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Abstract
This paper presents the development of algorithms for high-level control and intelligent path planning of multi-rotor aerial 
vehicles (MAVs) in the tasks of inspecting civil infrastructure. After revisiting the multicopter modeling, we describe the 
hierarchy of high-level control for MAVs and develop optimization algorithms for generating optimal paths and enabling 
automatic flight during inspection tasks, making use of the digital twin technology. A co-simulation framework is then 
established to simulate and evaluate inspection mission scenarios, integrating these essential components. Real-world exam-
ples from built infrastructure illustrate this concept. An advantage of this approach is its ability to rigorously test, validate, 
verify, and evaluate MAV operations under abnormal conditions without requiring physical implementation or field tests. 
This significantly reduces testing efforts throughout the development cycle, ensuring optimal cooperation, safety, smooth-
ness, fault tolerance, and energy efficiency. The methodology is validated through simulations and real-world inspection of 
a monorail bridge.
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1 Introduction

With the rapid development of technology in the fourth 
industrial revolution, multi-rotor aerial vehicle (MAV) sys-
tems have garnered widespread attention across civilian and 
industrial sectors. The construction industry has embraced 
MAVs as invaluable tools throughout various project stages, 
including site monitoring, 3D mapping, building and dam-
age assessment, and package delivery logistics. For exam-
ple, researchers have demonstrated that MAVs can gener-
ate highly accurate 3D maps of construction sites, enabling 
project managers to assess progress and identify potential 
issues in real-time (Bulgakov et al. 2020). Additionally, 
MAVs equipped with high-resolution cameras can conduct 
building inspections, facilitating the detection of structural 

damage invisible to the naked eye (Bolourian et al. 2017). 
Furthermore, exploring MAVs in package delivery logistics 
has shown promising potential for reducing delivery times 
and costs (Grzybowski et al. 2020). Consequently, the pros-
pect of widespread MAV adoption within the construction 
industry and beyond is increasingly apparent. For these 
applications to achieve their full potential, it is essential to 
implement a robust and optimized strategy for the path plan-
ning of MAVs.

A variety of MAV path planning methods have appeared 
in the literature. Although traditional techniques, such as the 
A∗ algorithm and Dijkstra’s algorithm, prove effective in spe-
cific situations, their scalability decreases as the search space 
expands (Tang et al. 2021; Prasad and Ramkumar 2022). 
In contrast, strategies using sampling like rapidly exploring  
random trees (RRT) and probabilistic roadmaps (PRM) have 
the advantage of producing feasible flight paths. However, 
they may have difficulty meeting MAV maneuverability 
constraints with some errors between planned and actual 
paths, as discussed in Pharpatara et al. (2016). Additionally, 
methods, such as visibility graphs and potential fields, could 
generate smooth and continuous paths but face the challenge 
of local minima, as documented in Blasi et al. (2022) and 
Pan et al. (2021).
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Heuristic optimization methods, widely used to tackle 
complex optimization tasks, have become promising in 
robotic path planning. In this array, particle swarm optimi-
zation (PSO) mimics swarm behavior (Phung and Ha 2021), 
artificial bee colony (ABC) draws inspiration from honeybee 
foraging (Lin et al. 2022), and genetic algorithms (GAs) 
develop possible solutions (Kok et al. 2012). Standing out in 
this range, the grey wolf optimization (GWO) algorithm is 
an innovative approach inspired by hierarchical group hunt-
ing behavior observed in grey wolves (Mirjalili et al. 2014). 
As noted in a recent study, GWO requires relatively few 
parameters to tune with a good convergence rate, making it 
attractive for practical optimization problems (Makhadmeh 
et al. 2023). This advantageous flexibility positions GWO 
as a convenient choice of optimizing routes for civil infra-
structure inspection, especially in settings characterized by 
numerous obstacles and constraints.

For completing complex tasks, such as large-scale 3D 
inspection, the collaboration of multiple MAVs flying in 
formation has become essential (Wu et al. 2021; Zou et al. 
2020). When multiple drones work together in a team, there 
is a significant improvement in their performance. For exam-
ple, when an MAV team is engaged in inspection, combining 
the field of view of all group members allows for a much 
more extensive coverage area than an individual MAV can 
achieve, leading to improved inspection performance (Hu 
et al. 2019). Consequently, promoting the collaboration of 
multiple MAVs is encouraged to optimize processing time 
and operational capabilities in the mentioned applications.

The main problem in MAV formation control lies in 
resolving potential conflicts and interactions among group 
members while maintaining a desired formation under vari-
ous constraints during task execution. Game theory, a branch 
within applied mathematics, offers a robust framework for 
examining strategic interactions among decision-makers 
(Roger  1991). It provides insights into how individuals 
make choices to maximize their outcomes while consider-
ing the actions of others. In cooperative path planning for 
UAVs, game theory can be employed to identify optimal 
solutions that balance individual and collective objectives. 
Therefore, this study utilizes a game theory-based approach 
for MAV path planning in large-scale 3D inspection mis-
sions. Another issue for MAVs remains how to carry out 
tasks within the civil sector autonomously, which involves 
navigating through a complex flying environment fraught 
with various elements, such as cooperative constraints, travel 
distances, vehicle dynamics, and obstacles. A combina-
tion of these factors could pose a significant challenge. To 
achieve certification for reliability through MAV testing, the 
vehicle must cover extensive distances, even under challeng-
ing conditions, which are time-consuming and hazardous. 
Moreover, creating and replicating such situations in real life 
takes a lot of work. It is essential to note that accurate flight 

testing is only applicable to a specific mechanical, electrical, 
and software configuration. Any changes to these elements 
necessitate repeating the testing process. Consequently, 
simulations will play an essential role in testing most MAV 
features, and having a framework capable of integrating mul-
tiple technological components and validating design itera-
tions is imperative during the initial phases of development.

The concept of digital twin, first introduced in Grieves 
(2005), has gained increasing attention in recent years as a 
technological solution to the problem above. Digital twins 
refer to virtual digital representations of physical systems 
that can imitate actual objects’ behavior. This technology 
holds the potential to revolutionize numerous industries 
by providing accurate real-time data on the behavior of the 
physical system and allowing for the virtual testing of dif-
ferent scenarios before implementing changes in the real 
world. Digital twins have demonstrated success across vari-
ous applications, including industrial robots (Kaigom and 
Roßmann 2020), self-driving cars (Hu et al. 2022), and aero-
space systems (Li et al. 2021). For instance, digital twins 
can be used to simulate the performance of a new robot 
design before building the physical prototype. By testing and 
optimizing the digital twin, engineers can identify potential 
issues and make adjustments to improve the robot’s perfor-
mance, reliability, and safety. Similarly, digital twins can be 
applied in the aerospace industry to simulate the behavior 
of aircraft components and systems, allowing engineers to 
optimize designs and test various scenarios.

