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Abstract—This paper examines integrating jamming and sec-
ondary signals for covert communications in cognitive radio
networks (CRNs), aiming to enhance covertness by using jam-
ming and secondary signals in an overlay cooperative CRN. The
scenario involves a primary base station (PBS) transmitting to a
primary user (PU), with a secondary user transmitter (SU-Tx)
acting as a cooperative jammer to obscure the message from a
malevolent secondary user named ”Willie.” During idle intervals
on the primary channel, the SU-Tx opportunistically accesses it
to transmit secondary signals, reinforcing the covert communica-
tion of primary signals. The study quantifies the detection error
probability (DEP) experienced by Willie, considering perfect
and statistical channel state information (CSI) scenarios. In
the perfect CSI scenario, optimization has two phases. Phase
I aims to maximize the signals-to-interference-plus-noise ratio
(SINR) of the PU, subject to the warden DEP exceeding a
specified threshold. Phase II uses an iterative search algorithm to
optimize beamforming vectors, enhancing SINR. In the statistical
CSI scenario, the goal is to maximize effective transmission
throughput (ETT), measuring the information transmitted from
PBS to PU under covert constraints. Numerical results validate
the theoretical analysis.

Index Terms—Covert communications, cooperative jamming,
cognitive radio network, alternate search.

I. INTRODUCTION

Cognitive radio networks (CRNs) have been acknowledged
as a paradigm for alleviating spectrum scarcity and improving
spectrum utilization in next-generation wireless networks [1]–
[5]. Consequently, the security and privacy of CRNs due to
the broadcast nature of wireless media has emerged as an
important issue. Conventional security techniques focus on
the upper-level encryption, designed to construct and analyze
protocols based on the information itself to prevent eaves-
dropping, such as cryptography approaches [6]–[9]. However,
the conventional cryptography approaches will be decrypted
as the computing power of eavesdroppers improves, resulting
in the inability to guarantee information security. Physical
layer security (PLS) technology emerges as a promising one
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to prevent malicious eavesdropping attacks, and it has been
widely studied as an attractive alternative to complement
shortcomings of conventional cryptography approaches [10]–
[13].

Although both cryptography and PLS technologies can pro-
tect confidential messages from interception by unauthorized
third parties, it is still challenging to deal with some malicious
surveillance [14]. In CRNs, the primary user (PU) needs to
shield the communication itself to evade being monitored
by malicious secondary users (SU) [15]–[17]. Malicious SUs
may transmit false local sensing results to the cognitive base
station (CBS) or other SUs, incurring a considerable extra
workload to avoid interference. More seriously, malicious
monitoring causes monopolized utilization of idle spectrum,
leading to spectrum congestion. This congestion prevents
the concurrent transmission of PUs from properly utilizing
wireless channels. Hence, the rise of an imperative to ascertain
a novel communication safeguarding framework to shield the
primary communication endeavors from the prying detection
orchestrated by malicious SUs.

Protecting primary communication behavior in cognitive
radio networks (CRNs) is known as emerging covert commu-
nications, or low probability of detection (LPD). Covert com-
munications offer CRNs a higher level of security than PLS
techniques [18]–[21].. Specifically, in covert communications,
the primary base station (PBS) can reliably send messages to
the primary user (PU), while a vigilant malicious secondary
user (SU), referred to as ”Willie,” remains unaware of this
primary communication. To achieve a higher level of security
in covert communications, a strategy involving the use of a
jammer as an ally is proposed. This strategy can increase the
unpredictability of the Willie channel, thereby enhancing the
covert performance of the primary communication.

A. Previous Work

Recently, covert communications in CRNs have garnered
significant attention. In their studies, the authors of [22]
delved into a covert cooperative cognitive radio (CCCR)
system involving collaboration between primary transmitter
(PT) and secondary transmitter (ST) to transmit confidential
information. The investigation presented in [23] focused on
short-packet covert communication within interweave CRNs,
where an ST opportunistically accesses the occasionally idle
spectrum under the supervision of a PT. The study detailed in
[24] explored a CCCR system with multiple PTs transmitting
information with the assistance of multiple STs to conserve
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power consumption. The authors in [25] investigated covert
communications in an overlay CRN, where multiple STs
opportunistically send confidential information to a SR.

Covert communication conceals the information transmis-
sion process from the warden to prevent adversarial eaves-
dropping. However, it becomes challenging when the warden
is mobile [26]–[28]. In [26], Chen et al. proposed a covert
communication scheme against a mobile warden, which max-
imizes the connectivity throughput between a multi-antenna
transmitter and a full-duplex jamming receiver within the
covert outage probability (COP) limit. The authors of [28]
introduced and evaluated a new concept of a dynamic warden.
Its main novelty lies in the modification of the warden’s
behavior over time, making it difficult for the adaptive covert
communication parties to infer its strategy and perform a
successful hidden data exchange. In [27], the authors studied
the effect of node mobility on the throughput scaling of
covert communication over a wireless ad hoc network, where
wardens can be mobile or fixed.

In addition, a series of studies have been conducted to
explore the impact of fundamental limitations of covert com-
munications in various wireless channel models on improving
the security of the communication [29]–[32]. For instance, in
the realm of additive Gaussian white noise (AWGN) channel,
the seminal work of [29] unveiled a remarkable square root
law. This law, postulating that within n channel usage, it
becomes feasible to clandestinely transmit an impressive
quantum of information, specifically on the order of O

√
n

bits, to the intended recipient. Furthermore, the pioneering
study conducted by [30] endeavored to shed light upon the
scaling constant governing the covert information capacity
within both the discrete memoryless channel (DMC) and the
AWGN channel.

Different from the above LPD-based constrained ones,
approaches focusing on exploring the opportunities and con-
ditions for achieving positive covert rates have been applied
[33]–[35]. Specifically, The authors in [33] effectively uti-
lized the maximum achievable covert rate in the presence
of bounded and unbounded noise uncertainty models. The
authors in [34] sought to investigate how centralized and dis-
tributed multi-antenna transmitters, with randomly positioned
wardens, affect covert throughput in covert communications.
The resulting argument helps us to understand why covert
throughput is invariant to interferer density while characteriz-
ing the covertness just by probabilistic metrics. Moreover, the
authors in [35] employed a scenario involving a multi-antenna
warden under constraints of delay to assess the efficacy of
augmenting the warden’s antenna number in relation to covert
throughput.

