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ABSTRACT 5G and the Internet of Things (IoT) are a potent combination that offers a vast IoT infrastructure
that can support billions of connected devices while maintaining reliability, affordability, and high-speed
connectivity. Nevertheless, the integration of 5G-enabled IoT has received insufficient attention from security
analysts, engineers, and researchers, resulting in a lack of information and viable solutions. This study
investigates the benefits and issues associated with 5G-enabled IoT, including its privacy and security
concerns as well as the technology drivers that enable its various layers. By incorporating 5G technology
into IoT, several enhancements have been achieved, including enhanced reliability, simplicity, practicability,
analysis, efficiency, agility, flexibility, and accessibility. To achieve the full potential of 5G for IoT, however,
researchers must also address many research obstacles, such as designing the 5G-IoT architecture, managing
committed machine interactions, and addressing security concerns. A promising strategy for overcoming
these obstacles involves ensuring compatibility of operating systems with all devices, which will lead to
the development of modern open-source standardization for smooth communication across diverse devices.
This innovation will improve the security and privacy of 5G-enabled IoT devices by equipping their hardware
with the intelligence to recognize, verify, and authorize processes with predetermined characteristics. This
will provide authorized users with full autonomy and persistent connectivity, enhancing the overall user
experience. However, 5G requires a thorough examination of its implications and difficulties. A safer
and more efficient ecosystem for 5G-enabled IoT may be established by addressing these concerns and
encouraging industry-wide collaboration.

INDEX TERMS IoT, Internet of Things, 5G-enabled IoT, 5G, 5G-IoT technology, IoT architecture.

I. INTRODUCTION
The IoT is a worldwide system based on common commu-
nication protocols that employ a variety of data collection
and transmission methods. IoT components were expected
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to connect more than 34 billion devices worldwide as of
2021 [1]. Since the devices increase each year, huge data are
generated, which is problematic as these data are large [2],
[3], have more modes [4], [5], move at a faster rate [6], [7],
[8], have better data quality [9], [10], [11], and are heteroge-
neous [12], [13]. In the meantime, 5G networks are emerging
as a major driver of IoT innovation and are setting the basis
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for billions of internet-connected sensors. The co-existence
of a 5G network with IoT allows high data transfer rates,
low energy usage for devices with limited resources [14],
[15], [16], minimal latency (less than 2 milliseconds) [17],
[18], [19], and the unification of disparate technologies or
platforms. Moreover, there are several methods and tech-
nologies that researchers have anticipated over the years for
adapting the IoT to the 5G network. Some of these methods
are full-duplex (FD) [20], [21], [22], massive multiple-input
multiple-output (mMIMO) [23], [24], [25], [26], millimeter-
wave (mmWave) [27], [28], and machine-to-machine (M2M)
communications [29], [30], [31]. These methods can con-
tribute significantly to the provision of sophisticated services
and connect billions of heterogeneous and homogeneous
sensor-equipped devices.

The foundation of 5G has been built upon the 4G LTE
network, which has already provided users with data, internet,
and phone services [8]. The 5G network will considerably
enhance speed and reliability, enabling future IoT devices to
connect effectively and quickly. 5G networks offer more than
20 times the speed of 4G and a stable internet connection
for a significant number of devices at once [32]. 5G net-
works have a wide gigabit broadcasting capability and can
support about 65,000 simultaneous connections. They allow
bi-directional shaping of bandwidths and are more secure
than a 4G network [3], [33], [34]. The five main architec-
tures of 5G in an IoT network are the network layer, the
IoT sensor layer, the communication layer, the architecture
layer, and the application layer [22], [35], [36], [37]. These
architectures are involved in the data collection process,
computation, analysis, and information exchange between
the device and communication networks. The development
of IoT services has enabled numerous industries, including
intelligent home interconnection [38], [39], [40], surgery
through remote equipment [41], [42], [43], [44], linked autos,
and essential operations. 5G-enabled IoT encompasses awide
range of improvements, including sensitivity, speed, high
bandwidth, and multi-device communication. 5G-IoT can be
implemented in households, healthcare, cities, smart indus-
tries and transportation, thereby enhancing quality of life.

5G has ushered in a massive transformation in the wireless
technology sector. With the expansion of 5G-enabled IoT
devices and networks, both challenges and security concerns
are increasing. These issues include bandwidth efficiency,
minimal latency, relatively inexpensive, the need for an
extended battery life and reduced energy consumption [45].
Even though the 5G network is faster than normal networks,
assuring connectivity in a broad area with a large number
of devices and enabling high mobility for these devices is
extremely difficult. 5G-enabled IoT devices require a longer
battery life because of the increasing power consumption,
power deficiency, and battery backup requirements of smart
devices [46]. Moreover, a huge number of sensors must be
placed in an area to connect a wide variety of devices. When
many sensor nodes are installed, the number of connected

devices increases, which poses coverage issues [47]. These
are the issues with IoT scalability, and software-defined net-
working may provide a solution [48], [49], [50], [51]. The
review studies emphasize the importance of addressing these
issues and highlight the need for standardization to protect
personal data in the expanding attack surface of 5G-enabled
IoT.

While some studies have reviewed 5G-IoT technology and
its challenges, few have focused on standards and technical
difficulties [8], [52], [53], [54]. Yet, standards and technical
difficulties have been the focus of very few review arti-
cles. For instance, Shafique et al. [52] discussed the issues
associated with 5G-enabled IoT in extensible depth and pro-
vided solutions for these challenges. They highlighted how
implementing quality of service (QoS) criteria in modern 5G-
IoT applications will be difficult because of the changing
traffic patterns as well as privacy and connection concerns.
However, they did not consider the security issues that may
arise when the attack surface expands as the usage of 5G-
enabled IoT increases. Sicari also [54] addressed the issues
related to the security and privacy of 5G-enabled IoT. The
main challenges that have been discussed include data secu-
rity, disclosure of resources, detecting rogue nodes and trust,
as well as recording and reporting. However, how standard-
ization may be incorporated into the protocol to control the
security issues or if the existing tools and approaches can be
used to resolve these issues was not addressed. In another
study [53], the effects of network slicing on 5G-enabled
IoT were described. In addition to outlining the benefits of
5G-IoT and its potential uses, the study also discussed the
limitations, such as scalability, dynamic security, and vari-
ety of applications. However, the issues were addressed in
great depth, and the future directions were more generalized
than specific. Most of the previous reviews [35], [44], [52],
[54], [55], [56], [57], [58], [59], [60], [61] emphasised either
privacy and security concerns, enabling technology drivers
in 5G-IoT layers, 5G-enabled IoT requirements, or/and chal-
lenges, prospects and opportunities of 5G-IoT as shown in
Table 1. In contrast, this review concentrates on privacy and
security concerns, enabling technology drivers in 5G-IoT lay-
ers, and 5G-enabled IoT requirements, providing consumers
with valuable insights and enhancing the dependability of
their connected devices in light of the potential growth of
5G networks. This comprehensive survey provides valuable
insights for researchers, engineers, and policymakers seeking
to develop and implement secure and efficient 5G-enabled
IoT solutions in an ever-changing technological landscape.

