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ABSTRACT In response to the challenges posed by small objects, high noise, and complex backgrounds in
synthetic aperture radar (SAR) ship detection, we proposed a lightweight model called SHIP-YOLO. In the
neck of YOLOv8n, we replaced ordinary convolution (Conv) with a lighter ghost convolution (GhostConv)
and introduced reparameterized ghost (RepGhost) bottleneck structure in C2f module. We then introduced
Wise-IoU (WIoU) into the algorithm to improve the localization ability of the detection box. Finally, shuffle
attention (SA) modules were added to the backbone and neck of YOLOv8n to enhance the perception
capability of the target area. The results confirm that, compared with YOLOv8n, the proposed SHIP-YOLO
on SAR Ship Detection dataset (SSDD) reduces the parameters and floating-point operations (FLOPs) by
17% and 11%, respectively, and improves the precision, recall, and mean average precision (mAP) (0.5)
by 1.7%, 0.1%, and 0.2%, respectively. The proposed model also showed strong generalization ability on
another Sar-Ship-Dataset.

INDEX TERMS Computer vision, deep learning, object detection, radar remote sensing, synthetic aperture
radar.

I. INTRODUCTION
With the continual growth of maritime traffic and the increas-
ing complexity of ship activities, conventional ship detection
methods face limitations owing to the impact of weather and
lighting conditions as well as the challenge of effectively
locating targets in expansivewater regions. Synthetic aperture
radar (SAR) technology, which is characterized by its relative
insensitivity to weather and lighting conditions, has been
widely applied in ship detection. Traditional SAR ship detec-
tion algorithms, such as constant false alarm rate (CFAR)
[1], Gaussian model-based two-parameter CFAR [2], tem-
plate matching [3], trial detection [4], and wavelet-based [5]
detection methods, primarily rely on manually crafted classi-
fiers. Despite their fast computational speeds, these methods
exhibit poor detection performance, and the design process of
the detection algorithms is intricate. With the rapid acquisi-
tion of extensive SAR data and impetus for practical tasks,
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traditional detection methods no longer meet the current
demands for timeliness and accuracy of SAR ship detection.

Currently, object detection techniques based on deep learn-
ing is a popular research topic in the field of computer
vision. SAR ship detection typically involves image or video
analysis, and object detection techniques can be effectively
applied in this domain. Several researchers have provided
SAR ship datasets for this field. Li et al. [6] constructed a
SAR ship detection dataset (SSDD) based on the PASCAL
VOC template. This dataset consists of 1,160 images captured
by RadarSat-2, TerraSAR-X, and Sentinel-1 satellites, con-
taining a total of 2,540 ship targets. The images in this dataset
have various polarization modes and resolutions with a high
scene complexity, which can effectively test the performance
of algorithm. Wang et al. [7] proposed a SAR-Ship-Dataset
based on multimodal SAR images. Using this dataset, they
developed an integrated deep learning processing system for
ship detection and classification in complex backgrounds,
achieving near-real-time automatic detection and classifica-
tion of merchant ships without distinguishing between sea
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and land. Sun et al. [8] introduced a high-resolution, large-
scale SAR ship detection dataset called AIR-SAR Ship, with
an image size of approximately 3000px×3000px, and resolu-
tions of 1m and 3m. Lei et al. [9] proposed a high-resolution
SAR images dataset (HRSID) composed of images captured
by Sentinel-1 and TerraSAR-X satellites. This dataset con-
tains 5,604 image slices with 16,591 ship targets suitable for
ship detection and instance segmentation.

