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Abstract—This work targets designing a principled and unified
training-free framework for Neural Architecture Search (NAS),
with high performance, low cost, and in-depth interpretation.
NAS has been explosively studied to automate the discovery of
top-performer neural networks, but suffers from heavy resource
consumption and often incurs search bias due to truncated training
or approximations. Recent NAS works Mellor et al. 2021, Chen et
al. 2021, Abdelfattah et al. 2021 start to explore indicators that can
predict a network’s performance without training. However, they
either leveraged limited properties of deep networks, or the benefits
of their training-free indicators were not applied to more extensive
search methods. By rigorous correlation analysis, we present a
unified framework to understand and accelerate NAS, by disen-
tangling “TEG” characteristics of searched networks — Trainability,
Expressivity, Generalization — all assessed in a training-free manner.
The TEG indicators could be scaled up and integrated with various
NAS search methods, including both supernet and single-path NAS
approaches. Extensive studies validate the effective and efficient
guidance from our TEG-NAS framework, leading to both improved
search accuracy and over 56% reduction in search time cost.
Moreover, we visualize search trajectories on three landscapes of
“TEG” characteristics, observing that a good local minimum is
easier to find on NAS-Bench-201 given its simple topology, whereas
balancing “TEG” characteristics is much harder on the DARTS
space due to its complex landscape geometry.

Index Terms—Generalization, linear region, neural architecture
search, neural tangent kernel.
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1. INTRODUCTION

HE development of deep convolutional neural networks
T significantly contributes to the success of computer vi-
sion tasks [4], [5], [6], [7]. However, manually designing new
network architectures not only costs tremendous time and re-
sources, but also requires a rich network training experience that
can hardly scale up. Neural architecture search (NAS) is recently
explored to remedy the human efforts and costs, benefiting
automated discovery of architectures in a given search space [8],
(91, [10], [11], [12], [13], [14], [15], [16].

Despite the principled automation, NAS still suffers from
heavy consumption of computation time and resources. Most
NAS methods mainly leverage the validation set and conduct
accuracy-driven architecture optimization. Therefore, frequent
training and evaluation of sampled architectures become a severe
bottleneck that hinders both search efficiency and interpreta-
tion. A super-network is extremely slow to be trained until
converge [17] even with many effective heuristics for channel
approximations or architecture sampling [18], [19]. Approxi-
mated proxy inference such as truncated training/early stopping
can accelerate the search, but is observed to introduce severe
search bias [10], [20], [21].

People recently address this problem by proposing training-
free NAS. Indicators like covariance of sample-wise Jaco-
bian [1], Neural Tangent Kernel [2], and “synflow” [3] are found
to highly correlate with network’s accuracy even at initialization
(i.e., no gradient descent). This significantly reduces the search
cost. However, these works only validated a few highly cus-
tomized search approaches, and leveraged limited properties of
deep networks in an empirical or ad-hoc way. Mellor et al. [1]
only considered the “local linear map” defined by the covariance
of sample-wise Jacobian, and only studied the random search
method. Abdelfattah et al. [3] mainly leveraged “synflow” pro-
posed in previous pruning literature [22] while relying on a
warm-up stage. Chen et al. [2] considered two aspects (train-
ability and expressivity) and integrated two indicators, but still
have to leverage highly customized supernet pruning method
and cannot extend to other non-supernet NAS search methods.
Moreover, these training-free indicators still only pursue final
search performance and provide limited benefit towards the
interpretation and understanding of the search trajectory and
different search spaces.
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In contrast, we target on designing a unified and visualizable
training-free NAS framework that is (i) “search method agnos-
tic”, i.e., can be scaled up to a broad variety of popular search
algorithms; (ii) “visualizable”, i.e., can help understand search
behaviors on different landscapes of architecture spaces. Our
core idea is to propose indicators that can rank the network’s
performance, and characterize the network’s properties, while
still incurring no training cost. More importantly, we aim to
make our training-free indicators widely applicable to multiple
popular NAS methods, and also to facilitate the understanding
of NAS search process.

Specifically, We first propose to disentangle the net-
work’s characteristics into three distinct aspects: Trainability,
Expressivity, Generalization, or “TEG” for short (defined in
Section IIT). All three could be assessed with training-free in-
dicators, and our studies demonstrate their strong correlations
with the network’s training or test accuracy. Further, across
various network operator types and topologies, they show com-
plementary preferences, together leading to a comprehensive
picture. Extensive studies validate the effective and efficient
guidance from our TEG-NAS framework, with both improve-
ments on search accuracy and over 56% reduction on search
time cost. More importantly, we for the first time visualize
the search trajectory on architecture landscapes from different
search spaces, thanks to our proposed TEG dimensions that
disentangle different aspects of the searched model performance
and can be efficiently quantified. For example, we find that a
good local optimum is easier to find on NAS-Bench-201 [23]
which has simpler topologies. However, it is much harder for
a search method to balance TEG properties on the DARTS
space with complex architecture landscapes. We summarize our
contributions as:

® We perform a rigorous correlation analysis of three disen-

tangled “TEG” properties against the network’s training
and test accuracy, and how changes made to an architecture
will affect these aspects. All three notions are measured
in a training-free manner. Since the three properties are
complementary, they can achieve a very high correlation
with the network’s performance if properly combined.

® We design a unified training-free framework to provide ac-

curate yet extremely efficient guidance during NAS search.
Our framework is generally applicable to various existing
NAS methods, including both supernet and single-path ap-
proaches, in a plug-and-play fashion. In both NAS-Bench-
101, NAS-Bench-201, and DARTS search spaces, we trim
down the search time by over 56% while improving the
searched model’s accuracy.

® Beyond the final search performance, we for the first time

visualize the search trajectory on the architecture land-
scapes from different search spaces, on how the search
progresses along the TEG dimensions. That leads to a
novel visualization of the NAS search process, as well as
insightful comparisons among different search spaces.

Paper Organization. We first review recent advanced meth-
ods for efficient NAS and topics in Deep Learning theory in
Section II. We present our methods in two steps: 1) what are
training-free indicators for NAS (Section III); 2) how to use
training-free indicators in NAS (Section IV). In Section III

we first introduce our motivation and background in analyzing
the trainability/expressivity/generalization of deep networks.
Definitions and architecture inductive biases of three theory-
grounded indicators will be explained, and we will demonstrate
that disentangling different aspects of neural architectures leads
to a better ranking prediction of networks from a search space.
After validating different preferences of our three training-free
indicators on network architectures, in Section IV we propose a
unified and interpretable NAS framework that does not require
any gradient descent training. Our NAS framework can not only
be easily integrated into recent popular NAS methods (rein-
forcement learning, evolution, supernet), but also reflect a novel
visualization of architecture landscapes. This contributes to both
accelerated high-performance NAS methods and interpretable
tools for analyzing NAS search space. We show our final results
in Section V, where we studied the search accuracy and time
coston NAS-Bench-101 [24], NAS-Bench-201 [23] and DARTS
space.

