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ABSTRACT Multibiometric systems have the potential to mitigate error rates and address certain inherent
weaknesses found in unimodal systems. This study introduces an innovative scheme for user recognition in
multibiometric systems, centered on a score-level fusion framework. The foundation of this framework lies
in the full reinforcement operator (FRO), specifically estimating FRO through generator functions associated
with triangular norms (T-norms and T-conorm). The efficiency of the proposed method has been showcased
through an extensive set of experiments carried out on four commonly available benchmark databases: all
three partitions of the National Institute of Standards and Technology (NIST) databases (Set 1, 2, 3), along
with the XM2VTS database. Our method achieves superior accuracy compared to existingmethods, reaching
100 % recognition on NIST-Set 1, 93.40 % on NIST-Set 2, and 94.54 % on the more challenging NIST-Set 3.
The experimental findings illustrate that score fusion schemes based on FRO not only enhance verification
rates when compared to current score-level fusion techniques (such as Asymmetric Aggregation Operators,
Minimum, Maximum, T-norms, and Symmetric-Sum) but also offer a swift computational performance.

INDEX TERMS Unidiomatic system, multibiometric system, score-level fusion, full reinforcement operator
(FRO).

I. INTRODUCTION
The established methods of authentication are currently
facing substantial competition from emerging alternatives.
Novel technologies like biometric and multibiometric sys-
tems pose challenges to conventional recognition methods.
This shift is primarily driven by the significant increase
in identity theft and security-related concerns. These tech-
nologies rely on unique human attributes, either anatomical
(e.g., facial features, fingerprints, iris patterns) or behav-
ioral (e.g., cognitive biometrics, gait, keystroke dynamics)
traits [1]. Furthermore, biometric modalities are inherently
present in individuals, making them exceptionally chal-
lenging to counterfeit or pilfer [2]. Besides, biometric

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrea F. Abate .

characteristics establish a robust connection between a user
and their identity [3]. Furthermore, a system that relies on
human attributes is regarded as a better choice in terms of
dependability and accuracy [4].

Many researchers contend that unimodal biometric sys-
tems, which rely on a single trait, are not sufficiently equipped
to tackle challenges such as noisy input data, the limited
distinctiveness of the chosen biometric trait, non-universality,
low interoperability, and vulnerability to spoofing [5]. These
limitations can result in reduced accuracy [5]. Some of the
shortcomings associated with unimodal systems can be miti-
gated by adopting multibiometric systems, which incorporate
data from several biometric modalities. Utilizing at least two
biometric traits offers several advantages compared to relying
on a single modality [6]. Several advantages arise from this
approach, including enhancements in overall accuracy, the
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effective management of universality concerns, and height-
ened resistance to spoofing attempts. By combining evidence
from multiple biometric sources, it becomes significantly
more challenging for impostors to simultaneously imitate var-
ious physiological and/or behavioral attributes of a genuine
user [7]. According to the nature of the biometric informa-
tion source, a multibiometric recognition can be categorized
broadly into several types, such as multimodal (utilizing
multiple biometric traits) [8], multi-unit (employing multi-
ple instances of the same kind of biometric data, e.g., both
left and right wrist veins in humans) [8], multi-algorithm
(applying diverse feature extraction methods on the identical
biometric characteristic) [8], multi-sensor (utilizing multiple
sensors for capturing the identical biometric trait) [9], and
multi-sample (gathering a multitude of samples of the iden-
tical biometric characteristic) [9]. To address the limitations
observed in prior research on both unimodal and multimodal
biometrics, it is imperative to develop contemporary and
computationally efficient methods for combining authentica-
tion scores.

In this article, we have introduced an innovative approach
for integrating biometric scores at the score-level, known as
the ‘‘full reinforcement operator’’. This operator is employed
to amalgamate scores generated from various sources, and
compared to other score fusion techniques like Dempster-
Shafer (DS) theory, symmetric-sum, T-norms, weighted sum,
and max rules, it shows improved differentiation between
genuine and imposter match-scores. Our suggested multi-
biometric score fusion framework, based on the full rein-
forcement operator, was rigorously validated in diverse user
authentication scenarios, including multiple traits (utilized
both the XM2VTS database [31] and the NIST-multimodal
database [7]), multiple instances (using the NIST finger-
print database), and multiple algorithms or features (merging
output scores from two separate face matchers, NIST face
database).

The rest of our paper is organized as follows. Section II
delves into the relevant literature concerning the combina-
tion of matching scores. In Section III, we offer a detailed
explanation about reinforcement in aggregation operators.
Section IV presents a concise description of the proposed
score fusion technique. Section V is dedicated to discussing
the experimental results we have obtained. Finally, SectionVI
concludes this paper.

