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Multi-Horizon Multi-Agent Planning Using Decentralised Monte
Carlo Tree Search

Konstantin M. Seiler, Felix H. Kong, Robert Fitch

Abstract—We propose multi-horizon Monte Carlo tree search
(MH-MCTS), the first framework for integrated hierarchical
multi-horizon, multi-agent planning based on Monte Carlo tree
search (MCTS). The method employs multiple simultaneous
MCTS optimisations for each planning level within each agent,
which are designed to optimise a joint objective function.
Using concepts from decentralised Monte Carlo tree search
(Dec-MCTS), the individual optimisations continuously exchange
information about their current plans. This breaks the common
top-down only information flow within the planning hierarchy
and allows higher level optimisers to consider progress made
by lower level planners. The method is implemented for survey
missions using a fleet of ground robots. Simulation results
with different mission profiles show substantial performance
improvements of the new method of up to 59% compared to
traditional MCTS and Dec-MCTS.

Index Terms—Multi-Robot Systems, Path Planning for Multi-
ple Mobile Robots or Agents

I. INTRODUCTION

N RECENT years, the Monte Carlo tree search (MCTS)

algorithm has gained increasing popularity as a planning
method for a wide range of applications such as gameplay [1],
[2], scheduling [3], [4], robot path planning [5] and multi-
agent coordination [6], [7] due to its ability to create any-
time plans using generative black-box models. However, for
practical reasons the time horizon considered for planning
is often kept well below the actual mission time to limit
the depth of the search tree, reduce the noise of the rollout
heuristic and allow MCTS to converge to a good solution
within its computational budget. Limiting the time horizon
leads to myopic behaviour, which is unfortunate because a
strength of MCTS in finding global (non-myopic) optima. The
vision of this paper is to overcome computationally-induced
myopic behaviour by allowing MCTS planners to consider
the entire mission time span while remaining computationally
tractable.

The need to limit the planning horizon due to computational
cost is not unique to MCTS and is a common issue in
optimisation. This is often solved by employing hierarchical
planning where a higher level planner creates plans with a
longer planning horizon and reduced resolution while a lower
level planner creates shorter plans of higher fidelity that follow
the set points given by the higher level plan [4], [8]. In most
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Fig. 1: Overview of the MH-MCTS algorithm. The high level planner
and low level planner use the Dec-MCTS framework to jointly
optimise an objective function. They continuously exchange intents
to derive plans that are well aligned with each other.

low level planner

cases this leads to a top-down approach where plans are sent
from higher planners to lower planners as targets or constraints
but no information about possible solutions found by the lower
planner flows back up.

The lack of information flow from the lower to the higher
level planner is a limitation of such approaches. The low level
planner is bound by the high level plan and subsequently may
have to make decisions that are globally suboptimal or may
even be faced with an infeasible problem. Instead it would
be desirable for the planners to cooperatively perform a joint
optimisation.

Decentralised Monte Carlo tree search (Dec-MCTS) [6] is
a framework for collaborative planning across multiple agents
which we can leverage here for cooperative planning across
different planning levels. Dec-MCTS is an extension to MCTS
where multiple agents perform their own MCTS optimisation
while continuously exchanging their most likely solutions with
their peers to allow for a joint optimisation.

This paper presents multi-horizon Monte Carlo tree search
(MH-MCTYS), the first hierarchical planning framework that
allows multiple MCTS optimisations to simultaneously run
at different planning horizons and resolutions while contin-
uously exchanging information about their planning progress.
MH-MCTS is built upon concepts from Dec-MCTS and thus
not only allows vertical cooperation between high and low
level planners but also maintains the ability for horizontal co-
operation between multiple agents. Thus, MH-MCTS provides
the first multi-horizon, multi-agent any-time planning solution
based on MCTS. Furthermore the method is asynchronous
which allows individual planners to operate at different plan-
ning intervals. This enables higher level planners to perform
longer planning cycles to increase the overall solution quality.
The concept is illustrated in Fig. 1. Our experiments with
an implementation of MH-MCTS for survey missions with a
fleet of ground vehicles in simulation show a reduced median



mission time of up to 59% compared to ordinary MCTS and
Dec-MCTS.