Recently, a digital twin framework was introduced in 
the MAV domain (Yang et al. 2021), featuring three key 
components: the virtual environment, the physical MAV, 
and the service center. Therein, bidirectional communica-
tion between physical and virtual MAVs could be enabled, 
facilitating assembly tasks and updating physical models. 
Moreover, a digital twin-based intelligent, cooperative archi-
tecture for MAV swarms was proposed (Lei et al. 2020), 
wherein the digital twin model accurately replicates the 
physical entity, the MAV swarm, with high fidelity. This 
allows for comprehensive monitoring for its processes and 
incorporates a machine learning algorithm to explore global 
optimal solutions and regulate swarm behaviors.

In civil engineering, the application of digital twins 
extends to architecture, infrastructure, machinery, and con-
struction processes, as highlighted in Jiang et al. (2021). 
Leveraging modeling, simulation, calculation, analysis 
tools, and advanced algorithms from a virtual perspective 
fosters the development of innovative construction meth-
ods. For example, Jiang et al. (2022) introduced a digital 
twin-enabled intelligent modular integrated construction 
system featuring a demonstrating testbed for cooperative 
decision-making and on-site assembly. However, current 
efforts mainly focus on replicating digital structures and 
tracking building states. Including MAV systems, Zhang 
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et al. (2022) conducted a digital twin study of a building 
inspection scenario for data validation and reanimation. 
This research entails realistic system workflow creation, 
comprehensive regulation of the digital twin settings, and 
the cross-application of geographic information systems 
(GIS). It consists of various procedures for virtual envi-
ronment creation, including analyzing available GIS data, 
installing the simulator, applying GIS-based real-world 
environment transformation tools, and collecting data 
using MAVs.

While the current literature offers specific digital twin 
platforms for MAVs, the works mainly focus on system 
verification or communication. As far as we know, not 
much development has concentrated on dynamic con-
trol and trajectory-following MAV inspection tasks. 
Hence, this paper presents a digital twin that integrates 
the dynamic behaviors of standard UAVs and implements 
an MAV swarm along with a cooperative path-planning 
algorithm. The co-simulation structure involves four main 
components: the cooperative path planning algorithm, the 
trajectory tracking controller, the vehicle dynamics simu-
lator, and the environment simulator. The intelligent path 
planning algorithm determines the optimal flight paths for 
MAVs, while the trajectory tracking controller ensures 
that the MAV follows the desired flight path. The vehicle 
dynamics simulator models the physical properties and 
dynamics of the MAV, and the environment simulator 
models the external environment, including infrastructure, 
obstacles, and weather conditions.

The present study aims to address the development of 
intelligent drones and a digital twin platform for MAVs used 
in civil infrastructure inspection. First, it derives the dynam-
ics of the MAV and introduces a hierarchical MAV control 
system to generate optimal paths and enable automatic flight. 
Second, it establishes a co-simulation framework to simulate 
and evaluate inspection mission scenarios, integrating these 
essential components. Finally, intelligent drones and digital 
twin technology are incorporated into a real-world scenario, 
including tests with both single and multiple drones, affirm-
ing their effectiveness in authentic applications. These con-
tributions collectively demonstrate the effectiveness of the 
proposed digital twin platform in enabling a more efficient 
and reliable MAV control and trajectory-following system. 
Initial findings from this research were reported in sympo-
sium and conference papers (Nguyen et al. 2023, 2024a, b).

The remainder of this paper is structured as follows: 
Sect. 2 presents preliminaries of MAV modeling and con-
trol. Following this, Sect. 3 details intelligent path planning 
techniques for civil infrastructure inspection. Subsequently, 
Sect. 4 introduces tool development and visualization. Simu-
lation results are discussed in Sect. 5, followed by experi-
mental validation in Sect. 6. Finally, Sect. 7 provides the 
conclusion to the study.

2  Preliminaries

This section outlines MAV operation, modeling, and 
control algorithms. A thorough understanding of MAV 
dynamics is necessary to control the MAV effectively. 
Meanwhile, trajectory tracking control is essential in 
achieving stable flight and accurate trajectory following, 
enabling automatic flight during inspection tasks.

2.1  Description of MAV

MAVs are driven by a specific number of rotor pairs sym-
metrically arranged on opposite sides of the airframe, as 
illustrated in Fig. 1. Each rotor is positioned at the end 
of an arm with a defined length, and the angles between 
these arms are uniformly distributed. By controlling the 
speed of these rotors, MAVs can execute six degrees of 
freedom in their motion, including roll, pitch, yaw, and 
altitude adjustments.

To explain further, the pitch angle, which controls the 
forward and backward movement of the MAV, is achieved 
by manipulating the relative speeds of the front and rear 
rotors. This, in turn, generates the total front force, rep-
resented as (F1 + F2 + F8) , and the total rear force, repre-
sented as (F4 + F5 + F6) . Meanwhile, the roll angle gov-
erns the lateral displacement of the MAV. It is controlled 
by adjusting rotor velocities of the right and left sides, 
leading to the generation of total right forces, represented 
as (F2 + F3 + F4) , and total left forces, represented as 
(F6 + F7 + F8) . The yaw torque, which manages the rota-
tion of the MAV, is achieved by altering the average speed 
of clockwise and anticlockwise rotation. It is worth noting 
that all rotors contribute to the overall thrust input. Gener-
ally, MAVs function similarly, with differing features, such 

Earth

frame

Fig. 1  Configuration of the MAV system
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as rotor layout, size, and quantity. In practice, modifying 
the main configuration allows for creating many alterna-
tive variations of MAVs.

2.2  MAV model

Modeling expresses the physical principles governing a 
system’s behavior or control system motion in mathemati-
cal terms. This enables numerical and graphical analysis of 
system performance through calculations and simulations. A 
parametric vehicle model is essential to allow proper control 
of MAVs. This paper considers a multi-rotor vehicle featur-
ing Np ≥ 2 pairs of rotors, assuming rigidity and symmetry 
concerning the roll and pitch axes. Furthermore, we assume 
the center of gravity (CoG) of the drone is positioned at the 
origin of the body-fixed frame, with each propeller rotating 
in the opposite direction of its two neighboring ones.

As depicted in Fig. 1, an earth frame denoted as xe, ye, ze 
is fixed to the ground, while a body frame denoted as 
xb, yb, zb is affixed to the CoG of the vehicle. Both frames 
have their z axis oriented in a downward direction. A vec-
tor X = (x, y, z)T specifies the position of the CoG in the 
earth frame. Roll, pitch, and yaw motions are denoted by 
angles (�, �,�)T . These angles are constrained for attitude 
control such that � ∈ [−�∕2,�∕2] , � ∈ [−�∕2,�∕2] , and 
� ∈ [−�,�] . The total thrust force F, expressed in the body 
coordinate system, is determined by

Here, fi = b�2
i
 denotes the thrust force produced by the ith 

rotor, where �i stands for its rotational speed, and b > 0 rep-
resents the thrust coefficient. Furthermore, the torque vec-
tor components � = [�� �� �� ]

T , corresponding to rotational 
motion in the roll, pitch, and yaw directions, are derived as: 

 where l denotes the length of the rotor arm, � repre-
sents the motional radius, and coefficient � = 1 for a “+” 
configuration MAV, or � = 1∕2 for an “X” configura-
tion MAV. Within the MAV dynamics, we account for 

(1)F =

2Np∑
i=1
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2Np∑
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i
.