Physical layer security (PLS) is a promising approach that
take advantage of the propagation medium’s features and
impairments to ensure secure communication in the physical
layer [36], [37]. The authors of [36] discussed challenges,
solutions and visions of Physical layer security in beyond-
5G networks. In [37], Physical layer security was being
considered as a possible way to emancipate networks from
classical complexity-based security approaches. Cooperative
jamming, as a PLS-based technology, has attracted a great deal

of attention in enhancing covert communications [38]–[41].
As a representative work, the recent work in [39] elegantly
identified the node closest to the warden as a friendly jammer,
enabling Alice to reliably and covertly transmit messages to
Bob. Moreover, in the context of wireless communication
systems operating under fading channels, the work in [40]
adopted a full-duplex receiver capable of generating artificial
noise, necessitating manual adjustment of transmit power
levels to ensure covert operations.

B. Motivation and Our Contributions

The introduction of jamming signals has significantly en-
hanced the reliability of covert communications. Extensive
research has focused on CCRNs to improve spectrum effi-
ciency. The primary objective is to select SUs as friendly
jammers to protect primary signals from detection. It is also
important to note that the secondary signals of SUs can
contribute to achieving covert performance in overlay CCRNs,
distinguishing this approach from others. However, prior re-
searches have made limited contributions to the simultaneous
introduction of jamming signals and secondary signals in
covert communications of CRNs. This gap in the literature
motivates the focus of our investigation in this paper.

In this work, we focus on covert communications of a
CCRN and aim to increase covertness with the aid of both
jamming and secondary signals. To be specific, within the
domain CCRNs, a PBS endeavors to transmit a message to
a PU. Simultaneously, a transmitter of the secondary user
(SU-Tx) assumes the role of a cooperative jammer, emitting
jamming signals with the purpose of shielding the transmitted
message from the detection of a prospective warden (Willie).
It is imperative to note that the SU-Tx can transmit secondary
signals to its corresponding secondary user receiver (SU-
Rx) when the primary channel is idle. Fully utilization of
secondary signals enables notable benefit for covert communi-
cations of primary signals, aggressively introducing additional
uncertainty and more confusion to Willie. We explore the
detection error probability of Willie under two distinct sce-
narios: perfect and statistical channel state information (CSI).
Our primary contributions can be succinctly summarized as
follows.

• In the scenario of perfect CSI, we evaluate the most un-
favorable cases related to covert communications, where
Willie possesses the ability to ingeniously engineer an
optimal detection threshold. To ensure covert communi-
cation, we formulate an optimization problem that aims
to maximize the signal-to-interference-plus-noise ratio
(SINR) experienced by the PU, while adhering to the
constraint that the detection error probability (DEP) of
Willie remains above a predetermined threshold. We pro-
pose an alternative algorithm to work out the optimiza-
tion problem, thereby achieving an optimal transmission
power for the PBS and jammer.

• In the scenario of statistical CSI, we calculate the prob-
abilities of false alarm and missed detection for Willie,
thus confirming the feasibility of achieving a positive
covert communication rate. Under the constraints of
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covert operations, we determine the effective transmis-
sion throughput (ETT) as a metric that measures the
amount of information that can be conveyed from the
PBS to the PU, while ensuring that Willie’s DEP remains
at or exceeds a predetermined threshold.

• We delve into an exploration of the impact imposed
by the transmission powers of primary signals, jamming
signals, and secondary signals upon the realm of covert
performance, encompassing both scenarios of perfect
CSI and statistical CSI. Through numerical analysis,
we uncover the augmentative influence that secondary
signals exert upon the covertness performance. Addition-
ally, our findings reveal that the pursuit of heightened
covertness performance necessitates the acceptance of a
commensurate loss in SINR and ETT.

The remaining sections of the paper are organized as
follows. In Section II, we provide the necessary preliminaries
and present the system model. The covertness analysis, from
the perspective of the warden, is presented in Section III.
In Section IV, we formulate the optimization problem to
maximize the secrecy performance (SINR and ETT) at the
PU while adhering to a covert constraint. Numerical results
are provided in Section V, and finally, we draw conclusions
in Section VI.

Notations: The symbols (·)H and | · | represent the concepts
of Hermitian transpose and absolute value, respectively. The
trace operator is denoted by Tr(·). We utilize N (µ, σ2)
to symbolize the normal distribution, characterized by its
parameters of mean µ and variance σ2.

II. SYSTEM MODEL

Within the scope of this paper, our attention is captivated
by an overlay centralized CCRN. This network showcases
the presence of a PBS, m primary users (PUs), a malevolent
SU (Willie), a CBS, and an assemblage of n interconnected
entities—secondary user transmitters (SU-Txs) and secondary
user receivers (SU-Rxs)—depicted in Fig. 1. Within cognitive
radio networks, the presence of both a primary base station
(PBS) and a cognitive base station (CBS) serves a crucial
function. The PBS is responsible for managing the licensed
spectrum, which is typically reserved for exclusive use by
the primary users (PU). The CBS, on the other hand, is
utilized by the secondary users (SU) to access the spectrum
opportunistically and avoid interference with the PU.

The PBS stands adorned with Np antennas, while each
SU-Tx possessing Nj antennas. Remarkably, the PU, SU-
Rx, Willie, and the CBS are each bestowed with a single
antenna. Within the realm of the overlay CCRN, the PBS
aims to transmit a message to a designated PU, symbolized
by PU1. However, the PBS encounters an intrinsic neces-
sity for covert communication, to elude detection from the
ever-vigilant warden (Willie) in the detection channel. In a
commendable endeavor to preserve the message’s integrity
from the detection of Willie, the CBS astutely identifies
a specific SU-Tx, embodied by SU-Tx1, to undertake the
noble role of a friendly jammer. This chosen SU-Tx sends
a cascade of meticulously engineered artificial noise upon
Willie, orchestrating interference across the jamming channel.

PBS
CBS

SU-Txn

SU-Tx1

(Jammer)Willie

PU1

PUm

Primary Channel

SU-Rx1

SU-Rxn

Detection Channel Jamming Channel

(a) Jamming Phase

PBS
CBS

SU-Txn

SU-Tx1

(Jammer)Willie

PU1

PUm

SU-Rx1

SU-Rxn

Secondary Channel Detection Channel

(b) Accessing Phase

Fig. 1: Network model for an overlay centralized CCRN.

Upon the cessation of jamming, during moments of idleness
within the primary channel, SU-Tx1 is granted to engage the
primary channel for the transmission of its message to its
destination node, i.e., SU-Rx1. Thus, from the vantage point
of SU-Tx1, its transmission unfolds through two alternating
phases: Jamming Phase and Accessing Phase.