The remainder of this paper is organised as follows: re-
lated work is discussed in Section II. The problem statement
is formalised in Section III. Section IV recalls the work-
ings of MCTS and Dec-MCTS before Section V describes
MH-MCTS. Section VI details a concrete implementation of
MH-MCTS for a survey mission and performance results are
presented in Section VII. Section VIII concludes.

II. RELATED WORK

MCTS and its many variations [9] optimises a plan by
building a tree over possible action sequences. Each decision
point forms a tree node and branches explore the outcomes
of different actions. The tree is built incrementally in depth
and width with most of the search being focused on branches
where high reward values have been observed previously. The
value of leaf nodes is estimated by performing a rollout where
actions are chosen according to a randomised heuristic until a
final state or the planning horizon is reached and the reward
can be calculated. Because the tree is build incrementally from
the root, MCTS is well suited to receding horizon control
(RHC) where only the beginning of a plan is scheduled for
execution before planning is restarted anew, potentially with
an extended planning horizon.

Best et al. [6] present Dec-MCTS, a framework which
allows multiple agents to optimise a joint objective function
in a decentralised manner with limited communication. The
core idea is that each agent runs MCTS over its own action
space and regularly broadcasts an ‘intent’, i.e. a probability
distribution over its best solutions to its teammates. This in
turn allows each agent to calculate a relative reward where
the value of the own plan is calculated based on the likely ac-
tions the teammates are going to perform. Intent transmission
happens asynchronously and thus the method is forgiving of
communication lag and drop outs.

There exists a body of work about hierarchical MCTS [10]—
[12] using meta actions that combine multiple primitive actions
to intermediate goals. The approach builds a single MCTS tree
in full depth and detail. However, nodes of the tree that are
within meta actions use restricted action spaces and modified
reward functions which guide the search towards intermediate
goals. This contrasts the approach taken here where separate
MCTS trees are used for different planning levels which may
not share a common planning horizon.

Multi-level planning based on RHC is a common approach
in control theory. The prevalent approach is to employ multiple
hierarchical planners with different horizons and planning fre-
quencies with a mostly top-down information flow. However,
for higher level set points to remain feasible, limited informa-
tion about the system’s performance can also flow bottom-up.
For further details see Scattolini [13] and references therein.

Shao et al. [14] use MCTS as part of method to solve
hierarchical task networks (HTNs). The solver is based on the
SHOP algorithm [15], the performance of which is sensitive
to the chosen order of task decomposition which is domain
specific. Instead of hand-crafting the decomposition order

based on domain specific knowledge, MCTS is employed to
provide estimates about the decomposition order online. Thus
the two planners work together on the optimisation problem,
effectively guiding each other instead of one constraining the
other. This contrasts, for example, the approach taken earlier
by Neufeld et al. [16] where the HTN solver ‘adversarial
planning with HTNs’ (AHTN) [17] was used together with
MCTS in classical constraining hierarchical planning.

III. PROBLEM STATEMENT

We consider a team of N > 1 robots or agents {R1,...Ry}
where each robot R; plans its own action sequence a' =
(at,ab,...). The a;» are elements of a finite action space A. A
robot’s state is described by an element of the state space
S and the initial state of robot R; is given as s € S.
The system dynamics are described by a transition function
T:S x A — S such that s} = T'(sj_;,aj) which gives rise
to a state sequence s' = (s, s},...) = T(sf,a’). The robots
aren’t necessarily homogeneous and as such the robots have
potentially different state and action spaces S and A and tran-
sition functions 7". Furthermore, the set of admissible actions
may be state dependent, effectively varying A. For ease of
notation these variations are omitted in this presentation but it
is understood that the sets and transition function may change
depending on context. The team’s performance is measured
by a global objective function g : SY*N — R which assigns
a reward value to the robots’ joint state sequences. Thus, the
optimisation problem can be stated as

argmax g (T(sp,a'),...,T(s),a")) . ()

(al,...,aN)c ANXN

The team of robots are assumed to be within communication
range with each other which allows them to regularly exchange
updates about their planning progress to aid the joint maximi-
sation of Eq. (1).