The preliminary version of this work has been published in [2],
and we have made significant improvements over it. First, in the
main method section, we will introduce a missing part in our
ICLR version — a training-free indicator for the generalization
(Section III-C). As generalization is a different property of deep
networks besides trainability and expressivity, we will demon-
strate its strong indication of network performance, its distinct
architecture preference (Section IV-A), and its contribution to
the final search results. Second, this version of training-free NAS
is no longer a highly customized algorithm, but a unified and
generally adaptable framework, which will be verified in three
popular NAS search methods in our experiments (Section V).
All three NAS methods will benefit from strong search guidance
and significant time cost reduction after being integrated with our
general framework. Finally, our new work will facilitate search
space visualization and contribute to a novel visualization of
the NAS search process. By tracking and projecting the search
trajectory along the three proposed TEG dimensions, we can
observe distinct landscape patterns from simple to complex
search spaces, which will provide insights for understanding
and designing NAS search spaces.

II. RELATED WORKS
A. Neural Architecture Search

Most NAS works suffer from heavy search costs. Sampling-
based methods [10], [25], [26], [27], [28] achieve accurate
network evaluations, but the truncated training imposes bias on
the architecture rankings. The one-shot super network [17], [19],
[29], [30], [31] can share parameters to sub-networks and greatly
accelerate the evaluations, but it is hard to optimize [32] and
suffers from poor correlation between supernet accuracy and its
sub-networks’ [33]. In all, there is no clear one-winner method
across the variety.

B. Efficient and Training-Free NAS

Recent NAS works start focusing on reduced training or even
training-free search. ECONAS [34] investigated different ad-hoc
proxies (input size, model size, training samples, epochs, etc.)
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to reduce the training cost. Mellor et al. [1] for the first time
proposed a training-free NAS framework, which empirically
leverages the correlation between sample-wise Jacobian to rank
architectures. However, why did the Jacobian work was not
clearly explained and demonstrated. Abdelfattah et al. [3] stud-
ied different training-free indicators, and leveraged “synflow”
from pruning [22] as the main ranking indicator. Park et al. [35]
ranked the network’s performance with NTK and NNGP. Chen et
al. [2] studied two theory-inspired indicators and combined with
supernet pruning for further efficiency. However, these methods
either leveraged ad-hoc or limited theory-driven properties of
deep networks, or the benefits of their training-free strategies
are tied to some specific search methods. In contrast, we hope
to explore a comprehensive set of deep network properties, and
further propose a unified training-free framework for various
existing NAS methods.

C. Trainability, Expressivity, and Generalization

Numerous indicators in the deep learning theory field have
been proposed to study various aspects of deep networks. Neural
tangent kernel (NTK) is proposed to characterize the gradient
descent training dynamics of wide networks [36], [37]. It was
also proved that wide networks evolve as linear models under
gradient descent [38]. Xiao et al. [39] further propose to decou-
ple the network’s trainability and generalization. Meanwhile, a
network’s expressivity can be measured as the number of linear
regions separated in the input space [40], [41], [42], [43]. Many
works also try to directly probe the network’s generalization
from various training statistics or network parameters [44], [45],
[46].

III. DISENTANGLING TRAINABILITY, EXPRESSIVITY, AND
GENERALIZATION OF DEEP NETWORKS

Trainability, expressivity, and generalization are three im-
portant, distinct, and complementary properties to characterize
and understand neural networks [39], [42], [44]. Specifically,
the trainability is related to the convergence speed during opti-
mization; the expressivity is related to the network’s functional
complexity; and the generalization indicates a model’s error on
unseen data. Typically, a deep network achieves high perfor-
mance when: 1) it can produce a loss landscape that is easily
trainable with gradient descent, 2) it can represent sufficiently
complex functions, 3) it can learn representation transferable
to unseen examples, instead of just memorizing training data.
In this section, we will introduce what are these training-free
indicators, and in Section IV we will introduce how to use them
in NAS.

A. Trainability

Training deep networks requires optimizing high-
dimensional non-convex loss functions. In practice, gradient
descent often finds the global or good local minimum.
However, many expressible networks are not easily learnable.
For example, a deep stack of convolutional layers (e.g., Vgg [4])
is much harder to train than networks with skip connections

(ResNet [6], DenseNet [47], etc.), even the former could equip
a larger number of parameters. The trainability of a neural
network studies how effective it can be optimized by gradient
descent [48], [49], [50].

Architecture Bias on Trainability: A network’s architec-
ture can control how effectively the gradient information can
flow through it. These topological properties might control the
amount of information that can be learned by networks. Pre-
serving the gradient flow is found to be essential during network
pruning, even at initialization [22], [51]. Skip connections also
have a significant impact on the sharpness/flatness of the loss
landscapes [52]. Therefore, we hypothesize that certain aspects
of trainability can be characterized just by the architecture at its
initialization.

Conditioning of NTK: To characterize the training dynamics
of wide networks, Neural tangent kernel (NTK) is proposed [38],
[53], [54], defined as:

Oz, a') = J(z)J(x)", (1)

where J () is the Jacobian evaluated at a point &. Xiao et al. [39]
measures the trainability of networks by studying the spectrum
and conditioning of O:

pit (Tigain) = (I — 71O @wn@iin)tygy o 2

,ut(wlrain)i = (I - e_n}wt)ytrain,i~ 3)

we(x) is the expected outputs of a wide network, A; are the
eigenvalues of (:)(a:tra,»n, Tirain)> Lrrain A0 Yyrin are drawn from
the training set Dyin. (3) indicates that different time is needed
to learn the ith eigenmode, and thus we can conclude that the
more diverse the learning speeds of different eigenmodes are, the
more difficult the network can be optimized. We are therefore
motivated to use the empirical condition number of NTK to
represent trainability:

/2;/:

)Nmax(Aé(eraina a’uain)) (4)
@ )

:N"}C‘,(NO?I‘\%‘“ Amin( (mtraim wtrain))

where network parameters 6 are drawn from Kaiming normal
initialization (0, N%) (IV; is the width at layer [) [55], and thus
k is calculated at network’s initialization. As shown in Fig. 1, &
is negatively correlated with both the network’s training and test
accuracy, with the Kendall-tau correlation as —0.59. Therefore,
minimizing the £ during the search will encourage the discovery
of architectures with high performance.

