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Abstract
While in-processing fairness approaches show
promise in mitigating bias predictions, their po-
tential impact on privacy leakage remains under-
explored. We aim to address this gap by as-
sessing the privacy risks of fairness-enhanced bi-
nary classifiers with membership inference attacks
(MIAs). Surprisingly, our results reveal that these
fairness interventions exhibit increased resilience
against existing attacks, indicating that enhancing
fairness does not necessarily lead to privacy com-
promises. However, we find current attack methods
are ineffective as they typically degrade into simple
threshold models with limited attack effectiveness.
Following this observation, we discover a novel
threat dubbed Fairness Discrepancy Membership
Inference Attacks (FD-MIA) that exploits predic-
tion discrepancies between fair and biased mod-
els. This attack reveals more potent vulnerabili-
ties and poses significant privacy risks to model
privacy. Extensive experiments across multiple
datasets, attack methods, and representative fair-
ness approaches confirm our findings and demon-
strate the efficacy of the proposed attack method.
Our study exposes the overlooked privacy threats
in fairness studies, advocating for thorough eval-
uations of potential security vulnerabilities before
model deployments.

1 Introduction
Imbalanced datasets often induce spurious correlations be-
tween learning targets and sensitive attributes [Mehrabi et
al., 2021], which will lead to biased predictions in trained
(biased) models. In response, fairness research has devel-
oped in-processing approaches [Wang et al., 2022; Ching-
Yao Chuang, 2021] that are applied during training to pro-
duce fairness-enhanced (fair) models. By effectively sup-
pressing these spurious correlations, fair models can miti-
gate discriminatory predictions. However, despite promising
to enhance fairness, these interventions might incur potential
privacy risks, such as unintended training data memorization.
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(a) Loss values (b) Attack success rates

Figure 1: Fairness interventions (a) increase the losses and (b) de-
crease attack success rates for most training samples. We generate
the plots with 100 runs and report the training samples’ mean loss
value and mean attack success rate.

Membership inference attacks (MIAs) are widely adopted
for assessing privacy risks in models that are deployed via
Machine Learning as a Service (MLaaS) [Shokri et al., 2017].
Building upon this, prior work [Chang and Shokri, 2021]
has primarily explored the privacy impact of fairness inter-
ventions on decision tree models by applying existing score-
based attacks to them. However, this leaves open questions
on evaluating privacy risks for neural networks, such as bi-
nary classifiers, which are prevalent in fairness studies. More-
over, evaluations relying on one attack method might not
fully characterize the privacy impact. Given the importance
of trustworthiness in fairness studies, conducting thorough
evaluations of these fairness interventions is non-trivial. To
bridge these gaps, we apply different existing MIAs to binary
classifiers and discover an innovative attack method designed
for fair models, comprehensively evaluating the privacy risk.

With existing attack methods, our evaluation results show
that fairness-enhanced models show more resilience to cur-
rent MIAs than their biased counterparts. Figure 1 illustrates
the results of score-based attacks on fair and biased models
over 100 runs. We present the loss values (Figure 1a) and
the attack success rate (Figure 1b) per training sample. Af-
ter applying fairness interventions, the plots show increased
loss values yet decreased attack success rates for most data
points. This indicates that these interventions can lead to less
successful attacks with existing MIA approaches.

Before rushing to the conclusion that fairness interventions
are privacy-friendly to binary classifiers, with further analy-



ses, we find that these methods are inefficient in attacking
binary classifiers. This is because the trained attack models
degrade into simple threshold-based decisions due to the bi-
nary outputs. The degradation incurs substantial performance
trade-offs: while effective at recognizing member data, attack
models struggle with non-member data, especially for hard
examples where predictions are similar across groups.

During the evaluation of existing attacks, we have uncov-
ered a potential threat that could enable more effective at-
tacks on binary classifiers. Specifically, we find the prediction
scores for member and non-member data exhibit divergent
behaviors after fairness interventions: the scores typically in-
crease for the majority of member data, while they conform
to a normal distribution for non-member data. This disparity
creates a pronounced prediction gap between groups, which is
overlooked by current attacks. The widened gap, if exploited
by adversaries, could enable more successful attacks, thereby
posing substantial privacy threats.