In the jamming phase, the received signals at PU1, the CBS,
and Willie can be expressed as,

yp(t)=h
H
p,p(t)wp(t)xp(t)+hHj,p(t)wj(t)xj(t)+np(t), (1)

yc(t)=h
H
p,c(t)wp(t)xp(t)+hHj,c(t)wj(t)xj(t)+nc(t), (2)

yw(t)=h
H
p,w(t)wp(t)xp(t)+hHj,w(t)wj(t)xj(t)+nw(t). (3)

In the accessing phase, the received signals at SU-Rx1, the
CBS, and Willie can be expressed as

ys(t) = hHs,s(t)ws(t)xs(t) + ns(t), (4)

yc(t) = hHs,c(t)ws(t)xs(t) + nc(t), (5)

yw(t) = hHs,w(t)ws(t)xs(t) + nw(t), (6)

Herein, we introduce the channel responses, denoted as
ha,b, where a ∈ {p, j, s} traverses the realms of transmit-
ters encompassing the PBS, the jammer, and the SU-Tx1,
while b ∈ {p, c, w, s} embraces the receivers represented by
PU1, the CBS, Willie, and SU-Rx1. The expression ha,b =
ĥa,b

√
θa,b encapsulates this framework, where ĥa,b denotes

a complex channel vector of dimensions Na × 1, with θa,b
representing the path loss of a→ b channel.

The path loss unveils its expression as 10 log10(θa,b) =
−34.5− 20 log10(da,b[m]), where da,b delineate the distances
of transmitters and receivers. The beamforming vectors wp
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and wj belong to the complex vector spaces CNp×1 and
CNj×1, respectively, representing the PBS and SU-Tx1. The
signal xp corresponds to the transmission from the PBS, while
the signal xj represents the jamming transmission from SU-
Tx1, following a zero-mean Gaussian distribution with unit
variance (xj ∼ N (0, 1)). The term nb denotes the additive
white Gaussian noise (AWGN) with a two-sided power spec-
tral density of N02. It is assumed that nb follows a Gaussian
distribution with zero mean and variance δ2b = 2N02B, where
B represents the channel bandwidth. We assume that all
channels experience independent Rayleigh fading.

In this paper, the network model is quasi-static, and the
position of each node is basically unchanged during the com-
munication process. Moreover, based on the above assumption
that the channel state information of the eavesdropper is
known, and the candidate SUs for jammer needs to send
channel state information (including jamming distance) to the
CBS. Therefore, the SU knows the locations of the jammer
and Eve, so the jamming distance is also known to the CBS.
As shown in (1), jammer may impose some interference on
the primary channel. There are typically three approaches
to mitigate interference caused by a jammer on the primary
channel. The first approach involves employing zero-forcing
beamforming at the jammer to ensure that the interference at
PU is reduced to zero. The second approach entails establish-
ing an interference threshold and utilizing beamforming at the
jammer to keep the interference at PU below this threshold.
The third method involves proactive communication between
PBS and the jammer. In this scenario, the jammer shares the
interference signal with PBS in advance, allowing the PU
to eliminate the interference signal at the receiving end. In
this paper, we employ the second approach, specifying an
interference temperature limit θ to ensure that the interference
remains below this predefined limit.

The channel responses are intricately linked to CSI, which
varies in availability across different scenarios. In the case of
perfect CSI, it is assumed that the PBS can obtain the CSI
of the primary channel by employing pilot sequences [42]–
[47]. For example, in [42], Rider Grey Wolf Optimization
(RGWO) was proposed to optimally place the pilots in the
training sample or sequence in such a way to facilitate the
automatic estimation of the state of the channel. In [43], a
novel sequential channel estimation approach was proposed
for multiband cognitive radio systems. The authors in [44]
considered simultaneous PU detection and channel estimation
for censoring based spectrum sensing in CRNs over fading
channels.

Additionally, one of the legitimate users is designated as
a potential warden (Willie) [48] . Given that Willie is also
a legitimate user, we can acquire the CSI of the detection
channel. Each SU-Tx measures its CSI with both PU1 and
Willie. Subsequently, each SU-Tx reports its CSI to the CBS.
To facilitate secure communication, the CBS shares the CSI of
SUs with the PBS via a dedicated channel, such as a common
control channel [49]. Ultimately, the PBS possesses the CSI
of both PUs and SUs.

In most scenarios, the acquisition of perfect CSI is hindered
by channel estimation and quantization errors. Particularly,

obtaining accurate channel information for the passive eaves-
dropper, Willie, is unattainable. It is worth noting that statisti-
cal CSI for different channels can be obtained through various
measurement methods. Hence, for the majority of cases, we
assume the availability of statistical CSI. The channel vectors
for the perfect CSI scenario and the statistical CSI scenario
are summarized as follows:

• Perfect CSI scenario: In this scenario, it is assumed that
the PBS and SU-Tx are equipped with multiple antennas
(Np ̸= 1, Nj ̸= 1). The instantaneous CSI of hab are
known, a ∈ {p, j, s}, b ∈ {p, c, w, s}.

• Statistical CSI scenario: In this scenario, it is assumed
that the PBS and SU-Tx are equipped with a single
antenna (Np = Nj = 1). The channel gains of ha,b
are independent complex circular Gaussian random vari-
ables with zero mean and variances δ2ab, i.e., ha,b ∼
CN (0, δ2ab).

In this paper, the scenarios and parameters were chosen
based on several factors. Firstly, we considered real-world
applicability, aiming to address practical challenges faced
in cognitive radio networks (CRNs). The selected scenarios
represent common scenarios encountered in CRNs, ensur-
ing that our approach is relevant and applicable in various
settings. Secondly, the parameters were carefully chosen to
highlight specific aspects of CRNs that are crucial for our
approach. For example, we focused on parameters that impact
the performance of covert communications, such as signal-
to-interference-plus-noise ratio (SINR) and detection error
probability (DEP). By selecting these parameters, we aim to
demonstrate the effectiveness of our approach in improving
the security and reliability of covert communications in CRNs.

III. ANALYSIS OF COVERTNESS PERFORMANCE

In this section, we conduct an analysis of covertness from
the perspective of the warden. In the considered network, the
analysis of covertness can be formulated as the detection error
probability (DEP) at the warden.

Specifically, in order to detect primary signals emanating
from the PBS, the warden encounters a binary hypothesis
testing problem involving two events: H0 and H1. Here, H0

represents the null hypothesis in which the PBS does not
transmit primary signals while SU-Tx1 transmits secondary
signals. On the other hand, H1 corresponds to the alternative
hypothesis in which the PBS transmits primary signals and
the jammer transmits AN to the warden. In both scenarios, the
received signals at the warden can be expressed as follows:

H0 : yw(t) = hHs,w(t)ws(t)xs(t) + nw(t), (7)

H1 : yw(t) = hHp,w(t)wp(t)xp(t) + hHj,w(t)wj(t)xj(t)

+ nw(t). (8)

It is assumed that Yw represents the energy received by the
warden. Let τ denote the continuous value that signifies the
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duration of detection. The test statistic for energy detection is
expressed as follows:

Yw =
1

N02

∫ τ

0

|yw(t)|2 dt
H1

≷
H0

Γp(Γs), (9)

where Γp is the decision threshold under perfect CSI case,
and Γs is the decision threshold under statistical CSI case
[50]. From Willie’s prospective, we assume that the received
power of the PBS, the jammer, and SU-Tx1 are fixed at P̂p =
Tr(WpHp,w), P̂j = Tr(WjHj,w) and P̂s = Tr(WsHs,w),
respectively. Therefore, the received energy of primary sig-
nals, jamming signals, secondary signals are P̂pτ , P̂jτ and
P̂sτ respectively.