Target detection algorithms are primarily divided into
two-stage and single-stage detection algorithms. Common
two-stage detection algorithms include region convolutional
neural network (R-CNN) [10] and faster region convolu-
tional neural network (Faster R-CNN) [11]. These algorithms
generate candidate boxes, and then classify and perform
bounding box regressions on these candidate boxes. In con-
trast, single-stage detection algorithms typically have a lower
computational complexity and are more suitable for real-
time applications. Representative algorithms include you
only look once (YOLO) [12], single-shot multibox detector
(SSD) [13], and Retina-Net [14]. Zhang et al. [15] proposed
a SAR ship detection algorithm that improved Faster R-
CNN. On the fusion dataset of GF-3 and Sentinel-1 satellites,
the mean average precision (mAP)(0.95) increased by 6.2%
compared with Faster R-CNN. Zhang et al. [16] also pro-
posed a SAR ship detection algorithm that improves real-time
models for object detection (RTMDet). Experimental com-
parisons on rotated ship detection dataset (RSDD) revealed
that the improved algorithm achieved significant performance
enhancement. Zhang and Zhang [17] proposed a method for
detecting high-speed SAR ship based on a grid convolutional
neural network (G-CNN). The purpose of improving the
detection speed was achieved through grid processing of the
image and depth-separable convolution. Zhang et al. [18]
proposed a new high-speed SAR ship detection method
using a deep separable convolutional neural network (DS-
CNN). This method significantly improved detection speed
while maintaining high accuracy through a lightweight net-
work architecture integrating multi-scale detetction, serial,
and anchor frame mechanisms. Xu et al. [19] proposed a
method called group-wise feature enhancement-and-fusion
network with dual-polarization feature enrichment (GWFEF-
Net) to enrich the feature library of SAR ship detection
network through dual polarization characteristics and real-
ized more accurate detection of ship targets in SAR images
by using intra-group feature enhancement, feature fusion,
mixed pool channel attention, and other technologies. After
extensive experiments on Sentinel-1 dual-polarization SAR
ship dataset, the mAP of GWFEF-Net was 94.18%, which
is 2.51% higher than that of the second-best method.
Xu et al. [20] proposed a method called shadow-background-
noise 3D spatial decomposition model (SBN-3D-SD), which
enhances moving target shadows in SAR images through
3D spatial decomposition, thereby improving the accuracy
of object detection and tracking. Huang et al. [21] pro-
posed a lightweight SAR ship detection algorithm based on

YOLOv5, using channel pruning and knowledge distillation.
Experimental results on the restructured large-scale multi-
class SAR image target detection dataset (MSAR) and SSDD
multi-class target datasets showed improved target detection
accuracy while maintaining a lightweight model volume of
only 3.73M. He et al. [22] introduced an improved detection
algorithm based on YOLOv5, using a modified bi-directional
feature pyramid network (BiFPN). On HRSID, the recall and
mAP increased by 2% and 2.7%, respectively, compared with
the original YOLOv5 algorithm. Zhang et al. [23] based their
work on YOLOv7, incorporating shuffle attention (SA) mod-
ule and introducing dynamic snake convolution (DSConv).
They conducted experiments on HRSID, and the results
showed a 16.7% improvement in the mAP in detection tasks,
with a 62.55% reduction in the model volume compared with
the original YOLOv7 algorithm. Ren et al. [24] proposed
the YOLO-Lite model for SAR ship detection. By designing
effective lightweight feature enhancement networks, posi-
tion information capture modules, and multi-scale feature
fusion networks, the YOLO-Lite model can significantly
reduce computational complexity while ensuring detection
accuracy and providing an effective solution for real-time
ship detection. Guo et al. [25] proposed a lightweight SAR
ship detection model called LMSD-YOLO. By introduc-
ing an activation function module (DBA), a mobile net
with a stem block (S-MobileNet) backbone network, depth-
wise adaptively spatial feature fusion module (DSASFF),
and SCYLLA-IoU (SIoU), better adaptability, and smaller
model volume in multi-scale object detection are realized.
Tang et al. [26] proposed a SAR ship detection model
based on YOLOv7, which utilizes a multi-scale receptive
field convolution block (AMMRF) to fully utilize the posi-
tional information of feature maps and effectively capture
the relationship between feature map channels, enabling the
network to better learn the relationship between ships and the
background. On HRSID and LS-SSDD-v1.0, compared with
YOLOv7, the mAP (0.5) was improved by 2.6% and 3.9%,
respectively.

Currently, efforts in deep learning algorithms are directed
towards achieving smaller and faster models. The pursuit of
lightweight solutions without compromising the algorithmic
accuracy has become a crucial research direction. Cholet [27]
believes that channel and spatial correlation should be treated
separately. Depth-wise convolution (DWConv) is performed
by splitting the convolution operation into two steps: depth
convolution and point-by-point convolution. Han et al. [28]
harnessed the redundancy characteristics of feature maps to
introduce ghost convolution (GhostConv), which is a lighter
alternative achieved through a series of cost-effective linear
transformations. Chen et al. [29] presented a reparameterized
ghost (RepGhost), which is an innovative, hardware-efficient
solution. Implicit feature reuse is achieved through reparam-
eterization rather than cascade operators, thereby reducing
parameters and delays. Tong et al. [30] proposed Wise-IoU
(WIoU), which establishes a dynamic focusing mechanism
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(FM) by estimating the outlierness of anchor boxes. This
approach utilizes abnormality instead of IoU to assess the
quality of anchor boxes and implements a prudent gradient
gain allocation strategy to mitigate the competitiveness of
low-quality anchor boxes and detrimental gradients produced
by low-quality examples. In computer vision research, spa-
tial and channel attention mechanisms are widely employed
to capture pixel-level pairwise relationships and channel
dependencies. Although combining these mechanisms may
enhance performance, it inevitably introduces a compu-
tational overhead. Zhang and Zhang [31] addressed this
challenge by introducing SA module, an effective solution
that seamlessly integrates both types of attention mechanisms
using shuffle units. Hu et al. [32] proposed a squeeze-and-
excitation (SE) module that used global information to learn
the weight of each channel. By compressing the dimensions
of the feature graph and usingmultilayer perceptrons to recal-
ibrate the feature response of the channel, the learning ability
of the model for the correlation between features is enhanced,
and then the representation ability and performance of the
convolutional neural network are improved.

