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Abstract. Quantum computation is inevitably subject to imperfections
in its implementation. These imperfections arise from various sources,
including environmental noise at the hardware level and the introduc-
tion of approximate implementations by quantum algorithm designers,
such as lower-depth computations. Given the significant advantage of
relational logic in program reasoning and the importance of assessing
the robustness of quantum programs between their ideal specifications
and imperfect implementations, we design a proof system to verify the
approximate relational properties of quantum programs. We demon-
strate the effectiveness of our approach by providing the first formal
verification of the renowned low-depth approximation of the quantum
Fourier transform. Furthermore, we validate the approximate correct-
ness of the repeat-until-success algorithm. From the technical point of
view, we develop approximate quantum coupling as a fundamental tool
to study approximate relational reasoning for quantum programs, a novel
generalization of the widely used approximate probabilistic coupling in
probabilistic programs, answering a previously posed open question for
projective predicates.

Keywords: Relational Hoare Logic · Approximating Reasoning ·
Quantum Programming Languages

1 Introduction

Program equivalence [11,18,41] is a central concept in many areas of computer
science, including software engineering [31,36,54], translation validation of com-
pilers [38], program optimization [30], and program analysis [6,15,35]. Relational
verification aims to prove the relational properties between two programs. A typ-
ical Hoare-style relational judgment is of the form � c1 ∼ c2 : Ψ ⇒ Φ where c1
and c2 represent two compared programs, Ψ and Φ are relational assertions in
the deterministic scenario [10], where relational Hoare logic (RHL) predicates are
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binary relations over memories. The judgment states that for any initial memo-
ries m1 and m2 that satisfy the precondition Ψ , the resulting memories m′

1 and
m′

2 should satisfy postcondition Φ. For probabilistic programs [7], probabilistic
relational Hoare logic (pRHL) lifted the predicates into relations over probabilis-
tic distributions on memories. Furthermore, [9] introduced extra parameters to
allow approximate lifting of relations to distributions. To be specific, the judg-
ments defined in approximate probabilistic relational Hoare logic (apRHL) are of
the form c1 ∼α,δ c2 : Ψ ⇒ Φ with parameters α, δ for reasoning about differential
privacy.

Since the emergence of quantum programming languages, there have been
various works [25,27,32,44,57,59–62] about the formal verification of quantum
programs. Among techniques in program analysis, the exact relational logic for
quantum programs attracts lots of attention [8,33,51]. Relational logic provides a
more expressive approach to characterize the relation between two programs. For
instance, direct verification of the equivalence between quantum programs S1 and
S2 defined on register q̄ requires checking the equivalence between �S1�(ρ) and
�S2�(ρ) for all ρ in Hilbert space Hq̄ that involves enumerations of an infinite set.
A quantum relational judgment concerning the quantum equivalence predicate
can concisely explain the direct enumerations. However, none of the above works
considers approximate reasoning that is universal in practice.

– It is implausible to physically implement quantum gates with perfect accu-
racy on the hardware level, and the need to consider approximations is likely
inevitable. As noted by John Preskill, the noise in quantum gates will limit the
size of reliable quantum circuits, and technologies for more accurate quantum
gates are of great value in the Noisy Intermediate-Scale Quantum (NISQ) [42]
era.

– On the software level, the NISQ nature of hardware signifies the importance
of taking noise into account at the level of quantum algorithm design. More
specifically, approximate computation can be more efficient and less erroneous
than precise one since it can improve the depth of circuits and simplify the
calculation. A good example is the approximate quantum Fourier transform
[16], which achieves a lower circuit depth approximation of the exact quantum
Fourier transform used in Shor’s celebrated algorithm [45].

As for approximate reasoning in quantum settings, [66] discussed the robust-
ness of quantum programs by introducing the concept of approximate satisfac-
tion of predicates, [26] proposed a parameterized diamond norm to characterize
the distance between an ideal program and a noisy one. Despite the signifi-
cant advancements in quantum approximate reasoning and the recognition of
the importance of relational reasoning, there remains a notable gap in the field
— an absence of a robust logical framework for effectively reasoning about the
relational properties between quantum programs approximately. In quantum
approximate relational reasoning, the main obstacles are:

– There is no mathematical theory for a quantum version of approximate cou-
plings, an open question in [8]. The lack of such a theory significantly affects
the applications of exact quantum coupling and relations quantum Hoare
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logic. Usually, two quantum programs have different branching probabilities
in the presence of noise or approximations. Under these circumstances, their
corresponding quantum states have different traces, where exact quantum
couplings on these states do not exist. The main difficulties in defining an
approximate quantum coupling include defining a distance between quantum
states, which can be highly nonlinear. Previous knowledge about probabilis-
tic couplings may not directly apply: even for the exact quantum coupling,
fundamental properties of probabilistic coupling [24] are no longer true [67].

– Designing an approximate relational quantum Hoare logic system is indeed
highly challenging. The system needs to consider several factors, including
infinite executions of quantum while loops, approximated quantum couplings,
and the applicability of the logic rules. In quantum programming, a while loop
can have infinite executions of the loop body because of the probabilistic
feature of quantum measurements. Furthermore, when dealing with approx-
imate quantum couplings, the system must handle the inherent uncertainty
and approximation errors that arise when coupling with program branches.

– The applicability of logic rules adds another layer of complexity. To strike a
balance between the accuracy of the logic rules and simplicity, efficiency, and
usability is a crucial consideration when designing a logic system. Ensuring
the logic rules are powerful yet easy to use for reasoning relational properties
of complicated quantum programs requires careful consideration and analysis.

In this paper, we derive an approximate version of the existing quantum
relational Hoare logic, thus making approximate relational reasoning feasible.
Our judgment is of the form

S1 ∼δ S2 : A ⇒ B

where S1 and S2 represent compared quantum programs, A and B are projective
quantum predicates over the whole system. The validity of our judgment is
based on the idea of approximate (quantum) coupling and lifting. A state ρ
is a δ-coupling for the state pair 〈ρ1, ρ2〉 if trace distances D(ρ1,Tr2(ρ)) and
D(ρ2,Tr1(ρ)) are both not bigger than δ. A state σ is a witness of the δ-lifting
ρ1 ∼δ

P ρ2 if σ is a δ-coupling for the state pair 〈ρ1, ρ2〉 and satisfies the predicate
P (Pσ = σ). Informally, our judgment holds if for any quantum lifting ρ1 ∼0

A ρ2
of the inputs, there exists a witness of the δ-lifting �S1�(ρ1) ∼δ

P �S2�(ρ2) of the
outputs.1

Technical contributions include:

– Approximate quantum liftings. We propose a novel notion of approximate
quantum liftings concerning projection-based quantum predicates to make
approximate reasoning simple and powerful. We do not require two quantum
states to have the same trace in approximate quantum lifting. In other words,
the exact quantum coupling may not exist. We employ the existing distances,
including trace distance and diamond norm, and define a “Hausdorff-like”

1 See Sect. 2 and Sect. 5 for a detailed definition.
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distance between projections incorporated with quantum coupling to be the
metric of the approximation of the couplings.

