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Abstract—This paper investigates the antenna selection prob-
lem in massive multiple-input multiple-out (MIMO) systems un-
der incomplete channel state information (CSI), with a particular
interest on risk-aware planning subjected to practical constraints
such as transmit power budgets and quality of services (QoS).
Due to a very large number of antennas, obtaining complete chan-
nel measurements becomes a cost-prohibitive, energy-inefficient
and spectral-inefficient task. To reduce pilot overhead, incomplete
CSI and antenna selection (AS) are expected in practical massive
MIMO systems. However, most existing AS algorithms heavily
rely on the complete CSI, which imposes a high probability
of violating the practical constraints in the scenarios of our
interests. Motivated by this, we propose a joint channel prediction
and antenna selection framework (JCPAS) which efficiently
performs AS and is robust against the incomplete CSI and
practical constraints. The proposed framework comprises i) a
channel tracker which estimates the channel dynamics based on
historical incomplete observations, and ii) a risk-aware Monte
Carlo tree search (RA-MCTS) algorithm which utilizes the
estimated channel dynamics to select antennas in a risk-aware
manner. Simulation results show that the proposed RA-MCTS
not only achieves much lower energy consumption compared to
the existing typical algorithms, but also significantly reduces the
probability of violating the practical constraints.

Index Terms—Massive MIMO, antenna selection, incomplete
CSI, machine learning, risk-aware planning, Monte Carlo tree
search

I. INTRODUCTION

MASSIVE multiple-input multiple-out (MIMO) has be-
came the key technology to support the continuous

development of future wireless network applications [2]–
[5]. By deploying a very large number of antennas at the
base station (BS), massive MIMO is capable of significantly
improving the spectral efficiency via spatial multiplexing gain
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[4]. However, the full potential of massive MIMO requires a
huge number of dedicated radio frequency (RF) chains for
every antenna, which results in not only increased capital
expenditure (CAPEX) but also higher system energy con-
sumption [3]–[5]. In practical massive MIMO systems, it is
more cost-effective and energy-efficient to employ a number
of RF chains less than the number of antennas, while the
full spatial multiplexing gain can be preserved via antenna
selection (AS) [4], [5]. Being a key component of hybrid
signal processing techniques, AS aims to select the best subset
of antennas for data transmission to reduce hardware cost
and power consumption without losing the full potentials of
antenna arrays [3]. During the last decades, the AS problem
has been extensively studied in the presence of complete
channel state information (CSI) (sometimes refer to full CSI),
and it has been shown that AS can provide similar spectral
efficiency with a lower energy consumption compared to the
case without AS [4], [5].

A. Antenna Selection in Massive MIMO

In principle, the AS problem can be formulated as an integer
programming problem under the assumption of complete CSI
acquisition [5], [6]. The problem is NP-hard, thus solving
it optimally imposes a prohibitive computational complexity
which exponentially grows with the number of antennas in the
worst case [6]. AS under complete CSI has been extensively
investigated by researchers with the objective of designing a
near-optimal algorithm with low computational complexities
for massive MIMO [6]–[14]. However, it should be noted
that most existing works were established in the presence of
complete CSI, which implies that the channel coefficients of
all antennas must be fully observed [15]–[17].

Unfortunately, this assumption does not strictly hold for
practical scenarios, especially with very large-scale antenna
arrays [18]. This is mainly because complete CSI acquisition
turns out to be a time-consuming task in such scenarios. In
practice, CSI acquisition is accomplished by pilot sequences
which consume radio resources proportional to the numbers of
active antennas and users. Since the number of RF chains is
smaller than the number of antennas, only an incomplete CSI
can be observed and estimated from each pilot transmission.
This indicates that acquiring complete CSI eventually leads to
extra pilot transmissions and reducing the effective transmis-
sion rate [1], [15], [17], [18]. For instance, acquiring complete
CSI could occupy more than half of the frame duration for the
downlink of a typical time-division duplexing (TDD) massive
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MIMO system with 64 antennas, 16 RF chains and 4 single-
antenna users [15], [19]. Therefore, it is of importance to
take incomplete CSI acquisition into account in practical AS
design, especially for very large antenna array configurations.

1) Antenna Selection with Channel Prediction: In order
to address this issue, one promising approach would be the
joint use of channel prediction and AS. It is straightforward
that the extra pilot overhead can be reduced if we are able
to predict the complete channel states. This approach works
mainly because the real propagation environment is often
time-varying and temporally correlated due to Doppler effects
[20]–[22]. Based on this, researchers have developed different
channel prediction algorithms in recent years [23]–[25]. In
[23], the authors proposed a spatio-temporal autoregressive
method for the prediction of the high mobility channel, where
the prediction was performed utilizing the temporal correlation
in the angle-delay domain. In [24], the authors predicted
channel states by exploiting the channel correlations. The
proposed method employed the convolutional neural network
(CNN) and the long-short-term memory network (LSTM),
which allows a multistep prediction of the channels. Similarly
in [25], the authors predicted channel states by utilizing the
spatio-temporal characteristics of CSI and a combination of
CNN and convolutional LSTM. Although showing improved
AS performance, these channel prediction methods are based
on the historic complete CSI measurements [23]–[25]. It is
noted that obtaining complete CSI is spectral-inefficient in
the considered massive MIMO systems, especially when the
number of antennas significantly exceeds the number of RF
chains. In addition, the aforementioned channel predictions
are deterministic methods, which limits the use of channel
statistics for performance enhancement.

2) Antenna Selection with Incomplete CSI: Recently, re-
searchers have focused on developing AS algorithms which
can directly operate under incomplete CSI [1], [15], [17].
In [15], the authors formulated the AS problem as a com-
binatorial multi-armed bandit problem when only incomplete
CSI is available, and proposed an online AS algorithm using
Thompson sampling. However, it is assumed therein that each
antenna contributes equally to the sum capacity. Since this
assumption is not valid in most real propagation environments
[18], the solution therein is not robust in practical scenarios.
The authors of [17] considered the AS as a partially observable
Markov decision process (POMDP) and proposed a myopic
policy for selecting antennas under imcomplete CSI. The
myopic policy maintains a belief vector for the underlying
channel states of each time slot, and updates this belief
vector along with the system dynamics. The myopic policy
therein, however, was only designed for single-user MIMO
systems under general fading channels with a two-state coarse
channel quantization. Since practical quality-of-service (QoS)
constraints were not considered in [15], [17], their applicability
is limited in practical massive MIMO systems.

Although several approaches have been proposed to address
the antenna selection problem under incomplete CSI, further
improvements are still needed to improve system performance
and robustness. For the practical AS algorithm design, one
crucial concern is how to maximize the system performance

while reducing the chance of violating the system’ practical
constraints when only incomplete CSIs are available. Risk-
aware solutions using conditional value at risk (CVaR) have
recently been proposed for resource management in ultra-
reliable and low latency communications (URLLC) and the co-
existence of eMBB and URLLC services [26]–[28]. However,
these methods rely on the complete information of the system
states, which are not applicable in the considered scenario.

B. Motivations and Contributions

As mentioned above, existing approaches cannot efficiently
solve the antenna selection problem in multi-user massive
MIMO and incomplete CSI. This motivates us to design a
general antenna selection framework that can operate robustly
against the complete CSI condition. Additionally, existing AS
algorithms lack the capability to recognize the risk of violating
the system constraints under incomplete CSI, which is essen-
tial to the required QoS. In general, risk awareness should be
presented throughout the decision process, which implies that a
desired antenna selection should be performed by jointly con-
sidering three important factors: practical system constraints,
optimization objectives, and the uncertainties introduced by
the incomplete CSI. Therefore, risk-aware planning remains a
challenging issue for practical AS solutions, which is also the
motivation of this work.