In the domain of SAR ship detection, many studies have
focused solely on achieving high accuracy or lightweight
algorithms without striking a balanced compromise between
the two. Consequently, we propose a novel model called
SHIP-YOLO, which aims to maintain high detection accu-
racy while achieving algorithmic lighting. The primary
contributions of this study are summarized as follows:

(1) We integrated the RepGhost bottleneck structure into
C2f module of YOLOv8 to create an updated and lighter
module called C2f_RepGhost.

(2) Notable modifications include replacing Conv in
the neck of YOLOv8n with GhostConv, replacing the
C2f module in the neck of YOLOv8n with the proposed
C2f_RepGhost module, replacing the Complete-IoU (CIoU)
[33] with WIoU, and incorporating SA modules into the
backbone and neck of the algorithm.

(3) We presented and performed a comprehensive analysis
of the proposed SHIP-YOLO on SSDD and SAR-Ship-
Dataset.

II. INTRODUCTION TO YOLOV8 ALGORITHM
YOLO is a one-stage real-time object detection model.
In contrast to two-stage detection model, YOLO processes
images by partitioning them into multiple grids, where each
grid makes predictions for multiple bounding boxes and their
confidences, subsequently determining the class of objects
within the predictions. This unique approach allows YOLO
to deliver rapid detection capabilities; the initial version
achieved impressive 45 frames per second on a Titan X GPU.
Over time, YOLO has evolved through various iterations,
with YOLOv2 [34] to YOLOv8 witnessing enhancements in
speed, accuracy, and model size.

Figure 1 depicts the architecture of YOLOv8, comprising
three integral components: backbone, neck, and head. The
backbone, akin to YOLOv5 [35], is rooted in the cross stage

partial dark network-53 (CSPDarkNet-53), encompassing
CBS, C2f, and spatial pyramid pooling-fast (SPPF) modules.
However, YOLOv8 diverges from YOLOv5 by adopting the
C2f module over the C3 module, leveraging insights from
ELAN module of YOLOv7 [36]. This refinement bolsters
feature fusion capabilities, thereby accelerating the inference
speed. YOLOv8 integrates the SPPF module from YOLOv5,
harmonizing the local and global features via spatial pyra-
mid pooling layers. The neck of YOLOv8 echoes the path
aggregation network-feature pyramid network (PAN-FPN)
structure of YOLOv5 but refines it by removing the con-
volutional structure in the upsampling stage of PAN-FPN
and replacing C3 module with the C2f module in YOLOv5.
As for the head, YOLOv8 aligns with YOLOv6 [37] and
YOLOX [38], employing a decoupled head, in contrast to
the coupled head utilized in YOLOv3 [39], YOLOv4 [40],
YOLOv5, and YOLOv7. This decoupled head strategically
segregates the object position and class information, facilitat-
ing independent learning through distinct network branches,
culminating in synergized fusion. This innovative approach
efficiently reduced the parameter volume and computational
complexity of the algorithm.

III. ALGORITHM IMPROVEMENT
In this study, we proposed the SHIP-YOLO SAR ship detec-
tion model based on YOLOv8n. Notably, in the neck part,
Conv is replaced by GhostConv, and the RepGhost bottleneck
structure is integrated into the C2f module, thereby contribut-
ing to lightweight algorithmic improvement. The proposed
SHIP-YOLO further incorporates SA module into both SPFF
module of the backbone of the algorithm and the second
upsample module in the neck to capture more diverse feature
information. Additionally, the loss function of the algorithm
was replaced with WIoU to enhance the precision of the
detection boxes and augment the recall of the detected targets.
The overall network structure of SHIP-YOLO is shown in
Figure 2.

A. LIGHTWEIGHT MODULES
1) GhostConv
Given the ongoing evolution of convolutional neural net-
works and escalating demand for deploying models on
embedded devices with constrained memory and computa-
tional resources, the pursuit of more efficient and lightweight
neural networks has emerged as a pivotal trend. This study
introduces GhostConv, a lightweight alternative to a certain
Conv within the YOLOv8 algorithm, aimed at curtailing both
the computational and parameter requirements. The dispari-
ties between Conv and GhostConv are shown in Figure 3.
GhostConv involves cost-effective linear operations based

on a minimal number of traditional convolutional operations.
Conv is divided into two components: the first part executes a
standard convolution while meticulously controlling its quan-
tity and the second part employs the inherent feature maps
generated by Conv to conduct a series of straightforward
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FIGURE 1. The YOLOv8n network structure.

