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Abstract—An iterative fast segmented cyclic convolution (IF-
SCC) method is presented for accurately and efficiently synthe-
sizing the pattern of a uniformly spaced circular array (USCA)
considering directive element patterns as well as mutual coupling.
In this method, the transformations between the excitation vector
and the USCA pattern are formulated as a fast segmented cyclic
convolution (FSCC) and inverse FSCC which can be highly
efficiently accomplished by using fast Fourier transform (FFT)
and inverse FFT. The IFSCC method overcomes the limitation
of FFT in synthesizing USCA patterns without interpolation or
approximation processes. Numerical examples of synthesizing dif-
ferent USCA patterns are conducted to validate the effectiveness
and efficiency of the proposed method. The synthesis results also
demonstrate the advantages of the proposed method.

Index Terms—Circular arrays, conformal antennas, antenna
arrays, radiation pattern synthesis.

I. INTRODUCTION

C IRCULAR antenna arrays provide wide-angle or full-
angle beam scanning in the azimuth plane, making them

highly versatile in high-performance systems [1], [2]. Various
advanced techniques have been developed for circular antenna
array pattern synthesis, including analytical approaches [3],
[4], stochastic optimization algorithms [5]–[11], convex opti-
mization (CO) techniques [12], [13], and alternating projection
approach (APA) [14]–[16]. Analytical approaches are compu-
tationally efficient but struggle to achieve precise pattern shape
control. Stochastic optimization algorithms and CO are flexible
for arbitrary antenna arrays but are time-consuming. Addi-
tionally, CO cannot be directly applied to shaped mainlobe
synthesis. APA is generally faster than stochastic optimization
and CO techniques, but it requires numerous repeated compu-
tations of array patterns to update the excitation distribution,
which constitutes the main time cost of APA.

For applications in complex and changing environments,
array pattern shape should be accordingly optimized and
updated in a short period of time. As is known, the iterative
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fast Fourier transform (FFT) method which employs the FFT
and inverse FFT to speed up the transformations between
excitation distribution and array factor can be considered as
the speed-accelerated version of the APA [17]. Combining
with the nonuniform FFT (NUFFT) [18] and active element
pattern (AEP) expansion method [19], [20], this technique can
be extended to unequally spaced array synthesis and even with
mutual coupling. However, these extended iterative FFT tech-
niques are currently limited to synthesizing linear and planar
arrays. By using NUFFT to synthesize a linear array obtained
through the projection of a circular array, and compensating for
positional effects of the array elements, circular array synthesis
becomes possible [21]. More recently, the NUFFT technique
was progressed to speed up the calculation of spherical antenna
array factors [22]. Despite the success, the extended NUFFT
techniques focus solely on the array factors, and they introduce
some approximation errors. To the best of our knowledge,
there is a lack of fast algorithms that can apply the FFT to
circular array pattern synthesis without any interpolation.

In this work, we present an iterative fast segmented cyclic
convolution (IFSCC) method to accurately and efficiently syn-
thesize pattern of the uniformly spaced circular array (USCA)
considering directive element patterns and mutual coupling.
Fast segmented cyclic convolution (FSCC) and inverse FSCC
are introduced to speed up the forward and backward transfor-
mations between the excitation vector and the USCA pattern.
Although an initial idea for the forward FSCC was described in
our brief conference paper [23], this letter presents for the first
time detailed derivations of the forward and inverse FSCC as
well as the whole pattern synthesis iteration procedure. Numer-
ical examples of synthesizing USCA patterns with different
requirements including low sidelobe, shaped mainlobe, and a
null are provided to validate the effectiveness and advantages
of the proposed method.