B. Expressivity

Recent works try to explain the success of deep networks by
their ability to approximate complex functions, quantified by
various complexity measures [56], [57]. The more expressible
the network is, the more efficient it can fit the training data. In the
case of ReLLU networks that compute piecewise linear functions,
the number of distinct linear regions is a natural measure of such
expressivity. The composition of ReLU leads the input space
partitioned into distinct pieces (i.e., linear regions). Therefore,
the density of linear regions serves as a convenient proxy for the
complexity of the network [40], [42], [43], [58].
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Fig. 1. From left to right: correlation of trainability, expressivity, generalization, and sum of rankings against accuracies on NAS-Bench-201 [23], all revealing

strong correlations. Meanwhile, expressivity has a stronger correlation against training accuracy, and generalization has stronger correlation against test accuracy,

which is aligned with their definitions.

Architecture Bias on Expressivity: It was proved that networks
with random Gaussian initialization can embed the training data
in a distance-preserving manner [59]. Hanin et al. [58] show that
the number of activation patterns for ReLU networks is tightly
bounded by the total number of neurons both at initialization
and during training, and empirically showed that the number of
regions stays roughly constant during training [42]. Therefore,
network architecture itself has a strong inductive bias on its
expressivity.

Complexity of Linear Regions: We first introduce the defini-
tion of activation patterns and see how it is connected to the
number of linear regions in input space.

Definition 1 of [43] (Activation Patterns as the Linear Re-
gions) Let N be a ReLU CNN. An activation pattern of N is
a function P from the set of neurons to {1, —1}, i.e., for each
neuron z in N, we have P(z) € {1,—1}. Let 0 be a fixed set of
parameters (weights and biases) in N, and P be an activation
pattern. The region corresponding to P and 0 is

R(P;0) := {x® ¢ RV . »(2%:0) - P(2) > 0,
VzeN), (5)

where z(x%;0) is the pre-activation of a neuron z. Let Ry g
denote the number of linear regions of N at 0, i.e., Ry o :=
#{R(P;0) : R(P;0) # (0~ for some activation pattern P}.
(5) tells us that a linear region in the input space is a set of input
data x* that satisfies a certain fixed activation pattern P(z), and
therefore the number of linear regions R ¢ measures how many
unique activation patterns that can be divided by the network.

Since the input space is recursively partitioned by ReLU as
the layers go deeper, and the composition of piecewise linear
functions is still piecewise linear, each linear region in the input
space can be uniquely represented with a set of affine parameters
based on a combination of ReL U activation patterns. This means
that, with given training examples and parameters, the number of
linear regions R (i, #) can be approximated by the number of
unique activation patterns combined from all ReL U layers in the
whole network. We are therefore motivated to use the empirical
number of linear regions to represent expressivity:
IE R(wmin, 9 )

rain~ Digain

0~N(0,Nll

R= (6)

As shown in Fig. 1, R is positively correlated with both the
network’s training and test accuracy. Moreover, we observe that
R has a stronger correlation with training over test accuracy,
which validates that R indicates how well a network fits the
training data, but not its generalizability.

C. Generalization

Typically, the generalization error! is defined as the risk of the
model over the underlying data distribution D. A model chosen
from a very complex family of functions can essentially fit all the
training data, but memorization cannot guarantee the accurate

'Here we quantify the absolute generalization error, instead of the general-
ization gap.
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association of unseen examples with seen ones. That makes gen-
eralization a distinct notion from trainability (“optimization’)
and expressivity (“memorization”), since generalization focuses
on how well a model can transfer the information from seen to
unseen data.

Architecture Bias on Generalization: With even random ini-
tialization, network architecture alone could have a strong in-
ductive bias to its generalization error. Network architectures
of different complexity or sparsity, without learning any weight
parameters, are found to be able to encode solutions for a given
task [60], [61]. Bhardwaj et al. [62] formally established a link
between the structure of CNN architectures (depths, widths,
number of skip connections, etc.) and their generalization er-
rors. More importantly, inductive bias from certain architecture
patterns (e.g., graph-based representation [63]) can even transfer
across different types of networks (MLPs, CNNs, ResNets, etc.)
and different tasks (CIFAR-10, ImageNet, etc.). Same in our
work, we decouple the architecture from the network weights,
and focus only on the aspect of “weight-agnostic” generaliza-
tion, which is impacted by just the network architecture.

NTK Kernel Regression: Previous works [38], [39] showed
that at time ¢ during gradient descent training with an MSE loss,
the expected outputs of an infinite wide network evolve as:

Mot (xtest) = é (mtesta mtrain) (é ($train> wlmm))il (I
_ e_né(w"“i"’w"ai")t)ytrain' (7)

Studying the evolution of 1 (s ) in (7) along the training iter-
ation ¢ can characterize the generalization performance of deep
networks. However, the infinite width is not directly applicable
in real-life scenarios, and we want to estimate the generalization
at a network’s initialization. Therefore in our work, we choose
to empirically estimate the generalization by calculating the test
MSE error of a network’s NTK kernel regression:

@test = éL (‘Elestv wtrain) (éL (xtraina :Btrain) ) ! Ytrain (8)
MSE = E

Train s Ytrain~ Dirain
Trests Yrest™~ Diest

| |@test - ytesl| ‘2 . (9)

O indicates the NTK evaluated only for the last layer of the
deep network. Eq 8 tries to associate @iq With @y, via NTK
kernel regression, and transfer the given training labels Yqin to
the test data. A deep neural network will fail to generalize if its
prediction ¥, becomes data-independent, and the MSE in (9)
will become large.

Note that we are not directly predicting a network’s converged
generalization at its initialization. Instead, we use MSE to com-
pare different networks and study how it would be affected by
different architectures. Adopting MSE also follows the conven-
tion that NTK is also derived under the squared loss [36], [64].

As further demonstrated in Fig. 1, MSE shows a strong
negative correlation with both the network’s training accuracy
and test accuracy. We also observe that both training and testing
accuracy drop with the increase of MSE. This is because on
the observation from NAS-Bench-201, all models’ training and
testing accuracies are positively correlated. More importantly,
MSE has a stronger correlation with the test than the training

accuracy. This precisely validates that MSE represents how well
anetwork generalizes, but not memorization of the training data.

D. Comparison With Other Zero-Cost Proxies

We further compare our training-free indicators with other
publicly available zero-cost proxies [65]. We follow code at
https://github.com/automl/naslib/tree/zerocost and provide our
results of Spearman correlations of our training-free indicators.
From Fig. 2 we can see that our three training-free indicators
show strong correlations across diverse benchmarks, compared
with other proxies.