FIGURE 2. The proposed SHIP-YOLO network structure.

linear operations, yielding additional feature maps. These
two sets of feature maps were then concatenated to form a
new output. This approach significantly reduces the param-
eters and computational workload while maintaining the
model performance, paving the way for a more efficient and
lightweight deployment of neural networks. Let ‘‘h’’, ‘‘w’’,
and ‘‘c’’ denote the height, width, and channel number of
input features, respectively. The height and width of output
features are represented by ‘‘h’’ and ‘‘w’’, the number of
convolutional kernels is denoted as ‘‘n’’, the kernel size is
‘‘k’’, the linear transformation kernel size is ‘‘d ’’, and the
transformation count is ‘‘s’’. ‘‘rs’’ and ‘‘rc’’ are the ratios of
floating-point operations (FLOPs) and parameters between
Conv and GhostConv, where the formulas are as follows:

rs =
h× w× c× H ×W × n

n
s × H ×W × k2 × c+ (s− 1) ×

n
s × H ×W × d2

FIGURE 3. The process of Conv (a) and GhostConv (b).

=
c× k2

1
s × c× k2 +

(s−1)
s × d2

≈ s (1)

rc =
n× c× k2

n
s × c× k2 + (s− 1) ×

n
s × d2

≈
s× c

s+ c− 1
≈ s

(2)

Equations (1) and (2) reveal that the ratio of FLOPs to
parameters is influenced by the transformation count ‘‘s’’.
Essentially, the more feature maps that are generated, the
more effective the model acceleration. Therefore, introducing
GhostConv into the model proved to be an efficient strategy
to significantly reduce the FLOPs and parameters, ultimately
boosting the operating speed and efficiency of the model.

2) C2f_RepGhost
Despite the enhanced accuracy of the YOLOv8 algorithm
compared with its predecessors, the model’s complexity and
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FIGURE 4. The proposed C2f_RepGhost module structure.

substantial parameter count pose challenges for practical
deployment, particularly for devices with limited perfor-
mance, such as edge-terminal devices. To address this, the
RepGhost bottleneck structure replaces the original bottle-
neck structure in the C2f module, resulting in a reduction
in parameters and overall model size. This modification
overcomes the deployment challenges associated with the
YOLOv8n network’s demanding model parameters. A struc-
tural illustration of this process is shown in Figure 4.
The reparameterization process of the RepGhost module is

illustrated in Figure 5. This involves generating an equivalent
convolution layer on the batch normalization (BN) branch
and subsequently fusing the convolution layer with the BN
layer. During training, the RepGhost module performs deep
convolution on the input features, expanding the feature
dimension and then BN to increase nonlinearity during train-
ing. This step can be fused during the inference. The feature
maps generated by the two branches are then added while
maintaining the same number of channels. Finally, a ReLU
activation function is added to comply with the reparameter-
ization rules for swift inference.

The structure of the RepGhost module during inference is
straightforward, with the feature fusion process occurring in
the weight space rather than in the feature space. In addition,
by merging the parameters of the two branches, the RepGhost
module achieves a structure optimized for rapid inference
containing only regular convolution layers and ReLU activa-
tion functions, resulting in high hardware efficiency.

The RepGhost bottleneck structure is illustrated in
Figure 6. It utilizes a 1 × 1 convolution layer and ReLU
activation function to reduce the channel number of the input
by half. After the first RepGhost module, maintaining the
channel number, it passes through an SE attention layer and
a 1 × 1 convolution to enhance the sensitivity of the model
to the channel features, aligning the output channel number
with the input. Finally, the feature undergoes a scale addition
operation with the input feature map after RepGhost mod-
ule, and the result is outputted. The RepGhost bottleneck
includes only two branches during inference: saving memory
resources and improving the inference speed.

B. LOSS FUNCTION
The YOLOv8 loss function primarily comprises two compo-
nents: classification and regression losses. For classification,
binary cross-entropy (BCE) loss is utilized, and for regres-
sion, distribution focal loss (DFL) [41] and CIoU are applied.

DFL aims to optimize the shape of the probability dis-
tribution P(x) by explicitly encouraging high probabilities
of values that are close to the target y. This is achieved by
enlarging the probabilities of the two nearest values to y,
denoted as yi and yi+1, where yi ≤ y ≤ yi+1. This encourages
the network to focus on learning the probabilities of the values
around the continuous locations of the target bounding boxes,
as defined in Equation (3):

DFL (Si, Si+1)=− (yi+1 − y) log (Si) − (y− yi)log(Si + 1)

(3)

where Si and Si=1 are the probabilities associated with the two
nearest values to the target y.