– Sound aqRHL. We propose a formal relational judgment to incorporate
the spirit of classical apRHL with a new quantum explanation based on
the proposed approximate quantum liftings. A sound approximate quantum
relational Hoare logic (aqRHL) is built based on our relational judgments.
Our choice of quantum δ-lifting allows us to track the relational properties of
two programs with different classical branching probabilities. In particular,
our methodology allows us to compute proper upper bounds for approximate
liftings for quantum equivalence relations, which plays a central role in char-
acterizing the equivalence of quantum programs.

– Application. We demonstrate the first formal verification of the low-depth
approximate quantum Fourier transform (QFT) with an error bound that is
asymptotically equivalent to the one in [16]. Implementing QFT is a signifi-
cant step in the development of quantum algorithms such as period finding
[45], HHL algorithm [21] and quantum principal component analysis [34]. We
also apply aqRHL, particularly the loop rule, to reason the repeat until suc-
cess which is one of the essential loop programs in quantum computation.
Other applications covered in the complete edition of this paper include the
verification of appropriate decomposition of unitary gates, and the correctness
of bit flip code against an arbitrary single-qubit error.

2 Preliminary and Notations

This section offers a brief introduction to quantum computation and necessary
notations from [39].

The state space of a quantum system is a Hilbert space H. The Dirac notation
|ψ〉 denotes a unit complex vector (called pure state or vector state). The most
important orthonormal basis of one-qubit system is the computational basis, i.e.
{|0〉, |1〉}. Superposition is a key feature that makes quantum programs different
from classical ones, such as a qubit being in the superposition (|0〉±|1〉)/√2. An
operator acting on an d-dimensional Hilbert space H is represented as a d × d
matrix. A positive semi-definite, Hermitian operator, ρ acting on H, is called a
partial density operator if its trace satisfies Tr(ρ) ≤ 1. Particularly, ρ is called a
density operator if Tr(ρ) = 1. The partial density operators can represent both
pure and mixed quantum states. For a pure state |ψ〉, its partial density operator
is |ψ〉〈ψ|, where 〈ψ| is the conjugate transpose of |ψ〉. For a mixed state which is
a classical distribution {pi} over pure states {|ψi〉}, its partial density operator
is

∑
i pi|ψi〉〈ψi|. We use D(H) to denote the set of all partial density operators

acting on Hilbert space H.
Let q̄1 and q̄2 be two independent registers in states ρ1 ∈ D(Hq̄1) and ρ2 ∈

D(Hq̄2) respectively, the composite register q̄ = {q̄1, q̄2} is then in the state
ρ1 ⊗ ρ2 ∈ Hq̄ = Hq̄1 ⊗ Hq̄2 . Partial trace is a very useful tool for describing
subsystems of a composite quantum system. Formally, the partial trace over
Hq̄1 is a mapping Tr1(·) from operators in Hq̄1 ⊗Hq̄2 to operators in Hq̄2 defined
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by Tr1(|ϕ1〉〈ψ1| ⊗ |ϕ2〉〈ψ2|) = 〈ψ1|ϕ1〉 · |ϕ2〉〈ψ2| for any |ψ1〉, |ϕ1〉 ∈ Hq̄1 and
|ψ2〉, |ϕ2〉 ∈ Hq̄2 . The partial trace Tr2(·) can be defined symmetrically. If the
composite system q̄ = {q̄1, q̄2} is in the state ρ, then subsystems q̄1 and q̄2 are
in states Tr2(ρ) and Tr1(ρ) respectively.

The evolution of an isolated quantum system can be characterized by a uni-
tary operator U such that U†U = UU† = I, where † denotes the conjugate
and transpose. Here we introduce some commonly used unitary operators, also
known as “gates”, that will be used in later examples:

X =
(

0 1
1 0

)

Y =
(

0 −i
i 0

)

Z =
(

1 0
0 −1

)

H =
1√
2

(
1 1
1 −1

)

P (θ) =
(

1 0
0 eiθ

)

CNOT =
(

I 0
0 X

)

c-P (θ) =
(

I 0
0 P (θ)

)

The act of extracting information from a quantum system is known as quan-
tum measurement. A measurement M = {Mm} is described by a set of linear
operators over H such that

∑
m M†

mMm = I, where the subscript m refers to
the measurement outcome. Applying a quantum measurement M on |ψ〉, the
probability of observing outcome m is pm = 〈ψ|MmM†

m|ψ〉, and the state after
the measurement collapses into Mm|ψ〉/√

pm.
A projection is a linear operator P on H that satisfies P 2 = P = P †. This

paper adopts the convention from [12] and recent work [51,66] that constrains
quantum predicates to be Hilbert spaces or projections. The complete partial
order over Hilbert subspaces is equivalent to the inclusion relation ⊆. This choice
of predicates enables us to define the assertion about quantum states.

Definition 1 (Support). If A =
∑

i λi|ψi〉〈ψi|, where |ψi〉 is an unit vector
in H and λi > 0, then the support of A is the space spanned by {|ψi〉}. I.e.,
supp(A) = span{|ψi〉}.
Definition 2 (Satisfaction). A partial density operator ρ satisfies a predicate
P , denoted by ρ � P , if supp(ρ) ⊆ P .

A general quantum operation, described by a superoperator E , can be imple-
mented by combining unitary transformations with quantum measurements by
introducing ancilla systems and discarding post-measurement states. A super-
operator always maps density matrices to partial density matrices and has the
Kraus representation. Readers may refer to the system-environment model in
Sect. 8.2 [39] for more details.

