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1  Introduction
Point clouds are widely used in numerous applications, such as autonomous driv-
ing, augmented reality, virtual reality, robotics, smart cities, and environmental sens-
ing. Point clouds encapsulate comprehensive perception information, including 
3-dimensional (3D) geometry coordinates, color, geodesic distance, normals, and point 
cloud density. However, these rich details often result in massive file sizes, presenting 
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3D point cloud data, as an immersive detailed data source, has been increasingly used 
in numerous applications. To deal with the computational and storage challenges 
of this data, it needs to be compressed before transmission, storage, and process-
ing, especially in real-time systems. Instead of decoding the compressed data stream 
and subsequently conducting downstream tasks on the decompressed data, analyzing 
point clouds directly in their compressed domain has attracted great interest. In this 
paper, we dive into the realm of compressed point cloud classification (CPCC), aiming 
to achieve high point cloud classification accuracy in a bitrate-saving way by ensur-
ing the bit stream contains a high degree of representative information of the point 
cloud. Edge information is one of the most important and representative attributes 
of the point cloud because it can display the outlines or main shapes. However, 
extracting edge points or information from point cloud models is challenging due 
to their irregularity and sparsity. To address this challenge, we adopt an advanced 
edge-sampling method that enhances existing state-of-the-art (SOTA) point cloud 
edge-sampling techniques based on attention mechanisms and consequently develop 
a novel CPCC method “CPCC-PES” that focuses on point cloud’s edge information. 
The result obtained on the benchmark ModelNet40 dataset shows that our model 
has superior rate-accuracy trade-off performance than SOTA works. Specifically, our 
method achieves over 90% Top-1 Accuracy with a mere 0.08 bits-per-point (bpp), 
marking a remarkable over 96% reduction in BD-bitrate compared with specialized 
codecs. This means that our method only consumes 20% of the bitrate of other SOTA 
works while maintaining comparable accuracy. Furthermore, we propose a new 
evaluation metric named BD-Top-1 Accuracy to evaluate the trade-off performance 
between bitrate and Top-1 Accuracy for future CPCC research.
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formidable challenges in storage, transmission, processing, and computation. Usually, 
advanced deep learning techniques for downstream vision tasks have higher require-
ments on computational resources, which is not economically friendly.

Addressing these physical and economic limitations, one effective strategy is decom-
pressed point cloud analysis (DPCA). Here, point clouds are analyzed and compressed 
into bit streams at the scanning or server-side terminal. These bit streams are then trans-
mitted to the central computing hub which is equipped with powerful computational 
resources, where they are effectively decompressed into decoded point clouds. Then the 
computing hub conducts subsequent downstream vision tasks and dispatches the ana-
lyzed results back to the end devices to guide the decision-making of users. While this 
strategy preserves original point cloud details and enhances model efficacy, it requires 
not only high computational resources but also stable and fast transmission mediums 
such as cables and fiber optics. In addition, decoded point clouds often exhibit artifacts 
such as outliers or shrinkage, which compromises the performance of the downstream 
tasks compared to performing the task directly on the original point cloud.

In response to these challenges, our focus shifts toward compressed point cloud anal-
ysis (CPCA), which identifies a more feasible and economically friendly bitrate-saving 
solution for effective downstream tasks processing. As shown in Fig. 1a, instead of per-
forming point cloud classification on the decoded point cloud in decompressed point 
cloud classification (DPCC), compressed point cloud classification (CPCC) conducts 
point cloud classification directly on the encoded bit stream. While existing approaches, 
such as Refs. [1, 2], have revealed the potential of CPCC, their classification performance 
still falls behind state-of-the-art (SOTA) point cloud classification results.

To enhance CPCC’s efficacy, in this paper, we propose a novel compressed point cloud 
classification approach, abbreviated as CPCC-PES, featuring a point-based edge sam-
pling module, which focuses on preserving point cloud edge information for improved 
classification.

Edge information, widely used in 2D image classification and segmentation, captures 
crucial representative semantic information of shape contour. Whereas, in the field 
of point cloud processing, even though many advanced techniques have been applied 
in storing representative semantic information for the point cloud in a learnable way, 
many of them have not considered the shape outlines and edge information as special 

Fig. 1  The comparison of the general architectures of DPCC and CPCC
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and representative features of the point cloud. Our aim is to extend the success of 2D 
edge-preserving processing into 3D point cloud domain. However, it is difficult to detect 
edges of point clouds efficiently because point clouds are often irregular, containing 
regions of different density and sparsity. Thus, in this paper, to achieve higher classifi-
cation accuracy at a smaller bitrate, we design our model based on a novel point cloud 
edge sampling method.