II. OVERVIEW OF THE 5G-IOT ARCHITECTURE
The IoT has been using 4G networks for a long time, but
it is becoming increasingly inadequate in meeting the needs
of a growing population and more sophisticated IoT applica-
tions. The 5G networks are being utilized to largely expand
current IoT to improve telecommunication services. Integrat-
ing a 5G-enabled IoT framework (Figure 1), supported by
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TABLE 1. A comparison between the recent previous reviews and the current one.

edge computing and smart sensing devices, represents a new
era in the way data is transmitted and processed. Here, 5G
networks facilitate rapid data transfer with nearly nonexis-
tent latency [62], allowing for faultless interaction between
various intelligent devices. Complementing this infrastruc-
ture, edge computing enables the processing and analysis
of data at the edge of the network, decreasing reliance on
centralized cloud computing and enhancing the potential for
timely decisions. Smart sensing devices, on the other hand,
can accurately capture and interpret data from the real world
because they are equipped with technologically advanced
sensors and AI algorithms. Bringing together 5G wireless
connectivity, edge computing, and smart sensing devices has
the potential to drive innovation across a wide range of sec-
tors, from autonomous vehicles and smart cities to healthcare
and industrial automation, radically reshaping the way we
connect to and engage with our environments and paving the
way for previously unattainable levels of productivity and
connectivity.

The security and network advantages of IoT are propelling
the evolution of the Internet [55]. However, they pose several
issues such as huge numbers of nodes, security, and new
protocols. 5G technology enables the incorporation of new
technologies into IoT to provide innovative and effective
solutions to these issues. For instance, in the agriculture
sector, 5G-powered IoT can be utilized for optimization and

FIGURE 1. 5G-enabled IoT framework.

monitoring crop conditions in real time, ensuring efficient
resource usage and higher yields [63].

A substantial quantity of devices will be connected in the
near future via the 5G-IoT architecture, which will pave
the path for cutting-edge applications including smart cities,
the Internet of Vehicles (IoV), manufacturing, agriculture,
and healthcare [35]. Wireless sensors, controllers, and actu-
ators are standard components of the 5G-IoT architecture.
The communication layer is made up of a device-to-device
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(D2D) and connection sub-layer, data storage, fog com-
puting, application, management service, process, collab-
oration, and security layers [64]. Within the framework
of IoV, 5G-enabled IoT can provide real-time traffic data,
enabling smart vehicles to navigate efficiently and avoid
congested routes, enhancing road safety, and reducing traffic
congestion [65].

A study conducted by Rahimi et al. [66] explored the
unreliability of IoT 4.0 architecture with growing customer
demands. They discussed a next-generation IoT framework
based on 5G’s new technologies with particular benefits
such as D2D architecture and communication. The proposed
combined architecture was found to be efficient, agile, scal-
able, non-complex, and able to satisfy demands. 5G-enabled
IoT can be implemented in the healthcare industry to facil-
itate remote patient monitoring. This would enable medical
practitioners to track health metrics and administer timely
interventions, thereby improving patient care and decreasing
the frequency of hospital visits [67].
Another service-oriented network management framework

proposed by Huang et al. [9] offered an architecture that
can support effectively managing 5G-enabled IoT systems.
This framework lowers network traffic and simplifies the
management of the network by introducing a SAaC (ser-
vice aggregation and caching) scheme. To travel across
the data-centric system architecture, SAaC first converts
the information into services. The study showed that the
SAaC approach decreased reaction time by 20.52-56.09%,
traffic by 10.85-37.67%, and energy usage by less than
50% when compared to standard methods. Combining the
services lowers the congestion and energy requirements.
In smart cities, 5G-enabled IoT can optimize energy usage
by intelligently managing street lighting and environmen-
tal monitoring, reducing energy consumption and carbon
emissions [68].

III. BACKGROUND AND KEY VISIONS OF 5G-IOT
A. BACKGROUND OF 5G-IOT
IoT systems, which connect billions of devices via wireless
communications, employ a variety of wireless technologies,
including 2G, 3G, 4G, Bluetooth, and Wi-Fi, among oth-
ers [11]. 1G was limited to voice. Voice and texting were
handled by 2G, whereas voice, messaging, and data were han-
dled by 3G, and 4G networks were developed for broadband
internet experiences. IoT is vastly used, yet 3G and 4G are
not entirely suited for IoT systems [11]. The basis for 5G
development will be laid by 4G LTE, which provides users
with phones, data, and the internet. 5G will considerably
enhance capacity and speed, allowing future IoT devices to
connect reliably and quickly. The present 4G LTE technology
can deliver 1 Gbps transfer speeds, although factors such as
Wi-Fi signals, microwaves, buildings, and other objects can
disrupt the 4G signal [69]. Users might get speeds of up
to 10 Gbps on 5G networks, and they can connect a huge
number of devices at once [55].

To meet the demands of Industry 4.0, smart environ-
ments, and other applications, 5G networks and standards
are projected to address 4G network issues, e.g. better intri-
cate communications, computing capacities of devices, smart
intelligence, and so on [70]. Because systems with IoT
devices demand quicker data, 5G is the best option for them.
Many IoT applications are now limited by cellular network
latency. They are already employing cellular networks such
as 4G LTE that are connected to the cloud; however, gadgets
in these IoT solutions create so much data that processing and
analyzing it rapidly is problematic. When data volume rises,
latency increases, which increases delay, and necessitates the
use of a faster network, such as 5G. Due to increasing latency,
4G LTE’s efficacy is reduced [71].

Machine-type communication (MTC) systems in health-
care projects, smart city projects, and other IoT applications
require massive connection networks, resulting in IoT het-
erogeneity and several implementation issues. Short-ranged
MTC, e.g., BLE v4.0 [72], ZigBee [73], Wi-Fi, and long-
range communications, for instance, Low power wide area
(LPWA) [74], RPMA [75], Sigfox [76], LoRa [76], and so
on, have all been deployed in the last two decades. As a
mobile-based LPWA solution for IoT, the 3G partnership
project (3GPP) has provided Enhanced-MTC (eMTC)—an
extensible global system for mobile communication for IoT
and narrowband IoT (NBIoT) [69]. Existing cellular networks
cannot support MTC communications, which are critical in
the IoT. In this situation, the forthcoming 5G networks might
be a viable answer. In comparison to the current 4G (LTE),
5G may deliver the fastest data rates for cellular networks
with very low latency and better coverage of MTC commu-
nications, allowing for the most demanding IoT applications.
M2M connectivity facilitates enormous devices and allows
the goal of a linked society [77], [78].

Significant work on 5G-IoT has been done in the last few
years [79]. Some leading tech companies have collaborated
on a 5G wireless study to disclose a revolutionary set of
‘‘neuroscience-based algorithms’’ that accommodate video
qualities to the needs of the human eye, implying that wire-
less networks will have built-in human intelligence [55]. 5G
will make a significant contribution to the IoT by adding
a huge quantity of devices to build a truly huge IoT net-
work that employs devices to communicate and exchange
data without human assistance. Given the diverse range of
applications, it is challenging for the IoT to determine if
a device can meet application requirements [29]. Existing
IoT systemsmostly leverage specialized application domains,
for instance, Bluetooth Low Energy (BLE), ZigBee, and
others. Other technologies include Wi-Fi, LP-WA network,
and mobile communication (e.g., MTC with 3GPP, and
4G (LTE)), among others. The IoT is continually growing,
with new technologies being suggested and established ones
expanding into new application domains.