II. FORMULATION AND ALGORITHM

A. Fast Cyclic Convolution for USCA Pattern and Excitation
Distribution Computation

Consider a USCA with N elements distributed at a circle
of radius R in the xoy plane. Its far-field pattern at xoy plane
can be written as

AF (φ) =
N−1∑
n=0

wna(φ− n∆ϕ)ejβR cos(φ−n∆ϕ) (1)
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Fig. 1. Schematic diagram of USCA and sampling points. (a) Sampling
points φ according to the positions of the USCA elements and (b) Segmented
sampling points φ.

where φ is the observation angle away from x-axis, ∆ϕ =
2π/N is the uniform angle interval between neighboring
elements, β = 2π/λ is the wavenumber in free space, and
λ is the wavelength. wn is the complex excitation for the
nth element, and a(φ) is the pattern of the first element
located at x-axis, which can include mutual coupling when it is
obtained by full-wave simulation or measurement in an array
environment. In the USCA synthesis, the patterns of different
elements can be easily described by rotating a(φ) as shown
in (1).

Note that (1) does not contain a Vandermonde structure, so
it cannot be directly calculated by discrete Fourier transform.
To evaluate the array pattern, we uniformly sample φ at an
interval of φ = k∆φ. If we set ∆φ = ∆ϕ = 2π/N as shown
in Fig. 1(a), we have φ = 2kπ/K for k = 0, 1, · · · ,K − 1
where K = N . In this case, (1) can be rewritten as

AF [k] =

N−1∑
n=0

wna

[
(k − n)

2π

N

]
ejβR cos[(k−n) 2π

N ]. (2)

Thus, by introducing the following two sequences

x [n] = wn, n = 0, 1, · · · , N − 1 (3)

h [k] = a

[
k · 2π

K

]
ejβR cos(k· 2πK ), k = 0, 1, · · · ,K−1 (4)

we can rewrite (2) as the following form

{AF [k]} = {x[k]⊛ h[k]}N =
N−1∑
n=0

x [n]h [k − n]. (5)

Since the sequence h[k] is periodic with a period of K where
K = N , if we consider the excitation sequence x [n] as a
periodic function, the summation of (5) can be viewed as the
cyclic convolution of two N -length sequences. By applying
the cyclic convolution theorem, it can be efficiently computed
using FFT and inverse FFT as the following form

{AF [k]} = F−1 {F {x [k]} ◦ F {h [k]}} (6)

where F {∗} and F−1 {∗} represent FFT and inverse FFT
of a sequence, respectively, and the operator “◦” denotes the
Hadamard product of two sequences.

The excitation distribution of the array can be easily ob-
tained through the inverse process of (6) as

{x[k]} = F−1 {F{AF [k]} ⊘ F{h[k]}} (7)

where the operator “⊘” denotes the Hadamard division of two
sequences.

Computation of the array pattern and excitation using the
above cyclic convolution can be very efficient. However, in
practice, ∆φ should be much smaller than ∆ϕ. That is, K ≫
N . In this situation, the sampled array pattern can be written
as

AF [k] =
N−1∑
n=0

wna[2π

(
k

K
− n

N

)
]ejβR cos[2π( k

K − n
N )]. (8)

Note that since K ̸= N , the above expression is not the form
of cyclic convolution anymore, and consequently the FFT-
based highly efficient computation technique is not applicable.

B. FSCC and Inverse FSCC for USCA Pattern Synthesis

To overcome the mentioned problem, we develop a seg-
mented fast cyclic convolution (FSCC) and inverse FSCC for
efficiently performing the forward and backward transforma-
tions between the circular array excitation distribution and
pattern. For simplicity, we assume that K = L×N where L
is a positive integer. Here we introduce two auxiliary variables
for indexing the pattern sampling points. That is defining
k1 = ⌊k/L⌋ and k2 = k mod L. Then we have k = k1L+k2
where k1 = 0, 1, · · · , N − 1 and k2 = 0, 1, · · · , L − 1. By
integrating this relation into (5), we obtain

AFk2
[k1] =

N−1∑
n=0

wna
[
2π((k1−n)L+k2)

NL

]
· ejβR cos

(
2π((k1−n)L+k2)

NL

)
.