3 Quantum Programming Language

In this section, we review the syntax and semantics of the quantum while-
language [59]. We use var(S) to represent the set of all variables present in
a quantum program S, and HS = ⊗q∈var(S)Hq to denote the Hilbert space of all
the quantum variables in program S. The syntax in Definition 3 is the same as
[59] except that the conditional statement is replaced by the if statement.
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Definition 3 (Syntax). The following syntax defines the quantum programs:

(Stmts) S ::= skip | q := |0〉 | q̄ := U [q̄] | S1;S2

| if (�m · M[q̄] = m → Sm) fi | while M[q̄] = 1 do S od

The denotational semantics of the quantum while-language are presented in
Fig. 1. By convention, we use �S� to denote the semantic function of a program S.
Statement q := |0〉 initializes a variable q in state ρ to |0〉〈0| while leaving other
variables unchanged, where |ψ〉q〈ϕ| denote the outer product of the vector states
|ψ〉 and |ϕ〉 in Hq. The statement q̄ := U [q̄] performs the unitary transition ρ →
UρU† over register q̄. Quantum measurements work as guards to set a variable
in a mixed state. For the if statement, if the measurement outcome is m, the
input state ρ will collapse into MmρM†

m/pm with probability pm = Tr(MmρM†
m)

and then executes subprogram Sm. Here we absorb the probability pm into the
collapse state, and MmρM†

m represents the corresponding measurement output.
The final output is the summation of the outputs of all branches. For the loop
statement, M0 ◦ (�S� ◦ M1)k denotes the k-th unrolling of loop statement.

Fig. 1. Denotational semantics of quantum while-language

Lemma 1 ([59]). For any quantum while program S defined in Fig. 1, its deno-
tational semantics function �S� : D(H) → D(H) is a superoperator.

4 Quantum Approximate Coupling and Liftings

4.1 Approximate Quantum Coupling and Lifting

We first review the quantum generalization of the classical trace distance, a
commonly used metric for the difference between two (partial) quantum states.

Definition 4. The trace distance of two partial density operators ρ and σ is
D(ρ, σ) ≡ 1

2Tr|ρ − σ|, where |A| =
√

A†A for any operator A, i.e., the positive
square root of A†A.
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In the classical setting, two discrete distributions μ1 and μ2 over sets A1 and
A2 are coupled by a distribution μ over A1×A2 if and only if the first and second
marginals of μ are exactly μ1 and μ2, respectively. This notion of coupling for
distributions naturally generalizes to an exact quantum coupling [8] for density
matrices. Formally, we say ρ is an exact coupling for 〈ρ1, ρ2〉 if Tr1(ρ) = ρ2
and Tr2(ρ) = ρ1. Commonly, the quantum measurements in two quantum pro-
grams produce different probability distributions. In such cases, exact quantum
coupling does not exist between branches. We propose approximate quantum
coupling parameterized by deviation δ to bound the trace distance between the
“marginal” density matrices.

Definition 5 (Approximate Quantum Coupling). Let ρ1 ∈ D(H1) and
ρ2 ∈ D(H2), then ρ ∈ D(H1 ⊗ H2) is a δ-coupling for 〈ρ1, ρ2〉 if

D(ρ1,Tr2(ρ)) ≤ δ D(ρ2,Tr1(ρ)) ≤ δ

The approximate quantum coupling degenerates to the exact version if δ =
0. Like the classical case, approximate quantum coupling induces approximate
semantics of projective predicates via approximate lifting.

Definition 6 (Approximate Quantum Lifting). Let ρ1 ∈ D(H1) and ρ2 ∈
D(H2), let P be a projection onto a closed subspace of H1 ⊗ H2, then ρ ∈
D(H1 ⊗ H2) is called a witness of the δ-lifting ρ1 ∼δ

P ρ2 if,

1. ρ is a δ-coupling for 〈ρ1, ρ2〉;
2. supp(ρ) ⊆ P .

where δ is the deviation from the exact quantum lifting.

A valid approximate quantum lifting implies the existence of an approximate
quantum coupling that satisfies a quantum predicate. The approximate lifting
ρ1 ∼δ

P ρ2 degenerates into the exact lifting ρ1 ∼P ρ2 when δ = 0. One of the most
important quantum predicates is the equivalence relation between two registers,
as defined below [8].

Definition 7 (Equivalence). Let register p̄ and q̄ are two disjoint registers of
the same size. The quantum equivalence predicate over (p̄, q̄), denoted by ≡(p̄,q̄),
is the projection

(Ip̄ ⊗ Iq̄ + SWAP)/2

over subspace Hp̄ ⊗ Hq̄. SWAP is the swap operator defined on (p̄, q̄) such that
by SWAP|ψ〉|ϕ〉 = |ϕ〉|ψ〉 for any |ψ〉 ∈ Hp̄ and |ϕ〉 ∈ Hq̄.

The quantum equivalence predicate in Definition 7 directly comes from a
natural observation. In the probabilistic world, if two probability distributions μ1

and μ1 over X are the same, then there exists a coupling μ whose support lives in
the identity relation {(a, a) | a ∈ X}. In quantum settings, this is not true due to
superposition. For example, the exact coupling of the state |+〉 = (|0〉 + |1〉)/√2
and itself is |+〉⊗|+〉, which is not in the space spanned by |0〉⊗|0〉 and |1〉⊗|1〉.
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Instead, we use the projection (I + SWAP)/2 to represent the corresponding
symmetric space. By doing so, we have (I + SWAP)(|+〉 ⊗ |+〉)/2 = |+〉 ⊗ |+〉.
The following lemma shows that approximate lifting concerning ≡2 effectively
encodes the trace distance of two partial density matrices.

Lemma 2. For any ρ1, ρ2, we have ρ1 ∼δ
≡ ρ2 ⇔ D(ρ1, ρ2) ≤ 2δ. Particularly,

if δ = 0, we have ρ1 ∼≡ ρ2 ⇔ ρ1 = ρ2.

The introduction of approximate couplings/liftings is necessary when the
comparison can not match the desired predicate exactly. For example, the
implementation of a unitary gate U can be approximated by a proper RUS
circuit [13,40]. Given an input ρ, quantum measurement in each iteration of
the RUS circuit will generate the desired output UρU† with a probability p,
where p is determined by the construction of the RUS circuit. If the itera-
tions of the RUS circuit are unbounded, the desired state can eventually be
achieved. The RUS algorithm’s function E converges to U , as expressed as
E(ρ) =

∑∞
k=1 p(1 − p)k−1UρU† = UρU†. In this case, the exact lifting can

accurately describe the equivalence E(ρ) ∼≡ UρU† with no problem. However,
in practical scenarios, there typically exists an upper bound N on the iteration
count k, leading to an approximate equivalence denoted as E ′(ρ) ∼δ

≡ UρU†,
where E ′ represents the function with bounded looping and δ = (1 − p)N/2.