II. RELATED WORK
Information fusion contributes significantly in multimodal
biometric systems, the key factor behind the success of
multimodal biometric is fully related on how we select
the fusion schemes to enhance performance. In literature,
matching score-level is generally used even though there are
many levels of fusion (e.g., decision, features). Moreover,
there is a categorization of matching score fusion techniques,
which falls into three main groups: classifier-based, density-
based, and transformation-based score fusion. Within the
transformation-based category, these techniques are broadly

separated into a pair of subgroups: fixed and trained score
fusion rules. Before implementing either fixed or trained
rule-based fusion methods, employing normalization tech-
niques like tanh, or double sigmoid, min-max scaling, z-score
standardization (normalization), is crucial to first convert
the matched scores into a common domain and to ensure
a meaningful integration. Fixed rules, such as symmetric
sum, product T-norm, minimum, maximum, and Asym-AOs
(Asymmetric Aggregation Operators), do not require any
specific learning process. In contrast, trained rules necessitate
a learning phase, as seen in techniques like weighted sum.

A. FIXED RULE-BASED SCORE FUSION
Following the normalization process, the scores obtained
from each matcher are amalgamated using a designated rule,
such as minimum, maximum, or multiplication.

For instance, in 2013, Wang et al. [10], created a mul-
timodal biometric system that could recognize faces and
irises. To combine the results, they used a score-level
fusion method based on the Aczél-Alsina triangular norm
(T-norm). The CASIA-Iris-Thousand database, which has
dual iris data, and the NVIE face database, which contains
both visible and thermal facial photos, are used to test the
experiment’s vertical databases. Their fusion rule has EER
(equal error rate) = 2.98.10−4, which represents an impor-
tant improvement than unimodal system. In that very year,
Vishi and Yayilgan [11], introduced an innovative method
for multimodal biometric verification that combines iris and
fingerprint characteristics at the score-level. They employed
various normalization techniques, including Min-Max,
Z-Score, and Hyperbolic Tangent, along with three prede-
fined score fusion methods: Minimum Score, Maximum
Score, and Simple Sum. They conducted fusion experiments
across four databases, utilizing FP-DB1 and FP-DB2 for
fingerprint data and Iris-DB1 and Iris-DB2 for iris data.
The authors found that employing the hyperbolic tangent
estimator for score normalization and applying the simple
sum rule fusion resulted in an Equal Error Rate (EER) of
0.0001 % for the combined fingerprint and iris data. On one
hand, better than the unimodal biometric system and on the
other hand better than both max and min score fusion rules.

Moeen et al. [12] introduced a score-level fusion tech-
nique for person recognition, utilizing the entropy func-
tion (Hanman-Anirban). For experimentation, they used the
finger-knuckle-print images obtained from (FKP) dataset
consisting of left index, left middle, right index and right mid-
dle FKP. The findings demonstrate that the suggested method
achieves a notable enhancement in performance when com-
pared to individual FKP approaches. They obtained genuine
acceptance rate of 99 % with FAR of 0.001 %.

Cheniti et al. [7] proposed score-level fusion of multi-
modal biometrics using the symmetric sum rule and used
T-norm to generate the symmetric sum functions. The pro-
vided framework underwent testing on two openly accessible
benchmark databases. Specifically, the authors utilized a
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pair segment of NIST-BSSR1, namely, the NIST- fingerprint
database and the NIST-multimodal database. The empirical
outcomes demonstrate that the suggested technique surpasses
the performance of current methods when applied to both
the NIST-multimodal database and the NIST fingerprint
database. In 2020, Abderrahmane et al. [8] developed score
fusion technique for person authentication using weighted
quasi-arithmetic mean. The authors conducted experiments
using three publicly accessible datasets: NIST-BSSR1 Fin-
gerprint, NIST-BSSR1 Multimodal, and NIST-BSSR1 Face.
In their evaluation of multimodal, multi-unit, and multi-
algorithm systems, they demonstrated that the WQAM
combining rule they proposed surpasses the earlier sug-
gested score combining method, which relied on fixed
techniques like T-norms, trained methods such as support
vector machines, and density assessment approaches like
likelihood ratio. Table 1 represents a summary of the con-
temporary fixed rule-based score fusion.

TABLE 1. Summary of contemporary fixed rule-based score fusion.

B. TRAINED RULE-BASED SCORE FUSION
Prior to employing the trained rule, it is essential to split the
matcher scores into two distinct sets. One of these sets is
allocated for the training phase, while the other is reserved
for the testing phase. The process of training the rule involves
learning and determining the appropriate model parameters,
such as identifying the correct weights in the case of weighted
sum or product rules. These learned parameters are then
applied in the subsequent testing phase.