In this paper, we propose a joint channel prediction and
antenna selection framework (JCPAS) for the antenna selection
problem in multi-user massive MIMO under incomplete CSI
and practical system constraints. The proposed JCPAS com-
prises a deep unsupervised learning-based conditional channel
estimator and a risk-aware Monte Carlo tree search (RA-
MCTS) algorithm. A risky event is identified when one of
the system constraints cannot be satisfied. At each frame, the
channel estimator maintains a belief distribution by estimating
conditional channel statistics from the sequence of the past
incomplete CSI measurements and estimates the posterior
channel distribution. Based on the estimated posterior channel
distribution, the RA-MCTS algorithm evaluates uncertain out-
comes of each possible antenna combination through Monte
Carlo simulations. In such a risk-aware manner, the chance
of violating the system constraints can be reduced, and the
corresponding negative consequences can also be mitigated
when arisen. Simulation results show that the proposed RA-
MCTS algorithm not only cuts the average power consumption
by 50%, but also significantly reduces the probability of
violating the system constraints by 90%.

To summarize, our main contributions are as follows:
• We introduce the JCPAS framework in massive MIMO

systems under incomplete CSI. The proposed JCPAS
framework does not require complete CSI measurements
and is robust to conventional antenna selection algo-
rithms. In addition, the proposed channel prediction
method is a probabilistic model that can be used to
enhance the performance of the integrated selection al-
gorithm.

• We propose the RA-MCTS algorithm which enables
efficient and robust antenna selection in massive MIMO
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under incomplete CSI and practical system constraints. In
contrast to the existing antenna selection algorithm, our
proposed RA-MCTS is applicable to diverse optimization
objectives and system constraints, and it is able to reduce
the chance of violating the practical system constraints by
leveraging channel statistics.

• We provide a new insight for risk-aware decision making
with limited resources and insufficient information. In
particular, a risk-aware system can be built by leveraging
the historical incomplete observations to estimate a belief
distribution over the underlying system dynamics and
planning based on the statistics of the random outcomes
introduced by incomplete observations accordingly.

The remainder of this paper is organized as follows. Section
II describes the mathematical model of the considered massive
MU-MIMO system, as well as the associated antenna selection
problem. Section III presents the proposed deep unsuper-
vised learning-based conditional channel estimator. Section
IV presents the RA-MCTS algorithm, which is a risk-aware
planning algorithm for selecting antennas with incomplete ob-
servations. Section V discusses the related simulation results.
Finally, Section VI concludes the paper.

II. PRELIMINARIES

In this section, we introduce the system model of the
considered massive MIMO system as well as the associated
AS problem. After that, we will review the greedy search AS
algorithm under the complete CSI assumption.

A. System Model

As shown in Fig. 1, we consider the downlink of a massive
MU-MIMO system where a BS serves Nu single-antenna
users. The BS is equipped with Nt transmit antennas and
Nf (0 < Nf ≪ Nt) RF chains. In addition, switches are
also available at the BS such that an RF chain can connect
with any antenna of interest. The channel between the BS
and users is time-varying and temporally correlated, which
is common in real propagation environments with Doppler
effects [20]–[22]. Moreover, we assume that the CSI remains
unchanged within each frame duration of T channel uses
(c.u.), and the considered system operates in TDD mode,
meaning that we have identical channels for both uplink
and downlink transmission due to channel reciprocity [6],
[9]. On the downlink transmission, the CSI acquisition is
accomplished via uplink pilot-assisted channel measurement,
and multi-user precoding is then adopted to mitigate inter-user
interference. Under these settings, we further denote τcsi as the
number of c.u. consumed to acquire CSI, resulting in T − τcsi
c.u. for data transmission.

Since only Nf out of Nt transmit antennas can be ac-
tivated at the same time, the BS needs to select the best
Nf antennas in terms of performance metrics maximization.
Let aaa = {a1, a2, . . . , aj , . . . , aNf

} be the set of the indices
of the Nf selected antennas, and we denote A as the set
of all possible antenna combinations with a cardinality of
|A| =

(
Nt

Nf

)
. In addition, letHHH ∈ CNu×Nt be the complete CSI

matrix, and we denote HHH(aaa) as the incomplete (or partial) CSI
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Fig. 1: Structure of the considered massive MIMO system.

from the chosen combination aaa ∈ A, meaning that the columns
of HHH(aaa) are selected from HHH with respect to the indices in aaa.
Besides, we denote xk as the data symbol to be transmitted
to user k, and E{|xk|2} = 1. Then, the received signal yk(aaa)
at user k is given by

yk(aaa) = hhhk(aaa)kwwwkxk +
∑

j ̸=k
hhhj(aaa)wwwjxj + nk, (1)

where hhhk(aaa) ∈ C1×Nf is the channel vector for user k from
the antenna combination aaa, wwwk denotes the Nf × 1 precoding
vector for user k, and nk ∼ CN (0, σ2

k) is the additive white
Gaussian noise (AWGN) at user k. The second term of (1) is
the inter-user interference at user k.

Assuming negligible processing time, the effective spectral
efficiency for downlink transmission to user k with the selected
antennas aaa can be written as

Rk(aaa) =
(
1− τcsi

T

)
log2 (1 + SINRk(aaa)) , (2)

where SINRk(aaa) = ∥hhhk(aaa)wwwk(aaa)∥2

σ2
k+

∑
j ̸=k ∥hhhk(aaa)wwwj(aaa)∥2 represents the

signal-to-interference-noise ratio (SINR) of user k. Accord-
ingly, the effective sum spectral efficiency with antenna com-
bination aaa can be bounded by C(aaa) =

∑Nu

k=1Rk(aaa), and the
total power consumption for transmitting data at each frame
is given by P (aaa) =

∑Nu

k=1 ∥wwwk(aaa)∥2.

B. Antenna Selection with Objective Maximization

For practical scenarios, a typical objective for selecting the
best subset of antennas is to optimize a generic objective func-
tion Fk(aaa) under the constraints of total transmit power and
minimum QoS requirements. Mathematically, the optimization
problem can be formulated as

maximize
aaa∈A

F(aaa), (3)

subject to P (aaa) ≤ Ptot, (4)
Rk(aaa) ≥ ηk,∀k, (5)

where ηk is the QoS requirement for user k, Ptot denotes
the total transmit power, and F(aaa) is the objective function
of interest. According to the specific problem, the objective
function can be F(aaa) = −∑Nu

k=1∥wwwk(aaa)∥2 when we want to
minimize the energy consumption, and F(aaa) = ∑Nu

k=1Rk(aaa)
if we want to maximize the sum-throughput for the system.

1) Antenna Selection with Complete CSI: Solutions to
problem (3) have been well studied in the literature under
the complete CSI assumption [10]–[14], that it is possible to
fully observe the channel states with an affordable overhead.
Among these solutions, the idea of greedy search is widely
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Algorithm 1 Greedy Search Algorithm
Input: Full channel matrix HHH
Output: Selected antenna combination aaa
1: Let the set of all antennas be NNN = {1, . . . , Nt};
2: Initialize the set of removed antennas as rrr = ∅;
3: Define AAA = (HHHHHHH)−1;
4: while |rrr| < Nt −Nf do

5: m = argminr∈aaa
∥hhhH

r AAA∥2
1−hhhH

r AAAhhhr
;

6: AAA = AAA+
AAAhhhmhhh

H
mAAA

1−hhhH
mAAAhhhm

;
7: rrr = rrr ∪ {m};
8: return NNN − rrr;

adopted due to its good performance and low-complexity [6].
Let aaap be a set of p selected antenna indices, and let aaaq ⊃ aaap
be a superset of aaap with q > p. In addition, we denote
aaaq−p = aaaq \ aaap as the difference between set aaaq and aaap.
According to the Proposition 1 of [9], the spectral efficiency
loss of removing q − p antennas from aaaq can be bound by

C(aaaq−p)=log2
(
1+

Ptot · tr(ΛΛΛq−p)
tr(QQQq)2+tr(QQQq) (Ptot+tr(ΛΛΛq−p))

)
,

with the following notations

ΛΛΛq−p =QQQqHHH(aaaq−p)AAA−1
q−pHHH(aaaq−p)HQQQq, (6)