A. Perfect CSI Scenario

As per the findings in [50], under the hypothesis H0, the re-
ceived energy Yw follows a non-central chi-square distribution
with 2τB degrees of freedom and a non-centrality parameter
of P̂ sτN02

. Similarly, under the hypothesis H1, Yw follows a non-
central chi-square distribution with 2τB degrees of freedom
and a non-centrality parameter δ =

P̂pτ+P̂ jτ
N02

. When 2τB is
sufficiently large, the central limit theorem (CLT) allows us
to approximate Yw under both hypotheses as follows:{

Yw|H0 ∼ N (2τB + P̂sτ
N02

, 4τB + 4P̂sτ
N02

),

Yw|H1 ∼ N (2τB +
(P̂p+P̂j)τ

N02
, 4τB +

4(P̂p+P̂j)τ
N02

),
(10)

where N (µ, δ2) represents the normal distribution with the
mean µ and the variance δ2.

1) Detection Error Probability: The warden decides
whether PBS has transmitted message or not according to its
received signal power. In this paper, we define the false alarm
probability (PFA) and the missed detection probability (PMD).
PMD represents the probability of failing to detect any primary
signals when they are actually present, while PFA represents
the probability of erroneously detecting primary signals when
they are absent. By utilizing the approximations (10), we can
derive the expressions for PMD and PFA as follows [51]:

PFA = prob(Yw > Γp|H0)

=


1, Γp ≤ δ2w

Q

(
Γp−(2Bτ+ P̂sτ

N02
)√

4Bτ+ 4P̂sτ
N02

)
, Γp > δ2w

(11)

PMD = prob(Yw < Γp|H1)

=


0, Γp ≤ P̂pτ + δ2w

1−Q

(
Γp−(2Bτ+

(P̂p+P̂j)τ

N02
)√

4Bτ+
4(P̂p+P̂j)τ

N02

)
, Γp > P̂pτ + δ2w

(12)

where Q(·) is the standard Gaussian complementary cumu-
lative distribution function which is shown as

Q(t) =
1√
2π

∫ +∞

t

exp(
−x2

2
)dx. (13)

Since the false alarm and the missed detection events are
two types of errors for warden’s detection, the covertness can
be measured by the DEP:

ξp =PFA + PMD

=



1, Γp ≤ δ2w

Q

(
Γp−(2Bτ+ P̂sτ

N02
)√

4Bτ+ 4P̂sτ
N02

)
, P̂pτ + δ2w ≥ Γp > δ2w

1−Q

(
Γp−(2Bτ+

(P̂p+P̂j)τ

N02
)√

4Bτ+
4(P̂p+P̂j)τ

N02

)

+Q

(
Γp−(2Bτ+ P̂sτ

N02
)√

4Bτ+ 4P̂sτ
N02

)
, Γp > P̂pτ + δ2w

(14)

It is assumed that PBS’s transmission is considered covert
if ξp ≥ 1− ϵ, where ϵ is the covertness requirement.

2) Covert Performance: We consider a worst-case scenario
for covert communications in which the optimal detection
threshold is designed from Willie’s perspective to minimize
the average detection error probability.

As depicted in Fig. 3, we observe that when δ2w < Γp <
P̂pτ + δ

2
w, ξp decreases as Γp increases. Furthermore, we find

that ξp continues to decrease as Γp ranges from P̂pτ + δ2w
to Γ∗

p, whereas ξp increases for Γp > Γ∗
p. To determine the

optimal value of Γp, we take the partial derivative of the
function ξp in equation (14) with respect to Γp and set the
derivative equal to zero. This can be expressed as follows:

∂ξp
∂Γp

= 0, (15)

The optimal Γ∗
p can be calculated as (16) at the top of the next

page. Substitute Γp = Γ∗
p into equation (14), we can achieve

the minimum value of DEP ξ∗p(Wp,Wj).

B. Statistical CSI Scenario

In the statistical CSI scenario, we assume that yw =
yw(tj), j = 1, 2, ...N represents the sampling vector of
the received signals at Willie. Under hypothesis H0, the
distribution of yw(tj) is assumed to be CN (0, E), where
E = Ps|hs,w|2 + δ2w. Conversely, under hypothesis H1, the
distribution of yw(tj) is assumed to be CN (0, F ), where
F = Pp|hp,w|2 + Pj |hj,w|2 + δ2w.

1) Detection Error Probability: The DEP in statistical CSI
scenario can be expressed as

ξs = PFA + PMD. (18)

Lemma 1 We can derive expressions of PMD and PFA as
follows

PFA = P(Yw > Γs|H0)

=

1, Γs < δ2w

e
−Γs−δ2w

Psδ2
bw , Γs ≥ δ2w

(19)
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Γ∗
p =

−1

2(P̂j + P̂p − P̂s)

√
4τK1(P̂j + P̂p − P̂s) +B2τ2(−2P̂j − 2P̂p + 2P̂s)2 −Bτ(−2P̂j − 2P̂p + 2P̂s), (16)

K1 =8B2N02 log


√

4Bτ +
4P̂jτ
N02

+
4P̂pτ
N02√

4Bτ + 4P̂sτ
N02

+
BP̂ 2

j τ

N02
+ 8BP̂j log


√
4Bτ +

4P̂jτ
N02

+
4P̂pτ
N02√

4Bτ + 4P̂sτ
N02



+8BP̂p log


√

4Bτ +
4P̂jτ
N02

+
4P̂pτ
N02√

4Bτ + 4P̂sτ
N02

+ 8BP̂s log


√

4Bτ +
4P̂jτ
N02

+
4P̂pτ
N02√

4Bτ + 4P̂sτ
N02

+

8P̂jP̂s log

√
4Bτ+

4P̂jτ

N02
+

4P̂pτ

N02√
4Bτ+ 4P̂sτ

N02


N02

+

8P̂pP̂s log

√
4Bτ+

4P̂jτ

N02
+

4P̂pτ

N02√
4Bτ+ 4P̂sτ

N02


N02

+
2BP̂jP̂pτ

N02
+
BP̂ 2

p τ

N02
− BP̂ 2

s τ

N02
+
P̂ 2
j P̂sτ

N02
2

+
2P̂jP̂pP̂sτ

N02
2 − P̂jP̂

2
s τ

N02
2 +

P̂ 2
p P̂sτ

N02
2 − P̂pP̂

2
s τ

N02
2 . (17)