By making IoT and 5G technologies more approachable
and flexible, open-source standardization plays a crucial role
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in developing their widespread adoption and further devel-
opment. The open-source standardization model embodies a
collaborative and inclusive approach to promote interoper-
ability, innovation, and cost-effectiveness. By utilizing open-
source technologies and principles, this initiative promotes
the collaborative involvement of developers, researchers, and
industry stakeholders in establishing the required standards
and protocols for the smooth integration of 5G and IoT
technologies. Several noteworthy initiatives and components
exist within this domain. These include the open-source
5G core network [80], and open-source IoT platforms [81]
such as Eclipse IoT [82], ThingsBoard [83], and IoTMiddle-
ware [84]. Additionally, there are IoT protocols like message
queuing telemetry transport (MQTT) [85] and constrained
application protocol (CoAP), as well as edge computing
frameworks [86], software-defined networking (SDN) [87],
network function virtualization (NFV), device management
and security, and test and validation tools. The implementa-
tion of such a democratized approach not only expedites the
rollout of IoT solutions enabled by 5G technology, but also
guarantees a framework that is more versatile and adaptable.
This framework facilitates the advancement of interconnected
devices and services, contributing to the development of a
more intelligent and interconnected global community.

B. KEY VISIONS OF 5G-IOT
By 2030, approximately 80 billion devices will be associated
with the network and 20.5 billion devices are expected to
be connected [35]. In numerous technological domains, IoT
and 5G technologies are transforming and paving the way
in the fourth industrial revolution. D2D, M2M, vehicle-to-
anything (V2A), and vehicle-to-vehicle (V2V) are examples
of IoT ideas in which sensors, communication networks, and
networked devices provide every convenience [35]. Smart
industries, smart transportation, smart healthcare systems,
smart agriculture, smart homes, and other life-changing
applications may all benefit from IoT. 5G augments IoT
by providing better data speeds, shorter latency, less power
requirement, and greater flexibility.

The rapid advancement of IoT and 5G technologies
promises to provide significant benefits to end-users, notably
consumers and businesses [88]. Client information may be
used by businesses to improve their services and products.
They can also check their resources by using area trackers
and remote locking on selected devices [89]. Government
and open experts can save medical service costs by arranging
improved wellness assistance through remote wellness mon-
itoring, especially for older citizens. Furthermore, lowering
the overall upkeep cost of the structures, street maintenance,
and smart road lighting may make people’s lives easier.

Logistics, retail management, and various ISPs may all
benefit from it [90]. The transfer of information between
vehicles, streetlights, and sensors via IoT in-vehicle commu-
nication may be employed in collision-prone and accident-
prone scenarios. Smart houses employ smart lighting, smart

energy monitoring, and connections between various electri-
cal gadgets. Public safety and agriculture may both benefit
from IoT. In the industrial IoT, robotics internet may be
accomplished for smart factories [91]. Some of the top cel-
lular, semiconductor, and service companies are performing
research experiments to access 5G wireless technology by
2030 [35]. 5G research and testing are currently taking
place at multiple research institutes with world-class labora-
tory facilities. Recent developments in cellular technologies
promise to achieve higher internet speeds and longer battery
life, and also improve spectral efficiency, long-range com-
munications, and the ability to communicate with millions of
devices. 5G-IoT might be the biggest transformative technol-
ogy in the information technology domain.

For ubiquitous edge intelligence, image augmented reality,
virtual reality, tactile web, and tactile-controlled systems,
future data-intensive Industrial Internet of Things (IIoT)
services will include real-time broadband (uplink) [92]. Inte-
grated communications and localization services will also
be required. To enable these systems, the wireless industrial
internet needs to maintain broad and fine-grained coverages
as well as context-aware connectivity and ML-enabled flex-
ible network architecture [93]. 5G will be implemented in
big urban areas initially, therefore IoT applications for street-
lights and traffic lights are likely to be employed first [71].
When 5G is completely operational and covers the entire
region, the smart city as a larger idea will be realized using a
quicker 5G network where objects interact and make the best
decisions and gadgets. At various levels, these applications
range from smart homes and smart agriculture to autonomous
automobiles and robots. The IoT will change how businesses,
governments, and customers connect with the outside world.
The analysis revolution, which encompasses machine learn-
ing (ML) and artificial intelligence (AI), is the next key item
in IoT. This revolution makes smart decisions, autocorrects
mistakes, and calibrates devices for improved performance.

IV. ENABLING TECHNOLOGY DRIVERS IN 5G-IOT LAYERS
Drivers of enabling technology in the 5G-IoT layers are cru-
cial to the realization of a connected future. These innovations
extend all areas from ultra-low-latency communication tech-
nologies that enable real-time applications like autonomous
vehicles and industrial automation to energy-efficient designs
that lengthen the battery life of IoT devices, guaranteeing
their longevity and reducing operational costs. To secure
data protection and accommodate the massive number of
IoT devices predicted to be linked to 5G networks, robust
security mechanisms and scalable network architectures are
essential drivers [94]. Furthermore, the introduction of edge
computing, ML, and AI within the 5G-IoT framework intro-
duces a revolutionary potential for processing data nearer
to its source, improving data analysis, and driving automa-
tion across many different industries. The full potential of
5G-IoT, which will revolutionize industries and enrich our
daily lives, can only be accomplished by leveraging these
enabling technology drivers, which require standardization
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FIGURE 2. Enabling technology drivers in 5G-IoT layers.

efforts, regulatory frameworks, and the collaborative engage-
ment of industry and academia.

The ultra-connectivity required for the future cannot be
achieved with the network technologies of the present. When
executing extensive IoT initiatives, it is often necessary
to integrate wireless and wired network technologies. The
stability, response time, mobility, scalability, and security
needed for the mission-critical facilities in the ecosystem of
IoT could be taken by 5G [95]. The global consumer IoT tech-
nology adoption will reach a peak of 100% by 2030 [96]. For
end users, 5G offers fundamental conditions and ubiquitous
connectivity. These conditions include low latency,maximum
throughput, high versatility, efficient power utilization sys-
tems, and quick information transmission to enable a large
number of devices. The forthcoming 5G technology will
support tens of billions of connections, offer a bandwidth effi-
ciency of 10 Gbps, and have a very low latency of 1 ms [55].
The quantity of IoT applications will increase because of
the fifth-generation (5G) mobile network, including smart
thermostats, kitchen appliances, security cameras, and oth-
ers [95]. Several crucial enabling technologies, ranging from
physical connectivity to IoT applications, are included in
the 5G-enabled IoT. The key enabling technology drivers in
5G-IoT are outlined in Figure 2. The recent studies conducted
on the communication, architecture, and application layers
have been compiled together with their benefits, drawbacks,
and potential solutions in Table 2.

V. REQUIREMENTS IN 5G-ENABLED IOT
IoT technology is changing our lives by offering a large
number of applications that rely on the communications of
extremely diverse devices. Several studies were conducted on
the challenging domains of IoT, and the significant aspects
of IoT are: low cost of deployment, a large number of linked

FIGURE 3. Enabling technology drivers in 5G-IoT layers.

devices, and long battery life for billions of low-power, low-
cost devices (Figure 3).

