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In situ characterization of the tumor microenvironment 
Habib Sadeghirad1, Vahid Yaghoubi Naei1,2, Ken O’Byrne3,  
Majid E Warkiani2 and Arutha Kulasinghe1   

The development of new therapies for cancer is underpinned by 
an increasing need to comprehensively characterize the tumor 
microenvironment (TME). While traditional approaches have 
relied on bulk or single-cell approaches, these are limited in 
their ability to provide cellular context. Deconvolution of the 
complex TME is fundamental to understanding tumor dynamics 
and treatment resistance. Spatially resolved characterization of 
the TME is likely to provide greater insights into the cellular 
architecture, tumor-immune cell interactions, receptor–ligand 
interactions, and cell niches. In turn, these aid in dictating the 
optimal way in which to target each patient’s individual cancer. 
In this review, we discuss a number of cutting-edge in situ 
spatial profiling methods giving us new insights into tumor 
biology. 
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Introduction 
The tumor microenvironment (TME) is a structured 
milieu of cells in which a tumor exists. The composition 
of the TME is influenced by immune and nonimmune 
cells, extracellular matrix (ECM), and soluble and phy-
sical features such as acidic pH and hypoxia (Figure 1)  
[1–3]. The heterogeneity within the TME impedes the 
development of effective treatment strategies for tar-
geting tumor cells and is thought to be one of the 

primary causes of treatment resistance and failure [4,5]. 
The advancement in sequencing technologies has en-
abled a surge of studies revealing intratumor hetero-
geneity [6]. It is possible to characterize intratumor 
heterogeneity at the level of DNA, RNA, and post-
transcriptional processes. Many technological and func-
tional advancements in next-generation sequencing 
(NGS) have led to the implementation of genomics- 
based approaches in standard clinical practice [7]. NGS 
has been used effectively to increase our knowledge of 
cancer genomics, which includes mutational profiling as 
well as structural aberrations, particularly by whole- 
genome sequencing and whole-exome sequencing [8,9]. 
Despite their widespread use, these methods have sev-
eral drawbacks, including a bulk readout of the TME 
without cellular resolution or context [9–11]. Single-cell 
RNA sequencing (scRNA-seq) overcame these chal-
lenges and allowed the field to develop transcriptomic 
data with single-cell resolution, which contributed to the 
discovery of cell types and states [12,13]. However, 
scRNA-seq-based technologies are used as input cells 
that have been dissociated from the original tissue, 
without providing information about the spatial dis-
tribution and location of those cells [14,15]. More re-
cently, spatial profiling technologies enabled the 
mapping of cells directly in situ, allowing for direct la-
beling and profiling of the TME [16,17]. Nature 
Methods named ‘spatial transcriptomics’ the method of 
the year in 2020 as a ‘breakthrough’ technology enabling 
new biological and clinical insights [18]. As a relatively 
new field with rapid growth and adoption, spatial pro-
filing technologies are still in their infancy. There re-
main limitations, such as multiplexing, resolution, 
throughput, and sensitivity [14]. Given the growing 
number of commercial solutions available today, we 
anticipate the widespread adoption of these technologies 
in the coming years in discovery, translational, and 
clinical studies. Here, we discuss a number of cutting- 
edge in situ spatial profiling technologies and their ap-
plications in cancer research (Table 1). 

Spatial profiling technologies 
Molecular Cartography (Resolve Biosciences) 
The Molecular Cartography platform enables the mea-
surement of spatial gene expression patterns at sub-
cellular resolution, without the need for downstream 
sequencing and enzymatic amplification [19,20]. Using 
single-molecule fluorescence in situ hybridization and 
transcript-specific probes, the platform generates 
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expression data for up to 100 genes and is able to detect 
rare transcripts [21]. Following tissue sectioning, the 
transcript-specific probes are hybridized, and iterative 
cycles of probe colorization, imaging, and decolorization 
are performed to detect all transcripts. The technology 
uses its own microscope slides with a capacity for eight 
samples, and since the platform can run three slides at 
once, 24 samples can be processed at the same time. The 
capture area covered by the instrument is 1 cm2. The 
instrument can map transcripts in three dimensions with 

subcellular resolution (300 nm) [22,23]. Molecular Car-
tography can detect transcripts with a length of at least 
700 nucleotides, which is the length of short mRNA 
molecules such as cytokines [21]. Ghasemi et al. em-
ployed both single-nucleus RNA sequencing and spatial 
transcriptomics to characterize the genetic basis of me-
dulloblastoma with extensive nodularity (MBEN) [24]. 
They were able to cluster MBEN cell stages, including 
proliferating and nonproliferating early cerebellar gran-
ular neuronal precursor (CGNP)-like cells, migrating 

Figure 1  
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The TME composition. The TME surrounds the tumor and consists of various immune and nonimmune cell types, ECM, and physical features such as 
an acidic pH. Some cell populations, such as CTL and natural killer (NK) cells cells, inhibit tumor growth, whereas others, such as regulatory T cells 
(Tregs) and cancer-associated fibroblasts, promote tumor progression. Created with BioRender.com.   