4.2 Upper Bound of Approximation

The approximation usually arises when we use a desired postcondition to approx-
imate an exact postcondition. Formally, let (A,B) be the pair of two projections
A and B over Hilbert space H1 ⊗ H2, the inference

∀ρ1, ρ2, ρ1 ∼A ρ2 ⇒ ρ1 ∼δ
B ρ2 (1)

demonstrates a general way of introducing approximate reasoning. That is, given
a witness of the exact lifting ρ1 ∼A ρ2, does there exist a witness σ of the
approximate lifting ρ1 ∼δρ2

B ?. The optimal deviation δ in Eq. 1 is equivalent to
the following quantity,

δ = d(A,B) = sup
ρ�A

inf
σ�B

max{D(Tr1(ρ),Tr1(σ)),D(Tr2(ρ),Tr2(σ))} (2)

where d(A,B) can be upper bounded by sup
ρ�A

inf
σ�B

D(ρ, σ) introduced in [66].

In the following, we discuss a simple but important instance of Eq. 1 with
A = (U1 ⊗ U2)B(U1 ⊗ U2)† and B being the quantum equivalence predicate ≡.
Then Eq. 1 can be represented as follows,

∀ρ1, ρ2, ρ1 ∼≡ ρ2 ⇒ U1ρ1U
†
1 ∼A U2ρ2U

†
2 ⇒ U1ρ1U

†
1 ∼δ

≡ U2ρ2U
†
2

where δ can be upper bounded by ‖U1 ·U†
1 −U2 ·U†

2‖�. The diamond norm ‖ · ‖�
proposed by Kitaev [2] can better distinguish between two superoperators with
the help of the power of quantum entanglement by introducing auxiliary qubits.
2 The subscripts can be ignored without confusion.
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Definition 8 (Diamond Norm). Let A : L(H) → L(H) with L(H) denoting
the matrix space of H,

‖A‖� ≡ max
ρ∈D(H⊗H′)

1
2
Tr|(A ⊗ IH′)(ρ)| (3)

where H′ denotes a copy of H. The factor 1/2 is added to keep consistent with
trace distance.

It is straightforward to verify that D(E1(σ), E2(σ)) ≤ ‖E1 − E2‖� for any σ ∈
D(H) for superoperators E1, E2 by choosing ρ = σ⊗IH′/2Dim(H′).3 The distance
between two superoperators can be computed efficiently [53]. Particularly, the
distance between U1 and U2 is

‖U1 · U†
1 − U2 · U†

2‖� =

{
sin α/2 α < π

1 α ≥ π
(4)

where α is the smallest arc containing the spectrum of U†
1U2 [37].

5 Approximate Relational Logic

5.1 Judgment and Validity

Our logic, called aqRHL, “approximates” the quantum relational Hoare logic
described in [8]. The judgments in aqRHL take the following form S1 ∼δ S2 :
A ⇒ B, where S1 and S2 are quantum programs, A and B are projections
over subspaces of Hq̄1 ⊗ Hq̄2 such that q̄i contains all free variables of Si, δ ∈
[0, 1/2] is referred to as the deviation from the exact quantum lifting, respectively.
Registers q̄1 and q̄2 are often omitted since they rarely change along our reasoning
and are often clear from the context.

Definition 9 (Validity). The approximate relational judgement S1 ∼δ S2 :
A ⇒ B is valid, written as � S1 ∼δ S2 : A ⇒ B, if and only if

∀ρ1, ρ2. ρ1 ∼A ρ2 ⇒ �S1�(ρ1) ∼δ
B �S2�(ρ2)

where A and B are projections. If the deviation δ equals zero, it will be omitted
for simplicity.

In Definition 9, we choose projective predicates [12] over the joint system of
two programs because such predicates are the quantum analog of binary rela-
tions, the predicates used in pRHL [9]. Moreover, this definition will become a
judgment of [8] if δ = 0. One of the most important applications of relational
Hoare logic is to verify the equivalence between programs, as presented in the
following lemma. Naturally, the approximate equivalence between programs can
also be reasoned by the approximate relational judgment, where δ characterizes
the deviation of approximation.
3 Dim(H) denotes the dimension of H.
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Lemma 3 (Program Equivalence). Program S1 is equivalent4 to program
S2 if and only if � S1 ∼ S2 : ≡ ⇒ ≡.

The program equivalence can be expressed concisely with predicates being
the equivalence relation, instead of checking whether two quantum programs
perform uniformly by enumeration of an infinite number of states in Hilbert
space. The following example shows that superposition makes quantum program
equivalence more complex than its classical counterpart.

Example 1. Let S1 and S2 be two programs defined on a single bit or qubit. For
classical programs, the state space for programs S1 and S2 is the set {|0〉, |1〉}. Let
Ψ and Φ be the equivalence relation, the relational judgment S1 ∼ S2 : Ψ ⇒ Φ
holds for classical programs S1 and S2 if

�S1�(|0〉〈0|) = �S2�(|0〉〈0|) �S1�(|1〉〈1|) = �S2�(|1〉〈1|) (5)

However, this conclusion no longer holds in quantum programs since the input
state could be a superposition of |0〉 and |1〉. For example, let S1 ::= skip and
S2 ::= q := Z[q], it is clear that S1 and S2 are not equivalent5 although Eq. 5
still holds. To check quantum program equivalence, we need to verify the validity
of �S1�(ρ) = �S2�(ρ) for all ρ in the Hilbert space span{|0〉, |1〉} rather than the
set {|0〉, |1〉}, which involves enumerations of an infinite set.

5.2 Proof Rules

We are ready to provide some proof rules for our aqRHL judgments. These rules
include construct-specific rules (two-sided and one-sided) and structural ones,
as is typical in relational Hoare logic. Notice that rules for branching structures
are discussed in Sect. 7 later.

Simple Rules. Figure 2 includes the two/one-sided proof rules for basic state-
ments and sequence structure. The basic rules, namely [Skip], [Init], [Ut] are
similar to their counterparts in [8] with δ = 0, where they are presented in the
forward variant. Here we use proj(A) to lift non-projection A to its support
before assigning it as a predicate. Notice that the rule [Ut] gives the strongest
postcondition, which means the reverse � q̄1 := U−1

1 [q̄1] ∼ q̄2 := U−1
2 [q̄2] :

(U1⊗U2)A(U†
1 ⊗U†

2 ) ⇒ A still holds. The rule [Seq] demonstrates that the devi-
ation grows linearly with respect to the sequences, which directly comes from
the triangle inequality of trace distance. One-sided rules are necessary when two
programs do not share the same structure. We have only listed the one-side rules
(appended with “-L”) for the left side, and similar rules apply to the right side
symmetrically.