At this moment we disentangled the network’s performance
into three distinct properties. In the next section, we present our
unified and interpretable TEG-NAS strategy.

IV. TEG-NAS: A UNIFIED AND INTERPRETABLE NAS
FRAMEWORK

In this section we will demonstrate how to use our three
training-free indicators in NAS. Our core motivation is to pro-
vide a unified training-free framework for NAS of both high
performance and low cost. We also enable the visualization of
NAS search trajectory on the architecture landscapes.

A. How Architecture Affects K, R, and MSE

Despite the strong correlations and different preferences over
training or testing accuracy we observe in Fig. 1, it is still
unknown whether each individual aspect of three — trainability,
expressivity, generalization — is necessary for a deep network to
be of high performance. This analysis is also missing in previous
works [2], [39]. Before we directly adopt our disentangled TEG
properties to NAS search, we must study how changes of &,
R, MSE could be reflected on network architectures, and how
network’s operator types or topology will affect its trainability,
expressivity, and generalization. Otherwise, if they share the
same preference on selecting architectures, picking any one of
them will guide the search towards similar results.

Architecture Exclusively Selected by &, R, MSE: Trainability,
expressivity, and generalization may have different preferences
over the network’s operator types and topology. This motivates
us to summarize architectures that are exclusively selected by
R, R, MSE. We first measure the thresholds T}, Tr, Tusg that
filter top 10% architectures out of the search space A, ranked
by &, R, and MSE, respectively. We define the following three
subsets of architectures, with any two out of three having an
empty intersection:

A, ={ala € A, i, < T, Ry < Tr,MSE, > Tyst},

(10)

Agr = {a\a S A, Rq > TH,Ra > Tr,MSE, > TMSE}7
(11)

AMSE = {a\a S A, /Aia > TmRa < TR,MSEa < TMSE}~
(12)

We study three subsets of architectures in terms of both operator
and topology, shown in Fig. 3. For operator types, the ratio of
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convolution (1 x 1 and 3 x 3) operators in A,; is lower than
those of Ap and Aysg, indicating operators with a heavy
number of parameters may not friendly for optimization. In
contrast, Ar and Aysg favor more convolution layers, bene-
fiting to data fitting. For network topology, the averaged depth?
of architectures in A,. is much lower than those in A g, since
shallow networks are easier to train [39]. Depth from Aysg is
also low, contributing to better test accuracy.

Case Study: One failure reason for a bad architecture is the
existence of “none” (or “zero”) operator, which completely
breaks the feed-forward and gradient flow. Xie et al. studied the
role of the “None” operator in differentiable architecture search,
highlighting the importance of the appearance and disappear-
ance of the “None” operation during the evolution of the supernet
topology [67]. In our work, we use “None” to demonstrate that
our training-free metrics are sensitive to changes in a single-path
subnetwork’ topology.

2Depth of a cell is defined as the number of connections on the longest path
from input to the output [66]

= node_3 [ & node_3 =
(output) (output)

Fig. 4. “None” operator jeopardizes the architecture’s trainability, expressiv-
ity, and generalization. By replacing “none” with “skip_connect” or “convl x
17, the bad trainability or expressivity can be addressed, leading to better test
accuracy.

We show one case in Fig. 4. When there is a “none” exist,
both trainability and expressivity are bad, leading to poor test
accuracy. By switching into “skip_connect” or “convl x 17, the
bad trainability or expressivity is addressed, leading to better
test accuracy.

B. A Unified Training-Free NAS Framework

Different preferences of &, R, and MSE on network’s op-
erators and topology validate their potential of guiding the
NAS search. We now propose our unified training-free NAS
framework (Algorithm 1). Existing NAS methods evaluate the
accuracy or loss value of every single architecture via truncated
training or shared supernet weights. The evaluated accuracy or
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TABLE I
COMPARISON OF DIFFERENT NAS SEARCH METHODS STUDIED IN OUR EXPERIMENTS

NAS Method  NAS Formulation =~ Weight-sharing ~ Update Method Search Stopping Criterion
REINFORCE Single-path No policy gradients policy entropy
Evolution Single-path No mutation population diversity
FP-NAS Supernet Yes gradient descent  entropy of architecture parameters

Algorithm 1: Our unified training-free framework for dif-
ferent NAS methods.
1: Input: architecture search space A, NAS search method
M, stept = 0.
2: while not Search Stopping Criterion of M satisfied do
3: Sample architecture: a; = M.sample(A)
4: Calculate &y, Rt, MSE,; for a;
5: Update NAS method: M.update(a;, <+, Rt, MSE;)
6:t=1t+1
7: end while
8: Return Searched architecture M.derive().

loss is also leveraged as feedback to update the NAS method
itself. Instead, we leverage the disentangled trainability, expres-
sivity, and generalization during the search. For each architecture
sampled by the NAS search method, we average three repeated
calculations of #; / R; / MSE;, by using three independent
mini-batches of training data. They will be leveraged as feedback
to guide the update of the search method. For different search
stopping criteria and update manners of different NAS methods,
please refer to Section V-A and Table L.

Comparison With Prior Works

e Mellor et al. [1] only leveraged sample-wise correlation
of Jacobian, with no detailed explanation of which aspect
(trainability/expressivity/generalization) this indicator rep-
resents. Moreover, they only leveraged Random Search
on NAS-Bench-201, without studying more NAS methods
and search spaces.

e Abdelfattah et al. [3] mainly leveraged “synflow” indica-
tor equipped with “warm-up” or “move proposal” search
strategy, which is related to trainability. However, they still
have to use trained models for proxy inference during the
search.

® Chen et al. [2] built their framework on top of a super-net
based approach, and strongly rely on a highly customized
super-net pruning strategy. We evaluate their method with-
out pruning (shown in Table III) and observed inferior
performance.

C. Visualizing Search Process on Different Architecture
Landscapes

It has been a missing part in the NAS community to visual-
ize the search process on architecture landscapes from differ-
ent search spaces. Several bottlenecks hinder this analysis: 1)
evaluation via truncated training still suffers from heavy com-
putation cost, making the architecture landscape intractable to

characterize; 2) the truncated accuracy or loss value is noisy,
making the trade-off of exploration-exploitation of the search
process hard to observe.

We leverage Reinforcement Learning (RL) as the example,
and take pioneering steps to conduct such analysis:

e Toexplore the global and local geometry of the architecture
landscapes, at search step ¢ we spawn a parent architecture
into two children, and proceed the search of these two
children with different randomness.

e We collect the trajectory of architectures from two chil-
dren, and project the high-dimensional architecture space
(represented by the categorical policy distribution of the
RL agent) into a 2D plane via PCA.