Inspired by these observations, we name the identified
threat as Fairness Discrepancy MIAs (FD-MIA), which tar-
gets fair models by exploiting the prediction gaps between
the original (biased) and fairness-enhanced (fair) models. The
key intuition is that these gaps leak membership information
about the training data, which can be leveraged to launch
more effective attacks. It can be integrated with the existing
frameworks of score-based [Liu et al., 2022] and reference-
based attacks [Carlini et al., 2022].

We conduct comprehensive evaluations across six datasets,
using three attack methods and five in-processing fairness ap-
proaches. This amounts to 32 different experimental settings
and over 160 distinct models. Our results reveal that fairness
interventions potentially introduce new threats to model pri-
vacy, advocating for a more comprehensive examination of
their potential security defects before deployment. Our main
contributions are as follows: (1) To the best of our knowledge,
this is the first work to comprehensively study the impact of
fairness interventions on privacy through the lens of MIAs,
targeting deep classifiers with real-world datasets. (2) We
reveal that fairness interventions do not compromise model
privacy with existing attack methods, primarily due to their
limited efficacy in attacking binary classifiers. (3) We dis-
cover a novel attack method, FD-MIA, which poses signif-
icant threats to model privacy by exploiting prediction gaps
from both biased and fair models. It can be integrated into
existing attack frameworks. (4) Extensive experiments vali-
date our findings and demonstrate FD-MIA’s effectiveness.

2 Related Work
Algorithmic fairness. Fairness methods are typically cat-
egorized into pre-processing, in-processing, and post-
processing approaches based on their processing stage. We
focus on in-processing approaches as they modify model
training procedures directly and may introduce model pri-
vacy threats. Among them, some introduce fair constraints
and formulate the issues as optimization problems [Zemel
et al., 2013; Manisha and Gujar, 2020; Tang et al., 2023;
Truong et al., 2023; Cruz et al., 2023; Jung et al., 2023].
Some propose adversarial designs to remove sensitive infor-

mation among extracted features [Kim et al., 2019; Zhu et al.,
2021; Creager et al., 2019; Park et al., 2021]. Some adopt
data sampling [Roh et al., 2021] or reweighting [Chai and
Wang, 2022] approaches to alleviate the biased predictions.
More recently, studies learn fair representations using mixup
augmentations or contrastive learning mechanism [Ching-
Yao Chuang, 2021; Du et al., 2021; Park et al., 2022;
Wang et al., 2022; Zhang et al., 2023; Qi et al., 2022]. These
methods interpolate inputs or modify features to pursue fair
representations.

Membership inference attacks. MIAs aim to determine
if a data sample was part of a target model’s training set.
Some attacks leverage the target model’s direct output, such
as confidence scores [Shokri et al., 2017], losses [Sablay-
rolles et al., 2019], prediction labels [Choquette-Choo et
al., 2021]. Some improve the performance by modeling the
prediction distributions of the target model, such as refer-
ence models [Carlini et al., 2022; Ye et al., 2022]. Oth-
ers extend their focus into new settings [Gao et al., 2023;
Yuan and Zhang, 2022] or work on defense methods [Yang
et al., 2023]. This work considers two representative attack
approaches: score-based [Liu et al., 2022] and reference-
based [Carlini et al., 2022] attack methods. More recently,
studies have enhanced attack performance by exploiting ad-
ditional information: some [He et al., 2022] leverage predic-
tions from multiple augmented views, some [Li et al., 2022]
require results from multi-exit models, and others [Hu et al.,
2022] work on multi-modality models. We explore models
with fairness discrepancies.