(2a)�� = bl
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external disturbances such as propeller gyroscopic torque, 
denoted as �p , and aerodynamic torques, denoted as �a , i.e., 
d =

[
d� d� d�

]T
= �p − �a, where d� , d� , and d� are distur-

bance components.
It should be emphasized that while the thrust force F is 

the only control signal for the 3D translational dynamics, 
the active torques ultimately dictate the MAV’s orienta-
tion. Henceforth, let the vector of virtual control inputs be 
denoted as u = (u1, u2, u3, u4)

T  , where u1 = F , u2 = �� , 
u3 = �� , and u4 = �� . Subsequently, a unified dynamical 
model for the MAV is provided below (Benzaid et al. 2016): 

 where Sx and Cx respectively denote sin x and cos x , m rep-
resents the total mass of the MAV, and I = diag(Ix, Iy, Iz) is 
the inertia matrix of the MAV.

2.3  MAV trajectory tracking control

The tracking controller ensures precision, safety, and relia-
bility in autonomous MAV operations. It allows the MAV to 
navigate its environment effectively while performing tasks. 
A widely employed method for trajectory tracking control is 
the cascade control structure, depicted in Fig. 2. This struc-
ture breaks down the control system into loops, with MAV 
control organized hierarchically for different degrees of 
freedom (DOF). The inner loop focuses on attitude control 
to ensure stable flight and accurate trajectory tracking. In 
contrast, the outer loop oversees position control, crucial for 
maintaining the desired trajectory and target reaching with-
out collisions. This separation into distinct loops within the 
hierarchical control scheme improves the efficiency of MAV 
movement control, enhances overall performance, and mini-
mizes coupling between DOFs. The reduction in coupling 
leads to improved control stability and accuracy, underscor-
ing the critical importance of the hierarchical control scheme 
for effective MAV control in real-world scenarios.

(3a)ẍ = m−1(C𝜙S𝜃C𝜓 + S𝜙S𝜓 )u1,

(3b)ÿ = m−1(C𝜙S𝜃S𝜓 + S𝜙C𝜓 )u1,

(3c)z̈ = m−1C𝜙C𝜃u1 − g,

(3d)�̈� = I−1
x

[
(Iy − Iz)�̇��̇� + u2 + d𝜙

]
,

(3e)�̈� = I−1
y

[
(Iz − Ix)�̇��̇� + u3 + d𝜃

]
,

(3f)�̈� = I−1
z

[
(Ix − Iy)�̇��̇� + u4 + d𝜓

]
,
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In the control scheme, the fully actuated subsystem 
uses control signals u1 and u4 to control altitude and yaw 
motion, respectively. For the under-actuated subsystem, 
u2 and u3 control roll and pitch angles, respectively, which 
in turn control x and y positions. Remote ground opera-
tion or a trajectory planner typically provides the desired 
position for the MAV. A classical PID controller fine-
tunes the MAV’s output, which includes its position and 
orientation, adjusting the control signal based on the error 
between the desired and actual output. This PID control-
ler comprises a proportional term, which modifies the 
control signal according to the current error, an integral 
term that adjusts the control signal based on the accumu-
lation of past errors, and a derivative term that modifies 
the control signal based on the rate of change of the error. 
Known for its simple structure, straightforward imple-
mentation, commendable control performance, and robust 
design, the PID controller finds extensive industrial appli-
cations and particularly in flight control (Yue et al. 2022).

3  Intelligent path planning for civil 
infrastructure inspection with MAVs

In the previous section, trajectory tracking control during 
task execution was introduced to enable MAVs to effec-
tively track a reference trajectory. However, addressing the 
practical necessity of determining optimal paths crucial for 
mission success requires introducing a higher path plan-
ning layer. This section develops intelligent path planning 
for civil infrastructure inspection with MAVs.

3.1  Path planning problem formulation

Consider an inspection task within a known environment, 
which includes obstacles like trees and light poles. Cylin-
drical models can represent these obstacles, as depicted in 
Fig. 3. The drone’s position at node p is described by the 
vector X(p) = (x(p), y(p), z(p))T , situated within an inertial 
frame xyz aligned with sea level, where the z axis points 
upwards. The challenge in MAV path planning for civil 
infrastructure inspection revolves around identifying the 

Fig. 2  MAV control architecture
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Fig. 3  Problem formulation
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optimal path for the MAV, considering various constraints 
and prerequisites. To address this challenge, we formu-
late the path planning problem as an optimization process 
(Nguyen et al. 2022a):

Here, X(0) and X(end) are the MAV’s starting position and 
destination position, respectively. The path Π comprises 
a sequence of P waypoints represented as X(p), where 
p = 1, 2,… ,P , which generally describes the flight trajec-
tory of MAV.

In a drone-based inspection task, the objective is to deter-
mine the most efficient path for the MAV from an initial 
position to a designated target while satisfying all require-
ments dictated by constraints, such as safety, travel distance, 
smoothness, and coverage area. By integrating these con-
straints, we formulate the optimization problem for path 
planning, with the cost function defined as:

where Jco signifies the coverage-related cost, Jsa represents 
the safety cost associated with T threats, Jtr denotes the trave-
ling distance cost, and Jsm corresponds to the smoothness 
cost. The weight coefficients �i for i = 1, 2,… , 4 serve as 
design parameters. Further details regarding the individual 
cost functions are outlined below.

3.1.1  Coverage cost

In civil infrastructure inspections, there is a growing incli-
nation toward leveraging MAVs as mobile sensors, offering 
distinct advantages over traditional static monitoring tech-
niques. These MAVs are essential in encompassing the area 
of interest and gathering helpful information, predominantly 
through visual data capture. With an identical horizontal-
facing camera configuration, MAVs can cover a square field 
of view (FOV), forming a pyramid with a half angle � . There 
are two exceptional cases for angles between the vertical 
medians of the faces and the height, represented as �1 and �2 , 
as depicted in Fig. 4. To ensure thorough coverage, a point 
p̂ falls within the MAV’s FOV if it satisfies the following 
equations:

Here, ci signifies the projected position of the MAV on the 
infrastructure surface, while d represents the distance from 
the MAV to that point. The main goals of the MAV involve 
maximizing coverage across the field of interest F within its 
field of view (FOV) and achieving a desired level of overlap 
to improve overall coverage efficiency.

(4)X(0)
X(p)

��������������������������������→

s.t. Js(Π)
X(end).

(5)Js(Π) = �1Jco + �2Jsa + �3Jtr + �4Jsm,

(6)‖p̂ − ci‖ ≤ d tan 𝜃.

For the sake of convenience, we assume that the coordi-
nate system xyz is fixed to one corner of the infrastructure, 
with the z axis pointing up, as shown in Fig. 4. During civil 
infrastructure testing, we plan MAV flights along the y-axis 
and maintain a constant speed for the MAV in the y-axis, 
yielding y(k). Therefore, the vertical FOV remains the sole 
consideration in the path planning problem. Employing the 
camera model delineated in Fig. 4, we ascertain the maxi-
mum distance dmax of a captured surface that still conforms 
to the minimum target pixel resolution � , as follows:

where � represents the camera’s aperture angle, and r 
denotes the camera resolution.