In traditional 3D point cloud analysis, currently widely used mathematical sampling 
methods include farthest point sampling (FPS) [3], random point sampling [4], and grid 
sampling  [5]. Integrated with deep learning techniques such as Convolutional Neural 
Networks and Transformers, these down-sampling methods can effectively capture the 
essential structural information of a point cloud for improving the performance of learn-
ing-based downstream tasks. To add more adaptability to different downstream tasks, 
some advanced learning-based down-sampling methods have been proposed, tailored 
to different downstream tasks, e.g., SampleNet [6], Skeleton-aware Down-sampling [7], 
DA-Net [8], and LightN [9].

Even though many advanced techniques have been applied utilizing the representative 
semantic information of point clouds in a learnable way, many of them have not con-
sidered the shape outlines and edge information as special and representative features 
of the point cloud. In this work, we propose a codec to utilize an attention-based edge-
sampling method that focuses on salient outlines and the shape of the point cloud model 
to enrich the bit stream and the latent features with more boundary-related semantic 
information and shape outline details. Our results show that our model has achieved 
superior performance compared to the SOTA by selecting the sampled points in an 
adaptive way.

In short, we summarize our contributions as follows:

•	 We developed a new “CPCC-PES” model for CPCC by adopting an advanced edge-
sampling method that focuses on the salient outlines and shape of the point cloud 
model to enrich the bit stream and the latent features with more boundary-related 
semantic and outline shape details.

•	 We designed an attention-based learnable edge-sampling approach by incorporating 
local attention mechanisms, demonstrating superiority over DPCC through bench-
mark dataset experiments.

•	 We conducted comprehensive experiments on a widely used benchmark dataset and 
achieved SOTA Bjøntegaard Delta (BD) Rate and Top-1 Accuracy performance using 
less bitrate to get higher Top-1 Accuracy simultaneously.

2 � Related work
2.1 � Point‑based point cloud analysis

Since the introduction of PointNet  [10] and PointNet++  [11], point cloud analysis 
(PCA) based on point-wise information has been widely used in many existing works. 
This end-to-end learning architecture allows models to directly utilize the point-based 
representative information of the point cloud without necessitating additional data pre-
processing like voxelization. Inspired by this autoencoder architecture, several super-
vised and self-supervised learning PCAs have integrated multiple effective feature 
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learning operations, such as point convolution and point attention, to enhance latent 
representations. For instance, PointConv  [12] and KPConv  [13] introduced point-wise 
convolution operators, in which points were convoluted with their neighbor points. A 
more advanced operator, PointConvFormer [14], builds an attention-based weight filter 
to select relatively semantically similar neighbor points for convolution.

In addition to convolution operations, attention mechanisms have attracted great 
attention for feature extraction due to their suitability for handling irregular point cloud 
data. Notable works in this realm include Point Transformer [15], which aggregates local 
neighbor attention, Point Cloud Transformer [16], which enlarges the receptive field into 
the whole input and utilizes global point cloud attention, Geo-former [17], which utilizes 
point cloud geodesic information to search and choose neighbor points with similar 
outlier semantic attributes and then perform local neighbor attention, Point4Trans-
former [18], which adds offsets between a local point and its neighbors to generate the 
convolution kernels to integrate local and global information, and Point Transformer 
v2 [5], which uses grouped vector attention to mitigate the high attention-related com-
putational cost and generalization restriction problem with a stronger position embed-
ding. In addition, graph-based methods analyze point clouds using a graph structure. 
For instance, in DGCNN  [19], EdgeConv blocks update the neighbor information 
dynamically based on dynamic graphs.