AAAq−p = (III −HHH(aaaq−p)HQQQqHHH(aaaq−p)), (7)

QQQq =
(
HHH(aaaq)HHH(aaaq)H

)−1
, (8)

where tr(·) denotes the matrix trace. Now, the sum-throughput
maximization problem can be converted as removing Nt−Nf
antennas with the minimum capacity loss, which is given by

aaa∗ = argmin
aaa∈A

tr(ΛΛΛNt−Nf
). (9)

Unfortunately, the above equation still needs exhaustive search
to find the best antenna combination to be removed. Never-
theless, it is possible to reduce the computational complexity
by utilizing the concept of greedy search. Then, each time
the greedy search suggests to remove the worst antenna that
contributes least to the capacity, resulting in that the search
space can be reduced significantly while still reserving a good
performance. According to Proposition 2 of [9], the antenna
to be removed at each iteration is given by

m = argmin
r∈aaap

∥∥∥hhhHr
(
HHH(aaap)HHH(aaap)H

)−1
∥∥∥
2

1− hhhHr (HHH(aaap)HHH(aaap)H)
−1
hhhr
, (10)

where aaap is currently selected antenna set. By repeating
this strategy, the antenna combination which maximizes the
sum-throughput will eventually be determined [9], and the
pseudocodes of the resulting greedy search algorithm is shown
in Algorithm 1. It is worth noting that Algorithm 1 is directly
applied to generalized ZF by using AAA = (αIII +HHHHHHG)−1.

2) Antenna Selection with Incomplete CSI: Due to the
limited number of RF chains at BS, only the partial CSI cor-
responding to the Nf selected antennas could be measured in
each pilot transmisison. In this case, we need τcsi = Nu⌈Nt

Nf
⌉

c.u. to acquire the complete CSI [15], and obviously, τcsi will

quickly become cost-prohibitive for large Nt, where extra pilot
overhead grows rapidly in massive MIMO and results in a
reduced effective transmission rate, as shown in (2). For this
reason, acquiring complete CSI is thereby a very inefficient
strategy for massive MIMO systems, which motivates us
to study the antenna selection problem in the presence of
incomplete (or partial) CSI.

III. PROPOSED ANTENNA SELECTION FRAMEWORK WITH
INCOMPLETE CSI

In this section, we propose a joint channel prediction
and antenna selection (JCPAS) framework operating without
relying on a complete CSI assumption. JCPAS consists of two
main blocks: Channel tracking and Antenna selection. The first
block learns the belief of the complete channel matrix from
historical incomplete channel estimates (of selected antennas)
and predicts the complete channel matrix. Based on the
predicted complete channel matrix, the second block selects
the best antenna subset. To illustrate our proposed JCPAS
framework, we present its workflow and time horizon structure
in Fig. 2 for the ease of understanding.

A. Channel Tracking with Historical Incomplete Observations

In practical scenarios with large-scale antenna configura-
tions, incomplete measurements of the current channel state
are expected due to the limited number of RF chains and
channel estimation duration. This limitation indicates that
the antenna selection will be performed in the presence of
incomplete channel information, in which existing complete
CSI based antenna selection algorithms cannot be efficiently
applied. Therefore, it is of vital importance to track the tran-
sition of channel states by exploiting the temporal correlation
of real propagation environments, and thereby maintaining an
accurate belief on the current channel state to help AS. We
note that Kalman filtering based prediction is not applicable
since it requires the complete historic CSI measurements

From this perspective, we hereby propose a deep con-
ditional generative model (DCGM) to estimate the distri-
bution of the belief state based on the sequence of past
incomplete channel measurements. Mathematically, the chan-
nel tracking model can be considered as a probabilistic
generative model P(HHHt|ΦΦΦt), which is conditioned on the
history of incomplete CSI measurements, denoted by ΦΦΦt ≜
{HHHt−L+1(aaat−L+1), . . . ,HHHt−1(aaat−1),HHHt(aaat)} with a finite
horizon L. In general, the value of L is determined by the
storage and computing resources. Note that the missing entries
will be replaced by zero entries in the sequence if the current
time slot t < L. Although it is hard to estimate the exact
posterior distribution P(HHHt|ΦΦΦt), we can still get its accurate
approximation by the maximum likelihood approximation.

To this end, we begin by denoting the approximate distri-
bution as Qθθθ(HHHt|ΦΦΦt) with parameters θθθ. Then, we train the
model with the objective of maximizing the likelihood of the
training samples on the chosen distribution, which is given by

N (θθθ) = argmin
θθθ

1

Ns

∑Ns

t=1
− logQθθθ(HHHt|ΦΦΦt), (11)
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Predict the complete CSI 
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(a) Workflow of the proposed framework.
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(b) Time horizon of the proposed framework.

Fig. 2: Diagram of the proposed JCPAS framework.

where Ns denotes the size of the training sample set D =
{HHHt,ΦΦΦt}Ns

t=1. Clearly, (11) quantifies the magnitude of fitness
between the chosen distribution Qθθθ(HHHt|ΦΦΦt) and the samples
drawn from the real distribution HHHt ∼ P(HHHt|ΦΦΦt). In particu-
lar, Qθθθ(HHHt|ΦΦΦt) accurately approximates P(HHHt|ΦΦΦt) when (11)
achieves its minimum. On the other hand, Qθθθ(HHHt|ΦΦΦt) deviates
from the real distribution when (11) enlarges. However, prior
knowledge on the real distribution is needed to select an
appropriate model for approximation, which is unpractical in
the circumstances of our interest.

In order to solve this issue, we employ a deep normalizing
flow (DNF) to construct Qθθθ(HHHt|ΦΦΦt). Compared with other
generative models, e.g., variational auto-encoders (VAEs) and
generative adversarial networks (GANs), DNF is a fully
probabilistic model with tractable exact density inference,
which can accelerate the search efficiency of Monte-Carlo
tree search [29]. Although in this paper the exact density of
the predicted channel states is not utilized, it can help reduce
the number of simulations in our future work by evaluating
the certainty of current solutions. As a kind of generative
model, DNF approximates the distribution by the change of
latent distribution. This strategy allows us to sample complete
observations from the latent space, while still being able
to compute the corresponding log-likelihood by the law of
change of variables [30], [31]. In principle, DNF assumes that
complete observation HHHt depends on a latent random variable
ZZZt following a tractable distribution Pωωω(ZZZt), where ωωω is the
parameters of the latent distribution. It is also assumed that ωωω
follows a tractable distribution, denoted by ωωω ∼ Pψψψ(ωωω) with
parameters ψψψ. Besides, the parameters ψψψ can be determined
based on the history, i.e., ψψψ = γθθθ1(ΦΦΦt) in which γθθθ1(·) is a
function represented by a deep neural network (DNN) with
parameters θθθ1.

Intuitively, this approach takes the uncertainty of incom-
plete observations into channel tracking by considering ωωω
as a random variable conditioned on the given history ΦΦΦt.
Therefore, the latent space is also conditioned on incomplete
observations, denoted as ZZZt ∼ PZ(ZZZt|ΦΦΦt). In conclusion, the

generative process can be described as

ψψψt = γθθθ1(ΦΦΦt)
′; ωωωt ∼ Pψψψt

(ωωωt)

ZZZt ∼ Pωωωt(ZZZt); HHHt = gθθθ2(ZZZt), (12)

where gθθθ2(·) represents an invertible (or bijective) function
with parameters θθθ2. Since gθθθ2(·) is an invertible function,
the associated latent variable can be effectively inferred by
ZZZt = fθθθ2(HHHt) ≜ g−1

θθθ2
(HHHt). By setting θθθ = {θθθ1, θθθ2},

the log-likelihood of the complete observation HHHt can be
approximately computed from

logQθθθ(HHHt|ΦΦΦt)=logPZ(f(HHHt)|ΦΦΦt)+log
∣∣det

( df

dHHHt

)∣∣, (13)

where det
(
df
dHHH

)
is the determinant of the Jacobian. In order

to construct a flexible model Qθθθ(HHHt|ΦΦΦt), we assume that the
invertible function f(·) is composed by NI invertible sub-
functions, given by

f(·) = f1(·)⊗ f2(·)⊗ · · · fn(·) · · · ⊗ fNI
(·). (14)

Based on the above factorization, we can infer the correspond-
ing latent variable ZZZ accordingly,

HHH
f1−→ VVV 1

f2−→ VVV 2 · · · fn−→ VVV n · · ·
fNI−→ ZZZ. (15)

Now, using the notations VVV 0 ≜ HHHt and VVV Ni
≜ ZZZt, we can

rewrite (13) as

logQθθθ(HHHt|ΦΦΦt) = logPZ(f(HHHt)|ΦΦΦt) (16)

+
∑NI

n=1
log

∣∣ det
( dVVV n
dVVV n−1

)∣∣.