One of the representative works of trained rules is [17].
Furthermore, in [18], the authors introduced a score fusion
technique that integrates belief functions for palmprint, face
and iris modalities. The authors employed Gabor filter com-
bined with dimensionality reduction techniques PCA, LDA
and KFA to transform matching scores into belief assign-
ments, and they utilized particle swarm optimization (PSO)

to determine the weights assigned to the belief assignments
of the palmprint, face and iris classifiers. Subsequently,
the Dempster-Shafer (DS) theory was applied to combine
the masses. While the authors [19] devised an effective
score fusionmethod utilizing the Dezert-Smarandache theory
(DSmT). The suggested score fusion framework consists of
threemain steps: (i) calculation of the generalized basic belief
assignment, (ii) fusion of the assigned beliefs using a fusion
rule based on DSmT, and (iii) determination of whether to
accept or reject a user. A summary of some representative
studies in trained rule-based score-level fusion systems is
presented in Table 2.

TABLE 2. Summary of contemporary trained rule-based score fusion.

III. BOOSTING AGGREGATION VIA REINFORCEMENT
STRATEGIES
Several attempts have been conducted to find the best
score-level fusion technique; moreover, many researchers
have claimed that an effective score-level fusion technique
should aim to maximize genuine scores while minimizing
impostor scores, ultimately leading to an enhanced genuine
acceptance rate (GAR) and reduced false acceptance rate
(FAR). The only fusion rule that satisfies the required prop-
erties, i.e., simultaneously maximizes the genuine scores and
minimizes the impostor scores, is called a full reinforcement
operator (FRO) [27].

By employing the FRO fusion rule, we can ensure, firstly,
that a set of genuine scores work together to strengthen
and affirm the fused score, surpassing the individual scores
alone. Secondly, a set of impostor scores collaborate to inten-
sify the disconfirming nature of the fused score, surpassing
the individual scores alone. To delve into more specific
aspects, we need to introduce two closely related methods.
The first one is referred to as the upward reinforcement
operator (URO) [27]. With this approach, we are describing
the tendency where, if the scores used for user identification
are all highly favorable (indicating genuine scores), they
strengthen each other, resulting in even stronger confirma-
tion that the user falls under the genuine category. Likewise,
the downward reinforcement operator (DRO) represents the
inclination where, if the scores used for user identification
are all low (indicating impostor scores), they strengthen each
other, leading to a more pronounced confirmation that the
user belongs to the impostor category [27]. Overall, a score
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fusion rule that displays both URO and DRO is called a full
reinforcement operator (FRO) [27].

A score fusion rule W , operating with input scores taken
from the unit interval [0, 1], is considered to exhibit upward
reinforcement exclusively, when its output is greater than the
maximum of its individual arguments (input scores). Sim-
ilarly, a score fusion rule W , is said to display downward
reinforcement only when its output is lower than the mini-
mum of its individual arguments.
Example 1: Assume a multimodal biometric system is

characterized by three score matchers M1, M2, M3. Let W
be a fusion rule. If for the user x we have: M1 (x) = 0.8, M2
(x) = 0.85,M3(x) = 0.9 and ifW(0.8,0.85,0.9) = 0.91, Then
W is an upward reinforcement operator (URO).
Example 2: Assume a multimodal biometric system is

characterized by three score matchers M1, M2, M3. Let W
be a fusion rule. If for the user x we have: M1 (x) = 0.4, M2
(x) = 0.3,M3(x) = 0.35, and ifW (0.4,0.3,0.35) = 0.2, Then
W is a downward reinforcement operator (DRO).

As full reinforcement operators can offer both attributes
concurrently, encompassing both the upward and downward
reinforcement characteristics, they seem to be a desir-
able quality to incorporate in score-level fusion techniques.
We aim to study if the previously suggested score fusion
rules can manifest this property. Because there are ample
of fusion rules in the literature, we prefer to begin with
T-norms because they confirm their ability to provide a good
performance [7], and they are adopted in many studies as a
generator to produce some other fusion rules such as symmet-
ric sum [7], Asym-AOs [9]. Additionally, they can represent
a broad class of several fusion rules such as min, mean, max,
product and average sum.

T-norms, often known as triangular norms, are a class of
binary functions that generalize intersection at fuzzy sets.
A T-norm is a function T : [0, 1]× [0, 1] → [0, 1] that meets
the requirements listed below:

i) T is commutative: T (x, y) = T (y, x).
ii) T associative: T (x,T (y, z) = T (T (x, y) , z).
iii) 1 is an identity operator: T (x, 1) = T (1, x) = 1.
iv) T is rising in each variable:

y ≤ z H⇒ T (x, y) ≤ T (x, z) .

An indispensable property associated with any T-norm is:

T (x1, . . . , xn) ≤ mini [xi]

From this last property we can say that any biometric score
fusion rule base on T-norm exhibits the property of downward
reinforcement. Moreover, from the same property we can see
that any output of T-norm can never exceed the minimum
of the input scores (arguments), therefore, T-norm does not
exhibit upward reinforcement. From this investigation we
can conclude that T-norm based score-level fusion is very
useful when it deals with impostor scores, it indeed reinforces
them to a lower value, but it fails to reinforce the genuine
scores, unfortunately the T-norm is not full reinforcement
operator [27]. Aswe said above the T-norm is a universal class

of numerous score fusion rule like symmetric sum, max, min,
product, and Asym-AOs. We can conclude that all these rules
are not full reinforcement operator [27].