2.2 � Point cloud analysis in compressed and decompressed domains

As the demand for end-device usage increases and the development of learning-based 
point cloud compression continues to evolve, point cloud analysis in the compressed 
domain, i.e., CPCA, is emerging as an interesting topic. This approach enables the 
end devices to conduct the point cloud downstream tasks in a resource-efficient way. 
There are some existing CPCA methods focusing on different aspects of this domain. 
For instance, the deep learning-based compressed domain point cloud classification 
approach presented in Seleem et al. [20] introduced a bridge layer to connect the latent 
representation of the JPEG Pleno Point Cloud coding Verification Model  [2] to a con-
cise Point Grid Partial Classifier [21] to predict classification labels in a voxel-based way. 
Meanwhile, Ulhaq and Bajic in Ulhaq and Bajic   [1] designed an end-to-end Learned 
Point Cloud Compression network for Classification (LPCCC) based on PointNet [10]. 
By adding two gain layers in the entropy bottleneck between the encoder and decoder, 
LPCCC [1] can increase the model’s adaptability stability when coding the point cloud’s 
latent geometry representation while maintaining high accuracy. It has been shown that 
LPCCC  [1] performs better than some advanced DPCC methods that utilize SOTA 
codecs such as OctAttention [22], G-PCC [23], and IPDAE [24] to compress and decom-
press point clouds and then utilize PointNet  [10] to classify the decompressed point 
cloud. Whereas in DPCA, Bojun et  al.  [25] built a gradient bridger to pass the gradi-
ent from a codec’s decoded point cloud to a detection network using a point-matching 
method.

Despite the potential and advantages demonstrated by these advanced methods in 
achieving comparable or superior performance while conserving bitrate compared to 
traditional uncompressed point cloud analysis methods, there remain limitations and 
avenues for further enhancement. For example, in the compressed domain, existing 
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methods have only focused on point cloud detection and classification problems, and yet 
there are other widely used applications waiting to be researched, such as point cloud 
segmentation or point cloud registration. Furthermore, the performance of existing 
CPCA methods can be further improved. For example, PointNet [10] employed in Ulhaq 
and Bajic [1] is a classic point cloud analysis method that can be improved by some other 
advanced modules and strategies, such as the attention mechanisms [26].

2.3 � Point cloud down‑sampling

Point cloud down-sampling is a crucial pre-processing technique, aimed at capturing 
or preserving the overall distribution or structure of the original point cloud using a 
smaller subset of points. It enables the learning-based PCA to manage irregular data in 
an efficient way. Generally, traditional down-sampling approaches are the mainstream 
approaches because they can be integrated with deep learning techniques seamlessly, 
offering a consistent input size to the subsequent encoder stages. For example, farthest 
point sampling (FPS) [3] has been widely used in various popular PointNet variants to 
preserve the general representative information and structure of the point cloud. These 
include PointNet++  [11], Point-MAE  [27], PT  [15], PCT  [16], and Stratified Trans-
former-3D [28]. As another example, Grid-sampling is used in Point Transformer v2 [5] 
to support point neighbor pooling during point cloud segmentation.

In addition to these conventional methods, many learning-based task-oriented down-
sampling methods have shown their great potential in PCA. For example, S-Net  [29] 
utilizes the global representation of the point cloud to generate new point cloud geom-
etry coordinates. Inspired by this work, SampleNet  [6] extends the post-processing by 
employing projection actions to better predict the output points, while PST-NET [30] 
introduces attention to improve feature learning, and LightN [9] proposes a lightweight 
Transformer framework plug-in to boost efficiency. Although these frameworks can 
improve the performance of PCA by adding adaptive capability, they often fail to explore 
3D object geometries  [7] explicitly. Considering that semantic information is a signifi-
cant representative feature of point clouds, some SOTA works have introduced seman-
tic-oriented down-sampling strategies. For example, Skeleton-aware Down-sampling [7] 
utilizes the medial axis to establish the prior knowledge of the point cloud skeleton, ena-
bling unsupervised skeleton-aware sampling.

Despite the benefits and successes of these popular down-sampling methods in point 
cloud feature learning, maintaining the main or important semantic structure informa-
tion of the point clouds, they are not designed for capturing the point cloud outliers and 
edge information.

Edge information, widely and successfully applied in 2D image feature learning, is also 
one of the most significant representative sources of information for 3D point cloud 
models, considering their sparsity and irregularity. An effective edge-sampling method 
to gather the representative edge information is vital for improving the performance of 
CPCC because when the number of feature channels increases, the number of down-
sampled points will decrease during feature encoding. These edge-focused down-sam-
pled points can preserve the semantic information of the point cloud’s representative 
outliers, thereby benefiting classification.