Exploring privacy impacts of fair models. Privacy eval-
uations of fair models remain under-explored. Prior
study [Chang and Shokri, 2021] provides a preliminary in-
vestigation by applying prevalent score-based MIAs to assess
the privacy of fair constraint methods on decision tree mod-
els. It reveals that fair decision trees enable more successful
attacks. Our study extends the scope of analysis to neural
networks. We conduct comprehensive evaluations across dif-
ferent fairness approaches on deep classifiers with multiple
attack methods.

3 Preliminaries
Algorithmic fairness. Given biased models, we consider a
sensitive attribute s ∈ S with subgroups {s0, s1} of binary at-
tribute values {0, 1}. Due to imbalanced training data, trained
models often exhibit biased predictions, where predictions Ỹ
become spuriously correlated with the attribute s. Fairness
interventions are proposed to mitigate the issue. To quan-
tify fairness performance, metrics such as Bias amplification
(BA) [Zhao et al., 2017] or Equalized odds (EO) [Hardt et
al., 2016] have been introduced. Specifically, BA measures
disparities in true positives across subgroups, while EO mea-
sures true and false positive rates (TPRs, FPRs). We select
the prevalent BA and Disparity of Equalized odds (DEO) to
measure model fairness performance.

Membership inference attacks. Score-based attack meth-
ods adopt the target model’s (i.e., models under attack) pre-
dictions (i.e., scores or losses) to infer sample membership.
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Figure 2: Attacking fair and biased models with MIAs. We first
attack them separately and then compare the results to explore the
privacy impact of fairness interventions.

To mimic target model behaviors, adversaries train “shadow
models” on an auxiliary dataset that shares similar data dis-
tributions with the training data. The outputs of shadow mod-
els can then be adapted for attack model training. Formally,
given target models T and a queried sample x ∈ X , the mem-
bership M(x) can be predicted by:

M(x) = 1[A(T (x)) > τ ], (1)

where the attack model A will output the confidence scores
of membership predictions with a threshold τ .
Reference-based likelihood ratio attack methods infer the
membership by modeling the prediction distributions. Specif-
ically, they model the distributions using shadow models: fin
that are trained with sample x; fout that are trained without the
x. The key idea is to determine if the target prediction T (x)
better aligns with which of the prediction distributions. For-
mally, membership is predicted by comparing the likelihood
ratio Λ between the two distributions:

Λ =
p(ϕ(T (x))|N (µin, σin))

p(ϕ(T (x))|N (µout, σout))
, (2)

where ϕ is a scaling function, parameters µ and σ are cal-
culated with predictions from shadow models fin, fout. With
the likelihood ratio, whichever is more likely determines the
membership of x.

4 Attacking Fair Models
In this section, we conduct a detailed case study to assess the
privacy impact of fairness interventions. We first utilize es-
tablished membership inference attacks (MIAs), specifically
the naive score-based attacks. We then introduce an advanced
attack method tailored to fair models. It is designed to reveal
potential privacy threats of fair models.

4.1 Naive Score-Based Attacks
Figure 2 shows our evaluation pipeline with MIAs. We first
train biased models with imbalanced data and then obtain
fair models by applying fairness interventions. These models
serve as target models for the MIAs. An adversary attempts to
infer sample membership with predictions from these target
models. We then compare results across target models to ana-
lyze the privacy impact of fairness interventions. Subsequent
sections will delve into more detailed settings.

Models Acct ↑ BA ↓ DEO ↓ Acca ↑ AUCa ↑
Bias 87.6 7.7 21.7 59.8 62.8
Fair 90.5 2.5 5.6 53.2 54.8

Table 1: Attack results with naive score-based methods in (%).