PMD = P(Yw < Γs|H1)

=



0,Γs < δ2w

1−e
−Γs−σ2

w
Pjδ

2
jw − Ppδ

2
pw

Ppδ2pw−Pjδ2jw
×(

e
−Γs−σ2

w
Ppδ2pw −e

−Γs−σ2
w

Pjδ
2
jw

)
,Γs ≥ δ2w

(20)

Specifically, when Ppδ2pw = Pjδ
2
jw,

PMD = 1− e
− Γs−σ2

w
2Ppδ2pw (21)

Proof: See Appendix A. ■

Lemma 2 When Psδ
2
sw = Pjδ

2
jw, the optimal detecting

threshold of Willie can be calculated as (22) at the top of
the next page.

Proof: See Appendix B. ■
2) Covert Performance: From Lemma 2, we can obtain

the minimal detecting error probability of Willie ξ∗s can be
expressed as (24) at the top of the next page. Let η =

Psδ
2
sw

2Ppδ2pw
,

η1 =
Pjδ

2
jw

Ppδ2pw
, then the ξ∗s can be rewritten as

ξ∗s =


1− η

η
1−η + η

1
1−η , Ppδ

2
pw = Pjδ

2
jw ̸= Psδ

2
sw

1− 1
1−η1 (η

η1
1−η1
1 − η

1
1−η1
1 ), Psδ

2
sw = Pjδ

2
jw

̸= Ppδ
2
pw ∨ Psδ2sw = Ppδ

2
pw ̸= Pjδ

2
jw

1 + 1
e − 1√

e
, Psδ

2
sw = Ppδ

2
pw = Pjδ

2
jw.

(23)

When ξ∗s ≥ 1−ϵ, the PBS’s transmission can be guaranteed
to achieve covert communication. Let f(η) = η

η
1−η − η

1
1−η ,

g(η1) = 1
1−η1 (η

η1
1−η1
1 − η

1
1−η1
1 ), then the inequality can be

rewritten as

ξ∗s =


f(η) ≤ ϵ, Ppδ

2
pw = Pjδ

2
jw ̸= Psδ

2
sw

g(η1) ≤ ϵ, Psδ
2
sw = Pjδ

2
jw ̸=

Ppδ
2
pw ∨ Psδ2sw = Ppδ

2
pw ̸= Pjδ

2
jw

1√
e
− 1

e ≤ ϵ, Psδ
2
sw = Ppδ

2
pw = Pjδ

2
jw.

(25)

As show in Fig. 2, f(η)(g(η1)) is strictly decreasing as
η(η1) increases. Thus, for 0.24 ≈ 1√

e
− 1

e ≤ ϵ ≤ 1, it is
possible to achieve covert communication for any covertness
requirement of ϵ. Therefore, a positive outage covert commu-
nication rate is achievable. Looking at figure

IV. TRANSMISSION STRATEGIES WITH COVERT
CONSTRAINT

In this section, we analyze the jammer’s AN transmission
strategies and explore the development of a covert transmis-
sion scheme by the PBS. In the perfect CSI scenario, we start
by formulating an optimization problem to determine the AN
transmission strategy that maximizes the received SINR at
the PU while satisfying covert constraints. In the statistical
CSI scenario, we introduce the concept of ETT to evaluate
the information capacity achievable from the PBS to the PU
under covert constraints.

A. Perfect CSI Scenario

As the perfect CSI is available, we can obtain the instan-
taneous output SINRs at PU1 and the Willie expressed as

SINRp =
hHp,pwpw

H
p hp,p

hHj,pwjwH
j hj,p + δ2p

=
Tr(WpHp,p)

Tr(WjHj,p) + δ2p
, (26)

where Wa = waw
H
a , a ∈ {p, j}, and Ha,p = ha,ph

H
a,p.
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Γ∗
s =


δ2w+2PpPsδ

2
pwδ

2
sw

log(2Ppδ
2
pw)−log(Psδ

2
sw)

2Ppδ2pw−Psδ2sw
, Ppδ

2
pw = Pjδ

2
jw ̸= Psδ

2
sw

δ2w + PpPjδ
2
pwδ

2
jw

log(Ppδ
2
pw)−log(Pjδ

2
jw)

Ppδ2pw−Pjδ2jw
, Psδ

2
sw = Pjδ

2
jw ̸= Ppδ

2
pw ∨ Psδ2sw = Ppδ

2
pw ̸= Pjδ

2
jw

δ2w + Ppδ
2
pw, Psδ

2
sw = Ppδ

2
pw = Pjδ

2
jw.

(22)
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0.8

1

Fig. 2: Plot of f(η)(g(η1)) against η(η1).

To obtain the optimal beamforming vectors of the PBS and
SU1, the secrecy rate maximization problem is mathematically
characterized as

max
Wp,Wj

SINRp (27a)

s.t. Tr(Wj) ≤ Pmj , (27b)

ξ∗(Wp,Wj) ≥ 1− ϵ, (27c)
Tr(WjHj,p) ≤ θ, (27d)
Tr(Wp) ≤ Pmp , (27e)

rank(Wp) = 1, (27f)
rank(Wj) = 1, (27g)

The interference temperature limit imposed on PU1 is
denoted by θ, while Pmp and Pmj represent the transmit
power limits of the PBS and SU-Tx1, respectively. The covert
constraint is expressed in equation (27c).

Problem (27) is challenging to solve due to the fractional
form in its objective and the presence of the covert constraint
(27c). Consequently, we propose an alternate search approach
based on the following proposition.

Proposition 1 The objective function SINRp(Wp,Wj) and
the covert constraint (27c) are convex functions when Wp is
fixed and Wj is varied. Similarly, they are convex functions
when Wj is fixed and Wp is varied.