Let’s shift our focus to the T-conorm aggregation opera-
tor, as described in [15]. This operator has been employed
in the field of fuzzy set studies, serving as an extension
of disjunction or type aggregation. A T-conorm is a func-
tion C : [0, 1] × [0, 1] → [0, 1] that satisfies the following
properties:

i) C is commutative: C (x, y) = C (y, x).
ii) C is associative: C(x,C(y, z) = C (C (x, y) , z).
iii) 0 is an identity operator: C (x, 0) = C (0, x) = 0.
iv)C is rising in each variable:

y ≤ z H⇒ C (x, y) ≤ C (x, z) .

An indispensable property associated with any T-conorm is:

C (x1, . . . , xn) ≥ max i [xi]

From this characteristic indicates that the T-conorm functions
as an upward reinforcement operator. When all scores are
high, the combined value will be equal to or greater than
the highest individual score. However, it is worth noting
that T-conorm do not function as downward reinforcement
operators. In situations where all inputs are low, the result
does not fall below the minimum value but instead equals or
exceeds the maximum value among the aggregated scores.

Now we see if the mean fusion-rule exhibits the full
reinforcement property, we select mean rule-based score
fusion for the examination because it represents a general
aggregation class to many other score fusion rules such as
medium, arithmetic, weighted sum, ordered weighted aver-
aging (OWA) [19] and Weighted quasi-arithmetic mean [8].
A mean operator Z is a mapping Z : In → I (I is the unit
interval), such that it is:

i) Commutative.
ii) Monotonic.
iii) Idempotent Z (x1, . . . , xn) = x.
A substantial and understandable property associated with

any kind of mean operator score fusion rule is that its output
is always between the max and min of its inputs,

i.e., min (xi) ≤ Z (x1, . . . , xn) ≤ max i (xi)
Due to the aforementioned characteristic, a mean operator

score fusion cannot be a URO or DRO, and consequently
neither the mean rule nor its subclasses are a FRO [27]. After
the examination of three general classes of score fusion rule
and their subclasses, we can conclude that all previous fusion
score-level fusion rules are not optimized because they fail to
exhibit the full reinforcement property. This fact motivates us
to introduce a score-level fusion rule based on FRO.

IV. PROPOSED FULL REINFORCEMENT SCORE FUSION
TECHNIQUE
In this section, we define an innovative technique for
score-level fusion that leverages two interconnectedmethods:
upward and downward reinforcement. Initially, we explore
the fuzzy models associated with the full reinforcement
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approach, followed by an explanation of the multibiometric
score fusion method based on FRO.

A. REINFORCEMENT FROM FUZZY MODELS
The above investigation led us to conclude that the majority
of score fusion rules previously proposed in the literature do
not possess the capabilities of a full reinforcement operator,
which motivated us to adopt a score fusion rule based on a
full reinforcement operator.

Fuzzy logic theory presents a robust framework for knowl-
edge representation within the domain of intelligent system
construction. This framework proves particularly advanta-
geous in a diverse range of applications, including pattern
recognition, information retrieval, diagnostic systems, and
multi-criteria decision-making [35]. For this reason, we adopt
a similar fuzzy logic modeling-based technique of [27]. Ini-
tially, it’s essential to recall that a T-norm operates as a
downward reinforcement operator, while a T-conorm serves
as an upward reinforcement operator. Consequently, we can
understand that combining both a T-norm and a T-conorm
allows us to create the desired operator, with the ability to
function as a T-norm when scores are low and as a T-conorm
when scores are high. The general form of full reinforcement
operator can be formulated in following two distinguishing
rules [27]:
Rule 1 (R1): When all scores are low, employ a T-norm

aggregation.
Rule 2 (R2): When all scores are high, utilize a T-conorm

aggregation.
Based on the two rules, we can develop a fuzzy logic

model. Suppose our score fusion rule comprises n scores,
where each score is represented by the variable Si. Addition-
ally, we define two fuzzy subsets for each Si on the closed
interval: Li, representing to the ‘‘low’’ notion, and Hi, corre-
sponding to the ‘‘high’’ concept. Furthermore, we introduce
two operators: T , representing any T-norm, and C , repre-
senting any T-conorm. Let M (S i) be the full reinforcement
operator. Consequently, we can formulate a fuzzy model with
a pair of constraints as follows:
R1: If S1 is L1 and S2 is L2 . . . . Sn is Ln thenM (Si) is B1
R2: If S1 is H1 and S2 is H2 . . . . Sn is Hn thenM (Si) is B2
In the context mentioned earlier, both B1 and B2 are sin-

gleton fuzzy subsets (refer to Eqn. 1, 2), where:

B1 =

{
1

T (S1, S2, . . . , Sn)

}
(1)

B2 =

{
1

C (S1, S2, . . . , Sn)

}
(2)

We observe that in the previously described model, the
outcome value depends on the input factors, resembling a
Sugeno-Takagi framework. Solving this type of fuzzy system
model involves four distinct steps [27], as below:
i) Locate the firing level τi of every constraint (refer to

Eqn. 3, 4).
ii) Detect the functional output fuzzy membership function

of each rule.

iii) Fuse these functional outputs (refer to Eqn. 5).
iv) Crispify the resulting fuzzy set (refer to Eqn. 6).
For rule one the firing level is:

τ1 =

n∏
i=1

Li (Si) (3)

Similarly, for rule two we get:

τ2 =

n∏
i=1

Hi (Si) (4)

Combining these two rule-outputs, the system produces:

F =

{
τ1

T (S1, S2, . . . , Sn)
,

τ2

C (S1, S2, . . . , Sn)

}
(5)

Using the center of area method of crispification, we get:

M (Sn) =
τ1T (S1, S2, . . . , Sn) + τ2C (S1, S2, . . . , Sn)

τ1 + τ2
(6)

If we denote:

w1 =
τ1

τ1 + τ2
,w2 =

τ2

τ1 + τ2
(7)

Then

M (Sn) = w1T (S1, S2, . . . , Sn) + w2C (S1, S2, . . . , Sn) (8)

Thus, we see that M (refer to Eqn.8), is obtained as a kind
of weighted average of T-norm and T-conorm. However, it is
important to emphasize that this approach diverges from a
basic weighted average involving a T-norm and a T-conorm,
as we have previously demonstrated that such a method does
not achieve full reinforcement. Here, the key distinction lies
in the fact that the weights (refer to Eqn. 7) are not fixed
constants; instead, they are contingent upon the scores Si.

B. THE SCORE FUSION METHOD BASED ON FRO
The primary purpose of a biometric system is to perform
the detection of patterns or matching. The two main duties
of biometric recognition systems are registration and veri-
fication. In the registration phase, A biometric sensor, like
a fingerprint reader in the case of fingerprint recognition,
is used to acquire the biometric attribute. The derived bio-
metric feature is then used to extract salient characteristics,
frequently referred to as a ‘‘template’’. It is then entered along
with the name of user in a database. When a user requests to
be recognized during the recognition or verification phase,
they give the system a biometric characteristic. This stage
involves extracting features using the biometric trait collected
from the sensor, evaluating those features to traits in the
enrollment database, and generating a matching score. If the
matching score surpasses a predefined threshold, the system
classifies the user as genuine; otherwise, it identifies them as
impostors.

Figure 1 depicts an architectural representation of the
entire procedure of a multibiometric person authentica-
tion scheme. This framework combines data from various
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FIGURE 1. Multibiometric person authentication using FRO.

biometric sources using Full Reinforcement Aggregation
Operators (FRO).

Due to the diversity in match scores, it is necessary to
initially convert these various match scores into a single range
of [0, 1] prior to fusion. In this study, we employed two
normalization techniques, specifically the min-max and tanh-
estimators, as described here:

S ′
=

S − min (S)

max (S) − min (S)
(9)

Here, S ′ denotes the adjusted score, and S signifies the match
score produced by a particular matcher.

S
′

=
1
2

[
tanh

(
0.01

(
S − µ

σ

))
+ 1

]
(10)

In this context, S′ represents the adjusted score, where S, µ

and σ correspond to the input score, mean, and standard
deviation of input scores, respectively. These values are deter-
mined using the Hampel estimator [7]. After normalizing
the match scores using either the min-max method (refer to
Eqn. 9) or the tanh-estimators (refer to Eqn. 10), the FRO
combines these standardized scores. In this paper, a specific
instance of FRO is employed, referred to as the triple

∏
combination rule [27]. This operator is created by utilizing
the product T-norm and its corresponding dual for T-conorm
(refer to Eqn. 11, 12).

T = T (S1, S2, . . . , Sn) =

n∏
j=1

Sj (11)

C = C (S1, S2, . . . , Sn) = 1 −

n∏
j=1

S̄j (12)

M (S1, S2, . . . , Sn) =

∏n
j=1 Sj∏n

j=1 Sj +
∏n

j=1 S̄j
(13)

where, T ,C , andM correspond to the T-norm, T-conorm, and
triple aggregation operator (

∏
), respectively.

If the combined score surpasses a certain threshold (set
empirically), the user is verified as genuine; otherwise, iden-
tified as an impostor.