The CIoU is defined as in Equation (4):

RCIoU =
ρ2

(
b, bgt

)
c2

+ αv (4)

b, bgt represent the center points of the predicted and
ground-truth bounding boxes, respectively. ρ denotes the
Euclidean distance between the two points and c is the diago-
nal distance of theminimum enclosing rectangle that contains
both boxes. α is the weight coefficient.

α =
v

(1 − IoU) + v
(5)

IoU represents the intersection over union between the pre-
dicted box and ground-truth box. vmeasures the similarity in
aspect ratios and is defined as in Equation (6):

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)
2

(6)

where w, h, wgt , hgt represent the width and height of the
annotated and ground truth boxes, respectively. The complete
definition of the CIoU is as follows:

LCIoU = 1 − IoU +
ρ2

(
b, bgt

)
c2

+ αv (7)

However, the CIoU has some limitations. The aspect ratio v
describes a relative value, leading to some ambiguity, and
it does not consider the balance of difficulty in the sam-
ples. Owing to the presence of low-quality examples in the
training data, geometric factors (distance and aspect ratio)
intensify the penalty for these examples, and static FM cannot
distinguish between high and low-quality annotated boxes,
resulting in weaker model generalization performance [42].

Because SAR ship detection training data include a large
number of images with low imaging quality, geometric mea-
surements such as distance and aspect ratio exacerbate the
penalty for low-quality images, thereby reducing the model’s
generalization performance.

Intervene in training without excessive interference and
weaken the penalty for geometric measurements when anchor
boxes overlap well with target boxes, thereby improving the
generalization ability of the model, by using WIoU_v3 with
a dynamic non-monotonic FM gradient gain allocation strat-
egy. In the early stages of training, high-quality anchor boxes
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FIGURE 5. The reparameterization process of RepGhost module.

FIGURE 6. The structure of RepGhost bottleneck in training (a) and in
reasoning (b).

were preserved to reduce the penalty for geometric factors
and enhance the generalization ability of the model. In the
later stages of training, WIoU_v3 allocates smaller gradient
gains to low-quality anchor boxes to reduce harmful gradients
and improve the localization performance of the model [42].

WIoU is defined as in Equation (8):

LWIoU_v1 = RWIoU · LIoU (8)

RWIoU ∈ [1, e) significantly enlarges LIoU of an ordinary
mass anchor frame; LIoU ∈ [0, 1] significantly reduces
the RWIoU of high-quality anchor frames, and significantly
reduces their focus on the distance between the center point
when the anchor frame and target frame coincidewell. To pre-
vent RWIoU from generating gradient impeding convergence,
Wg andHg are separated from the calculation diagram (∗ indi-

cates this operation). The RWIoU is defined as in Equation (9):

RWIoU = exp

(
x − xgt

)2
+

(
y− ygt

)2(
W 2
g + H2

g

)
 (9)

Wg andHg are the width and height of theminimum bounding
box, respectively. RWIoU represents the normalized distance
between the center points of the predicted and ground-truth
bounding boxes.

To improve the model detection performance further,
an outlier was defined to describe the quality of the anchor
frame, as shown in Equation (10):

β =
L∗
IoU
¯LIoU

∈ [0, +∞) (10)

L∗
IoU denotes the monotonic focusing coefficient. During

model training, the gradient gain L∗
IoU decreases with a

decrease in LIoU , where ¯LIoU is the moving average of the
momentum m.

A small degree of outlier means that the anchor frame
has high quality; therefore, a small gradient gain is allocated
to it to make the boundary frame return to focus on the
anchor frame with ordinary quality. Allocating a smaller
gradient gain to the anchor frame with larger outliers effec-
tively prevents low-quality image data from generating larger
harmful gradients, which affects detection quality. Using β,
a non-monotone focusing coefficient γ is constructed and
multiplied by the WIoU_v1 to obtain WIoU_v3, the defini-
tion of which is shown in Equation (11):

LWIoU_v3 = γLWIoU_v1, γ =
β

δαβ−δ
(11)

When β = δ, γ = 1. When the degree of outlier of the
anchor frame satisfies the fixed value of β, the anchor frame
obtains the highest gradient gain. Because LIoU is dynamic,
the quality division standard of the anchor frame is also
dynamic, which enables WIoU_v3 to create a gradient gain
allocation strategy that best matches the current situation in
the training process comparedwithWIoU_v1 andWIoU_V2.
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FIGURE 7. The process of channel attention (a) and spatial attention (b).