The coverage height Hc when the MAV is located at 
(x, y, z) is computed as:

where Hu
b
 and Hl

b
 denote the upper and lower bounds of the 

infrastructure, respectively. The upper and lower vertical 
coverage bounds of the MAV are calculated as 

The overlapping height Ho is computed as:

in which 

(7)dmax =
r

2� tan �
,

(8)Hc = min (hu,Hu
b
) −max (hl,Hu

b
),

(9a)hu =

{
z + x tan 𝜌, if x ≤ dmax

0, if x > dmax,

(9b)hl =

{
z − x tan 𝜌, if x ≤ dmax

0, if x > dmax.

(10)Ho = Hu
o
+ Hl

o
,

1

2

Fig. 4  MAV field of view
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 where � denotes the desired overlapping percentage.
Using (8) and (10), we can formulate the coverage cost 

as follows:

where Hb(p) = Hu
b
(p) − Hl

b
(p) stands for the height of the 

bridge at node p, and �1 and �2 are weighting factors adjust-
ing the impact of the total coverage and overlapping heights, 
respectively.

3.1.2  Safety cost

During operations, the MAV must steer clear of potential 
collisions with obstacles in its operational environment, such 
as trees or utility poles. In this work, each obstacle is con-
sidered a threat and modeled as a cylinder with a radius of r� 
and a height of z� . Figure 5 depicts the obstacle representa-
tion and the safe distance for a flight segment X(p)X(p + 1) 
relative to the obstacle (C� , r� , z�) , where C� represents the 
center of the obstacle. Let A(p)B(p) signify the segment 
portion located at or below the obstacle’s height z� , and 
let ds(p) denote the distance between C� and A(p)B(p) . In 
Case 1, if both waypoints X(p) and X(p + 1) are above the 
obstacle, A(p)B(p) does not exist, resulting in ds(p) = ∞ . In 
Case 2, if both waypoints X(p) and X(p + 1) are below or at 

(11a)Hu
o
=
|||�(h

u − hl) −max (0, hu − Hu
b
)
|||,

(11b)Hl
o
=
|||�(h

u − hl) −max (0,Hl
b
− hl)

|||,

(12)Jco = �1

P∑
p=1

[Hb(p) − Hc(p)] + �2

P∑
p=1

Ho(p),

the obstacle’s height, A(p)B(p) = X(p)X(p + 1) . In Case 3, 
when one waypoint is positioned above the obstacle while 
the other is below or at the obstacle’s height, the values of 
A(p) and B(p) are established as

where, in this case, A(p) = (xAp
, yAp

, zAp
) represents the inter-

section of the segment X(p)X(p + 1) with the plane z = h� , 
and B(p) refers to the waypoint that has an altitude lower 
than or equal to the obstacle’s height.

Let Â(p) = (xAp
, yAp

, 0) and B̂(p) = (xBp
, yBp

, 0) denote the 
projections of A(p) and B(p) onto the plane Oxy, respec-
tively. To determine the distance ds(p) from the center of the 
obstacle C�(xc, yc) to the path segment at node p, we calcu-
late |C − Â(p)| when |Â(p) − B̂(p)| = 0 . Alternatively, when 
|Â(p) − B̂(p)| ≠ 0 and A < 0 , ds(p) is computed as 
min (|C − Â(p)|, |C − B̂(p)|) . Here,

If |Â(p) − B̂(p)| ≠ 0 and A ≥ 0 , the computation for ds(p) is 
as follows (Nguyen et al. 2022b):

(13)

⎧
⎪⎪⎨⎪⎪⎩

xAp
= xp + h�

xp+1 − xp

zp+1 − zp
,

yAp
= yp + h�

yp+1 − yp

zp+1 − zp
,

zAp
= h� ,

(14)
{

cp = (zp < zp+1),

B(p) = cpX(p) + [1 − cp]X(p + 1),

A = [(xAp
− xBp

)(xc − xBp
) + (yAp

− yBp
)(yc − yBp

)]×

[(xBp
− xAp

)(xc − xAp
) + (yBp

− yAp
)(yc − yAp

)].

Fig. 5  Obstacle representation 
and safe distance
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The safety cost is then determined as

where

Here, S�(p) represents the collision cost assigned to way-
point X(p) concerning obstacle (C� , r� , z�) , and rv denotes 
the radius of the MAV.

3.1.3  Traveling cost

When planning a path, minimizing its length is essential to 
conserve time and energy, particularly for low-cost UAVs. In 
autonomous operations, a path typically comprises a series 
of waypoints uploaded to the MAV as references for the 
flight controller to adhere to. With P waypoints, the path 
can be delineated as a collection of P − 1 line segments 
connecting these waypoints. The total path length is then 
the summation of these segments. Representing X(p) as 
waypoint p along the path, the length pertaining to segment 
X(p)X(p + 1) is computed as:

Consequently, the traveling cost is determined as follows:

3.1.4  Smoothness cost

The constraints imposed by the MAV dynamics on motion 
dictate limitations in making sharp turns, requiring the algo-
rithm to generate a smooth path. This objective is accom-
plished by limiting changes in turning and climbing angles.

The turning angle between two consecutive segments, 
denoted as �(p) , is calculated using the formula:

where �������⃗P(p) = ProjOxy(X(p + 1) − X(p)) represents the projec-
tion of the segment (X(p + 1) − X(p)) onto the plane Oxy.

(15)ds(p)=

|||(xAp
− xBp

)(yBp
− yc) − (xBp

− xc)(yAp
− yBp

)
|||√

(xAp
− xBp

)2 + (yAp
− yBp

)2
.

(16)Jsa =

K−1∑
k=1

T∑
�=1

S�(p),

(17)S𝜏(p) =

{
0, if ds(p) > r𝜏 + rv
∞, if ds(p) ≤ r𝜏 + rv.

(18)L(p) = ||X(p + 1) − X(p)||.

(19)Jtr =

P−1∑
p=1

L(p).

(20)𝜙(p) = cos−1

(
�������⃗P(p) ⋅ ��������������⃗P(p + 1)

|�������⃗P(p)| ⋅ |��������������⃗P(p + 1)|

)
,

The climbing angle, denoted as �(k) , between the path 
segment (X(p + 1) − X(p)) and �������⃗P(p) is computed as:

Accordingly, the smoothness cost is formulated as:

where �3 and �4 denote weighting factors adjusting the 
impact of the turning angle constraint and climbing angle, 
respectively. These factors collectively contribute to ensur-
ing the smoothness of the resultant MAV path.

3.2  GWO for MAV path planning

The function Js(Π) outlined in (5) defines the cost function 
for the path planning task. This formulation converts path 
planning into an optimization challenge to minimize Js(Π) . 
However, the complexity and multimodal characteristics 
inherent in Js(Π) render traditional methods such as hill 
climbing impractical, as they often get trapped in local max-
ima. Consequently, heuristic and metaheuristic techniques 
have gained traction for efficiently attaining high-quality 
solutions. Notably, the GWO algorithm has emerged as a 
potent population-based metaheuristic, drawing inspiration 
from the hunting behaviors observed in wolf packs (Mirjalili 
et al. 2014).