Target models. We train biased models with the CelebA
dataset [Lee et al., 2020], which contains imbalanced data
distributions for various attributes. In particular, we consider
smile as classification targets and gender as the sensitive at-
tribute. We train biased models following settings in ML-
Doctor from [Liu et al., 2022]. We apply fair mixup oper-
ations from [Ching-Yao Chuang, 2021; Du et al., 2021] to
mitigate the biased predictions. Table 1 presents accuracy
(Acct) and fairness metrics (BA, DEO) results for both bi-
ased (“Bias”) and fair (“Fair”) models. The results show de-
creased fairness metric results, indicating the effectiveness of
the adopted fairness interventions.
Threat models. We apply naive score-based attacks on tar-
get models in a black-box manner. In particular, adversaries
can only access models’ predictions and an auxiliary dataset,
which shares similar data distributions with the training data.
The adversary trains shadow models to mimic the target mod-
els’ behavior and uses the prediction scores and results (true
or false predictions) to infer sample membership. We conduct
the attacks following settings in ML-Doctor.
Attack results. Table 1 shows the Acca and AUCa results
for attacks on the models. It shows improved attack results
after fairness interventions. For example, the accuracy re-
sults decreased from 59.8% to 53.2% with the fair models.
AUC results exhibit similar trends. This aligns with results
in Figure 1, where fewer training samples can be success-
fully attacked after the interventions. Our results show that
fairness interventions provide some defense against existing
MIAs. However, our following analyses reveal that existing
attacks are ineffective for binary classifiers.
Performance trade-offs. During the evaluation, we ob-
serve evident trade-offs in attack performance on member
versus non-member data. Figure 3a depicts these trade-offs
by comparing the accuracy results for member (x-axis) and
non-member (y-axis) data. We run over 100 attacks on biased
and fair models, and each point denotes one attack result. The
figure shows clear performance trade-offs between member
and non-member data for both models. This raises concerns:
whether achieving high attack performance comes at the cost
of a higher false positive rate (FPR) on non-member data.

The issue becomes more pronounced for hard examples
where members and non-members share similar prediction
scores. As suggested in [Carlini et al., 2022], we assess the
attack performance for hard examples with TPR values in the
low FPR region. We find the TPR values are around 0.0 for
most attacks. Figure 3b presents two worst-case scenarios.
The green curve in the figure shows closely aligned TPR and
FPR values, indicating the attack results are equivalent to ran-
dom guesses. The blue line shows 0.0 TPR values in low
FPR regions, indicating that no positive samples can be cor-
rectly identified. The findings reveal that attack models fail
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Figure 3: Existing attacks (a) exhibit clear performance trade-offs
between member and non-member data, and (b) are inefficient in
attacking hard examples in the low FPR region.

to differentiate the membership of hard examples, indicat-
ing invalid attacks. This aligns with the concerns about the
effectiveness of score-based attacks raised in previous stud-
ies [Carlini et al., 2022; Ye et al., 2022].

Model degradation. To explore the reason for the trade-off
phenomenon, we have discovered that trained attack mod-
els typically degrade into simple threshold models with one-
dimensional inputs. This is because current attack methods
rely on prediction outcomes to determine the sample mem-
bership. For binary classifiers, prediction scores can be re-
duced to one dimension as the sum of the confidence scores
always equals one. Consequently, the attack model can es-
sentially be viewed as a simple threshold model, which infers
the membership by “thresholding” one-dimensional values.

Figure 4a presents histograms of prediction scores with
vertical lines indicating the threshold value. By adjusting
the vertical line (thresholds), it is possible to achieve higher
accuracy for member data, but this comes at the expense of
decreased accuracy for non-member data. This threshold ad-
justment explains the trade-off phenomenon.

Impacts of fairness interventions. When examining the
prediction scores, we find that fairness interventions de-
crease confidence scores for the majority training data, in-
troducing some defense against existing MIAs. This is evi-
denced by the histograms of confidence scores in Figures 4a
and 4b. The figures show that fairness interventions result
in more similar score distributions between member and non-
member data, making it more difficult for the threshold-based
attack models to distinguish them.

Moreover, we explore the score changes for different sub-
groups in Figures 4c and 4d. From the plots, the majority
data are more “spread out”, whereas the minority are more
“concentrated”. This is because fairness interventions strive
to balance prediction performance across subgroups for fair
predictions. The results advocate the observed increased loss
values for most data points in Figure 1a. It also aligns with
the fairness-utility trade-off, which is extensively observed
in fairness studies [Zhang et al., 2023; Pinzón et al., 2022;
Zietlow et al., 2022].