Note that the state and action sequences as written here are
infinite sequences. However, in practise they are often finite
due to reaching a terminal state. In cases of truly open ended
problems, RHC is employed to turn each individual planning
instance into a finite problem.

IV. PRELIMINARIES
A. Monte Carlo tree search

MCTS allows to solve Eq. (1) for the case of a single robot
(N =1). See Browne et al. [9] for a detailed description of the
algorithm and its history. The algorithm builds a tree where
each vertex holds a state s € S and each edge corresponds
to an action a € A. At first, the root node is created with
the initial state sg. Then, during each iteration, a vertex s
is selected which still has an open action a that does not
correspond to any of its outgoing edges. A new outgoing
edge with a is then added to s the with a new target vertex
of s = T(a,s). Next the value of the new vertex s’ is
estimated by completing the state and action sequence until
a terminal state is reached and evaluating the reward function
g. Finally, statistics about s’ and all its parent vertices are
updated such that each vertex holds information about the



number of episodes that pass through it as well as the sum
of their reward.

The algorithm forms an optimisation method due to the
way the vertex s to extend is selected in the first step. The
selection process starts at the root sg. If the current vertex s
has no open actions, all outgoing edges leading to a state s’
are scored according to the upper confidence bound for trees
(UCT) formula

UCT(s,8') = 7y + ¢/ Inny )
ns

where 74 is the average reward of all episodes that passed
through s’ and ng and ng are the number of episodes passing
through s and s’ respectively. ¢ is a tuning constant which
balances exploitation against exploration. The process then
continues with the child vertex that has the highest UCT score.
Equation (2) ensures that the search focuses on branches of
the tree where high reward values have been observed before
while also exploring lower valued branches that haven’t been
visited often.

The tree growing algorithm is detailed in Algorithm 1. The
final solution is extracted by traversing the tree one last time
for pure exploitation by setting ¢ = 0 in Eq. (2) and returning
the state sequence s built by Algorithm 1.

MCTS is effectively a single-agent algorithm and multi-
agent planning is only possible using centralised planning,
treating the entire team as a single system and sequentially
choosing actions for the next robot that requires a decision.
This approach was taken in [4] for example.

B. Decentralised Monte Carlo tree search

Dec-MCTS [6] adds a decentralised framework to MCTS
which allows for multi-agent planning. Each agent in a team
builds its own MCTS tree and regularly transmits a set of state
sequences, called infents. The original presentation [6] trans-
mits a probability distribution over multiple intents. However,
the implementation can be simplified substantially by only
transmitting the current MCTS solution as a single intent, an
approach taken in this work.

Algorithm 1 GROW_TREE(T)

1: s + T.root

2: 84 (8)

3: while Va € A : 3 out edge of s with action a do

4: s+« T(s,argmax,cp UCT(s,7T(s,a))

5:  Append s to s.

6: if s is not terminal state then

7:  Select open action a € A and create a new edge a to
new child vertex T'(s, a).

8 s« T(s,a)

9:  Append s to s.

10: while s does not end with a terminal state do

11:  Append state to s according to rollout heuristic.
12: 7+ g(s)

13: update statistics on s and all its parents.

The teammates’ intents allow an agent to evaluate the
common reward function g in the multi-agent setting. The

reward evaluation in Line 12 of Algorithm 1 is replaced by
a relative reward compared to a null-policy. The null-policy
is an application dependent default state sequence § that the
robot could execute in the absence of a plan, e.g., it could stay
stationary. Line 12 is thus replaced by

—g(st, ..., s 8 s L sN) (3)
where 7 is the index of the robot evaluating the reward.