(9)

Then, by defining

hk2
[k1] = a

[
2π (k1L+ k2)

NL

]
e
jβR cos

(
2π(k1L+k2)

NL

)
(10)

we have 
{AF0[k1]} = {x[k1]⊛ h0[k1]}N
{AF1[k1]} = {x[k1]⊛ h1[k1]}N
...
{AFL−1[k1]} = {x[k1]⊛ hL−1[k1]}N

(11)

where {AFk2 [k1]} denotes an N -length decimated pattern
sequence whose every element is selected from each L-
length segment of the pattern sampling points. The sequences
{AFk2

[k1]} with different k2s constitute the total of NL
sampled pattern points. From (11), the sequence {AFk2

[k1]}
can be expressed as the N -length cyclic convolution of the
excitations {x[n]} and the sequence {hk2 [k1]}. Thus, for each
k2 = 0, 1, · · · , L− 1, we have

{AFk2 [k1]} = F−1 {F {x [k1]} ◦ F {hk2 [k1]}} . (12)

Hence, we can apply the N -point FFT and inverse FFT to
speed up the computation of each segment of array pattern
samples. This method is called FSCC method.

On the other hand, if the circular array pattern is known,
we can also efficiently calculate the excitation sequence by the
inverse FSCC as

{xk2
[k1]} = F−1{F{AFk2

[k1]} ⊘ F{hk2
[k1]}}. (13)
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C. IFSCC Algorithm for USCA Pattern Synthesis

By incorporating the FSCC and inverse FSCC method into
the iterative process based on APA [25], we propose an
iterative FSCC (IFSCC) method to realize the USCA pattern
synthesis. In the qth iteration, firstly, the pattern AF (q−1)[k] of
USCA is efficiently obtained by the proposed FSCC method
using w

(q−1)
n . Then AF (q−1)[k] will be revised according to

the synthesis requirement such as low sidelobe level (SLL)
and so on. For example, we assume the desired amplitudes
of the pattern are between the upper bound ΓU [k] and lower
bound ΓL[k], then the AF (q−1)[k] can be modified to AF ′[k]
with the desired boundaries in the following way:

AF ′ [k] =
ξ[k]ΓU [k] AF (q−1)[k]

|AF (q−1)[k]| , if
∣∣AF (q−1)[k]

∣∣ > ΓU [k]

AF (q−1)[k], ifΓL[k] ≤
∣∣AF (q−1)[k]

∣∣ ≤ ΓU [k]

ΓL [k] AF (q−1)[k]

|AF (q−1)[k]| if
∣∣AF (q−1)[k]

∣∣ < ΓL[k]

(14)
where ξ[k] ∈ [0, 1] is the over modification factor which is
used to quickly suppress the SLL. We can impose constraints
on the excitation, such as dynamic range ratio (DRR) in the
inverse FSCC process. The specific procedure is given in
Algorithm 1.

In the IFSCC procedure, the F{hk2
[k1]} calculated in

Step 2 does not change with iteration, its computational
complexity is not included in the iterative process. If
the radix-2 FFT is used, the total number of complex
multiplications required for Q iterations is approximately
[0.5Q (N + 3K) logN + 2KQ]. In comparison, the APA re-
quires 2QNK complex multiplications in the same case,
where the computational complexity of the projection operator
of feasible projection has been ignored because it does not
change with iteration. Assume that L = 15, the computational
complexity of the proposed IFSCC will be lower than that of
APA when N ≥ 2. Although the synthesis procedure may
require several hundreds of iterations to achieve the desired
pattern performance, this procedure can be implemented very
efficiently thanks to the usage of the FSCC. It is important
to note that since the IFSCC method is based on the alter-
nating projection framework, it cannot guarantee the global
optimality of its synthesized results.

III. NUMERICAL RESULTS

To demonstrate the effectiveness and efficiency of the
proposed IFSCC algorithm, we present two examples of syn-
thesizing USCA patterns with varying requirements. In both
examples, we set L = 15, Q = 500, and ξ = 0.71.

A. Synthesizing Flat-top Pattern for a 25-element USCA Con-
sidering Directional Element Patterns

In the first example, we synthesize a flat-top pattern for a
USCA considering directional element patterns. This array has
25 dipole elements uniformly distributed on a 120◦ arc of a
cylinder with radius R = 18λ/π. A flat-top pattern with the
mainlobe region of ΦML = [−25◦, 25◦] was synthesized in [7]

Algorithm 1 Proposed IFSCC for efficient USCA synthesis
1: For a USCA, set the parameters including the oversampling factor

L, the total number of samples K = N ∗L, and the desired upper
bound ΓU [k] and lower bound ΓL[k] for k = 0, 1, · · · ,K − 1.