Our analyses indicate that existing attack methods are inef-
fective in exploiting prediction gaps that could lead to model
privacy leaks. While fairness interventions do introduce some
defense to MIAs, we identify a novel threat that will pose sig-

nificant risks to model privacy.

4.2 Attacks with FD-MIA
Enlarged prediction gaps. Previous plots in Figures 4a
and 4b show that fairness interventions reduce confidence
scores for most training data. In contrast, non-member scores
do not exhibit significant changes. This disparity can in-
crease prediction gaps between member and non-member
data. We measure the prediction distance by calculating the
score value differences between them and present the results
in Figure 5. Precisely, we measure the distance considering
all available data (Figure 5a) and only the hard examples (Fig-
ure 5b), where samples from the members and non-members
share similar scores. The plots show a significant distance
increase when considering predictions from both biased and
fair models. Importantly, the fairness interventions amplify
these gaps, which can pose real threats to model privacy.
Attack pipeline. With the enlarged prediction gaps, we
propose an enhanced attack method. We present the attack
pipeline in Figure 6, where an adversary can access prediction
results from both fair and biased models. The attack mod-
els will exploit the observed prediction gaps to infer sample
membership. We refer to the proposed method as the Fairness
Discrepancy based Membership Inference Attack (FD-MIA).
Threat models. FD-MIA operates as a black-box attack
and only needs access to predictions from both biased and
fair models. In practice, adversaries could obtain such pre-
dictions, as real-world models often exhibit persistent bi-
ased predictions. For instance, they may monitor an MLaaS
over time since debiasing should be continually carried out
to adhere to legislation. Alternatively, they could deliber-
ately report biases, compelling the owner to refine the model
per regulations. By recording the prediction shifts during
these debiasing efforts, the adversary can enable efficient at-
tacks. Meanwhile, the proposed FD-MIA can be seamlessly
integrated into the existing frameworks of score-based and
reference-based attacks, enhancing their attack performance.
Score-based FD-MIA. Score-based FD-MIA has been in-
troduced to enhance traditional score-based MIAs by inte-
grating additional encoding layers. These layers are designed
to extract the features of model predictions, exploiting the
observed prediction gaps. Formally, it can be expressed as
follows:

M(x) = 1[A(Tbias(x), Tfair(x)) > τ ], (3)

where the attack models A takes predictions from both biased
models Tbias and fair models Tfair.
Reference-based FD-MIA. Reference-based FD-MIA is
integrated with the LiRA framework [Carlini et al., 2022],
which infer sample membership by modeling the prediction
distributions. It enhances attack performance using two target
models - the biased and the fair ones. Formally, for a given
sample x and target models T , the probability of membership
is given by:

p = (ϕ(T (x))|N (µbias, µfair,Cov)), (4)

where Cov is the covariance matrix. The distribution func-
tion N takes the mean confidence scores from both the biased
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Figure 4: Prediction score changes after applying fairness methods. The red lines in (a) and (b) indicate that the trained attack models infer
sample membership with certain threshold values. (c) and (d) show the changes in terms of different subgroups.
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Figure 5: Histograms of prediction score distances between member
and non-member data. The plots show enlarged distance when con-
sidering both fair and biased models.
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Figure 6: FD-MIA exploits the predictions from both models to
achieve efficient attacks.

µbias and fair models µfair. This function estimates the likeli-
hood of a data point being a member or non-member. The
result is determined by the higher probability score.

The introduced FD-MIA is designed to enhance the attack
performance by leveraging predictions from both biased and
fair models. Unlike prior attack methods, this mitigates the
risk of degraded performance in the trained attack model. Our
findings reveal that fairness interventions inadvertently intro-
duce new privacy risks, making target models more vulnera-
ble to membership inference attacks.

5 Experiments
We now extensively evaluate our findings and the proposed
method under diverse scenarios. We start by introducing the
experiment settings.