Thus, we construct the approximate model Qθθθ(HHHt|ΦΦΦt) with
N sub-functions, with each sub-function being a small flow
step of the complete flows. In this case, it is straightforward
to train the model Qθθθ by recalling the principle of maximum
likelihood approximation in (13).

B. Network Implementation

The applied network structure of the proposed DCGM is
illustrated in Fig. 3. As mentioned in Sec. III-A, it is important
to ensure that each flow step is fully invertible for the imple-
mentation of the proposed DCGM. In our implementation, we
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Sub-Estimator 1 Sub-Estimator 2

Hidden Space

ZZZ ∼ CN (ZZZ|ωωω)

×N steps

ΦΦΦ ΦΦΦ

µzµzµz ∼ CN (µzµzµz|µµµ1,ΣΣΣ1)

logΣzΣzΣz ∼ CN (ΣzΣzΣz|µµµ2,ΣΣΣ2)

µµµ1, logΣΣΣ1 µµµ2, logΣΣΣ2

Normalizing Flow Conditional Estimator

Observation

ωωω = {µzµzµz,ΣzΣzΣz} ∼ Pψψψ(ωωω)

ψψψ = {µ1µ1µ1,Σ1Σ1Σ1,µ2µ2µ2,Σ2Σ2Σ2} = γθθθ1(ΦΦΦ)

HHH = gθθθ2(ZZZ)

ZZZ = fθθθ2(HHH) = g−1θθθ2
(HHH)

Activation Normalization

Invertible Convolution

Af!ine Coupling

Convolutional Layer

Convolutional Layer 

Convolutional Layer

ReLu

ReLu

Convolutional Layer

Convolutional Layer 

Convolutional Layer

ReLu

ReLu

Fig. 3: Diagram of the structure of the proposed DCGM.

implement the flow steps via normalization layers, invertible
convolutional layers and affine coupling layers, where the
details of these layers can be found in [1], [30], [32], [33].
Using the above invertible layers, an invertible network can be
constructed to track channel transitions from the incomplete
history. In particular, the constructed invertible network is
composed by N flow steps, and each flow step containing
only three layers: activation normalization layer, invertible
convolutional layer and affine coupling layer.

Because the latent variable ZZZt relies on the incomplete
history ΦΦΦt, a conditional distribution PZ(ZZZt|ΦΦΦt) should also
be implemented. Consider ZZZt ∼ CN (ZZZt|µzµzµz(t),ΣzΣzΣz(t)) and de-
note ωωωt = {µzµzµz(t),ΣzΣzΣz(t)} as the parameters of the distribution.
Then, we sample ωωωt by the reparameterization steps

µzµzµz(t) = µ1µ1µ1(t) + ννν1 ⊙Σ1Σ1Σ1(t), (17)
ΣzΣzΣz(t) = µ2µ2µ2(t) + ννν2 ⊙Σ2Σ2Σ2(t), (18)

where ννν1 and ννν2 are two standard complex Gaussian samples,
⊙ denotes the element-wise multiplication, and the associated
parameters ψψψt = {µµµ1(t),µµµ2(t),ΣΣΣ1(t),ΣΣΣ2(t)} are determined
by the incomplete history, i.e., ψψψt = γθθθ1(ΦΦΦt). Specifically,
γθθθ1(ΦΦΦt) is represented by two independent convolutional net-
works, which can be expressed as {µµµ1(t),ΣΣΣ1(t)} = CNN1(ΦΦΦt)
and {µµµ2(t),ΣΣΣ2(t)} = CNN2(ΦΦΦt). CNN1(·) and CNN2(·) may
both have exactly the same network structure composed by
multiple convolutional layers and rectified linear units (ReLU)
[30]. In order to retain the spatial information, zero-padding
is used to keep each incomplete observation HHHt(aaat) within ΦΦΦt
having the same shape of Nu ×Nt.

C. The Proposed Antenna Selection Framework

Given the prediction of complete CSI from the incomplete
history, the antenna selection becomes a straightforward task.
The proposed JCPAS framework utilizes the proposed channel
tracking model Qθθθ(HHHt|ΦΦΦt) to select the antennas in practical
environments. The workflow of the proposed JCPAS frame-
work is presented in Fig. 2.

At the beginning of each frame, we estimate the belief of the
current channel state via the well-trained DCGM, i.e., ĤHHt ∼

Algorithm 2 Proposed Joint Channel Prediction and Antenna
Selection (JCPAS) Framework

1: Set the current frame index t = 0;
2: Initialize history as ΦΦΦt = {000Nu×Nt

, ...,000Nu×Nt
};

3: loop
4: ĤHHt ∼ Qθθθ(HHHt|ΦΦΦt)
5: aaat = ANTENNASELECTION(ĤHHt) (e.g., Algorithm 1)
6: Obtain the imcomplete channel measurements HHHt(aaat)

with aaat;
7: PRECODING(HHH(aaat))
8: DATATRANSMISSION(HHHt(aaat))
9: for i = 0 to min(t, L) do

10: ΦΦΦt[L− i] =HHHt−i(aaat−i);
11: t = t+ 1;

Qθθθ(HHHt|ΦΦΦt). It should be noted that we fill in the history by
zero entries for initialization. After estimating the belief state,
we employ an antenna selection algorithm (e.g., Algorithm 1)
to select the antennas subset for acquiring the incomplete CSI
as well as data transmission. When the data transmission of
the current frame is completed, we update the history for the
next frame by pushing the last incomplete observation HHHt(aaat)
into ΦΦΦt.

To summarize the process of our proposed JCPAS frame-
work, the associated pseudo-code is detailed in Algorithm 2.
It is worth noting that the proposed framework is a general
framework with the purpose of reducing the channel estimation
overhead for massive MIMO systems. Thus, the choice of
antenna selection algorithms is not limited, and hereby we
use the greedy search algorithm for illustration. In principle,
the choice of antenna selection algorithms should be deter-
mined based on the available resources and different needs of
environments.

IV. PROPOSED RISK-AWARE PLANING ANTENNA
SELECTION ALGORITHM

This section will introduce the proposed risk-aware planning
algorithm, which can be integrated into the JCPAS framework
to further improve system robustness, and meanwhile reducing
the chance of violating practical constraints. After that, we will
discuss the performance-complexity tradeoff of the proposed
algorithm.

A. Risk-Aware Monte Carlo Tree Search

Due to incomplete CSI and imperfect belief estimation
Qθθθ(HHHt|ΦΦΦt), antenna selection often carries the risk of violat-
ing practical constraints of problem (3), as the information is
not perfect for making decisions. In principle, the outcome
F(aaat) of the selected antennas aaat can be regarded as a
random variable conditioned on the history ΦΦΦt. This indicates
that making decisions based on the inspection of a single
sample from the estimated belief distribution is obviously not
sufficient and risky.