A. LOW DEPLOYMENT COST
The expense of infrastructure and deployment is a sensitive
issue in addition to the cost of IoT devices. The low-cost roll-
out of 5G-IoT services can be attributable to several factors,
including the introduction of new technologies with enhanced
spectral efficiency, adaptable architecture, and additional
spectrum allocation [22], [113]. To ensure low deployment
costs, the performance outcomes of the proposed system’s
design must be exact, repeatable, and re-implementable in
the dynamic testing environment. To achieve accurate mea-
surements, the suggested design is evaluated frequently over
a given length of the period with specific trial and testbed
configurations that allow for precise performance results in
the 5G-IoT.

The use of SDN and NFV in 5G implementation will be
cost-effective [113]. The remote network function virtual-
ization (WNFV) virtualizes the whole network function to
facilitate the implementation of 5G-IoT, with NFV decou-
pling adaptable and scalable hardware with core network
operations to allow 5G-IoT to be focused on a generic cloud
server as a complement to 5G networks [114]. 5G NFV
will revolutionize the method by which 5G-IoT networks are
built, allowing for scalable and adaptable network services.
The radio access network’s viability will likewise be greatly
improved by the NFV. Oughton and Frias [115] analyzed
deployment costs in the United Kingdom by grouping places
with comparable cost characteristics into distinct ‘geotypes.’
It discovered that, using current capital intensity, 90% of the
population will be served at 50Mbps and the rest 10% will
face exponential price rises by 2027. The study reported that
spectrum can help reduce the cost of deploying a network
that can offer 10 Mbps for each client in rural regions. The
findings show that big headline speeds in rural areas should
be avoided by policymakers.

Nguyen et al. [116] examined an SDN and DMM-
based method. The avoidance of infrastructure-deployment
expenses of mobility-related modules at the point of access
is a fundamental benefit of this strategy. The control and data
planes are also orthogonal in this design. The scalability of
SDN with DMM was investigated in this study; however,
it did not account for bandwidth consumption penalties or
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TABLE 2. Summary of recent studies on the communication, architecture and application layers associated with their advantages and disadvantages.
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TABLE 2. (Continued.) Summary of recent studies on the communication, architecture and application layers associated with their advantages and
disadvantages.

the consequences of inter-slice heterogeneity. 5G fixed wire-
less access (FWA) makes broadband services speedy and
cost-effective in regions in which fixed-lined broadband is
unavailable. 5G FWA users are expected to have a substantial
influence in rising and established economies by providing
broadband to places in which fixed-lined carriers no longer
operate. Users will benefit most since FWA will give speeds
comparable to fiber-based services. Moreover, connecting a
home to broadband using FWA can save 74% on per-bit costs
than a wired connection [117].

B. LOW COST OF DEVICES
Multi-access edge computing (MEC) places AI, data analyt-
ics, and optimization capabilities at the edge and keeps the
IoT solution simple and affordable [118]. IoT devices may
create massive data. Allowing low-latency execution of this
data, rather than in the cloud or on the devices, can help
IoT systems maintain their adaptability and allow devices
to function with minimal maintenance. Measuring computa-
tional complexity can help to ensure the low cost of devices.
It assists in increasing the system’s efficiency by determining
its computational feasibility. It allows for the assessment of
additional complexity calculations generated by supplemen-
tal apps that are introduced as the system evolves [119].
3GPP has updated its Release 13 specifications to cover

narrowband IoT (NB-IoT). In contrast to short-range tech-
niques such as Bluetooth, ZigBee, and others, NB-IoT
techniques enable low-powered broad-area communication
in the licensed spectrum [55]. With NB-IoT, a tiny bandwidth
of roughly 200 kHz may be deployed. It also offers increased
coverage, enhanced energy-efficient battery performance,
and fewer complications for low-cost gadgets [120]. Reduc-
ing cost and high array gain have been the focus of research
in both narrowband and broadband mmWave communica-
tion, including analog beamforming, hybrid beamforming,
and electromagnetism. Zeng and Zhang [121] demonstrated
how a lens antenna array-empowered mmWave MIMO com-
munication architecture with fixed radio frequency (RF)

connectivity may achieve cost efficiency and substantial
antenna gains.

Researchers are developing and implementing low-cost
devices in different fields. A low-cost smart power meter
model was developed by [122]. The smart power meter’s
wM-Bus radio module enabled them to be involved in IoT
scenarios as a progressed infrastructure, which is already
in use for smart water and gas metering. Popa et al. [123]
presented a food-observing system that contains low-cost
sensors. The humidity level, gas level, and temperature of
vacuum-packed meals were all continually monitored by the
system. Six air quality IoT devices were constructed in this
study [124], each containing four distinct low-cost particulate
matter (PM) sensors, and those were distributed at two sepa-
rate locations in the experiment’s region. These tools were
outfitted with low power wide area network (LoRaWAN)
transceivers to evaluate LPWAN coverage at a city size. The
study indicated that a few low-cost PM sensors are capable
of observing air quality and identifying PM characteristics
and LoRaWAN is appropriate for city-scaled sensor coverage
when the connection is a problem. It is widely acknowledged
that LoRa is among themost promising technologies for long-
range, low-power data transmissions [125]. LoRa has also the
capability to function as a self-contained network without any
associated subscription fees [126].

C. EXTENDED COVERAGE
Physical device connectivity needs sufficient network band-
width, long battery life, and enhanced coverage for the
devices to reach difficult places [56]. This search for
wide-sensing applicability is projected as a key roadblock
for legacy wireless communications. With dozens to hun-
dreds of antenna components, Massive MIMO is a rising
5G technology. Larger numbers of antennas enhance signal
dimension, which provides higher aggregate data rates, better
radiant energy efficiency, and greater interference robust-
ness [127]. Massive MIMO is essential for increasing spec-
trum efficiency. Multi-user MIMO (MU-MIMO), Very-large
MIMO (VLM), and other advanced MIMO algorithms have
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recently been developed. The 3GPP LTE-A standard featured
MU-MIMO that boosts network capacity by using a larger
number of antennas at the base station (BS) [128].

Spatial multiplexing, when combined with high band-
width, would increase network capacity and decrease sig-
naling, congestion, and network overloads [56]. HetNets are
rapidly developing into nested tiny cells, including picocells,
microcells, and femtocells [129]. Tiny-cell HetNets are the
key components of the upcoming 5G network [98]. These
low-powered tiny BSs fill in coverage gaps in the network.
In the crowded IoT world, boosted coverage support is a cru-
cial design aspect, and this can be achieved by HetNets. The
MTC architecture, for example, was suggested by the Euro-
pean Telecommunication Standard Institute and the 3GPP,
in which machine-type devices can connect to the networks
via old BSs or tiny cells [130].
To offer long-range communication, LoRa uses a

spread-spectrum approach with frequency shifting key mod-
ulation that allows data to be demodulated even below the
noise floor [131]. The technique notably develops the link
budget of the LoRa application. Because of its long-range,
LoRa is appropriate for metering systems in mMTC services
that require prolonged coverage because of deployment cir-
cumstances such as being in a high-rise building’s basement.
To reduce energy usage and increase coverage capacity,
Chafii et al. [132] developed an ML algorithm that is based
on a dynamic spectrum. The random selection approach has
been replaced with a more effectual method that selects the
channels with the highest possibility of being available, the
finest coverage, and the fewest repeats.