2: Initialize the excitation w
(0)
n as the x0[n], and calculate sequence

hk2 [k1] as (10) for each k2 = 0, 1, · · · , L − 1, where k1 =
0, 1, · · · , N − 1.

3: Set the maximum number of iterations Q, and the current
iteration number q = 1.

4: Apply the FSCC method in (12) on x(q−1)[k1] to obtain the
AF

(q−1)
k2

[k1] for each k1, k2, and use k = k1L + k2 to obtain
the corresponding pattern AF (q−1)[k] of USCA.

5: If the obtained |AF (q−1)[k]| does not exceed the desired bound
ΓL[k] and ΓU [k] ,or q > Q, the synthesis procedure will end.

6: Apply the modification method in (14) and obtain AF ′[k].
7: Apply the inverse FSCC method in (13) to obtain the correspond-

ing x′
k2
[k1] for each k1, k2, and calculate the average excitation

sequence as x′[k1] =
∑L−1

k2=0 x
′
k2
[k1]/L.

8: Adjust the x′[k1] to meet its constraints, such as DRR, or phase-
only synthesis, then obtain the final excitation sequence x(q)[k1]
of this iteration.

9: q = q + 1, and go back to step 4.

by using simulated annealing (SA) method. In [7], the element
pattern for the dipole on the cylinder was approximated as

a(φ) = [1 + 2max (cosφ,−0.5)] /3. (15)

The pattern obtained in [7, Fig. 3] is replotted in Fig. 2(a). Its
maximum SLL was −30.0 dB, and the corresponding excita-
tion DRR was 8.35. Then we use the NUFFT to synthesize
the same pattern but with an even lower sidelobe level for
the same array [21]. We set the same mainlobe region ΦML

and set DRR ≤ 8.35. In addition, we consider the desired
upper bound of the sidelobe region to be ΓSL

U = −35.0
dB and the bound of the mainlobe region is ΓML

L = −1.0
dB and ΓML

U = 0 dB. In the NUFFT method, the number
of sampling points is set to 1024. The USCA is converted
into a nonuniform linear array, which is then interpolated
into a 35-element uniform virtual array. Each real element
is approximated by 7 virtual elements. Since the NUFFT only
synthesizes array factors, the different element orientations are
ignored, leading to errors. Therefore, the obtained SLL for
the directional USCA in this example is significantly higher
than ΓSL

U , and the mainlobe shape is also unsatisfactory, as
shown in Fig. 2(a). The obtained DRR is 8.35. Moreover, the
computational time of NUFFT is 0.035 seconds.

Now we apply the proposed IFSCC to synthesize the pattern
with the same requirements as used in NUFFT. Here we
add 47 virtual elements to the original arc array such that a
72-element USCA occupying the whole circle is generated.
The IFSCC is then applied to this fully occupied USCA.
We set K = 1080 for pattern sampling points. In each
iteration, we update the real element excitations and force the
virtual element excitations to 0. The pattern obtained using
the IFSCC is shown in Fig. 2(a) and the excitation values
are stored in the QR code. Compared to the result in [7]
and the pattern synthesized by NUFFT, it is obvious that the
pattern synthesized by the IFSCC has a much lower SLL while
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Fig. 2. (a) The synthesized flat-top patterns by the SA in [7], the NUFFT
in [21], and the proposed IFSCC for the 16-dipole-USCA. (b) The curves
of achieved pattern performance by the IFSCC. The excitation values of the
proposed IFSCC are stored in the quick response (QR) code.

achieving the desired flat-top beam. To evaluate the beam-
shaping accuracy, we define a ripple level (RL) as follow

RL = max
φ∈ΦML

∣∣∣∣[|AF (φ)|]dB −
[ΓML

L ]dB + [ΓML
U ]dB

2

∣∣∣∣ . (16)

The curves of the maximum SLL and RL for 500 iterations
are shown in 2(b). As can be seen, the RL rapidly drops to a
very small level, and then the decrease becomes slower since
the RL reaches the required value of 0.5 dB. And the SLL has
closed to the desired bound at the 215th iteration and more
iterations can only provide a very limited improvement. The
obtained DRR is 7.20, slightly lower than the preset bound of
8.35. Note that the IFSCC takes 0.040 seconds to accomplish
the pattern synthesis in this example, which proves that the
IFSCC can achieve more accurate pattern synthesis using a
time comparable to that of the NUFFT.