Updated team mates’ intents effectively lead to a drifting
reward function such that the same state sequence s contained
in the tree yields different rewards at different times of
the planning cycle. Thus, the UCT formula is replaced by
discounted UCT (D-UCT) which discounts older rewards in
favour of more recently observed rewards. To calculate the
discounting let 1,(¢) be the indicator function which is 1
if vertex s was selected in tree expansion round ¢ and 0
otherwise. Then a discounted visitation count Cy(s) for vertex
s with discount factor v € (0, 1] is defined as

rg(st, ..., s™)

t
Ci(s) =Y 7' "14(u) . &)
u=1

Let r; denote the reward that was received in iteration ¢
(Line 12 of Algorithm 1), then D-UCT is defined as

¢
> 7 Tl (u)

!
D-UCT(s,s") = “=X o) In Cy(s')
t

Ci(s)

)

V. MULTI-HORIZON MONTE CARLO TREE SEARCH

We can now describe MH-MCTS in general before we
present a concrete implementation in Section VI. Observe that
the Dec-MCTS algorithm doesn’t require the team of robots to
be homogeneous. States, actions and transition functions can
be entirely disjoint and the only requirement is the ability to
evaluate a common objective function g. Thus, it is possible
to deploy multiple MCTS planners per robot which operate
on different planning horizons and combine them into a joint
optimisation using the Dec-MCTS framework.

Little would be gained if a higher level planner merely
extended the planning horizon but was otherwise identical to
the low level planner. The high level planner would then suffer
from the very same computational complexity that prevented
using a single planner in the first place. Thus, the state and
action space of higher level planners must be designed to have
a coarser granularity than the desired output of the low level
planner. For example, when performing path planning, the low
level planners could reason over individual waypoints to visit
whereas higher level planners reason over goals to select or
general regions to visit.

The joint objective function is designed such that a higher
reward is received if low and high level plans are aligned and
support each other. For example if the mission is to visit a
certain set of goals, the reward function could be an estimate
of the time needed to complete the mission, taking into account
the path planned by the low level planner and completion
strategy devised by the high level planner. Thus, the low level
planner is incentivised to produce a plan which aligns well
with the high level plan and vice versa.



It is possible to design a reward function that can be
decomposed into a sum of one part that is only dependent
on the low level intent and a second part which depends on
all intents. E.g., for N robots and two planning levels each
we get:

g(st,....,s? V) = gi(st, 83, ..., sV 4 go(st, 82, ..., 82N) .
(6)
Here we use the convention the planners with odd indices (1,
3, 5, ...) are low level planners whereas even indices (2, 4,
6, ...) refer to high level planners. Remember that different
planners can have different action and state spaces A and S
so the s’ are usually from different spaces.

Decomposed this way, g1 expresses an immediate reward
received for low level actions (e.g., goal points reached, infor-
mation gained) whereas go reflects the long term performance
(e.g., time to mission completion). It also provides computa-
tional benefits. Because for a higher level planner (even index),
g1 cancels out in Eq. (3) and the reward calculation simplifies
to
)

%
)

i+1 N)

1 i—1
—g(s',...,s" 1,8 8" s
71— 7 Si+1 SN) . (7)
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rg(st,....s

S
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Thus, decomposing the reward function reduces the computa-
tional burden on higher level planners.

A further observation is that the Dec-MCTS framework
doesn’t require the agents to synchronise their planning cycles
such that all planning cycles in an RHC setting start and
end at the same time. As long as the objective function
stays consistent across planning cycles, it is possible that
one agent completes planning and starts a new cycle while
others continue with their current MCTS search. Due to the
discounting used in D-UCT, the algorithm can even tolerate
moderate inconsistencies in the objective function as new
planning cycles are commenced asynchronously.