Page 6 of 15Luo et al. EURASIP Journal on Image and Video Processing         (2024) 2024:18 

In our CPCC-PES approach, we utilize attention-based edge sampling to capture 
the edge information of the point clouds while selecting the corresponding embedded 
point cloud features to improve the classification performance while using a lower 
bitrate.

3 � The proposed method
3.1 � The overall architecture of CPCC‑PES

As shown in Fig.  2, CPCC-PES consists of an encoder layer, an entropy bottle-
neck layer, and a decoder layer. The input point cloud is converted to high-dimen-
sion latent features through an embedding layer formed by Multilayer Perceptrons 
(MLPs). Then the Neighbor Attention Layer learns and transfers these latent features 
to the attention-based edge-sampling layer. This down-sampling layer selects the 
edge information and point cloud features based on local attention, which serves as 
an ideal normalized correlation map to measure their difference, providing a learn-
able adaptive approach for edge point and feature selection. Inspired by the atten-
tion-based point cloud edge sampling (APES) work in Wu et al.  [31], the normalized 
correlation map is computed by the attention map between the center point and its 
neighbors to identify how much the features of surrounding points differ from the 
central point (see Eq. 1 in Sect. 3.3 for more details). A larger standard deviation in 
the normalized correlation map means a higher possibility that it is an edge point. 
This edge-sampling method mitigates the feature learning limitation of the encoder 
of LPCCC [1] and achieves a better trade-off between accuracy and bitrate. Moreover, 
in contrast to APES [31] and inspired by advanced learning-based point cloud meth-
ods such as D-PCC [32], we utilize three down-sample layers to better control bitrate 
accompanied with a down-sampling ratio of 0.5. After each down-sample layer, we 
can obtain the edge points of the point cloud. Then the corresponding representa-
tive edge features will be selected and learned based on these edge points through a 
Neighbor Attention Layer. These learned features will concatenate together and pass 
through an MLP layer and a pooling layer to generate the final input permutation-
invariant feature vector. Finally, the vector will pass an entropy bottleneck layer which 
is added to two gain layers to get the coded bit stream to increase its adaptive capa-
bility and obtain better performance. In the decoder, the decoded feature vector will 
pass through an MLP layer to get the predicted label.

Fig. 2  The architecture of our CPCC-PES network
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3.2 � Attention‑based edge sampling

The Canny edge detector [33] is widely used in edge detection for 2D images. When 
applying it, the intensity gradient of each pixel of the image, such as the strength of 
a color change, is computed and then compared with other pixels’ gradients within a 
local patch area. The pixels which have larger gradient intensity difference are recog-
nized to be the edge pixels, which can outline the edge details of the images.

In detail, we calculate a normalized correlation map and each pixel’s local neighbor-
hood standard deviation σ and then select the edge pixels which have higher σ values 
to differentiate them from other pixels.

For instance, as illustrated in Fig. 3, denoting the standard deviation as σ , the stand-
ard deviations of edge pixels A and B and points C and D can be represented as σA , 
σB , σC , and σD , respectively. Suppose σA is bigger than σB and σC is bigger than σD , 
then pixel A and point C will have a larger possibility of being an edge pixel or an edge 
point.

Specifically, to extend the edge detection to irregular point cloud areas, we use k-Near-
est Neighbor (kNN) to define a local patch, and we also compute a normalized correla-
tion map to find and differentiate the edge points within a point patch. Inspired by Wu 
et al.  [31], the attention map is an ideal option to serve as the normalized correlation 
map between point features within each patch.

Assuming that the input point cloud set has n points, which can be represented as 
P = {ρi}ni=1 ∈ R

n×3 . For each point ρi , we find its neighbor point ρj by kNN to form a 
point patch. Thus, as shown in Fig. 4, within a patch, the input features for the center 
point ρi can be represented as Xi , the corresponding features of the neighbor point ρj 
are Xij , and the feature difference between the center point ρi and its neighbor ρj can 
be represented as Xij − Xi . Then Xi will be sent to conv1 to get the query Q. Mean-
while, Xij − Xi will be sent to conv2 and conv3, to obtain the key K and the value V, 