B. Synthesizing Pattern with an Arc-Shaped Null for a 16-
element USCA without/with Mutual Coupling

In the second example, we apply the proposed IFSCC to
synthesize a pattern with an arc-shaped null for a 16-isotropic-
element USCA with a radius of R = 1.28λ. This pattern was
synthesized in [24] by using an auxiliary phase algorithm with
DRR reduction (APADR). The obtained pattern in [24, Fig. 10]
is re-plotted in Fig. 3. The maximum SLL of the pattern in
[24] was −19.1 dB, and the maximum value of its arc-shaped
null was −30.9 dB. And the excitation DRR was 4.4. Now,
we apply the proposed IFSCC to synthesize the same pattern
but with an even lower SLL and deeper notching for the same
array. In the proposed method, we adopt the same mainlobe
direction of φ0 = −10◦ and the same mainlobe region of
ΦML = [−36.5◦, 16.5◦] as those in [24]. Then we set K =
240. In addition, we set the desired SLL as ΓSL

U = −22.0 dB,
and the maximum value of the null as ΓNull

U = −32.0 dB. The
excitation DRR constraint is kept as DRR ≤ 4.4. The pattern
obtained by the IFSCC is shown in Fig. 3. The maximum SLL
is −22.2 dB which is 3.1 dB lower than it in [24], and the peak
value of the arc-shaped null is −34.6 dB which is 3.7 dB lower
than that it in [24]. The excitation DRR meets the constraint of
4.4. We defined DL = max{[|AF (φ)|]dB − [ΓU ]dB} for φ /∈
ΦML as the pattern performance index, and the DL versus the
number of iterations is shown in Fig. 3(b). As can be seen, the
DL reaches a stable state after about 200 iterations. In this
example, the IFSCC procedure takes only 0.013 seconds.
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Fig. 3. (a) The synthesized patterns with shaped-null by the APADR in [24],
the IFSCC, and the full-wave simulated pattern using HFSS. (b) The maximum
difference between pattern value and upper bound versus the number of
iterations. The excitation values of the IFSCC are stored in the QR code.

Fig. 4. Geometry of a 16-monopole uniformly spaced circular array.

The proposed IFSCC can also be applicable when consider-
ing mutual coupling. To validate this point, we build a USCA
with 16 monopole antennas uniformly distributed on a circle
of R = 76.4 mm, as shown in Fig. 4. The antenna works at
5.0 GHz. The element pattern in the array environment can
be extracted by using full-wave simulation. Then, with the
same parameters setting, we apply the IFSCC to synthesize the
same pattern as above. The obtained pattern for this monopole
USCA is also shown in Fig. 3(a) for comparison. It can be
seen that the obtained pattern for this monopole array still
meets the same preset sidelobe and arc-shaped null bound.
The DL versus the number of iterations is also shown in Fig.
3(b). It is obvious that the pattern meets the requirements at
the 161th iteration. The synthesis process takes only 0.013
seconds. It can be safely concluded that the proposed IFSCC
is still effective for a USCA including mutual coupling.

IV. CONCLUSION

We have proposed an IFSCC method to accurately and
efficiently synthesize USCA patterns. The transformations
between excitation vector and USCA pattern are formulated
for the first time as FSCC and inverse FSCC, which can be
speeded up using FFT and inverse FFT without introducing
any approximation errors. Some useful constraints can be
easily incorporated into the iterative process of this method.
Two examples of synthesizing patterns considering directional
elements and even element structure have been conducted to
demonstrate the superior accuracy and efficiency of the IFSCC
compared to existing algorithms. The proposed method gives
an idea to employ the rotationally invariant property of USCA
to enable the utilization of FFT in pattern synthesis. This idea
could be extended to applications related to circular arrays.
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