Within the GWO framework, a population of N individu-
als tackles an optimization problem of M dimensions. In the 
context of optimizing MAV path planning, each individual’s 
flight trajectory is represented as a vector within the inertial 
frame (xyz), encoding the movement between waypoints. 
Specifically, for a MAV path labeled as i, composed of P 
nodes, the vector representation extends across M = 3P 
dimensions, formulated as follows:

where 1 ≤ i ≤ N  denotes each individual within the 
population.

During the predation process, grey wolves encircle their 
prey, as depicted by the following vector of absolute value 
elements:

where ◦ symbolizes the element-wise Hadamard product, t 
denotes the current iteration, and Πp represents the position 
of the prey, corresponding to the optimal solution. The oscil-
lation factor C is determined as

(21)𝜑(p) = tan−1

�
z(p + 1) − z(p)

‖�������⃗P(p)‖

�
.

(22)Jsm = �3

P−2∑
p=1

�(p) + �4

P−1∑
p=1

|�(p) − �(p + 1)|,

(23)Πi = (xi1, yi1, zi1, xi2, yi2, zi2,… , xiP, yiP, ziP),

(24)Di =
|||Πi(t) − C◦Πp(t)

|||,
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where r1 is a random vector with elements distributed uni-
formly in the range [0, 1].

The grey wolf’s location is updated as

Here, the convergence factor A is calculated as

where r2 is a random vector with elements uniformly distrib-
uted in the interval [0, 1], coefficient a decreases from 2 to 
0 over iterations as per (Mirjalili et al. 2014):

and T represents the maximum number of iterations.
In practical scenarios where the precise location of the 

prey, Πp , within the search space, remains unknown, the 
top three best solutions are denoted by Alpha, Beta, and 
Delta. Equation (24) is adapted as

(25)C = 2r1,

(26)Πi(t + 1) = Πi(t) − A◦D.

(27)A = 2ar2 − a,

(28)a = 2 −
2t

T
,

(29)

⎧⎪⎨⎪⎩

D�i
= ��Πi(t) − C1◦Π�(t)

��,
D�i

=
���Πi(t) − C2◦Π�(t)

���,
D�i

= ��Πi(t) − C3◦Π�(t)
��,

where Cj , for j = 1, 2, 3 , is computed as described in (25), 
and Π� , Π� , and Π� represent the positions of Alpha, Beta, 
and Delta, respectively. Subsequently, the other grey wolves 
update their positions as follows:

Here, Aj , for j = 1, 2, 3 , is computed as given in (27).
Algorithm 1 outlines the pseudocode for implementing 

GWO for MAV path planning. It begins by encoding MAV 
flight paths, initializing positions randomly, and evaluat-
ing fitness to identify Alpha, Beta, and Delta. The main 
loop iteratively updates particle dynamics based on Alpha, 
Beta, and Delta positions. The algorithm continues until 
either fitness stabilizes or a preset iteration threshold is 
reached, balancing solution quality with computation time.

(30)

⎧
⎪⎨⎪⎩

Π1i
= Π� − A1◦D� ,

Π2i
= Π� − A2◦D� ,

Π3i
= Π� − A3◦D� ,

(31)Πi(t + 1) =
Π1i

+ Π2i
+ Π3i

3
.
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Algorithm 1  GWO for MAV path planning

Require: Search map and initial path planning information;
1: Initialize GWO parameters: N , T ;
2: Set t = 0;
3: for i = 1 : N do
4: Generate random Π i ;
5: Calculate cost J (Π i );
6: end for
7: Sort J (Π) to determine Π α , Πβ , Π δ;
8: for t = 1 : T do
9: Update a;

10: for i = 1 to N do
11: Update A j , C j for j = { 1, 2, 3} ;
12: Compute D α i , D β i , D δi ;
13: Compute X 1 i , X 2 i , X 3 i ;
14: Update Π i ( t + 1);
15: Calculate J (Π i ( t + 1));
16: if (J (Π i ( t + 1)) ≤ J (Π α )) then
17: Update Delta: Π δ = Π β ;
18: Update Beta: Π β = Π α ;
19: Update Alpha: Π α = Π i ( t + 1);
20: end if
21: if (J (Π α ) < J (Π i ( t + 1)) ≤ J (Π β )) then
22: Update Delta: Π δ = Π β ;
23: Update Beta: Π β = Π i ( t + 1);
24: end if
25: if (J (Π β ) < J (Π i ( t + 1)) ≤ J (Π δ)) then Update Delta: Π δ = Π i ( t + 1);
26: end if
27: end for
28: end for
29: return Πα .

3.3  Cooperative path planning

In practice, executing complex tasks often requires the col-
laboration of multiple MAVs working as a team to meet 
various requirements, such as large-scale 3D or façade-long 
infrastructure inspections. Cooperative control of a group 
of MAVs engaged in a robotic task can offer significant effi-
ciency, reliability, and flexibility advantages compared to 
executing the task with single MAVs. Therefore, the path 
planning problem for multiple MAVs has garnered signifi-
cant interest. The cost function of MAVm in a cooperative 
task, J(Πm,Π

−
m
) , where Π−

m
 corresponds to a set of paths 

taken by neighboring MAVs to MAVm , consists of a single 
cost and a cooperative cost, determined by

Here, � represents a weighting factor, and Js(Πm) denotes the 
single MAV cost as defined in (5). Additionally, Jc(Πm,Π

−
m
) 

(32)J(Πm,Π
−
m
) = Js(Πm) + �Jc(Πm,Π

−
m
).

stands for the cooperative-MAV cost, which is determined 
based on the specific cooperative task. This study focuses 
on large-scale 3D inspection using multiple MAVs, where 
maintaining MAV formation is important throughout the 
mission. The cooperative-MAV cost Jc(Πm,Π

−
m
) in Eq. (32) 

is derived from MAV cooperation and formation require-
ments, incorporating formation cost and the avoidance of 
inter-vehicle collisions. It is defined as follows (Nguyen 
et al. 2022b):

where Em(p) represents the formation error integrated with 
collision-free constraints.

With the cost function Jm(Πm,Π
−
m
) established for each 

MAV, the cooperative path planning problem transforms 
into the task of simultaneously minimizing Jm(Πm,Π

−
m
) for 

(33)Jc(Πm,Π
−
m
) =

P∑
p=1

Em(p),
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paths Πm,m = 1, 2,… ,M . This challenge arises because 
the cost depends not only on the path Πm designed for 

MAVm but also on the paths of its competitors Π−
m

 . Mean-
while, recognizing game theory’s effectiveness in conflict 
resolution and managing interactions, this study adopts a 
recent game theory-based particle swarm optimization 
(GPSO) approach (Nguyen et al. 2022b) to generate MAV 
paths efficiently. By employing GPSO, the cooperative 
path planning problem is addressed by identifying the 
equilibrium of a Stackelberg-Nash game within a PSO 
hierarchical optimization framework. The Pseudocode is 
given in Algorithm 2. Here, Πl and Πf  correspond to the 
strategies of the leader and followers, respectively.  and 

 stand for their corresponding optimal solutions, and 
n = 1,… ,N denotes the nth follower.