To be specific, such potential risk results from two parts:
the probability of selecting antennas based on a sampled belief
deviating from the truth, and the negative consequences if it
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Fig. 4: Workflow of MCTS. Nodes to be visited are highlighted
in red, and the search path is highlighted as blue arrows. The
simulation and backpropagation paths are illustrated by blue
dashed curves.

does. Unfortunately, the existing algorithms depend on the
known channel coefficients rather than the channel statistics.
To solve this issue, planning based on the expected outcomes
should play a crucial role in risk-aware AS algorithm design.
This realization is a key to heuristic risk-aware planning in
the presence of incomplete observations and to guarantee the
constraints.

From this perspective, we propose to select antennas and
manage risks (of violating the system constraints) by learning
a posterior distribution over the expected outcomes of each
selected antennas combination. This approach can be accom-
plished based on the concepts of MCTS [34] and bootstrap
Thompson sampling (BTS) [35]–[38]. As a best-first search
strategy, MCTS employs a heuristic exploration to iteratively
explore the combinatorial search space. In general, the search
space can be regarded as a decision tree consisting of decision
nodes, and each of which has a number of child nodes,
and each child node corresponds to an available decision of
removing the associated antenna index. As illustrated in Fig.
4, the typical routine of MCTS includes the following four
steps [34]:

• Selection: We traverse the search tree in accordance to
the estimated statistics of each node until encountering
a node that has not been fully expanded, which is also
called as a leaf node.

• Expansion: Whenever a leaf node is selected, it must be
expanded. The expansion is done by randomly generating
a child node and then initializing the prior information for
the newly generated node.

• Simulation: We execute a random rollout through Monte
Carlo simulations until a complete selection is reached.
We then simulate the outcome of the explored complete
selection by Monte Carlo simulation.

• Backpropagation: After receiving the simulated out-
come of a complete selection, the results will be back-
propagated to all ascendant nodes, in which a set of
predefined algorithm statistics should be updated accord-
ingly.

During the search, the above routine will be repeated a
number of times such that the combinatorial search space
will be incrementally explored and the search tree will be
simultaneously expanded. After a number of simulations, the
statistics of each node will be sufficient for making decisions.

As described in Algorithm 3 and Algorithm 4, we jointly
use Qθθθ(HHHt|ΦΦΦt) and MCTS to build the proposed RA-MCTS

Algorithm 3 Risk-Aware Monte Carlo Tree Search (RA-
MCTS)
Input: History of the past incomplete measurements ΦΦΦt
Output: Selected antenna combination aaat
1: Let the set of all antennas be NNN = {1, . . . , Nt};
2: Initialize the set of removed antennas as rrr = ∅;
3: while |rrr| < Nt −Nf do
4: m = RISKAWAREPLANNING(rrr,ΦΦΦt)
5: rrr = rrr ∪ {m};
6: aaat ← {1, 2, . . . , Nt} − rrr;
7: return aaa;

8: function RISKAWAREPLANNING(rrr, ΦΦΦt)
9: while within computational budget do

10: ĤHHt ∼ Qθθθ(HHHt|ΦΦΦt);
11: AAA← (ĤHHtĤHH

H

t )−1;
12: n← RETRIEVENODE(rrr, ∅,AAA,ĤHHt);
13: v = TREEPOLICY(n);
14: δ = ROLLOUT(v);
15: BACKPROPAGATION(δ, v);
16: return BESTCHILD(n);

17: function RETRIEVENODE(rrr,rrr′,AAA,ĤHH)
18: if the node corresponding rrr has not been generated

then
19: for m ∈ rrr − rrr′ do
20: AAA← AAA+

AAAĥhhmĥhh
H

mAAA

1−ĥhhH

mAAAĥhhm

;

21: if |rrr| < Nt −Nf then

22: λi ← ∥hhhH
i AAA∥2

1−hhhH
i AAAhhhi

, ∀i ∈ NNN − rrr;

23: αi ← e−λi∑
j ̸=i e

−λj
, ∀i ∈ NNN − rrr;

24: for each child node i ∈ NNN − rrr do
25: αij ← αi, ∀j ∈ {1, . . . , J};
26: βij ← 1, ∀j ∈ {1, . . . , J};
27: return a node with the above associated statistics;
28: else
29: return the already generated node;

algorithm. The proposed RA-MCTS works in a similar manner
as the greedy search, which removes antennas one by one it-
eratively. Each rollout is simulated based on the sample drawn
from the estimated belief distribution Qθθθ(HHHt|ΦΦΦt). Besides,
we maintain an approximate posterior distribution over the
expected outcome of simulations, and utilize BTS to compute
policies in risk-aware and multi-constraints settings.

For each simulation, the proposed RA-MCTS always starts
at a root node with a belief sample ĤHHt ∼ Qθθθ(HHHt|ΦΦΦt) drawn
from the estimated belief distribution. It is worth nothing that
the belief sample ĤHHt is utilized to compute the prior proba-
bility of each node. Specifically, we start with the antenna set
aaa = {1, 2, . . . , Nt} and define AAA = (ĤHHtĤHH

H

t )−1. Note that we
will sometimes omit the time index t since the selection is
done within the current frame. Then, we update the antenna
set as aaa = aaa \ {m} whenever an antenna index m is removed.
Similar to greedy search, A can also be successively updated
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Algorithm 4 Utility Functions of RA-MCTS

1: function TREEPOLICY(n)
2: while node n is not a terminal node do
3: if node n is not fully expanded then
4: return EXPAND(n);
5: else
6: n← BESTCHILD(n);
7: return n

8: function EXPAND(n)
9: rrr,AAA,ĤHH ← n

10: C = ∅
11: for each untried child node i ∈ NNN − rrr do
12: C = C ∪ {i}
13: m← argmaxi∈C αi;
14: return RETRIEVENODE(rrr ∪ {m}, rrr,AAA,ĤHH)

15: function BESTCHILD(n)
16: rrr,AAA,ĤHH ← n
17: for each child node i ∈ NNN − rrr do
18: Sample uniform replicate j ∈ {1, 2, . . . , J};
19: Retrieve αij , βij according to j;
20: m← argmaxi

αij

βij
;

21: return RETRIEVENODE(rrr ∪ {m}, rrr,AAA,ĤHH)

22: function ROLLOUT(n)
23: while node n is not a terminal node do
24: n← BESTCHILD(n);
25: rrr,AAA,ĤHH ← n
26: aaa←NNN − rrr
27: return U(aaa)

28: function BACKPROPAGATION(δ, n)
29: while node n is not null do
30: UPDATEDISTRIBUTION(δ, n);
31: n← parent of n;

32: function UPDATEDISTRIBUTION(δ, i)
33: for j ∈ {1, 2, . . . , J} do
34: Sample ϵj ∼ Bernoulli( 12 );
35: if ϵj = 1 then
36: αij ← αij + δ;
37: βij ← βij + 1;

as AAA = AAA +
AAAĥhhmĥhh

H

mAAA

1−ĥhhH

mAAAĥhhm

. When expanding a new child node
i, we compute the corresponding potential spectral loss as

λi =
∥hhhH

i AAA∥2
1−hhhH

i AAAhhhi
. In addition, we have αi = e−λi∑

j ̸=i e
−λj

, which
denotes the prior probability of exploring child node i.

By considering each selection as a multi-arm bandit prob-
lem, we use the concept of BTS to select child nodes
while balancing between exploration and exploitation. The
intuition behind BTS is simple and intuitive. The algorithm
randomly selects a child node at each step with the probability
of being optimal according to current beliefs and, in the
meantime, continues to sample all possible child nodes that

could plausibly be optimal [35], [37]. As more information
is collected, beliefs about the expected utility of each node
are carefully tracked to balance exploration and exploitation
[38]. In contrast to the existing Thompson sampling based
AS scheme introduced in [15], our proposed approach does
not rely on the assumption of equal antenna contribution,
as well as the Beta-Bernoulli posterior specification. Indeed,
these advantages can help improve the robustness under the
circumstance of model misspecification.