V. EXPERIMENTS
In this section, we present the performed experiments and
results of the proposed score fusion approach, i.e., Full

Reinforcement Operator (FRO). More specifically, we have
performed experiments using four publicly accessible
datasets to evaluate this method’s effectiveness in diverse sce-
narios, includingmultimodal, multi-unit, andmulti-algorithm
systems, utilizing four publicly available databases.

A. EXPERIMENTS DATA
The study made use of four databases that are openly acces-
sible, including the three sets of NIST BSSR1 databases
(multimode, face, fingerprint) [28], and the XM2VTS
database [31].

1) SET 1 (NIST-MULTIMODAL)
Set 1 comprises scores generated from a cohesive group of
517 individuals, incorporating both face and fingerprint data.
Each person in this set has one score derived from comparing
two right index fingerprints, another from comparing two left
index fingerprints, and two additional scores from comparing
two facial images. It is important to note that the fingerprint
and face images used to generate these scores belong to
the same individual, and were captured simultaneously (with
documented dates provided for reference).

2) SET 2 (NIST-FINGERPRINT)
Set 2 consists of fingerprint scores obtained from a uni-
fied system applied to images of 6000 individuals. For each
individual in this dataset, there is one score obtained by
comparing two left index fingerprints and another score from
comparing two right index fingerprints.

3) SET 3 (NIST-FACE)
Set 3 includes scores derived from two facial recognition
systems applied to images of 3000 individuals. In this dataset,
each individual is represented by one score obtained by com-
paring face A with a subsequent face, B, and another score
from comparing face A with a different subsequent face, C.

4) XM2VTS DATABASE
TheXM2VTSBenchmark database is an expanded version of
the m2vts database and has maintained its reputation as one
of the most extensive publicly accessible audio-visual speech
databases since its inception. It offers approximately 30 hours
of unprocessed video footage. In this database, the 295 speak-
ers are divided into 200 clients and 95 impostors. There are
two methods for dividing the set used for both training and
evaluation, known as Lausanne Protocol I and II, denoted as
LP1 and LP2 [29]. The specifics of the Lausanne Protocol
can be found in Table 3 and 4. Facial data undergoes three
different feature extraction methods: FH (Face Histogram),
DCTs (Discrete Cosine Transform for small images), and
DCTb (Discrete Cosine Transform for large images). For
speech data, three distinct feature extraction methods are
employed: LFCC (Linear Filter-bank Cepstral Coefficient),
PAC (Phase Auto Correlation MFCC), and SSC (Spectral
Sub-band Centroid).
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TABLE 3. Brief explanation of lausanne protocols I [29].

TABLE 4. Brief explanation of lausanne protocols II [29].

B. EXPERIMENT PROTOCOL FOR DATABASES
For the three sets of NIST BSSR1 databases the authentica-
tion mode experiments were conducted, and the effectiveness
of the proposed fusion method was assessed using Receiver
Operating Characteristics (ROC) analysis. The ROC curve is
generated by plotting the Genuine Acceptance Rate (GAR)
against the False Acceptance Rate (FAR). GAR is defined as
(1 −FRR) [7], where FRR (False Rejection Rate) represents
the percentage of legitimate individuals that the system mis-
takenly rejects as impostors, andFAR indicates the percentage
of impostor individuals that the system incorrectly accepts
as client users. Meanwhile, GAR measures the rate at which
client users are correctly accepted out of the total number of
enrolled individuals.

For XM2VTS Benchmark database, The Half Total Error
Rate (HTER) is used to compare the performance of the
different fusion techniques [29]. It is defined as:

HTER =
FAR+ FRR

2
(14)

It is crucial to highlight that the FAR and FRR do not exhibit
the same level of sensitivity. This discrepancy arises from the
presence of more simulated impostor attempts than genuine
client attempts. Consequently, the FRR experiences more
significant fluctuations when erroneously rejecting a genuine
client access, whereas the FAR exhibits less dramatic varia-
tions accepting an impostor access mistakenly [29].

C. EXPERIMENTS RESULTS
In this section, we present the experimental outcomes
obtained from four publicly accessible databases (NIST-
multimodal, NIST-Fingerprint, NIST-Face and XM2VTS)
involving multimodal, multi-unit, and multi-algorithm bio-
metric systems.

1) PERFORMANCE OF FRO-BASED FUSION ON NIST-SET 1
Figure 2 presents an architecture illustrating the entire pro-
cess of a multimodal person recognition framework utilizing
face and fingerprint data. The scores obtained from the face
matcher C, face matcher G, as well as the left and right finger-
print scores, undergo normalization using the tanh-estimator
normalization technique (refer to Eqn. 10), after which they
are integrated using the proposed FRO method.

FIGURE 2. FRO-based scores integration using NIST- Set 1.

FIGURE 3. Assessment of ROC curves of different unimodal systems with
score-level Fusion for NIST-Set 1 database.