Table 1 

Spatial profiling technologies and applications [19–31,33–37,39–43,45–53,58].   
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CGNP-like cells, and neuronally differentiated tumor 
cells. Furthermore, a spatial analysis of the above clus-
ters revealed that early CGNP-like cells formed the in-
ternodular compartment, while neuronally differentiated 
tumor cells formed the nodular compartment [24]. Also, 
using the platform, Karras et al. mapped the distribution 
of melanoma cell states and their interactions with TME 
cellular components. They revealed that tumorigenic 
competence supporting primary tumor growth could be 
acquired by melanoma cells following exposure to spe-
cific signals from endothelial cells in spatially localized 
perivascular niches [25••]. They also characterized the 
phenotypic heterogeneity of melanoma cells, showing 
that a distinct population of cells contributed to meta-
static spread rather than primary tumor growth. 

PhenoCycler-Fusion (Akoya Biosciences) 
The PhenoCycler-Fusion (formerly CO-Detection by 
indEXing [CODEX]) is a platform that can visualize 
multiplexed proteins and RNA molecules in a tissue 
sample. In this method, antibodies conjugated to DNA- 
barcoded tags are used to label proteins in the tissue  
[26]. During imaging, fluorescent reporter oligonucleo-
tides are hybridized to the tags attached to the anti-
bodies. Three fluorescent reporters are detected during 
each scan, and through iterative cycles of scanning, 
imaging, and removing, this process continues until all 
biomarkers of interest are imaged (Figure 2a) [27–29]. 
The PhenoCycler-Fusion system is paired with the 
RNAscope HiPlex v2 assay, which uses RNAscope in 
situ hybridization (ISH) technology to detect RNA 
transcripts, in order to enable the combined analysis of 
both protein and RNA [26,28]. The instrument can be 
applied to formalin-fixed paraffin-embedded (FFPE) 
tissue, fresh-frozen tissue, and tissue microarrays. This 
platform enables the imaging of every cell across an 
entire tissue, allowing for in situ cell phenotyping at 
single-cell resolution [30,31••]. With the ability to de-
tect more than 100-plex RNA and protein biomarkers  
[32••,33], the PhenoCycler-Fusion possesses a multi- 
omics capability. One of the most significant advantages 
of the instrument is whole-slide profiling, which elim-
inates the need to manually select regions of interest, 
thereby avoiding biased selection and profiling of re-
gions within tissues [34]. By presenting single-cell and 
subcellular resolution down to 0.20 µm [33], the Phe-
noCycler-Fusion leads to the discovery of rare cell types 
as well as the dissection of the spatial neighborhood, 
signatures, and activation states in the TME. Shekarian 
et al. used CODEX to investigate the response to 7 days 
of ex vivo immunotherapy with anti-CD47 and/or anti- 
PD-1 in glioblastoma (GBM) explants from the tumor 
center and tumor periphery [35]. After treatment of the 
samples with the immunotherapy agents, they were able 
to identify the spatial location and distribution of over 
850 000 cells. The researchers found that im-
munotherapy-treated tumor center explants had an 

enrichment of CD4+ and CD8+ T cells (CTL) relative to 
the untreated control, and concluded that ex vivo im-
munotherapy of GBM explants could activate antitumor 
immune response within the tumor center [35]. 