Settings. With the gender attribute, we consider following
binary classifications: smiling predictions (T=s/S=g) with the

(a) Score-based attacks (b) LiRA attacks

Figure 7: Attack result comparisons in the low FPR region for (a)
score-based attacks and (b) LiRA attacks.

CelebA dataset [Lee et al., 2020], race predictions (T=r/S=g)
with the UTKFace dataset [Geralds, 2017] and the FairFace
dataset [Karkkainen and Joo, 2021]. As UTKFace and Fair-
Face contain multiple racial subgroups, we first group them
into White and Others and then obtain the binary subgroups.
For training data, we randomly divide the dataset in half to
construct member and non-member data for MIAs. For target
models, we sample the data with imbalanced data distribu-
tions, considering the sensitive attribute to reflect real-world
imbalances. This incurs biased predictions of trained mod-
els, which serve as the biased models. We then apply fairness
interventions of fair mixup operations to obtain fair models.

Results with the gender attribute. Table 2 presents the at-
tack results with different attack methods and metrics. We
integrate the proposed FD-MIA with score-based attacks (s)
and LiRA attacks (l). Besides the attack accuracy, we further
report the TPR results at a low FPR value of 0.1%, following
suggestions in [Carlini et al., 2022]. The table shows that FD-
MIA achieves enhanced attack results in accuracy, AUC, and
TPR@FPR. Notably, it achieves higher attack success on fair
models than the biased ones. In contrast, the existing methods
perform worse on fair models. The results reveal that the pro-
posed FD-MIA can effectively exploit fairness interventions
to improve MIAs, posing threats to model privacy.

More specifically, in score-based attacks, FD-MIA
achieves better attack results. On UTKFace, for instance,
the accuracy jumps from 52.6% to 60.2% and the AUC from
52.8% to 62.1%. Regarding TPR results, notably, the exist-
ing attacks (Biass and Fairs) attain near-zero values. This in-



Models CelebA (T=s/S=g) UTKFace (T=r/S=g) FairFace (T=r/S=g)

Acct DEO Acca AUCa TPR Acct DEO Acca AUCa TPR Acct DEO Acca AUCa TPR

Biass 87.6 21.7 59.8 62.8 0.0 87.4 14.2 58.5 58.9 0.0 87.2 22.2 63.6 66.4 0.0
Fairs 90.5 5.6 53.2 54.8 0.04 89.0 6.3 52.6 52.8 0.1 87.6 3.9 63.3 66.2 0.0
Ours - - 60.6 65.8 0.3 - - 60.2 62.1 0.2 - - 65.2 66.8 0.2

Biasl 87.6 21.7 51.5 51.4 0.6 87.4 14.2 55.4 51.5 0.9 87.2 22.2 60.2 61.7 1.3
Fairl 90.5 5.6 50.8 50.3 0.2 89.0 6.3 53.2 47.6 0.7 87.6 3.9 56.7 57.2 0.9
Ourl - - 54.7 57.3 1.2 - - 55.9 52.2 1.7 - - 62.3 63.2 2.3

Table 2: Attacks for the gender attribute (S), and different learning targets (T) in (%), we report TPR@FPR of 0.1%.

dicates no true positive samples can be identified. In contrast,
FD-MIA displays valid TPR values, indicating effective at-
tacks. Similar trends can be observed with the LiRA attacks.
We further present the ROC curves for the CelebA case in
Figure 7. The figure further confirms the invalid attacks of
the existing methods and the valid TPR results of FD-MIA.

Moreover, from the table, we observe that the attacks
achieve better results on FairFace compared to other datasets.
Meanwhile, FairFace exhibits a greater discrepancy in fair-
ness between the biased and the fair models. We believe the
enlarged discrepancy leads to the enlarged prediction gaps,
which can enable more effective attacks. Additionally, we no-
tice that score-based attacks perform better on accuracy and
AUC, whereas LiRA attacks achieve better TPR values. This
aligns with the observations in [Carlini et al., 2022] as LiRA
is designed for efficient attacks in the low FPR region.