Kocak et al. [133] demonstrated how, under prolonged
coverage, user equipment with inadequate battery life
can minimize power usage by reducing payload trans-
mission. Using narrowband resource allocations, preamble
acknowledgments, and low-power objectives, in particular,
Lujan et al. [134] developed an approach for improving
NB-IoT large connections in severe coverage circumstances.
This method is centered on optimizing link adaption to reduce
radio resource utilization of shared channels. It employed a
look-up table, in particular, to speed up the convergence of the
key connection parameters, including coding and modulation
scheme, along with the number of repeats.

D. LONG BATTERY LIFE
The majority of IoT devices are projected to be battery-
powered to allow wireless communication. Substituting or
charging batteries would not be simple and cost-effective.
Small batteries are also utilized to power IoT-enabled embed-
ded devices [2]. As a result, the need for longer battery
life is an impending challenge in IoT implementation that
must not be overlooked. The energy consumption for send-
ing messages is generally low, according to typical M2M
traffic patterns () [135]. Even though the addition of an
add-on power-saving mode for machine-type communica-
tions in 3GPP Release 12 [2], assuring extended battery life

in IoT devices in orthogonal frequency division-based LTE
networks remains a distant prospect [56].

Services with both delay tolerance and delay sensitivity
have fixed battery life and bandwidth constraints that facil-
itate discontinuous communication [136]. The delay-tolerant
network is appropriate for a few applications to some
extent. It should be carefully examined since some cru-
cial applications such as healthcare, self-driving cars, etc.
are high-priority and time-sensitive applications i.e., delay-
intolerant. D2D (the short-ranged connection between two
devices) is a novel method of data transfer that will improve
the 5G-IoT by reducing power consumption, balancing load,
and improving the quality of services for users [137].

Frøytlog et al. [138] demonstrated a wake-up radio (WUR)
driven IoT testbed prototype with a two-tier end device to IoT
server connectivity via Bluetooth-low-energy and long-term-
evaluation system. The approach is aimed toward a 5G-IoT
situation in which battery-driven huge IoT gadgets are unable
to connect directly to the 3GPP network. The two-tier system
has been constructed and tested and consists of an Android
phone with a specific application, a wake-up transmitter, and
numerous nano-watt WUR-enhanced IoT systems. It proves
that the system can meet the criteria for longevity (more than
10 years) and data transfer latency requirements (having an
application-layer delay level of one second) using real-world
tests. In terms of power usage, Alobaidy et al. [139] compared
NBIoT, Sigfox, and LoRaWAN. The study revealed that
while important power management measures might result in
significant power reductions, getting a larger battery lifespan
for NBIoT was not easy. Compared to NB-IoT, LoRaWAN
and Sigfox techniques demonstrated more battery efficiency.

E. SUPPORT FOR SUFFICIENT DEVICES
The ability of a system to manage a growing number of
devices is referred to as scalability. Service overhead, such
as bandwidth, latency, energy efficiency, security, etc. may
be affected by the number of related gadgets in the net-
work. Because 5G-driven IoT may handle more devices
than conventional IoT, scalability should be addressed while
designing security and data analytics solutions. Given the
significance of data analytics and security in 5G-driven
IoT, the suggested design should be relatively dependable
and performance-oriented. Low reliability and performance
might cause overall 5G-enabled IoT processes to fail, result-
ing in financial losses and allowing attackers to profit [119].
Heterogeneous networks (HetNet) aim to meet the

on-demand needs of service-driven 5G-IoT. HetNets makes
it possible for 5G-IoT to deliver on-demand data transfer
speeds. Recently, several 5G HetNet solutions were cre-
ated [66], [140]. The 5G-IoT will install billions of devices
with limited resources. A variety of HetNet technologies have
been proposed to maintain the service quality for devices in
5G-IoT [140]. MTC devices are becoming a more important
part of our daily lives. MTC applications include several
distinct characteristics, for instance, a massive quantity of
devices.
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Nowadays blockchain and AI technologies are being
used in 5G-IoT services. Any consensus required to add
a new block to a blockchain involves contact between the
nodes, hence the network’s communication bandwidth is crit-
ical [141]. A peer-to-peer network is made up of numerous
devices that run at different speeds. There are both fast and
sluggish nodes in a network. The network’s data propagation
speed is slowed by these sluggish nodes. Klarman et al. [142]
suggested ‘bloXroute,’ a blockchain distribution network,
to improve blockchain scalability. BloXroute can only
send all blocks to all of its Gateways in a fair manner.
BloXroute enables encrypted blocks, which prevents the
block from being stopped because of its content or any other
characteristic.

Escolar et al. [50] developed a novel 5G software firewall
architecture for a 5G-IoT network with enhanced capabilities.
The architecture has been proven using challenging use cases
of huge MTCs involving 1 million devices, totaling 4 Gbps,
and 1 million firewall regulations. The approach had a sig-
nificant performance of roughly 8% packet loss, according to
the results of the experiments. However, excessive scalability
might be studied within the framework of network slicing and
its management, where multiple sorts of measures must be
conducted on similar types of traffic to ensure the model’s
stability.

VI. PRIVACY AND SECURITY OF 5G TECHNOLOGY
Privacy is a right of every individual protected and enhanced
by a complex and ever-changing regulatory system. Security
in the virtual environment, on the other hand, creates rules
and initiatives for safeguarding data and the system’s integrity
through the delivery of safe access to data availability and the
prevention of exchanged information or modification [143].
5G, the next mobile generation, is projected to provide a slew
of innovative features and a better user experience. However,
sufficient data and user privacy protection methods are essen-
tial because they contribute to society by merging vertical
industries like e-health, smart grids, banking, manufacturing,
and transportation.

A. KEY ASPECTS OF 5G SECURITY
The strength and dependability of future wireless networks
depend critically on certain aspects of 5G security. Authenti-
cation, integrity, availability, and confidentiality are the four
key security aspects of existing mobile networks. Security
controls in 5G have been developed to address many of
the risks in today’s 2G/3G/4G networks. Because 5G will
introduce new and vital applications, it is critical to think of
privacy from the architect’s perspective, such as observabil-
ity, unlinkability, anonymity, and pseudonymity [113], [114].
These controls contain new verification features, enhanced
subscriber identity safety, and supplementary security pro-
cedures. Compared to existing cellular networks’ security
mechanisms predicated on securing basic connectivity and
end-user privacy, the 5G cellular system intends to provide
a heightened security strategy. It is implemented across the

entire network to tackle authentication, authorization, and
accounting challenges for heterogeneous computer networks.

Several dimensions of security and privacy are key design
concerns for IoT applications. In real-world contexts, ‘Secure
by Design’ is a modern government practice aimed at ensur-
ing a stable and extensive IoT ecosystem for clients that
results in the use of mutual verification, a presumed open
network, and an acknowledgment that all links could be
tapped. 5G also offers a multi-layered network architecture,
requiring security services to be implemented at the network,
transport, and application layers [146]. The device identifi-
cation and the deployment procedure are two of the most
essential components in protecting any IoT network. Because
MTC devices have restricted processing capacity due to their
resource scarcity, they may not be able to trigger current
security mechanisms already in use on the internet.

Sturdy encryption and authentication strategies such as
advanced encryption suite (AES), Diffie-Hellman (DH),
and RivestShamir-Adleman (RSA) are used for confiden-
tial data transport, and data exchange, management, and
transport, as well as digital signatures. They require a high-
performing VOLUME XX, 2017 9 platform as they are
centered on cryptographic suites with robust protocols, which
is not appropriate for future IoT resource-constrained gad-
gets [147]. Furthermore, to suit the notions of forthcoming
IoT networks, authentication and authorization will neces-
sitate re-engineering. The use of blockchain in the IoT aids
in eliminating centralization and making transactions safer,
autonomous, and transparent. The general ledger in this
architecture is blockchain, which keeps all messages among
devices legitimate [148], [149].