Fig. 3  Illustration of using standard deviation to select edge pixels (left) or edge points (right). We first 
calculate each normalized correlation map between the pixel/point and its neighbors, where the center 
pixel/point is self-contained as a neighbor. Then we compare the standard deviation values of edge pixels A 
and B, and points C and D to find out which one is an edge pixel or edge point

Fig. 4  The architecture of local-attention-based edge sampling
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respectively. Following the design of attention mechanism [26], the attention map can 
be computed as QKT  . In this context, the local attention correlation map can be cal-
culated as:

Here, ψ and ϕ are fully connected layers where inputs are the center point features Xi 
and the feature difference between the neighbor point and the center point, Xij − Xi , 
respectively. ψ(Xi) is the query Q and ϕ(Xij − Xi) is the key K.

Because calculating the attention also involves softmax normalization and scaling 
with a factor 

√
d , the final equation of the normalized correlation map Mi regarding 

point ρi can be written as:

After we have obtained the correlation map Mi , the standard deviation σi of the map Mi 
can be calculated. We can then select the edge points’ indexes and their corresponding 
features by selecting those points with a higher σi . For example, in Fig. 4, we obtain the 
down-sampled index by selecting D points from the N points based on the top σi values 
and then obtain the down-sampled features.

3.3 � Neighbor attention aggregation

After each attention-based down-sampling layer, we can obtain the down-sampled 
point cloud edge points and their corresponding features. Considering that the down-
sampling ratio is set to 0.5, the dimensions of the down-sampled point features will be 
1024, 512, and 256 at each stage. To further increase the performance of CPCC-PES, 
we decided to incorporate an attention mechanism [26] here to learn and aggregate 
the obtained down-sampled point features. We make use of the attention mechanism 
from APES [31] as a stronger tool to capture the features that are focused on the edge 
information of the point cloud.

We first find the center point and its k corresponding neighbor points using the 
kNN and set k to 32. As shown in Fig. 5, the features of the center point are set as 
the input features and are passed through a conv1 layer to get Q, and the feature dif-
ference between the center point and its neigbors will pass through conv2 and conv3 
separately to get K and V. Then the equation of the neighbor attention features FN 
can be represented as follows:

(1)µ(Xi,Xij) = ψ(Xi)
Tϕ(Xij − Xi).

(2)Mi = softmax
(

µ(Xi,Xij)/
√
d)
)

.

Fig. 5  Neighbor attention aggregation
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where 
√
d is the scaling factor. At last, the output feature will be the concatenation 

between the neighbor attention features FN and the input features.

3.4 � Entropy bottleneck

Gain layer:  After max-pooling and normalization in the encoder, the result vectors 
are composed of all small values, which is not friendly to the following entropy calcu-
lation and also the classifiers in the decoder. To increase the adaptability and stability 
of the entropy bottleneck, we follow the ideas from LPCCC [1] to add two gain layers. 
Each gain layer is defined to be formed with a trainable vector, and the elements in 
this trainable vector are initialized with integers. In our experiment, we set the ini-
tial values of each of the elements of this trainable vector to 10. Then these trainable 
vectors will be multiplied element-wise with the input feature vectors to amplify the 
small values and differences existing in the input.

Entropy model:  The first gain layer will receive the learned feature vectors provided 
by the encoder and output an adaptive version of the feature vector. To further obtain 
the bit streams, we use integer rounding to quantify these vectors. During training, 
uniform quantization is simulated using additive uniform noise µ ∈ (−0.5, 0.5) . Then 
the quantized vector is losslessly encoded using a fully factorized learned entropy 
model [34].

3.5 � Decoder

To reduce the overall computational complexity, we follow the work of LPCCC [1] and 
design a lightweight decoder module. In our decoder, we use a lightweight MLP classifi-
cation layer that turns the initial decoded bit stream into predicted labels.

3.6 � Loss function

In the point cloud compression field, researchers use a trade-off between bitrate and dis-
tortion loss which is measured by Chamfer Distance to quantify the performance of the 
compression model. Similarly, in CPCC, a trade-off between bitrate and classification 
accuracy can also be considered.

Following the idea of information bottleneck (IB) [35], LPCCC [1] has given evidence 
that the below equation, as a trade-off between bitrate and accuracy, is analogous to the 
IB, and it is suitable to be the loss function in CPCC:

Here, L represents the total loss value, R represents the bitrate value calculated by the 
entropy model, � represents the penalty weight, and D(t, t̂) represents the cross-entropy 
loss between one-hot encoded ground truth label t and the softmax of the prediction 
label t̂ obtained by the model. In our approach, we also utilize this method to calculate 
the total loss.