4 That is, �S1�(ρ) = �S2�(ρ) holds for any partial density operator ρ.
5 �S1�(|ψ〉〈ψ|) �= �S2�(|ψ〉〈ψ|) for any superposition |ψ〉 = a|0〉+ b|1〉, 0 < |a|2 + |b|2 ≤

1.
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Fig. 2. Simple aqRHL rules.

Rules for Equivalence Relation. We address a scenario regarding the rules [Ut],
where the precondition and postcondition are equivalence relations defined in
Definition 7. We use diamond norm to bound the deviation in rule [Ut-id], where
U · U† denotes the Kraus representation [39] of unitary U . The rule [Comp]
permits reasoning equivalence between programs by introducing intermediate
programs (Fig. 3).

Fig. 3. Rules for Equivalence Relation

5.3 Soundness Theorem

Theorem 1. [Soundness] For any program S1, S2, projections A and B, devi-
ation δ, we have,

� S1 ∼δ S2 : A ⇒ B ⇒ � S1 ∼δ S2 : A ⇒ B

The soundness of our proof system is proved with respect to the validity of
judgments defined in 9, while the completeness remains an open question. For
classical deterministic programs, relational Hoare logic has been demonstrated
to be relatively complete for terminating programs with the help of providing
additional supplementary one-sided rules. However, relative completeness does
not extend to probabilistic programs. As highlighted in [5], the probabilistic cou-
pling method lacks the robustness of the conductance method in demonstrating
the rapid mixing of Markov chains. Building upon the work laid by [8], the quan-
tum extension of probabilistic couplings and the introduction of approximation
in our judgments further complicate this problem.
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6 Approximate Quantum Fourier Transform

Objective. As a quantum analog of the classical discrete Fourier transform,
quantum Fourier transform (QFT) [17] performs a linear transformation on
quantum states and extracts the periodicity of the amplitudes of quantum states.
Due to the imperfectness of quantum gates, the approximate quantum Fourier
transform (AQFT) is proposed to improve the circuit depth of QFT for effi-
ciency. Reference [17] proposes a direct AQFT based on ignoring gates related
to high-order terms. Cleve and Watrous [16] parallelized the phase estimation
procedure to perform AQFT with lower circuit depth. Let SQFT and SAQFT be
the corresponding quantum programs for QFT and AQFT, respectively. This
section uses our logic to derive the judgment of form SQFT ∼δ SAQFT : ≡ ⇒ ≡
to reason about how well AQFT approximates QFT.

Specification. For an n qubit system, QFT on a computational basis state
|x〉 = |x1x2 . . . xn〉 is defined as the linear operation U such that

U |x〉 = |ψx〉 = 1√
2n

∑N−1
y=0 (e2πi/N )x·y|y〉 (6)

where N = 2n, |ψx〉 is called a Fourier basis state with respect to state |x〉,
x · y denotes the multiplication between the binary representation of x and y.
|ψx〉 can be described as |ψx〉 = |μ0.xn

〉|μ0.xn−1xn
〉 · · · |μ0.x1...xn

〉, where |μθ〉 =
(|0〉 + e2πiθ|1〉)/√2, 0.xi . . . xj denotes the binary fraction xi/2 + xi+1/4 + · · · +
xj/2j−i+1. State |μθ〉 can be obtained by applying the phase shift gate P (2πθ)
(mentioned in Sect. 2) on state |+〉 = (|0〉 + |1〉)/√2. The phase shift gate
P (2πθ) can be decomposed as the sequence of gates Rm = P (2π/2m) since
P (θ1)P (θ2) = P (θ1 + θ2). The controlled Rm gate is denoted by CRm[(q1, q2)],
which is the c-P (θ) gate (mentioned in Sect. 2) with θ = 2π/2m.

QFT can be parallelly implemented [16], as shown in Fig. 4. The unitary
V generates the Fourier basis state |ψx〉 without erasing |x〉. The unitary Add
introduces auxiliary (k − 1)n qubits to create k − 1 replicas of Fourier basis
state |ψx〉. The unitary oracle T introduces auxiliary n qubits to compute the
corresponding phase parameter |x〉 of the Fourier basis state |ψx〉 without erasing
|ψx〉. All these auxiliary qubits are not depicted in Fig. 4 since they are reset back
to |0〉 after the computation.

We can perform approximate computations for oracles V and T to achieve
a lower circuit depth. Oracle V can be approximated by ignoring CRm gates of
larger m. Oracle T can be approximated by performing quantum measurements
followed by classical post-processing on measurement outcomes [28]. Let unitary
V ′ and T ′ be the approximation of V and T respectively, the corresponding
program SAQFT is almost the same as SQFT but with oracles V and T replaced
by V ′ and T ′ respectively. Next, we use our logic to reason the approximate
equivalence between programs SQFT and SAQFT. That is,

SQFT ∼δ1+2δ2 SAQFT : ≡(q̄0,q̄′
0)

⊗|0〉〈0|aux ⇒ ≡(q̄0,q̄′
0)

⊗|0〉〈0|aux (7)
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Fig. 4. QFT circuit in [16]. Given a computational basis state |x〉 and corresponding
Fourier basis state |ψx〉, unitary V performs mapping |x〉|0〉⊗n �→ |x〉|ψx〉, unitary
Add performs mapping |ψx〉|0〉⊗n · · · |0〉⊗n �→ |ψx〉|ψx〉 · · · |ψx〉, and unitary T performs
mapping |ψx〉 · · · |ψx〉|0〉⊗n �→ |ψx〉 · · · |ψx〉|x〉.