We perform these analyses at early and late search steps on
both NAS-Bench-201 space [23] and DARTS search space [17]
(see search space details in Section V), shown in Fig. 5. Our
observations are summarized as follows:

e On NAS-Bench-201, the search can land in areas where
Rt Rt, and MSE, are all good. Although some areas (e.g.,
area “A” in early NAS-Bench-201) enjoy local minima on
one of the three aspects, the search will proceed beyond it
due to its inferiority on the other two properties.

e Spawning at both early and late search stages, two children
from NAS-Bench-201 land in the same area in the end.
This is probably because of the simple operator types and
topology from the design of NAS-Bench-201 (see details
in Section V-D and original paper [23]).

® DARTS space is associated with much more complex
architecture landscapes. Children spawned from both early
and late stages may land in different areas, with a barrier
(or a valley) on their interpolation (orange dashed line).
This complex landscape introduces a significant challenge
to balance and trade-off &, Rt, and MSE, for NAS search,
with even noisy signals.

In general, our landscape analysis on the architecture space
can be analogized to the counterpart on the parameter space [52].
The architectural landscape can influence the behavior of the
architecture search. Our visualizations help explore the sharp-
ness/flatness of architectural minimizers found by different
search methods, in different architecture spaces, and the choices
of different architectural compositions (skip connections, chan-
nel numbers, network depths, etc.). Specifically, the usage and
impact of our landscape analysis are explained below:

1) Compare different search spaces: given the same search
method, the search trajectory on different search spaces
will lead to different behaviors. If a search space incurs
plenty of barriers or valleys on the trajectory, that means
it poses challenges for the search method to converge.
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Fig. 5.

Architecture landscape with respect to trainability (left), expressivity (middle), and generalization (right) on a 2D plane projected via PCA from the search

space. The red star indicates the parent of a search by Reinforcement Learning, and two crosses represent two children spawned from the same parent (at “Early”
or “Late” search stage), but searched with different randomness. The simple geometry of NAS-Bench-201 is easier to search, whereas the DARTS space is much

more complex and hard to explore.

2) Compare different search algorithms: given the same
search space, besides the final search performance, a good
search algorithm should be able to explore a vast amount
of areas in a search space, instead of being trapped in local
regions.

3) Design search space: [68], [69], visualizing the archi-
tecture landscapes can help study the complexity and
geometry of the search space and avoid rough architecture
landscapes. Specifically, we can evaluate compositions in
a search space, by comparing the change in the landscape
when we add different operators or connections.

4) Design search algorithm: visualizing the search process
can reveal the quality and stability of the search via dif-
ferent spawning and randomness.

V. EXPERIMENTS

Following the experimental setting in [1], [2], [3], [79], [80],
[81], [82], [83], in this section, we evaluate our TEG-NAS
framework on three commonly used search spaces: NAS-Bench-
101 [24], NAS-Bench-201 [23], and DARTS [17]. For DARTS

space, we conduct experiments on both CIFAR-10 and ImageNet
(Section V-E). For NAS-Bench-201, we test all three supported
datasets (CIFAR-10, CIFAR-100, ImageNet-16-120 [85]) in
Section V-D.

A. Studied Search Methods

Reinforce [10], [76]: Reinforcement learning (RL) treats the
NAS search process as a sequential decision-making process.
The policy agent formulates a single-path architecture by choos-
ing a sequence of operators as actions, and uses the accuracy,
loss value, or our training-free indicators of sampled architecture
as the reward to update its internal policy distribution.

Evolution [25]: Starting from a randomly initialized pool
of architectures, the evolution keeps updating the population
by mutating the high-ranked architectures. The ranking criteria
could be the accuracy, loss value, or our training-free indicators
of sampled architectures.

Fast Probabilistic NAS: FP-NAS views search evaluations
from an underlying distribution over architectures [77].
It constructs a supernet and corresponding architecture
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parameters. Leveraging Importance Weighted Monte-Carlo
EB algorithm [86], architecture parameters are optimized to
maximize the model likelihoods of sampled architectures,
which are weighted by a proxy architecture performance
indicator, like accuracy, loss value, or training-free indicators.

B. Implementation Details

In this section, we include more details regarding Algorithm 1
in terms of different search methods.

1) Reinforcement Learning: The policy agent maintains an
internal state to represent the architecture search space, denoted
as 4. This internal state can be converted to a categorical
distribution of the architectures (.A) via softmax: A = o (04).

Stopping Criterion: We stop the RL search when the entropy
of A stops decreasing (total iterations 7" = 500 in our work).
We train the RL agent with a learning rate as 7 = 0.04 on NAS-
Bench-201 and 7 = 0.07 on DARTS space.

Architecture Sampling: In each iteration, the agent samples
one architecture a; from .A.

Update: We update the RL agent via policy gradients.

07, =08 — 1) Voaf(0) t=1,....T (13)
f(07) = —log(a(04)) - (r — by) (14)
by =~by1 + (L —=~)ry (bo=0,7=0.9) (15)

r stands for reward, and b for an exponential moving average of
reward for the purpose of variance reduction. For the baseline
method, the reward is taken from the proxy inference, i.e., the
test accuracy by 1-epoch truncated training. For our TEG-NAS,
the reward is composited of three parts: r = r* + 71 4 pMSE,
and we show the justification for how we combine our indicators
in Table VI. Taking 7" (reward from trainability) as the example:

Rt — Kt-1

= (16)
Rmax,t — Fmin,t

Fmax,t = max(ky, Ra, ..., ~t) 17)

"%mimt = min(l%l,l%g,. --;"%t) (18)

where £ is the evaluated trainability of the architecture sampled
at step t. We calculate 7 (expressivity) and rMSE (generaliza-
tion) in the same way.

Architecture Deriving: To derive the final searched network,
the agent chooses the architecture that has the highest probabil-
ity, i.e., a* = argmax,o(64)(a).

2) Evolution: The evolution search is first initialized with a
population of 256 architectures by random sampling. We choose
this size of the population based on Fig. A-1(a) from [25].

Stopping Criterion: We stop the Evolution search when the
population diversity stops decreasing (1000 iterations in our
work). Population diversity is calculated as the averaged pair-
wise architecture difference in their operator types.