(3)FN = softmax
(

(QKT )/
√
d)
)

V ,

(4)L = R+ � · D(t, t̂).
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4 � Experimental results and discussion
4.1 � Dataset and implementation details

Following the main trend of point cloud classification, we use ModelNet40  [36] as 
our test dataset, which contains 12,311 manufactured 3D CAD models in 40 common 
object categories. The dataset is split into training with 9843 models and testing with 
2468 models. For each model, we uniformly sample points from the mesh surface and 
normalize them to the unit sphere. The input only contains point cloud coordinate 
information and no data augmentation methods are used.

Our model was trained and tested on a computer with an i9-13900K 3.61GHz CPU, 
24 GB RAM, and an NVIDIA Ge-Force RTX 4090 GPU. During training, we set the 
penalty weight � in the loss function (see Eq. 4), which ranges from 20 to 16,000, the 
initial learning rate was 0.01, batch size of 8, and Adam optimization.

4.2 � Performance comparison and evaluation

As a common evaluation metric, Top-1 Accuracy has been widely used in many 
CPCC works, such as VM-CPCC  [20] and LPCCC  [1]. In our experiment compari-
son, because VM-CPCC is a voxel-based CPCC method, we compare our results 
with point-based LPCCC [1] in a compressed way and other SOTA works including 
G-PCC TMC13 [37], OctAttention  [22], and IPDAE [24] in a decompressed way, as 
shown in Table 1. In addition to the conventional metric BD-Rates [38], we also pro-
pose an evaluation metric called BD-Top-1 to evaluate the different models’ power in 
achieving less bitrate for higher accuracy.

Top-1 classification results on ModelNet40: To demonstrate the efficiency of the 
proposed CPCC-PES, we compare our method with SOTA DPCC methods. In addi-
tion, to highlight and compare the differences in bitrate expenses across various 
CPCC and DPCC techniques, we compare CPCC-PES against the baseline method 
PointNet [10], which is commonly employed as a baseline in many DPCC tasks, such 
as the transformer-based APES [31] and LPCCC [1]. We apply these methods to the 
same point cloud dataset and utilize the same input for encoding and decoding. Then 
following the practice in LPCCC [1], we employ the PointNet [10] classifier to obtain 
the final classification result. Figure 6 illustrates the comparative results.

From Fig.  6, we can see that our codec has superior performance compared with 
the rest of the SOTA codecs, demonstrating that our codec can achieve higher clas-
sification at lower bitrates. It is worth noting that PointNet [10] proposed input geo-
metric transformations to align point clouds for better classification performance and 
reported their results with and without the affine transformations. Since our com-
pression model was trained without the input spatial alignment, the baseline without 
geometric transformations offers a fairer comparison.

This comparison highlights the differences in bitrate costs among various CPCC 
and DPCC methods. In particular, considering the baseline PointNet  [10]’s Top-1 
Accuracy is 89.2%, we achieve the baseline by only consuming about 0.06 bpp (bits 
per point) and 0.07 bpp. We can also achieve 90.8% Top-1 Accuracy with only 0.2 bpp 
cost, while LPCCC [1] needs to spend 0.45 bpp to obtain a Top-1 Accuracy of 88.5%.
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BD-Rate and BD-Top-1 Accuracy: The video standardization community has used 
Chamfer Distance and BD-PSNR [39, 40] measurements for many years as a method 
for evaluating the performance of new codecs and video coding tools. In particular, 
BD-PSNR can measure the average rate difference between two PSNR rate-distortion 
curves and can be calculated as:

where R1 and R2 are the distortion limits, and PSNR1(R) and PSNR2(R) are the PSNR 
values of two codecs at bitrate R.

