. Process. Syst. 2021, 34, 12116–12128.

49. Maurício, J.; Domingues, I.; Bernardino, J. Comparing vision transformers and convolutional neural networks for image
classification: A literature review. Appl. Sci. 2023, 13, 5521. [CrossRef]

50. Bai, Y.; Mei, J.; Yuille, A.L.; Xie, C. Are transformers more robust than cnns? Adv. Neural Inf. Process. Syst. 2021, 34, 26831–26843.
51. Tuli, S.; Dasgupta, I.; Grant, E.; Griffiths, T.L. Are convolutional neural networks or transformers more like human vision? arXiv

2021, arXiv:2105.07197.
52. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
53. Hao, Y.; Dong, L.; Wei, F.; Xu, K. Self-attention attribution: Interpreting information interactions inside transformer. In

Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 12963–12971.
54. Liu, Y.; Chen, J.; Chang, Y.; He, S.; Zhou, Z. A novel integration framework for degradation-state prediction via transformer

model with autonomous optimizing mechanism. J. Manuf. Syst. 2022, 64, 288–302. [CrossRef]
55. Casola, S.; Lauriola, I.; Lavelli, A. Pre-trained transformers: An empirical comparison. Mach. Learn. Appl. 2022, 9, 100334.

[CrossRef]
56. Dehghani, M.; Gouws, S.; Vinyals, O.; Uszkoreit, J.; Kaiser, Ł. Universal transformers. arXiv 2018, arXiv:1807.03819.
57. Raganato, A.; Tiedemann, J. An analysis of encoder representations in transformer-based machine translation. In Proceedings of

the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Brussels, Belgium, 1 November
2018; pp. 287–297.

58. Wu, K.; Peng, H.; Chen, M.; Fu, J.; Chao, H. Rethinking and improving relative position encoding for vision transformer.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 10033–10041.

59. Vig, J. A multiscale visualization of attention in the transformer model. arXiv 2019, arXiv:1906.05714.
60. Xiong, R.; Yang, Y.; He, D.; Zheng, K.; Zheng, S.; Xing, C.; Zhang, H.; Lan, Y.; Wang, L.; Liu, T. On layer normalization in

the transformer architecture. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020;
pp. 10524–10533.

61. Pan, X.; Ge, C.; Lu, R.; Song, S.; Chen, G.; Huang, Z.; Huang, G. On the integration of self-attention and convolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 815–825.

62. Pu, Q.; Xi, Z.; Yin, S.; Zhao, Z.; Zhao, L. Advantages of transformer and its application for medical image segmentation: A survey.
BioMed. Eng. OnLine 2024, 23, 14. [CrossRef]

63. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

64. Gheflati, B.; Rivaz, H. Vision transformers for classification of breast ultrasound images. In Proceedings of the 2022 44th Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 480–483.

http://dx.doi.org/10.1109/TMI.2018.2845918
http://dx.doi.org/10.1108/LHTN-01-2023-0009
http://dx.doi.org/10.1136/amiajnl-2011-000464
http://www.ncbi.nlm.nih.gov/pubmed/21846786
http://dx.doi.org/10.3390/app13095521
http://dx.doi.org/10.1016/j.jmsy.2022.07.004
http://dx.doi.org/10.1016/j.mlwa.2022.100334
http://dx.doi.org/10.1186/s12938-024-01212-4


Sensors 2024, 24, 4668 17 of 19

65. Zhou, D.; Kang, B.; Jin, X.; Yang, L.; Lian, X.; Jiang, Z.; Hou, Q.; Feng, J. Deepvit: Towards deeper vision transformer. arXiv 2021,
arXiv:2103.11886.

66. Liu, X.; Yu, H.F.; Dhillon, I.; Hsieh, C.J. Learning to encode position for transformer with continuous dynamical model. In
Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 6327–6335.

67. Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient
semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote. Sens. 2022, 190, 196–214. [CrossRef]

68. Xie, Y.; Zhang, J.; Shen, C.; Xia, Y. Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation. In
Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg,
France, 27 September–1 October 2021, Proceedings, Part III 24; Springer: Berlin/Heidelberg, Germany, 2021; pp. 171–180.

69. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv
2020, arXiv:2010.04159.

70. Yan, X.; Tang, H.; Sun, S.; Ma, H.; Kong, D.; Xie, X. After-unet: Axial fusion transformer unet for medical image segmentation. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022;
pp. 3971–3981.

71. Heidari, M.; Kazerouni, A.; Soltany, M.; Azad, R.; Aghdam, E.K.; Cohen-Adad, J.; Merhof, D. Hiformer: Hierarchical multi-scale
representations using transformers for medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 6202–6212.

72. Liu, Y.; Wang, H.; Chen, Z.; Huangliang, K.; Zhang, H. TransUNet+: Redesigning the skip connection to enhance features in
medical image segmentation. Knowl.-Based Syst. 2022, 256, 109859. [CrossRef]

73. Chi, J.; Li, Z.; Sun, Z.; Yu, X.; Wang, H. Hybrid transformer UNet for thyroid segmentation from ultrasound scans. Comput. Biol.
Med. 2023, 153, 106453. [CrossRef]

74. Sun, G.; Pan, Y.; Kong, W.; Xu, Z.; Ma, J.; Racharak, T.; Nguyen, L.M.; Xin, J. DA-TransUNet: Integrating spatial and channel
dual attention with transformer U-net for medical image segmentation. Front. Bioeng. Biotechnol. 2024, 12, 1398237. [CrossRef]
[PubMed]

75. Li, Z.; Zheng, Y.; Shan, D.; Yang, S.; Li, Q.; Wang, B.; Zhang, Y.; Hong, Q.; Shen, D. Scribformer: Transformer makes cnn work
better for scribble-based medical image segmentation. IEEE Trans. Med. Imaging 2024, 43, 2254–2265. [CrossRef]

76. Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image
segmentation. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2022; pp. 205–218.

77. Zhang, J.; Qin, Q.; Ye, Q.; Ruan, T. ST-unet: Swin transformer boosted U-net with cross-layer feature enhancement for medical
image segmentation. Comput. Biol. Med. 2023, 153, 106516. [CrossRef] [PubMed]

78. Azad, R.; Heidari, M.; Shariatnia, M.; Aghdam, E.K.; Karimijafarbigloo, S.; Adeli, E.; Merhof, D. Transdeeplab: Convolution-free
transformer-based deeplab v3+ for medical image segmentation. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 91–102.

79. Liang, J.; Yang, C.; Zeng, M.; Wang, X. TransConver: Transformer and convolution parallel network for developing automatic
brain tumor segmentation in MRI images. Quant. Imaging Med. Surg. 2022, 12, 2397. [CrossRef]

80. Yang, H.; Yang, D. CSwin-PNet: A CNN-Swin Transformer combined pyramid network for breast lesion segmentation in
ultrasound images. Expert Syst. Appl. 2023, 213, 119024. [CrossRef]

81. Chen, D.; Yang, W.; Wang, L.; Tan, S.; Lin, J.; Bu, W. PCAT-UNet: UNet-like network fused convolution and transformer for
retinal vessel segmentation. PLoS ONE 2022, 17, e0262689. [CrossRef] [PubMed]

82. Fu, L.; Chen, Y.; Ji, W.; Yang, F. SSTrans-Net: Smart Swin Transformer Network for medical image segmentation. Biomed. Signal
Process. Control. 2024, 91, 106071. [CrossRef]

83. Pan, S.; Liu, X.; Xie, N.; Chong, Y. EG-TransUNet: A transformer-based U-Net with enhanced and guided models for biomedical
image segmentation. BMC Bioinform. 2023, 24, 85. [CrossRef] [PubMed]

84. Azad, R.; Jia, Y.; Aghdam, E.K.; Cohen-Adad, J.; Merhof, D. Enhancing Medical Image Segmentation with TransCeption: A
Multi-Scale Feature Fusion Approach. arXiv 2023, arXiv:2301.10847.