This is beneficial in a multi-horizon setting because it allows
to run higher level planners on longer planning cycles which
leads to longer running MCTS trees and subsequently a higher
chance to converge to a good solution. Keeping the high level
planner running over multiple planning cycles also introduces
a hysteresis effect where the low level planner is biased
towards solutions that are aligned with the same high level
plan as the solution of the previous cycle.

In MH-MCTS, the high level planners only start a new
planning cycle if the problem definition (A, S, so, T, g)
changes in an incompatible way and the MCTS tree must be
invalidated. In the example of a moving robot this could be
when goal or search areas have been completed or otherwise
change.

A. Theoretical analysis

From an algorithmic point of view, MH-MCTS is a direct
application of Dec-MCTS, albeit an unusual one. As such, the
in-depth theoretical analysis from Best et al. [6] carries over to
the work presented here. In particular, Eq. (5) allows individual
trees to converge towards their locally optimal solution in
probability as the number of iterations grow large, provided

that  is set to a value consistent with the expected changes
(breaks) in the reward function as the tree grows.

The theoretical shortcoming that is shared between
Dec-MCTS and MH-MCTS is that convergence to global joint
optimality cannot be guaranteed. However, as addressed in
[6], this is a limitation shared by solution algorithms for
decentralised, long-horizon planning problems when general
objective functions that lack simplifying properties such as
submodularity are considered.

VI. A CONCRETE IMPLEMENTATION

Here we detail a concrete implementation of MH-MCTS
for a survey mission using a fleet of ground vehicles. The
scenario was deliberately kept simple to solely investigate the
benefits MH-MCTS can provide compared to ordinary MCTS
or Dec-MCTS. Two separate scenarios are tested. In the first
scenario, a set of points of interest or targets must be observed
by the robots whereas the second asks for comprehensive
coverage of a search area. The mission objective is to observe
all targets in as little time as possible.

To make the robots’ continuous state space tractable for
planning with MH-MCTS, a discrete road map in in the
form of a directed graph is defined. The examples here use
a probabilistic road map (PRM) [18] based on Dubins paths
[19] and a regular grid pattern respectively. More details about
this setup are given in Section VIL

MH-MCTS is implemented with two planning levels per
robot. The low level planner reasons over paths on the road
map and as such the state space S contains the vertices of the
road map and the action space A equals the outgoing edges at
each vertex. The transition function 7" advances the state along
the edges in the obvious way and a state is considered terminal
if the path length has reached a threshold given by the planning
horizon. The low level reward function g; simply counts the
number of previously unseen targets that become observed
by the team of vehicles. The null-policy for calculating the
relative reward assumes the vehicle stays stationary.

The high level planner is designed to reason over targets or
clusters of targets that have not been observed yet. A vertex of
the road map graph is considered open if from its position a
target can be observed. The implementation used here groups
targets that are close by to each other into clusters. This
allows efficient handling of groups of targets while isolated
targets will still be treated individually. Clusters are formed
by incrementally adding vertices that are less than a threshold
away from existing members of a cluster.

The action space A of the high level planner is the set of
goal areas with the interpretation that taking action a € A
results in the vehicle visiting open vertices of a until none
of them remain open. The state space S is the power set
of A with the interpretation of goal areas that must still be
completed. Thus, the initial state is so = A € S, the only
terminal state is the empty set, and the transition function is
defined as T'(s,a) = s\ {a}.

The high level reward function g estimates the time needed
by the vehicles to complete the mission. This estimate is
calculated as follows.



First each vehicle is assumed to complete the path given
by the low level intent. The map is updated according to the
observed targets and the completion time and position are
noted for each robot. Then, as long as there are still open
vertices, the robot with the earliest completion time is selected
to move to an open vertex. To choose the vertex to move to,
the first goal area of the robot’s long horizon intent that still
has open vertices is taken and a random open vertex from it
is chosen. The targets that can be seen from the vertex are
marked as observed and the estimated time to move to the
vertex is added to the robot’s completion time.