Following the metric of BD-PSNR, we propose the BD-Top-1 Accuracy metric, 
denoted as BD-Top-1Accu , to evaluate the performance of different CPCC codecs 
in terms of their bitrate efficiency while achieving high Top-1 Accuracy. BD-Top-1 
Accuracy quantitatively provides a comprehensive insight into the codec’s ability to 
maintain high point cloud classification accuracy at minimized bitrate levels. Similar 
to the design of BD-PSNR, our BD-Top-1 Accuracy metric is defined as:

(5)BD-PSNR = 1

R1 − R2

∫ R2

R1

[PSNR1(R)− PSNR2(R)] dR

Fig. 6  Top-1 classification results on ModelNet40 at different Bpp rates

Table 1  Comparison of BD-Rate and BD-Top-1 accuracy with SOTA codecs

Compared with CPCC method BD-Rate (%) BD-Top-1 Accuracy

CPCC-PES vs LPCCC [1] − 24.24 3.02

Compared with DPCC methods BD-Rate (%) BD-Top-1 Accuracy

CPCC-PES vs IPDAE [24] − 96.12 22.98

CPCC-PES vs OctAttention [22] − 94.54 30.2

CPCC-PES vs G-PCC [37] − 95.2 15.2
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where BD-Top-1 Accu is the BD-Top-1 Accuracy, and the Top-1 Accu1(R) , 
Top-1 Accu2(R) are the Top-1 Accuracy values of two codecs at bitrate R.

Table 1 shows the comparison of BD metrics with the maximum attainable accuracy 
with SOTA methods. Following [38], in our evaluation metrics, BD-Rate measures the 
relative bitrate value difference between two CPCC performances. A CPCC method with 
a lower BD-Rate will spend less bitrate while achieving the same point cloud classifica-
tion accuracy. In general, our model can save over 24% bitrate compared to the SOTA 
methods. We also save over 95% bitrate to achieve the same accuracy performance when 
comparing our method with the DPCC methods.

4.3 � Ablation studies

In this section, we investigate the potential of our CPCC-PES approach for smaller data-
sets in CPCC tasks by comparing the results with the SOTA work.

Performance of CPCC-PES with small numbers of points: Typically, each point cloud 
model contains 2048 points, randomly sampled from the ModelNet40 [36] dataset. To 
assess the adaptability of the proposed CPCC-PES to smaller point cloud models, we 
reduce the input point cloud size using a random sampling technique to 1024, 512, and 
256 points.

Table  2 compares the Max Top-1 Accuracy results of our method and those of the 
SOTA LPCCC [1] work under different numbers of input points. Max Top-1 Accuracy 
refers to the maximum Top-1 Accuracy that the method can achieve in point cloud clas-
sification without considering the bitrate consumption.

The result in the table shows that our method consistently outperforms LPCCC  [1] 
in Max Top-1 Accuracy even with reduced point cloud size. This shows that our CPCC 
method is robust to different sizes of point clouds. Specifically, we achieve about 2% 
higher Max Top-1 Accuracy compared to the SOTA work LPCCC [1].

4.4 � Edge‑sampling visualization

Figure  7 below visualizes the local-attention-based edge-sampling point cloud models 
obtained from ModelNet40  [36]. From top to bottom, the point clouds displayed rep-
resent television, plane, desk, and bed. From left to right, each model contains 2048, 
1024, 512, and 256 points, respectively. It can be seen from the figure that, using the 

(6)BD-Top-1Accu = 1

R1 − R2

∫ R2

R1

[

Top-1Accu1(R)− Top-1Accu2(R)
]

dR

Table 2  Comparison of Max Top-1 Accuracy with the SOTA work LPCCC  [1] concerning various 
numbers of input points

The best performance in each experiment is indicated in bold

Number of input points CPCC-PES Max Top-1 Accuracy (%) LPCCC [1] Max 
Top-1 Accuracy 
(%)

1024 90.8 88.5

512 90.35 88.0

256 90.02 87.6
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local-attention-based attention map, we can get the primary structural-outlier edge 
information of the point cloud.

5 � Conclusion
In this paper, we have proposed a new approach for point cloud classification in com-
pressed domain by leveraging attention-based point cloud edge sampling. By extending 
the success of edge detection to point cloud in an effective way, our approach enhances 
the classification accuracy and performance at reduced bitrate. Our experiments dem-
onstrate that our method shows a BD rate reduction of over 24% compared with SOTA 
methods. For future work, there are several promising directions for further exploration. 
These include exploring end-to-end compressed point cloud segmentation, integrat-
ing neural network compression and compressed point cloud downstream codecs, and 
developing a more efficient classifier with reduced computational costs.
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