85. Ma, M.; Xia, H.; Tan, Y.; Li, H.; Song, S. HT-Net: Hierarchical context-attention transformer network for medical ct image
segmentation. Appl. Intell. 2022, 52, 10692–10705. [CrossRef]

86. Huang, S.; Li, J.; Xiao, Y.; Shen, N.; Xu, T. RTNet: Relation transformer network for diabetic retinopathy multi-lesion segmentation.
IEEE Trans. Med. Imaging 2022, 41, 1596–1607. [CrossRef] [PubMed]

87. Zhang, Y.; Balestra, G.; Zhang, K.; Wang, J.; Rosati, S.; Giannini, V. MultiTrans: Multi-branch transformer network for medical
image segmentation. Comput. Methods Programs Biomed. 2024, 254, 108280. [CrossRef] [PubMed]

88. Li, S.; Sui, X.; Luo, X.; Xu, X.; Liu, Y.; Goh, R. Medical image segmentation using squeeze-and-expansion transformers. arXiv
2021, arXiv:2105.09511.

89. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language
representations. arXiv 2019, arXiv:1909.11942.

90. Chen, P.C.; Tsai, H.; Bhojanapalli, S.; Chung, H.W.; Chang, Y.W.; Ferng, C.S. A simple and effective positional encoding for
transformers. arXiv 2021, arXiv:2104.08698.

91. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. arXiv 2018, arXiv:1803.02155.

http://dx.doi.org/10.1016/j.isprsjprs.2022.06.008
http://dx.doi.org/10.1016/j.knosys.2022.109859
http://dx.doi.org/10.1016/j.compbiomed.2022.106453
http://dx.doi.org/10.3389/fbioe.2024.1398237
http://www.ncbi.nlm.nih.gov/pubmed/38827037
http://dx.doi.org/10.1109/TMI.2024.3363190
http://dx.doi.org/10.1016/j.compbiomed.2022.106516
http://www.ncbi.nlm.nih.gov/pubmed/36628914
http://dx.doi.org/10.21037/qims-21-919
http://dx.doi.org/10.1016/j.eswa.2022.119024
http://dx.doi.org/10.1371/journal.pone.0262689
http://www.ncbi.nlm.nih.gov/pubmed/35073371
http://dx.doi.org/10.1016/j.bspc.2024.106071
http://dx.doi.org/10.1186/s12859-023-05196-1
http://www.ncbi.nlm.nih.gov/pubmed/36882688
http://dx.doi.org/10.1007/s10489-021-03010-0
http://dx.doi.org/10.1109/TMI.2022.3143833
http://www.ncbi.nlm.nih.gov/pubmed/35041595
http://dx.doi.org/10.1016/j.cmpb.2024.108280
http://www.ncbi.nlm.nih.gov/pubmed/38878361


Sensors 2024, 24, 4668 18 of 19

92. Perera, S.; Navard, P.; Yilmaz, A. SegFormer3D: An Efficient Transformer for 3D Medical Image Segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 4981–4988.

93. Wang, W.; Chen, C.; Ding, M.; Yu, H.; Zha, S.; Li, J. Transbts: Multimodal brain tumor segmentation using transformer. In
Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg,
France, 27 September–1 October 2021, Proceedings, Part I 24; Springer: Berlin/Heidelberg, Germany, 2021; pp. 109–119.

94. Cuenat, S.; Couturier, R. Convolutional neural network (cnn) vs. vision transformer (vit) for digital holography. In Proceedings
of the 2022 2nd International Conference on Computer, Control and Robotics (ICCCR), Shanghai, China, 18–20 March 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 235–240.

95. Zhou, H.Y.; Lu, C.; Yang, S.; Yu, Y. Convnets vs. transformers: Whose visual representations are more transferable? In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2230–2238.

96. Tang, Y.; Yang, D.; Li, W.; Roth, H.R.; Landman, B.; Xu, D.; Nath, V.; Hatamizadeh, A. Self-supervised pre-training of swin
transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA 18–24 June 2022; pp. 20730–20740.