The time it takes to reach the vertex is estimated in one
of three ways depending on the situation: 1) if the robot just
completed its low level intent, the length of the shortest path
from the robot’s position to any vertex in the goal area the
vertex is chosen from is used; 2) if the robot just visited a
vertex in the same target cluster, then a nominal distance to
move between vertices within the cluster is used; 3) if the
robot last visited a vertex in another cluster, the shortest path
connecting the two clusters is used. To calculate the nominal
distance within a cluster for case 2, the average edge length
of a minimal spanning tree between the cluster’s targets is
used. The spanning tree can be computed for instance using
Kruskal’s algorithm [20].

Using this distance function is an optimistic underestimate
which treats all vertices within a goal region equal and
assumes that the robot can find an optimal path where it only
ever moves from one open vertex to an open neighbour.

The mean of all robots’ completion times is returned as the
result of go. Pseudocode for g5 is given in Algorithm 2.

2 2N)

Algorithm 2 gy(s!,s?,...)s

1: V < open vertices

2: for : <+ 1 to N do

3.V« V\ {vertices visited by s*~1}

4:  t; < length of s%~!

5. P; <+ {end position of s?*~1}

6: I+ {1,...,N}

7: while 7 # () do

8: i< argmin;c;t;

9: ifJa€s*:anV #( then

10: R« first a € %" witha NV # 0

11: if RN P; # () then

12: t; < t;+ nominal distance between vertices
13: else

14: t; + t;+ shortest path distance from P; to R
15: P, + R

16: V « V' \ {random element from RNV}

17:  else

O AL ()

. 1 )
19: return > ;- t;

During development we also attempted to use a more
accurate distance function by selecting vertices in a greedy
way and mapping the path exactly. However, this approach
failed due to too much deterministic noise from the heuristic
whereas the method detailed above yields good results.

For both planners a random rollout heuristic is used. The
low level planner selects paths along the road map until the
planning horizon is reached and the long horizon planner
selects goal areas until the state is empty. To reduce rollout
noise during reward calculation, the rollout section of the low
level intent is ignored when calculating g», only the part of
the intent that is actually in the MCTS tree is considered. ¢;
uses the full intents including the rollout component.

VII. RESULTS

For experiments, different scenarios with a survey mission
were tested. Common to the scenarios is that the robots move
at a constant speed and must observe (be within sensor range
of) all targets that are present in the search area.

The purpose of the experiments presented here is to evaluate
the advantage MH-MCTS can provide over plain MCTS
and Dec-MCTS. Thus, other methods for solving the posed
problems are not considered.

We observed that the performance of ordinary MCTS and
Dec-MCTS can be improved enormously on the benchmark
scenarios by incorporating the long horizon reward function g
as shown in Algorithm 2 and using completely random rollouts
instead of actual high level plans. Because doing so merely
constitutes a superior reward function as opposed to proper
multi-level planning as performed by MH-MCTS, throughout
the experiments Dec-MCTS is run with g» enabled and random
rollouts being used during every evaluation. This as well as the
weighting of g; and g, is discussed further in Section VII-C.

A. Waypoint survey

In the waypoint survey scenario, the robots operate on a
work area with randomly placed obstacles and targets. The
robots are assumed to be equipped with a sensor with a limited
range and a target is considered ‘observed’ once a robot passes
it within its sensor range. The robots‘ motions are constrained
to forward movements obeying a minimum turning radius.
Thus, the traversable space is covered by a PRM where nearby
vertices are connected using Dubins paths.

The experiments shown here are performed on a simulated
search area of 800 m x 800 m in size with randomly created
walls as obstacles. The robots move with a speed of 2 m/s, the
turning radius is 10 m and the sensor range for observations
is 6 m. The PRM is created using 15,000 vertices. For the
experiments 20 targets are created. An example of such a run
is shown in Fig. 2.