C. ATTENTION MECHANISM
The attention mechanism is instrumental in enabling the
network to focus precisely on information relevant to the
input, thus proving to be a vital component in enhancing
the performance of deep neural networks. Attention mech-
anisms can be broadly categorized into two types: channel
and spatial, as shown in Figure 7. While the channel attention
mechanism emphasizes content, spatial attention focuses on
regions relevant to the task. The combination of both can
lead to improved performance, but inevitably results in an
increase in the number of parameters and computational com-
plexity. Shuffle Attention effectively addressed this challenge
by adopting the channel shuffle concept.

First, the input features are divided into multiple
sub-feature groups along the channel dimension to learn
better feature representations and alleviate the difficulty of
convergence in deep network training. Next, for each sub-
feature, a shuffle unit is applied to simultaneously construct
the channel and spatial attention, suppress potential noise and
emphasize regions with correct semantic features, thereby
generating correlation coefficients for the sub-features.
Finally, all sub-features processed by the SA module are
concatenated along the dimension, and the Channel Shuffle
operation [43], [44] facilitates information exchange between
different sub-feature groups, as illustrated in Figure 8.

For an input feature mapX , with dimensions c × h × w,
SA initially divides the feature map X into g groups along
the channel dimension, resulting in grouped feature maps
X =

[
X1, · · ·,Xk , · · ·,Xg

]
,K ∈ [1, g]. Where the chan-

nel number, height, and width of any sub-feature group are
denoted as cg , h, andw respectively. During training, each sub-
feature Xk gradually acquires specific semantic information
and obtains the correspondingweight coefficients through the
SA module. Each sub-feature group obtained after grouping
generates two branches, Xk1 and Xk2 at the beginning of the
attention module. The channel number, height, and width of
each branch are denoted as c

2g , h, and w respectively. They

generated channel attention maps and spatial attention maps
by utilizing channel and internal spatial relationships, respec-
tively. The channel attention map emphasizes the semantic
information extracted from the feature map to enhance useful
feature channels for the current task and suppress less useful
feature channels, while the spatial attention map emphasizes
the spatial information extracted from the feature map, allow-
ing the model to focus more on meaningful information.

For branch Xk1, the channel attention mechanism was
employed. Global Average Pooling (GAP) [45] was applied
to produce channel-level data with a global receptive field,
as shown in Equation (12).

S = Fgp (Xk1) =
1

h× w

h∑
i=1

w∑
j=1

Xk1(i, j) (12)

Then, an Fc linear transformation and activation are applied
to s tomake the channel-wise global data smore accurate. The
generated weight mapping X ′

k1 for each channel is shown in
Equation (13):

X ′

k1 = σ ′ (Fc (s)) × Xk1 = σ ′ (W1 × s+ b1) × Xk1 (13)

where W1 and b1 represent the weight vector and bias vec-
tor of the linear transformation layer, respectively, and σ ′(·)
denotes the activation using the sigmoid function for each
element of the input vector.

The spatial attention module places a greater emphasis
on the location information of the target. Therefore, channel
grouping normalization (Group Norm) [46] was applied to
branch X ′

k2 to obtain spatial-level dataGN (Xk2), and the same
linear transformation and sigmoid function operations were
used to obtain the final output, as shown in Equation (14):

X ′

k2 = σ ′ (W2 × GN (Xk2) + b2) × Xk2 (14)

whereW2 and b2 represent the weight and bias vectors of the
linear transformation layer, respectively.

Finally, branches Xk1 and Xk2 were superimposed to match
the number of channels with the input. The Channel Shuffle
operation is then applied to allow the flow of information
across groups, effectively merging all sub-features while
retaining inter-group information flow.

IV. EXPERIMENTAL DESIGN AND RESULT ANALYSIS
A. DATASET
SSDD and SAR-Ship-Dataset were used for both training and
testing. SSDD consists of 1160 images containing 2456 ship
instances. Given the limited dataset size, a random split may
disrupt the consistency in the distribution between the train-
ing and test sets, leading to inconsistent training outcomes.
To address this, the study followed SSDD’s official recom-
mendation, strictly defining images with the last digit of the
file number being one or nine as the test set, with the rest
used for training and validation. The split was conducted
with a 7:1:2 ratio of the training, validation, and testing. The
SAR-Ship-Dataset comprises 43819 images, spanning scenes
such as ports, nearshore areas, islands, and the open sea,
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FIGURE 8. The detailed SA Module structure.

TABLE 1. The experimental environment used in this study.