Fig. 5. Proof sketch for programs SQFT and SAQFT. To easily refer to predicates, we
label each assertion a name //Pi on its right.

where δ = nπ2−k−1 + 2ne−k/8, |0〉〈0|aux denotes the tensor product of constant
projections |0〉〈0| over all qubits in other registers except q̄0 and q̄′

0. The main
proof sketch is shown in Fig. 5.

Create the Fourier Basis State. The computation of unitary U in Eq. 6 can
be parallelized by individually preparing every |μθ〉 by the following unitary

Qt,i : |0〉⊗t|x1 . . . xn〉 → |μ0.xi...xi+t−1〉|0〉⊗t−1|x1 . . . xn〉
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in [16], where i+ t− 1 ≤ n, qubits x1 . . . xi−1 and xi+t . . . xn in |x〉 are not used.
The unitary Qt,i acting on register (q̄, p̄) can be denoted as,

UGHZ [q̄];CR1[(p̄[i], q̄[1])]; . . . ;CRt[(p̄[i + t − 1], q̄[t])];U†
GHZ [q̄];H[q̄[1]]

where UGHZ denotes the unitary that generates a GHZ state, that is, UGHZ |0〉⊗t

= (|0〉⊗t + |1〉⊗t)/
√

2. Registers q̄ and p̄ are of size t and n, respectively. q̄[i]
denotes the i-th qubit in register q̄. For example, Fig. 6 in [16] represents the
circuit of unitary Q4,i on |x〉. Similar to the approximation in [17], unitary Qt,i

can be approximated by ignoring CRm gates of large m. That is, we could use
Qt,i to approximate Qt′,i if 1 ≤ t < t′ ≤ n. The approximation can be modeled
by the judgment

� (q̄, p̄) := Qt,i[(q̄, p̄)] ∼δ(t,t′) (q̄′, p̄′) := Qt′,i[(q̄′, p̄′)] :
|0〉〈0|(q̄,q̄′)⊗ ≡(p̄,p̄′) ⇒ ≡(q̄[1],q̄′[1]) ⊗|0〉〈0|(q̄[2,n],q̄′[2,n])⊗ ≡(p̄,p̄′)

(8)

with δ(t, t′) = 1
2 sinπ(2−t − 2−t′

). Pq̄ denotes a projection P over the register
q̄. Particularly, |ψ〉〈ψ|q̄ denotes the tensor product of |ψ〉〈ψ| over all qubits in
register q̄.

Figure 7 illustrates the circuit of the oracle V over register (q̄0, r̄, q̄1). To pre-
pare each |μθ〉 in |ψx〉 individually, we need to prepare n copies of state |x〉
beforehand, which is achieved by the unitary C. The unitary C can be imple-
mented by CNOT gates in a binary tree architecture to achieve a circuit depth
of log n. To make it concise, the auxiliary qubits q[2, n] in oracle Qt,i(q̄, p̄) that
reset back to |0〉 are ignored in Fig. 7 and the input of Qt,i is set as |0〉|x〉. The
circuit for oracle V ′ is almost the same as Fig. 7 except that Qt,i is approximated
by Qk,i, where k (0 < k < t ≤ n) denotes the number of significant phase shift
gates. Specifically, oracles V and V ′ can be represented as follows,

V = C[(q̄0, r̄)]; Q1,n[(q̄1[1], q̄0)]; Q2,n−1[(q̄1[2], r̄1)]; . . . ; Qn,1[(q̄1[n], r̄n−1)]; C
†[(q̄0, r̄)]

V ′ = C[(q̄′
0, r̄

′)]; Q1,n[(q̄′
1[1], q̄′

0)]; Q2,n−1[(q̄
′
1[2], r̄′

1)]; . . . ; Qk,n−k+1[(q̄
′
1[k], r̄′

k−1)];

Qk,n−k+1[(q̄
′
1[k + 1], r̄′

k)]; . . . ; Qk,n−k+1[(q̄
′
1[n], r̄′

n−1)]; C
†[(q̄′

0, r̄
′)]

where register r̄ = {r̄1, . . . , r̄n−1} contains n−1 registers r̄i initialized with |0〉⊗n

.
Based on judgement 8, we have the following judgment

� (q̄0, q̄1) := V [(q̄0, q̄1)] ∼δ1 (q̄′
0, q̄

′
1) := V ′[(q̄′

0, q̄
′
1)] : P0 ⇒ P1 (9)

where δ1 =
∑n

i=k+1 δ(k, i) = 1
2

∑n
i=k+1 sin π(2−k − 2−i) ≤ nπ2−k−1. Notice that

every register r̄i in Fig. 7 is reset back to |0〉, thus the predicate |0〉〈0|(r̄,r̄′) on
register (r̄, r̄′) can be ignored.

Replicate & Erase Fourier Basis State. We provide a brief overview of
the functionality of the oracle Add as described in [16]. We begin with the
state |ψx〉|0〉⊗n · · · |0〉⊗n

and apply Hadamard gates H⊗n

to each |0〉⊗n

, resulting
in |ψx〉|ψ0〉 · · · |ψ0〉. Then, we apply telescoping subtraction |x1〉|x2〉 · · · |xk〉 →
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Fig. 6. Circuit for oracle Q4,i on state |x1 . . . xn〉. Qubits x1 . . . xi−1 and xi+4 . . . xn

are not used and ignored.

Fig. 7. Circuit for oracle V . Given a computational basis state |x〉 = |x1 . . . xn〉, unitary
C performs the mapping |x〉|0〉⊗n · · · |0〉⊗n �→ |x〉⊗n

, and unitary Qt,i performs the
mapping |0〉|x〉 �→ |μ0.xi...xi+t−1〉|x〉.

|x1〉|x2−x1〉 · · · |xk −xk−1〉 to obtain |ψx〉|ψx〉 . . . |ψx〉. Reversely, we can use pre-
fix addition |x1〉|x2〉 · · · |xk〉 → |x1〉|x1 + x2〉 · · · |x1 + x2 + · · · + xk〉 to eliminate
the duplicates of the Fourier basis state. A log(k)-depth tree of 3-2 adders can be
used to generate two encoded numbers, followed by a quantum carry-lookahead
adder of log(n)-depth to add the encoded numbers. Since programs SAFT and
SQAFT share the same procedure to replicate and erase Fourier basis states, we
simplify replicating and erasing procedures by treating them as quantum oracles
Add and Add† respectively. Then we use rule [Ut] to get the following judgment.