Results with other attributes. We further explore attacks
with different attributes, including wavy hair (T=s/S=h)
and heavy makeup (T=s/S=m) for CelebA, as well as race
(T=g/S=r) for UTKFace and FairFace. Table 3 presents
the results. The results show that the proposed method ex-
hibits enhanced results with considered metrics, suggesting
an advantage in identifying privacy vulnerabilities within fair
models. Notably, it consistently achieves superior perfor-
mance with different datasets of varying accuracy perfor-
mance. Similar to previous results, FD-MIA achieves better
results on FairFace, which may be due to the enlarged fairness
discrepancy between fair and biased models.

Results with varying fairness levels. Next, we attack mod-
els of different fairness performances. Specifically, we con-
sider the case of CelebA (T=s/S=g) and conduct the naive
score-based attack on biased and fair models of different DEO
values. Figure 8 presents the results. For FD-MIA, we utilize
prediction results from multiple fair models and one biased
one, which is indicated by a red star in the figure. We further
adopt dashed gray lines to outline the trend.

The figure shows that, with the existing attack method,
the accuracy decreases for both biased and fair models as
the DEO value decreases. The results indicate that mod-
els with stronger fairness interventions exhibit more robust-
ness against existing MIAs. In contrast, FD-MIA, which ex-
ploits discrepancies in fairness, achieves better attack perfor-
mance. Notably, larger fairness discrepancies between the
fair and biased models contribute to more significant predic-
tion gaps, leading to more powerful attacks with FD-MIA.

Figure 8: Score-based attacks with models of varying fairness levels.

While achieving improved fairness, these models lower their
confidence scores, making the attacks more challenging.

Results with different fairness approaches. In this part,
we evaluate our findings with various fairness approaches, in-
cluding data sampling, reweighting, adversarial training, and
constraint-based approaches. In the experiments, we adopt
the implementations of these approaches from [Wang and
Deng, 2020; Han et al., 2024]. Similarly, we focus on the
case of CelebA (T=s/S=g), and Figure 9 presents the results.
The figure shows reduced DEO values after fairness interven-
tions, indicating the effectiveness of these approaches.

For attack results, the existing attack method exhibits de-
graded performance with fair models for the considered ap-
proaches. The attack accuracy drops as the DEO values re-
duce. The results align with our previous findings, where
fairness interventions introduce an unexpected level of re-
silience to MIAs. Notably, the drops are more pronounced
with the adversarial training and constraint approaches. This
may stem from the more substantial trade-offs between fair-
ness and model utility inherent to the approaches.

In contrast, FD-MIA achieves higher attack accuracy with
fair models than biased ones. Similarly, the attack perfor-
mance improves when the fairness discrepancy enlarges as
FD-MIA explores the prediction gaps. The consistency of re-
sults across the fairness approaches demonstrates the broader
applicability of our findings and the proposed attack.



Models CelebA (T=s/S=h) CelebA (T=s/S=m) UTKFace (T=g/S=r) FairFace (T=g/S=r)

Acc AUC TPR@FPR Acc AUC TPR@FPR Acc AUC TPR@FPR Acc AUC TPR@FPR

Biass 55.1 56.3 0.1 57.4 58.1 0.0 64.0 66.9 0.0 75.5 76.7 0.0
Fairs 52.6 52.7 0.0 53.1 52.0 0.0 55.3 57.2 0.0 73.2 75.5 0.0
Ours 56.9 59.6 0.2 59.6 63.2 0.2 66.7 67.8 0.3 77.0 78.4 0.7

Biasl 52.1 52.0 0.3 51.6 51.4 0.4 55.5 52.4 1.4 73.2 74.2 1.5
Fairl 51.0 50.5 0.1 50.7 49.9 0.1 53.8 49.7 0.9 70.4 72.1 0.6
Ourl 55.4 57.7 0.8 54.2 55.7 0.6 56.2 53.6 2.1 75.2 76.4 2.9

Table 3: Attacks with different sensitive attributes and learning targets in (%).