In Figure 3, we can observe the Receiver Operating Char-
acteristic (ROC) curves for each individual modality as well
as the combined modalities using the Full Reinforcement
Operator (FRO) method. These results are based on data
from the NIST-multimodal database. At a False Acceptance
Rate (FAR) of 10−4, the Genuine Acceptance Rates (GARs),
which are calculated as (1-FRR) [7], are 74.3% for face
matcher C, 68% for face matcher G, 77.2% for the left finger-
print, and 85.3% for the right fingerprint. However, at 10−4

FAR operating point, GAR of 100% is attained with the FRO
produced by the products T-norm and T-conorm. As indicated
in Table 5, various symmetric sum S-sums produced through
many T-norm rules (probabilistic, Yager, and Hamacher [7])
are employed for merging scores on the NIST- set1 database.
Additionally, the study reports the results achieved through
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combining scores using the likelihood ratio (LR) and Support
Vector Machine (SVM) techniques proposed in [17], both of
which necessitate learning and training.

TABLE 5. Evaluation of fusion using different approaches on NIST-Set
1 database.

Furthermore, the study showcases results for fusion
using the Entropy-with-Frank and Entropy-with-Hamacher
T-norms [7]. Table 5 clearly illustrates that the FRO, gen-
erated by both T-norm and T-conorm, outperforms the
performance of score-level fusion methods previously doc-
umented in the literature.

2) PERFORMANCE FRO ON NIST-SET 2
Figure 4 depicts an architecture that illustrates the complete
process of a multi-unit person recognition framework based
on left and right index finger data. The input scores of the
left and right index fingers for this dataset are normalized
using the min-max method as in Eqn. 9. The combination
order is not important because we fused the two matched
scores here using the commutative property. Using the FRO
produced by both products (T-norm and T-conorm) on the
NIST-Set 2 database. Figure 5 shows the ROCs of indi-
vidual modalities and of fused modalities. The left index
finger and right index finger had GARs of 75.5% and 83.5%,
respectively, at FAR = 10−4. However, using the same
FAR operating point and the FRO produced by both prod-
ucts (T-norm and T-conorm), a GAR of 93.40% is attained.

Table 6 shows that various S-sums produced using (proba-
bilistic, Yager and Hamacher T-norms) are likewise utilized
for score-level fusion on the NIST-Set 2 database. For com-
parison, the outcomes of combining scores utilizing the LR
and SVM learning-based approaches are also provided [17].
Table 6 shows that the adopted FRO performs better than the
score-level fusion rules that is currently used in the literature.

FIGURE 4. FRO based scores integration using NIST-Set 2.

FIGURE 5. Performance of FRO score-level Fusion for NIST-Set 2.

3) PERFORMANCE OF FRO ON NIST-SET 3
In this section, we provide the results of a multi-algorithm
biometric system score fusion technique based on FRO.
Figure 6 illustrates the design of a framework for face-based
multi-algorithm person recognition. The two face-matching
algorithms (Macher C and Machar G) used by this system.
We specifically experimented on the NIST-face database,
where 3000 subjects have similarity scores. The genuine
match-score is 6000 (3000×2), but the impostor match-score
is 17,994,000 (6000 × 2999). The two match-scores of
face matcher C and face matcher G were standardized
by tanh-estimators normalization technique as in Eqn. 10.
Figure 7 displays the ROC curves for separate biometric
algorithms when combined with our suggested score-level
fusion technique. At the operating point where the FAR is set
to 10−4, we observe GARs of 63.0%, 72.1%, and 94.54% for
the C face matcher, G face matcher, and the multi-algorithm
approach using FRO, respectively. Table 7 provides a sum-
mary of the authentication rates achieved based on FRO using
both product T-norm and product T-conorm functions, as well
as other fusion techniques proposed previously, such as SVM,
LR, S-sum produced by Hamacher T-norm, S-sum using max
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TABLE 6. Evaluation of fusion using different approaches on NIST-Set
2 database.

rule, Hamacher T-norm, Frank T-norm, sum rule, min rule,
and max rule.

FIGURE 6. FRO based scores integration using NIST-Set 3.

4) PERFORMANCE OF FRO ON XM2VTS DATABASE
The experimental findings on the XM2VTS databases uti-
lizing Lausanne Protocol I and II are presented in this
section, via modalities (multimodal biometric), extrac-
tor (multi-algorithm), and classifiers (multi-unit biometric
system).

For Lausanne Protocol I, we have employed all 15 possible
configurations (via modalities). Additionally, we have used
6 combinations via extractor, and 2 combinations employing
various classifiers. We also utilized the DS theory, the Like-
lihood ratio-based (LR) combining method, and the sum rule
for comparisons. The HTER (refer to Eqn. 14) is employed
to assess and contrast the effectiveness of various combining
methods.

FIGURE 7. Comparison of ROC curves of individual modality with
score-level Fusion for NIST-Set 3.

TABLE 7. Evaluation of fusion using different approaches on NIST-Set
3 database.