� (q̄1, q̄2) := Add[(q̄1, q̄2)] ∼ (q̄′
1, q̄

′
2) := Add[(q̄′

1, q̄
′
2)] : P1 ⇒ P2 (10)

� (q̄1, q̄2) := Add†[(q̄1, q̄2)] ∼ (q̄′
1, q̄

′
2) := Add†[(q̄′

1, q̄
′
2)] : P5 ⇒ P6 (11)

Estimate the Phase of a Fourier State. The key to this step is based on
the idea [3] that quantum measurement can be simulated by unitaries with the
help of ancillary qubits. As shown in Fig 4, the oracle T generates the phase |x〉
in register q̄3 of the Fourier state |ψx〉, then the Fourier basis state |x〉 in register
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q̄0 can be erased by the following CNOT gate (CNOT |x〉|x〉 = |x〉|0〉). The gate
T †, the reverse of T , is applied subsequently to restore the state to the duplicates
of |ψx〉. Given the input |x〉 in register q̄0, the whole process of erasing |x〉 works

as |x〉|ψx〉 · · · |ψx〉|0〉⊗n T−→ |x〉|ψx〉 · · · |ψx〉|x〉 CNOT−−−−→ |0〉⊗n |ψx〉 · · · |ψx〉|x〉 T †
−−→

|0〉⊗n |ψx〉 · · · |ψx〉|0〉⊗n

where the auxiliary register q̄3 is initialized with |0〉⊗n

and reset back to |0〉⊗n

.
In order to reduce the circuit depth of oracle T , [16] parallelized the phase

estimation procedure proposed by [29]. Given k copies of each |μx2−i〉, we perform
two single-qubit measurements

M1 = {M0
1 = |μ0〉〈μ0|, M1

1 = |μ 1
2
〉〈μ 1

2
|} M2 = {M0

2 = |μ 1
4
〉〈μ 1

4
|, M1

2 = |μ 3
4
〉〈μ 3

4
|}

on k/2 of the copies independently, where {|μ0〉, |μ 1
2
〉} and {|μ 1

4
〉, |μ 3

4
〉} are

the eigenvectors of Pauli operators X and Y respectively. These measure-
ments on copies of |ψx〉 would generate a distribution {p(x,i)} over a nk-bit
string |m(x,i)〉 of measurement outcomes. Then a reversible classical process-
ing f is applied to infer x′

i based on measurement outcome |m(x,i)〉, that is
|m(x,i)〉|0〉 → |m(x,i)〉|x′

i〉, where the probability p(x,i) is close to 1 if |x′
i〉 = |x〉,

and a properly estimated |x′
i〉 can be used to erase the phase |x〉 on register q̄0.

The following lemma is proved using Chernoff bound.

Lemma 4. [16] Given any computational basis |x〉, measuring observables X
and Y randomly generates a distribution {p(x,i)} over {|m(x,i)〉}, followed by a
classical processing that generates phase |x′

i〉 from |m(x,i)〉. We have Pr(|x′
i〉 =

|x〉) = p(x,i) > 1 − 4ne−k/8.

We can convert the above whole process into a unitary operation T ′ with-
out actual measurements that can operate on data in superposition. First, the
following unitary UM ([q̄1, q̄2, r̄]),

UM ([q̄1, q̄2, r̄]) := ⊗n
i=1(⊗k/2

j=1UX [(r[ik+j], p[ik+j])])⊗(⊗k
j=1+k/2UY [(r[ik+j], p[ik+j])])

is applied to simulate measurements on copies of |ψx〉, where register p̄ = {q̄1, q̄2}
and auxiliary register r̄ is initialized with |0〉. Unitary gates UX and UY

UX [(q1, q2)] := (H[q1] ⊗ I[q2])CNOT [(q1, q2)](H[q1] ⊗ I[q2]);

UY [(q1, q2)] := (H[q1] ⊗ I[q2])CY [(q1, q2)](H[q1] ⊗ I[q2])

introduce auxiliary qubit q1 initialized with |0〉 to simulate single-qubit measure-
ments M1 and M2 on |μx2−i〉 in qubit q2.

|0〉|μx2−i〉 UX−−→ 〈μ0|μx2−i〉 · |0〉|μ0〉 + 〈μ 1
2
|μx2−i〉 · |1〉|μ 1

2
〉

|0〉|μx2−i〉 UY−−→ 〈μ 1
4
|μx2−i〉 · |0〉|μ 1

4
〉 + 〈μ 3

4
|μx2−i〉 · |1〉|μ 3

4
〉

where CY [(q1, q2)] denotes the controlled Pauli Y gate. Next, we set the outputs
of auxiliary register r̄ of UM to be the input of oracle O[(r̄, q̄3)] such that

UM |μx2−i〉 ⊗ |0〉 O−→ ∑
i
√

p(x,i)|ϕ〉 ⊗ |x′
i〉
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where oracle O denotes the corresponding quantum circuit of the classical pro-
cessing f on measurement outcomes. Thus, the oracle T ′ can achieved by UM [(q̄1,
q̄2, r̄)] and O[(r̄, q̄3)] sequentially. By lemma 4, we would have

� (q̄1, q̄2, q̄3) := T [(q̄1, q̄2, q̄3)] ∼δ2 (q̄′
1, q̄

′
2, q̄

′
3, r̄) := T ′[(q̄′

1, q̄
′
2, q̄

′
3, r̄)] : P2 ⇒ P3

� (q̄1, q̄2, q̄3) := T †[(q̄1, q̄2, q̄3)] ∼δ2 (q̄′
1, q̄

′
2, q̄

′
3, r̄) := T ′†[(q̄′

1, q̄
′
2, q̄

′
3, r̄)] : P4 ⇒ P5

(12)

where δ2 = 2ne−k/8.

Conclusion Finally, we use rule [Seq] to sum up all judgments to get Eq. 7.

7 Measurements Conditions and Additional Proof Rules

7.1 Measurement Conditions

Additional constraints must be imposed on programs to establish feasible rela-
tional proof rules for those with complex structures, such as if and loop state-
ments. In the classical pRHL approach in [7], the precondition m1Ψm2 satisfied
by the initial memories m1 and m2 requires the guards e1 and e2 in the if
or loop statements must be equal. Things get more complex in quantum pro-
grams since quantum mechanics are naturally probabilistic, and it is generally
impossible to require two if statements to give the same measurement or with
the same probability distributions. In [8], the term “synchronous execution” in
quantum programs means that two quantum measurements M1 = {Mm

1 } and
M2 = {Mm

2 } should produce the same distribution over branches for input ρ1
and ρ2, that is, Tr(Mm

1 ρ1M
m
1

†) = Tr(Mm
2 ρ2M

m
2

†). To study more general pro-
grams, we propose the approximate measurement conditions, which establish
appropriate upper bounds for the deviations in our judgments.