Figure 9: Score-based attacks on fair models with different fairness
intervention methods. The red star indicates the biased model

Influential factors. The proposed FD-MIA achieved mod-
est improvements in attack performance during the experi-
ments. This is because we considered fair models without
severe accuracy degradation, which led to smaller prediction
gaps between the fair and biased models. In Figures 8 and
9, the attack performance can be further enhanced by using
fairer models with more substantial accuracy drops and fair
methods with more significant fairness-accuracy trade-offs.

6 Mitigation
We further discuss two potential defense mechanisms to
counter the proposed attack method:
Information Access Control. This involves constraining
the adversary’s access to key data, thereby potentially dimin-
ishing the attack’s effectiveness. For example, by restricting
the output solely to predicted labels and withholding confi-
dence scores, we can significantly hinder the efficiency of
potential attacks. Furthermore, as a proactive step to mitigate
privacy risks, we propose the preemptive release of prediction
results from fair models before their complete deployment.
Differential privacy (DP). Differential privacy, as intro-
duced in [Dwork et al., 2006], serves as a foundational prin-
ciple for privacy preservation. We apply the differentially pri-
vate stochastic gradient descent (DP-SGD) from [Abadi et al.,

Models Acc AUC TPR@FPR

Fairs 50.8 (↓ 2.4) 51.2 (↓ 3.6) 0.0 (↓ 0.04)
Ours 53.4 (↓ 7.2) 55.8 (↓ 10.0) 0.0 (↓ 0.3)

Fairl 50.5 (↓ 0.3) 49.8 (↓ 0.5) 0.1 (↓ 0.1)
Ourl 51.4 (↓ 3.3) 51.2 (↓ 6.1) 0.1 (↓ 1.1)

Table 4: DP-SGD results with δ = 10−5, ϵ = 0.85 in (%).

2016] to defend against the attacks considering the models for
the CelebA (T=s/S=g) in Table 2. Table 4 shows the defense
results for the existing attacks and the proposed FD-MIA. The
results show that introducing DP noise leads to a notable de-
crease in attack accuracy, signifying the potential of DP-SGD
as a defensive measure. Notably, despite the added noise,
our attacks (Ours, Ourl) still exhibit a persistent edge over
existing approaches. This implies that increased noise lev-
els are required to attain comparable defense performance.
It indicates the superior attack performance of the proposed
FD-MIA compared to the existing ones.

7 Conclusions
This paper evaluates the privacy risks of fairness interventions
by employing membership inference attacks (MIAs). Our re-
sults indicate that fair models often maintain an unexpected
level of resilience against existing MIAs for binary classifiers.
However, we show that existing attack methods are inefficient
as the trained attack models degrade into simple threshold
models. Further, we discover a novel attack method named
FD-MIA, which leverages predictions from both biased and
fair models to exploit the prediction gaps between member
and non-member data. It can be integrated into existing at-
tacks and pose substantial threats to model privacy. We con-
duct experiments across six datasets, three attack methods,
and five representative fairness approaches. The results con-
sistently validate our findings and the efficacy of the proposed
MIA method. While our attack is tailored to fair binary clas-
sifiers, it can be extended to a broader range of models with
fairness disparities. Our insights contribute to a deeper under-
standing of privacy issues related to the application of fairness
interventions, emphasizing the imperative need for meticu-
lous design and deployment of trustworthy models. All the
appendix can be found in this link1.

1https://arxiv.org/abs/2311.03865



Ethical Statement
We reveal a concerning tension between the pursuit of al-
gorithmic fairness and model privacy. This trade-off raises
important ethical questions that warrant careful examination.
We measure model fairness using different metrics and as-
sess the model’s privacy performance with MIAs, which can
be used for evaluating deployed models. We encourage the
adoption of techniques like differential privacy to mitigate
privacy risks while maintaining fairness. By incorporating
these key considerations, we aim to provide practitioners with
a more holistic understanding of the challenges and potential
solutions, enabling them to navigate this complex issue in a
responsible and ethical manner.
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