5G’s unprecedented connectivity and rapid speeds, how-
ever, introduce new risks and difficulties. Data security,
user privacy, network infrastructure security, and cyberattack
resilience are all included in this category of considerations.
When it comes to protecting sensitive information and valu-
able resources on a network, the most important measures
are robust encryption mechanisms, secure authentication pro-
tocols, and efficient intrusion detection systems. Moreover,
with the rise of IoT devices in 5G networks, it becomes
more challenging to guarantee the safety of such a vast and
varied collection of interconnected devices. Establishing best
practices and frameworks that can adapt to the evolving threat
landscape and guarantee that 5G networks are secure by
design requires close cooperation between industry stake-
holders, standardization bodies, and regulatory authorities.
Taking care of these key issues is crucial to creating a reliable
and resilient 5G ecosystem that can fulfill the promises of the
next generation of connectivity without compromising users’
privacy and security.

B. PRIVACY OF 5G NETWORK
Privacy in 5G networks involves user data, individual rights,
and communication confidentiality in a connected world.
Because 5G networks will foment massive evolution in terms
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of everyday life activities and access modalities to digital
services, privacy will be critical. In addition, 5G presents
new service-oriented and structural needs, unlike earlier
mobile networks, and calls for strict regulations and privacy
standards [58]. For entire ecosystems, including users and
other stakeholders, 5G privacy will be crucial. Consequently,
to achieve widespread adoption and acceptance, 5G privacy
concerns must be tackled thoroughly. Data, location, and
identity privacy are the three primary aspects of user privacy
in a 5G network [144].

By analyzing the features of specific services, 5G technol-
ogy would be able to provide users with personalized network
services. As a result, privacy standards in the 5G networkmay
differ depending on the service. However, service-oriented
privacy requirements will be possible with 5G technology.
Users’ health information, for example, will necessitate a
higher level of privacy in specific healthcare applications.
‘‘location-based services’’ (LBS) are frequently used when it
comes to the growth of future wireless technologies. In such
instances, users’ locations are actively monitored with the
launch of 5G, which would allow seamless and constant
availability of services [150]. Besides, this type of tracking
service aids businesses in improving existing services and
developing new user-friendly ones. However, it creates severe
privacy concerns for users.

The seamless and efficient implementation of a 5G private
network depends on several factors such as the flexibility
to explore and iterate fast at less expense, the availability
of complementary assets and knowledge, and data compe-
tence. With the flexibility of the 5G network, even customers
with robust security requirements can run their secondary
authentication algorithms, protocols, and sector-specific fea-
tures [151]. Any organization operating in the 5G environ-
ment should develop a processor and urge its legal teams
to do a transfer impact analysis among the policy choices
for preventing privacy risks and obstacles. A hybrid solution,
where private or confidential data is stored regionally, near,
and within an individual’s national borders (edge cloud), and
less-sensitive data is saved in the cloud, could be a viable
alternative [152]. Industry, regulatory bodies, and technology
developers need to pay close attention to ensure that 5G
networks can evolve in a way that respects and protects per-
sonal privacy to strike a balance between 5G’s transformative
potential and the preservation of individual privacy rights in
the digital age.

VII. CHALLENGES, PROSPECTS AND OPPORTUNITIES OF
5G-IOT
The IoT vision’s challenges were offered for future reference
as there is no one-size-fits-all approach for establishing IoT
use cases. Virtualization of network parts and novel deploy-
ment paradigms such as intent-based networking and SDN
are essential facilitators of 5G and IoT scenarios [153]. Fur-
thermore, there is a vast new scenario for network security
concerns to be examined, and it is especially conducive to
the implementation of AI andML approaches to improve and

generate new network-based services. IoT has already found
uses in many business sectors, providing automation, infor-
mation, and other services that previously were not possible.
Even so, several entities overlook the hurdles IoT devices
pose to 5G networks when it comes to technical management,
standardization, securing network architecture, and privacy.

A. STANDARDIZATION CHALLENGES
The standardization of 5G security is yet in the development
process, and numerous relevant organizations are making
significant contributions to its fast evolution. By integrating
billions of smart devices to generate truly enormous IoT,
where they mutually interact and share data without external
assistance, 5G can substantially improve the forthcoming IoT.
Currently, the recognition of a device’s capability to fulfill
application requirements is an obstacle for the IoT due to the
heterogeneous nature of application domains [154]. Privacy
and security concerns, unstructured data, and data analy-
sis techniques are some issues in standards within 5GIoT.
A study by Li et al. [55], specifically designed solely for the
correlation between IoT and 5G, disclosed that one of the
critical barriers of a 5G-IoT architecture is associated with
VOLUME XX, 2017 9 standardization. It includes regula-
tory standards, technology standards (e.g., network protocols,
wireless communication, and data accumulation standards),
and data privacy and security (e.g., protection of general data,
cryptographic primitives, algorithms for data analysis, and
unstructured data).

Multiple macrocell base stations, small-cell base stations,
and several UEs can cause interference in 5G networks.
As a result, a procedure for power regulation, channel allo-
cation, cell affiliation, and load balancing that is efficient
and dependable in terms of flawless interferencemanagement
is required [155]. The 5G-IoT is a sophisticated ecosystem
capable of bridging the gap between humans and their sur-
roundings. The concept of ‘‘IoT as a service’’ could emerge
because of destined standardization [156]. 5G networks must
be capable of supporting scalable user demand throughout
the coverage region because multiple users may seek a set
of services simultaneously [157]. Several studies have sug-
gested NFV- and SDN-based architectures to solve this issue
as their fusion offers benefits to succeed in high network
efficacy and performance [158], [159], [160]. The importance
of supporting QoS also heightened the relevance of describ-
ing and classifying various classes. To improve coverage and
satisfy other resource needs, it is vital to retrieve data from
the network in both static and dynamic ways. Consequently,
end-to-end (E2E) SDN technologies were recommended and
deployed to fulfill the requirements of 5G and beyond [158].

B. CACHING AND DATA PROCESSING
Implementing caching and data processing at network nodes
in 5G IoT networks presents several complex issues that
require careful consideration. Because of the heterogeneous
nature of 5G IoT networks, encompassing a diverse array of
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devices with varying competencies and connectivity alterna-
tives, ensuring seamless compatibility between edge devices
and caching solutions can be complicated [155]. Intelligent
algorithms are essential for effective cache management,
entailing decisions on relevant data to cache at network nodes
and determining optimal timing for data updates or eviction.
This process involves striking a delicate balance between data
freshness and cache hit rates. The absence of standardization
may impede widespread adoption and contribute to fragmen-
tation within the IoT ecosystem [161], [162], [163].

Recently, several initiatives have been introduced to reward
caching participants and improve the caching procedure. For
example, in a 5G-enabled IoT network, Mirzaee et al. [164]
proposed a caching strategy designed to tackle a competitive
scenario in which multiple 5G mobile network operators and
content providers are involved. They also suggested a novel
iterative algorithm to examine the Stackelberg equilibrium
hinged on the convex optimization method. The experimental
results from various simulations revealed that the game-based
incentive strategy offers significant improvements by alle-
viating the burden on backhaul links while enhancing the
quality of user experience.