TABLE 2. The experimental parameter settings used in this study.

featuring various common ship types such as cruise ships,
bulk carriers, large container ships, and fishing boats. The
dataset was split into training, validation, and test sets in a
7:2:1 ratio. Considering the experimental equipment and time
constraints, the smaller SSDD dataset was used for model
training and testing, whereas the larger SAR-Ship-Dataset
was used to assess the generalization of the algorithm.

B. EXPERIMENTAL ENVIRONMENT AND PARAMETER
SETTINGS
Details of the experimental environment and parameter set-
tings are presented in Tables 1 and 2, respectively.

C. EVALUATION METRICS
The performance evaluation metrics chosen for this exper-
iment included precision, recall, mAP, and FLOPs. The
formulations for each metric are as follows:

precision =
TP

TP + FP
(15)

recall =
TP

TP + FN
(16)

mAP =
1
N

n∑
i=1

∫ 1

0
Precision(Recall)d(Recall) (17)

where TP is the number of true positive samples, FP is the
number of false positive samples, FN is the number of false
negative samples, andN is the number of detected categories.

D. IMPACT OF LIGHTWEIGHT MODULES ON ALGORITHM
PERFORMANCE
To assess the influence of introducing lightweight modules
at different positions within YOLOv8n on the algorithm per-
formance, a comparative experiment was conducted, and the
results are presented in Table 3. The ‘‘Backbone’’ scenario
involves the replacement of all Conv or C2f modules in
the YOLOv8n backbone part with lightweight GhostConv
or C2f_RepGhost modules. For ‘‘Neck’’, all Conv or C2f
modules in the YOLOv8n neck part are substituted with
lightweight GhostConv or C2f_RepGhost modules. ‘‘All’’
refers to replacing all Conv or C2f modules throughout
YOLOv8n with lightweight GhostConv or C2f_RepGhost
modules. The findings indicate that with a reduction of 0.1M
in parameters and 0.1G in FLOPs, replacing Conv in the neck
part of YOLOv8 with GhostConv resulted in an improve-
ment of 1.1% in precision and 0.2% in mAP50. Similarly,
replacing the C2f modules in the YOLOv8n neck part with
C2f_RepGhost modules, reducing parameters by 0.4M and
FLOPs by 0.8G, yields a 0.3% increase in precision, a 0.5%
increase in mAP50, and a 0.2% increase in recall. By simul-
taneously replacing Conv and C2f modules in the neck part
of YOLOv8 with GhostConv and C2f_RepGhost modules,
and further reducing parameters by 0.5M and FLOPs by
0.9G, the precision improved by 0.1%, mAP50 increased by
0.7%, and recall improved by 0.1%. These results highlight
the effectiveness of the proposed lightweight optimization
algorithm.

E. IMPACT OF IOU ON ALGORITHM PERFORMANCE
Using the YOLOv8n algorithm as the baseline model, where
Conv and C2f modules in the neck part were replaced with
GhostConv and C2f_RepGhost modules, respectively, differ-
ent IoUs were evaluated for their impact on the algorithm
performance. Table 4 presents the comparative models. The
experimental results revealed that WIoU_v3 contributed to
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TABLE 3. Performance Comparison of Lightweight Modules at Different Positions in the Algorithm.

TABLE 4. Performance comparison of loss functions on algorithm impact.

TABLE 5. Comparison of results of different improvement points added
to the model.

FIGURE 9. The loss curves of the proposed SHIP-YOLO and the original
YOLOv8n model.

the most significant improvement in algorithm performance,
with a 0.9% increase in precision, 0.4% increase in recall, and
0.1% increase in mAP50.

TABLE 6. The experimental results of SHIP-YOLO as compared to other
models.

F. ABLATION EXPERIMENT
To validate the effectiveness of the various improvement
strategies proposed in this study, ablation experiments were
designed to assess the impact of these strategies on the model
detection performance under identical experimental condi-
tions. The results presented in Table 5 reveal that following
the incorporation of GhostConv and C2f_RepGhost modules
into the YOLOv8n baseline algorithm, there is a reduction
in both the number of parameters and computations, accom-
panied by improvements in precision, recall, and mAP50.
Upon introducing WIoU on this foundation, while precision
experiences a slight decline, recall shows a 1.1% improve-
ment, indicating the contribution of WIoU to the precision of
bounding box localization. Finally, the inclusion of SA mod-
ules substantially increased the precision of the algorithm.
SHIP-YOLO compared with the YOLOv8n baseline model,
demonstrated a reduction of 0.5G in parameters and 0.9G in
FLOPs, yielding a 1.7% increase in precision, a 0.1% increase
in recall, and a 0.2 increase in mAP50. These experimental
results underscore the effectiveness of the lightweight opti-
mization proposed in this study for the SAR ship detection
model.