Architecture Sampling: Following Real et al. [25], in each
iteration, the evolution search first randomly samples a subset of
64 architectures out of the population. We choose this sampling
size based on Fig. A-1(a) from [25]. Next, the best architecture
(a;) from this subset is selected. For the baseline method, the best

architecture is the topl ranked by the proxy inference, i.e., the
test accuracy by 1-epoch truncated training. For our TEG-NAS,
the best architecture is the topl by the sum of three rankings by
trainability, expressivity, and generalization: rank” 4 rank’® +
rankMSE,

Update: Following Real et al. [25], in each iteration the
population is updated by adding a new architecture and popping
out the oldest architecture (the one that stays in the population for
the longest time). The new architecture is generated by mutating
the sampled one mentioned above. We follow the same mutation
strategy from Real et al. [25].

Architecture Deriving: To derive the final searched network,
the best architecture from the population is selected, where the
criterion is the same as we choose a; (see above “Architecture
Sampling”).

3) Fast Probabilistic NAS: The Fast Probabilistic NAS (FP-
NAS) formulates the search space as a supernet and shares its
parameters to its sub-networks. The original FP-NAS search per-
forms alternative optimization between network parameters and
the architecture parameters (denoted as 04). This architecture
parameter can be converted to a categorical distribution of the
architectures (.A) via softmax: A = o (4).

Stopping Criterion: We stop the FP-NAS search when the
entropy of A stops decreasing (total epochs 7" = 100 in our
work). We update the architecture parameters with a learning
rate as ) = 0.1.

Architecture Sampling: In each step, the FP-NAS samples a
subset A; of LH (Prob(a;|.A)) architectures from A. Here H
denotes the distribution entropy and X is a pre-defined scaling
factor where we set it to 0.25.

Update: We update the architecture parameters by stochastic
gradient descent.

074, =0 —n-Veaf(07) t=1,....T
| Al

£(67) = = log(Prob(a;|.A)) -

i=1

(19)

e’
Al (20)
j=1¢"

r stands for reward, calculated in the same way as we did for
Reinforcement Learning (Section V-B1).

Architecture Deriving: To derive the final searched network,
the FP-NAS chooses the architecture that has the highest prob-
ability, i.e., a* = argmax,o(64)(a).

C. Results on NAS-Bench-101

NAS-Bench-101 [24] contains 423,624 unique neural ar-
chitectures exhaustively generated and evaluated from a fixed
graph-based search space. The search space is extremely diverse
yet expressive, due to its general encoding scheme, consisting
of an adjacency matrix and its corresponding operations at each
vertex. Specifically, the adjacency matrix is represented by a
7 x 7 upper-triangular binary matrix, while the operation at
each vertex could be any of three operator types: convl X 1,
conv3d x 3 convolution, and average pooling 3 x 3. Each net-
work is trained for 108 epochs and the network’s accuracy at
intermediate epoch(s) is also provided. For the baseline methods,
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TABLE II
SEARCH PERFORMANCE ON NAS-BENCH-101

Method GPU Hours  #Queries  Test Acc.(%) STD(%)  Test Regret(%) Avg. Rank Search Method
LaNAS [70] 107.37 200 93.90 - 0.42 168.1 Sample-based
BONAS [71] 107.3% 200 94.09 - 0.23 18.0 Sample-based
NASBOWLr [72] 80.5% 150 94.09 - 0.23 18.0 Sample-based
CATE (cate-DNGO-LS) [73] 80.57 150 94.10 - 0.22 12.3 Sample-based
WeakNAS [74] 80.5T 150 94.10 0.19 0.22 12.3 Sample-based
ZERO-COST NAS [3]* 27.3F 51 94.22 - 0.10 3.0 Training-Free + Sample-based
Synflow [22] - - 91.31 0.02 3.01 156663.0 Training-Free
NASWOT [1] 0.006 - 91.77 0.05 2.55 118291.0 Training-Free
AREA (Evolution + NASWOT) [1] 3.33 - 93.91 0.29 0.41 153.0 Training-Free
GenNAS-N [75] 5.75 - 93.92 0.004 0.40 135.0 Training-Free
Evolution 2.22 170 92.17 2.19 2.15 85891.0 Sample-based
Evolution + TEG (ours) 0.78 250 92.52 1.30 1.80 59676.0 Training-Free
REINFORCE 2.77 200 93.80 0.12 0.52 441.0 Sample-based
REINFORCE + TEG (ours) 0.24 250 94.11 0.11 0.21 12.0 Training-Free
Optimal - - 94.32 - 0.00 1.0 -

f Estimated results via the number of queries, where each query in NAS-Bench-101 takes an average of 1932s to train from scratch.
£ ZERO-COST NAS [3] use training-free metrics to warm-up and initialize the sampled-based search algorithm, thus is considered a hybrid of both.

We ran teg-nas for 10 times and report the mean test accuracy and STD.

TABLE III
SEARCH PERFORMANCE FROM NAS-BENCH-201

Architecture CIFAR-10 CIFAR-100  ImageNet-16-120 S(g;%lsCeg.s)t 1312:;:01:1
ResNet [6] 93.97 70.86 43.63 - -
RSPS [78] 87.66(1.69)  58.33(4.34) 31.14(3.88) 8007.13 random
ENAS [10] 54.30(0.00) 15.61(0.00) 16.32(0.00) 13314.51 RL
DARTS (1st) [17] 54.30(0.00)  15.61(0.00) 16.32(0.00) 10889.87 gradient
DARTS (2nd) [17] 54.30(0.00)  15.61(0.00) 16.32(0.00) 29901.67 gradient
GDAS [19] 93.61(0.09)  70.70(0.30) 41.84(0.90) 2892591 gradient
DrNAS [79] 94.36(0.00) 73.51(0.00) 46.34(0.00) - gradient
RLNAS [80] 93.45 70.71 43.70 - gradient
G-EA [81] 93.98(0.18)  72.12(0.35) 45.94(0.71) 18567 gradient
B-DARTS [82] 94.36(0.00) 73.51(0.00) 46.34(0.00) 11520 gradient
Single-DARTS [83] 94.36(0.00)  73.51(0.00) 46.34(0.00) - gradient
GM + DARTS [84] 93.72(0.12)  71.83(0.97) 42.60(0.00) - gradient
NASWOT (N = 1000) [1] 92.96(0.81)  69.98(1.22) 44.44(2.10) 306.19 training-free
TE-NAS [2] 93.9(0.47) 71.24(0.56) 42.38(0.46) 1558 training-free
TE-NAS + TEG (ours) 93.94(0.2) 71.44(0.81) 44.11(0.88) 3330.5 training-free
REINFORCE [76] 90.00(1.16)  68.40(5.93) 44.78(1.20) 33.9k/35.9k/63.5k RL
REINFORCE + TEG (ours)  90.21(0.67)  70.42(0.36) 44.88(0.91) 3668.5 training-free
Evolution [25] 90.92(0.31)  69.32(3.31) 44.33(1.81) 33.7k/38.1k/148.3k evolution
Evolution + TEG (ours) 91.00(0.33)  70.10(1.47) 44.45(0.75) 9939.5 training-free
FP-NAS [77] 55.38(1.52)  22.30(15.45) 16.96(6.43) 3.7k/6.6k/17.2k gradient
FP-NAS + TEG (ours) 93.73(0.50)  70.36(0.44) 46.03(0.10) 641.67 training-free
Optimal 94.37 73.51 47.31 - -