Algorithm 2  Leader-follower optimization hierarchy (Nguyen et al. 2022b)

4  Tool development and visualization

This section develops a prototypical digital twin package 
explicitly designed for MAV systems, encompassing flying 
environments, vehicle dynamics, control algorithms, and 
cooperative path planning. The study focuses on creating a 
virtual representation of real-world systems, updated from 
real-time data, to aid in control, conditional monitoring, 
and decision-making through a learning-based simulation 
platform. To achieve this, software tools are developed 
to describe system dynamics, operational environments, 

and other control and tracking requirements across various 
MAV mission circumstances. The proposed digital twin 
package offers several advantages over traditional physical 
testing methods. Notably, it enables thorough testing, vali-
dation, and verification of MAV control and monitoring 
in abnormal conditions, all without the need for physical 
implementation or field experiments for the entire system. 
This significantly mitigates the need for extensive testing 
efforts throughout the development cycle, ensuring opti-
mal cooperation, safety, smoothness, fault tolerance, and 
energy efficiency.

Fig. 6  Digital twin model of the 3DR Solo Drone
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The process begins with creating a 3D CAD model of 
the MAV in Solidworks, incorporating dynamic param-
eters. Then, the drone model is transferred to Matlab/
Simulink, integrated with a virtual scenario. Here, this is 
a construction site developed in Simulink Simscape Multi-
body, with imported CAD files for various obstacles.

4.1  Digital twin of the MAV model

The initial step involves constructing a digital model of 
a real-world MAV, such as the 3DR Solo utilized in this 
study, through component-based and parametric modeling 
techniques to visualize the model. This facilitates modular 
design while considering compatibility with the digital 
twin platform. The quadcopter’s structural frame incorpo-
rates an attached battery, replicated legs forming the land-
ing gear, and a propulsion system comprising two pairs of 
contra-rotating brushless DC motors and corresponding 
propellers. Furthermore, the materials and surface textures 
of each component are specified. This process ensures 
that the modeling software accurately computes essential 
parameters, such as mass, moment of inertia, and other 
intrinsic values, while visually representing its physical 
twin, as depicted in Fig. 6.

The software facilitates the extraction of dynamic 
parameters for the quadcopter from manufacturer speci-
fications and measurements. These numerical values can 
be stored in a compatible file format for future utilization. 
Obtaining precise inertial figures for a drone type, whether 
through physical measurements or analytical calculations, 
requires instrumentation or validation work. Here, by uti-
lizing CAD modeling, the developed digital twin can sup-
port various drones on this highly realistic platform.

4.2  Virtual flight environment

Creating a digital twin for MAV systems involves establish-
ing a virtual flight environment that faithfully replicates the 
motion of aerial vehicles. Unlike existing simulators like 
AirSim, Gazebo, jMAVSim, and Flight-gear for visualized 
representations of MAV dynamics, often at a considerable 
computational expense, our platform is compatible with 
simulation tools, able to facilitate the crafting 3D models 
of complex objects, hence reducing the need for additional 
software.

To illustrate the capabilities of the digital twin platform, 
simplified versions of construction objects were developed 
to simulate a hypothetical construction site. These objects, 
including crawler excavators, cement mixer trucks, jib 
tower cranes and unfinished buildings, recreate real-life 

(a) Crawler excavators [ 34] (b) Cement mixer truck [ 35]

(c) Tower crane [ 36] (d) Uncompleted building

Fig. 7  CAD models of construction objects
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construction activities in virtual scenarios. For instance, 
excavation, concrete pouring operations, and heavy lifting 
and material moving, require excavators, mixer trucks, and 
tower cranes. These objects are selected from open source 
designs (Mohamed https:// grabc ad. com/ libra ry/ volvo- excav 
ator-4; Leonardo https:// grabc ad. com/ libra ry/ truck- cement- 
mixer-1; Tech https:// grabc ad. com/ libra ry/ tower- crane- 
15), as shown respectively in Figure 7a–c. Additionally, 
the construction site includes unfinished buildings with 
exposed concrete floors and columns. A general floor plan 
is component-based and created for the upper levels, with 
supportive pillars arranged accordingly, as shown in Fig. 7d. 

Furthermore, the tower blocks of the building complex are 
considered as obstacles for aerial missions.

By integrating the above elements into the simulation 
environment, the digital twin platform provides a more 
comprehensive and realistic representation of the construc-
tion site. This allows users to test and tweak different build 
scenarios before deploying in the real world. Additionally, 
the desired waypoints obtained from the path planning algo-
rithm are depicted as spherical markers, and the interpo-
lated polynomial trajectory is shown to analyze the response 
of the MAV. A virtual environment is then established, as 
depicted in Fig. 8.

Fig. 8  Virtual flight environ-
ment

Fig. 9  Visualization model

https://grabcad.com/library/volvo-excavator-4
https://grabcad.com/library/volvo-excavator-4
https://grabcad.com/library/truck-cement-mixer-1
https://grabcad.com/library/truck-cement-mixer-1
https://grabcad.com/library/tower-crane-15
https://grabcad.com/library/tower-crane-15
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4.3  Visualization model

To validate the efficacy of the proposed approach, we 
implement the path planning and trajectory control algo-
rithms using Matlab/Simulink in conjunction with the MAV 
dynamic model. Following this, the virtual aerial vehicle 
is subjected to thorough evaluation tests to assess the per-
formance of the trajectory generation, each control subsys-
tem, alongside the MAV considering environmental factors. 
These components are illustrated in Figure 9. Further details 
regarding each subsystem are provided in the following.

Figure 10 illustrates the subsystem of MAV dynamics. 
This subsystem includes the structural frame and propul-
sion system of the quadcopter at its highest level, as detailed 
in Sect. 4.1. Here, the Simscape Multibody Link plug-in is 
used to export the digital twin of the drone, making use of 
the data transfer advantage of our visualization platform. 
Consequently, an extensible markup language (.xml) file is 
generated, outlining the intrinsic geometric relationships 
between each part within a CAD assembly model. Upon 
loading this file, a Simscape Multibody model of the multi-
rotor is automatically generated. Minor adjustments are 
made to ensure alignment between the CAD model, cre-
ated with standard practices in 3D modeling software, and 
the simulation requirements of the digital twin platform. 
The arrangement of the propulsion system is designed to 
be graphically intuitive for user-friendly interaction. The 
stationary components of the drone, such as the four legs 
and battery, are grouped within the “Quadcopter Chassis” 
block. This process may differ for various multi-rotor vehi-
cles and is contingent upon the desired level of detail in the 
simulations.