Proof: For a fixed Wj , the objective function of problem
(27) is convex. In this paper, the PBS’s transmission is con-
sidered covert only when ξ∗ ≥ 1−ϵ, where ϵ represents a pre-
determined threshold for the covert transmission requirement.
When ξ∗ = 1 − ϵ, we can derive P covertp = (ξ∗)−1(1 − ϵ),
where (ξ∗)−1(1− ϵ) denotes the inverse function of ξ∗. If the

PBS’s power exceeds P covertp , the covert constraint cannot
be satisfied. Therefore, to fulfill the covert constraint, the
permissible range of Pp can be expressed as follows:

Tr(Wp) ≤ min(Pmp , P
covert
p ). (28)

Till now, the covert constraint (27c) can be transformed into
a transmission power constraint at the PBS. Next, we employ
the semidefinite relaxation (SDR) technique to eliminate the
two rank-one constraints (27f) and (27g). This transformation
allows us to convert problem (27) into:

max
Wp

SINRp (29a)

s.t. Tr(Wp) ≤ min(Pmp , P
covert
p ). (29b)

Alternatively, for a fixed Wp, the objective of problem (27)
is a convex function. It is assumed to be covert only when
ξ∗ ≥ 1 − ϵ. When ξ∗ = 1 − ϵ, we can obtain P covert

j =
(ξ∗)−1(1 − ϵ). If the jammer’s power is lower than P covert

j ,
the covert constraint cannot be satisfied. Thus, to satisfy the
covert constraint, the allowable range of Pj can be expressed
as

P covert
j ≤ Tr(Wj) ≤ Pmj . (30)

Till now, the covert constraint (27c) can be transformed into
a transmission power constraint at the jammer, which is a
convex function. Then problem (27) can be transformed into

min
Wj

1

SINRp
(31a)

s.t. P covert
j ≤ Tr(Wj) ≤ Pmj , (31b)

Tr(WjHj,p) ≤ θ (31c)

Obviously, problem (29) and (31) are convex problems, and
can be handled by available convex softwares, such as CVX
[52]. ■

By solving problems (29) and (31) during each iteration
of the alternate search, we can obtain the optimal solution.
The algorithm for the alternate search is summarized in
Algorithm 1, where Kµ represents the maximum allowed
number of iterations. Given a starting point and a convergence
threshold µ, the iterative process can be terminated when
|SINRp(W

k
p ,W

k
j )−SINRp(W

k−1
p ,Wk−1

j )| ≤ µ is satisfied.
The convergence of the alternate search can be proven by the
following Theorem 1.

Theorem 1 As problem (29) and (31) are solvable. Then
the sequence SINRp(W

k
p ,W

k
j ) generated by alternate search

algorithm converges monotonically.
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ξ∗s =



1−
(

2Ppδ
2
pw

Psδ2sw

) Psδ2sw
Psδ2sw−2Ppδ2pw +

(
2Ppδ

2
pw

Psδ2sw

) 2Ppδ2pw

2Ppδ2pw−Psδ2sw , Ppδ
2
pw = Pjδ

2
jw ̸= Psδ

2
sw

1− Ppθ
2
pw

Ppθ2pw−Pjδ2jw

(Ppδ
2
pw

Pjδ2jw

) Pjδ
2
jw

Pjδ
2
jw

−Ppδ2pw −
(
Ppδ

2
pw

Pjδ2jw

) Ppδ2pw

Pjδ
2
jw

−Ppδ2pw

 ,
Psδ

2
sw = Pjδ

2
jw ̸= Ppδ

2
pw ∨ Psδ2sw = Ppδ

2
pw ̸= Pjδ

2
jw

1 + 1
e − 1√

e
, Psδ

2
sw = Ppδ

2
pw = Pjδ

2
jw.

(24)

Algorithm 1 Alternate Search Algorithm

Input: ϵ
Output: (W∗

p,W
∗
j )

1: Initialize a starting point (W0
p,W

0
j ), calculate

SINRp(W
0
p,W

0
j ); and set k = 0;

2: repeat
3: For the fixed Wk

j , find the optimal solution Wk+1
p of

problem (29);
4: For the obtained Wk+1

p , find the optimal solution
Wk+1

j of problem (31);
5: k := k + 1;
6: Calculate SINRp(W

k
p ,W

k
j );

7: until |SINRp(Wk
p ,W

k
j )− SINRp(W

k−1
p ,Wk−1

j )| ≤ µ,
or k > Kµ;

8: Return W∗
p = Wk

p ,W
∗
j = Wk

j ;

Proof: For a given Wk
j , the optimal solution Wk+1

p of
problem (29) is obtained, while Wk

p is only a feasible solution
of problem (29) in this case. Thus we can conclude

SINRp(W
k+1
p ,Wk

j ) ≥ SINRp(W
k
p ,W

k
j ). (32)

Similarly, with the obtained Wk+1
p , the optimal solution

Wk+1
j of problem (31) is calculated, while Wk

j is only a
feasible solution of problem (31). It follows that

SINRp(W
k+1
p ,Wk+1

j ) ≥ SINRp(W
k+1
p ,Wk

j ). (33)

Obviously, we have

SINRp(W
k+1
p ,Wk+1

j ) ≥ SINRp(W
k
p ,W

k
j ), (34)

which implies monotonic increasing of the sequence
SINRp(W

k
p ,W

k
j ). Since the SINR is upper bounded by

SINRp ≤ Tr(Wm
p Hp,p)

δ2p
, where Tr(Wm

p ) = Pmp , finally this
generated sequence is convergent. ■

B. Statistical CSI Scenario

In this section, we begin by evaluating the transmission
outage probability, denoted as Pout, for covert communication
between the PBS and PU1 in the statistical CSI scenario. Both
the PBS and the jammer are assumed to be equipped with a
single antenna. Since the accurate transmission rate cannot
be calculated in this scenario, we analyze the performance
based on probabilities, specifically focusing on ETT. ETT
represents the measure of information transmitted from the
PBS to the PU while adhering to covert constraints in CRNs.

Subsequently, we design the optimal transmission power for
the PBS and the jammer to maximize the ETT while satisfying
the covertness constraint.

According to (1), the instantaneous output SINRs at PU1

and Willie are calculated as follows

ψp =
Pp|hp,p|2

Pj |hj,p|2 + δ2p
=

γp,p
γj,p + 1

, (35)

where

γp,p =
Pp|hp,p|2

δ2p
, γj,p =

Pj |hj,p|2

δ2p
. (36)

Since hp,p ∼ CN (0, δ2p,p), hj,p ∼ CN (0, δ2j,p), |hp,p|2 and
|hj,p|2 are chi-square distributed variables with 2 degrees of
freedom, the mean δ2p,p and δ2j,p, respectively. Therefore, γp,p
and γj,p are chi-square distributed variables with 2 degrees of

freedom, the mean βp =
Ppδ

2
p,p

δ2p
= Ppαp and βj =

Pjδ
2
j,p

δ2p
=

Pjαj , respectively. The probability density function of γp,p
and γj,p can be computed as

fγp,p(y) =
1

βp
e
− y

βp , y > 0, (37)

fγj,p(x) =
1

βj
e
− x

βj , x > 0, (38)

respectively. The cumulative distribution function of γj,p can
be expressed as

Fγj,p(x) =

∫ x

−∞

1

βj
e
− x

βj dx

= 1− e
− x

βj . (39)