Xenium (10x Genomics) 
A new platform developed by 10x Genomics, called 
Xenium In situ, enables single-cell and spatially resolved 
gene and protein expression analysis in tissue samples  
[36]. The Xenium platform has the ability to map 
thousands of RNA transcripts with cellular and sub-
cellular resolution (200 nm) with Z-dimension informa-
tion [37]. Recent announcements at the Advances in 
Genome Biology and Technology (AGBT) 2023 con-
ference have indicated a roadmap to achieve 5,000-plex 
RNA analysis [26]. The platform performs in situ se-
quencing (ISS) using successive rounds of probe-based 
hybridization, imaging, and removal, to present the 
precise cellular localization of RNA molecules within 
each tissue [14,38]. Padlock probing, rolling circle am-
plification (RCA), and sequencing-by-ligation are the 
three techniques that are utilized in the process of ISS  
[36]. The padlock probe has sequences at its 5’- and 3’- 
ends that are designed to hybridize to the target mRNA. 
RCA replicates the padlock probes whose 5’- and 3’- 
ends have both hybridized to the target gene and un-
dergone successful ligation, resulting in the generation 
of concatenated copies of the probes [14,38]. This 
method allows for the identification of cell types and 
their locations within their biological context, as well as 
information about cellular neighborhoods and commu-
nications [37]. From a technical standpoint, it is note-
worthy to mention that Xenium covers an imaging area 
of 12 × 24 mm. Furthermore, the platform has the cap-
ability to execute three runs per week and process two 
slides during each run. Janesick et al. performed high- 
resolution mapping of the TME in FFPE tissues from 
breast cancer patients [39]. For this, they used a 313- 
gene panel, and they were able to visualize 167 885 cells 
as well as around 37 million transcripts, with a median of 
166 transcripts per cell [39]. 

CosMx Spatial Molecular Imager (NanoString 
Technologies) 
The CosMx Spatial Molecular Imager (SMI) technology 
from NanoString offers spatially resolved RNA and 
protein profiling, with single-cell and subcellular re-
solution (100 nm) [40••]. The CosMx SMI is compatible 
with both FFPE and fresh-frozen tissues [40••,41]. The 
technology’s key feature is high-plex multi-omics pro-
filing, which has been demonstrated to be class-leading 
at 980-plex RNA and 108-plex protein molecules in 
tissue samples [40••]. Announcements at the AGBT 
2023 conference showed 6000-plex RNA and 124-plex 
protein measurements in early studies [26]. The SMI 
technology utilizes ISH probes to bind to target RNA 
molecules and to oligonucleotide-conjugated antibodies, 
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Figure 2  
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The workflow of spatial profiling approaches. (a) Akoya Biosciences’ PhenoCycler-Fusion proteomics workflow. Tissue slides are prepared and stained 
with antibodies conjugated to DNA-barcoded tags. To image the antibodies, fluorescent reporter oligonucleotides are hybridized to the tags. Then, the 
iterative cycles of hybridizing–imaging–removing are performed. Three fluorescent reporter oligonucleotides are imaged in each cycle, and this 
process is repeated until all biomarkers of interest are imaged. (b) Computational spatial profiling analysis. To obtain single-cell spatial information, 
several steps must be completed after data generation, including (1) cell segmentation, (2) spatial mapping, (3) data processing (quality control, 
normalization, and batch correction), (4) cell clustering, (5) cell phenotyping, (6) calculation of cell proportion, and (7) definition of cellular 
neighborhoods. Created with BioRender.com. 
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which detect target proteins. Sets of barcoded fluor-
escent reporter probes that bind the ISH probes are then 
cyclically applied, imaged, and removed to enable the 
visualization of RNA and protein molecules for the lo-
calization and profiling of gene and protein expression  
[40–43]. One of the platform’s distinctive characteristics 
is the capacity to capture a large scan area on tissue 
slides (up to 375 mm2), enabling imaging of large tumor 
tissue sections [40–42]. The SMI instrument can process 
four samples per run and sixteen samples per week. The 
instrument is also capable of mRNA gene expression 
mapping in three dimensions [43]. He and colleagues 
investigated RNA and protein expression in the TME of 
non-small-cell lung cancer and breast cancer tumors  
[40••]. They were able to profile 980 RNA targets and 
108 protein targets within the tissues, and discovered 
more than 18 distinct cell types as well as 10 unique 
TMEs in the tumor samples, with single-cell and sub-
cellular resolution [40••]. 