Another study by Ekawu [165] investigated how to opti-
mize the use of radio resources in 5G-enabled massive
IoT networks through cooperative edge caching. They pro-
posed the DRL-CCC and IBBM-RRA algorithms to optimize
caching decisions and radio resource allocation respectively.
The DRL-CCC algorithm reduced DQN overestimations,
accelerating convergence speed. However, the DRL-CCC
algorithm’s applicability may be limited in scenarios with
massive base stations. Meanwhile, the IBBMRRA algorithm
efficiently handled large-scale CIP problems with numer-
ous integer variables. The algorithms effectively improved
the content caching hit ratio and reduced content retriev-
ing delays. Overcoming these issues necessitates associative
research in computer science, hardware design, security, net-
working, and data management. In addition, expansion in
machine learning, edge computing, and distributed systems
is crucial in unlocking the complete potential of caching and
data processing in 5G IoT networks.

C. TECHNICAL ISSUES
There is still a significant distance between the commitments
and the initial deployment of 5G networks. As a result, spe-
cific technologies should be utilized in the installation of
5G. For example, reception and transmission at mmWave
have significant path-loss and a high absorption rate from
atmospheric conditions such as rain and flora. It paves the
way for a novel concept: a tiny, low-power cellular base
station. Consequently, a mini cellular design in the form of
a micro-, pico-, or femtocell is necessary to reduce path loss
and refine coverage at mmWaves [52]. High throughput and
low latency are other requirements of 5G technology that
are met by incorporating full-duplex tech, which empha-
sizes antennas’ transceiving process [166]. However, these

techniques are still in the early stages, and work to address
their shortcomings and develop a comprehensive 5G enabling
system is ongoing. Many issues remain in the architecture
design, including scalability, network management [167],
[168], interoperability, heterogeneity [55], [169], and privacy
risks.

While scalability is important, there are still technical holes
in SDN that must be rectified [69]. The scalable SDCN is a
concern for network scalability since it empowers the core
networkwith a high level of flexibility. IoT application imple-
mentation is complex due to its vast scale, heterogeneous
environment, and resource-constrained gadgets. Likewise,
collecting and disseminating data in the physical world is
a challenge in efficiency and capabilities. Interference is
a significant aspect that can potentially control the entire
network performance and reduce theQoS capacity in the fem-
tocells installation. Therefore, to achieve adequate standards
of QoS, research into interference management algorithms
and approaches linked to interference cancellation and/or
avoidance is essential [170]. Handoff administration in 5G
technologyVOLUMEXX, 2017 9 encounters the same issues
as contemporary cellular networks, such as improved routing,
low latency, security, and a lower threat of losing services,
making it harder to manage [155].

D. TRANSITION FROM 5G TO 6G
The transition stage from 5G to 6G technology poses several
significant challenges and complexities that demand care-
ful consideration and research efforts. First and foremost,
one of the most pressing problems in this transition is the
need for a comprehensive understanding of the fundamen-
tal differences between these two generations of wireless
technology [171]. As 6G is still in its infancy, it lacks
welldefined standards and specifications, making the transi-
tion inherently uncertain. Secondly, the increased frequency
bands and technological advancements in 6G introduce con-
cerns related to electromagnetic spectrummanagement [172],
interference mitigation [173], and radio wave propagation
characteristics [174]. These obstacles necessitate substantial
research and development to ensure the smooth integra-
tion and deployment of 6G networks. Furthermore, building
on existing studies from 5G can be problematic, as 6G
may require a paradigm shift in network architecture and
design [175]. This necessitates thorough revision and adap-
tation of existing research findings and methodologies to suit
the unique demands of 6G technology.

One of the major concerns is the integration of 6G with
available infrastructure and systems [176]. The transforma-
tion to 6G will require significant hardware and software
upgrades, and compatibility issues with older networks and
devices must be addressed. This involves not only tech-
nological considerations but also complex regulatory and
standardization challenges. Another key problem is the sus-
tainability and energy efficiency of 6G networks. As 6G is
expected to push the boundaries of technology with higher
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rates of data, lower latency, and an explosion of connected
devices, it will likely demand even more power [177].
Finding eco-friendly and sustainable solutions, such as

green energy sources and advanced power management,
is essential to prevent a substantial increase in the carbon
footprint of the telecommunication industry. To navigate the
challenges successfully, an increased focus on interdisci-
plinary research, collaboration, and investment in founda-
tional studies is imperative. Only by addressing these issues
and building upon the lessons of 5G can the transition to 6G
technology be smooth, efficient, and fruitful.

E. SECURITY GUARANTEE AND PRIVACY ISSUES
This expeditious 5G prowess will not only supplement the
network and serve as a 4G upgrade but will also pave the
way for a new tactic in which technical capabilities such
as latency, data speed, connectivity, etc. will have a more
significant influence than in earlier generations (i.e., 3G,
4G). When the 5G network comes online, the security threat
breaches will be relatively higher. D2D communication will
be challenging because of its undeviating connectivity across
adjacent devices and the massive number of devices linked
to 5G [161]. Security is a crucial challenge owing to the
heterogeneity of machines, Flash NetFlow traffic, physical
connectivity to actuators, radio interfaces safety, sensors, and
entities, roaming security, and most pertinently, the accessi-
bility of the systems that are fixed to the internet across a
wireless communication medium [162].

Current findings have shown possible security issues that
must be confronted to safeguard the security of emerging 5G
services, equipment, and clients. For instance, multi-tenant
shared cloud systems necessitate robust isolation at different
stages to prevent unauthorized resource usage and protect the
integrity of consumers’ data [163]. To prevent the exploitation
of network components accessible to apps, programmable
network frameworks like SDN (software defined networking)
need credentials and approval for applications. Malicious
code assaults, the inability to get security patches, smart
meter hacking, sniffing attacks, eavesdropping, and denial of
service cyberattacks are all security concerns [164], [165].
The rapid development of wireless sensor networks

(WSNs) in IoT has led to the adoption of intelligent fea-
tures to address security issues. For instance, Xu et al. [178]
focused on securing the routing process against attacks such
as data tampering, path loss, sniffing, and network takeover.
They introduced a trust routing algorithm (BiTRS) that effec-
tively detects and prevents attacks without disrupting data
routing among network devices. The algorithm combines ant
colony optimizations (ACO) and physarum autonomic opti-
mization (PAO) to adapt to dynamic changes in the network
nodes that define the route to the target node. Nevertheless,
the algorithm does not contemplate energy conservation,
a crucial element in 5G IoT.

Identity, data, and location could pose privacy con-
cerns from the users’ viewpoint. User location privacy

is primarily targeted by semantic information intrusions,
boundary attacks, and timing attacks. Building up a false base
station that no longer has ingress to temporary mobile sub-
scribers’ identities leads to similar assaults [179]. Commu-
nication service providers, virtual mobile network operators,
and network infrastructure operators are some actors in 5G
networks. Security and privacy are distinct concerns for each
of these entities. This synchronization of mismatched privacy
standards may be an obstacle in the 5G because mobile
operators may lose system control and depend on new actors.
Furthermore, the 5G network has no physical borders because
of the storage of cloud-based data, and NFV (network func-
tion virtualization) technology implications. Since different
countries have varying levels of data protection based on
their chosen context, users’ data privacy stored in another
country’s cloud is threatened [180], [181].