Let X1 = X+1 = γj,p+1, then the cumulative distribution
function of X1 can be calculated as

Fγj,p(x1) =P (X1 ≤ x1) = P (X + 1 ≤ x1)

=P (X ≤ x1 − 1) = 1− e
− x−1

βj . (40)

Then the probability density function of X1 = γj,p + 1 is
expressed as

fγj,p+1(x1) = F
′

γj,p+1(x1) =
1

βj
e
− x1−1

βj , x1 > 1, (41)
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Let Y = γp,p, X1 = γj,p + 1, then we can obtain that
Z = ψp =

Y
X1

. On the basis of (37) and (41), the probability
density function of ψp can be computed as

fψp
(z) =

∫ +∞

0

|x1|fγj,p+1(x1)fγp,p(x1z) dx1

=
βpβje

1
βj

(βj + βpz)2
. (42)

In the network, a transmission outage event occurs when
the channel capacity C = log2(1 + ψp) falls below the fixed
transmission rate R, i.e., C < R. The transmission outage
probability can be derived as

Pout =P[log2(1 + ψp) < R]

=

∫ 2R−1

0

βpβje
1
βj

(βj + βpz)2
dz =

βpβje
1
βj

βpβj +
β2
p

2R−1

. (43)

Let αp =
δ2p,p
δ2p

and αj =
δ2j,p
δ2p

, then the ETT is given by

T = R(1− Pout), (44)

which is used to assess the covert performance in the sta-
tistical CSI scenario. The optimization problem for the PBS
aims to maximize the ETT while satisfying a specific covert
communication constraint.

max
Pp,Pj

T (45a)

s.t. ξ∗s (Pp, Pj) ≥ 1− ϵ, (45b)
Pj ≤ Pmj , (45c)

Pp ≤ Pmp , (45d)

where Pmp and Pmj are the transmit power limits of the PBS
and SU-Tx1, respectively. (45b) is the covert constraint with
the covert requirement ϵ. As shown in Fig. 8 and Fig. 9,
ξ∗s (Pp, Pj) is monotonically decreasing function of Pp and
is monotonically increasing function of Pj , respectively. It
is assumed to be covert only when ξ∗s ≥ 1 − ϵ. When
ξ∗s = 1 − ϵ, we can obtain P covert

j = (ξ∗s )
−1(1 − ϵ). If the

jammer’s power is lower than P covert
j , the covert constraint

cannot be satisfied. Similarly, When ξ∗s = 1−ϵ, we can obtain
P covert
p = (ξ∗s )

−1(1 − ϵ). if the PBS’s power is higher than
P covert
p , the covert constraint cannot be satisfied. Therefore,

the optimization problem (45) can be rewritten as

max
Pp,Pj

T (46a)

s.t. P covert
j ≤ Pj ≤ Pmj , (46b)

Pp ≤ min(P covert
p , Pmp ). (46c)

Let αp =
δ2p,p
δ2p

and αj =
δ2j,p
δ2p

, then the ETT is given by

T = R(1− Pout) =
αpαjPpPje

1
αjPj

αpαjPpPj +
α2

pP
2
p

2R−1

. (47)

It can be seen from (47) that, given a fixed Pj , T in-
creases monotonically with Pp. Similarly, given a fixed Pp, T
monotonically decreases with Pj . Therefore, the optimization

problem (46) can be solved by applying alternate search
algorithm in Algorithm 1 in the set of (46b) and (46c), and
we can obtain the transmission power of the PBS and the
jammer.

V. NUMERICAL RESULTS

In this section, we present numerical results concerning the
covert performance and secrecy performance in both scenar-
ios with perfect CSI and statistical CSI. For all simulation
experiments in this study, we employ Matlab (version 2017a),
which provides a reliable platform for simulating wireless
communication systems. A high-quality pseudo-random num-
ber generator (PRNG) is used to simulate the actual channel
environment, ensuring the accuracy and validity of the results.
The default simulation parameters are outlined in Table I. The
channel vectors were generated using independent complex
circularly-symmetric Gaussian (CSCG) random variables with
a mean of zero and variance of one. To evaluate the system’s
performance, we conducted Monte Carlo simulations using
10,000 randomly generated channel-quadruplets. The simula-
tion parameters are provided in Table I.

TABLE I: SIMULATION PARAMETERS

Simulation parameter value

The maximum power of the PBS Pm
p (dBm) 30

The maximum power of SU-Tx1 Pm
j (dBm) 30

The number of antennas of the PBS 4
The number of antennas of SU-Tx1 4
The interference temperature limit imposed at PU1 θ 0.1
The distances between the PBS to PU1 and Willie dp,p(dp,w) (m) 120
The distance between SU-Tx1 to PU1 dj,p (m) 150
The distance between SU-Tx1 to Willie dj,w (m) 100
The target covert transmission threshold ϵ 0.1
The detecting duration τ (ms) 0.5
Noise power spectral density N02 (dBm/Hz) -127
Transmission bandwidth B (MHz) 10

12
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8500
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11 8000
750010.5

7000
10 6500

Fig. 3: DEP ξp against the detection threshold Γp for different
P̂p.
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A. Perfect CSI Scenario

Fig. 3 illustrates the covert performance in terms of DEP
(ξp) as a function of the detection threshold (Γp), considering
various levels of received power of primary signals (P̂p). With
the increase of the detection threshold, the DEP first decreases
and then increases. Furthermore, Fig. 3 demonstrates that the
Detection DEP decreases as the received power of primary
signals (P̂p) increases. This observation can be attributed to
the fact that higher received power enhances Willie’s ability
to detect the primary signals.
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Fig. 4: Optimal DEP ξ∗p against P̂s for different P̂j .

In Fig. 4, we depict the optimal DEP ξ∗p as a function
of the received power of secondary signals P̂s for various
received power levels of jamming signals P̂j . It is observed
that the DEP increases as the received power of secondary
signals rises. When the received power of secondary signals
surpasses or equals the combined power of primary and
jamming signals, the DEP converges to 1. This signifies that
ensuring covert performance of the primary signals is possible
when the power of the secondary signals exceeds or equals
the combined power of the primary and jamming signals.
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Fig. 5: Optimal DEP ξ∗p against P̂p for different P̂j .
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Fig. 6: Optimal SINR∗
p against ϵ.

Fig. 5 depicts the optimal DEP ξ∗p as a function of the
received power of primary signals P̂p for various levels of
received jamming signals P̂j . It is evident that the DEP
gradually decreases as the received power of primary signals
increases. Furthermore, it is observed that when the received
power of primary signals is less than or equal to the difference
between the power of the secondary signals and the power of
jamming signals, the DEP converges to 1. In combination with
Fig. 4, we can obtain that P̂p, P̂j and P̂s need to be carefully
designed to meet the equation P̂p + P̂j , so as to achieve the
covert requirement of primary signals.