MERSCOPE (Vizgen) 
MERSCOPE is an instrument based on multiplexed 
error-robust fluorescence in situ hybridization 
(MERFISH) [44] technology that employs error-robust 
barcoding chemistry to directly image RNA transcripts 
without the need for downstream sequencing [45,46]. 
MERSCOPE produces high-resolution spatially re-
solved images of RNA molecule distributions with 
single-cell to subcellular resolution (approximately 
100 nm) [47,48]. Using a custom gene panel, the current 
chemistry of the platform can simultaneously map up to 
500 genes [46,49] and also 6 protein biomarkers [50]. To 
detect rare transcripts, MERSCOPE employs multiple 
fluorescent probes for a single transcript to enhance 
detection sensitivity [47]. The technology employs in-
teractive software to visualize MERFISH data, which 
includes cells and detected transcripts [45]. For imaging, 
it should be mentioned that MERSCOPE exclusively 
employs its unique proprietary slides. These slides ne-
cessitate access to the tissue blocks and possess a capture 
area of up to 1 cm2 [46]. Using the MERSCOPE tech-
nology, Emanual and colleagues revealed the transcrip-
tional organization of the mouse brain and found the 
positions of 554 802 908 RNA transcripts from 483 genes 
within 734 696 cells [47••]. As a result, a map called the 
MERFISH Mouse Brain Receptor Map was created  
[47••], allowing researchers to investigate the cellular, 
subcellular, and functional organization of an intact 
brain. 

Curio Seeker (Curio Bioscience) 
Curio Seeker is the commercial product of the Slide- 
seqV2 technology, which uses arrays of DNA-barcoded 
beads to generate transcriptome-wide maps of RNA 
molecules in tissue samples [51]. Tens of thousands of 
beads, each carrying a unique DNA barcode denoting 
the position of that bead, are arrayed on a slide. RNA 

from an overlaid tissue section is captured on the array of 
spatially barcoded beads. By linking the unique spatial 
DNA barcode of a bead to the transcripts captured by 
that bead, Curio Seeker allows the position of each 
transcript to be inferred by sequencing. Curio Seeker 
provides a near-cellular spatial resolution of 10 µm, 
which is the diameter of each barcoded bead on the array  
[51,52]. The technology is distinguished in that no 
specialized hardware is required; all the user needs is a 
Curio Seeker slide containing a 3 × 3-mm tile with the 
spatially barcoded beads [51,53,54]. Spatial tissue ana-
lysis is performed by mounting a tissue section on the 
slide, capturing the RNA from the tissue on the spatially 
barcoded beads by hybridization, performing reverse 
transcription for first-strand cDNA synthesis, dis-
associating and recovering the beads from the substrate, 
amplifying the cDNA for NGS library preparation and 
sequencing, and then mapping the barcoded reads to 
their position of origin to create a transcriptome-wide 
spatial map of expression. With the standard single-cell 
sequencing workflow, up to 20 samples can be processed 
at the same time. The Curio Seeker workflow requires 
roughly 8 h, with 2.5 h of hands-on time [53,55]. Using 
Slide-seqV2, Hirz et al. investigated the TME char-
acteristics of prostate cancer. The study found that the 
immunosuppressive TME of prostate cancer included 
exhausted T cells, suppressive myeloid cell populations, 
and a high level of stromal angiogenic activity. When 
Slide-seqV2 and scRNA-seq were compared, a sub-
stantially higher fraction of epithelial cells and fibro-
blasts and lower fraction of immune cells were measured 
in prostate tissue samples analyzed with Slide-seqV2 
versus scRNA-seq [53]. 

Conclusions 
Within a short period of time, the spatial biology field 
has evolved from a multicellular- to a single-cell re-
solution readout. This exponential growth in technolo-
gies has come about at an astounding pace, facilitated by 
the rapid development of in situ technologies. To ana-
lyze the data being generated by in situ spatial profiling 
tools, computational approaches are being developed to 
address the complexities around imaging-based read-
outs, transcript localization, integration of data across 
multiple planes (x/y/z), cell segmentation, cell classifi-
cation, and data cleaning (Figure 2b). Numerous factors, 
such as the analyte(s) (RNA, protein), readout (imaging, 
sequencing), throughput (samples per day/week), 
number of targets to be counted (plexing), and resolu-
tion (cellular or subcellular), need to be considered to 
determine the optimal in situ spatial profiling technology 
to apply to each use case. The spatial profiling toolkit is 
being further expanded by spatial epigenome and other 
‘omic’ mapping modalities coming to the fore, such as 
spatial T- and B-cell receptor sequencing [56]. Taken 
together, these cutting-edge biomedical tools could lead 
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to new discoveries with the potential for translational/ 
clinical assay development. Recent examples of com-
panion diagnostic assays and ‘spatial scores’ illustrate 
how these technologies span the breadth of life science 
and clinical applications [57]. With momentum on both 
discovery sciences and translational studies, in situ spatial 
technologies will help to drive the next revolution in the 
life sciences. 
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