MH-MCTS and Dec-MCTS are run in an RHC fashion with
a planning horizon of 100 m where half of it is executed
in each planning round. For benchmarking the simulation
was sped up and each Dec-MCTS agent effectively had a
computational budget of a little over 3 seconds per RHC round,
single-threaded on an Intel Xeon Gold 6230R CPU with 2.10
GHz. Intents are exchanged between Dec-MCTS agents every
0.1 seconds. Each simulation was repeated 50 times and the
median time to mission completion is reported here.

Note, that MH-MCTS employs two Dec-MCTS agents per
robot and thus effectively uses twice as much CPU time than



(a) MH-MCTS

Fig. 2: Example paths for MH-MCTS and Dec-MCTS on the way-
point survey with three vehicles. All three vehicles start in the middle
of the map. The solution by MH-MCTS exhibits a better separation of
the robots into different areas allowing for a more efficient mission.

(b) Dec-MCTS

ordinary Dec-MCTS. To rule out that the improved perfor-
mance of MH-MCTS is merely due to additional compute,
we performed additional simulations where Dec-MCTS was
given twice the CPU time per agent. These runs are denoted
with double time.

Quantitative results for the waypoint survey are shown in
Fig. 3. MH-MCTS shows a clear performance benefit over
plain Dec-MCTS, regardless of whether double compute time
is used or not. It can be seen that the algorithms suffer from
diminishing returns as more agents are added, a well-known
limitation of Dec-MCTS. However, despite MH-MCTS effec-
tively doubling the number of Dec-MCTS agents employed,
returns stagnate only after adding the fourth vehicle whereas
plain Dec-MCTS stagnates with three vehicles already. These
significant performance improvements are due to the ability of
MH-MCTS to perform long-term, non-myopic planning in a
way that is consistent with the short-term, lower-level plans.

B. Grid world survey

In the grid world survey, the robots must survey the entirety
of a squared area which is fitted with a road map graph that re-
sembles a grid structure. To account for orientation, each grid
position holds four vertices with different orientations (North,
South, East, West) and each vertex is connected to three of
its direct neighbours, allowing for movements forwards, left
and right while disallowing doing U-turns. Such a contrived
setup provides challenges to MCTS planning because many
successive decisions have to be made to reach a position on
the map.

For the experiments, the robots operate on a square shaped
work area. Two different work area sizes are used here. The
small area is 210 m x 210 m in size resulting in a 21 x 21
grid whereas the large area is 410 m x 410 m with a 41 x 41
grid. The goal is a complete survey of the area which means
that all vertices of the road map must be visited. All vehicles
start their mission at the center of the map looking East.

MH-MCTS and Dec-MCTS are again run in an RHC
fashion with a planning horizon of 20 seconds, 10 seconds of
which are executed. In each planning round, each Dec-MCTS

Waypoint survey
| | |

|:| 8] MH-MCTS

= § E B Dec-MCTS

8 40 Dec-MCTS, double time ||

=

£ -

g

a

ks _

D

= 30 —

o

£ N N

=}

Q

8

g

2 20| 1
I I I e
1 2 3 4

number of vehicles

Fig. 3: Quantitative results for the waypoint survey scenario with
different numbers of vehicles. MH-MCTS shows a clear advantage
over plain Dec-MCTS, especially when multiple vehicles are de-
ployed. All algorithms exhibit diminishing returns as more vehicles
are added. However, MH-MCTS still shows an improvement when
the third vehicle is added.
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Fig. 4: Grid world survey of small area with different numbers of
vehicles and planning algorithms. In this scenario MH-MCTS only
provides a small advantage over Dec-MCTS.

agent has a computational budget of 10 seconds single-
threaded on an Intel Xeon Gold 6230R CPU with 2.10 GHz.
Intents are exchanged between Dec-MCTS agents every 0.1
seconds. Each simulation was repeated 50 times and the
median time to mission completion is reported here.

Results for the small area are shown in Fig. 4. It can be
seen that in this scenario MH-MCTS only provides a small
advantage over Dec-MCTS. This suggests that in such small
scenarios the advantage of long horizon planning is limited.