The outcomes in Table 8, provide a contrast between the
suggested combiningmethod (FRO) utilizing product T-norm
and product T-conorm with DS theory (using a sigmoid func-
tion), the LR combing rule, and the sum operator. From the
same Table, it is evident that across the 15 configurations
of the baseline systems (via modalities), the FRO combining
rule surpasses the basic sum rule headed by Z-score andMax-
Min normalization in 15 and 12 configurations, respectively.
Nevertheless, the basic sum rule headed by Tanh normaliza-
tion exceeds the FRO combining rule in three configurations.
Likewise, we can see that the projected combining method
outperforms theDS theory and LR approach in 15 and 12 con-
figurations, respectively. Moreover, we can determine from
Table 8 that over the six configurations (via extractor), the
proposed FRO combining approach surpasses the basic sum
rule preceded by Z-score, Max-Min, and tanh normalization
in 6, 5, and 6 configurations, respectively. Nevertheless, the
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TABLE 8. Assessing the HTER (%) differences between the FRO-based fusion, DS theory-based fusion, the basic sum rule, and LR- based fusion for the
lausanne protocol I.

TABLE 9. Assessing the HTER (%) differences between the FRO-based fusion, DS theory-based fusion, the basic sum rule, and LR- based fusion for the
lausanne protocol II.

LR-based fusion surpasses the FRO based-fusion in two com-
binations. Also, the proposed FRO based-fusion outperforms
the DS theory in 5 configurations. Finally, we can see from
Table 8 that over the two combinations (via classifiers), the
proposed fusion method outperforms all other score fusion

strategies. For Lausanne Protocol II, we have employed all
six possible configurations of face and speech classifiers (via
modalities). Additionally, we have used three combinations
via extractor. We also utilized the DS theory, Likelihood
ratio technique, and sum rule for the purpose of making
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comparisons. The HTER is employed to assess and contrast
the effectiveness of various fusion methods (refer to Eqn. 14).
The outcomes in Table 9 provide an assessment between the
adopted fusion technique (FRO) using product T-norm and
product T-conorm with DS theory (using sigmoid function),
the basic sum rule, and the LR fusion rule. From the same
Table, it is evident that across the 6 configurations (viamodal-
ities), the FRO outperforms the basic sum rule preceded by
tanh and Min-Max normalization in all configuration. But
the basic sum rule preceded by Z-score normalization sur-
passes the FRO based-fusion in 2 configurations. Moreover,
we can discern from Table 9 that over the 3 configurations
(via extractor), the proposed FRO based fusion outperforms
the simple sum rule preceded by Z-score, Min-Max, DS the-
ory, and LR-based fusion in all configurations. However, the
basic sum rule preceded by tanh normalization surpasses the
FRO based- fusion in one configuration ((FH, MLP), (DCTb,
GMM)).

VI. CONCLUSION
In this paper, we introduce an innovative score fusion method
for a system that uses multiple biometrics traits, that relies
on the complete reinforcement operator (FRO). This FRO
does not necessitate any form of learning or training, which
simplifies our system, enhances its efficiency, and reduces
computational costs.

Experiments were conducted using three distinct subsets
of the NIST-BSSR1 dataset (set 1, set 2, set 3) in addi-
tion to the XM2VTS database. The outcomes obtained from
NIST-multimodal biometric tests demonstrated exceptional
performance of our proposed score-level fusion method,
which utilizes product T-norm and product T-conorm. Specif-
ically, it attains a high Genuine Acceptance Rate (GAR) of
100% at a False Acceptance Rate (FAR) of 0.01%. This
performance surpasses that of individual modalities and out-
performs various conventional score-level fusion methods,
including S-sum, Entropy, Asym-AOs, Yager T-norm, Prod-
uct T-norm, Sum, LR-based method, and SVM. In the context
of NIST fingerprint data, our suggested score-level fusion
technique achieves superior performance, with a GAR of
92.8% at a FAR of 0.01%, surpassing the performance of all
previously employed methods. For the last subset of NIST-
BSSR1 (NIST-face database), the proposed score-level fusion
technique achieves superior performance, with a GAR of
92.8% at a FAR of 0.01%, surpassing the performance of all
previously used approaches.

The test of the approach on the publicly available
scores of the XM2VTS Benchmark gives better perfor-
mance (HTER) compared to various conventional existing
approaches, including DS theory, LR-based, sum rule using
tanh normalization, sum rule using min-max normalization,
and sum rule preceded by Z-score.

To summarize, our experimental findings unequivocally
demonstrate the superiority of the proposed framework when
compared to existing methods like DS theory and SVM.
Nevertheless, a more extensive evaluation, including mobile

authentication databases, is imperative and will be pursued in
future research. Additionally, we aim to assess the model’s
resistance against counterfeiting attempts in our upcoming
endeavors.
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