Specifically, we adopt a bootstrap distribution to approx-
imate the posterior distribution over the expected outcome
of each node. The bootstrap distribution is parameterized by
a number of bootstrap replicates, j ∈ {1, . . . , J}. In the
initialization of a new node i, for each bootstrap replicate,
j, we store a set of parameters with αij = αi and βij = 1
by default, and these parameters will be updated during the
backpropagation of each simulation. Specifically, at node i, for
each bootstrap replicate j, we update αij and βij depending
on the result of a coin flip Bernoulli( 12 ). If a coin flip is
equal to 1, we update the parameters by

αij = αij + U(aaa); βij = βij + 1, (19)

where U(aaa) denotes a utility function which evaluates the
normalized outcome of a complete antenna selection aaa (i.e.,
|aaa| = Nf ) in the simulation phase. For instance, a utility
function in the energy minimization problem is given by

U(aaa)=
{
1−

∑Nu
k=1∥wwwk(aaa)∥2

Ptot
if constraints satisfied,

1, else,
(20)

which normalizes the risk of violating the QoS requirements
in the outcome evaluation. This implies that if it cannot satisfy
all the constraints, the BS will try its best to allocate all the
available power budgets to improve QoS. To decide which
antenna should be removed, the previously computed statistics
is utilized. For each child node i, we first uniformly sample j
from J bootstrap replicates, and then a node with the largest
point estimate is selected by i∗ = argmaxi

αij

βij
, which allows

us to break ties randomly.

B. Complexity Analysis

Intuitively, our proposed RA-MCTS degrades to greedy
search (see Algorithm 1) if the computational budget of each
iteration is restricted to one single simulation. On the other
hand, RA-MCTS is capable of intelligently managing risks
and allocating exploration efforts with sufficient computational
budget, while the greedy search ignores risks and does not
actively explore. This implies that our proposed RA-MCTS
achieves a trade-off between performance and computational
complexity.

In general, the computational complexity of our proposed
RA-MCTS depends on two aspects: the number of simulations
and the computational cost of each simulation. For the latter, it
can be controlled by the number of bootstrap replicates, as the
choice of J obviously limits the number of samples we have
from the bootstrap distribution. For a smaller J , RA-MCTS
is expected to become greedy. This is because the probability
of choosing some nodes that do not have the largest point
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estimate will show a trend of being zero. On the other hand, a
larger J will involve more exploration, at an expense of extra
computation complexity.

To characterize the computational complexity of our pro-
posed algorithms, we consider the total number of floating-
point operations (a.k.a. FLOPs) to quantify the complexity
order. Note that we consider a FLOP to be either a complex-
valued multiplication or a complex-valued summation. In fact,
a complex-valued multiplication requires 4 real-valued multi-
plications and 2 real-valued summations, whereas a complex-
valued summation requires only 2 real summations. However,
each operation will be counted as one FLOP for simplicity.
Given AAA ∈ Cq×p and XXX ∈ Cp×r, the arithmetic order of
FLOPs for the matrix mutiplication of AAAXXX ∈ Cq×r is of
O(pqr). Given a nonsingular YYY ∈ Cn×n, the computation
complexity for the matrix inversion YYY −1 is of O(n3).

For the RA-MCTS algorithm, it computes and stores the
result of (HHHHHHH)−1 only once, which contains one matrix mul-
tiplication and one matrix inversion. The complexity order of
(HHHHHHH)−1 is O(N2

uNt). For each loop of RA-MCTS, despite
the fact that it works in a similar manner as greedy search,
however, it should be noted that RA-MCTS may explore a
path which starts from an intermediate node and has been
partially explored before, while greedy search always explore
a brand new path starting from the root. This difference
implies that for each loop of RA-MCTS, the complexity of
greedy search can be regarded as an upper bound in the
worst cases, which is given by O(N2

u(N
2
t −N2

f )) [9]. Since
RA-MCTS has to backpropagate the simulation results up
to Nt − Nf ascendant nodes, the computational complexity
for the tree policy and rollout procedures is bounded by
O
(
Nt(Nt −Nf )J +N2

u(N
2
t −N2

f )
)

.
Besides, RA-MCTS also draws one belief state from the

belief distribution at each loop. As to the neural network,
the normalizing flow is constructed by three kinds of in-
vertible layers, and their computational complexities are de-
termined by element-wise operations and log-determinants
[30], [32], [33]. Hence, for a normalizing flow with NI
layers, the computational complexity depends on the input
size, which is given by O((NILNtNu). For a CNN with
LConv layers, we denote the kernel size and the number of
kernels at the i-th layer as Sker(i) and Nker(i), respectively.
Then, the computational complexity of CNN is given by
O(∑LConv

i=1 Nker(i−1)Sker(i)
2NtNuNker(i)) [39]. The total

computational complexity of drawing belief samples is given
by:

PNet = O
(
NILNtNu+ (21)

∑LConv

i=1
Nker(i− 1)Sker(i)

2NtNuNker(i)
)
.

Consider RA-MCTS(N , J) with N rollouts and J replicas in
total, its computational complexity can be bounded by:

O
(
NPNet +NNt(Nt −Nf )J +NN2

u(N
2
t −N2

f )
)
. (22)

For comparison, we summarize the computational complex-
ities of some antenna selection algorithms in Table I. It is
clear that JCPAS-Basic is a special case of RA-MCTS(N , J)
with N = 1 and J = 1. Moreover, JCPAS-Basic works in the

same way as greedy search, except that the complete CSI is
predicted from the belief distribution.

V. NUMERICAL RESULTS

A. Environment Setup

We perform simulations considering the energy minimiza-
tion problem in (3), and the utility function (20) is adopted
to evaluate the system energy efficiency subjected to limited
transmit power and QoS constraints. The users are assumed
to be randomly located around the BS, and the channels
between the BS and users are time-varying. In order to
simulate the real propagation environment, we consider tem-
porally correlated fading channels. By the maximum entropy
principle, it is common to characterize the channel evolution
by the Gaussian-Markov process with a one-step correlation
coefficient given by Jakes’ model [20]–[22]. Mathematically,
the first-order Gaussian-Markov channel model is described
by hhhk,t = ζkhhhk,t−1 +

√
1− ζ2k∆∆∆t, where ζk ∈ [0, 1] denotes

the temporal correlation coefficient for user k, and ∆∆∆t is
the innovation process with unit-variance complex Gaussian
i.i.d. in time. The value of ζk is determined by the maximum
Doppler frequency and is inversely proportional to the terminal
speed [40], in which ζk = 1 represents a static channel and
ζk = 0 implies that the channel is i.i.d. over time. The fading
correlation coefficient can be obtained from Jakes’ model
given by ζk = J0

(
2π vkfcC T

)
, where J0(·) denotes the zeroth

order Bessel function of the first kind, vk is the speed of user
k, C is the speed of light, and T is the frame duration [40].
For example, we present the correlation coefficients of some
typical scenarios within a wide range of speeds from 3.6 km/h
to 290 km/h in Table II. Note that we consider the following
two scenarios in our simulations:

• Scenario I, low-mobility users: Each user has a uni-
formly distributed random fading correlation coefficient
as ζk ∼ Uni(0.997, 0.999), which represents pedestrians
and runners.

• Scenario II, high-mobility users: Each user has a uni-
formly distributed random fading correlation coefficient
as ζk ∼ Uni(0.932, 0.982), which represents the vehic-
ular terminals.

In terms of the structure of the neural network, we employ
a normalizing flow with Ni = 16 flow steps, and each CNN
contains 6 layers where the number of convolutional kernels
and the kernel size of each layer are {64, 32, 32, 16, 64, 128}
and {3, 9, 3, 3, 3, 9}, respectively. Note that the parameters of
the neural network are chosen on the basis of experimental
experiences. ”The DNF model is trained based on the principle
of maximum likelihood approximation given in (14) using
Pytorch machine learning framework and Adam optimizer.”
Other common parameters are as follows: Nf = 8, Nu =
6, Ptot = 20 dBW, L = 128.