Fig. 6 plots the optimal SINR∗
p versus ϵ for different P̂j . For

comparison, the performance of the two benchmark schemes
are also investigated, namely the Proposed Iterative Algorithm
(PIA) proposed in [53] and the Iterative Power Allocation
Algorithm (IPAA) proposed in [54]. It is assumed to be covert
for PU when ξ∗ ≥ 1 − ϵ. It can be seen that compared with
the algorithms in the above literatures, the Alternate Search
Algorithm (ASA) in this paper has a better SINR. This is
because we jointly optimize Wp and Wj to optimize SINR.
In addition, it can be seen that the lower the ϵ, the higher
the requirement for covert performance. Fig. 6 shows that the
lower ϵ is, the lower the SINR is. This shows that in order to
achieve a better covert performance, the reduction of SINR
is a cost. In addition, the SINR decreases with P̂j due to the
interference at PU. Hence, it is better to transmit jamming
signals below a temperature limit θ. This figure demonstrates
that the introduction of jamming signals in order to achieve
covert performance pays the price of reducing the SINR.

Fig. 7 investigates the optimal P̂ ∗
j against ϵ for different

P̂p. It is clear that a higher ϵ leads to a higher received
power of jamming signals. This means that the improvement
of covert performance requirement does not require more
jamming signals. Additionally, it can be observed that P̂ ∗

j

decreases as P̂p increases. This implies that when P̂p reaches
a sufficiently high level, additional jamming signals become
unnecessary. Consequently, the power of the jamming signals
must be meticulously designed to fulfill the covert perfor-
mance requirement.
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j against ϵ for different P̂p.

B. Statistical CSI Scenario

Fig. 8 displays the results of the false alarm probability
(PFA), miss detection probability (PMD), and total error
probability (DEP) as functions of Willie’s detection threshold
(Γs). The simulated curves are obtained from the preliminary
analysis of (19), (20) and (14), respectively. To acquire the
simulated curves, extensive Monte-Carlo simulations were
conducted, involving the generation of a substantial number
of random values for Pp, Pj , Ps, |hpw|2, |hjw|2 and |hsw|2.
Upon observing Fig. 8, it becomes evident that the simulated
results align closely with the corresponding theoretical predic-
tions, thus affirming the validity of Lemma 1. What is striking
about the DEP ξs in this figure is that there is an optimal value
of Γs that minimizes ξs, thereby corroborating the assertion
made in Lemma 2.
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Fig. 8: Error rate against the detection threshold Γs.

The minimal detection error probability ξ∗s is examined
across different values of Np and Nj in Fig. 9. The results
reveal that, with an increase in Np, ξ∗s consistently decreases.
This phenomenon is attributable to the heightened transmis-
sion power of the PBS, rendering it more susceptible to detec-
tion by Willie. However, a point of convergence is observed

as Np continues to rise, signifying that the transmit power
of PBS has reached a threshold, halting further enhancement
in Willie’s detection capability. Similarly, an increase in Nj
corresponds to a gradual increase in ξ∗s . This can be elucidated
by noting that higher values of Nj result in increased power
of jamming signals, optimizing the beamforming design and
intensifying interference against Willie. Nonetheless, a point
of convergence is again witnessed as Nj persists in its ascent,
indicating that the transmission power of the jamming signals
has attained a threshold, leading to a cessation in the decline
of Willie’s detection.
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Fig. 9: Minimal detection error probability ξ∗s against the Np
with different Nj .

ETT represents the measure of information transmitted
from the PBS to the PU while adhering to covert constraints
in CRNs. In Figure 10, ETT is depicted as a function of
Np and Nj , illustrating how different antennas affect the
amount of information that can be effectively transmitted from
the PBS to the PU under covert communication constraints.
Obviously, T increases monotonically with Np and decreases
monotonically with Nj , consistent with the analysis in Section
IV-B. Since increasing Nj will cause the interference signal
power to increase, T will decrease. Therefore, it is crucial to
strike a balance between covert performance improvements
and ETT. Nj needs to be accurately designed so that the
transmission power Pj of the interference signal satisfies
Pj = P covert

j .
Figure 11 further elaborates on the relationship between

ETT and Pp for various transmission rates R, providing a
detailed analysis of the impact of these parameters on the
transmission throughput. The results reveal that T initially
increases and then decreases as the transmission rate R
varies, indicating the existence of an optimal value R∗ that
maximizes T . Moreover, we observe that increasing Pp leads
to a higher ETT. Hence, the transmission power of primary
signals, Pp, should be set as Pp = min(P covert

p , Pmp ).

VI. CONCLUSION

In recent years, significant attention has been given to
exploring the fundamental limits of covert communications
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Fig. 11: Effective transmission throughput (ETT) T against
the fixed transmission rate R with different Pp.

at the physical layer for CCRNs. Nevertheless, limited re-
search has been conducted on the simultaneous integration of
jamming and secondary signals to guarantee covertness. To
address this gap, the present paper delves into covert commu-
nications within an overlay CCRN and thoroughly examines
the concurrent introduction of jamming and secondary signals.
The objective is to enhance covertness through the combined
use of jamming and secondary signals in CCRNs. In the
CCRN, the PBS aims to transmit messages covertly to a PU
under the surveillance of a warden, Willie. Additionally, an
SU-Tx is selected as a friendly jammer, emitting jamming
signals to confuse Willie. In the scenario of perfect CSI, we
formulate an optimization problem to maximize the SINR at
the PU while satisfying a covert constraint, namely, ensuring
the DEP at Willie exceeds a certain threshold. To solve
this optimization problem, we propose an alternate search
algorithm. In the statistical CSI scenario, we formulate a
different optimization problem that aims to maximize the

ETT while adhering to the covert constraint. Furthermore, we
present numerical results to demonstrate the performance of
the covertness in both scenarios.

There are potential vulnerabilities and attack scenarios
that could compromise the security and effectiveness of our
techniques. Firstly, while this paper considers the scenario of
a single Willie, in reality, there may be multiple colluding
intelligent Willies, multiple cooperative jammers are needed
to interfere with them respectively. Secondly, cooperative
jammers may be manipulated to become untrustworthy nodes,
so CBS needs to regularly detect and monitor the behavior of
cooperative jammers. Thirdly, wardens may be dynamic, re-
quiring cooperative jammers to adjust their jamming strategy
in real-time. In addition, the model discussed in this paper is
centralized, and the potential of a distributed model should be
further explored.
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