Test accuracy with mean and deviation are reported. “Optimal” indicates the best test accuracy achievable in the space. The search time cost of our TEG-NAS is
agnostic to the size of the dataset (section iv-b). For REINFORCE [76], evolution [25], and FP-NAS [77], three search costs are listed for CIFAR-10/CI-

FAR-100/ImageNet-16-120.

the RL agent and Evolution use the validation accuracy after
2-epoch training as the reward or ranking criteria. For all results
on NAS-Bench-101, we run for 10 independent times with
different random seeds and the mean and standard deviation
of test accuracy are reported. Due to the slight difference in
test accuracies of architectures, we also include test regret (the
absolute accuracy gap to global optimal) and average rank (the
ranking distance to global optimal) for a clearer comparison
across different search methods.

As shown in Table II, combing our TEG-NAS with RE-
INFORCE or Evolution, we achieve better performance over
the baseline. We significantly boost the searched test accuracy
(over 0.3%+-) while reducing more than 64% search time cost.
Note that we did not evaluate supernet-based NAS methods (FP-
NAS, TE-NAS, gradient-based NAS) on NAS-Bench-101, since
the general graph-based encoding scheme in NAS-Bench-101
makes it incompatible with weight-sharing supernet, which is
required in gradient-based NAS.
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TABLE IV
SEARCH PERFORMANCE FROM DARTS SPACE ON CIFAR-10

Architecture Test Error Params Search Cost Search
(%) M) (GPU days) Method
AmoebaNet-A [25] 3.34 3.2 3150 evolution
PNAS [11]* 3.41 32 225 SMBO
ENAS [10] 2.89 4.6 0.5 RL
NASNet-A [87] 2.65 3.3 2000 RL
DARTS (1st) [17] 3.00 3.3 04 gradient
SNAS [88] 2.85 2.8 1.5 gradient
GDAS [19] 2.82 2.5 0.17 gradient
BayesNAS [89] 2.81 34 0.2 gradient
ProxylessNAS [90] 2.08 5.7 4.0 gradient
NASP [91] 2.83 (0.09) 3.3 0.1 gradient
P-DARTS [92] 2.50 34 0.3 gradient
PC-DARTS [18] 2.57 3.6 0.1 gradient
R-DARTS (L2) [93] 2.95 (0.21) - 1.6 gradient
SGAS (Cri 1. avg) [31] 2.66 (0.24) 3.7 0.25 gradient
SDARTS-ADV [94] 2.61 33 1.3 gradient
DrNAS [79] 2.46 (0.03) 4.1 0.6* gradient
B-DARTS [82] 2.53 (0.08) 3.75 (0.15) 0.4 gradient
Single-DARTS [83] 2.46 3.3 - gradient
Few-shot DARTS-Small [95] 2.31 (0.08) 3.8 1.35 gradient
GM + DARTS (1st) [84] 2.46 (0.07) 3.7 1.1 gradient
TE-NAS [2] 2.63 3.8 0.05* training-free
TE-NAS + TEG (ours) 2.58(0.01) 4.8 (0.1) 0.05* training-free
REINFORCE [76] 3.25(0.43) 2.4 (0.3) 1.1% RL
REINFORCE + TEG (ours) 2.87(0.04) 4.0 (0.3) 0.15% training-free
Evolution [25] 3.24(0.17) 2.1(0.1) 2.6+ evolution
Evolution + TEG (ours) 3.16(0.35) 3.3(0.5) 0.4 training-free
FP-NAS [77] 4.61(0.56) 2.2 (0.1) 0.3% gradient
FP-NAS + TEG (ours) 2.74(0.18) 44(0.2) 0.13% training-free

* No cutout augmentation.
T Different space: PyramidNet [96] as the backbone.
# Recorded on a single GTX 1080Ti GPU.

Our results are averaged over three searched architectures under different random seeds, with standard deviations

in parentheses.

D. Results on NAS-Bench-201

NAS-Bench-201 [23] provides a cell-based search space and
the performance of all 15,625 networks it contains using a
unified protocol. The network’s accuracy is directly available
by querying the database, benefiting the study of NAS methods
without network evaluation. It contains five operator types: none
(zero), skip connection, convl x 1, convd X 3 convolution, and
average pooling 3 x 3. We refer to their paper for details of the
space. For the baseline methods, the RL agent and Evolution
use the test accuracy after 1-epoch training as the reward or
ranking criteria. The FP-NAS uses alternative training between
architecture parameters and supernet parameters with stochastic
gradient descent. For all results we report, we run for four
independent times with different random seeds, and report the
mean and standard deviation in Table III.

We can see that for all three NAS methods (REINFORCE,
Evolution, FP-NAS), our TEG-NAS framework boosts the
search performance while significantly reducing the search time

cost. Moreover, by adopting our unified framework, the accuracy
of TE-NAS can be further improved.

E. Results on DARTS Search Space

Architecture Space: The DARTS space contains eight op-
erator types: none (zero), skip connection, separable convolu-
tion 3 x 3 and 5 X 5, dilated separable convolution 3 x 3 and
5 x b, max pooling 3 x 3, average pooling 3 x 3. We stack
20 cells to compose the network and set the initial channel
number as 36 [17], [18], [92]. We place the reduction cells
at the 1/3 and 2/3 of the network. Each cell contains six
nodes.