B. Competing Algorithms

In order to verify the effectiveness of the proposed frame-
work, we compare the proposed algorithms with various com-
petitive algorithms. The proposed algorithms are summarized
below:
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TABLE I: Computational Complexity Comparisons of Antenna Selection Algorithms with Zero-Forcing Precoding.

Name of Methods Computational Complexity
Online [15] O

(
Nt logNt +Nf

)
Greedy Search [9] O

(
N2

u(N
2
t −N2

f )
)

JCPAS-Basic O
(
N2

u(N
2
t −N2

f ) + PNet

)
RA-MCTS(N , J) O

(
NN2

u(N
2
t −N2

f ) +NPNet +NNt(Nt −Nf )J
)

Exhaustive Search [9] O
(
N2

uNt +
N

Nf
t

Nf !
(Nt −Nf ) + 2Nu(Nt −Nf )

2 + (Nt −Nf )
3

)

TABLE II: Temporal Correlation Coefficients of Typical Scenarios [17].

Band Scenarios Speed (km/h) Bandwidth (kHz) Frame duration (ms) Correlation coefficient
WLAN 802.11@2.4 GHz Pedestrian user 3.6 15 ∼ 300 0.999
LTE network@2.6 GHz Driving in residential area 27.0 15 ∼ 15.3 0.990
LTE network@2.6 GHz Driving in residential area 36.0 15 ∼ 11.5 0.986
LTE network@2.6 GHz Driving in highway 140.0 15 ∼ 2.2 0.950
LTE network@2.6 GHz High speed railway 290.0 15 ∼ 1.4 0.900

• JCPAS-Basic: The proposed JCPAS framework intro-
duced in Section III-A, where the greedy search algorithm
is used to select antennas.

• RA-MCTS(N , J): The proposed RA-MCTS algorithm
introduced in Section IV-A, where N is the maximum
number of simulations and J is the number of bootstrap
replicates. When compared to JCPAS-Basic, the only
difference is that the greedy search algorithm is replaced
by RA-MCTS in the JCPAS framework.

We compare our proposed algorithms with three following
benchmark schemes:

• Random: This scheme randomly selects antennas for data
transmission, which is the most naive solution.

• Online [15]: The online antenna selection algorithm uses
Thompson sampling to select antennas with incomplete
CSI.

• Full CSI: This scheme uses maximum channel estimation
overhead to obtain the complete CSI at each frame and
then employs the greedy search [9] for selecting antennas.

For a fair comparison, zero-forcing based precoding is em-
ployed in all schemes. We do not compare with the hybrid
beamforming (HB) technique since it also requires complete
CSI as Full CSI reference and two schemes achieve compa-
rable performance [41]. It is worth noting that the Full CSI
scheme spends τcsi = Nu⌈Nt

Nf
⌉ c.u. for CSI estimation, while

other schemes use τcsi = Nu c.u..

C. Performance Comparison and Discussions

Fig. 5 plots the average power consumption of different
schemes versus the QoS requirements with Nt = 32, Nf = 8,
Nu = 6 and T = 256 c.u.. It is observed from Fig. 5
that both the proposed JCPAS-Basic and RA-MCTS algo-
rithms outperform the competing solutions in a wide range
of QoS requirements from 5 to 6.6 bps/Hz. Specifically, when
ηk = 6.2 bps/Hz, ∀k, the JCPAS-Basic algorithm can reduce
the power consumption by about 77% and 79% compared
with the “Full CSI” and “Online” schemes, respectively;
while the RA-MCTS algorithm can reduce these numbers to
approximately 80% and 83%. This is because the RA-MCTS
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Fig. 5: SCENARIO I, power consumption versus QoS require-
ments, where Nt = 32, Nf = 8, Nu = 6 and T = 256 c.u..
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Fig. 6: SCENARIO I, percentage of risky frames versus QoS
requirements, where Nt = 32, Nf = 8, Nu = 6 and T = 256
c.u..
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Fig. 7: SCENARIO II, power consumption versus QoS require-
ments, where Nt = 64, Nf = 8, Nu = 4 and T = 128 c.u..
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Fig. 8: SCENARIO II, percentage of risky frames versus QoS
requirements, where Nt = 64, Nf = 8, Nu = 4 and T = 128
c.u..

selects the antennas based on the estimated posterior over the
expected outcome of each antennas combination, while the
JCPAS-Basic selects antennas only based on a single sample
from the estimated belief distribution. This difference makes
the proposed RA-MCTS more robust under incomplete CSI
measurements.

To demonstrate the robustness of the proposed framework,
we compare the proposed algorithms with the reference
schemes using a new performance metric of the percentage
of risky frames in Fig. 6, where the simulation settings are
same as in Fig. 5. A frame is considered as risky if any
users’ QoS requirement is not satisfied. It is clearly shown
that the proposed algorithms, JCPAS-Basic and RA-MCTS,
significantly reduce the number of risky frames compared with
the references. At the spectral efficiency of 6.1 bps/Hz, all
three reference schemes have more than 40% of the frames
that are risky, while the proposed JCPAS-Basic and RA-MCTS
algorithms have only 4% and 2% risky frames, respectively.
One interesting observation is that the “Full CSI” scheme
performs well at medium QoS values ηk, but its performance
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Fig. 9: SCENARIO I, power consumption versus number of
users, where Nt = 128, Nf = 16, ηk = 6.5 bps/Hz and
T = 512 c.u..
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Fig. 10: SCENARIO I, percentage of risky frames versus
number of users, where Nt = 128, Nf = 16, ηk = 6.5 bps/Hz
and T = 512 c.u..

quickly drops for higher ηk, to be even worse than the
“Online” scheme. This is because the “Full CSI” solution
spends a large number of c.u. for channel estimation, hence
has the least time for data transmission. As the QoS increases,
the “Full CSI” could not satisfy the hight QoS requirements
in the limited data transmission time even using the maximum
transmit power, which results in high number of risky frames.
Whereas, the “Online” scheme does not need to estimate the
complete channel states. Even when the transmit power of RA-
MCTS approaches the power budget (as shown in Fig. 5 for
high ηk), the resulting percentage of risky frames is still much
lower than other schemes, which demonstrates the robustness
of the proposed risk-ware planning framework.

In order to further verify the effectiveness of our proposed
algorithms, we present simulation results for SCENARIO II
in Figs. 7 and 8 with Nt = 64, Nf = 8, Nu = 4 and
T = 128 c.u.. Note that we use the same neural network as
in Fig. 5. It can be observed from Fig. 8 that in a higher
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Fig. 11: Sum-spectral efficiency versus power budget, where
Nt = 64, Nf = 8, Nu = 4, ηk = 5.5 bps/Hz and T = 128
c.u..

mobility scenario (reduced the frame duration) and with a
larger antenna array, the average energy consumption of “Full
CSI” scheme is even more than “Random”, which indicates
that estimating complete CSI in this case is cost-prohibitive. In
general, the superior performance of the proposed algorithms
are preserved compared with the references. Specifically, at
ηk = 6.4 bps/Hz, the RA-MCTS scheme can reduce about
60%, 45% and 6% energy consumption compared to the “Full
CSI”, “Online” and JCPAS-Basic counterparts. In addition,
with a very high QoS requirement of ηk = 7.6 bps/Hz, the RA-
MCTS can reduce 85%, 80% and 8% risky frames compared to
“Full CSI”, “Online” and JCPAS-Basic. These results further
verify the robustness and effectiveness of our proposed RA-
MCTS.