Figure 9 shows the training loss curves for YOLOv8n
and SHIP-YOLO on SSDD. It can be observed that
SHIP-YOLO and YOLOv8n exhibit almost identical training
loss decreases at the start of training. However, with the
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FIGURE 10. Ship detection results on SSDD: (a) is the tag visualization
results of SSDD, (b) is the ship detection results based on YOLOv8n
model, and (c) is the ship detection result based on the proposed
SHIP-YOLO model.

progression of training, after 10 epochs, the training loss
of SHIP-YOLO decreased at a faster rate than YOLOv8n.
In summary, the proposed SHIP-YOLO model can more

FIGURE 11. The comparison of FLOPs and parameters between the
proposed SHIP-YOLO and other models.

effectively reduce loss and hastening model convergence.
Figure 10 shows the ship detection results on SSDD, where a
is the visualization result of the dataset label, b is the detection
result of the original YOLOv8n, and c is the detection result
of the proposed SHIP-YOLO model. YOLOv8n mistakenly
identified some targets as ships and multiple ships parked
side-by-side as the same ship. However, small ships were not
detected in this study. The improved model proposed in this
study avoids these limitations.

G. COMPARATIVE EXPERIMENT
To further verify the effectiveness of the proposed model,
a comparative experiment was conducted against the lightest
algorithms in the YOLO series, including YOLOv3-tiny,
YOLOv5n, YOLOv6n, YOLOv7-tiny, YOLOv8n, and
Baidu’s Paddle team’s RT-DERT [51], on the SSDD and
SAR-Ship-Dataset. As indicated in Table 6, compared with
the other algorithms, the proposed SHIP-YOLO achieved
nearly the highest precision, recall, and mAP50, with
nearly the lowest parameters and FLOPs. A comparison
of the FLOPs and parameters of these models are shown
in Figure 11. In comparison to YOLOv5n with similar
parameters and FLOPs, SHIP-YOLO demonstrates a 2%
and 1% increase in precision, 0.5% and 0.4% increase in
recall, and 0.5% and 0.4% increase in mAP50 on the two
datasets. Owing to experimental constraints, the RT-DERT
algorithm has not been experimentally validated on the SAR-
Ship-Dataset. However, based on the experimental results
on SSDD, the parameters and FLOPs of the RT-DERT
algorithm are much larger than those of the SHIP-YOLO
model, and all detection metrics are inferior to SHIP-YOLO.
Meanwhile, the SHIP-YOLO model maintains a detection
performance similar to that of the CRAS-YOLO [52] and
Vessel-YOLO [53] models, which are both SAR ship detec-
tion models. However, our proposed model is lightweight.
Compared to all the aforementioned algorithms, the proposed
SHIP-YOLO ship detectionmodel not only demonstrates out-
standing performance in detection but also maintains lower
parameters and computations, showing significant overall
performance and proving the feasibility and effectiveness of
the proposed improvement algorithm.
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V. CONCLUSION
This study introduced a lightweight SAR ship detec-
tion model, named SHIP-YOLO, based on the YOLOv8n
algorithm. Innovative designs, including GhostConv,
RepGhost, WIoU, and SA modules were incorporated to
enhance both the detection accuracy and algorithmic light-
ing. A key advantage of this study, compared with existing
research, is the significant achievement of algorithmic light-
ing while maintaining high accuracy. Specifically, this study
integrated RepGhost structure into C2f module, replacing
Conv in the neck network with GhostConv, and integrating
SA modules into the backbone and neck networks to enhance
the perception and feature representation capabilities of the
model.

Experimental validation demonstrated the outstanding per-
formance of the SHIP-YOLO model in SAR ship detection
tasks. Compared with the baseline YOLOv8n algorithm,
on SSDD and SAR-Ship-Dataset, the precision improved
by 1.7% and 0.4%, recall improved by 0.1% and 0.2%,
and mAP50 improved by 0.2%. Meanwhile, parameter count
reduced from 3M to 2.5M, and FLOPs reduced from 8.1G to
7.2G, achieving lightweight model improvements. However,
there are some potential areas for improvement in this study.
First, the generalization ability of the model in specific sce-
narios needs further enhancement, possibly requiring more
data augmentation techniques or domain adaptation methods
to improve generalization performance. Second, inference
efficiency in GPU environments still needs optimization,
especially concerning the computational intensity of ghost
structures, which may necessitate further research into opti-
mizing GPU inference speed.

Future research directionsmay include optimizing network
structures to further improve performance and efficiency,
introducing small object detection layers to enhance feature
extraction capabilities, and exploringmore lightweight model
methods, such as lightweight backbone networks, knowledge
distillation, and network pruning, to further improve model
performance and scalability.
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