The architecture for ImageNet is slightly different: the net-
work is stacked with 14 cells with the initial channel number
set to 48 [18], [92]. The spatial resolution is downscaled from
224 x 224 to 28 x 28 with the first three convolution layers of
stride 2.
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TABLE V
SEARCH PERFORMANCE FROM DARTS SPACE ON IMAGENET

Architecture Test Error(%) Params  Search Cost Search
top-1 top-5 M) (GPU days) Method
NASNet-A [87] 26.0 8.4 5.3 2000 RL
AmoebaNet-C [25] 24.3 7.6 6.4 3150 evolution
PNAS [11] 25.8 8.1 5.1 225 SMBO
MnasNet-92 [97] 252 8.0 4.4 - RL
DARTS (2nd) [17] 26.7 8.7 4.7 4.0 gradient
SNAS (mild) [88] 27.3 9.2 4.3 1.5 gradient
GDAS [19] 26.0 8.5 5.3 0.21 gradient
BayesNAS [89] 26.5 8.9 3.9 0.2 gradient
P-DARTS (CIFAR-10) [92] 244 74 4.9 0.3 gradient
P-DARTS (CIFAR-100) [92] 24.7 7.5 5.1 0.3 gradient
PC-DARTS (CIFAR-10) [18] 25.1 7.8 53 0.1 gradient
ProxylessNAS (GPU) [90] 24.9 7.5 7.1 8.3 gradient
OFA w/ PS [98]" 24.0 - - 1.67 gradient
PC-DARTS (ImageNet) [18] 24.2 7.3 5.3 3.8 gradient
SGAS (Cri 1. avg) [31] 24.42 (0.16)  7.29 (0.09) 5.3 0.25 gradient
DrNAS [79] 237 7.1 5.7 46 gradient
RLNAS [80] 24.0 7.1 5.7 - gradient
B-DARTS [82] 239 7.0 5.5 0.4 gradient
Single-DARTS [83] 23.0 - 6.6 - gradient
GM + DARTS (2nd) [84] 26.7 8.7 4.7 1.0 gradient
TE-NAS [2] 26.2 8.3 6.3 0.05 training-free
TE-NAS + TEG (ours) 23.6 (0.1) 7.1 (0.03) 6.6 (0.1) 0.05 training-free
REINFORCE [76] 282 (1.8) 96(1.1)  3.8(0.4) 1.1 RL
REINFORCE + TEG (ours) 25.1 (0.2) 7.7 (0.1) 5.6 (0.3) 0.15 training-free
Evolution [25] 29.1 (0.8) 10.2 (0.5) 3.3(0.1) 2.6 evolution
Evolution + TEG (ours) 26.3 (0.6) 8.4 (0.3) 4.8 (0.6) 0.4 training-free
FP-NAS [77] 31.2 (1.0) 114 (0.7)  3.4(0.1) 03 gradient
FP-NAS + TEG (ours) 23.7 (0.2) 7.0 (0.1) 6.1(0.2) 0.13 training-free

T Architecture searched on ImageNet, otherwise searched on CIFAR-10 or CIFAR-100.
Our results are averaged over three searched architectures under different random seeds, with standard deviations

in parentheses.

TABLE VI
ABLATION STUDY OF DIFFERENT COMBINATIONS OF TRAINING-FREE
INDICATORS FOR REINFORCE NAS METHOD ON NAS-BENCH-201

CIFAR-100
Indicators Accuracy  GPU secs.

Baseline (1-epoch training)  68.4(5.93) 19786
R 69.06(2.15) 254.6

I 69.27(0.73) 1574
MSE 69.68(0.88) 2447.7

R R 69.89(0.98) 1716.1

R, MSE 70.00(0.42) 2667.4

%, MSE 70.18(0.04) 2704

&, R, MSE 70.42(0.36) 3668.5

Test accuracy with mean and deviation are reported.

Evaluation Protocols: We follow previous NAS works [18],
[92], [94] to evaluate architectures after search. On CIFAR-10,
we train the searched network with cutout regularization of
length 16, drop-path [87] with probability as 0.3, and an auxiliary
tower of weight 0.4. On ImageNet, we also use label smoothing
during training. On both CIFAR-10 and ImageNet, the network

is optimized by an SGD optimizer with cosine annealing, with
a learning rate initialized as 0.025 and 0.5, respectively.

Results: For example, on ImageNet, our TEG brings im-
provements for: REINFORCE +3.1% top-1, -86.4% time cost;
Evolution +2.8% top-1, -84.6% time cost; FP-NAS +7.5% top-1,
-56.7% time cost. All training-free versions of three NAS meth-
ods can now complete the search with less than a half GPU day.
These search improvements on the large-scale DARTS space and
datasets validate the effectiveness and efficiency of our unified
TEG-NAS framework.

We also notice that FP-NAS benefits the most by equipping
our TEG method (+1.87% on CIFAR-10 and +7.5% on Im-
ageNet). The underlying problem of ProbNAS is similar to
DARTS. As a weight-sharing NAS method, skip-connection
favors the gradient flow during search, which introduces a
strong bias in the supernet parameters. At the end of search
the supernet’s accuracy can not faithfully represent the ranking
of single-path networks. This problem is pointed out in recent
NAS works [32], [94]. In contrast, our training-free method can
address this problem: we avoid any gradient descent, and the
shared weight (at its initialization) will not be affected by any
inductive bias during training, thus unleashing more power of
weight-sharing NAS methods.
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sep_conv_Sx5

(a) Normal Cell (b) Reduction Cell

Fig. 6. Normal and reduction cells discovered by RL + TEG-NAS on DARTS
space on CIFAR-10.

(a) Normal Cell (b) Reduction Cell

Fig. 7.  Normal and reduction cells discovered by evolution + TEG-NAS on
DARTS space on CIFAR-10.

(a) Normal Cell

(b) Reduction Cell

Fig. 8. Normal and reduction cells discovered by FP-NAS + TEG-NAS on
DARTS space on CIFAR-10.

E. Searched Architecture on DARTS Search Space

We visualize the searched normal and reduction cells on
DARTS space, by Reinforcement Learning (Fig. 6), Evolution
(Fig. 7), and FP-NAS (Fig. 8)).

G. Ablation Study on &, ]%, and MSE

To validate the necessity of considering all of the trainability,
expressivity, and generalization, we conduct an ablation study
in Table VI using Reinforcement Learning on Cifar100 on
NAS-Bench-201. This ablation study is conducted under the
same settings as in Section V-D. As the baseline method, the
RL agent uses the test accuracy after 1-epoch training as the
reward. We can see that the guidance from every single indicator
outperforms the truncated training, with much less search time
cost. Finally, we achieve the best search performance once
equipped with all &, R, and MSE.

VI. CONCLUSION

We proposed a unified and visualizable NAS framework
that benefits both various popular search methods and search
interpretation. We successfully disentangle the network’s char-
acteristics into three distinct aspects: Trainability, Expressivity,
Generalization, or “TEG” for short, and leverage all of them
to provide effective and efficient guidance for NAS search.
Extensive studies on different NAS search methods validate
the superior performance of our TEG-NAS framework. More
importantly, we for the first time visualize the search trajec-
tory on architecture landscapes from different search spaces,
contributing to a better understanding of both the search and
geometry of architecture space. We hope our work encourages

the community to further explore NAS methods that benefit
from extremely low cost, and provide a better understand-
ing of the architectures and complexity of different search
spaces.
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