Figure 11 illustrates the environment subsystem, com-
prising blocks for visualizing the terrain and surround-
ings of the construction site, as well as the trajectories 
of the MAV swarm. In the Simscape Multibody simula-
tion, the world origin is connected to every block visually 

represented in the animation, with the "World Frame" 
serving as the input to all internal blocks. The topogra-
phy of the construction site is obtained from the Touch-
Terrain web application (Hasiuk et al. 2017) in standard 
triangulation language (.stl) file format and incorporated 
into the digital twin platform through a script that reads 
and converts the .stl file into a compatible data type for 
the “Rigid Terrain Grid Surface” block. Additionally, the 
“Construction Site” block directly integrates stationary 
CAD models of background objects into the relevant test 
cases. Meanwhile, the “Trajectory” block facilitates the 
placement of markers for waypoints and visualization of 
planned paths. Utilizing these blocks enables the creation 
of environments for various MAV missions within the 
Mechanics Explorer.

Figure 12a illustrates the outer layer of the “Trajectory 
Generation and Control” block for a single MAV. In this 
diagram, the “Waypoint Allocation” block receives the 
waypoints the cooperative path planning algorithm gen-
erates. The block’s logic sequentially assigns a new des-
tination to the vehicle once it reaches an acceptable range 
to a waypoint. Additionally, the block endeavors to hover 
the vehicle at the final waypoint. The positional references 
are then transmitted to the controllers. The position control 
initially receives the desired longitudinal and latitudinal 

Fig. 10  MAV subsystem

Fig. 11  Environment subsystem
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(a) Outer layer

(b) Position and attitude controller block

Fig. 12  Trajectory generation and control block

Fig. 13  Generated path
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values in the “Position and Attitude Controller” block, 
elaborated in Fig. 12b. This block executes three main 
steps. Firstly, it applies corrections to position errors using 
proportional-derivative (PD) gains. Next, it converts from 
x and y positions to the required orientation, represented 
as roll-pitch-yaw angles. Finally, the attitude proportional-
integral-derivative (PID) controller aims to adjust the 
current rotational values accordingly. Concurrently, the 
desired altitude is provided to the “Altitude Controller” at 
the outer layer for appropriate adjustments to the resulting 
thrust. The outputs of the attitude and altitude controllers 
are converted into more intuitive motor revolutions for 
subsequent operations conducted in the “Control Alloca-
tion” block. This block determines the required RPM for 

each specific motor, which is then utilized by the “MAV 
Dynamics” subsystem.

5  Simulation results

In this section, we delve into simulation case studies 
focusing on monorail bridge inspection and construction 
site monitoring, showcasing the application of intelligent 
drone systems and digital twins in modern civil infrastruc-
ture management.

(a) Virtual MAV during the experiment (b) Virtual bridge image captured from MAV
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(c) Tracking error

Fig. 14  Simulation result

(a) Quadcopter (b) Hexacopter

Fig. 15  MAV in a faulty operation
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5.1  Case study 1: Monorail bridge inspection

To illustrate the effectiveness of our proposed method, 
we carried out a virtual inspection of a monorail system 
situated at Wentworth Park, NSW, Australia, with coordi-
nates −33.875266◦ S, 151.192769◦ E. Based on satellite-
captured images (Google Maps  https:// www. google. com/ 
maps/@- 33. 87526 6,151. 19276 9,145m/ data= !3m1!1e3? 
entry= ttu), we modeled the viaduct supporting the entire 
railway system and strategically placed obstacles, such 
as trees and light poles. We aimed to deploy an MAV 
with designated take-off and landing locations to per-
form an inspection task. For a single MAV, we relaxed the 

cooperative constraint. Employing the WGO algorithm, 
we generated optimized, collision-free routes while tak-
ing into account environmental obstacles, as illustrated in 
Fig. 13. We implemented red cylinders to denote threat 
zones around obstacles to ensure safe MAV maneuvering. 
These cylinders represented collision-free areas, ensuring 
safe navigation in real-world scenarios where obstacles 
are present. Furthermore, we employed a cascade trajec-
tory tracking controller to ensure precise adherence to 
the MAV’s planned routes. Continuously monitoring the 
MAV’s position and velocity, this controller compared 
them to the planned trajectories and executed necessary 
adjustments to maintain the MAV on its designated path.

Fig. 16  Generated cooperative 
path (Nguyen et al. 2023)

Fig. 17  Visualization results

https://www.google.com/maps/%40-33.875266,151.192769,145m/data=%213m1%211e3?entry=ttu
https://www.google.com/maps/%40-33.875266,151.192769,145m/data=%213m1%211e3?entry=ttu
https://www.google.com/maps/%40-33.875266,151.192769,145m/data=%213m1%211e3?entry=ttu
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During the test, an MAV equipped with cascade control-
lers successfully executed its inspection mission by accu-
rately tracking its reference trajectory. We introduced ran-
dom disturbances into the simulation model to evaluate the 
controller’s resilience against external factors like winds, 
assessing the UAV’s response. These disturbances, generated 
from a random signal generator function, simulated external 
effects such as winds or aerodynamic changes. By varying 
the intensity and frequency of these disturbances, we could 

assess the control performance under different environmen-
tal conditions and its ability to maintain a stable flight in 
adverse situations. The proposed digital twin platform could 
allow us to obtain useful information of UAV performance, 
control algorithms, and practical applications. For instance, 
Figure 14 illustrates the case of an MAV following its refer-
ence trajectory while effectively avoiding obstacles, such as 
tall trees and power poles. In this simulation, disturbances 
were injected at t = 50 s . Figure 14c illustrates robustness 

Fig. 18  Experimental setup 1 
(Nguyen et al. 2024b)

(a) UAV during experiment (b) Bridge image captured from MAV

Fig. 20  Experimental result (Nguyen et al. 2024a)

Fig. 19  Imported trajectory 
(Nguyen et al. 2024b)
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Fig. 23  UAV triangular 
formation during experiments 
(Nguyen et al. 2022b)

of the controller with a steady-state error of less than 0.5 m, 
even subject disturbances, and its ability to maintain a sta-
ble flight with accurate trajectory tracking when inspect-
ing a monorail bridge in the presence of obstacles. These 
results highlight the potential application of the digital twin 
technology in advancing bridge inspection technologies and 
engineering practices.

To further demonstrate the effectiveness of the digital 
twin platform, we simulated a motor failure in a quadcop-
ter by intentionally severing the electrical signal to one 
motor mid-flight. This resulted in a crash, as shown in Fig-
ure 15a, indicating the quadcopter’s inability to maintain 
stability with a failed motor. To enhance the hovering fault 

tolerance, a general approach besides control techniques is to 
increase the number of motors in multi-rotor aerial vehicles 
(Michieletto et al. 2017). We have tested on our visualization 
platform the safety landing of a hexacopter after the mal-
function of a motor by redistributing the thrust applied to the 
drone from its reconfiguration to a quadcopter, as depicted 
in Figure 15b.