97. You, C.; Zhao, R.; Staib, L.H.; Duncan, J.S. Momentum contrastive voxel-wise representation learning for semi-supervised
volumetric medical image segmentation. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 639–652.

98. You, C.; Dai, W.; Min, Y.; Staib, L.; Duncan, J.S. Implicit anatomical rendering for medical image segmentation with stochastic
experts. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Vancouver, BC, Canada, 8–12 October 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 561–571.

99. Zhu, X.; Goldberg, A.B. Introduction to Semi-Supervised Learning; Springer Nature: Berlin/Heidelberg, Germany, 2022.
100. Jiang, J.; Veeraraghavan, H. Self-Supervised Pretraining in the Wild Imparts Image Acquisition Robustness to Medical Image

Transformers: An Application to Lung Cancer Segmentation. Medical Imaging with Deep Learning, 2024. Available online:
https://openreview.net/forum?id=G9Te2IevNm (accessed on 1 July 2024).

101. Cai, Z.; Ravichandran, A.; Favaro, P.; Wang, M.; Modolo, D.; Bhotika, R.; Tu, Z.; Soatto, S. Semi-supervised vision transformers at
scale. Adv. Neural Inf. Process. Syst. 2022, 35, 25697–25710.

102. You, C.; Zhao, R.; Liu, F.; Dong, S.; Chinchali, S.; Topcu, U.; Staib, L.; Duncan, J. Class-aware adversarial transformers for medical
image segmentation. Adv. Neural Inf. Process. Syst. 2022, 35, 29582–29596.

103. Arkin, E.; Yadikar, N.; Xu, X.; Aysa, A.; Ubul, K. A survey: Object detection methods from CNN to transformer. Multimed. Tools
Appl. 2023, 82, 21353–21383. [CrossRef]

104. Wang, W.; Zhou, T.; Yu, F.; Dai, J.; Konukoglu, E.; Van Gool, L. Exploring cross-image pixel contrast for semantic segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 7303–7313.

105. You, C.; Dai, W.; Min, Y.; Liu, F.; Clifton, D.; Zhou, S.K.; Staib, L.; Duncan, J. Rethinking semi-supervised medical image
segmentation: A variance-reduction perspective. Adv. Neural Inf. Process. Syst. 2024, 36, 9984–10021.

106. Xu, Z.; Dai, Y.; Liu, F.; Wu, B.; Chen, W.; Shi, L. Swin MoCo: Improving parotid gland MRI segmentation using contrastive
learning. Med. Phys. 2024.. [CrossRef] [PubMed]

107. Huang, H.; Xie, S.; Lin, L.; Tong, R.; Chen, Y.W.; Wang, H.; Li, Y.; Huang, Y.; Zheng, Y. ClassFormer: Exploring class-aware
dependency with transformer for medical image segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Washington DC, USA, 7–14 February 2023; Volume 37, pp. 917–925.

108. Yuan, N.; Zhang, Y.; Lv, K.; Liu, Y.; Yang, A.; Hu, P.; Yu, H.; Han, X.; Guo, X.; Li, J.; et al. HCA-DAN: Hierarchical class-aware
domain adaptive network for gastric tumor segmentation in 3D CT images. Cancer Imaging 2024, 24, 63. [CrossRef] [PubMed]

109. Guo, X.; Lin, X.; Yang, X.; Yu, L.; Cheng, K.T.; Yan, Z. UCTNet: Uncertainty-guided CNN-Transformer hybrid networks for
medical image segmentation. Pattern Recognit. 2024, 152, 110491. [CrossRef]

110. Xiao, Z.; Sun, H.; Liu, F. Semi-supervised CT image segmentation via contrastive learning based on entropy constraints. Biomed.
Eng. Lett. 2024, 1–13. [CrossRef]

111. Wu, Y.; Li, X.; Zhou, Y. Uncertainty-aware representation calibration for semi-supervised medical imaging segmentation.
Neurocomputing 2024, 595, 127912. [CrossRef]

112. Zhao, X.; Qi, Z.; Wang, S.; Wang, Q.; Wu, X.; Mao, Y.; Zhang, L. Rcps: Rectified contrastive pseudo supervision for semi-supervised
medical image segmentation. IEEE J. Biomed. Health Inform. 2023, 28, 251–261. [CrossRef] [PubMed]

113. Azad, R.; Aghdam, E.K.; Rauland, A.; Jia, Y.; Avval, A.H.; Bozorgpour, A.; Karimijafarbigloo, S.; Cohen, J.P.; Adeli, E.; Merhof, D.
Medical image segmentation review: The success of u-net. arXiv 2022, arXiv:2211.14830.