Definition 10 (Approximate Measurement Condition). Let M1 =
{Mm

1 } and M2 = {Mm
2 } be two measurements in H1 and H2 that share the

same set {m} of measurement outcomes, respectively. The measurement condi-
tion

M1 ≈{δm} M2 : A ⇒ {(pm, Bm)} (13)

means that for every measurement outcome m, we have

∀ρ1, ρ2. ρ1 ∼A ρ2 ⇒
{

Mm
1 ρ1M

m
1

† ∼δm
Bm

Mm
2 ρ2M

m
2

†

max{Tr(Mm
1 ρ1M

m
1

†),Tr(Mm
2 ρ2M

m
2

†)} ≤ pm

where pm ∈ [0, 1]. Deviations δm in the measurement condition can be ignored if
they equal zero. We write predicate {(pm, Bm)} as {Bm} for short if all pm = 1.
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7.2 Additional Proof Rules

Now, we introduce the rules for if and loop statements in Fig. 8. The rule [IF]
requires the measurement condition in the premises to provide a bound on the
whole approximation, where the deviation δ′

m of the branch body is scaled down
by pm. The rule [LP] does not require the synchronous execution of loop guards
[8,9], or the speed bound at which loops converge [26]. Instead, the measurement
condition only employs an upper bound p1 on the probabilities of entering loop
bodies for the first iteration. Rule [LP] requires p1 ∈ [0, 1) and provides better
deviation if p1 is smaller. If p1 equals one initially, we can unroll loop statements
several times to make p1 less than one.

We derive rule [LP*] as an alternative to rule [LP] by incorporating more
specific measurement conditions for the iterations of loops when we can not
find a good A for rule [LP]. When doing approximate reasoning about loops,
it is typical to set an upper bound N on the number of iterations. Notice that
the factor λn is not an upper bound on the probability of entering (n + 1)-
th iteration except for n = 0. Overall, rule [LP*] is a direct application of
rule [Seq] on a finite number of iterations, where measurement conditions are
used to scale the deviations. Since we can always make the skip statement
share the same probability distribution with any if and while statements, the
measurement conditions for one-side rules [IF-L], [LP-L], and [LP*-L] are more
straightforward.

Fig. 8. Rules for branching structure in aqRHL. The deviation of rule (LP*) is given by
f(αk, βk, pk) = (α0+

∑N−1
n=0 λnαn+1)+(Nβ0+

∑N−2
n=0 (N −n−1)λnβn+1)+(

∑N−1
n=0 (N −

n)λnδn) with λn =
∏n

k=0 pk.

Structural Rules. Unlike classical programs, the potential quantum entanglement
between subsystems brings a unique challenge in constructing a general frame
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rule for quantum programs [8,51,64]. We derive a simple frame rule [Frame]
to specify a specific instance that the predicate C on additional independent
system (r̄1, r̄2) is one-dimensional. Subscripts related to registers are displayed
explicitly for clarity. Rule [Order] adds an order relation ≤ over deviations.
In addition, an additional condition is introduced in rule [Approx] to allow
switching postconditions at the cost of bringing approximation (Fig. 9).

Fig. 9. Structural aqRHL rules.

8 Related and Future Works

With the fast development of quantum hardware [50], various quantum program-
ming languages [1,4,19,20,22,47,48] have been proposed for more straightfor-
ward implementation of quantum algorithms. Very recently, significant efforts
have been devoted to the research of quantum logic and quantum program anal-
ysis [14,23,43,49,55,56,63,65] for these emerging quantum programs.

Comparison with Quantitative Robustness Reasoning. [26] develops semantics
for erroneous quantum while programs and logic to prove robustness between
an ideal program and a noisy one. [66] derives applied quantum Hoare logic by
employing projection as predicates and reasons about the robustness of quantum
programs, i.e., error bounds of outputs. These two works focus on single-program
executions, while our work studies relational reasoning. In particular, the major
differences are as follows. a). Different formula: In the logic formula of [26,66], the
predicate lives in the space of the principle program. The predicate of our logic
lives in the joint space of the two programs. b). Different scope of applications:
The proof systems developed by [26,66] focus on studying the robustness of
quantum programs, i.e., equivalence or closeness. Our choice of relational Hoare
logic can reason about general relations beyond equivalence or closeness. We can
reason relational properties between programs with different numbers of qubits.
c). Different proof rules: The proof rules of [26,66] discuss programs with the
same syntax statement, while our one-side rules can track relational properties
for different statements.

Comparison with Relational Quantum Hoare Logics. Our work is primarily
inspired by the quantum relational Hoare logics recently proposed by [8,33,51].
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In particular, [8] suggests that casting approximate reasoning into the general
framework of relational quantum Hoare logic remains open. Generally, two quan-
tum while programs do not share the same probabilities for taking different paths
or outcomes during their execution. Under such circumstances, exact quantum
couplings cannot be found, as they only exist for partial density operators with
identical trace. This mathematical condition significantly restricts the flexibility
of the exact quantum relational Hoare logic. Our work provides a promising solu-
tion to this open question. In particular, by introducing approximate quantum
coupling, our logic system offers a more general scope of applications. Our logic,
aqRHL, is a quantum counterpart to apRHL [9], even from a technical point of
view: aqRHL employs projective predicates [12] over the joint systems of the pro-
grams, a natural quantum counterpart of binary relations, the predicates used
in apRHL.

Future Work. There are several promising directions for future work. Firstly,
we would like to extend our theory to the hybrid system, i.e., programs with
quantum and classical variables. Hybrid quantum-classical systems allow for the
exploitation of quantum advantages while leveraging the existing classical com-
puting infrastructure. A unified language incorporating both quantum and clas-
sical effects may offer advantages in analyzing hybrid programs [52]. Secondly, we
will investigate the potential applications of the newly developed approximate
relational quantum Hoare logic. Particularly, we are interested in applying it to
the construction and verification of quantum cryptographic proofs and ensuring
the correctness of optimized quantum compilers specifically designed for NISQ
(Noisy Intermediate-Scale Quantum) devices. Lastly, it is interesting to incor-
porate recently developed tools such as quantum abstract interpretation [62]
and quantum separation logic [64] to design over-approximation techniques [58].
Another interesting technique is Context-Free-Language Ordered Binary Deci-
sion Diagrams [46], which may serve as a backend representation and manipu-
lation technique in studying quantum Hoare logics.

9 Conclusion

We resolve the open question of [8] by designing an approximate relational Hoare
logic for robustly reasoning the relational properties of two programs. We show-
case the success of our methodology by formally verifying the well-known low-
depth approximation of the quantum Fourier transform, and the correctness of
the repeat-until-success algorithm and bit flip code.
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