The most sought-after technologies to meet current
requirements in networking are Software Defined Network-
ing (SDN) and Network Functions Virtualization VOLUME
XX, 2017 9 (NFV), which leverage the advancements
in cloud computing, including mobile edge computing.
However, new concerns have emerged regarding the secure
implementation of these technologies and the protection
of user privacy in future wireless networks. Ongoing
research seeks to address security concerns demonstrated by
Zhou et al. [182], who have put forth a secure system for
D2D communication. This system relies on elliptic curve
cryptography and lightweight authenticated encryption with
associated data (ciphers, specifically designed for IoT devices
with limited resources. This framework ensures data con-
fidentiality, integrity, and UE authentication in each data
transmission step, offering improved performance, energy
efficacy, and protection against security issues such as privacy
sniffing, impersonation, eavesdropping, location spoofing,
and free-riding.

An issue affecting IoT security communication is the
inability to blend a shared architecture and specific security
methods. A combination of blockchain technology and IoT
systems can mitigate some security issues [55]. Identity veri-
fication systems must be investigated and designed to resolve
these issues and verify secure end-to-end connections for IoT
networks for resource-constrained gadgets. The true identity
of mobile IoT users should be hidden from everyone but
should be accessible by an administrator if necessary, and
location privacy is critical because it can expose the precise
position of the device. For efficient adoption of IoT use cases,
both forward and backward safety should be offered [183].
Meanwhile, an anonymization system can be one of the viable
techniques to ensure the subscriber’s unlinkability and device
identity [184]. However, energy consumption, slower data
transactions, scalability, lack of standards, low storage space,
and low processing power are only a few of the major issues.
According to various figures, the number of IoT devices is
growing, which necessitates more battery strength and speed
for processing. Block mining is computationally expensive
and energy-intensive in blockchain technology [185].
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F. OPPORTUNITIES AND PROSPECTS OF 5G-IOT
In each domain, experts are working to advance their
research. Because of the soaring expectations and needs of
5G-equipped IoT networks navigated by unimagined use
cases, substantial research studies have been undertaken. The
expected revolutionary transformation to 5G is that it will
bring new radio (NR)-based deployment, which may further
ameliorate 4G/LTE-based small cell networks with ultra-low
latency and ultra-reliable transmissions [170]. The 5G-IoT
combines multiple technologies that have a profound effect
on IoT applications. It’s worth noting that allowing modern
IoT connection in license-permitted spectrum bands will be a
significant promoter for evaluating IoT use cases, as it allows
for a variety of applications and service opportunities to be
combined into a single network [55].
Given the limitations of data transfer networks, transferring

vast information to the cloud for deep learning will waste
a lot of energy, cause a lot of delay, and lower the efficacy
of deep learning activities [178]. To address the difficulty of
a cloud-centric system, Song et al. [186] recommended an
incremental and autonomous computational architecture and
framework for deep learningdependent IoT implementations.
Successful intelligent techniques will require IoT nodes to
work in a variety of operational environments, as well as with
the cloud and network to maximize system intelligence while
reducing energy consumption [187].
Because of the excessive data rates in 5G-IoT and

computation-intensive artificial intelligence techniques can
be used for several user applications. With the network’s
high data transmission capacity, effective deep learning tech-
niques, including virtual speech identification and video
categorization, can be used through wireless 5G-IoT nodes
[178]. The convergence of AI, 5G, and IoT has a greater
chance of transforming the business environment by allow-
ing intelligent real-time decisions. The key motivation for
incorporating artificial intelligence into 5G-IoT frameworks
is to accredit networks to automatically modify their settings
as the environment’s demands or parameters change [188].
The novel 5G network ought to be capable of providing pro-
ductive solutions for management and orchestration, mobility
management, service provisioning management, and radio
resource management, making devoted purpose networks
redundant instead of warranting dynamic network reconfig-
urations [182]. The 5G facilitates the tactile internet at the
wireless networks’ edge. The content, however, will need to
be localized to the edge of networks to reduce bandwidth
needs and latency.

As evidenced in the literature, there is a lot of potential and
a lot of complexity in 5G-enabled IoT, which presents a lot of
open research areas that need to be examined carefully. The
reliability of low-latency communications is essential for use
cases like autonomous vehicles and industrial automation.
For instance, Chen et al. [189] reported that for effective
control, inter-vehicle communication must be highly reli-
able and have a low latency [190]. Low latency and high

TABLE 3. Future research opportunities in 5G-enabled Iot.
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TABLE 3. (Continued.) Future research opportunities in 5G-enabled Iot.

reliability are also needed for precise operation in manu-
facturing processes and power system automation services,
as demonstrated by several studies [189], [191], [192].
However, the reliability of low-latency communications
can be difficult to achieve in practice due to factors like
network congestion and device limitations. Remote and inac-
cessible deployments rely heavily on the battery life of
energy-efficient IoT devices, making it critical to strike a bal-
ance between power optimization and functional capabilities.
Developing lightweight yet effective solutions is a significant
challenge when trying to ensure strong security and privacy
measures across a landscape of resource-constrained devices.
Connecting billions of IoT devices of varying types and capa-
bilities necessitates novel VOLUME XX, 2017 9 network
architectures that can effectively manage this diversity.

Complex deployment, management, and security issues
arise with edge computing, a solution for lowering latency,
and network slicing, which provides customization for spe-
cific IoT applications. Intelligent spectrum-sharing mecha-
nisms are needed for spectrum management in congested
radio environments, and data privacy and resource constraints
must be addressed before machine learning and AI can be
integrated into IoT devices. The ever-present requirement for
standardization highlights the dynamic character of technol-
ogy. When it comes to environmental monitoring, scalability
and accuracy in sensing are paramount, while the integra-
tion of disparate systems is a challenge for smart city and

healthcare applications. These unexplored topics highlight
both the promise and the complexities of 5G-enabled IoT,
calling for an interdisciplinary strategy that brings together
technological advancement, data protection, government
oversight, and the fluid combination of many different kinds
of applications.

There is a substantial abundance of research opportunities
in the 5G-enabled IoT field, which is continuously evolv-
ing due to the rapid advancements in technology. Table 3
summarizes several open research opportunities within this
particular field:

VIII. CONCLUSION
5G-enabled IoT encompasses a variety of critical enabling
technologies, including IoT applications and tangible con-
nections. It was reviewed in this paper with a focus on the
technical aspects. The paper highlighted enabling technology
drivers in 5G-IoT layers, 5G-enabled IoT needs, as well as
their security, prospects and challenges. It was demonstrated
that all future services and applications must incorporate the
IoT, which necessitates a large infrastructure, a substantial
amount of device nodes, and a flexible and broad spectrum
of bandwidth. Because of these requirements, 5G is a crucial
enabler for the IoT. It was also found that 5G-enabled IoT can
meet the demands of future IoT applications; nevertheless,
this new prototype presents significant challenges, including
scalability, secure communications, standardization issues,
and other associated issues. By encouraging the growth of
cutting-edge open-source protocols for simple communica-
tion across all devices, a universally compatible operating
system could minimize these issues. A collective effort to
resolve these challenges will lay a solid foundation for a
5G-enabled era in which everyone will be connected through
IoT.
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