114. He, K.; Gan, C.; Li, Z.; Rekik, I.; Yin, Z.; Ji, W.; Gao, Y.; Wang, Q.; Zhang, J.; Shen, D. Transformers in medical image analysis.
Intell. Med. 2022, 3, 59–78.
U-Net-Based medical image segmentation. J. Healthc. Eng. 2022. [CrossRef]

115. Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]
116. Mehrani, P.; Tsotsos, J.K. Self-attention in vision transformers performs perceptual grouping, not attention. arXiv 2023,

arXiv:2303.01542.

https://openreview.net/forum?id=G9Te2IevNm
http://dx.doi.org/10.1007/s11042-022-13801-3
http://dx.doi.org/10.1002/mp.17128
http://www.ncbi.nlm.nih.gov/pubmed/38749016
http://dx.doi.org/10.1186/s40644-024-00711-w
http://www.ncbi.nlm.nih.gov/pubmed/38773670
http://dx.doi.org/10.1016/j.patcog.2024.110491
http://dx.doi.org/10.1007/s13534-024-00387-y
http://dx.doi.org/10.1016/j.neucom.2024.127912
http://dx.doi.org/10.1109/JBHI.2023.3322590
http://www.ncbi.nlm.nih.gov/pubmed/37801388
http://dx.doi.org/10.1016/j.imed.2022.07.002
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442


Sensors 2024, 24, 4668 19 of 19

117. Han, X.; Zhang, Z.; Ding, N.; Gu, Y.; Liu, X.; Huo, Y.; Qiu, J.; Yao, Y.; Zhang, A.; Zhang, L.; et al. Pre-trained models: Past, present
and future. AI Open 2021, 2, 225–250. [CrossRef]

118. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018.
Available online: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed on 1 July 2024).

119. Team, G.; Anil, R.; Borgeaud, S.; Wu, Y.; Alayrac, J.B.; Yu, J.; Soricut, R.; Schalkwyk, J.; Dai, A.M.; Hauth, A.; et al. Gemini: A
family of highly capable multimodal models. arXiv 2023, arXiv:2312.11805.

120. Du, G.; Cao, X.; Liang, J.; Chen, X.; Zhan, Y. Medical image segmentation based on u-net: A review. J. Imaging Sci. Technol. 2020,
64, 020508-1–020508-12. [CrossRef]

121. Chen, H.; Dong, Y.; Lu, Z.; Yu, Y.; Han, J. Pixel Matching Network for Cross-Domain Few-Shot Segmentation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 978–987.

122. Li, Z.; Chen, Z.; Liu, X.; Jiang, J. Depthformer: Exploiting long-range correlation and local information for accurate monocular
depth estimation. Mach. Intell. Res. 2023, 20, 837–854. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.aiopen.2021.08.002
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
http://dx.doi.org/10.2352/J.ImagingSci.Technol.2020.64.2.020508
http://dx.doi.org/10.1007/s11633-023-1458-0

	Introduction
	Medical Imaging Segmentation
	Difficulty from Imaging Sensor
	U-Net and Its Variants' Structures
	Residual Module
	Intention Module


	Transformer in Medical Imaging
	Transformers in Computer Vision
	Feature Extraction
	Hybrid Structure
	Self-Attention Block
	Others
	Summary

	Learning Strategy
	Semi-Supervision
	Class Awareness Enhancement
	Uncertainty Awareness


	Discussion and Limitation
	Conclusions and Research Direction
	References