Results for the large area are shown in Fig. 5.
Here MH-MCTS provides a substantial improvement over
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Fig. 5: Grid world survey of large area with different numbers of
vehicles and planning algorithms. MH-MCTS provides substantial
performance improvements compared to Dec-MCTS.

Dec-MCTS. It can be seen that the advantage diminishes as
more vehicles are added. This is a somewhat expected effect
as Dec-MCTS exhibits diminishing returns as more agents are
added and MH-MCTS adds two agents per robot.

C. Effects of chosen parameters

1) Reward weight: In the implementation presented here,
the reward function is decomposed into two parts according
to Eq. (6). The two components measure different dimensions
where g; returns a measure for the surface area that will be
seen by the low level plan whereas g returns an estimate
for the total mission time. Thus, a question arises about how
to weigh the two appropriately. The approach taken for the
experiments above was to look at the average distance between
adjacent targets. For the waypoint survey the average edge
length of the minimum spanning tree between all targets is
calculated whereas for the grid world survey the distance
between neighbouring vertices is taken. The mission time
returned by g is then divided by the time it takes to nominally
travel between targets:

robot speed
average target distance g2 -

g=g1+ ®)

We also conducted experiments to explore the system’s sen-
sitivity to the chosen value. An example of such experiments
using the waypoint survey with two and three vehicles is
shown in Fig. 6. Here, go is multiplied with an additional
weight factor such that a value of 1 corresponds to Eq. (8).
It can be seen that the system is quite insensitive to the
value of the weight as long as it is larger than zero. At a
value of zero, the MCTS optimisation is performed using
only g; which means no information beyond the current low
level planning horizon is available to the planner. The high
tolerance to different weighting values could indicate that the
information from the high level plan is often used as a tie

Waypoint survey
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Fig. 6: The effect of varying weight factors for g». The system seems
insensitive to a large range of weight values as long as they are larger
than zero.

breaker in situations where multiple low level plans yield
similar immediate rewards.

In case of ordinary Dec-MCTS, g was evaluated using
completely random choices as long horizon plans. That is,
in Eq. (6), s** are random whereas s?*~! are the intents for
1=1,...,N.

Zooming into the tail end of Fig. 6 does not yield any addi-
tional insights and experiments with other scenarios produced
very similar graphs. Thus, they are omitted here.

2) Gamma: Dec-MCTS introduced the parameter v which
discounts the importance of older episodes within the MCTS
tree compared to recent ones in Egs. (4) and (5). We performed
a set of experiments to investigate the effect of v on the per-
formance of MH-MCTS in the benchmark scenarios. Results
for the waypoint scenario are shown in Fig. 7. It can be seen
that the system tends to be forgiving to specific values of
as long as they are close enough to 1. The experiments before
were performed with a value of v = 0.9999. Other scenarios
were also run with varied values for gamma and produced
qualitatively similar results that suggest performance starts to
deteriorate for values of ~ that are too low.

VIII. CONCLUSION

We presented MH-MCTS, a novel framework which uses
concepts from Dec-MCTS to enable multi-horizon multi-
agent planning. The algorithm was evaluated using simple
benchmark problems where it showed substantial improve-
ments compared to ordinary Dec-MCTS. In experiments the
algorithm seems tolerant to a variety of parameter choices
including weighting of the reward components and discount
factor . This indicates that MH-MCTS could be easily appli-
cable over a wide range of applications. There appears to be
a diminishing return as larger numbers of robots are added to
the system. Thus, MH-MCTS is best used in situations where
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Fig. 7: Waypoint survey on the large map using MH-MCTS with
different numbers of vehicles and values for . The system seems to
be forgiving to specific values of v as long as they are close enough

to 1.

only a few robots must coordinate. Additionally, MH-MCTS
can also provide benefits when only a single robot is used.

Future work will include the application of MH-MCTS to
more complex problems as well as an investigation into the
ability to scale to larger fleets.
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