5.2  Case study 2: Construction site inspection

To further demonstrate the effectiveness of our proposed 
approach, we implemented a virtual inspection scenario 
at the Western Sydney International Nancy-Bird Walton 
Airport, which is currently a large infrastructure project 
in Badgerys Creek, NSW, Australia. Figure 16 (Western 
Sydney Airport https:// weste rnsyd ney. com. au/ const ructi 
on) shows the construction site as of September 2022. In 
this simulation, we integrated 3D models to map the airport 
construction environment into its virtual representation of 
our digital twin platform. From the site imagery, the ter-
rain along with as-built structures were replicated to virtu-
ally reflect the on-site scenario at the moment. Upon creat-
ing a visual representation to resemble the the reality as 
depicted in Figure 16, all prominent features including the 
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Fig. 21  Tracking error

Fig. 22  Experimental setup of 
multiple MAVs (Nguyen et al. 
2022b)

https://westernsydney.com.au/construction
https://westernsydney.com.au/construction
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construction equipment, towering blocks, the main building 
and luffing jib cranes were carefully imported to the simula-
tion, making it at most a mirror the site layout. Special atten-
tion was paid to the positions of those components having a 
certain height, such as tower cranes, which were considered 
as obstacles in the flight path of the drones.

The objective is to deploy a fleet of MAVs configured 
with specific geometrical shapes, guiding them from starting 
positions to designated endpoints for an on-site inspection 
mission. Utilizing the GPSO algorithm, optimized routes for 
the team are generated, ensuring they remain collision-free 
and maintain their formation amidst environmental obsta-
cles, as depicted in Fig. 16. To safeguard the navigation of 
the drones around obstacles while adhering to their desired 
formation, yellow cylinders are deliberately placed around 
the tower mast to mark threat zones. Moreover, the alti-
tudes of the MAVs are constrained based on the heights of 
unfinished buildings and the minimum height of the crane’s 
boom. Employing a cascade trajectory tracking controller, 
each MAV accurately follows its planned route by continu-
ously monitoring its position and velocity, making necessary 
adjustments to keep it on course.

In initial testing, three MAVs with cascaded controllers 
successfully performed their mission, tracking the desired 
trajectory as expected during normal operations. To evaluate 
the robustness of the controller against external disturbances, 
we also injected a signal random generator function into the 
model as a random disturbance to show the team ability to 
maintain the tracking performance. Through visualization, it 
can be observed that the controller adapted to varying exter-
nal conditions such that the MAVs were able to safely follow 
their reference trajectory without collision, as depicted in Fig-
ure 17. However, in some circumstances, it could also reveal 
a tracking error associated with a control scheme, indicating 
via a deviation from the desired trajectory to be observed on 
the visualization platform. Thus, by assessing this informa-
tion, one can apply and test an advanced control technique to 
improve the tracking performance across different scenarios. 
This underscores the advantage of the proposed digital twin 
platform in the facilitation of the high-level control design for 
MAV path planning in civil infrastructure inspection.

The simulation results highlight the promising application 
of the digital twin technology in validating optimal routes 
and trajectories for MAVs, ensuring safe and efficient com-
pletion of an inspection mission. This real-life scenario sug-
gests the capability of the visualization platform in testing 
high-level control schemes for MAVs in the inspection of 
a dynamic environment such as construction sites, where 
moving equipment and fast-evolving structures could pose 
difficulties for path planning and trajectory tracking. By pro-
viding a virtual replica of the environment, the digital twin 
model aids in optimizing the flight path of MAV fleets before 
deploying to the actual location, thereby minimizing the risk 

of accidents and enhancing high quality as well as overall 
efficiency of operations.

6  Experimental validation

This section describes the testbeds used to validate the 
proposed technique in inspecting a monorail bridge. The 
experiment utilized a 3DR Solo drone with a GoPro Hero 4 
camera, illustrated in Fig. 18. The drone’s hardware features 
two Cortex M4 168 MHz processors for accurate control, 
supplemented by an ARM Cortex A9 running the Arducop-
ter flight operating system (Hoang et al. 2020). The Mission 
Planner ground control station facilitated autonomous flight 
planning and data analysis. The compact form factor and 4K 
resolution capabilities of the GoPro Hero 4 camera made it 
ideal for capturing detailed visuals in hard-to-reach areas 
during construction inspections. The software facilitated 
by Mission Planner streamlined the workflow by enabling 
waypoint import, flight path planning, and data logging, as 
demonstrated in Fig. 19.

Figure 20 presents the MAV during the experiment and 
the bridge image captured from the MAV, exhibiting a coin-
cidence of the field test results with those obtained from pre-
vious digital twin simulations. The alignment of structural 
features, the positioning of the MAV relative to the bridge, 
and the overall scene resemblance are notably consistent 
between the experiment and the simulations, indicating 
the advantage of the proposed approach to path planning 
for MAV-based inspection. Such consistency in trajectory-
following and comprehensive coverage further validates the 
generation of optimal paths for MAVs and streamlines the 
process to facilitate the delivery of bridge inspection data 
in less time.

In Fig. 21, the experimental results depict the track-
ing error between the desired path and the actual path 
observed during the bridge inspection. The analysis reveals 
that the MAV follows the predefined path, exhibiting small 
tracking errors of less than 0.5 m. These disparities are 
mainly attributed to minor inaccuracies in GPS position-
ing rather than with the drone’s tracking controller, as the 
typical accuracy for GPS signals can be expected at a daily 
global average user range error (URE) of less than 2.0 m 
with 95% probability (U.S. Government https:// www. gps. 
gov/ syste ms/ gps/ perfo rmance/ accur acy/). Therefore, the 
errors here are assumed predominantly due to GPS inac-
curacies. These observations highlight the effectiveness 
and practicality of our proposed path-planning method for 
performing bridge inspections.

To further enhance inspection performance, we con-
ducted an experiment utilizing three 3DR Solo drones. 
The setup comprised remote controllers, a ground control 
station, and communication hardware, as illustrated in 

https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/
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Fig. 22. Similar to controlling a single MAV, the coor-
dinates of waypoints received from the GPSO path plan-
ning algorithm are initially converted into longitude, 
latitude, and altitude coordinates. The speed profiles of 
the MAVs are set with a reference speed of Vref = 1m/s . 
Subsequently, the waypoints and corresponding speeds are 
transferred to the MAVs via Mission Planner software for 
autonomous execution. In Fig. 23, the drones are depicted 
forming a triangular shape during a bridge inspection task. 
The objectives of cooperative path planning and formation 
maintenance of the three drones are successfully achieved 
using GPSO and a prototypical digital twin.

7  Conclusion

This paper has presented intelligent path-planning algo-
rithms for MAV for civil infrastructure inspection. The plan-
ning of an MAV path flying along a built infrastructure asset 
in complex environments is formulated as an optimization 
problem to minimize the cost function of coverage, safety, 
distance, smoothness, and also formation constraints. The 
developed GWO and game-based path planning approaches 
have effectively generated optimal paths for MAVs, espe-
cially in threat-inclusive scenarios. Extensive simulation 
results validated by field trials have confirmed the practical-
ity of the proposed approach and its advantage in assessing 
their path viability against potential collision risks before 
real-world deployment to enhance the overall safety of mul-
tiple MAVs in cooperative missions. Experiments with sin-
gle and multiple MAVs have confirmed the effectiveness of 
MAV path planning in the presence of obstacles. The syn-
ergy between visualization tests and real-world task deploy-
ment can contribute to improved accuracy, reduced costs, 
and mitigated risk in critical tasks, such as infrastructure 
inspection and maintenance. Our future work will expand 
the framework to deal with more complicated environments 
in various inspection conditions and enhance its flexibility 
in practical applications.
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