In Figs. 9 and 10, we respectively evaluate the power
consumption and the percentage of risky frames as a function
of the number of users Nu, where Nt = 128, Nf = 16,
ηk = 6.5 bpz/HZ and the coherence time T = 512 c.u.. In
general, serving more users requires more transmit power at all
schemes, however, the proposed JCPAS-Basic and RA-MCTS
algorithms only consume about 50% of the transmit power
of other schemes in most cases, as shown in Figs. 9. The
robustness of the proposed framework is clearly shown in Figs.
10, in which the proposed RA-MCTS do not have any risky
frame for Nu ≤ 10, while the percentage of risky frames of
three reference schemes grows quickly up to about 80% when
Nu varies from 6 to 10. When Nu = 12, all three reference
schemes have all the frames risky, while the proposed JCPAS-
Basic and RA-MCTS algorithms impose a percentage of 45%
and 25% of risky frames, respectively. This result confirms
the robustness of the proposed RA-MCTS in highly-loaded
systems with limited resources.

In Figs. 11-12, we present simulation results regarding the
sum-throughput maximization optimization problem, where
Nt = 64, Nf = 8, Nu = 4 and the user’s velocity varies from
3.6 km/h to 72 km/h. In addition, the coherent time T = 128
c.u. and each user has a QoS requirement of 5.5 bps/Hz. Noted

Fig. 12: Percentage of risky frames versus power budget,
where Nt = 64, Nf = 8, Nu = 4, ηk = 5.5 bps/Hz and
T = 128 c.u..

that if there is no feasible solution to satisfy all the constraints
when optimizing the system’s sum-throughput, the frame will
be marked as “risky frame” and the QoS constraint will be
neglected. In other words, we maximize the sum-throughput
by neglecting the QoS constraints for risky frames in the
simulations. From the two figures, it can be observed that
the proposed algorithms outperform the other three reference
schemes in terms of not only the sum-throughput but also
the chance of violating user’s QoS requirement. Specifically,
when the power budget grows to 30 watt, JCPAS acheives 3.73
bps/Hz more than the “Online” scheme proposed in [15], while
the corresponding sum-throughput obtained by RA-MCTS is
about 4.29 bps/Hz. Meanwhile, “Online” scheme has 77.10%
of risky frames, while JCPAS and RA-MCTS have about only
18.40% and 5.38% risky frames. On the contrary, the proposed
JCPAS and RA-MCTS are much more robust to the scenarios
of our interests, as the two schemes have much higher sum-
throughputs and impose much lower chance to violate the
user’s QoS constraint. These results show that the proposed
algorithms are robust for both the power minimization problem
and the sum-throughput maximization problem.

VI. CONCLUSION

In this paper, we have proposed a robust joint channel
prediction and antenna selection framework JCPAS for mas-
sive MIMO systems under practical incomplete CSI, which
results from the limited number of RF chains, and limited
transmit power and QoS requirements. In order to address
this problem, we first proposed a deep neural network to
estimate the posterior belief distribution of the current channel
states. After that, we developed a joint channel tracking
and antenna selection algorithm to select the best antennas
based on the estimated belief. To improve system robustness,
we proposed a risk-aware planning framework, namely RA-
MCTS, which employs Monte Carlo tree search and bootstrap
Thompson sampling to approximate a posterior distribution
over the random objectives. Simulation results showed that
the proposed RA-MCTS not only achieves a lower energy

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3377733

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13

consumption but also significantly reduces the risk, quantified
as the probability of violating the system constraints.

For the future work, one interesting topic is to further
improve the computational efficiency of the proposed RA-
MCTS. A feasible solution is to directly estimate the rollout
results through a DNN such that the rollout overhead can be
significantly reduced. In this case, the posterior distribution
over the rollout results is also estimated by DNN, rather than
the bootstrap distribution parameterized by the J replicates.
The developed framework can be easily applied to cell-free
MIMO systems to optimize the number of active access points
under limited system resources. Another promising topic is to
consider the confidence of the predicted channel coefficient
in the selection process. In this case, the best antennas subset
should be selected based on not only the channel gain but also
the prediction confidence.
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I. Wong, V. Öwall, O. Edfors, and F. Tufvesson, “A flexible 100-antenna
testbed for massive MIMO,” in IEEE GLOBECOM Workshops 2014, pp.
287–293.

[20] H. S. Wang and P.-C. Chang, “On verifying the first-order Markovian
assumption for a Rayleigh fading channel model,” IEEE Trans. Veh.
Technol., vol. 45, no. 2, pp. 353–357, 1996.

[21] C. C. Tan and N. C. Beaulieu, “On first-order Markov modeling for the
rayleigh fading channel,” IEEE Trans. Commun., vol. 48, no. 12, pp.
2032–2040, 2000.

[22] G. J. Byers and F. Takawira, “Spatially and temporally correlated MIMO
channels: Modeling and capacity analysis,” IEEE Trans. Veh. Technol.,
vol. 53, no. 3, pp. 634–643, 2004.

[23] C. Wu, X. Yi, Y. Zhu, W. Wang, L. You, and X. Gao, “Channel prediction
in high-mobility massive MIMO: From spatio-temporal autoregression
to deep learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp.
1915–1930, 2021.

[24] T. Zhou, H. Zhang, B. Ai, C. Xue, and L. Liu, “Deep-learning based
spatial-temporal channel prediction for smart high-speed railway com-
munication networks,” IEEE Trans. Wirel. Commun., 2022.

[25] G. Liu, Z. Hu, L. Wang, J. Xue, H. Yin, and D. Gesbert, “Spatio-
temporal neural network for channel prediction in massive MIMO-
OFDM systems,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8003–8016,
2022.

[26] T. K. Vu, M. Bennis, M. Debbah, M. Latva-aho, and C. S. Hong, “Ultra-
reliable communication in 5G mmwave networks: A risk-sensitive
approach,” IEEE Commun. Lett., vol. 22, no. 4, pp. 708–711, 2018.

[27] N. B. Khalifa, M. Assaad, and M. Debbah, “Risk-sensitive reinforcement
learning for urllc traffic in wireless networks,” in Proc. IEEE WCNC
2019, pp. 1–7.

[28] M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi,
and C. S. Hong, “Intelligent resource slicing for embb and URLLC
coexistence in 5G and beyond: A deep reinforcement learning based
approach,” IEEE Trans. Wirel. Commun., vol. 20, no. 7, pp. 4585–4600,
2021.

[29] L.-C. Lan, T.-R. W. Wu, I.-C. W. Wu, and C.-J. Hsieh, “Learning to
stop: Dynamic simulation monte-carlo tree search,” in AAAI Conference
on Artificial Intelligence, vol. 35, no. 1, 2021, pp. 259–267.

[30] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” in Proc. NeurIPS 2018, vol. 31.

[31] A. Abdelhamed, M. A. Brubaker, and M. S. Brown, “Noise flow: Noise
modeling with conditional normalizing flows,” in Proc. ICCV 2019, pp.
3165–3173.

[32] L. Dinh, D. Krueger, and Y. Bengio, “NICE: Non-linear independent
components estimation,” arXiv preprint arXiv:1410.8516, 2014.

[33] K. He, L. He, L. Fan, Y. Deng, G. K. Karagiannidis, and A. Nallanathan,
“Learning-based signal detection for MIMO systems with unknown
noise statistics,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3025–3038,
2021.

[34] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Trans. Comput.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, 2012.

[35] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen et al., “A
tutorial on Thompson sampling,” Found. Trends Mach. Learn., vol. 11,
no. 1, pp. 1–96, 2018.

[36] M. Phan, Y. Abbasi Yadkori, and J. Domke, “Thompson sampling and
approximate inference,” in Proc. NeurIPS 2019, vol. 32.

[37] D. Eckles and M. Kaptein, “Thompson sampling with the online
bootstrap,” arXiv preprint arXiv:1410.4009, 2014.

[38] C. F. Hayes, M. Reymond, D. M. Roijers, E. Howley, and P. Man-
nion, “Distributional monte carlo tree search for risk-aware and multi-
objective reinforcement learning,” in Proc. AAMAS 2021, pp. 1530–
1532.

[39] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in Proc. CVPR, 2015, pp. 5353–5360.

[40] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,”
IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2845–2866, 2010.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3377733

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14
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Linköping, Sweden, in 1986, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1990. He has held research
positions with the Department of Electrical Engi-
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